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This development work has been sponsored by the Army Materials and
Mechanics Research Center under AMMRC/DOE Interagency Agreement EC-76-A-
1017-002 as part of the DOE, Office of Vehicle and Engine R&D, Ceramic
Technology for Advanced Heat Engines Program. It has been carried out in the
Inorganic Materials Laboratory of General Electric Corporate Research and
Development, Schenectady, New York under Contract DAAG46-82-C-0053 during
the period September 1982-February 1983. Mr. George Gazza was the program

monitor.

The author would like to acknowledge Dr. R. J. Charles for his overall
guidance of the program, Dr. C. D. Greskovich for useful discussions, and D. T.
Outhouse for his ceramic processing skills. D. G. Polensky is also acknowledged for

his contributions to the program.
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SUMMARY OF IMPORTANT RESULTS

The sintering of SizN, containing BeSiN, and Y,0, was examined and found
to yield densities greater than 99% on routine basis. A composition containing 2.5
wl/o BeSiN2 and 3.0 w/o Y203 displayed a room temperature modulus of rupture of
greater than 690 MPa and a fracture toughness K~ of about 6 MNm'3/ 2, a creep
rate of 4 x 10 h™! at 1300°C under a 69 MPa load, and a parabolic rate constant
for oxidation at 1350°C of 1.7 x 107! kgZm™*s™L, The presence of Y,0, in
conjunction with BeSiN, permitted sintering at lower temperature than the
baseline composition which contained 7 w/o BeSiN, and 3.5 w/o oxygen. The lower
sintering temperature resulted in a material having a finer grain size and
subsequently a higher strength. The increased strength was also influenced by the
presence of a significant fraction of elongated grains in the microstructure which
has been previously reported to increase both strength and fracture toughness. This
composition has adequate properties for structural applications except for the high
creep rate, which is on the same order as NC-132.

The sintering of Si,N, containing 5 wlo LiAlsOg and 3 w/o YF; was
examined and found to yield densities greater than 97%. The creep rate of this
composition was 5 x 103 n~! at 1300°C under a load of 69 Mpa. The high creep
rate, in conjunction with a moderately high oxidation rate, precludes the use of this
material for high temperature structural applications.

A new Si3Na powder from Ube Industries Ltd. was examined and found to
sinter to greater than 98.5% using the baseline composition and minimal process-
ing. Although thermomechanical measurements have not been conducted, the Ube
powder appears to be a suitable substitute for GTE Sylvania SN502.

Several other possible sintering aids were examined; however, none of them

proved to be viable approaches for producing high density, sintered Si3N,.




L INTRODUCTION

Silicon nitride based materials have received a great deal of attention in the
past 10 years for potential applications in small automotive gas turbines, turbo-
chargers and a variety of other high temperature structural applications. The most
demanding application would be as a gas turbine rotor where temperatures of
approximately 1300°C and stresses up to 690 MPa are anticipated. In order for a
material to acceptably perform as a turbine rotor it must have high strength (690
MPa), high Weibull modulus, high fracture toughness, high creep resistance and high
oxidation resistance. Over the years several fabrication routes have been
developed to produce the complex rotor shape and each route has its own particular
advantages and disadvantages. Hot pressed 513N y has proven to yield material with
acceptable room temperature properties; however, the presence of a liquid phase
densification aid results in degradation of high temperature strength. It is difficult
to mass produce into complex shapes in a cost effective fashion since only simple
shapes can be hot pressed and subsequent diamond grinding of a monolithic rotor
becomes totally out of the question with regard to cost. Although reaction-bonded
SiaN“ can be conveniently mass produced into intricate shapes and exhibits
adequate creep properties, it suffers from poor oxidation behavior (because of the
high residual porosity of approximately 15%) and low fracture strength (less than
500 MPa). Recently, Ford Motor Company has developed a process whereby they
first reaction bond and then sinter the material at high temperature and pressure
using Y203 sintering aid. The resultant material is greater than 99% dense and
thereby eliminates the problem of severe oxidation associated with material which
is only reaction-bonded. However, the strength retention at high temperature,
intermediate temperature oxidation resistance, and creep resistance may be
affected by the presence of certain yttrium silicon oxynitride compounds. The last

approach to the fabrication of Si3N4 materials has been by sintering. Because of
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the inadequacies of reaction-bonded and hot-pressed forms of silicon nitride, the

developrﬁent of sintered Si3Nu was cited as a priority goal for materials develop-
(1)

ment for small automotive gas turbine engines in 1974""’. In fact, it was in 1974

that developments in SiC(Z) and Si3Na(3 ) research led to the fabrication of dense

(greater than 90% of theoretical density) ceramics by the sintering process. Since
that time a number of liquid phase sintering aids have been investigated, and
sintering to greater than 99% density has been reported for several compositions.

There are a number of difficulties in sintering Si3N y 0 full density with good
thermomechanical properties. Si3N4 is a covalently bonded solid (approximately
70% covalency(“)) and consequently, a large amount of energy is required for the
formation and motion of structural defects which permit diffusion and subsequent
sintering. Since densification (macroscopic shrinkage) of powder compacts of
513N4 must take place by grain boundary and/or volume diffusion mechanisms,
chemical additives and high temperatures are usually required to increase the
densification kinetics by increasing the effective diffusion coefficients of the rate-
limiting species (generally assumed to be N, based on self-diffusion measure-
ments(s)). In addition, submicrometer particle sizes are usually employed to
increase the sintering kinetics as well as the rate of chemical reaction between the
additive phase(s) and the SiBN#'

Typically, the chemical additives selected for Si3N4 form a liquid phase
during sintering by reacting with the SiO2 (and impurities) on the Si3Nu particles.
As densification proceeds, the a—Si3N4 (low temperature polymorph) dissolves in
the liquid phase and precipitates out as 8 -Si3N4(6'9) and sintering proceeds via a
solution-reprecipitation process. This SiOz-rich glassy phase resides along the
grain boundaries and at t~iple points and degrades the thermomechanical properties

10,11) (11-13)

by grain boundarv slidir and intergranular creep cavitation mechan-

isms. Improved t. - . momechanical properties have been achieved by (1) reducing
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the amount of residual glassy phase, (2) compositional control and subsequent
crystallization of the glassy phase, and (3) increased viscosity of the glassy phase.
However, the densification rate of 513N¢ is generally decreased by reducing the
amount of liquid phase or by increasing its viscosity. To counterbalance the
limited sinterability, higher temperatures (greater than 1800°C) are generally
required, which then introduces the problem of thermal decomposition of SiBNq(w)
and the glassy phase, resulting in density regression and a low density final product.
Experiments have shown(ls ), however, that thermal decomposition can be mini-
mized or controlled by using N2 pressures of approximately 2 MPa. The
development of fully-dense, sintered Si3N4 depends strongly on the competition
between rates of densification and thermal decomposition. This approach requires
acceptance of the inconvenience of sintering Si3Na at high temperatures and high
pressures.

Under two previous contracts with DOE/AMMRC (#DAAG46-78-C-0058(16)
and #DAAG#G-SI-C-0029)(17), General Electric has pursued the sintering of SigN,
using 7 w/o BeSiN2 and 7 w/o Si0, sintering aids. In the first contract, the two-
step gas pressure sintering (GPS) process was developed, the composition was
optimized, and the thermomechanical properties were determined. In the second
contract, the GPS process was further studied and optimized, the process was
scaled-up to produce larger test bars and the thermomechanical properties were
again determined. Table I presents the properties of the original small test bars
and the scaled-up test bars. The Table reports the MOR at room temperature and
at high temperature (1300-1500°C), the creep rate, oxidation rate, fracture
toughness and Vicker's hardness. The results show that the material had unexcelled

creep and oxidation characteristics relative to any sintered Si3N s reported to date.

The absolute strength of the material at room temperature was lower than other

forms of sintered Si3Nu; however, the strength retention was superior. Tests
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conducted at AMMRC by G. D. Quinn showed that a stress rupture specimen
survived 276 MPa (40,000 psi) leaching for 10,000 h at 1200°C and had a total creep
strain of <0.1%. This outstanding result has heretofore not been demonstrated
with Si3Nu ceramics. The retained strength of the 10,000 h survivor was 442 MPa,
a value higher than the average baseline strength. The high sintering temperature
and subsequently the large grain size is believed to be responsible for the lower

room temperature MOR.

