D—Ri48 628 DESIGN OF AN INTEGRRTED SOFTHRRE SVSTEH BHSED DN THE
ELRTIONRL DRTR BASE MODELCU)> NARYAL POSTGRRDURTE SCHOOL
MONTEREY CR P J HARRISON ET AL. DEC

UNCLASSIFIED F/G 571

=, W Ay S N il

L1655

.; oo, .; ;.
RN

1
‘.l'

2 % ls
LA A

%

5.-.
[

d tex
T
B/

[

—-

FE

2.2
==

fiz2

s

o

23 o pis.

FFEFEEER

EEEE

—
.
—
er
£

er

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

Rt Rkt T A S|

LY
.

o vty
.

AN

-4 AR
Sea's ey sl

A

d
SN N

”".“",
a8,

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

AD-A140 628

0
-~ .an

PR Lp N
n{‘n“‘l.‘.#

L]
L]

THESIS

DESIGN OF AN INTEGRATED SOFTWARE SYSTEM BASED
ON THE RELATIONAL DATA BASE MODEL

- 'l.- A

&

) * ,
aata

M
A
a‘a’s
s “s
a2 a A

by

lf‘
‘hl.

Patrick John Harrison
and
Gracie Lee Thompson

DALy ¢
AR i AL o xs |

"
“x Myt
.

December 1983

LW

Thesis Advisor: Dushan Badaﬂ

A A
4

AR

Ly
N

Approved for public release; distribution unlimited

A%

DTIC FILE copy

S
, l._ .:

A
{'

e G DRI AR I IR .
alta - cadndodiodngy b onl s 'h " aa’ e A s at A e A

o0
~
o
1SN
N

~¥
)

Gt

0

X N ARON XN e g S A S e e e T e e T e e

SECUMTY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
NU 2. GOVY ACCESSION NOJ 3- RECIPIENT'S CATALOG NUMBER
h-A4 /Y €V
4. TITLE (end Subtitle) S. TYPE OF n'sPonvhu PERIOD COVERED
. Master's Thesis
Design of an Integrated Software December, 1983

System Based on the Relational
6. PERFORMING ORG. REPORYT NUMBER

Patrick John Harrison
and
Gracie Lee Thompson

Data Base Model
L_. AU THOR(S) 8. CONTRACT OR GRANT NUMBER(a)

. PERFPORMING ORGANIZATION NAME AND ADDRESS 10. ::gc:'R.Ao‘o:.l.xudslnrr.nzu:‘o..sgg;, TASK
Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE
Naval Postgraduate School December, 1983
Monterey, California 93943 . Nuusaric_}FsPAGEs

T 1ONITOMING ASENCY NAME & ADDNESS(I! different from Controlling Office) | 1S. SECURITY CLASS. (of thie report)

UNCLASSIFIED

[18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

[16. OISTRIBUTION STATEMENT (of this Repert)
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, if ditferent from Report)

vy YT R —
18. SUPPLEMENTARY NOTES

[19. xEY 'oﬁl (Continue en roverse eide if nesoseary and idontity dy block number)

ISS, Integrated Software System, Table, Relational Data
Base Model, Data Base, Operators, Applications

Database

e ————————r
20. ADSTRACT (Cantinue an reverse olde if necossary and identily by block number)

Integration of application programs into a single system has
become increasingly important as the workstation environment
moves toward uniformity for easier learning and use. This
thesis proposes an Integrated Software System (ISS) based on

the Relational Database model as a suitable basis for integratin
five common applications found in a business office. Relations,
or tables, are defined as the common data objects (Continued)

g

00 |:::-n 1473 zoimon o7 1 nov 68 13 DesOLETE

$/N 0102- L& 014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (When Ders Bnterec

. . E P P - ~ -
Ta V. e e e W e e
FAT N NIV NN

N B T ., -
R R v e A A N N .
. K « TN

o Wy e, T e B TN
. . S Lo . L B) B
U SN PN TS PN L TR A PR A VT T Y RO S ST O YT ARG N A,

'n U ol

NN \.:,_.;\.;\'

1al alm

T T rrr v
- ‘ - - R) . R dPn N

3L
;;g.i

il SECURITY CLASSIFICATION OF THIS PAGE (When Deats Entered)

e ABSTRACT (Continued)

) -

ﬁ%: and it is shown how they are used to support each logical applicaH
T tion. Operations based on relational algebra are defined which

: extend the functions of ISS beyond the aggregate of the five

- chosen applications. A simple graphical user interface is
designed for the kernel of the system and a design for a kernel
prototype using a Unix environment is presented. The results of
this thesis are intended to lay the foundation for development of
an ISS using the relational database model.

S

EA

r o Y
>

R

A
s 2 L4

4

Y AAS

¢
| | Accession Fgr

j v T
. | NTIS GRAKY &
L DTIC TAB 2
” Unannounced
: Justif feation ——————
; I
vf: b

\ e
._" o
7 j‘: Distributlon/ e
% Avanabnity Codes

| " |Avail and/oTf

‘ | special

4
Q8 ;l . ‘ l l l
WL

Yy SN 0102 LF-014- 6601

. SECURITY CLASSIFICATION OF TUIS PAGE(When Date Entered)

¥ TR R R SRR VIO SSRT RIS .":'.4

Chai G PR A A lat i At fare g) Al 345 > A N O RS S D e (A AR R

u"n'-’
- '.’

l’n

—
ha
Ly
tk Approved for public release, distribution unlimited.
4
: Design of an Integrated Software System
rd Based on the Relational Data Base Model
e
N
4
> by
%
- Patrick John Harrison
_ Lieutenant, Royal Australian Navy
b, B.Sc., University of New South Wales, 1974
'
P
Py Gracie Lee Thompson
vy Lieutenant, United States Navy
<N B.A., University of South Florida, 1975
o)
3 Submitted in partial fulfillment of the
{3 requirements for the degree of
>,
" MASTER OF SCIENCE IN COMPUTER SCIENCE
23
ﬁ} from the
<
P
.'-3) NAVAL POSTGRADUATE SCHOOL

December 1983

.'-"‘ - ’! i
f.g Authors: 114¥(f “‘**“-~

o4

A

> /&’6/

2 Approved by: .
e Thesis Advisor
J.':'-

j: 4 % Second Reader

.

: $\

2) /N
4 VA 191 ceff
- Chairman, Department of Computer Science
.-::.

..;E: ‘K 'T' ‘q 4 .‘ mem—

YO Dean of Inforpation and Policy Sciences
N \

3

23
o 3
¥ \‘J
N

\

N
.......

e e (S
LRI DAt .\fi- AL SR RS YLRERAN

......

CIRAC SRR S S

DAL ML AR Ay i R Lol it St Sy & A Cai ol R e L IR AR D R ek i SR s Mk D I
: A A R e T k .

. | ABSTRACT
3

has become increasingly important as the workstation

Integration of application programs into a single system

;%ﬁ environment moves toward uniformity for easier learning and
o5

‘iff use. This thesis proposes an Integrated Software System
—y (ISS) based on the Relational Database model as a suitable
‘.:-., Al

3 basis for integrating five common applications found in a
2

qu business office. Relations, or tables, are defined as the
Jﬁé, common data objects and it is shown how they are used to
Y

Hﬁ support each logical application. Operations based on
X

:f ’ relational algebra are defined which extend the functions of
g ISS beyond the aggregate of the five chosen applications. A
ﬁq simple graphical wuser interface is designed for the kernel
AN

) of the system and a design for a kernel prototype using a
you Unix environment is presented.

.v"; 7

i::.r ,H\

5.2

% x

BN

P

% y

e

Nt

XS
<)

o .,
A \d‘!&‘

'}

Yo
A
Y/

.",.
AN
-3

B
'v*ﬂ

. R SIS T i
TR SR ARG LUt RS |

la’'aa’a - a "

- TABLE OF CONTENTS

1% I. INTRODUCTION euvveveeseccacososcncascnsonaonosoas 8
: A. THE ISS veeeeceeeeecacncoscsonesnsncasannsans 9
B. THESIS OBJECTIVES eeveveeceosnccccccnsaccncas 10
& C. THESIS OVERVIEW eeeeveavecsocvsenannosacesneas 1l
< II. RELATED WORK evevevececcosncccsscacsosnsasaacanass 15
A. INITIAL DESIGN eeveeeeceaseocsecocnonscanseas 15
S B. TEXT EDITING AND RELATION BROWSING eeveeeeee. 19
o C. OTHER RDB MODEL APPLICATIONS ..eveeeeceocness 24
N III. STRUCTURE AND USE OF ISS TABLES e.eceevecececssss 29
= A. SCHEMA TABLE v.eeeevecesceveoensosansnsannene 31
% , B. ISSUSERS TABLE veeacsesevescscccacccccesnsee 33
C. APPLICATION DIRECTORY TABLES veveesovececeess 36
D. ACCESS CONTROL TABLES eeeeeecessccccaccccnses 40
E. PARAGRAPH CLASSIFICATION TABLES .eveveeceeeee. 43
F. CAPABILITIES LIST TABLES eeeeeeeceocncccceess 45
fﬂ G. TEXT DATA TABLES vevvevecsccccocccnsnncancnas 47
X Ho FORM DATA TABLES ecvececececcececcncscccncaas 48
= I. DATABASE DATA TABLES e.eeveeeeocecscoscncasas 55

\ J. MAIL DATA TABLES ecveveenccccscascccnnsacacas 56
< K. SPREADSHEET DATA TABLES seeeceeececsasaceeses 59

Iv. CONCEPTUAL INTEGRATION ® 0 0 0000009 0000000000 Seo e 65

;;:1; A. PRIMITIVE ISS OPERATORS ® 0 0 00 0005 00 0o O OSSO e 67
3N
:.(:;? 1. Insert ® 00 00800 00O OO OO N0 OSSO0 OO EIOESBSE 68

20 MOdify ® 8 000000000 0000 66000 OO OLNNEeO e SN 69

>
¢ . '4.'.'.:"-'.(.' O PP ST, T i S R R S R Sy A BTSN RPN T I SN N A e A PO P IR IR
OO C SRR .L’;itus.,';w.xg.:A&M‘?x.ﬁﬂr‘;“:‘;‘:-;:.ﬁ.:z-,f_-_;\.;-..z-_'-_;_-_.'~;~.s_~;~;s;\.-]'.~r2'>£-,;-ﬁs‘.s'f.~":\'.v.-.'- AR LCAION

1- g [Iet i * . . . v -
o~ . N ARG AN SILSERES LR SN DA A A A g s A At i S A 0 o o e e 1A |

o

e

..f*‘, 3. Delete ® ® & 5 O 0 0 O O 00 OO OO B G S OO OO OV E S 9O e e 00 e 69
oy

‘.‘-. 4. Prcject ® 0 & & 8 & 0 9O 0O S O B SO OO OO OO O S P O G e S e 70
f\ 5. Select ® 9 S & 0 ¢ 5 0 & 00 9O S OB O OO SO SO e S PO 0N e 0 70

\:',,

g .

\} 6. Unlon ® @ & @ 0 6 9 & 6 0O GO O OO OB OO OO OO O O PO a0 OB 71

:J.

-.-‘ 7. Sort o O 0 9 & O &5 0P A 00O e OO OO S O A S e O SO e 0t e 0 72
J’.‘: 8. Concatenate ® ® © 6 08 0O 5 8 0 68 O S 9SS 0O OO e N e e e 72
"d

5’ B. REALIZATION OF ISS OPERATIONS ccoceescccncoocsce 73
Yot

*.. 1. Removal Of Rows ® ® 6 O 0 O & P O O O PSS O 8O0 e e e 74

\..: 2‘ Location Of Rows ® 5 9 0 0 0000 60 OO S P9 0 9 e e 76

.{L.’.lj 3. Addition Of Rows ® & & 0 & 4.8 900 O O OO O S S s 0 e e 0o 77
L 4. Updating Of Rows ® ® & & O & 600 5 0 8 00 0o 9 e oo oo 79
v 4

,‘::i 5. copying of Rows ® ® 0 8 &0 0 090 9SO O OO O o0 e a0 o 81

et .

