SUPPRESSION OF FINITE-AMPLITUDE EFFECTS IN SLOSHING MODES IN CYLINDRICAL CAVITIES (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA M Y SI DEC 83
SUPPRESSION OF FINITE-AMPLITUDE EFFECTS IN SLOSHING MODES IN CYLINDRICAL CAVITIES

by

Si Hwan Yum

December 1983

Thesis Advisor: Alan B. Coppens

Approved for public release; distribution unlimited
Suppression of Finite-Amplitude Effects in Sloshing Modes in Cylindrical Cavities

Si Hwan Yum

Naval Postgraduate School
Monterey, California 93943

Naval Postgraduate School
Monterey, California 93943

December 1983

37

Approved for public release; distribution unlimited

non linear wave equation

A perturbation expansion is formulated for the three dimensional, nonlinear, acoustic-wave equation with dissipative term describing the viscous and thermal energy losses encountered in a cylindrical cavity. The theoretical results show that nonlinear effects in sloshing modes are strongly suppressed.
Suppression of Finite-Amplitude Effects in Sloshing Modes in Cylindrical Cavities

by

Si Hwan Yum
Lieutenant Commander, Republic of Korea Navy
B.S., Republic of Korea Naval Academy, 1973

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS

from the

NAVAL POSTGRADUATE SCHOOL
December 1983

Author: Si Hwan Yum

Approved by: Allen B. Coppi
Thesis Advisor
James V. Sanders
Second Reader
James V. Sanders
Chairman, Engineering Acoustics Academic Committee

Dean of Science and Engineering
A perturbation expansion is formulated for the three-dimensional, nonlinear, acoustic-wave equation with dissipative term describing the viscous and thermal energy losses encountered in a cylindrical cavity. The theoretical results show that nonlinear effects in sloshing modes are strongly suppressed.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>II. THE NON-LINEAR WAVE EQUATION</td>
<td>7</td>
</tr>
<tr>
<td>A. GENERAL</td>
<td>7</td>
</tr>
<tr>
<td>B. APPLICATION TO THE CYLINDRICAL CAVITY</td>
<td>10</td>
</tr>
<tr>
<td>1. Symmetric Modes</td>
<td>11</td>
</tr>
<tr>
<td>2. Non-Symmetric Modes</td>
<td>14</td>
</tr>
<tr>
<td>III. METHOD OF SOLUTION</td>
<td>21</td>
</tr>
<tr>
<td>A. POWER SERIES METHOD</td>
<td>23</td>
</tr>
<tr>
<td>1. Coefficient</td>
<td>23</td>
</tr>
<tr>
<td>2. $V_n(y)$</td>
<td>27</td>
</tr>
<tr>
<td>3. $U_n(y)$</td>
<td>30</td>
</tr>
<tr>
<td>IV. CONCLUSIONS</td>
<td>34</td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>36</td>
</tr>
<tr>
<td>INITIAL DISTRIBUTION LIST</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(C \)
phase velocity in the cavity

\(C' = C^2 - \partial^2 / \partial t^2 \)

\(C_0 \)
\(\frac{dp}{d\rho} \) at \(\rho = \rho_0 \)

\(C_n \)
effective phase speed associated with a standing wave at resonance

\(C_p \)
specific heat at constant pressure

\(k \)
\(\frac{W}{C} \), propagation constant associated with a standing wave

\(M \)
peak Mach number of the driven standing wave

\(\rho - \rho_0 = -C_0 \frac{\partial \Phi}{\partial t} = \text{acoustic pressure} \)

\(\rho, \rho_0 \)
instantaneous and equilibrium total pressure in the field

\(T_k \)
absolute temperature in kelvin

\(U \)
particle velocity

\(U_n \)
infinite speed of the \(n^{\text{th}} \)-order perturbation solution

\(c_n \)
infinite speed of the \(n^{\text{th}} \)-order perturbation solution

\(\Theta \)
infinite speed of the \(n^{\text{th}} \)-order perturbation solution

\(\gamma \)
\((\gamma + 1) / 2 \) for a gas

\(\gamma \)
\(C_p / C_v \), ratio of specific heats for a gas

\(\rho, \rho_0 \)
infinite speed of the \(n^{\text{th}} \)-order perturbation solution

\(\Phi \)
velocity potential

\(w \)
\(\omega \), (angular) frequency at which the cavity is driven

\(\omega_n \)
(angular) frequency of a resonance
I. INTRODUCTION

The topic of finite amplitude acoustic standing waves in sloshing modes of a cylindrical cavity is interesting theoretically, but development of the subject has not been extensive. The purpose of this research is to present the results of a power series perturbation approach to the problem.
II. THE NON-LINEAR WAVE EQUATION

A. GENERAL

It is well known [1] that for β/k and $M \ll 1$, where β measures the fractional loss per wavelength and M is the peak Mach number of the source, loss terms and nonlinear terms in the constitutive equations can be separately approximated with the help of linear, lossless acoustic relations. The force equation appropriate for acoustical processes in systems for which gravitational effects are unimportant is

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{1}{\rho} \nabla P = \frac{1}{\rho} \mathbf{L} \mathbf{u} \quad (2-1)$$

where $\mathbf{u} = \mathbf{U}(\mathbf{u})$ is the particle velocity, ρ is the instantaneous density of the fluid, P is the instantaneous total pressure in the field, and the operator \mathbf{L} symbolically describes those physical processes leading to absorption and dispersion. We used two additional equations. The first is the equation of state for a perfect gas

$$P = \rho r T_k \quad (2-1-a)$$

where r is a constant whose value depends on the particular gas involved and T_k is the absolute temperature in Kelvin. The second is the continuity equation.
where \(s = (\rho - \rho_e) / \rho_e \) is the condensation at any point and \(\rho \) is the equilibrium density of the fluid. If we ignore rotational effects, then

\[
\vec{U} = \nabla \Phi
\]