II. SCOPE OF THE WORK

The general scope of the program has been to find methods to reduce the
final B -Si3N4 grain size of the GPS SigN, so that fracture strengths at room
temperature and at high temperature (approximately 1300°C) may routinely exceed
690 MPa (100,000 psi). Another important aspect of the work has been to reduce or
preferably eliminate the BeSiN2 and still maintain the excellent properties which
have been achieved with GPS SiBNl& containing 7 w/o BeSiN, and approximately 3.5
w/o oxygen. Once a suitable, non-beryllium containing additive has been identi-
fied, fracture strength at room temperature and 1300°C, creep, and oxidation

characteristics were to be determined.

Ill. EXPERIMENTAL PROCEDURE
A. Preparation of BeSiN2
The sintering aid, BeSiNz, was prepared by mixing equimolar quantities of

Be4N, and §i;N, and reacted according to the reaction:

Be,N., + Si,N, = BBeSiN2

372 3y
The reactants were mixed in a Nalgene jar mill for 1 hour using heptane and Si;N,

milling media. After mixing, the slurry was dried in an N, glove box for 12 hours,

collected and isostatically pressed (approximately 14 MPa) into a slug. The green

. 9 g g 8
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‘:'-j slug was placed in a BN crucible and reacted at approximately 1600°C for 20
| minutes under 2-3 MPa N, pressure. The resulting powder was confirmed by XRD
e .
?t to be BeSiN,, plus a trace of B-Si;N,. ’
-f\.g
3
B. Preparation of Y203
:tt

. Yttrium oxide was prepared by first forming yttrium oxalate and then
calcining in air to yield the oxide. First, 80g of oxalic acid was dissolved in 100 ml

of distilled water. In a separate beaker, 100g of Y(NO3)3.4H20 was dissolved in

‘_:,:Z 175 ml of distilled water. The yttrium nitrate solution was added dropwise to the

.j:-:: oxalic acid solution which was stirred vigorously with a magnetic stirrer. The

2 yttrium oxalate precipitate was then washed thoroughly with 11 liters of distilled "

:::f water and finally drawn down on a filter paper in a Buchner funnel. The yttrium

t! oxalate was dried in an oven at 110°C and then calcined at 650°C in air to yield a

A ' Y203 powder with a specific surface area of approximately 10 m2/g.

> b
L 7

A -
- B
‘ C. Preparation of LiAl;O, :
" Reagent grade LiOH and high purity Al,O; were wet milled in a Nalgene jar :
< .
) with heptane and alumina milling media on a paint shaker for 60 minutes. The :
Y

s .

TELA AL A

batch was reduced to dryness, placed in an alumina crucible and reacted at 1100°C

[

for 2 hours in air. Analysis by XRD showed that Li,‘\l‘..,O8 had formed with a trace

N v 2

BBy gy By

of OL-A1203 present,

D. Batch Preparation for Initial Compositional Studies

O b A,

L]
» 2L

Sylvania SN502 was selected as the initial powder source based on the large

Nl . AW

amount of experience that we have with that powder. A batch containing 200g

*y

150

SN502 Si3Nu + 7 w/o addition of BeSiNz was ball milled for 72 hours in a steel mill

o
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using heptane as a liquid medium. The milled powder was leached for approxi-
mately 12 hours with a solution of 7.4% HCIl and 9.1% HNO3 to remove the
metallic impurities introduced during milling. The SiBN# slurry was then washed

repeatedly with distilled water until there was no detection of FeZ*

ions by the
K3F¢.5(CN)6 test. The next step involved washing the powder with acetone to -
remove the Cl” ions and this was done until there was a negative test using
Ag(NOs). After the acetone washing was complete, the powder was dried for
approximately 12 hours under a heat lamp in a ventilated hood. In addition, there
was a batch of Si3Na, containing no BeSiN2 additive, prepared in the same fashion
described above.

The Si;N, + 7 w/o BeSiN, batch was then mixed in a Nalgene jar with
heptane and Si3N4 media on a paint shaker with the milled Si3Nu powder,
containing no additive, to yield powders containing 1,2, and 3 w/o BeSiNz. The
Y2°3 was then added to the three powder batches by wet mixing in a mortar and
pestle to obtain 1,2, and 3 w/o addition of Y,0, to each of the SizN, + x BeSiN,
compositions.

Several other additives were investigated in addition to the BeSiNz and YZOB
additives. Those batches were prepared by mixing the previously milled, leached

and washed SN502 Si3N¢ powder with the appropriate amount of additive in a

Nalgene jar with heptane and Si3N 4 media on a paint shaker.

E. Batch Preparation for Optimized Compositions
Once the optimum compositions were determined for the sintering of Si3Nu

using BeSiN2 and Y203 additives, 100g batches were prepared. The batch,

containing SiBNl& and the appropriate amount of additive was wet milled for 72

hours in a steel mill with heptane. The milled powder was acid leached, water

washed, acetone washed, and dried as described above. The Y203 was then added
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by wet mixing in a Nalgene jar with heptane and 513N4 balls for 60 minutes on a
paint shaker. The batch was finally reduced to dryness and was ready for powder

compaction.

F. Powder Compaction

Samples (approximately 1g) were first die pressed in a 3/8" diameter double-
acting die at 28 MPa followed by cold isostatic pressing at approximately 200 MPa. A
lubricant solution consisting of oleic acid, stearic acid and dibutyl phthalate
dissolved in 2-propanol was used to aid in pressing. The lubricant solution was
mixed with the powder in a mortar and pestle and the propanol was allowed to
evaporate before pressing. Mechanical test bars were prepared by the above
procedure from green compacts having a weight of approximately 6g and dimen-

sions of approximately 0.8 x 0.8 x 5.8 cm.

IV. SINTERING AND PROPERTY STUDIES USING BeSiN2 AND Y,0,
ADDITIVES

A.  Initial Sintering Studies Using BeSiN, and Y,0, Additives

The sintering behavior of 12 different compositions containing various
amounts of BeSiN2 and Y203 was investigated using the two-step GPS process. A
soak temperature of 2035°C for 30 minutes under 2 MPa N2 pressure was used in
the first step and 1950°C for 30 minutes under 6.9 MPa N, pressure in the second
step. Table II presents the composition, the weight loss during sintering (AW/W o %)
the oxygen content (w/o oxygen) and the fired density (% p ). There are five
compositions which yield densities greater than 93% of theoretical and the
compositions containing 3 w/o BeSiN2 and 1,2, and 3 w/o Y203 all achieved nearly
full density. It should be noted that the oxygen content of all compositions was
less than the approximately 3.2 w/o oxygen required to densify the baseline
composition which contains 7 w/o BeSiN,. The oxygen contents reported in Table

Il include the oxygen associated with the Y203 and the maximum value was 2.5

%

o L’! % " %
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J‘:‘," w/o. Based on the initial investigation using BeSiN2 in conjunction with Y,04
s«&.
""{"’ sintering aid, it became apparent that the high temperature phase equilibria of the
3‘:?-" liquid phase was strongly effected by the Y,0, addition.
v}
155 . . .
S’ﬂ The densification behavior as a function of temperature was examined for six
o
25 compositions which contained 1.5, 2.0, and 3.0 w/o BeSiN,, in conjunction with 2.0
2
and 3.0 w/o Y203 for each of the 3 levels of BeSiNZ. Each of the six compositions
"5, " was fired at 1600, 1700, 1800, 1875, 1950, 2030, and 2100°C for 20 minutes with a

2 MPa N2 overpressure. Weight loss and density measurements were made on each
sample after firing. An abbreviated notation will be used throughout the report

which will list the % of BeSiN2 first and the % Y2°3 second. For example, a

composition containing 1.5 w/o BeSiN, and 2 w/o Y,03 will be denoted as a (1.5,2)
composition. Figure 1 presents the densification behavior as a function of

temperature for the (1.5,2), (2,2), and the (3,2) compositions. Densification was
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observed to begin above 1700°C for the (2,2) and the (3,2) compositions and above

E

1800°C for the (1.5,2) composition. The (1.5,2) composition reached a maximum

density of 80.2% at 2100°C which is clearly not a viable composition since closed

DR

P orC

-

W

porosity (approximately 92%) was not achieved. The (2,2) composition reached a
maximum density of 90.1% at 2030°C. The decrease in density at the higher

temperature is similar to the observations made for the baseline composition which

contained 7% BeSiN, and 3.5% oxygen(ls). The (3,2) composition, however,
v" displayed increasing density with increasing temperature up to a maximum of
E*g 96.6% at 2100°C. Figure 2 presents the densification behavior as a function of
' temperature for the (1.5,3), (2,3), and the (3,3) compositions. The curves are
3 generally of the shape as those shown in Figure 1. The (3,3) composition, however,
Z:j reached a density of 99.4% at 2100°C. A point to be noted was the fact that the
N compositions containing BeSiN; and Y203 could be sintered to greater than 93% in
' a single step firing cycle. This is in contrast to the baseline composition which
3 required the 2-step GPS process.