§E 6. Movlng of Rows S & & & 0 0 & 0 0o OO OO SO S E 9o s 0 82

on

7. Sorting of Table Rows ® & 0 & 0 0 8 50 %o s 9 000 83
"':3 - 8. Merging Of COlUMNS ecoceccevcscscscsacnnsne 84
':h 9. Operator CombinationNsS seceececccsscccccess 84

s C. EXTENSIBILITY OF ISS @ 0 0000005000089 sPssesseEe 86

;f 1. UNiON ceeeecscvecaceacctccsacsssscsncasenas 87
E_{ 2. Set DiffEreNnCe seeeeceacececcscsssoscansse 92
3. Intersection cecccecececcscoccccccsncncnns 96
AU Q. JOIN eeeveoveocsancnseansaanseaconnsennns 98
=N

{‘\ 5. Natural Join ceeeeseccccccnsasacsencacass 104
6. OperatorsS SUMMALY eccssscecsvsscsccsccessas 105
s V. USER INTERPACE eececsccencncncsasesacacsasacacanss 107
:?,i . A, Graphics Prototype Interface ..cceccceacececees 108

" l. General CRT Layout ® O & & 000 02 s 0000 0 s a0 00 o 109

e

S P e N TN e

SRR SRR PLELrSa Y \."Lf:" . a ".\5'. -'}-'} T I AN ‘:i

e S g ¥ KRN =T LA W Sl A A Ol)

2. - High Level System CommandsS eccccecesceses 112

3. Command Mode CommandS cc.ccovececssvssceses 114

4. Query Mode CommandS seccecescsccscscccsss 120

5. Combining Query Mode Commands ..cececeeee 133

B. Implementation OVerview .cececescecsssccsceeces 137

VI. IMPLEMENTATION PROPOSALS .scccccccccsccscecscsscsses 153
A. SYSTEM DESIGN .ccecsccacscccscsscsosssnssssces 154

1. Entry Module .eceececcoccsccsoscsscsasasss 155

2. Command Interpreter .cccececscccessesssses 157

3. Help ceeeccccccsscsvsscsesscacovscnssssccee 157

4. Query Mode .cececccecesscecossscscsescnscss 157

5. GPI PacKage® ecceecccscsccsccsccssscacssasss 157

6. Query ParSer .c.cccccceccsssssscsscssecssce 158

7. Other CommandS .ccccceccoccccsssccscscecs 158

8. Application Programs ceccessecscccssssccss 158

B. PROTOTYPE IMPLEMENTATION STRATEGY ceeceeceess 159

l, Strategy ceccccececcccosscssscesscscssecss 160

2, Data Base .ccecececscsccccecscscsccccsscnss 162

3. A Simple GPI Package eeccccecscoccscccsss 163

4, Limitations csceececscsccccccsnsseseccscss 164

VII. CONCLUSION ccscocscccccsccosccsssossocsossonsoassss 166
A, FINDINGS sccccscescocccscssoscscsssssscsscnss 166

B, FOLLOW~ON RESEARCH .cseccccccsssccccccsccsccss 169

LIST OF REFERENCES ccccccccscccccoccscsscssscccsssessonse 172
BIBLIOGRAPHY .vcccecoccccsccsescscsosssscsosscsccscsssoscss 174

INITIAL DISTRIBUTION LIST eecccvcsccsccacsccsscssscecss 175

A
AR
<

)

‘.‘:'..

02
“

o

<

it

(\ I. INTRODUCTION

5

;E The introduction of computers into the office and home
{3) environments has led to the development of numerous software
:;‘ packages to achieve many different tasks. Common
?% applications such as word processing, form generation,
N database management, electronic mail and spreadsheet
’:: modeling have become almost essential in the workstation
f€§ environment. The unintegrated software packages generally
tf available have different operating instructions, different
3; command vocabularies and often different underlying
'Ei conceptual models of the system and its data. Data
i:‘ structures and files belonging to one application are often
'z‘ - inaccessible to another. Users must learn the fundamentals
D§ and conceptual model of each application separately, even
' though many of the basic operations in the different
'Eg applications are essentially identical.

éé An integrated software system is a software package
’f which includes a number of logical applications and which
Ei attempts to minimize the disparity by providing a single
'Zé conceptual model of the underlying system for all
4: _ applications. The single unified view of the system overall
?Ei allows a wuser to learn the system more easily and perceive
biy - it as an actual single integrated system.

i#

.

3 8
e,

ey

kY

AR

[4

L e

[

TN Nl
r 'u'st:..' .A‘..s'

e]

- e -
LR N J

oy
&Rt

L g

A

A. THE ISS

An integrated software system combines the functions of
its applications into a single package by using a single
conceptual data object and command vocabulary. The
vocabulary includes a basic set of commands, which apply to
every logical application, and application specific commands
for each application. The basic set of commands perform the
operations which are common to all applications. Since only
one conceptual data object is defined in the system, these
commands operate uniformly on their operands regardless of
the application, and represent the intersection of functions
between the logical application areas. By providing only
one set of common operators on one data structure, a user
can learn to use the system easily and quickly. A user may
become familiar with new applications by learning only a
small additional number of application specific commands and
functions.

This thesis describes the design of an Integrated
Software System, the ISS, which uses the Relational Database
model as the underlying conceptual model, with the single
data object being the relation., The relation is more easily
discussed and understood as being simply a table where the
tuples are just rows and the attributes just column names.
Both of these terminologies will be wused in this thesis.

The ISS design integrates five applications or application

areas: word processing, form generation, database

management, electronic mail and spreadsheet modeling. A

T

table format is designed to support each application area
and the intersection of functions is described by defining

the primitive operators which operate on all tables and on

DO
PR AR

which applications and utilities may build to effect their

particular transactions.

B. THESIS OBJECTIVES

The first objective of this thesis is the design of the
system of tables to support the ISS. Data tables and system
tables were designed also to support the concurrent research
into multilevel security (Ref. 2].

Secondly, a set of primitive table operators and general
system commands is defined which form the kernel of the ISS.
These operators may be wused by a single user and by
applications to manipulate data tables in the desired
fashion. A set of extended binary operators 1is defined
which is traditionally used in database applications, but
which is useful for other applications as well. Thirdly, a

simple graphics oriented user interface for the ISS is

e defined.

E%f Finally, a prototype implementation strategy for the
EE data table object and the primitive operators is described
{. for the Unix environment. This crude design when

implemented may then be used to prove the utility of the ISS

otk to support user needs in an operation environment.

10

r - '~ ‘- ... '.- ----- T - S e e e At 0 et a7 . . 3 . - - . .
(A AT W3 PO, iy AT A e e A d,'.;_:.:_f.s.,_'i,.’.:,.'.A.'J"..!:'.':'-\..':l'.'-‘._"‘-.'j-".-.’.A"N-" ST L

* e d? it IO SR MM hatitie e i e It 3 P T M A A A AN DA G i T Al i g T T Y Y T T N T T T T T e -

The work in this thesis is a refinement and extension of
the work carried out by Nishimura in his thesis, "Analysis
Of The Relational Database Model In Support Of An Integrated
Applications Software System." [Ref. 1] The tasks to re-
evaluate the logical data bases and basic operators, to
design the basic wuser interface and, to design a simple
prototype were chosen from Nishimura's suggestions for

follow-on research.

C. THESIS OVERVIEW

The system described in this thesis 1is the conceptual
model of the ISS, 1its data object and operations. The
design of tables and basic operators are complete in that
they can support all the application areas. As described in
section B above, the objectives of this thesis are to
address this kernel to ensure its completeness and
consistency with the overall conceptual model. This model
is developed as a "single user at a time"” relational
database model.

The intention is to develop the conceptual model for the
user without regard to physical realities which must be
considered in implementation of the system. Despite this
attempt at maintaining simplicity, a certain amount of
knowledge regarding fundamental relational database theory

is assumed, particularly regarding the material in chapter

II and section C of chapter 1IV.

11

'_-‘“-'.“.."‘. .- L et '.'_'_'.- " o, B e e e
L_:- B R R 'At\. & '\4‘!.:1" . A o

IR ‘Q‘_- .
.A.._.‘.A.L.-.l.n_.i'.tg..,"' N e RN

AT e e A A PR

- vy :‘v‘-_w: Db Sl SA k. Al A R AL el el A

Provision is made for multilevel security enforcement by

the 1inclusion of special tables and fields for that use and

o are included for the furtherance of concurrent research
&§ [Ref. 2] 1into multilevel security. Essentially multilevel
"

o security requires document access control by security
i: classification, special group membership or job status (by
E; compartment and caveats), or by explicitly named access
A

;\ lists. This access control must be enforceable at a
{% document and paragraph level and when combined with
;3 generally accepted database controls on column values,
i? amounts to the requirement of controlling access to table
,i? entries by column and row. In addition a table of
iE legitimate users is required to be kept which 1includes the
{ﬂ user's clearances and other covers. The maintenance of
ES . multilevel security in any system is a complex problem and
j: is beyond the scope of this thesis. The framework for such

: controls is included, but the issue is not developed
}g further. Interested readers may consult the references for

further details of multilevel security requirements.

« aw .
...‘..l_n{';
e alal e &

-

s

Chapter II surveys related work in the relational

"
I‘l"':

database (RDB) field, in particular the analysis which was

.

t%? done to show the feasibility of using the RDB model in an
;ﬁ integrated environment. Other research efforts are
ij discussed which bear little direct impact on the conceptual
;; design of the ISS but which may be helpful in subsequent
0! work on implementation and application development. The use
s; 12

1ol

ii

. ave s}
PP .
N
P

——
FIANA A
HOANYS S,

(LN - Al
7, A

e

>

N
oot Y

S

Ty
3

1€

"

NN

ShANS

-
.
0

ST e S R I A A LT A JERPETS v e - .
e e 8’ B L a4 o g% g _'F LW ‘-(L'.L_'. L"}"_}.LL'L N '.-_.i L-:.‘ ').“-:!-“,--‘!-}‘.}l."£ P .n'..c'.‘;'..l'\.:':,'.'.‘_ ... -

..............

.....
...........

of the RDB model for applications other than those chosen
for the 1SS is briefly described.

Chapter III describes the set of tables which make up
the ISS: the system tables required to maintain the ISS, the
data tables of each application, and how they both may be
used to support their applications.

Chapter IV defines the abstract interfacesA of the
primitive operators available to manipulate data tables, and
how they may be used to realize the basic operations common
to all of the applications. These operators form the kernel
on which applications may be constructed. A further set of
combining operators is defined which is commonly found in
database applications but which are shown to be of wuse in
the other application areas and in some cases in combining
tables from different applications.

Chapter V presents a simple, graphics oriented user
interface for the kernel of the ISS. The general system
operation and the form of the basic operators are defined in
this design. The design resembles a form filling process
similar but simpler than IBM's Query By Example database
query language. Commensurate with the goal of uniformity
for the ISS, this design is intended to provide a basis for
the design of the commands in each application.

Chapter VI describes a simple prototype implementation
strategy for the kernel primitives and general system, using

the Unix programming environment. It describes the

13

I I

.......

- __\ LA, LGRS N AT T T SN EACUELAA S AL L MERCALACAILALLRIL ol A, 2 WA A A B Syt 30 Shchiciie i
L : R -
S

AN

p - methodology which can be used to write very simplified I/0

modules to map the designed user interface into the abstract
I interfaces of the lower level modules.
Finally, chapter VII presents our remarks, conclusions

i and suggestions for follow—-on research.

s

LAY

| 3

o

[A'd I.'. o
o 2k T

AL

L~
P
LA

.-"_,' “hpe
poeo s ¥
AT o,

o e A

. .
Sl S

1
AN
PRV AP MR R Y

A

ST

I

@5

2% .