(2-2)

where \(\Phi \) is the velocity potential. Combination of Eqs.(2-1)-(2-2) and the neglect of terms of orders higher than \(M^2, M(\alpha / \kappa) \), and \((\alpha / \kappa)^2 \), yields a quadratically nonlinear wave equation,

\[
(C_o^2 \Box^2 + \frac{3}{2} \frac{\alpha}{\kappa} L) \frac{\rho}{\rho C_o^2} = -\frac{1}{\gamma} \frac{\partial}{\partial t} \left[\gamma (\frac{\rho}{\rho C_o^2}) + (\frac{U}{C_o})^2 \right] \\
+ \frac{1}{\gamma} C_o^2 \nabla^2 \left[(\frac{\rho}{\rho C_o^2}) - (\frac{U}{C_o})^2 \right]
\]

(2-3)

where \(C_o^2 = (\partial P/\partial P) \) (adiabatic), \(\rho = \) acoustic pressure, \(U = \vec{U} \cdot \vec{U} \), \(\gamma \) is the ratio of heat capacities, and

\[
C_o^2 \Box^2 = C_o^2 \nabla^2 - \frac{\partial^2}{\partial t^2}
\]

(2-4)

The left-hand side of Eq.(2-3) is the classical, linear wave equation with losses pertinent to the system under study.
The right-hand side can be interpreted as a forcing function consisting of a three-dimensional spatial distribution of phase-coherent sources.

In a second-order perturbation theory, this volume forcing function is obtained from the classical (first-order) solution P_1 of the acoustical problem. The second-order perturbation solution $P_1 + P_2$ describes the non-linearities P_2 resulting from the self interaction of the classical solution P_1. Higher-order perturbation solutions consider the interaction of the nonlinear solution with itself, and the forcing function is composed of products of both classical and non-linearly generated terms. Thus, if a system is driven at frequency ω, the non-linear term in Eq. (2-3) will force the existence of all integer multiples $n\omega$ of the driving frequency and the full solution must contain all harmonics of the input frequency.

In a closed cavity, each of those nonlinearly generated waves whose frequency lies near the resonance frequency of a standing wave of the cavity and whose associated spatial function matches that of the standing wave can be strongly excited [2].

As far as the author has been able to determine, there has been only one previous study of this system published in the open literature. This was by Maslen and Moore in 1956 [3]. Their approach resulted in a series expansion which did not converge if the relevant normal mode frequencies were integerally related. Their interpretation of the quenching of the nonlinear effect was based on the "scattering effect of the wall".
We feel our interpretation based upon nonlinearly generated volume sources stimulating the allowed standing waves of the cavity is more accessible and informative. Further, the mathematical approach developed herein appear to avoid any difficulties in convergence. Their conclusion that high amplitude monofrequency transverse oscillations can exist is consistent with our finding.

B. APPLICATION TO THE CYLINDRICAL CAVITY

The circular cylinder is provided with a "point" source of sound. By properly positioning the cylinder with respect to the sound source it is possible to effectively drive the enclosed air into various modes of vibration. The rigid-walled cylinder forces the component of particle velocity perpendicular to each cavity surface to vanish at the surface. The resulting steady-state solution to the linear wave equation in cylindrical coordinates is

$$P(r, \theta, z) = A_{nm} \cos(k_{nm}r) \cos(n\theta) \cos(\omega_{nm}t) J_n(k_{nm}r)$$

(2-5)

where J_n are the cylindrical Bessel functions and application of the boundary condition to the sides yields

$$k_{nm} = \frac{J_n}{a}$$

(2-5-a)
where a is the radius of cylinder and j_{nm} are the arguments of the exterema of the n^{th} Bessel function.

The normal mode frequency is dependent on k_{3l} and k_{nm},

$$k_{rnm}^2 + k_{3l}^2 \equiv \frac{\omega_{nm}^2}{c^2}$$ (2-5-b)

The standing wave will be identified by the ordered integers (n, m, l) describing its spatial dependence.

1.

Symmetric Modes

The simplest waves in cylindrical coordinates are those that depend only on the distance r from Z-axis, the gradient takes the form

$$\nabla = j \cdot k \frac{\partial}{\partial y}$$ (2-6)

where

$$j = k r$$ (2-6-a)

and $k = \omega / c$ is the wave number or propagation constant.

The Laplacian becomes

$$\nabla^2 = k^2 \left(\frac{\partial^2}{\partial y^2} + \frac{1}{y} \frac{\partial}{\partial y} \right)$$ (2-6-b)

The suitable trial solution appropriate for symmetric modes is the linear solution $(0, m, 0)$ of frequency ω
The velocity potential for this limit can be defined as

$$\Phi = \left(\frac{c_a^2}{\omega} \right) M J_0(y) \cos \omega t$$

and \(\frac{\vec{U}_r}{c_0} \) is

$$\frac{\vec{U}_r}{c_0} = \hat{y} M J_0'(y) \cos \omega t = -\hat{y} M J_1 \cos \omega t$$

Because we assume that the surfaces of the cavity are rigid then at \(r=a \) the appropriate boundary condition is \(J_0' = 0 \). Thus, we have \(\frac{\kappa a}{\omega} = J_{0m} \).