N S Ao A A S Y S



AN
&
X
\
. 'J
X
i

B

"3 10

'é Another significant result of this sintering study is shown in Table III, which
' presents the weight change during sintering as a function of temperature for the -
4-. six compositions. It was observed that the specimens first experience a weight
{-} gain followed by a weight loss at higher temperature. However, the compositions
: that showed the highest density also showed essentially no net weight loss, as in the
0N case of the (3,2) composition, and a net weight gain for the (3,3) composition which
b \ achieved densities of 96.6% and 99.4%, respectively. This observation is in
,,"! contrast to the behavior of the baseline composition which always displayed a net
-:‘ weight loss of greater than 1%. The weight loss of the baseline composition was
:‘_‘ attributed to the loss of SiO( g) 35 the composition of the liquid phase moved toward
:‘ equilibrium. The loss of oxygen was confirmed by neutron activation analysis(N).

The weight gain of the BeSiNz-Y203 containing compositions may possibly be due

to N, dissolution into the liquid phase as equilibrium is approached. The

subsequent weight loss at high temperature may be attributed to the loss of SiO(g)

or Nz as the higher temperature equilibrium is achieved. .

e

"

*: B. "Grain Boundary Composition" Study :

N An observation was made that although the outside of sintered samples .
A :

P é appeared to be fully dense, the interior had a slightly lower density as indicated by .

the lighter color. It was speculated that gas generating reactions were occurring

1 during sintering and insufficient time was being allowing to permit the gases to

_' escape prior to pore closure. Several attempts at changing the heating schedule :

.

& during sintering to allow the gases to escape before the porosity closed off were :

":,' shown to help, but the problem was not totally eliminated. In order to further y

‘.",,“' B

" understand the origin of the gas generating reactions, which are at least partially :

‘L responsible for the lower density regions in the samples, a study of the phase y,

relations versus temperature was initiated. The approach was to try to simulate

:: the development of the grain boundary phase which is responsible for densification. K

The composition that was chosen corresponded to the sintering of Si3N4 containing
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if 1 . 3 wlo BeSiN, and 3 w/o Y,05. The oxygen content of the Si3N, powder was
‘§ measured by neutron activation analysis to be 1.86 w/o which corresponds to

approximately 3.5 w/o SiO,. The "grain boundary composition" was prepared by wet

\:a mixing 3.0g BeSiNz, 3.0g Y503, and 3.5g SiO, in a Nalgene jar with heptane and

j,{u; Si;N, media on a paint shaker for 30 minutes. The batch was dried, die pressed

v into pills at 126 MPa and reacted at temperatures of 1400, 1500, 1600, 1700, 1900, ‘

:3 ; and 2050°C for 30 minutes under 2 MPa N, pressure. After reaction, the samples |

t’i:‘q were ground and the phases were determined by XRD. Table IV presents the phases ‘
that existed as a function of temperature. The phases present may, in fact, not

:?;i: represent the equilibrium phases, particularly at the lowef temperatures, since only

gw; a 30 minute hold at each temperature was allowed. At 1400°C, the phases present

were BeSiN,, Si,N,0, Y,S5i,0,, BezYZSiO.'., and some liquid. At 1500°C, the
number of phases had decreased and the phases present were BezYZSiO7, Si,N,0,

and liquid. Microscopic examination of the reacted samples revealed that only a

small amount of liquid phase had formed at 1400 and 1500°C. At 1600°C, a
: significant amount of liquid phase had formed and there was considerable amounts
;é of gas generated as evidenced by severe bloating of the sample. The phases

present were e-Si3N4, Be2Y25i07, Y251207, and liquid. The same severe bloating

’L:f; was observed at 1700°C and the phases present were B-SiBN“, liquid, and a trace
:%E of Be,Y,5i0; and Y,5i,0,. At 1900°C the entire sample had melted and formed a
— liquid that had very few gas bubbles remaining in the solidified melt and the only
}Hi remaining crystalline phase was B-SigN,. The X-ray pattern showed broadening of
l“% the peaks and for this reason it is believed that the 8 -Si3N,‘ precipitated out
‘: during cooling. After reaction at 2050°C, the only crystalline phase was B-5i;N,
;gh( and there were essentially no gas bubbles trapped in the solidified melt, thus
”E%’ indicating that no significant gas evolving reactions were occurring. Previous
':‘i: sintering studies have shown that the porosity closes off at approximately 92%

i,“tw density, which occurs at about 2000°C as shown in Figure 2. The "grain boundary"
‘:;: study showed that the reactions giving rise to gas generation were complete by
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1900°C, while the porosity was still open, and therefore the low density centers of

the samples were affected by something in addition to gas generation.

C. Optimization of the Sintering Process

The results from the "grain boundary" study indicated that it would be
beneficial to have a slow heating schedule in the temperature range of 1700 to
1900°C to allow for gas evolution prior to pore closure. Table V presents the
results of the sintering experiments directed toward optimization of the sintering
process. Samples 1-3 were fired in a BN crucible with a modified heating schedule
and the samples achieved relatively high density (theoretical density for the (2.5,3)
composition is 3.23 g/cc). However, microscopic examination revealed that the
problem of the lower density interior of the sample was not completely eliminated.
The use of a reaction-bonded SiJN“ (RBSN) crucible essentially eliminated the
density gradient. It has been previously reported that BN crucibles have an adverse
affect on sintering and it is no surprise that the RBSN crucible gave better results.
The optimized sintering schedule involved the use of an RBSN crucible and a
heating schedule that requires at least a 30 minutes duration for heating from 1700
to 1900°C. The furnace was then rapidly heated to 2025°C for a 30 minute hold
under 2 MPa N2 pressure followed by a 30 minute hold a 1950°C under 6.9 MPa N,
pressure. The optimized sintering process resulted in densities of greater than 99%

for the (2.5,2.5), (2.5,3), and the (3,3) compositions.

D. Properties of 5ijN, Containing BeSiN, and Y,0, Additives
D.l1. Room Temperature Modulus of Rupture

The (2.5,3) and the (3,3) compositions were selected for scale-up to produce
test bars for mechanical property measurements. Six test bars of each composition
were prepared using the 2-step GPS process. Modulus of rupture measurements
were conducted to compare the strength of the (2.5,3) and the (3,3) compositions

with the baseline composition which contained 7% BeSiN2 and 7% SiO, sintering
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aids. Three-point bend specimens were prepared by surface grinding the samples
with a 320 grit wheel at 0.0005" per pass until the faces were flat and parallel.
Then 0.0002" was removed from each face with a 500 grit wheel at 0.0002" per
pass. Finally, the edges were hand chamfered with a 15 Um diamond lap. The
modulus of rupture was determined by 3-point bend with a span of 3.8 cm and a
crosshead speed of 0.5 mm/min and the results are presented in Table VI.

The (2.5,3) composition displayed excellent room temperature strength with
the average MOR being 691 MPa (100,202 psi). It should be noted that 5 of the bars
had strength greater than 690 MPa and one bar failed at 490 MPa. Microscopic
examination revealed that a severe machining flaw was present in the low strength
bar. If this bar is dropped from the data, the average strength was 731 MPa. The
(3,3) composition had an average strength of 542 MPa. The strength of the (3,3)
composition was lower than the (2.5,3) composition, however, it was higher than

the average strength of the baseline composition with was 440 MPa.