A Y

14 |

g

(11 JONN

v

-

AN AN N S A NN

¥ A ~
. T T Ty e e T L L T, A RN R T Y AL/ M S el i B e e o

"I‘:;_‘

1200
. »

5

~ o
2
Y
L II. RELATED WORK
o
YN . . .
.53 In this chapter we discuss previous work in application
we LY
.‘_\' §

i systems which use a Relational Database (RDB) as the
kﬁj underlying model. Section A describes in detail the initial
30
lj;j design of the Integrated Application Software System which
52 motivated this thesis. Section B discusses previous work on
A
fi: editing and relation browsing, general material describing
v e
}3. desirable features of editors, and how relation browsers and
o o
*. editing may be implemented in the Relational Model. The
Z;? final section describes briefly other applications for which

éﬁ% the Relational Model can be used.

o A. INITIAL DESIGN

,g;z The premise of this thesis proposal is an extension of

L}

"51 the research efforts presented by Nishimura, [Ref. l]. In
3 the initial design phase, Nishimura evaluated the utility of
Ca -

2;& the Relational Database model to conceptually integrate the
gﬂ five application areas of interest: text processing,

_,;{ relational database management, form generation, electronic
I.:-:.

?;: mail and spreadsh- . deling.

fié Motivation fo- © . esis research stemmed from the !
-~ |
T realization that - of these five applications perform
:Ef similar functions and are conventionally utilized as a non-
:: integrated <collection of application software. In this

)

or

N AL A

lede s

O
FRPIPTAPY W W

e S

PRELIAINTLIAS

AT LILIATLIN

PP A S R

rla.

e

a"s e a6 a"s

“lflﬁ“l‘x_ -

»

Ar e At s Sah It 2 AL AN A PRGN T I A S S S i _w_vxf-"‘ff'—r L e

non-ISS, each application implements operations on
dissimilar file types and the data among the files are not
directly sharable. In addition, in order for the user to
utilize them, he or she is required to learn a large number
of commands for each application, many of which are
synonymous. If the commonality of the application areas
could be collapsed into one application like the kernel of
an ISs, this would significantly reduce the redundancy and
minimize the command vocabulary needed to utilize the
applications.

After choosing the relational database model as the
kernel for the 1ISS, it was decided that the most natural
data object to use in the system was the table. 1In the ISS,
each of the five applications is a 1logical database
consisting of a set of tables. The set of tables are of
three classes: Application Directory, Data Table Schema, and
Data Table. Each column in the table represents one
attribute of the file and each row represents a unique
occurrence., The tables include columns which represent key
values to uniquely identify each row. Any datum in a table
can be accessed by specifying the name of the table, the
value of the key, and the name of the attribute containing
the datum.

The Application Directory Table contains descriptive and
definitional data about the data tables in an application or

logical database. Each row in the Application Directory

16

.................
o 0 .

............

"..h

T - Y ~. DN N N

Tatatal x}\ !

4

o

X

ﬂ Table describes one data table and has a standard schema.
~ For each application, the schema of the Application

Directory Table can be augmented to include additional data

>

g table attributes.

» A data table represents the 1logical file of an
o application. The data tables are typed in accordance with
3 their primary use, i.e., text, form text, database, spread
. sheet, and mail. The data tables are categorized by types
g in order to 1logically organize those which are used
E primarily by the same application. Since one of the key
; objectives of an ISS is to be able to share data, strong
;5 data table typing is not a feature in the design.

;% The Data Table Schema Table contains a row for each
:‘ column in a Data Table. In some sense this schema represents
_j variable declarations in a conventional programming
:3 language.

. Each row in the Application Directory Table is linked to
? a set of rows in the Data Table Schema Table and a Data
g Table. The same relationship among the tables exist for
\5 each application.

:f Since the Application Directory Table of each
Z: application 1is identical, no further discussion of that
.' table type 1is necessary, however the data tables are
g different. All data tables in one application, except the
Eé database application, have the same structure. All tables
} have an ID column. The Text Data Tables have just one other

. L3
2 8 & 2

17

O
4 .

-
o

.............
.....

l.'.ﬁ. oK P A AT, O '.-.' AT S h I I I T) AT
SSCRLE Cha R LY WCRER A SRR TR AT W TUR RIS, X SR ARk AL AL CR TR

AR iR it s S Sadhy Baes et 2o s Ry e Jhadt 3 -'-"1"'}1

.
Pl

v PP

Ly

4 5%S

e o
L

Ay

iAA t
.J'
AT

Ay

LA
o

'- £ 'l."i“‘ y

L

iy A A,
‘. ..l,‘..l . -

,
-

inta

g

column, TEXT LINE which 1is the text. Form data tables

similarly have two columns except the second column, FORM
LINE is meant to be used differently by the form processing
application. A Mail Data Table has eight columns which in
each row describe the origin and destination of each
message, and hold the message itself or pointer to a large
message body. Spreadsheet Data Tables have six columns so
that every row describes an X,Y coordinate pair for the
conventional spreadsheet view. The Database Tables are the
only ones without a predetermined structure, they have the
ID column and any number of other columns required by a
user.

In order to realize the main objectives in an ISS, one
must present the user with a single conceptual view of the
system regardless of the context of its use. The
practicality of this objective was demonstrated through the
use of tables as described above. In addition, the user
must be provided with a common set of table operators as
well as a set of application dependent operators. The
intersection of operations proposed to manipulate data in
the files 1is comprised of the 1locate, insert, modify,
delete, copY ., and move operations. Nishimura gave
conceptual descriptions of how the six basic ISS primitives
can perform the operations in the functional intersection.
The primitive operators suggested (insert, modify, delete,

project, select, and union) are based on relational algebra.

18

o T i P e ¥ e 0T T e e T e e e e e e T e e e e e e e R
AR N N N e e o e L e

....................
...........

In the initial design phase it was shown how these operators

could be utilized on each application to yield the same

result as all conceivable queries in a non-Integrated

Software System environment.

It is the intent of this thesis to refine this

conceptual design and view. The refinement will ultimately

prove the feasibility of these concepts by implementing the

fundamental ideas presented herein.

B. TEXT EDITING AND RELATION BROWSING

The need to edit and browse relations 1is important to

each of the applications in an Integrated Software System.

Editing of text particularly is the subject of much

research, both psychological and technical, to determine the
qualities of a good editor.

An ideal editor is a subjective term determined by the

needs of the user, however the following general features

may be identified as desirable: [Ref. 3]
(1)

with a

A consistent conceptual model of the the system

clear and concise user interface including on-=line
help and documentation.

(2) Powerful facilities that take advantage of computing
power, with an "infinite undo®™ capability.

(3)

intended

An ability to edit a format which closely resembles

the target format, (Whether it be intended for

hard copy or not.)

19

.......................
..................
.......

.............

4
{-

F:

(4) Fast and visible responses to all commands however
trivial or complex.

(5) Access to shared information and other contexts on
the same display surface without leaving the editor, and the
ability to access other applications or to be part of a
larger integrated environment.

(6) The ability to edit mixed targets such as text,
forms, programs and data.

The above points are worthy goals for editor and
browsing interfaces and have been considered in our system
design.

A Browser, as its name implies, is a software facility
which allows the wuser to "browse"”™ through information
related to an application. TIMBER (Text, Icon, and Map
Browser for Extended Relations), as discussed in [Ref. 4],
is the design of a sophisticated user friendly, graphics
oriented browser for a relational database.

TIMBER was designed to meet the objectives of four
application areas. It provides user interface to a
relational database system that can be:

(1) a relation browser for fixed format relations;

t;- (2) a sophisticated browser for relations with icons;

(3) an editor for text data stored in relations;

o

A

o

O (4) a map browser for geographical data.

il

A The designers of TIMBER propose that each of the
n‘.:.\';

\% aforementioned applications virtually perform the same
-,

o

3 20

S

T

r

vvvwi

s
f‘d‘n‘t'

. .
-

et e e e e
B . AR AL N R R T R A AR
o N S R N W W P D Y WA AV I S L LY L PR A A A I‘:‘f.\-'.-ﬂx-‘, K

......

L

Ve

[4

I A CRCAENE

[N S AR AT RN

YY)

-9

function and thus can be served by an Integrated Software
System.

The basic concepts of TIMBER are: a window on a
sophisticated graphics terminal; a relation in a database;
and a cursor. The screen of the terminal can be split into
several rectangular windows to which relations are bound.
The tuples from the relations appear in the windows and can
then be manipulated by TIMBER commands. The cursor on the
screen is controlled by a bit pad and a mouse and many
TIMBER commands affect the window in which the cursor is
currently positioned.

The relations of TIMBER are of four types, each of which
has a default screen format and c¢oordinate system. The
types are: normal'fixed format, text, icon, and map. There
are three ways in which the user can alter the contents of
the windows on the screen. One can move the cursor, use the
Z00M feature, or use the six relational commands affecting
the window.

TIMBER is composed of six major modules: Application
Program, 1Intelligent Buffer, High Graphics, Low Graphics,
Smart CRT, and INGRES. INGRES, however, does not support
TIMBER without several added extensions. First, ICON must
be added as a new data type. Second, the notion of ordered
relations must be incorporated in INGRES in order to support
the storage and manipulation of documents. Finally, there

is a need to incorporate an efficient concurrency control

21

NN O S AR AMCE R AR S S A i 2 IO GG M U A S AT S el et s s o SR S

e
g% system which will enable multiple concurrent browsers which
g;{ perform updates.
‘éﬁ In summary, the design of TIMBER, which is intended as a
Sﬂ sophisticated two-dimensional graphical browser for text
2 relations, fixed format relations, and relations containing
E;l icons or maps, provides several impressive features which
Eg support the use of the relational database model as the
kernel of an ISS.
i?. Several research projects including those mentioned
;S below (section C.) have dealt with aspects of text editing
;i‘ and storage within the relational model, but the nmost
;é extensive work in this area has been published by
lﬁ}) Stonebraker and various co-authors. They have considered
:\ the requirements of document processing and proposed
iﬁ - enhancements to RDB management systems to support two text
ig formats and a capable editor. [Ref. 5] Stonebraker's

proposal is to provide facilities 1in a RDBMS which «can

support <calls from a text editor running as an application

" program
a)
. The two schema for text format are:
.

(1) a binary relation with attributes line number and

s
et
h o

')

P I

A

and a text line, and

. Y
\.’:'«
- (2) a ternary relation with attributes sentence, word
2% number and text word of some maximum length.
)
35 ‘ Each scheme has an advantage for <certain relational
-
.i operations and the authors suggest that both are appropriate
4 .':(
n
;:: 22
2%
k. .
e
)

N e e e

A PO R L P I P A P T L T S S T P T S .
AT O C R NS € R A S SRS RN N LN R N L N A S A L N S R R VA L
s N4 % VR APPSR AE AR N TN -ﬂ-‘--‘--':’}‘-vﬁ. XS 0 A 0 ~‘1

7]
E:
)
w
(4
N

~ e e

and that facilities are required to transfer from one to
another. The first enhancement is the inclusion of variable
length strings as table column types which may be stored as
variable 1length fields or external to the database with
pointers to their location. Since the order of these lines
of text (and the order of the words in the case of (2)
above) is important, Stonebraker describes the mechanism of
ordered relations in which the database manager effects the
ordering using unique tuple identifiers (TIDs) which are
assigned by the system to each new tuple added to the
relation. An ordered B-tree access structure 1is Kkept in
which TIDs are at the leaves in the intended ordering on the
tuples and each internal node holds the number of TIDS in
each of its subtrees. The TIDs then act as keys into the
relation containing the text, in which the text 1lines are
unordered. Access to a specified line number is easily done
by keeping count while traversing through internal nodes,
selecting the appropriate subtree to find the correct leaf.
Insertion and deletion is also easy, simply updating the
internal nodes of the access structure and inserting or
deleting the TID at the leaf, using standard B-tree
algorithms. A generalization of this structure is described
for format (2) above where the leaves contain a pointer to a
second B-tree holding the ordered words within the ordered

sentences.