To generate the second order solution, we first note that

$$\left(\frac{P_i}{\rho c_0^2} \right)_x = \frac{1}{\kappa} M^2 J_0 \left(1 - \cos \omega t \right)$$

and

$$\left(\frac{U_i}{c_0} \right)_x = \frac{1}{\kappa} M^2 J_1 \left(1 + \cos \omega t \right)$$

Next, the second derivatives of Eqs. (2-10) and (2-11) with respect to time are
\[
\frac{\partial^2}{\partial t^2} \left(\frac{P_i}{2 \Omega_{\omega}^2} \right)^2 = \frac{(zw)^2}{x} M^2 J_c^2 \cos \omega x wt \tag{2-12}
\]

and
\[
\frac{\partial^2}{\partial t^2} \left(\frac{U_i}{\Omega_{\omega}^2} \right)^2 = -\frac{(zw)^2}{x} M^2 J_c^2 \cos \omega x wt \tag{2-13}
\]

Substituting Eqs. (2-2) and (2-13) into the first term of the right-hand side of Eq. (2-3) yields
\[
\frac{(zw)^2}{4} M^2 \cos \omega x wt \left[J_i^2 - \gamma J_c^2 \right] \tag{2-14}
\]

and the second term of right-hand side of Eq. (2-3) becomes
\[
\frac{W^2 M^2}{4} \left[(-J_x^2 + 4J_c^2 - 3J_c^2) - (\overline{J_x} - \overline{J_c}) \cos \omega x wt \right] \tag{2-15}
\]

since
\[
\zeta \nabla^2 J_c^2 = zw^2 \left(J_i^2 - J_c^2 \right) \tag{2-16}
\]
or
\[
\zeta \nabla^2 J_c^2 = zw^2 \left(\frac{i}{x} J_x^2 + \frac{i}{x} J_o^2 - J_i^2 \right) \tag{2-17}
\]

With the use of Eqs. (2-14) and (2-15) we can write the right-
hand side of Eq. (2-3) as

\[
\left(\frac{z_{w}}{4} \right)^{x} M^{x} \left\{ \left[-\frac{1}{4} J_{z}^{x} + J_{s}^{x} - \frac{3}{4} J_{0}^{x} \right] + \left[-\frac{1}{4} J_{z}^{x} + J_{s}^{x} - (\gamma - \frac{1}{4}) J_{0}^{x} \right] \right\}
\]

\[
\cos \omega t \}
\]

and the appropriate inhomogeneous wave equation for the second order perturbation solution is

\[
(\omega^{x} \Delta^{x} + \frac{3}{r} L) \frac{p_{x}}{e^{x}} = \left(\frac{z_{w}}{4} \right)^{x} M^{x} \left\{ \left[-\frac{1}{4} J_{z}^{x} + J_{s}^{x} - \frac{3}{4} J_{0}^{x} \right] + \left[-\frac{1}{4} J_{z}^{x} + J_{s}^{x} - (\gamma - \frac{1}{4}) J_{0}^{x} \right] \right\} \cos \omega t \}
\]

(2-19)

2. Non-Symmetric Modes
The non planar waves in cylindrical coordinates are those that depend on the distance \(r \) from Z axis and the angle \(\phi \) from X-axis. The gradient takes the form

\[
\nabla = -k \cdot (\hat{y} \frac{\partial}{\partial y} + \hat{\phi} \frac{1}{r} \frac{\partial}{\partial \phi})
\]

(2-20)

where

\[
y = kr
\]
and the Laplacian becomes

\[\nabla^2 = \kappa^2 \left(\frac{\partial^2}{\partial x^2} + \frac{1}{y} \frac{\partial}{\partial y} + \frac{1}{y^2} \frac{\partial^2}{\partial y^2} \right) \] \hspace{1cm} (2-20-a)

The suitable trial solution appropriate to the forcing function of frequency \(\omega \) for exciting the \((n, m, 0)\) standing wave is

\[\frac{P_i}{\kappa^2} = M J_n(k_{nm} r) \cos \omega t \sin \gamma \omega t, \quad k_{nm} = j \frac{m}{\kappa} / \alpha \] \hspace{1cm} (2-21)

where \(J_n(kr) \) is the Bessel function of the first kind and order \(n \). The velocity potential is approximated by

\[\Phi_i = \left(\frac{C_o^2}{\omega^2} \right) M J_n(kr) \cos \omega t \sin \gamma \omega t \] \hspace{1cm} (2-22)

and \(\frac{\vec{u}_i}{C_o} \) is

\[\frac{\vec{u}_i}{C_o} = M \left(\hat{y} J_n \cos \omega t \sin \gamma \omega t - \hat{z} \frac{m}{\gamma} J_n \sin \omega t \cos \gamma \omega t \right) \] \hspace{1cm} (2-23)

Thus,

\[\left(\frac{P_i}{\kappa^2} \right)^2 = M \kappa^2 J_n^2 \cos^2 \omega t \sin^2 \gamma \omega t \] \hspace{1cm} (2-24)

or

\[\left(\frac{P_i}{\kappa^2} \right)^2 = \frac{1}{4} M \kappa^2 \left(- \omega t \right) (J_n^2 + J_n^2 \cos \gamma \omega t) \] \hspace{1cm} (2-25)
and

\[
\left(\frac{U_t}{C_o} \right)^2 = \frac{1}{4} M^2 (1 + \cos \omega t) \left[\frac{1}{x} (J_{nH}^x + J_{nH}^z) - J_{nH} J_{nH} \cos \omega \eta \right]
\]
\(2-26\)

and the second derivative of Eqs. (2-25) and (2-26) with respect to time is

\[
\frac{d^2}{dt^2} \left(\frac{P_i}{C_i} \right) = \frac{(\omega)^2}{4} M^2 J_n^z (1 + \cos \omega \eta) \cos \omega \omega
\]
\(2-27\)

and

\[
\frac{d^2}{dt^2} \left(\frac{U_t}{C_o} \right) = -\frac{(\omega)^2}{4} M^2 \left\{ \left[J_n^x + \left(\frac{n}{y} \right) J_n^z \right] \cos \omega \eta \right. \\
\left. + \left[J_n^x - \left(\frac{n}{y} \right) J_n^z \right] \cos 2\omega \eta \right\}
\]
\(2-28\)