D.2, Examination of Fracture Surfaces

Examination of the fracture surfaces of the (2.5,3) and the (3,3) compositions
by scanning electron microscopy revealed a great deal of information regarding the
increase in MOR relative to the baseline composition. The fracture surfaces of the
3 compositions are shown in Figure 3 a,b, and c. The most notable and obvious
change was that the baseline composition fractured by a transgranular mode
whereas the BeSiNz-Y203 containing specimens failed by a mode that appears to
be a mixture of transgranular and intergranular fracture., Examination of the
microstructures revealed that the grain sizes of both the (2.5,3) and the (3,3) -
compositions were smaller than the grain size of the baseline composition. This
observation was to be expected since the baseline composition was sintered at

2100°C compared to 2025 C for (2.5,3) and the (3,3) samples. It is well known that
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the smaller the grain size, the greater the room temperature strength of the

material. It was previously noted(”)

that final grain size of sintered SigN, is quite
sensitive to both temperature and time at temperature. The sintering c;f SigN,
containing BeSiNZ-YZO3 additions was observed to display the same sensitivity of
grain size as a function of temperature and sintering studies were conducted to
determine the minimum temperature required to achieve full density and thus,
maximize strength. Another significant difference between the (2.5,3) and (3,3)
compositions and the baseline composition was the appearance of elongated grains
which take on both an acicular and a platelet morphology. It appears that fracture
occurs primarily by an intergranular mode as the fracture front passes through a
region of fine and acicular grains. However, the large platelets appear to fracture
transgranularly. The presence of elongated grains has been reported to increase
the room temperature strength and fracture toughness and their appearance is
generally associated with presence of Y,O4 or MgO in the liquid phase. The
presence of the elongated grains and the smaller grain size is probably the cause of
increased room temperature strength for the (2.5,3) and (3,3) compositions relative
to the baseline composition. The reason is not at all clear why the (2.5,3)
specimens showed significantly higher strength than the (3,3) specimens. The grain
size of the (2.5,3) appears to be slightly smaller than the (3,3), however, the

difference in grain size alone shouldn't account for the large difference in strength.

D.3. Creep

The creep behavior of the (2.5,3) and (3,3) compositions were measured in air
at a constant stress of 69 MPa and temperatures of 1200, 1300 and 1350°C. The
creep specimens (0.25 x 0.25 x 4.5 cm) were loaded in a 3-point bending mode using
SiC fixtures with a test span of 2.24 cm. Deflection of the test specimen was

measured with a DC-operated LVDT which had a sensitivity of 80 volts/cm. The
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furnace was heated from room temperature to the test temperature over a 6 hour
period and allowed to equilibrate overnight before applying the stress of 69 Mpa
which was accomplished by dead weight loading external to the furnace. Table VII
presents the calculated steady state creep rates for various compositions and
temperatures. The (2.5,3) specimen displayed a steady state creep rate of 4.2 x 10™
3 b7l at 1300°C compared to 4.6 x 10”7 h™! for the baseline composition under
identical conditions. This two order of magnitude increase in creep rate was not
anticipated. It has been reported by other workers that the creep rate of Si3Nu,
which was densified in the presence of a liquid phase, can be decreased by a heat
treatment which causes crystallization of the residual glassy phase present at the
grain boundaries and triple points. A (2.5,3) specimen was heat treated at 1650°C
for 3 hours under 6.9 MPa N, pressure in an attempt to cause crystallization of the
residual glassy phase. XRD analysis after heat treatment revealed that the
Be2Y25107 and Y2$i207 minor phases that were present before heat treatment
were still present but the amount of those phases was increased at the surfaces of
the specimen. Table VII shows that the heat treated sample, designated as
(2.5,3)HT, displayed essentially no reduction in creep rate due to heat treatment.
It would appear that the decrease in creep rate due to heat treatment occurs only
for specific compositions and no gain was achieved with the (2.5,3) composition.
The (3,3) composition showed a slightly higher creep rate and was not surprising
due to the increased amount of additive. Although, both the (2.5,3) and (3,3)
compositions show the crystallized phases BezYZSiO7 and Y,5i,0, to be present at
room temperature, they apparently react at higher temperature to yield a low
melting, low viscosity liquid and cause a subsequent degradation in high tempera-
ture strength characteristics. The strength degradation was so severe that neither

composition could maintain a 69 MPa load at 14600°C.
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3_1 D.b. Oxidation
\S The oxidation behavior of the (2.5,3) and the (3,3) compositions was examined .
‘ . at 1300 and 1350°C in Al,04 tube furnace with flowing oxygen for times up to 261 '
"‘:E hours. Oxidation experiments were conducted on clean test pieces which were
:: finished with 500 grit diamond and leached for 2 hours in concentrated HCl
o followed by washing in distilled water and alcohol. The specimens were placed on
: an oxidized SiC setter which lay on an Al,0, boat and inserted into the hot furnace
"- within 5 minutes. During the oxidation experiment, the furnace was controlled
g‘ within +/- 2°C. The specimens were periodically removed from the hot furnace ¥
‘fi and its weight measured on a Mettler H54 AR balance capable of measuring to the "
éi nearest 2 x 10 g. The amount of oxidation was determined from the weight gain
_.:,:: measurements. Parabolic oxidation kinetics were observed and the parabolic rate :
E constant (kp) was determined using the equation: t
” WW/A)? =kt %
'.'.‘ where AW/A was the change in weight per unit area and t is the oxidation time. ..
; Figure 4 presents the oxidation behavior of the (2.5,3), (3,3) and the baseline
” composition at 1300°C and the parabolic rate constants were calculated to be 5.7 x :
10'12, 2.8 x 10'“, and 7.4 x 10713 kgzm"‘s'l respecitvely. Figure 5 presents the ‘
B oxidation behavior at 1350°C of the same three compositions and a Y203-A1203 "~
composition prepared by GTE Sylvania. The parabolic rate constants, kp, for the 5
‘S (2.5,3), (3,3) and the baseline compositions were 1.7 x 10'“, 2.7 x 10'“, and 1.4 x
10712 kgzm'l‘{l respectively. It should be noted that the oxidation rates of the
_'_ samples containing BeSiN2 and Y203 are considerably lower than the compositions
% containing Y,0,-A1,0, additions. :
1 £ The surfaces of (2.5,3) and (3,3) samples which were oxidized at 1350°C were :
; examined by SEM and the observations are shown in Figure 6 a and b, respectively.
E Both samples show the presence of 2 crystallized phases having different morphol- "
Te <
E %
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ogy, one needle-shaped and the other more equiaxed. XRD analysis of the oxidized
surface revealed the presence of Y,Si,0, and Y,,Si;gN,O,, in addition to B-
Si3N4 and a very large a-cristobalite peak. XAFS revealed that both crystalline
phases contained Si and Y and the regions where the crystallized phase was absent
contained only Si. The presence of Be could not be determined by this technique.
It was not possible to determine which phase had the needle-like morphology and
which phase had the more equiaxed morphology. The point to be noted is that at
temperatures of 1350°C the yttrium is mobile enough to diffuse toward the SiO,
surface layer produced by oxidation and precipitate out as a stable crystalline

phase. The same observations have been made in systems using MgO as a sintering
aid1®),

D.5. Vicker's Hardness and KIC Measurements
The hardness and the fracture toughness, KIC’ were determined by the

(19) in a Vicker's test using flat, polished

microhardness indentation technique
samples. The application of a 500g load resulted in sharp indentor impressions with
single extension cracks radiating outward from the impression corners. The
Vicker's hardness number (VHN) for the (2.5,3) and (3,3) compositions were
determined to be 1600 and 1700, respectively. The corresponding values of KIC
were found to be 6.0 for the (2.5,3) composition and 5.9 for the (3,3). The values of

KIC were calculated using the expression:

K.~ ¢ 0.4
(H_ICWZ) (%—) = 0.142 (c/a)'l'56
a

E. Microstructural and Phase Characterization
Several compositions containing the BeSiN,-Y,0O4 additive ( (2,2), (2.5,2.5),
(2.5,3), (3,3), (3,4), (4,3) ) were examined by scanning electron microscopy and X-

ray diffraction to determine the microstructural and phase characteristics.



’\Jﬁ; ).

PN~
VRV

Figures 7 a and b present the fracture surfaces of the (2.5,3) and {3,3) compositions
fired using the 2-step GPS process with a maximum temperature of 2025°C. In
comparison, Figures 7 c and d present the fracture surfaces of the same
compositions fired using the GPS process with 2050°C being the maximum
temperature. It is apparent that the grain size of both compositions increased
significantly with only a 25°C increase in sintering temperature. It was noted that
the grain size of both the smaller, equiaxed grains as well as the elongated grains

(17) with the baseline

increased with increasing temperature. It was shown
composition, which contained 7% BeSiN2-796 SiOz, that the final grain size of the
sintered SiBNu was strongly affected by the temperature and time at temperature
during sintering. From the standpoint of maximizing the room temperature MOR,
it is essential that the sintering be done at as low a temperature as possible.
Figures 8 a-d presents the fracture surfaces of the (2,2), (2.5,2.5), (3,4) and (4,3)
compositions which were fired by the 2-step GPS process with a maximum
temperature of 2050°C. The fired density of these compositions was 94.7%, 99.6%,
98.4%, and 97.8%, respectively.