23

RERAZRA W At St .‘—-f_.w: Rt S i

LS A A AR |

g Stonebraker introduces the idea of "extended wild card"
substitutes for any character string, which may be used in
qualification and target lists of replace and substitute
commands. Essentially each extended wild card of form *i
(for i in some integer range), once matched to a substring
in an expression retains the value of that substring and so
may be used in the target list.

To support other substring operations a simple substring
operator is described which can select substrings between
bounds set by position or content. A "break"™ operator is
defined to perform the transformation of text in form (1)
above to form (2), and a more generalized concatenation
operator described for the reverse transformation.

Stonebraker carried out some relative performance
evaluations of an editor running as an application program
on the Relational Database Management System INGRES wunder
UNIX, against the performance of the UNIX line editor ED.
His results may be found in the reference, but they were
sufficient to indicate that indeed a Relational Database
System could be useful in the processing of text in ordered

relations.

C. OTHER RDB MODEL APPLICATIONS

With the maturing of database technology, there has been

YAy
R)I
s

‘I 'I .A‘
s

‘,\.

2

a growing awareness of its usefulness in applications other

4

»
.
v

than data processing. Areas such as Office Information

* I
«
%

-r
LAY
QT

24

L ok
a g n

‘e

N N T RO R e e ST N e R SR : - . -
KadA\X SN, e e A e e e e e e e L e e e e e e T e e
LA WA A 4 i ot s o MRS, SN -s_"’;‘n VI 'A.’.- TN &‘llif‘:-A ca e e e A _.-',;'_p."p.\':' "-'L\ -"_--').').':l\).‘.-. '-1

« ad A

LA S S A W)

N A

‘e
e *

A Y

.

P

(U]
-

A A A A

.t
.
il

Systems, Engineering Design, Programming Environments,
Operating Systems and recently, Artificial Intelligence,
have been considered as areas where the Relational Model
will be useful.

A recent approach to Automated Business Procedures has
been the development of a "forms"” oriented design of an
integrated office, including word processing, mail and
office communication tasks. [Refs. 6 and 7]

Essentially forms are stored in a Relational Database,
each table representing a form type with each tuple an
instance of a raised form. Included in tuples can be fields
containing audit information, and of course integrity
constraints can be applied to signature and special data
fields. Each form type has its own display format which may
include the details currently shown on printed forms, or be
as simple as just one large text field for data entry for a
text file. The display format for general users would not
include audit information and 1is actually a view of the
database. Forms can be used to display forms, enter data,
perform word processing, and execute queries with the
underlying RDB Management System providing the necessary
facilities. Queries can be expressed by general users using
the display views much like QBE, and more detailed queries

may be framed on the conceptual database for audit and

statistical purposes.

25

. . * . . DD i g an 4
D R N A M E A) S At St St Sl A e R e

The increasing size and complexity of designs, in
particular VLSI, and the problems of managing their data,
has led to much research on the use of. Relational Database

Management Systems for these purposes. In doing so it is

felt that extensions are required to the RDB model to suit
the applications. Stonebraker, Rubenstein and Guttman [Ref.
8] discuss the inclusion of abstract data types (structure
and operations) in INGRES and the use of extended indices
for them. They propose that these extensions will help to
improve the usefulness of database systems in Computer Aided
Design applications.

Lorie and Plouffe [Ref. 9] discuss extensions to System
R to make it more appropriate for engineering and design
applications. They describe a method of storing complex
objects, each spread across a number of different relations
in which each component of an object 1is related to a
hierarchical parent component 1iIn a tree structure. They
also describe a mechanism for the sharing of design objects
within a design environment which allows for the relatively
slow transaction time in a design activity as compared to a
straight forward data processing transaction. These ideas
have also been developed by IBM's Yorktown Heights Computer
Science Research Division [Ref. 10] and include designs for
the storage and retrieval of arbitrarily 1long fields for

both simple and complex data objects.

26

Representation of programs in the Relational Model and

using that model to create, store, debug and manage program
information is the primary goal of the OMEGA programming
environment. [Ref. 11] An editor/query ©processor is
designed on top of a Relational DBM system which gives a
unified view of program and data and provides very powerful
facilities for debugging and monitoring execution of
programs., In this project they have found it necessary to
add variable length strings and ordered relations to the RDB
model, as well as three extensions which support the
programming environment.

A new approach to Operating Systems has recently been
suggested [Ref. 12] which uses an underlying RDB to present
a unified conceptual view of the system to both wuser and
systems programmer. An operating system can be implemented
as a large integrated package using a Relational DBM system
as a kernel. Interaction with such a system would be by
access and manipulation of system wrelations using a command
language based on a relational query language. The
inclusion of a transaction mechanism to abbreviate commonly
used commands would add a richness to the command language
while retaining the conceptual view of the operations. The
authors suggest that a graphical database gquery and update
language like QBE would provide a flexible, easy, powerful

and friendly user interface to such an operating system.

27

..............

.....
......

- Lab sl ol ol ol SNen s aran e s ol
Lot e et . R

2 There has been recent interest and discussion [Ref. 13]
on the possible uses of a relational DBM system as the model
for Artificial Intelligence expert system knowledge bases.
The similarity between stored data and "facts", the
potential to include in a database an inference mechanism,
and the possible use of some sort of trigger to emulate
"rule firing" are questions which have been posed but not

yet researched.

)@

Y

»
o,
‘i
(4
¢

-
-

AR

28

XA

.

LT _-.':-.'-'.'.-.'.-.':. e T B e T N e e T G L el e s e sl e el
A I N B B R L B P A T o R o O A Ol

a2l m®aVa™

SLAALLN -
A S Ta e
LA TS | AL

<
2
~!
<

< -
‘.l .Ll.-.l‘.‘l.,l..ll., .‘ .' X
ARV

"’
oo
-

2 S
[d J[l“f{ﬂ’

P

Vs (‘ H Vs ;‘“
.
kit &

.. %
LS N RN
. .

.

L A T TN
LIPS IR

III. STRUCTURE AND USE OF ISS TABLES

The set of tables chosen for the design of this system
is an extension and refinement of those described in Chapter
II, including extra system tables for system use to provide
a mechanism capable of supporting multilevel security. This
full set of tables are those designed for the conceptual
view of the system overall using the relational database
model and need not necessarily be implemented exactly as
described.

Within each of the five application areas there are four
classes or types of tables: Data Tables, a Directory,
Paragraph Classification Tables (PCTs) and Access Control
Tables (ACTs). The data tables for each application are the
tables created or used by the user while the others can be
considered system tables fqr mostly system use. Although
the data tables in each application area differ, the system
tables have similar structure and function in each of the
five areas. In addition to the above tables which make up
the 1logical databases of the five applications, there are
three table types which are used by the ISS kernel: (1) a
Users Login Table, (2) a Capabilities List Table for each
user and, (3) a Schema Table which describes every unique

attribute or column of every table in the system. Of the

29

l‘f."u‘- e
AN
LR

+
A

A el S®

-»
S04 ‘\'.-.'.]

l. " l‘.

L

o A R

0 X

Y
PN

‘.ld

_______________ I i LA A SN S gl et s AL S ST D A Nt

above tables the Login, PCTs, ACTs and CLTs are used by the
system to enforce security.

The sections of this chapter describe the structure and
general use of the above table types, first dealing with the
system tables and then each of the five application area
data tables: text, forms, data, -electronic mail and
spreadsheet. The Schema Table is described first and then
its format is used to describe the structure of every column
of all fixed table types. The ISS must be installed with
the schema rows describing the columns of system tables and
the columns in the four standard table types for text,
forms, spreadsheet and mail. Schema Table rows for
previously undefined columns in Database Data Tables will be
added as users create the new database tables.

Reference and retrieval of tables and tuples by the
system is by name, with the advantage that this provides the
most easily understood interpretation of pointers.

In this thesis we will not discuss the recursive
problems encountered when those tables provided for
multilevel security are, themselves, treated simply as data
tables requiring coverage by further security controls. The
special multilevel security tables (ACTs, PCTs and CLTs)
have been included to provide a framework for future
research and are not dealt with in 1later chapters on

implementation strategies.

30

eI

A. SCHEMA TABLE

The Schema Table is a single table which contains s row
for each different column (attribute) name throughout all
tables in the 1ISS. The system uses the schema in
conjunction with a column 1listing in a directory to
determine the structure of a table it |is about to
manipulate. The Schema Table c¢olumns are illustrated in
figure 3.1 and are described by tuples from the table itself
as shown in figure 3.2.

The ID column is a six digit integer which is a field
simply representing the conceptual ordering of the rows in
the data base and their display order as a table. The

underlying physical system (implementation) need not store

the relation in this fashion. It is attached to all tables
in the system and corresponds to the record number in
systems such as DBASE II. It will not be described again

for other tables.

|TID | NAME | TYPE | WIDTH | SYNONYM | TABLE |
> I | | | I ! I
if Figure 3.1 - Schema Table Schema
o
Fet
ng
Eg The NAME column is simply the textual name of a column
)
t\ which may appear in many tables of one or more types or a
b.a‘?
'@ single table such as some database table. "ID" and "NAME"
e
R
e 31
Pt
O
o
B A & R A g T O LR PL TR

are typical values which may be found in this column. TYPE
and WIDTH simply describe the physical data type and maximum
size with the convention of "0" meaning "of varying length".
SYNONYM is a column which gives the names of columns
throughout the system which have the same characteristics
and may be considered to carry compatible data under certain
circumstances. TABLE gives a particular table name or type
of table in which the column being described may be found.
A simple literal denotes a particular table, a literal
preceded by "-~" indicates all of a particular table type or
class. For example the "~ALL" in the TABLE column of
figure 2.2 indicates the ID column is in all tables.
Similarly -TEXT in a TABLE column would indicate the column
being described by that row is in all Text Data Tables.
Similar meanings are attributable for the other fixed
structures, -FORM, -MAIL and -~SPREAD.

The Schema Table is used by the system for retrieval of
tables and by a user while creating a new Database Data
Table. (The structure of tables in the other applications
are predetermined and are described in sections G through
K.) In the process of creating a new database table, its
structure will be defined as the user describes each new
attribute of the new table by appending a new row to the

Schema Table.

.......

3&:

>

,_.\::

-:J ID NAME TYPE WIDTH SYNONYM TABLE
e | [ID [INTEGER| 6 T I -ALL l
DRy | | | ! ! I }
e l | NAME | CHAR |~ 20 | |” SCHEMA |
5 : : TYPE llcaAR : 8 : : SCHEMA :
' |I 1' WIDTH imf 8 : { SCHEMA :
:\ i E SYNONYM I:CHAR i 0 i ; SCHEMA i
'. : ll_ﬁat.z :CHAR I| 0 : I| SCHEMA ||
o)

;ﬂ Figure 3.2 -~ Self Describing Tuples in Schema Table

:i;;i

o

:& B. ISSUSERS TABLE

o The ISSUSERS Table is used by the system to establish
‘é?) identities and security clearances of the user. The table
E§ has one row for every logical user of the ISS and should be
;ﬁ accessible only to the database administrator (DBA). The
j?: table schema is illustrated in figure 3.3 and the columns
S&S are described by the appropriate rows from the Schema Table
AEE at figure 3.4.

‘;él The USER_NAME is simply the name of a logical user and
‘E;' need not be unique since the key to the table is the USERID
Sﬁ which must be a unique alphanumeric string for each 1logical
3:; user. PASSWORD is an encoded password and each of the
gs; fields with application names is a logical indicator of a
z; user's permission to access the directory and data tables in
i

e 33

.3?