Substituting Eqs. (2-26) and (2-27) into the first term of Eq. (2-3) yields

\[
\frac{(\omega)^2}{8} M^2 \cos \omega \omega \left\{ \left[J_n^x + \left(\frac{n}{y} \right) J_n^z - \gamma J_n^z \right] \\
+ \left[J_n^x - \left(\frac{n}{y} \right) J_n^z - \gamma J_n^z \right] \cos 2\omega \eta \right\}
\]
\(2-29\)
or

\[
\frac{(zw)^3}{8} M^2 \cos zw t \left\{ \left[\frac{1}{z} \left(J_{n+1}^x + J_{n-1}^x \right) - \gamma J_n^x \right] - \left[J_{n+1} J_{n-1} + \gamma J_n^x \right] \cos \varphi \right\}
\]

(2-30)

since

\[
J_n^x = \frac{1}{4} \left(J_{n+1}^x + J_{n-1}^x - z J_{n+1} J_{n-1} \right)
\]

(2-31)

and

\[
\frac{\gamma^3}{y^4} J_n^x = \frac{1}{4} \left(J_{n+1}^x + J_{n-1}^x + z J_{n+1} J_{n-1} \right)
\]

(2-32)

In order to solve the second term of Eq. (2-3), we can use

\[
C_0^x \nabla^2 J_n^x = \gamma w^2 \left(\frac{1}{z} J_{n+1}^x + \frac{1}{z} J_{n-1}^x - J_n^x \right)
\]

(2-33)

\[
C_0^x \nabla^2 J_n^x \cos \varphi \gamma = \gamma w^2 (-J_{n+1} J_{n-1} - J_n^x) \cos \varphi \gamma
\]

(2-34)

\[
C_0^x \nabla^2 J_{n+1} J_n^x \cos \varphi \gamma = \gamma w^2 (J_{n+1} J_{n-1} \cos \varphi \gamma - J_n^x
\]

\[- J_{n+2} J_{n+1} + J_{n+2} J_n) \cos \varphi \gamma \]

(2-35)
since
\[J_n' \cdot (\frac{\gamma}{\gamma})^2 J_n = \frac{1}{\alpha} (J_{n+1}^2 + J_{n-1}^2) \quad (2-36) \]

and
\[J_n' \cdot (\frac{\gamma}{\gamma})^2 J_n = -J_{n+1} J_{n-1} \quad (2-37) \]

Thus, Substituting Eqs.(2-33) through(2-35) into the second term of Eq.(2-3) yields
\[
\frac{1}{\alpha} C_0^2 \nabla^2 \left(\frac{P_i}{P_i C_i} \right)^2 = \frac{1}{4} M^2 W^2 \left(1 - \cos \omega t \right) \left[\frac{1}{\alpha} (J_{n+1}^2 \\
+ \frac{1}{\alpha} J_{n-1}^2 - J_n^2) + (J_{n+1} J_{n-1} - J_n^2) \cos 2\pi \phi \right] \quad (2-38) \]

and
\[
\frac{1}{\alpha} C_0^2 \nabla^2 \left(\frac{U_i}{C_0} \right)^2 = \frac{1}{4} M^2 W^2 \left(1 + \cos 2\omega t \right) \left[\frac{1}{\alpha} (J_{n+1}^2 \\
- J_n^2 - J_{n+1}^2 + \frac{1}{\alpha} J_{n-1}^2 - J_n^2) + (\frac{1}{\alpha} J_n^2 \\
+ \frac{1}{\alpha} J_{n+1} J_{n-1} + J_{n+1} J_{n-1}) \cos 2\pi \phi \right] \quad (2-39) \]
With Eqs. (2-30), (2-38) and (2-39) we can get the inhomogeneous wave equation for the second order perturbation as

\[
(C_0^2 \Box z + \frac{3}{2} \frac{\partial}{\partial t} \xi) \frac{P_x}{\xi C_0^3} = \frac{(2\omega)^2}{4} M^2 \left[\frac{1}{4} \left(J^z_{n+1} + \frac{1}{4} J^z_{n-1} - \frac{3}{2} J^z_n \right) - \frac{1}{4} J^z_{n+1} - \frac{1}{4} J^z_{n-1} \right] + \frac{1}{4} (-z J^z_{n+1} J^z_{n-1})
\]

\[
- \frac{3}{2} J^z_n - \frac{1}{2} J^z_{n+1} J^z_{n-1} \cos 2\pi \Phi)
\]

\[
+ \frac{(2\omega)^2}{4} M^2 \cos \frac{x^z}{\omega t} \left\{ \left[- \frac{i}{16} J^z_{n+1} + \frac{i}{4} J^z_{n+1} \right] - (\frac{3}{2} - \frac{1}{4}) J^z_n - \frac{1}{4} J^z_{n+1} + \frac{1}{16} J^z_{n-1} \right] \]

\[
- \left[\frac{1}{8} J^z_{n+1} J^z_{n-1} + \frac{1}{4} J^z_{n+1} J^z_{n-1} + (\frac{3}{2}
\]

\[
- \frac{1}{8} J^z_n \right) \cos \frac{x^z}{\omega t} \right\} \quad (2-40)
\]
If we let \(n=0 \) in Eq. (2-40), it reduces to Eq. (2-19), as it must. Substituting \(n=1 \) into Eq. (2-40) yields the equation with forcing term resulting from the \((1, m, 0)\) sloshing mode,

\[
\left(C_0 \Box^2 + \frac{3}{2c} L \right) \frac{\rho_s}{\rho c_0^3} = \frac{(2\omega)^3}{4} M^2 \left\{ \frac{1}{4} \left(-\frac{1}{4} J_3^2 + J_0^2 \right) - \frac{3}{4} J_0^2 \right\} + \frac{(2\omega)^3}{4} M^2 \cos \pi wt \left\{ \begin{array}{c}
-\frac{1}{16} J_3^2 + \frac{1}{4} J_2^2 - \left(\frac{5}{8} - \frac{1}{16} \right) J_1^2 + \frac{1}{4} J_0^2 \\
+ \left[\frac{1}{8} J_3 J_1 - \frac{1}{4} J_2 J_0 - \left(\frac{5}{8} - \frac{1}{8} \right) J_1^2 \right] \cos 2\pi \end{array} \right\}
\]