X-ray diffraction of the six compositions led to some very interesting results

and are presented in Table VIII. The Table presents the compositions and the

phases present after sintering. It was observed that, for the (2,2), (2.5,2.5), (2.5,3),

and (3,3) compositions, the major phase was 8-513N4 and the minor phases were

Be,Y,Si0, and Y,Si,0,. However, the (3,4) and (4,3) compositions showed B-
Si3N, as the major phase and only Y251207 as the minor phase. The presence of
the YZSiZO7 was expected since the solubility of Y203 in B -Si3Na should be low
due to the large atomic radii of yttrium. However, the presence of Be,Y,Si0, was
not anticipated based on the previous experience with the baseline composition in
which no beryllium-containing second phase was present after sintering. The work

(20)

of Huseby et al showed that there is an appreciable solubility of Be in B-Si3N ye
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Figure 9 presents their findings as a plot of equivalent % Be in -Si3Nq as a

function of temperature. The dotted portion of the curve represents an assumed i
extrapolation and is not based on any experimental data. It is believed to be a
reasonable approximation, however, since the baseline composition contained 2.4
equivalent % Be and firing at 1950°C in the second step of the GPS process
resulted in no Be-containing second phase. Furthermore, lattice fringe imaging in
the TEM indicated that if a liquid phase was present at the grain boundary of the
baseline composition, it was on the order of 10 R thick. Based on these results, it
was anticipated that the beryllium would dissolve into the g -513N4 lattice, thus
leaving only an yttrium silicate at the grain boundaries and triple points. It
appears that the BezYZSiO7 phase is more thermodynamically stable than the solid
solution that is formed when beryllium and oxygen dissolve in B-Si3N4. With
respect to the high creep rates of the (2.5,3) and (3,3) compositions, it would
appear that a low melting liquid results when Be2Y25507 and YZSIZO7 are in

equilibrium. If this speculation is correct, then one would expect that the creep

I

rates of the (3,4) and (4,3) compositions would be lower than for the (2.5,3) and

(3,3) compositions. These tests, however, were not conducted.

V.  Sintering and Properites of SizN, Containing LiAl 5Og and YF, Additions
A. Sintering Studies
Sintering experiments were conducted using Ube Si3N4 and LiAlsOg and YF,

sintering aids. Table IX presents the additives used, the sintering conditions, the

total oxygen content (Ot), the fired density (P) and the weight loss during sintering )
(W /Wo). Table IX shows that the addition of 5% LiAl;Oq to SisN, resulted in a
density of 83% at 1660°C and that increasing the temperature to 1920°C gave only f;

a marginal increase in density up to 88%. It was also observed that increasing the

oxygen content from 3.9% to as high as 7.9% did not improve the sinterability. The A
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b _§ addition of 3% YF3, however, in conjunction with 5% LiAl 508 resulted in densities j
2 greater than 96% at temperatures of 1800°C or higher. It should be noted that the :
\. addition of Yl'-'3 resulted in an increased weight loss. The additional weight loss
, :g may be attributed to a reaction between YF3 and either LiAlsOg or 5i0, to form
I Y203 and a volatile specie such as SiFu, A1F3,or LiF. The addition of 10% I.i,‘\l508
:: resulted in similar, but still, inadequate densification. Again, increasing the
\523 oxygen content provided no benefit in terms of sinterability.
2 The compositions containing 5% LiAl;Og and 5% LiAlsOg-3% YF, were
", sintered at temperatures ranging from 1700 to 1900°C and XRD was done to
3:\: determine the phases present. Table X presents a summary of the phases present
W as a function of temperature for the 2 compositions. It was observed that the
compositions containing only LiAlsOg retained a-SigN, up to 1900°C whereas the
‘é:s presence of YF3 lowered the temperature at which conversion from alpha to beta
< was complete at less than 1800°C. It appears that the LiAlsOq tends to stabilize
the alpha phase whereas the presence of YF3 tends to enhance the conversion to
\: beta.
\0
:i‘ B. Properties \
: A test bar (0.8 x 0.8 x 5.8 cm before firing) was prepared using Ube Si3N,‘
’ with 5% I..iA1508 - 3% YF3 composition. The bar was sintered at 1800°C for 2
:: hours under 1.8 MPa N2 pressure and achieved a density of 96%. The fired bar was ..
:r: machined to provide a MOR bar (0.7 x 0.14 x 4.8 cm) and 2 creep specimens (0.25 x X
K 0.25 x 4.8 cm). The MOR bar was broken in 3-point bending mode with a span of N
3.8 cm and had a room temperature strength of 466 MPa. Figure 10 is an SEM
ﬁ micrograph of the fracture surface showing the the specimen failed by intergranu-
lar fracture. The microstructure appears to be composed of a matrix of 1-2 um J
;"?\ equiaxed grains and a significant fraction of acicular grains.

-j". -l
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The creep rate of this composition was determined to be 5.02 x 10’3 at
1300°C under a 69 MPa load. The creep rate was approximately an order of
magnitude hfgher than that measured for NC-132 under the same conditions. This
finding is no surprise in light of the fact that sintering to high density could be
achieved at 1800°C. The presence of a low melting liquid at the grain boundary is
probably the cause of the high creep rate.

The oxidation rate of this material was measured at 1300°C in flowing
oxygen. The parabolic rate constant for oxidation at 1300°C was determined to be

2 -Qs-l

6.76 x IO'11 kg™m . The high rates of creep and oxidation preclude the use of

this composition as a high temperature structural material.

V1. Evalaution of Various Sintering Aids

Several sintering aids were evaluated in a cursory fashion to determine their
effectiveness as a densification aid for Si3N4. Table XI presents a summary of
these additives, the sintering conditions, the total oxygen content (Ot)’ the fired
density (p); a.1d the percent weight loss (AW/W ). The addition of either Li,SiN, or
Ga203 showed vitually no effect on sintering and the addition of B,C and C
resulted in decomposition of the sample. The addition of 10% ZrO2 increased the
density to 70% as did the addition of 6.8% LiAISiO,. A slightly higher density of
76% was observed for the addition of 5-10% LiAlO,,. The addition of 5% Lil-\lO2 in
conjunction with 3% YF3 yield a density of 93%. Densities of approximately 80%
were realized for additions of 6% Y,O4 and 5.7% Y,0,- 11.7% SiO,. The addition
of 10% YAG resulted in densities as high as 95%, a result previously reported by

(21)

Gazza'“"’. None of these compositions presented in Table XI were pursued in an

attempt to optimize additive content or sintering schedule.

VII. Evaluation of Ube Si 3Nl+ Powder
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Two different lots of SiBNl& powder were obtained from Ube Industries on an
experimental and trial basis as an alternative to GTE SN502 powder. The Ube
powder was produced by first reacting SiC,, with liquid ammonia to form either
silicon amide or imide which was subsequently thermally decomposed in the

N u(22). The resultant powder particles have an

presence of N2 or NH3 to form 513
equiaxed morphology and the presence of very few whiskers as shown in Figure 1la.
This is contrary to the powders produced by Sylvania (SN502) which contains a
large fraction of whiskers and larger particles as shown if Figure 1lb. Note the
Figure lla is magnified 4 times greater than Figure 1lb. The SN502 must be
extensively milled to break down the whiskers and allow pressing of compacts to a
reasonably high green density (approximately 53%). The Ube powder, on the other
hand, presses to approximately 53% green density in the as-received state.
Because of the powder morphology, it was found that minimal milling was required
to produce sintered samples with densities greater than 98%. The sintering aid for
all of the experiments was BeSiNz. Table XII presents the chemical and physical
properties of the 2 lots of powder as determined by Ube Industries.