SRR T TR T DO IDAE i g R A AR A I EI R A A R el A AL 2 /el A A ek e e e e e S freu e e 2an 2]

7
.l/l
,
ne

-5
p-Ve

:'-5:'-

'Ei that application. CLEARANCE is the users security clearance
'?4 and CC is a record of the user's compartment and caveat
’k status in a multilevel security environment. ROLES is a
-:& field which may be used to denote special functions a user

may have such as database administrator, or reviewer in a

53 multilevel security system. CAPABILITIES is the name of the
Eii capabilities list table associated with that wuser and is
X?: described in section F of this chapter.

VE; When a user invokes the ISS, the system retrieves the
;E appropriate row from the ISSUSERS table and conducts a
‘fﬂ standard password procedure. Enhancements may enable the
SEi system to allow a limited number of password entry failures
:;g and then lock the device or initiate some alarm procedure.
;g: The users clearances, compartments, roles and access rights
ﬁﬁ are retained as system variables throughout the ensuing
§§ session and can be wused for access control during all
i transactions.

,éﬁ Insertion of new users may be done by the DBA by
\Eg appending new tuples to the ISSUSERS relation. Similarly
'¥% clearances, compartments and roles of the users may be
éﬁ changed by the DBA by modifying the appropriate values in
Eg the desired row. It may be desirable to include in the
iﬁ system a routine or view mechanism to allow users to change
é;? their own passwords, since a one way encoding step must
:Eég first be applied to a password before storage.

‘.4-.;,

e

34

IARAG A i“ "":'—‘ A’iwumk AL WAL 275 SRR N R A I I PO T SRR RS ‘.j

| ID | USER_NAME | USERID| PASSWORD | TEXT | DATABASE
l | I | | !
| I | ! | |

FORMS| SPREAD=] MAIL | CLEAR-] CC | ROLES |CAPABILITIES]
| SHEET | | ANCE | I I |
| I I | | I

Figure 3.3 -~ ISSUSERS Table Schema

ID NAME TYPE WIDTH SYNONYM TABLE

| | USER-NAME | CHAR | 20 [| ISSUSERS |

| | | | | | |

| | USER-ID | CHAR | 10 | | ISSUSERS |

| l__] | | | |

| | PASSWORD | CHAR | 20 | | ISSUSERS |

| | | | | [|

| | TEXT |BOOLEAN| 1 | | ISSUSERS |

| | | | | |

|~ | DATABASE |BOOLEAN| 1 | | ISSUSERS |

| | l_ | | |]

| | FORMS |BOOLEAN| 1 | | ISSUSERS |

| | |] | | |

| | SPREAD- |BOOLEAN| 1 | | ISSUSERS |

| | SHEET | | | | |

| | | | | | |

] | MAIL JBOOLEAN| 1 | | ISSUSERS |

1 | | | | |

|~ | CLEARANCE | CHAR | 15 | | ISSUSERS |

| | | | | | |

| | CC |"CHAR |~ 0 | | ISSUSERS |

- | | I | | | |
"o | | ROLES | CHAR | O© | | ISSUSERS |
Lo | | ! | | | }
":‘ | | CAPABIL- | CHAR | 20 ITABLE;NAME | ISSUSERS |
- | | ITIES | | | | |
| | | | | | I

,
Py

‘.

LA

Figure 3.4 - Schema Table Rows For ISSUSERS table

P
ll,l
A

[
wak'd
LY

35

A

ARAI

{4

<"
as

-
DALY
sl

.

.,

.........

N . AL . L . R .
- L - A L P N P o e o A G S .. " - W - *
CANES IS LN PG O U S N, Y AP I Y

C. APPLICATION DIRECTORY TABLES

A Directory Table exists for each of the five
application areas of the 1ISS with each row 1in the
application directory describing exactly one data table.
These directories can be used by users and by the system to
find particular data tables which exist for the selected
application. The schema for the Directory Tables 1is
illustrated in figure 3.5 and each of the columns is
described in figure 3.6 by the appropriate rows from the

Schema Table.

| ID | TABLE_NAME | COLUMNS| KEYS | O_CLEAR | O _CC
! ! I l I |
I l | I l I

M_CLEARIM_CC | ACT_NAME | PCT_NAME |REVIEWED |REV_REQD
| I

l
l |
I I I I l

VIRTUAL | CONDITION | GLOBALS | OWNER | DESCRI-|
| | | | PTION |
|

Figure 3.5 - Directory Tables Schema

In each row of a directory, TABLE_NAME 1is the unique
name of a data table which is being described by the row and
is the pointer to that table in the wunderlying relational
database management system. COLUMNS is a 1list of the

columns in the data table, and with the Schema Tabie tuples

36

L S N I TERr L S S tet L

LY A S N SR G e . DY L S .-

> . B T A PN
Tt et A et et Tt e et et e et e N T T TN, e T Ve N

.............
..... A
P

MRPUCE R S LR I

D afi ol ot e

nd

- e YT
LV L I I I

T T EYvT Y
L e .

e

..................
.....................

for those columns, completely describes the structure of the
data table. KEYS is a field containing the names of those
columns which comprise the key to a table. O_CLEAR and 0O_CC
are fields giving the overall security 1level, compartments
and caveats of a table. M _CLEAR and M_CC give the minimal
requirements to access some parts of the table, particularly
Text Tables, where 1low security paragraphs 1in a high
security document may be made accessible to those with the
lower security clearance. PCT_POINTER and ACT_POINTER are
the names of the two tables which control column and row
wise access to every data table. REVIEWED and REV_REQD are
logical wvalues required by organizations practicing

multilevel security. VIRTUAL is a logical field indicating

if the table is composed from other ISS tables, and if true,

- then CONDITION is the description of the operations to be

» l..

By AN h

performed to realize the table. GLOBAL 1is a text string

st R

which may be wused to contain print formatting or display
mode data, or other parameters useful to the system. OWNER
is simply the originator's userid and DESCRIPTION is a short
textual description of a table.

The Directory Table may be used by a user to view the
directory for any one application, and by the system to
determine the structure of any retrieved table. The ID
field 1is always a key field for any table. The freedom to
select a key exists only for database data tables since

other table structures are fixed. The setting up of access

T e A L . .“" - . . - e e e
. - R Y R A T T A S TR A R)
AT S UM WA AP, T AL LI LN 1.':5‘:5.';\':&'.&"_\‘.\"\-“:;‘:r;::;‘:.\‘:xﬁ.‘\: D ST T

K

.i
.

D

INENN A

o ".t‘ -'. .‘. N
N e
LI TR T

e [

LY,
)

(3

N
s
Q-

KN
h)
P
‘.
-

<
.

-
.
4.

........

structures (indices) using these keys is of no consequence
to the conceptual model and 1is not considered in this
thesis. During display of a directory, information in the
security fields may be used to filter the rows displayed so
that users without sufficient clearances or need to know
will not discover the existence of tables that exceed their
clearances. During any call for a particular table the
directory may be consulted to confirm eligibility for access
to that table on the grounds of security clearances,
compartments and caveats.

The GLOBALS field may contain application specific
information in textual form, for example a text application
may place in the GLOBALS field of the directory entry a page
length for printed format by including .pl 60, or a page
header .ph "NPS THESIS". A Mail Directory Table row can
contain the name of the Mail Data Table owner, and possibly
redirection instructions. In a spreadsheet directory
GLOBALS may be wused to store recalculation order. 1In any
case, the information in GLOBALS is related specifically to
the application so each application must have the
intelligence to retrieve and use the tokens in this field.

Creation of new data tables is done conceptually by a
user creating a new tuple in the directory or conversely
creation of a table causes a new entry to be placed 1in the
directory. It should be noticed that with the full

multilevel security controls this would imply the <creation

38

AR A A A AR G AV A e AR S A A m S e Al o P APt 04

TN Y e v

P
A

..

LY

A RN 54

v
LA AR

)
)
.

.':‘.'

also

of

sections.

RN S SRt AP SN SR e .('“.r.'“-f.'.r.'irf"q

the two access tables to be described in following

Figure 3.7 shows an example of a single row of a

text directory.

— —— — — i —— — — — —— — — ——— — — — —— . Sy T o — — — s o T S —

1D NAME TYPE WIDTH SYNONYM TABLE
ITABLE_NAME | CHAR | 20 | [-DIRECTORY |
| | | | | !
COLUMNS	CHAR	0 !	-DIRECTORY	
I I [
KEYS	CHAR	0	COLUMNS	-DIRECTORY
I ! [!	!			
G_CLEAR	CHAR	0	CLEARANCE,	-DIRECTORY
I I l IM_CLASS				
!	!	!		
6_CC	CHAR	0	CC,M_CC	-DIRECTORY
I [[
{M_CLEAR	CHAR	0	CLEARANCE,	-DIRECTORY
l I l l0_CLASS				
		[[[
IM_CC	CHAR	0	CC,0_CC	“-DIRECTORY
		!		
PCT NAME { CHAR	20 TABLE NAME [-~DIRECTORY			
' ~ !		- [
ACT_NAME	CHAR	20	TABLE_NAME	~DIRECTORY
	[I l !			
REVIEWED	BOOLEAN	1		-DIRECTORY
I				
IREV REQD	BOOLEAN	1		-DIRECTORY
- I	I	I		
VIRTUAL	BOOLEAN	1		~DIRECTORY
i				
CONDITION ! CHAR	0 [~-DIRECTORY		
	I I	[
IGLOBALS	CHAR	0 I	=DIRECTORY !	
				!
OWNER	CHAR	10	USERID [~-DIRECTORY	
!	I I I			
DESCRIPTION	CHAR	0	TEXT BODY	-DIRECTORY!
f [I |

I

39

Figure 3.6 - Schema Table Rows For Directory Tables

............

.-\'.'

L P S S

) LTS PRI T S T R .
w‘-‘.L..-_‘-L"L\ LPL"L:‘L "L‘!...'...‘: e e

ID TABLE_NAME COLUMNS KEYS 0_CLEAR 0_cCC
[| RECIPEIL [ID, TEXT_LINE| ID | UNCLAS [

[I l I ! I

M_CLEAR M_CC ACT_NAME PCT_NAME REVIEWED REV_REQD

UNCLAS | | ACT1234 | PCT1234 | TRUE | FALSE

| | | | |
VIRTUAL CONDITION GLOBALS OWNER DESCRIPTION
FALSE | [.pl 60,.1m 10 | 2516P | Brownies |

! l ! l |

Figure 3.7 - Example Row From Text Directory

D. ACCESS CONTROL TABLES

Access Control Tables (ACTs) are tables which are
associated with every data table in the ISS. To satisfy
multilevel security and need to know arrangements the ACT
for a particular data table lists explicitly the userids
allowed to access that table and what rights each userid has
concerning the table overall, the tuple 1level or on
individual columns. The ACT schema is illustrated in figure
3.8, however the number of columns depend on the number of
columns in the data table being described since the
attribute column 1is repeated for each column in the data
table. ACTs related to data tables within one of the text
processing, form generation, spreadsheet or electronic mail

applications will all be the same structure since data

40

.....

L I e R i B4 N e W T
| RO R LI A A . KA - _."'_1 o Bt acttiatirier) Au A A -__‘G_J'S._ e AN R o pa Ll et iy R IC A Ji e Jan e I

tables in one of these applications have a fixed number of

columns.

| ID | USERID | MODIFY | TUPLE | ATTRIBUTE| ATTRIBUTE[~
| I l l i I [~

Figure 3.8 «~ Access Control Tables Schema

Figure 3.9 describes the structure of the three as vyet
undescribed attributes of the Access Control Tables. The
USERID has already been described in figure 2.5 except that
the TABLE field for that row should now read "ISSUSERS , -
ACT". MODIFY is a boolean indicating a wusers right to

modify the schema of the data table. This will generally be

NO (or FALSE) since the structure of all application tables
except Database Tables are essentially predetermined by the
design of the system. TUPLE is a field containing up to
four characters indicating the wusers right to insert(I),
delete(D), read(R) or update(U) ' entire tuples. The
repeating ATTRIBUTE columns may contain read(R) or update (U)
controlling each individual's access to the columns of a
data table in the order they are listed in the directory.
Explicit TUPLE column values of read or update imply the
value for all the individual attribute columns, for example

a TUPLE update(U) implies a U in all of the attribute

columns whether they are there or not.