(2-41)
III. METHOD OF SOLUTION

Recall that the equation with forcing term resulting from the \((l, m, 0)\) sloshing mode can be written as a function of frequency,

\[
\frac{(2\omega)^2}{4} M^2 \cos xwt \left\{ \left[-\frac{1}{16} J_2^2 + \frac{1}{4} J_1^2 \left(\frac{x}{2} - \frac{1}{16} \right) J_1^2 + \frac{1}{4} \right] \cos 2\omega t \right. \\
+ \left. \left\{ \frac{1}{8} J_3^2 \left(\frac{x}{2} - \frac{1}{8} \right) J_1^2 \right\} \cos xg \right\}
\]

(3-1)

and the left-hand side of Eq. (2-3) is

\[
\left[C_o^{-2} k^2 \left(\frac{\partial^2}{\partial y^2} + \frac{1}{4} \frac{\partial}{\partial y} \right) - \frac{\partial^2}{\partial t^2} + \frac{2}{\omega} \frac{\partial}{\partial t} \right] \frac{P_z}{\rho C_o^2}
\]

(3-1-a)

If the harmonics of the frequency at which the cavity is driven are not close to any resonant frequencies, we can ignore the lossy term. So, Eq. (3-1-a) can be written as

\[
\left[C_o^{-2} k^2 \left(\frac{\partial^2}{\partial y^2} + \frac{1}{4} \frac{\partial}{\partial y} \right) - \frac{\partial^2}{\partial t^2} \right] \frac{P_z}{\rho C_o^2}
\]

(3-2)

Let us assume that the solution of Eq. (3-1) can be expressed as

\[
\frac{P}{\rho C_o^2} = M^2 \cos xwt \left[U_n(y) + V_n(y) \cos xng \right]
\]

(3-3)
and define
\[
\frac{P_{nv}}{\rho_0 c^2} = M^2 V_n (kr) \cos z n g \cos z w t
\]
(3-4)

and
\[
\frac{P_{nu}}{\rho_0 c^2} = M^2 U_n (kr) \cos z w t
\]
(3-5)

Combination of Eqs. (3-2) and (3-3) yields
\[
\left[\left(\frac{c a k}{x w} \right)^2 \left(\frac{\partial}{\partial y} + \frac{i}{2} \frac{\partial}{\partial y} \right) + 1 \right] U_n(y) = \frac{1}{4} \left[-\frac{1}{16} J^z_{n+1} + \frac{1}{4} J^z_n \right.
\]
\[- \left(\frac{x}{z} - \frac{1}{8} \right) J_n^z + \frac{1}{4} J_{n+1}^z - \frac{1}{16} J_{n-1}^z \right]
\]
(3-6)

and
\[
\left[\left(\frac{c a k}{x w} \right)^2 \left(\frac{\partial}{\partial y} + \frac{i}{2} \frac{\partial}{\partial y} - \left(\frac{2 i}{y} \right)^2 \right) + 1 \right] V_n(y) = \frac{1}{4} \left[-\frac{1}{8} J_{n+1} J_{n+1} - \frac{1}{16} J_n J_{n-1} \right.
\]
\[- \frac{x}{z} J_{n+1} J_{n+1} - \left(\frac{x}{z} - \frac{1}{8} \right) J_n^z \right]
\]
(3-7)
A. POWER SERIES METHOD

In order to solve the right-hand side of Eq. (3-7), we can use the definition \[f(x) = \frac{1}{x} \sum_{k=0}^{\infty} \frac{x^k}{k!} \]

\[J_\nu(y) J_\mu(y) = \left(\frac{1}{x} \right)^{\nu+\mu} \sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(\nu+\mu+k+1)(\frac{1}{x} y)^{2k}}{\Gamma(\nu+k+1) \Gamma(\mu+k+1) \Gamma(\nu+\mu+k+1)} \]

where \(\Gamma(z+1) = z! \)

1. Coefficient

a. Substituting \(V = \mu = n+2 \) into Eq. (3-8) yields

\[J_{n+2}(y) = \left(\frac{1}{x} \right)^{2n+4} \sum_{k=0}^{\infty} \frac{(-1)^k (z n + z k + 4)! (\frac{1}{x} y)^{2k}}{(z n + k + 4)! k!} \]

or

\[J_{n+2}(y) = \sum_{k=0}^{\infty} B_{n,k} \left(\frac{1}{x} y \right)^{2(n+k+2)} \]

where

\[B_{n,k} = (-1)^k \frac{(z n + z k + 4)!}{(n+k+z)!^z (z n + k + 4)! k!} \]
b. Substituting $V = n+2$, $\mu = n-2$ into Eq. (3-8) yields

$$J_{n+2}(y) J_{n-2}(y) = \left(\frac{1}{z} y \right)^{2n} \sum_{k=0}^{\infty} (-1)^k \frac{(zn+2k)!}{(n+k+z)! (n+k-z)! (2n+k)! k!} \left(\frac{1}{z} y \right)^{2k}$$

or

$$J_{n+2}(y) J_{n-2}(y) = \sum_{k=0}^{\infty} C_{n,k} \left(\frac{1}{z} y \right)^{2(n+k)}$$

where

$$C_{n,k} = \frac{(-1)^k (zn+2k)!}{(n+k+z)! (n+k-z)! (2n+k)! k!}$$

(3-14)

c. Substituting $V = n+1$, $\mu = n-1$ into Eq. (3-8) yields

$$J_{n+1}(y) J_{n-1}(y) = \left(\frac{1}{z} y \right)^{2n} \sum_{k=0}^{\infty} (-1)^k \frac{(zn+2k)!}{(n+k+1)! (n+k-1)! (2n+k)! k!} \left(\frac{1}{z} y \right)^{2k}$$

or

$$J_{n+1}(y) J_{n-1}(y) = \sum_{k=0}^{\infty} D_{n,k} \left(\frac{1}{z} y \right)^{2(n+k)}$$