Table XIII summarizes the pertinent parameters from the sintering experi-
ments conducted on Lots A-10 and A-18. The oxygen content is listed for each
compostion, since it was previously established, with SN502 powder, that the
oxygen content should be greater than 3.2%. The initial oxygen content was taken
from Table XII as reported by Ube, and the oxygen was subsequently adjusted by
heating the green compact in air at approximately 1000°C. Specimens were
sintered using the two step gas pressure sintering process (GPS) and the sintering
conditions are listed in Table XIII according to the Temperature C/ time (minutes)
/pressure (MPa) for both the first and second steps. The percent of theoretical
density (%P) is based on 3.18 g/cc and the weight loss during sintering is listed as

w/w o Specimens were fired in either BN or RBSN crucibles. The column labeled
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RN "Processing" denotes the powder lot and the preparation procedure for producing
L fa
) the green compacts. They are as follows:

. (1) Lot A-10 A 50g batch was prepared by wet mixing Si;N, + 7 w/o BeSiOn, in

f :.:\3} a nalgene jar with heptane and Si,N, media for 60 minutes on a
' .v paint shaker. Pills were cold pressed at 9000 psi and isostatically
" | pressed at 30,000 psi.

i‘:i (2) Lot A-10 A 50g batch was prepared by milling SigN,+ 7; w/o BeSiN, in a
}\- ; steel mill with heptane for 24 hours. The milled batch was leached
;‘: ‘ to remove metallic impurities introduced during milling. Pills were
; :.4 col& pressed at 9000 psi and isostatically pressed at 30,000 psi.

1 (3) Lot A-18  Same procedure as (2).

adk The experiments revealed that the Ube SigN, powder containing 7% BeSiN,
.'Z:{: and 7% SiO,, sintering aids could be repeatedly densified to greater than 98.5% of
é:j theoretical. High density could be achieved with a minimum of processing, relative
- to SN502. It was observed that Lot A-18 gave better microstructural appearance
"'43 than Lot A-10, which showed a speckled appearance on metallographic sections
24 after sintering. The "speckles" are believed to be due to the presence of

approximately 200 ppm Ca in the starting powder. Lot A-18 contained less than 50
ppm Ca and this problem was not apparent for samples prepared from this lot. In

general, the same oxygen content and sintering conditions are required to fully

- densify the Ube powder as was required for SN502. Aithough thermomechanical
property measurements have not been made on specimens prepared from Ube

powder, it would appear that, for purposes of this study, UBE powder is an

\
{

o acceptable substitute for SN502.
‘e
0%
1':"“1
o VIil. CONCLUSIONS
o~ The sintering of Si3Nu containing BeSiN2 and Y,O4 additives was examined
.;' ]
"f and found to yield densities greater than 99% of theoretical. The room tempera-
18 A
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ture strength of the (2.5,3) composition is greater than 690 MPa. The creep
resistance of this material, however, is found to be too high to be acceptable as a
structural material above 1000°C. Although, the use of BeSiN, as a sintering
additive requires special handling procedures to deal with possible toxicological
issues, it appears to be the best additive yet identified in terms of high
temperature strength retention and creep and oxidation resistance. The use of
Y203 in conjunction with BeSiN, served to reduce grain size by decreasing the
sintering temperature and subsequently increased the room temperature strength
relative to compositions containing 7% BeSiN2 and 3.5% oxygen. The high

temperature strength, however, was substantially degraded and is speculated to be

a, ‘v"v-."“r y
0

)
N
~
S
by "o
~
~

due to the presence of a low melting liquid which occurs when Be2Y25107 and
Y251207 are in equilibrium.

It is concluded that the use of 7% BceSiN2 and 3.5% oxygen is an optimum
composition in terms of maximizing high temperature properties. It has been

shown(2 0)

that the solubility of beryllium in B-Si3Nu decreases with increasing
temperature. The 2-step GPS process uses this fact by firing at 2100°C in the first
step to maximize the amount of liquid present to aid in densification and then
dropping the temperature in the second step to 1950°C to permit dissolution of the
Be and O in the liquid phase into the B -Si3N4 lattice, thereby effectively drying up
the liquid phase. Other systems, particularly the Y203--A1203 and Y,04-5i0,,
which utilize a post-sintering heat treatment to crystallize the liquid phase, have
shown promise in terms of reducing the creep rate. The presence of a crystallized
second phase may result in a strength degradation due to the thermal expansion

mismatch between Si3N y and the second phase during thermal cycling of the gas

turbine engine.
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¥ TABLE 1|
}3 Comparison of Properties of Small and Large Samples of GPS Si 3N4

4

I# »
Modulus of Rupture  25°C 597 MPa(m=8.3) 440 MPa(m=7.8) .
% 1300°C 553 MPa(m=12.9) NA
X 1400°C NA 410

N 1500°C  NA 279

5 Creep 1300°C  4.6x10""h"1(69 MPa) 2x10"%h1(345 MPa) g
: 1400°C  6.9x10~%h"1(69 MPa) ux10~°h"1(207 MPa) g
% -
Oxidation 1300°C  1x10"12kg?m4s"! 7.4x10" 1 3kg?m4s7! &
- 1400°C  NA 2.1x107 2eg?m4s7! -
~j 1500°C  6x10"12%kg?m4s"! NA %
s 312 :

KIC 2.9 MNn

VHN (500g load) 1650kg/mm?>
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Sintering Behavior of Si3N, Containing BeSiN, and Y,0; Additives
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Table 11

0 ‘-.' »". '-s"‘-
arata

w/o Oxygen

1.86
2.07
2.29
2.50
1.86
2.07
2.29
2.50
1.86
2.07
2.29

2.50

R N
o ?-I.LA\J.:-A}—I"“.J‘ N J

M‘th

57.9
82.2
84.5
84.2
56.9
83.0
95.0
93.2
56.9
98.8
99.4

99.1
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Temp.’C

1600
1700
1800
1875
1950
2030
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Table III

Weight Change During Sintering as a Function of Temperature

Ir—
L

\»n
S~
N

0.56
0.52
0.30
0.02
-0.03
-0.50

for 5i3N, Containing BeSiN, and Y,04 Additives

2/2
0.47
045
0.33
0.16

-0.01

-0.16

3/2
0.44
047
0.39
0.23
0.22

-0.05

1.5/3
0.47
0.44
0.35
0.34

0.11
-0.18

0.45
0.50
0.57
0.68
0.78
0.51
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A

Phases Present as a Function of Temperature

for the "Grain Boundary Composition"

4

y .,y A
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y Tt

e o
g Temperature 'C Phases Present

W 1400 BeSiN,,  SiN.O,  Y,Si,O.,
2N Be, Y ,8i0, Lifui 2277

Sd 1500 SizNZO, BezYZSiO7, Liquid

by 1700 B-Si,N,, trace Be,Y,SiO.,
; \(2513'20"7 Liquid 2 2 7
w 1900 8-5i,N,, Liquid

NN 2050 B-Si 3Ny, Liquid
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TABLE V

Optimization of the Sintering Process for Si 3N4
Containing BeSiNz and Y,03 Additives

Sample # Crucible  Sintering Conditions T, t, P o gfem’ A w/wW, % |

SNBY 2.5,3- | BN 1700°C, 30 min 250 psi 3.18 -0.17 B
2050°C, 30 min, 300 psi

1950°C, 30 min, 1000 psi

-2 BN 1700°C, 30 min, 250 psi 3.11 -0.15
2050°C, 30 min, 3000 psi

% | LAY

-3 BN 1910°C, 30 min, 280 psi 3.17 +0.12
2045°C, 30 min, 300 psi

-4 RBSN 1700°C, 30 min, 250 psi 3.23 -0.10
2025°C, 30 min, 300 psi
1950°C, 30 min, 1000 psi

-5 RBSN 1700*1900°C, 30 min 250 psi  3.23
2020°C, 30 min, 300 psi
1950°C, 30 min, 1000 psi

-6 RBSN Same 5 3.21 -0.47 .
-7 RBSN 1700°C, 30 min, 260 psi 3.22 -0.43
2030°C, 30 min, 300 psi B
1950°C, 30 min, 1000 psi ;
-8 RBSN 1700*1900°C, 30 min, 260 psi 3.2l -0.51 2

2020°C, 15 min, 300 psi )
1950°C, 30 min, 1000 psi §
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Sample #
(2.5,3) -1

-2
-3
4

-5

%0
99.5
99.5
9.5
99.5
9.5
99.5

TABLE VI

W (cm) h (cm)
0.638 0.505
0.638 0.505
0.638 0.505
0.638 0.505
0.638 0.505
0.638 0.505

Room Temperature MOR Of the (2.5, 3) and (3,3) Compositions
MOR (MPa)

740
490
690 |
726
796
708




3 S

. PR t .-.-’.
et e

Tea . e,

XN
I N SR

Figure 3 Fracture Surfaces of the (a) (2.5, 3) Composition, (b) (3,3) Composi-
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1300°C