41

..........
.................

T S A .-"'-'.-.'..‘.". I T T AN
e « e e e - ~ . ™ B S . N o -~ S DRI e S T
LD JUPLOU S B, _-;4}‘:‘1'.5 PRI o et ‘.-:‘_’ N .‘_'. '.P\.‘\]x:_} LML § \'-.“\. o e .-_‘_.:\- .i

\ y 4 4 P
VISR

2

‘e %

L)
RSN
Al

IR SR R

1t

ID NAME TYPE WIDTH SYNONYM TABLE
[[MODIFY [BOOLEANT 1 I [=ACT |
: :'rup:.z I' CHAR : 3 : : -ACT :
E—:m’é—i CHAT"E 2 i E =ACT 5

Figure 3.9 - Schema Table Rows For Access Control Tables

The ACTs are useful to enforce views and multilevel
security requirements. When accessing a data table via the
directory the number of columns in the data table and the
name of the &ssociated ACT is retrieved. The system must
then enforce the restrictions imposed by the ACT during use
of the data table. 1If an all users (USERID = <~ALL) entry is
not in an ACT then users who are not explicitly on the 1list
have no access to the data table with which the ACT is
associated. An individual's rights to a file may be
determined by more than one entry, for example «~ALL may read
tuples and 2516p in addition may update tuples. This
mechanism may be used in multilevel security to enforce need
to know lists of personnel for particular documents.

Although every table must have an associated ACT, there
is no requirement for the ACT to be unique provided it
describes the correct number of columns. For example within
an application one ACT may be used as a simple owner write,

all others read access table with which many data tables are

42

IR Y T ~'..4‘ L. T .C;.J;..'»-.'\.‘v'.'.> R u.\A’ - "..'\- “.“.." .\-‘.‘...\. \' S ~ LN NN TN . e Y
S IV P VU e U TS0 SR WS, A AT SO S

Iy
A
[P SN

- ... '.. "l

4,08, 4,

‘f‘ ettt Yt e
R
. Al e e R

)
s % <
aa

[l T Y)
LA I

YA NN

A
s l.:AJ’

Lo g e VRS
.- "n f- ’l"ll ,l ..I...K . [y .-l)t_{L‘.A *

associated. Figure 3.10 is an example of such a table which
may be named in the ACT_PTR field of any text directory or
forms directory row because it has two attribute columns.

{One for ID and the other for TEXT-BODY or FORM~BODY.)

ID USERID MODIFY TUPLE ATTRIBUTE ATTRIBUTE

-QWNER NO

I URD |
!

R |
I

|
l
I
I

| |
] |
}] <ALL | NO
| |

Figure 3.10 - Example Access Control Table

In this example the hyphen is wused to designate special
userids such as owner and all users.
Discussion and implementation strategies for these

tables are left for further research into multilevel

security issues in an ISS.

E. PARAGRAPH CLASSIFICATION TABLES

The Paragraph Classification Tables (PCTs) are designed
to provide access control, primarily of Text Data Tables, at
a paragraph 1level as required for multilevel security
systenms. Since a paragraph may consist of a single line of
a Text Table, essentially line by line control is required.

Figure 3.11 illustrates the schema of PCTs and figure
3.12 shows the Schema Table row for the OFFSET column which

has not already been described in prior sections.

43

LN AR A YA NS D SE A LA A AT MEL A v)) s S e

L

il

v \a'_ Ty -\r“1

|"ID | OFFSET | CLEARANCE | cCC |
| | | l |

Figure 3.11 - Paragraph Classification Tables Schema

Each data table is covered by a PCT although as in the
case of the Access Control Tables, thé PCTs need not be
unique and may cover many data tables. The Paragraph
Control Table for each data table is named in the PCT_NAME

field of the directory entry for that data table.

ID NAME TYPE WIDTH SYNONYM TABLE

I |OFFSET [INTEGER| 6 [ID | «PCT |
[(| l | ! !

Figure 3.12 - Schema Table Row For PCT Column OFFSET

The table is ordered on the offset field, the first and
possibly only tuple being for an OFFSET of 1. The
clearances, compartments and caveats for an offset represent
those placed on the material in the associated data table at
that ID and greater, until superceded by another row in the
PCT. During retrieval and manipulation of tables,
particularly text, only those rows of data which are 1less
than or equal to the userid's security levels and clearances

will be made accessible.

44

L

. % -!'.

e e s - s e e A A A oA o e
A A i R M A P N A o S T N TSN e N Rt A A A N TR A A AT

G At e i i

Figure 3.13 shows an example of a simple paragraph
control table which will be pointed to by name from the

directory entry for some text data table.

ID OFFSET CLEARANCE ccC

[~ I 1] UNCLAS] |
| | !] | I
I 2] 10|~ SECRET | |
| | | | |
E 20| UNCLAS | l
| ! | | |

Figure 3.13 < Example Paragraph Classification Table

The PCT indicates that IDs (lines of a text document) 1 to 9
are unclassified, 10 to 19 are secret and 20 up to the end
of the document are unclassified. Should the user be
allowed access to the data table by the controls described
in the previous section, and have a clearance 1less than
secret, then he will be able to see the unclassified part of
the document. As with the Access Control Tables, strategies
for implementation and use of these PCTs to implement

multilevel security measures are left for further research.

F. CAPABILITIES LIST TABLES

Capabilities List Tables (CLTs) are a multilevel
security table associated with each userid in the ISS system
and will be named in each row of the ISSUSERS table in the

CAPABILITIES column. (See figures 3.3 and 3.4).

45

e N o B b T N S e S o o e e

Lo n s \'_x A S O S S AN A

........................
.......................

e

I

| ID | TABLE_NAME | TYPE { OWNER |

e ! [I I |

(\j:

‘Eﬁ Figure 3.14 - Capabilities List Tables Schema

o

=

L The information they contain 1is sufficient to determine
SN)

}x immediately all tables to which any userid has access. It
‘J. has been suggested [Ref. 2] that such tables are required in
EE a multilevel security environment, although the data they
\':‘.

ey contain is mostly redundant. One solution may be to provide
L the tables as virtual tables. Figure 3.14 illustrates the
;fﬁ schema of the CLTs. All the Schema Table rows for the
2 columns have already been described in previous figures
{

o except that now "-CLT" (all CLs) must be added to the TABLE
w'\-‘ -

P

’:j and OWNER columns in the appropriate Schema Table rows to
T

9 indicate that the columns are also used in the Capability
AL List Tables.

.._)

id For each userid in the ISSUSERS table the CLT is simply
Q‘:J

A 5 a list of tables to which he has access before security
}ﬁ levels, compartments and caveats are token into account.
o The CLTs are a redundant method of enforcing need to know
o5 restrictions and requires positive input from the creator of
{}f ’ any data table. Mechanisms to maintain this list would
f,_:.

7;5 clearly he linked with the multilevel security precautions
X

o

oy

s

)

i? 46

I,.-'

-.‘:{

N e N e T e e T e A e T S L N L N S

L)
................

%
s

2N used to create and manipulate tables and are not discussed
n"‘-"

2 further in this thesis.

o

-?;:S G. TEXT DATA TABLES

~ -

:fi The Text Data Tables contain non—-formatted textual

information. This data can be wused in a myriad of
applications, including preparation of documents or computer
programs, or as textual information to be combined with
other application data tables by one or several of the ISS
operators.

The Text Data Table contains two attributes, ID and
TEXT_LINE. The schema for the ID has been previously
defined. The schema for the TEXT_LINE attribute is shown in
figure 3.15. The "0" in the width field indicate that the
TEXT_LINE is of varying length. As depicted, the FORM_LINE
attribute of the form data table and the BODY attribute of T
the MAIL data table can be aliased with the TEXT_LINE

attribute of the Text Data Table.

ID NAME TYPE WIDTH SYNON YM TABLE
| TEXT_LINE | CHAR | 0 | FORM_LINE [-TEXT |

|
I ! [[| BODY | |
| | | ! | | |

Figure 3.15 -~ Schema Table Row For Text Data Table

O A
N Ty et
atat T,

'Q

4

-
@i

v
.

T
Ay &

o
a‘aa o

4
Ny

Frv
, A
’?"\

47

G
4 1. .

. P i S A s et o |

Figure 3.16 shows an example of a Text Data Table. Each

=Y "
MMM
.' 1

row 1is uniquely defined by the ID and TEXT_LINE. Any type

information can be entered into the TEXT_LINE and all the

R
S

[
A

LN P e gt o

data, (except the 1ID), will appear on output in the same

>

LAY

format in which it was input. (Note that row 3 of figure
3.16 contains the characters ".sk 2", This character
sequence will have no special meaning in the context of the
ISS Text application. However, the Text Data Tables can be
used as input to a TEXT FORMATTER APPLICATION SYSTEM in
which these characters or similar syntax would have a
special meaning, i.e. "skip two lines"). The key 1issue |is
that all wuser input 1into the Text Data Table will be

operated on by ISS as pure textual or literal information.

ID TEXT_LINE
|1] Wwhat can be better |
: 2 : than this? :
: 3 : .Sk 2 =
iTi"__"‘uon T ASK! E

Figure 3.16 - Text Data Table

H. FORM DATA TABLES

AR P

The Form Data Tables are a special set of Text Data

4 & 2
A

Tables. They act as a window or view into the ISS Database

[
<4 i@

.

3y 48

v, ' ol A M s S Base JAde. - g
e P AT M . LR _._-‘.>J'_.'. _'A_r_v-;‘. AR ey B fus Jum S -
A R N N L AT

S Data Tables and may be used for entry or extraction of data.
ji Forms are generally used for repetitive tasks such as the
printing of letters with the same or similar bodies but many

- different addressees. Forms may also be used in order to

create facsimiles of documents on a CRT screen. These
facsimiles of documents can then be used to facilitate easy
insertion or retrieval into or from a Database Table. This
will serve as a valuable tool for users who are more
familiar with the order and relationships among entries on
the documents than with the standard tabular formats used to
manipulate data in a database system.

Form Data Tables are comprised of only two attributes,
ID and FORM_LINE. Figure 3.17 illustrates the schema for
the FORM_LINE. As shown, the TEXT_LINE attribute of a Text
Data Table and the BODY attribute of a Mail Data Table can
be used synonymously with the FORM_LINE attribute of the

Form Data Table.

ID NAME TYPE WIDTH SYNONYM TABLE
| | FORM_LINE | CHAR | 0 | TEXT_LINE |-FORM |
! ! I I | BODY I |

Figure 3.17 - Schema Table Row For Form Data Table

Figures 3.18 and 3.19 show examples of ¢two distinct

types of Form Data Tables available in the ISS. 1In order to

49 |

T e et et e

LTI I
N R N, .

L AT "\.‘

jf use either Form, the user must specify the name of the

underlying Database Data Table to be invoked, hereafter
referred to as the default Database Data Table.

Figure 3.18 is the simplest type form and can be used
both for extraction and insertion of data from or into a
single Database Data Table (file). 1In this type of form the
user may operate in two distinct modes: insert or retrieve.
In the retrieve mode a form with pre-printed attributes will
appear on the screen with the attribute designated as a key
enclosed in braces, { }. The wuser has a choice of
specifying a unique tuple to be retrieved or requesting all
tuples. If he wants a unique tuple he will enter the value
of the key attribute for the desired tuple. The remaining
data will be retrieved from the database by the system and
inserted into the form. In figure 3.18, the user, operating
in the retrieval mode, entered the value "123-~45-6789" for
the SS# database attribute. The ISS then used this value
to search through the database for the matching tuple and
automatically filled in the rest of the form with the
attributes desired from this tuple.