(3-16)
where
\[D_{n,k} = (-1)^k \frac{(2n+2k)!}{(n+k+1)! (n+k-1)! (2n+k)! k!} \quad (3-17) \]

d. Substituting \(v = u = n \) into Eq. (3-8) yields
\[J_n^2(y) = \left(\frac{1}{x} y \right)^{2n} \sum_{k=0}^{\infty} \frac{(-1)^k (2n+2k)!}{(n+k+1)! (2n+k)!} \left(\frac{x}{y} \right)^{2k} \]
\[\quad \sum_{k=0}^{\infty} \frac{(-1)^k (2n+2k)!}{(n+k+1)! (2n+k)!} \left(\frac{x}{y} \right)^{2k} \quad (3-18) \]
or
\[J_n^2(y) = \sum_{k=0}^{\infty} E_{n,k} \left(\frac{1}{x} y \right)^{2(n+k)} \quad (3-19) \]

where
\[E_{n,k} = (-1)^k \frac{(2n+2k)!}{(n+k+1)! (2n+k)!} \quad (3-20) \]

e. Substituting \(v = u = n+1 \) into Eq. (3-8) yields
\[J_{n+1}^2(y) = \left(\frac{1}{x} y \right)^{2n+2} \sum_{k=0}^{\infty} \frac{(-1)^k (2n+2k+2)!}{(n+k+2)! (2n+k+2)!} \left(\frac{x}{y} \right)^{2k} \]
\[\quad \sum_{k=0}^{\infty} \frac{(-1)^k (2n+2k+2)!}{(n+k+2)! (2n+k+2)!} \left(\frac{x}{y} \right)^{2k} \quad (3-21) \]
or
\[J_{n+1}^2(y) = \sum_{k=0}^{\infty} G_{knk} \left(\frac{1}{x} \right)^{2(n+k+1)} \]

where
\[G_{knk} = (-1)^k \frac{(2n+2k+x)!}{[(n+k+1)!]^2(2n+k+x)!k!} \]

f. Substituting \(y = u = n-1 \) into Eq. (3-8) yields
\[J_{n-1}^2(y) = \left(\frac{1}{x} \right)^{2n-2} \sum_{k=0}^{\infty} \frac{(-1)^k (2n+2k-x)! (\frac{1}{x} y)^{2k}}{[(n+k-1)!]^2(2n+k-x)!k!} \]

or
\[J_{n-1}^2(y) = \sum_{k=0}^{\infty} H_{nk} \left(\frac{1}{x} \right)^{2(n+k-1)} \]

where
\[H_{nk} = (-1)^k \frac{(2n+2k-x)!}{[(n+k-1)!]^2(2n+k-x)!k!} \]
g. Substituting \(V=U=n-2 \) into Eq. (3-8) yields

\[
\int_{\eta-2}^{\eta} (\eta') = (\frac{1}{\eta} \eta')^{\eta-4} \sum_{k=0}^{\infty} \frac{(-1)^k (2\eta+2k-4)! \left(\frac{1}{\eta} \right)^{2k}}{[(\eta+k-\zeta)!] (2\eta+k-4)! k!}
\]

(3-27)

or

\[
\int_{\eta-2}^{\eta} (\eta') = \sum_{k=0}^{\infty} \Theta_{n,k} \left(\frac{1}{\eta} \eta'\right)^{2(n+k-\zeta)}
\]

(3-28)

where

\[
\Theta_{n,k} = (-1)^k \frac{(2\eta+2k-4)!}{[(\eta+k-\zeta)!] (2\eta+k-4)! k!}
\]

(3-29)

2. \(V_n(y) \)

With the help of Eqs. (3-9) through (3-29) Eq. (3-7) can be written as

\[
\left\{ \left(\frac{1}{\eta a}\right)^2 \left[\frac{2}{3y} + \frac{1}{y} \frac{3}{3y} - \left(\frac{2\eta}{\eta y}\right)^2 \right] + 1 \right\} V_n(y)
\]

\[
= \frac{1}{4} \sum_{k=0}^{\infty} \left[-\frac{1}{8} C_{n,k} - \frac{1}{\zeta} D_{n,k} - AE_{n,k} \right] \left(\frac{1}{\eta} \eta'\right)^{2(n+k)}
\]

(3-30)
where

\[A = \frac{\sigma}{\alpha} - \frac{1}{8} \]

(3-30-a)

and

\[a = \frac{w}{c_2 k} \]

(3-30-b)

Now, let us assume that

\[V_n(y) = \frac{1}{4} \sum_{k=0}^{\infty} A_{nk} \left(\frac{1}{k} y \right)^{2(n+k)} \]

(3-31)

The first derivative with respect to \(y = k \) can be expressed as

\[\frac{dV_n}{dy} = \frac{1}{4} \sum_{k=0}^{\infty} (n+k) A_{nk} \left(\frac{1}{k} y \right)^{2(n+k)-1} \]

(3-32)

and the second derivative with respect to \(y = k \) can be expressed as

\[\frac{d^2 V_n}{dy^2} = \frac{1}{4} \sum_{k=0}^{\infty} (n+k)(n+k-\frac{1}{k}) A_{nk} \left(\frac{1}{k} y \right)^{2(n+k)-2} \]

(3-33)