4.23x 107°

3.58 x 1077

7.17 x 1070

L

Steady State Creep Rates of the (2.5, 3) and (3,3) Compositions

1350°C
7.68 x 10°%
1.65 x 107%

6.75 x 10°%




SLSERSATOLNL AL LA SRR A Lt (4 FEA SO R L oa e e e R L g oy e p g

37

5| OXIDATION AT I305°C _

m BASELINE
A (2.5,3) _
X (3.3)

(AW/A R ¢®m~4

) 1
|

]
50 100 150
TIME (HOURS)

—
|

Figure 4 Oxidation Behavior of the (2.5, 3) (3,3) and Baseline Composi-
tions at 1300°C in Flowing Oxygen
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Figure 5 Oxidation Behavior of the (2.5,3) (3,3), Baseline and GTE 3

Sylvania Compositions at 1350°C in Flow Oxygen :
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TABLE Vil

Phase Present as a Function of Composition After GPS at 2050°C

Composition

MAIJOR
(2.5, 2.5) B-Si3N,
.5, 3) B-SiyN,
(3, 3) 8-Si,N,
(3, 4) B-SisN,
4, 3) B-SisN,

Phases Present

---------

NN LS N TN, Ly e e
-;\‘g‘ % STV NP VO I SR O Sy L)

MINOR
Be2Y25i07, Y25i07
Be2Y25°107, Y25'1207
Y25i207
Y25i207
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TABLE IX
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Densification of Si3Nu Containing LiAl 508 and YF‘3 Additives

Additive

5 wlo LiAl508

5 w/o LiAl 508

5 w/o LiAl 508

5 w/o LiAl O
-3w/o @Fg

10 w/o I.i:‘\ljo8

10 w/o LiAl508
10 w/o LiAl508
10 w/o LiAlsog

10 w/o LiAl

503

Sintering Conditions T, t, P

1660°C, 2 h, 1.7 MPa
1720°C, 2 h, 1.7 MPa
1810°C, 1 h, 1.7 MPa

1920°C, L h, 1.9 MPa
1705°C, 4 h, 1.8 MPa
1820°C, L h, 1.9 MPa

1700°C, 1 h, 1.7 MPa
1800°C, 3 h, 1.9 MPa
1900°C, 1 h, 1.9 MPa
2000°C, 1 h, 2.1 MPa

1660°C, 2 h, 1.7 MPa
1720°C, 2 b, 1.7 MPa
1810°C, 1 h, 1.7 MPa
1920°C, 1 h, 1.9 MPa

1705°C, 3 h, 1.8 MPa
1705°C, 3 h, 1.8 MPa
1800°C, 3h, 1.7 MPa

1820°C, 1 h, 1.8 MPa

%p
82.7
86.2
87.1

83.1
84.3
88.1

87.0
96.0
96.0
96.9

89.3
90.3
87.7
84.3

91.8
89.0
84.6

85.5

%0, %_w/wo
3.9 -0.6
3.9 -0.6
3.9 -0.9
3.9 -1.2
6.5 -1.8
7.9 -0.5
3.9 -2.8
3.9 -4.4
3.9 -4.1
3.9 -4.9
6.2 -008
6.2 -0.8
6.2 -1.0
6.2 -1.7
7.8 -1.1
9-6 ‘1.2
9.1
11.5 -1.5
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TABLE X

Phases Present as a Function of Temperature for SiBNu
Containing LiAl 5O8 and YF, Additions ]

5 wlo LiAl,Oq 1°C 5 wlo Al,Og - 3 w/oYF,
B -Si;N,, a-SiyN, 1700 B -SisN,,, minor ®-SisN, |
B -SigN,, &-SiyN, 1800 B-Si N,
B -Si3N,, trace a-SiyN, 1900 B -Si;N, j
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Figure 10 SEM Micrograph of Fracture Surface SiBNu + 5 w/o LiAl 508 +3wlo
YF,

B
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oy TABLE XI i
.l$- l’
;:‘: Densification of Si3N, Containing a Variety of Additives j
N ‘
N Additive Sintering Conditions T, t, P % %0, % Aw/wo i
% 7 wlo Li,SiN, 1850°C, 30 min, 1.7 MPa 53 1.8 -2.1 |
(_\:.f .
e 7.3 w/o Ga,0,4 1900°C, 30 min, 2.1 MPa 53 3.7 -19.6 '
O 1.3 w/o B,C o
s +0.7 w/o C 2005°C, 30 min, 2.1 MPa Decomposed 1.8
‘.\
I 10 w/o ZrO, zoso°co, 30 min, 2.2/
¥ 1940°C, 30m, 6.9 70 b4 -13.4
3
. 6.8 w/o LiAISiO,  1710°C, 15 min, 1.7 MPa 67 5.5 -3.7
A4
e 1950°C, 15 min, 2.2 MPa 70 5.5 -9.4
3
o 5 wlo LiAIO, 1800°C, 120 min, 1.9 MPa 77 4.4 -3.5
<
N 10 w/o LiAIO, 1800°C, 120 min, 1.9 MPa 76 6.9 -3.8
A
> 5wlo LiAIOﬁ: oc. 120 mi
;i +3 wlo YF, 1800°C, min, 1.9 MPa 93 4.4 -b.4
75 6 w/o Y,0, 1850°C, 60 min, 1.4 MPa 80 3.3 -5.3
, 1890°C, 50 min, 1.7 MPa 30 3.3 -4
o 4
. é ‘
‘::;1 5-7 W/O Y Og."' o . j
o 11.7 wfo Si0,  1700°C, 120 min, 1.8 MPa 63 9.0 -2.3
oy V4 L
0 :
o 1905°C, 120 min, 2.0 MPa 79 9.0 -4.9 :’
1950°C, 120 min, 2.0 MPa 30 9.0 -6.8 1
2000°C, 120 min, 2.0 MPa 81 9.0 -10.0 1
10 w/o YAG 2000°C, 30 min, 1.4 MPa 93 5.0 -4.9 ]
2045°C, 30m, 2.2/ ,!
2000°C, 30m, 6.7 97 5.0 -2.9 :
L
]
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Figure 11

SEM Micrograph Showing Particle Size and Morphology of (a) Ube

Industries, SiBNq and GTE Sylvania SN502 in the As-received
Condition.
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TABLE XII

Powder Characterization of Ube-SN-EI0 Si BN‘&

Chemical Analysis

N (alkali fusion) wt. %

O (inert gas fusion) wt. %

C (inért gas fusion) wt. %
Cl (ion electrode) ppm

FE (atomic absorption) ppm
CA (atomic absorption) ppm

Al (atomic absorption) ppm
Specific Surface Area (m2/g)
. 3

Tap Density (g/cm”)
Degree of crystallinity %

Blay %

Lot A-10

38
1.2
NA

55
200

300
NA

10

1.0

100

3.5

Lot A-18

38
1.4
0.2

70

50

50

50

12

1.0

100

2.5
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< TABLE X1l
\‘x. Densification of Ube Si BNQ
Sample # Oxygen Content % Sintering Conditions P % AW/Wo% Crucible Processing

>3 Ube-001 2 1995/30/290-1930/30/1000  52.1  -3.54 BN 1

o 002 5.1 2005/30/290-1950/30/1000  93.2  -3.39 BN 1
003 3.2 2005/30/290-1950/30/1000 932  -2.45 BN 1
\ 004 3.5 2005/30/290-1950/30/1000  93.7  -2.41 BN 1
7 005 34 2065/30/300-1950/30/1000  91.6  -3.6 BN 1
p~: 008 34 2000/30/290-1950/30/1000  96.83  -0.87 RBSN 1
b 009 34 2020/30/290-1950/30/1000  96.6  -1.5 RBSN 1

] 010 3.51 2070/30/300-1950/30/1000  98.3  -2.2 RBSN 1

‘-,‘ 011 3.9 2150/30/310-1950/30/1000  91.9  -4.7 RBSN 1
v 013 3.8 2085/30/290-1950/30/1000  92.7  -2.9 BN 1

N 014 3.8 2085/30/295-1950/30/1000  79.3  -6.0 BN 1
N 015 3.8 2085/30/295-1950/30/1000  87.5  -3.I BN 1
pr 016 ? 2085/30/300-1950/30/1000  83.3  -s.6 RBSN 1