The user may request that all tuples of the database be
retrieved by using the KEY word , -ALL. If -ALL is used and
there are 100 tuples in the associated Database Table, then
there will be 100 forms filled in by the system. In all
cases, the FORM_LINE(s) will appear in printed output

exactly as it appears on the screen, including the data

50

. AN :
L.‘....;._..-.,k,,_k'_c‘ | I) 3] R PR

* L

L]
e WA el Ny

“»
“
™
'l

table attribute prompts. The ID of the FORM_LINE will not

be printed.

In the insert mode the user will supply all the data as
indicated by the blanks following each attribute. This data
will be reformatted by the system to conform to the format

of the underlying database data table before it is inserted

into that table.

ID FORM_LINE

NAME: G. Thompson {SS#J: 123-45-6789

ADDRESS: 2 Lane Rd , Somewhere, Fl, 22222

SALARY: $100,000.00

I
|
I
I
|
[
| OCCUPATION: Systems Analyst
|
|
!
|
|

Figure 3.18 - Form Data Table

Forms of the type illustrated in figure 3.19 can be used
only to retrieve data from one or several underlying
Database Data Tables (files). 1In order to maintain database
consistency, no insertions into the database are possible
with these forms. Within forms of this type, text appearing

in the form line can be of four distinct types. These types

MR AT Sy st 2o]
AR

o R TR T T T TR R SRR AR A K CAS A A e Mo
e
o are distinguished by the presence or absence of special
;ii symbols within the text entered on the FORM_LINE.
S If there are no special symbols within the text entered
-
?5- on a FORM_LINE, then the text is considered to be literal
- i . . :
and will be printed or displayed as is. Text entered

between two braces, { '}, represent a key attribute of a
given database data file and will determine which tuple(s)
of the Database Data Table will be referenced for other
retrievable data on the form. The format for this data type
is {table.attribute} or {attributel}. The latter format
implies that the default table is to be used. The user can
enter a unique value to retrieve a single tuple, or he can
enter the system variable —-ALL to retrieve all tuples in the
database.

The special characters, {}, can appear on a single form

more than once but there must be a one to one correspondence

between them and the distinct Database Data Tables
referenced on the form. For example, row 1 of figure 3.19
contains the text, {NAME}. 1In this case, the user can enter

a unique name to retrieve a single tuple from the default

Database Data Table, or he can use a variable to retrieve

)

e

.
LA A e 0,00

all tuples from the default database. In row 7, the

s

WA

{B.SWEEPSTAKE} entry indicates that the SWEEPSTAKE attribute
of database data table B will be retrieved. Table B must be

distinct from the default table.

ID FORM LINE
a

{NAME'}

[ADDRESS]

(CITY], [STATE], (ZIP]

Dear [TITLE] [NAME],

You may already be a winner in our

{B.SWEEPSTAKE]. 1In order to find out

if you are an instant winner read the

following information.

12 If you are a winner, you may collect
13| your prize from [(B.ADDRESS], (B.CITY],
14| [B.STATE].

15

1% Sincerely,

7

Sweepstakes Deluxe

!
I
]
|
|
|
[
]
|
|
|
I
|
|
|
I
:
|/Sweepnum. Txt/
]
|
|
|
{
|
f
|
|
|
|
|
|
|
|
|
|

Figure 3.19 - Form Data Table

Text entered between brackets, [], represent variables
or attributes to be retrieved by the system from the

corresponding tuples(s) retrieved previously using a "{ }"

53

N A .
e N RN L L TN A e
L'L A aatm e gL x‘.'.'_hls_b.'.‘m'.lh'.\' s \.“s':n.":\.‘hx.':x’;* N N

..............

- .
.....................
""""""""""""""""" FC I T L L SR e R B - I

FORM_LINE entry. The format for this type data is
[table.attribute], or [attribute]. This type data is
illustrated in rows 2,3,5,13 and 14 of figure 3.19. Note
that in row 1 the FORM_LINE contains {NAME}, and in row 5
the FORM_LINE contains [NAME], Even though they refer to
the same field in the same database table, they differ in
that {NAME} is wused both to extract the value of the
attribute, NAME, and to determine which tuple will be made
the current tuple 1in the default Database Data Table.
{NAME] simply extracts the value of the NAME attribute from
the current tuple. In other words, {NAME} means "retrieve a
new tuple with the given value in the name attribute,
substitute 1its wvalue for the symbols, '{NAME}', and retain
the tuple as the current tuple of the default database data
table". (NAME] simply means "substitute the symbols
*[NAME]' with the value of the NAME attribute of the current
tuple in the default Database Data Table.

Another type of text which can be entered on the
FORM_LINE is data entered between slashes, / /. This
indicates that the text to be displayed or inserted will be
obtained from an existing Text Data Table (file). Its
format is /filename.TXT/. In row 10 of figure 3.19,

/Sweepnum.TXT/ indicates that the text file named Sweepnum

will be inserted into the form upon view or print requests.

Forms of the types depicted in figures 3.18 and 3.19 are

LI AT IRCINe)

basic, but powerful enough to facilitate most applications

involving Form Generation.

I. DATABASE DATA TABLES

The Database Data Tables differ slightly from the Text,
Mail,Spreadsheet, and Form Data Tables in as much as there
is no predetermined set of attributes that will apply to all
Database Data Tables. More precisely, each Database Data
Table may have one or several attributes in common with any
other Database Data Table in the ISS. The attribute which
must appear in all Database Data Tables is, of course, the
ID. The ID is a key in each Database Data Table. Thus, as
a user creates a new database data table the only schema for
this table to appear initially in the Schema Table will be
that of the ID. As the user defines the schema of each
additional attribute of the given Database Data Table, these
schemas will be automatically added to the Data Dictionary.

The Database Data Tables are used to form relationships
among entity sets. Each Database Data Table defines one
entity as described by the attributes or columns, and each
row of the table represents a unique occurrence of the
entity. Figure 3.20 illustrates a Database Data Table with

an ID attribute and N user-defined attributes.

55

'''''''''''''''''

P N T T S S A S S O P AT RS

- . - - - - . .
e 2 . - e T . *a Lottt . . LT T
TR Gy W Y WA R Y ST U T S R D A e T S S S A R

.......
..........

..............
................

ID ATTR~-1 ATTR-2 ATTR~n

| |
I |
I I
! !
! !
| !

—_ e e e —— e

| | I
| | .
| l s
| ! |
! ; !
| 1 |

Figure 3.20 - Database Data Table

J. MAIL DATA TABLES

Electronic Mail is a utility which facilitates the
exchange of textual messages among system users. In the
1SS, each user with mail access rights will have a mail file
which 1s essentially a set of messages, i.e. a Mail Data
Table or set of Mail Data Tables.

The Schema Table rows for the Mail Data Table are shown
in Figure 3.21. As indicated in the figure, the TEXT_LINE
attribute of the Text Data Table and the FORM_LINE attribute
of the Form Data Table can be used synonymously with the
BODY attribute of the Mail Data Table.

The columns or attributes of the Mail Data Table are
predefined by the 1ISS, and as shown in figure 3.22, they
contain sufficient information to facilitate proper routing
of mail to the ISS user. Each row of the Mail Data Table

represent a complete message.

56

RN SN

T T W s . T B TN T oW hae
LI _-..“ ... ™ .‘_W.._ .._(Pa i) e L T O e S R I T W W VO o e~y p— LN I
R . P . e T T e T R T N T R RN Y S s

~

tf ID NAME TYPE WIDTH SYNONYM TABLE

|~ T VIEWED T BOOL [1 | NONE [=MAIL |
'ﬁy : : FROM : CHAR : 0 : NONE : “MAIL :
- : : TO : CHAR : 0 : NONE } “MAIL ;
:? — COPY_TO | —CRRE— |~ |—WoWE AT |
Sé : : DATE : CHAR : 5 : NONE : “MAIL :
. — | TR | | | o | TMAIL |
éﬁ : { BODY : CHAR : 0 :"TEYT-Lxusl “MAIL :
(o4 [| l l [FORM_LINE| l
- I | ! | ! |
j~ Figure 3.21 -~ Schema Table Rows For Mail Data Table

» The VIEWED attribute requires a "yes" or "no" data entry

which 1is used to indicate whether the corresponding message
has been read by the owner of the Mail Data Table. The

FROM, TO, COPY_TO, DATE and SUBJECT attributes comprise the

[N i_' . R

N header of the message. The DATE attribute will provide the
EE month and day that the message was originally created. The
jé remainder of the header attributes are self-explanatory.
ﬁi' All of the message header attributes can be used to form
:ﬁi queries which operate on messages satisfying a given
%: condition as posed in the queries.

:? The last attribute, BODY, contains the text of the
b
fﬁ message. This column will contain as much of the first line
}; of the message as will fit one one line of varying 1length.
57
L
o
.,
.

e e

PRI J"’a"’ R \.. -')"'

.y

i R e AL PN T A A A T T
AL AN O RRRGERY o S S R e AT AT T A T e sy

remainder of the text will be retrievable by the user

- The

via a unique mail display operator.

If the length of the BODY column is insufficient to

contain the full message, this fact will be denoted by the

special characters, "=>", appearing at the end of the column
g

as shown in row 1 of figure 3.22. Users also have the

option of typing in the name and type of an ISS data file in

the BODY column of the message. In this case, the name and

type of file, preceded by a hyphen, "-", and followed by

"=>" , will be displayed in the BODY attribute but no

portion of the text of the file will be displayed. This

type message is illustrated in row 3 of figure 3.,22.

ID VIEWED FROM TO COPY_TO DATE SUBJECT BODY
|"1] NO |[SPOT | SAM | PETE | 10-4| GAME | The Game =>
| ! ! ! | | 1
|~ 2| YES |DAN |"MARY | LEE | 10-3) DINNER| Cancel!
o | | | | | |
|™3| YES |IKE |"TINA | |"10-1| DANCE | -Details.TXT
| | | ! | | | =
|__| | I | l t |

Figure 3.22 - Mail Data Table

In some cases the message body will be terse enough to
~ fit, in its entirety, within the allotted columns. In these
5: cases, the user will not be required to request further
“f
:3 display modes for the message, and the special characters,
@

E::: 58

*

S N

e R e e St e S S L . -

"=>", will not appear on the display. This type message is

illustrated in row 2 of figure 3.22.

K. SPREADSHEET DATA TABLES

An electronic spreadsheet, in its traditional form, is a
rectangular grid of rows and columns, like a large sheet of
graph paper, to facilitate organizing numeric data for easy
calculation and comprehension. It allows the user to model
a variety of numerical problems in a standard tabular format
on a computer with the ‘elimination of the drudgery and
errors encountered by using the scratchpad and pencil or
hand calculator.

The schema for the columnns of the Spreadsheet Data Table
is illustrated in figure 3.23.

In the Electronic Spreadsheet application, the format of
the Spreadsheet Data Table 1is quite different from the
standard user's view of the spreadsheet. An example of a
Spreadsheet Data Table is shown in figure 3.24., Figure 3.25
illustrates an example of the standard user's view of the
Spreadsheet Data Table shown in figure 3.24.

In the view, the intersection of each row and column
form one addressable unit or entry position. Each entry
position in the view is described or defined by a row in the
Spreadsheet Data Table. Although the ID is a key attribute
in the Spreadsheet Data Table, it does not have any bearing

on the order in which the entry positions in the view must

59

LA R A R A

o Ve SR N
R, WY R Y
il dh PR P WA W G U Y

......
......................................