Substituting Eqs. (3-31) through (3-33) into the left-hand side of Eq. (3-30) yields

\[\sum_{k=0}^{\infty} \left\{ \left(\frac{1}{2k} \right)^2 \left(\frac{1}{4} (n+k)(n+k-\frac{1}{k}) A_{nk} \left(\frac{1}{k} y \right)^{2(n+k)-1} \right) \right\} \]
Eq. (3-34) must be equal the right-hand side of Eq. (3-30). Thus,

\[
\left(\frac{1}{2a} \right)^2 (2m + k + 1)(k + 1) A_{mk} + A_{nK} = -\left(\frac{1}{8} C_{mk} + \frac{1}{x} D_{nk} + A E_{nk} \right)
\]

(3-35)

where \(k = 0, 1, 2, 3 \)

If Eq. (3-35) is substituted into Eq. (3-36), then Eq. (3-35) can be expressed as

\[
A_{m0} + \left(\frac{1}{2a} \right)^2 (2m + 1)(1) A_{m1} = -\left(\frac{1}{8} C_{m0} + \frac{1}{x} D_{m0} + A E_{m0} \right)
\]

\[
A_{m1} + \left(\frac{1}{2a} \right)^2 (2m + 2)(2) A_{m2} = -\left(\frac{1}{8} C_{m1} + \frac{1}{x} D_{m1} + A E_{m1} \right)
\]

\[
A_{m2} + \left(\frac{1}{2a} \right)^2 (2m + 3)(3) A_{m3} = -\left(\frac{1}{8} C_{m2} + \frac{1}{x} D_{m2} + A E_{m2} \right)
\]

\[
\vdots
\]

\[
A_{mk} + \left(\frac{1}{2a} \right)^2 (2m + k + 1)(k + 1) A_{m,k+1} = -\left(\frac{1}{8} C_{mk} + \frac{1}{x} D_{mk} + A E_{mk} \right)
\]

(3-37)
The normal component of particle velocity is equal to zero on the boundaries. From the application of the boundary condition at the rigid boundary at \(r=a \),

\[
\frac{dV_n}{dy} \bigg|_{a} = \frac{i}{4} \sum_{k=0}^{\infty} (\eta + k) \mu_n (\frac{i}{x} j)^{2(n+k)} = 0 \tag{3-38}
\]

where

\[J(ka) = \frac{dJ}{d(-ka)} \]

Substituting Eq. (3-36) into Eq. (3-38) yields

\[
\eta A_{n0} (\frac{i}{x} j)^{2n} + (\eta + 1) A_{n1} (\frac{i}{x} j)^{2n+1} \\
+ (\eta + 2) A_{n2} (\frac{i}{x} j)^{2n+3} + \cdots + (\eta + k) A_{nk} (\frac{i}{x} j)^{2(n+k)} \\
= 0 \tag{3-39}
\]

3. \(U_n(y) \)

With Eqs. (3-9) through (3-29), Eq. (3-6) can be expressed as

\[
\left[(\frac{1}{x^2}) (\frac{2}{xy} + \frac{1}{y^2}) + 1 \right] U_n(y) = \frac{1}{4} \sum_{k=0}^{\infty} \left[-\frac{1}{16} B_{n, k+4} (\frac{i}{x} j)^{2(n+k)} \right. \\
+ \frac{1}{4} G_{n, k-3} (\frac{i}{x} j)^{2(n+k-2)} - A E_{n,k} (\frac{i}{x} j)^{2(n+k)} \]

\[+ \frac{1}{4} \left[H_{n, k+1} (\frac{i}{x} j)^{2(n+k+2)} - \frac{1}{16} \Theta_{n,k} (\frac{i}{x} j)^{2(n+k+2)} \right] \]

\[(3-40) \]
where, as before, \(A = \gamma/2 - 1/8 \) and \(a = \frac{W}{GK} \).

Now let us assume that

\[
U_n(y) = \frac{1}{4} \sum_{k=0}^{\infty} b_{nk} \left(\frac{1}{k} y \right)^{2(n+k-2)}
\]

(3-41)

The first derivative with respect to \(y = kr \) can be expressed as

\[
\frac{dU_n}{dy} = \frac{i}{4} \sum_{k=0}^{\infty} (n+k-2) b_{nk} \left(\frac{x}{y} \right)^{2(n+k-2)}
\]

(3-42)

and the second derivative with respect to \(y = kr \) can be expressed as

\[
\frac{d^2U_n}{dy^2} = \frac{i}{4} \sum_{k=0}^{\infty} (n+k-2)(n+k-5) b_{nk} \left(\frac{x}{y} \right)^{2(n+k-3)}
\]

(3-43)

Substituting Eqs. (3-41) through (3-43) into the left-hand side of Eq. (3-40) yields

\[
\sum_{k=0}^{\infty} \left\{ \left(\frac{1}{2a} \right)^2 \left[(n+k-2) - 4(n+k-4) \right] b_{nk} \left(\frac{1}{x} y \right)^{2(n+k-3)} + b_{nk} \left(\frac{1}{x} y \right)^{2(n+k-2)} \right\}
\]

(3-44)

Eq. (3-44) must equal the right-hand side of Eq. (3-40).