A 017 2050/30/290-1950/30/1000  96.0  -0.2 BN 1

o 018 2100/30/300-1950/30/1000 973  -1.0 BN L
ke 019 4.1 2085/30/300-1950/30/1000  96.9  -2.0 BN 1

4 022 5.3 2050/30/300~ 1950/ 30/ 1000 RBSN 2

3 023 3.9 2050/30/300-1950/30/1000  95.9  -4.2 RBSN 2
o 024 3.5 2050/30/300-1950/30/1000  98.4  -1.7 BN 2
025 3.5 2100/30/300-1950/30/1000  98.4  -2.] BN 2

x 028 3.1 2055/30/300-1950/30/1000  93. BN 3

N 029 2.4 2055/30/300-1950/30/1000  Low density 3N 3

%3 030 2.1 2055/30/300-1950/30/1000  Low density BN 3
N 031 3.2 2050/30/300-1950/30/1000  98.6  -1.0 BN 3
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APPENDIX A

This appendix summarizes the patents, reports, papers and presentations that

were a direct result of the work done under the DOE program.
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PATENTS

ol

Wy )

P Hot Pressing of Silicon Nitride Using Magnesium Silicide, U.S. Patent 4,093,687,
o Sintering of Silicon Nitride Using Mg and Be Additives, U.S. Patent 4,119,475,
.’i Sintering of Silicon Nitride Using Be Additive, U.S. Patent 4,119,689.

}'. Sintering of Silicon Nitride Using Mg and Be Additives, U.S. Patent 4,119,690.

Hot Pressing of Silicon Nitride Using Beryllium Additive, U.S. Patent 4,112,140,
Preparation of Silicon Nitride Powder, U.S. Patent 4,112,155.

Hot Pressing of Silicon Nitride Using Magnesium Silicide, U.S. Patent 4,124,402,
Hot Pressing of Silicon Nitride Using Beryllium Additive, U.S. Patent 4,124,403,

Sintering of Silicon Nitride Using Be Additive, U.S. Patent 4,225,356.

LA ) 2Ty
SSRGS

Light-Transmitting Silicon Nitride, U.S. Patent 4,279,656,

Light-Transmitting Silicon Nitride, U.S. Patent 4,279,657.

: i Sintering of Silicon Nitride to High Density, U.S. Patent 4,379,110.
1

}j Sintering of Silicon Nitride with Be Additive, U.S. Patent 4,374,792,
E)
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2 REPORTS
b
..3':1
>
. l. 8. Prochazka and C. D. Greskovich, "Development of a Sintering Process for
: ¥ High Performance Silicon Nitride,” Final Technical Report AMMRC #TR-78-32,
&
%
1973.
X 2. C, D. Greskovich and J. A, Palm, "Development of High Performance Sintered
Si3N l&’" Final Technical Report AMMRC #TR-80-46, 1980.
Y.'-1 3. W. D. Pasco and C. D. Greskovich, "Sintered Si;N, for High Performance
vX|
Thermomechanical Applications," Final Technical Report AMMRC #TR-82-22,
.~1 1982,
l“
\j 4.  W. D. Pasco, "Development of Sintered Si3N4 for High Performance Thermo-
é d

mechanical Applications," Final Technical Report AMMRC #TR-84-4.
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%) PAPERS

; 1. C. Greskovich and S. Prochazka, "Observations on the a8 Si3N4 Transforma-
N
§ tion," J. Am. Ceram. Soc. 60 [9-10] 471-72 (1977).

L)

2. S. Prochazka and C. Greskovich, "Synthesis and Characterization of a Pure

ng Silicon Nitride Powder," Am. Ceram. Soc. Bull. 57 [6] 579-82 (1978).
;Z: 3. S. Prochazka and C. Greskovich, "Effect of Some Impurities on Sintering :
_ Si3Nu," Proc. of International Symp. of Factors in Densification and Sintering of -
3 Oxide and Non-oxide Ceramics, (1978). 1
g‘é 4. C. Greskovich and J. A. Palm, "Observations on the Fracture Toughness of 8 - 'i
, SisN,-B-SiC Composites," Am. Ceram. Soc. Bull. 63 [9-10] 597-599 (1980). i

} 5. C. Greskovich, "Microstructural Observations on Hot-Pressed Si3Nu," J. Am.

-.; Ceram. Soc. 64 [2] C-31 (1981).
v 6. C. Greskovich and S. Prochazka, "Stability of SiJN 4 and Liquid Phase(s) During

.‘: Sintering,”" J. Am. Ceram. Soc. 64 [7] C96-97 (1981). :
§ 7.  C. Greskovich, "Preparation of High Density Si3Nu By A Gas-Pressure Sintering

" Process,” J. Am. Ceram. Soc. 64 [12] 725-30 (1981).

%‘; 8. R. N. Katz, G, E. Gazza and C. D. Greskovich, "Sintered Silicon Nitride," 5th .
: Int. Symp. on Automotive Propulsion Systems, Conf. 800419 Vol. 1, (1980).

":fy 9. W. D. Pasco and C. D. Greskovich, "Sintered Si3Na for High Performance

', ' Thermomechanical Applications," Proc. of 20th ATDCCM, SAE P120, (1982). :
;{E 10. C. Greskovich, W. D. Pasco and G. D. Quinn, "Thermomechanical Properties of a

: New Composition of Sintered Si;N,," Accepted by J. Am. Ceram. Soc. (1984). 3
;i 11. W, D, Pasco and D. G. Polensky, "Sintering and Properties of Si3N4 Containing 3

i g
2

g )i

SiBeN2 and Y203 Additives," To be submitted to J. Am. Ceram. Soc.
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My PRESENTATIONS

C. D. Greskovich and S. Prochazka, "Effect of Impurities on Sintering Si3N4,"

International Conference on Factors Affecting the Densification of Ceramics,

LSRN ey~ ol
.--.n‘.l ..."._J.

Hakone, Japan, October 1978.

&; C. D. Greskovich and S. Prochazka, "Some Aspects of Sintering SiBN#," Toshiba

Research Center, Kawasaki, Japan, October 1978.

; C. D. Greskovich, "Development of High Performance Sintered SigN,," ATD/CCM,
N Dearborn, MI, October 1979.

2

b

o R. N. Katz, G. E. Gazza and C. D. Greskovich, "Sintered Silicon Nitride," 5th

International Symposium on Automotive Propulsion Systems, Dearborn, MI, April

1980.

C. D. Greskovich, "Controlling the Oxygen Content of SizN, Powder," Annual

Meeting of the American Ceramic Society, Chicago, IL, April 1980.

C. D. Greskovich, "Sintering Si3N4 to High Density," Annual Meeting of the

American Ceramic Society, Washington, DC, May 1981.

> VNN
.. "i

.‘ ~,; t' , f-. '.'A' A,

C. D. Greskovich, A Gas Pressure Sintering Process for SigN, Ceramics," NATO-

ASI Nitrogen Ceramics Conference, Brighton, England, July 1981.

kP )
»_

C. D. Greskovich, "Sintered Si;N, Ceramics," New England Section Meeting on

LA
e

Non-oxide Ceramics, Bass River, MA, October 1981.
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W. D. Pasco and C. D. Greskovich, "Sintered SigN, for High Performance

Thermomechanical Applications," ATD/CCM, Dearborn, MI, October 1982,

C. D. Greskovich, W. D. Pasco and G. Quinn, "Thermomechanical Properties of a
New Composition of Sintered Si3Na," Fulrath Symposium at U. of Cal., Berkeley,

October 1983.

C. D. Greskovich, W. D. Pasco and G. Quinn, "Thermomechanical Properties of a
New Composition of Sintered Si3N g Pacific Coast Regional Meeting of American

Ceramic Society, San Diego, CA, October 1983.

C. D. Greskovich received the 1983 Fulrath Award based on outstanding contribu-
tions to Ceramic Science and engineering for DOE/AMMRC sponsored development
work on the "Preparation and Properties of Sintered 5i;N, Prepared by the 2-Step
Gas Pressure Process". Presentations on this subject were given at the following
Japanese institutions on January 17-31, 1984:

Tokyo Institute of Technology at the Nagatsuda Campus

Hitachi Research Laboratory in Mito

National Defense Academy in Yokosuka

Asahi Glass Company near Tokyo

NGK Spark Plug Company in Nagoya

Kyoto University, Kyoto

Sumitomo Electric Company at Itami

TDK Ceramics Company, Tokyo.
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