Thus,
\[
\left(\frac{1}{x^2} \right) (n+k-2)^2 b_{n,k+1} + b_{n,k} = (-\frac{i}{16} B_{n-k-4} + \frac{i}{4} F_{n-k-3}) \\
+ \frac{1}{4} H_{n-k-1} - \frac{1}{16} \Theta_{n,k} - AE_{n-k-1}
\]

(3-45)

where \(k = 1, 2, 3 \)

If Eq. (3-45) is substituted into Eq. (3-36), then Eq. (3-45) can be expressed as

\[
b_{n0} + \left(\frac{1}{x^2} \right)^2 (n - 2)^2 b_{n1} = -\frac{1}{16} \Theta_{n0} \\
b_{n1} + \left(\frac{1}{x^2} \right)^2 (n - 1)^2 b_{n2} = -\frac{1}{16} \Theta_{n1} + \frac{1}{4} H_{n0} \\
b_{n2} + \left(\frac{1}{x^2} \right)^2 (n)^2 b_{n3} = -\frac{1}{16} \Theta_{n2} + \frac{1}{4} H_{n1} - AE_{n0} \\
b_{n3} + \left(\frac{1}{x^2} \right)^2 (n+1)^2 b_{n4} = -\frac{1}{16} \Theta_{n3} + \frac{1}{4} H_{n2} - AE_{n1} + \frac{1}{4} \Theta_{n0} \\
b_{n4} + \left(\frac{1}{x^2} \right)^2 (n+2)^2 b_{n5} = -\frac{1}{16} \Theta_{n4} + \frac{1}{4} H_{n3} - AE_{n2} + \frac{1}{4} \Theta_{n0} - \frac{1}{16} B_{n0} \\
\vdots \\
b_{n,k} + \left(\frac{1}{x^2} \right)^2 (n+k-2)^2 b_{n,k+1} = -\frac{1}{16} \Theta_{n,k} + \frac{1}{4} H_{n,k-1} - AE_{n,k-1} + \frac{1}{4} \Theta_{n,k-2} - \frac{1}{16} B_{n,k-4}
\]

(3-46)
Application of the boundary condition at $r=a$ yields

$$\frac{dU_r}{dr} \bigg|_{r=a} = \frac{1}{4} \sum_{k=0}^{\infty} (\eta + k - \lambda) b_{r,k} \left(\frac{1}{2} j' \right)^{2\eta + 2k - 5} = 0 \quad (3-47)$$

where

$$J'(ka) = \frac{dJ}{d(ka)}$$

Substituting Eq. (3-36) into Eq. (3-47) yields

$$(\eta - \lambda) b_{m0} \left(\frac{1}{2} j' \right)^{2\eta - 5} + (\eta - 1) b_{m1} \left(\frac{1}{2} j' \right)^{2\eta - 3}$$

$$+ (\eta) b_{m2} \left(\frac{1}{2} j' \right)^{2\eta - 1} + (\eta + 1) b_{m3} \left(\frac{1}{2} j' \right)^{2\eta + 1}$$

$$+ \cdots + (\eta + k - 2) b_{mk} \left(\frac{1}{2} j' \right)^{2\eta + 2k - 5} = 0 \quad (3-48)$$
IV. CONCLUSIONS

Recall that we can compute Ω_{nk} from Eqs. (3-37) through (3-39) and Eqs. (3-14), (3-17), (3-20). Thus, with the use of Eq. (3-31), we can get V_n. From Eqs. (3-46) through (3-48) and Eqs. (3-11), (3-20), (3-23), (3-26), (3-29), we can compute b_{nk}. Thus, with the use of Eq. (3-14), we can get U_n. Therefore, we can compute $V_n(y)$ and $U_n(y)$. Let us calculate the finite amplitude effects resulting from the nonlinear distortion of a forced radial mode. If we excite $a(0, m, 0)$ mode and obtain the pressure at the circumference, then $\gamma = \frac{2\pi}{\omega_0} = j_{0m}$. Given this value of γ, use of Eqs. (3-14), (3-17), (3-20) give the quantities C, D, E. From Eqs. (3-35) and (3-36) we can compute Ω_{nk}. Thus, we can get $V_n(y)$ from Eq. (3-31). Let us calculate the finite amplitude effects resulting from the nonlinear distortion of a forced sloshing mode. If we excite $a(1, m, 0)$ mode and obtain the pressure at the circumference, then $\gamma = \frac{2\pi}{\omega_0} = j_{1m}$. Given this value of γ, use of Eqs. (3-11), (3-20), (3-23), (3-26), (3-29) give the quantities B, E, G, H, O. From Eqs. (3-45) we can compute b_{nk}. Thus, we can get $U_n(y)$ from Eq. (3-41). Substituting $n=0$ at radial modes into $V_n(y)$ and $U_n(y)$ yields $V_0(y) = U_0(y)$. Therefore, with the use of Eq. (3-3), we can get the solution of Eq. (3-2).

A. RADIAL MODES $(0, m, 0)$

$$\frac{P_i}{\rho c^2} = M J_0 \left(k_{0m} r \right) \sin \omega t$$

34
then

\[\frac{P_2}{\rho \omega^2} = \alpha M^2 V_0(y) \cos \omega t \]

so that

\[\frac{|P_2|}{|P_1|} = \alpha M \frac{V_0(0)}{J_0(0)} \left/ \frac{V_0(0)}{J_0(0)} \right| \]

B. SLOSHING MODES \((1, m, 0)\)

\[\frac{P_1}{\rho \omega^2} = M J_1(k_m r) \cos \omega t \sin \omega t \]

then

\[\frac{P_2}{\rho \omega^2} = M^2 \left[V_0(y) + V_1(y) \cos \omega t \right] \cos \omega t \]

so that

\[\frac{|P_2|}{|P_1|} = \alpha \left[V_0(0) + V_1(0) \cos \omega t \right] \left/ \frac{V_0(0)}{J_0(0)} \right| \]

<table>
<thead>
<tr>
<th>No.</th>
<th>Distribution List</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Defense Technical Information Center</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Library, Code 0142</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Department Library, Code 61</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Professor Alan B. Coppens, Code 61Dz</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Professor James V. Sanders, Code 61Sd</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Chief of Naval Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>800 Quincy St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22217</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>LCDR Charles L. Burmaster, Code 61Zr</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>LCDR Chil-Ki Baek</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Republic of Korea Naval Academy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chin-Hae City, Seoul, Korea</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>The University of Texas at Austin</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Applied Research Laboratories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: D. T. Blackstock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austin, TX 78712</td>
<td></td>
</tr>
</tbody>
</table>