'Eﬁ appear in the data table. Blank entry positions in the view
.;i do not have to be described in the Spreadsheet Data Table.
ii- The X_COL attribute and Y_ROW attribute are the column
ig position and row position, respectively, of a unique entry
?5 ’ in the view., The FORMAT attribute of the Spreadsheet Data
Table contains the information which determines how the data
of the entry will be displayed 1in the view. This field
: contains three distinct types of data: the entry data type,
2% right or left justification modes, and width of the column
E; displayed in the view.
;; The entry data type can be of four types: character,
éé integer,float, or monetary (dollars and cents number). To
%S avoid inconsistencies and maintain readability, the user |is
(}\ prevented from declaring different column widths for entries
_gj in the same column. For example, if entry position A~l has
§§ a column width of 15, then entry positions A-2 through A-n
?: must have a column width of 15, even though the data types
jgj of the entry positions may differ.
‘;; The VALUE attribute contains either the display value of
\: the FUNCTION attribute of the literal string for character
E; entry types. The FUNCTION attribute contains either the
;; keyword NONE, or an expression. The keyword, NONE, is used
}i to indicate that the associated value of the entry 1is non-
zg numerical and will be displayed in the view exactly as it
;E was entered. The expressions in the FUNCTION column may be

a numerical constant or an arithmetic expression. Numerical

60

PANIRIARAT 4

:-
&
‘<4
-+

TP Ty vy
BRI S i At & A S i - S et soe e e te P
- - . . - LA P . ., -

constants are entered by the user and appear in the view in
the formats 1indicated by their data type. The arithmetic
expressions may be composed of system built-in functions and
operators or user defined functions or combinations of bgth.
The operands of these expressions will be numerical
constants and/or the values of other entry positions. Once
defined, these arithmetic operations are automatically
evaluated by the ISS and their values are displayed in the
view. For instance, in the example, the data table entry
for position B+«5 1is the function "B:2 * B:3". When the
Spreadsheet Data Table is converted into the wuser's view,
the value of the function 1is displayed, (in this case
12.00). If the user decides to change the wvalue of ‘no.
ordered' (B=2), or the value of ‘cost per item'(B-3), then
the system will automatically reevaluate the function and
immediately display the wupdated entry in the spreadsheet
view in entry position B-5.

The user has the option of updating the Spreadsheet Data
Table directly or indirectly via the view. However, if the
view is chosen as a means for updating the data table, then
only the non-calculatable entries can be updated, (i.e.,

literal strings and constant expressions).

k.. |

. " .I
:.c.ft"-."l." LA

HAAAA

Lad -
DN b
Ay a:{’

61

e ¥ Va%a®s
.".'.\’:{‘.

)

-
.
!x
-t

\‘.\“\
L 2

Tt T B At S e e e e e e : AN
e e L e T T Ty T O S RO
Bateoh. RN W W -V R W SN S A Y

RS b

- ®

e 5 -
NS A Ao iat it e i it e e f S fate e fave. st e e s

.

s
,
1
.
1
.
.
L)
AR IR T S IS G, e e m
SRR W s L e v o~ TR
<.~.\....~.-.-.-.-C-~. s\u.\ \\..-\

(ARG B

)3

TABLE

TYPE WIDTH SYNONYM

NAME

ID

P SDIINENY e

— e — — — — — —

| =SPREAD

NONE

=SPREAD

NONE

3

~SPREAD

12 NONE

!
I
l
I

R

CHA

FORMAT

NONE

~SPREAD

0

I
|
N |
]

R

HA

C

FUNCTIO

Figure 3.23 =~ Schema Table Rows For Spreadsheet Data Table

S5

. _...\ ..,\.

AT

B .‘-' o
el

e A
Leal ot e A L T AT A Y.

PRI W .
e e e

62

e e et TR
B SOV WA TP NI -0 Yl WP 0 G L N A Y

I N
o~ .

s a e
A a’ N v
£ J,\-I \.;‘_. . ._.‘-. .

i

. '-’. q'_ . .. o e '.
3 y

>

- l-.rn'}

Cd
N
PO
A

- - vl
..
g
L)
4

«

’b‘ A

Dlafi

v A

‘_

| S
.| Q
.In [0
|..|3 T
l..l n.n. M H
||||W. * m | M 3
...!l 2 2) t 6
II.3 mu ||...uM %
..I | C h
l. | 0 S
.I I.O T
I.I. I.I."O. S .M
I.| |||0| u m
|| ||-0 | P
I. E | . I. S
-l S I 4 d _
I. | S o o]
| m ! i <5 ;
|a | | I. Tl R .
|| | | ..l YH C | 3
.I E | .I EG I.
.| | | | 0 NI | e
O i | Tl OR || t
zZ —_ &) | YH | | U
€3] l S | | EG |l g
-4 —Io o Q —l o NI —ll. 1 .1
. (o] _ Q o i m..l OR | | F
Z z B | | | M I..“ ..l
m M —,l m M B‘O Tm :: —5 ;
& (e} llD [& —_ Tl NR | — .l.
Q Z - 3 - : | H T. .l — |
A - 24 ~ TI.. RG ' -Ic C —
> [<) X : | MI l 3 || I.
fx, [&] - .| | | | ||. ||
* o ; I T C Iu | — Il
. & (o] CI. RF : I.. —B |.9 |
X o — wn ME ; 2 | - I.— | .
, ' . — ~ 1 - - " _ .I, |
2 * 2__ o Ex cIIv —— 0 T 1)
=) b - v AE P l I l. |
[} 4 —_— — HL | .I | .ll
.A.. l T C ..l .| | | LR -38
>) RF I. | B .|7 ||
o o 8 5 | | | ~
X R | |
[34 RF ; Il | |l5 rl u
A mw ' 3 .l ln |r.
m (@) - \..../.. :
N — o~ —— < lﬂ iy L .. .
w 1 - i lﬂ4||
R_ |" -.l o
> — — 3 - | . Q:
" -
o j I- | |
C_ .l— : ..
—_ _nl .. .
< =TTy
T, X
‘-
.-J\...
\-Fw!'n‘
..Jf.a

“tvuc\\!-%_ \--.._

2 .
P, -
o,
3
k',
.
T T
4
(O (&)
(@]
le 3
0] ()
=t
o>
")
e — — — —— S— — — —— — —— — e
~ ™ o o o .
R4 o o £ K
m o o * n .
LO < ~N oy
£ —~ Lol .
wn 1+ %
o X
r oy
Q. '
ﬁll.||||.||.l|l.l| nL
< Y
¢ o o
" ‘y .-L
Q ~
<< &) [. o .u
4 4 =, 9)) (] - 4
* () €3] O . ..l.
« | |& O ® o
L] o 4 () [
% o IN w3 3 RN
* 2] o o ‘
* (O (2] & et
* o Jo o £y
* |z O &

1
2
3
4
5
6

e
LAALNS
Ll

.]"
it1% %N

s

T 1

Ay
e

AN

LAY
.

R

o f -
-

TN I E IR

c .- et . - , L.
R e N N L IR .

IV. CONCEPTUAL INTEGRATION

Conceptual integration of the five application areas of
the Integrated Software System (ISS) has two components from
a users perspective: a single data object, and a set of
common operators which operate on those objects uniformly
regardless of the application. In addition to these common
operators, each application must provide 1its own set of
specific operations to achieve its special functions. The
single data object, the table, has already been discussed in
chapter III.

The functional intersection of the five application
areas is best understood by describing the common operations
(as opposed to the actual primitive operators) which are
required to manipulate data in and extract data from a file.
The common operations can be performed by the eight basic
ISS primitive operators, six of which are based on
Relational Algebra, one which 1is an aggregate type of
operator (sort) and one which is a proposed extension to
Relational Algebra similar to Stonebraker's concatenation
operator [Ref. 5] described in section B of chapter II. The
primitive ISS operators are described in section A of this
chapter and their mapping to the common operations and the
utility of those operations are described in section B. The

descriptions given are of the conceptual view of the

65

» - - - . "
PR NP U PR R PR

l'.""')"""‘ R A T A i e SRR IO P A T R S e i Thta e it R A Caa i Sl o el sl Sak tat g sesh dadl A
operators and operations, not their form which is
implementation detail. That 1is, their semantics and not

syntax are described.

A special table called "ISSBLANK" 1is defined to be
simply a blank row of any table. This convenience allows
the primitive ISS operators to be set theoretic with both
operands and results being tables.

The ID values in a table are the conceptual ordering of
the relation 1in the system and thus is maintained by the
system during operations cn the table. Rows are always
numbered contiguously from 1 to the number of tuples in the
relation. Manipulation of the ID values in a table by a
user 1is prohibited except indirectly via the re-ordering
(and re-numbering) required after insertion and deletion of
rowSs. New tables created by operators have their ordering
imposed by the system as they are formed.

The effect of a primitive operator may be a c¢hange to
the operand or the creation of a new table or both,
depending on the operator. A created table can be assigned
to (overwrite) an existing data table, which may or may not
be one of the operands, or a new table., This 1is analogous

to a conventional programming language variable assignment x

:= funct(x) except that the variables are now entire tables
and the function 1is an 1ISS primitive operator. When
operators are nested they operate on the result of the

previous operator.

66

- \ . -.. -~ R - - o . .
a TN AT
AN, LS RO BN ._.A.{L.’

AR -
v e .

...‘..

RIS L A i g R arvac aC S ae b o a0 A0 Ar i)

In addition to the primitive ISS operators provided Efor
data manipulation in tables, there 1is a set of binary
operators which operate between data tables. These complex
ISS operators, which contribute to the extensibility of the
ISS, may be applied to tables within and sometimes across
application areas. In many cases, in view of the meaning of
the structure of non-database data tables, inter-type
operations are conceptually meaningless. The semantics of
these operators and their utility is discussed in part C of

this chapter.

A. PRIMITIVE ISS OPERATORS

The eight primitive ISS operators insert, modify,
delete, project, select, union, sort and concatenate perform
their functions on tables of any type in any application.
Some operators are designed to change a target table while
others are designed to extract data from a table creating, a
new table for further use. The delete operator does both.

The modify, delete and select operators require a
condition which specifies which rows of the data table are
to be manipulated by the operator. The operands of the

condition are 1literal or numeric constants, arithmetic

expressions, column names or column values 1in the table.

- The literal expressions may contain pattern matching
Fj characters. The operators of the <c¢ondition statement are]
I\‘- °-
fff the 1logical and arithmetic operators and the arithmetic
' @
67

el

Lala A a s

- T & 7——7—77——'—1—-—————
'-'-'."']" Ll --‘-'1?-‘-.7‘"1‘

ARSI Sheltl W Wt S R ¥ Py N

DAY

relational operators, (less than, equal to, etc.). One
common cqndition used will be specification of a line number
or range by using the ID values. For example: (ID=10), or
for a range: (ID>=3 AND ID<K=14).

It should be mentioned here that although efficiency
is not a concern of the ISS at this time, operations which
cause rearrangement or re-ordering of rows in large data
tables such as large Database Tables, will be very
inefficient due to the amount of processing required.

1. Insert

Insert changes a target table by inserting into it a
table at a specified 1location (ID wvalue). If no ID is
specified the new tuples are appended onto the end of the
target table. The columns of the table to be inserted must
contain a subset of those in the target table. The matching
of column names is satisfied by equivalent attributes or
synonymous attributes as defined in the Schema Table.
Matching of synonyms 1s in the leftmost sense from both
tables. Unmatched attributes in the target table have no
value ©placed in the new rows. Effectively, the insert does
row and column insertion, adding the extra structure
required to the rows from the inserted table. The result of
an insertion 1is the changed target table. Since the
location of the insertion may be internal to the target
table, the ID values of the inserted tuples and the

subsequent tuples must be re-numbered by the system.

68

- s 2te Tl L, " e e * :)
TV S VR W T Gl Wl G0 N G L PRI o

- DY U

—"v‘ . 3 -y 2
e T N Y Y TN I R YT TN R N O

Fhae, o,

2. Modify
Modify alters a target table by changing the value

of specified columns in a row or set of rows to new values.
The rows to be modified are determined by their satisfying a
given condition, all tuples which match the condition have
their values changed. The new value to be placed 1in the
rows chosen, may be specified absolutely or as a function of
the old value to be replaced.

One special use of this operator is modification of
the material under the curser during browsing or editing of
a relation. The curser in this case has two values
associated with it, the ID number (row) and the column name
in which it displayed. Direct editing of the displayed old
value becomes the new value. This use of the modify
operator will be managed by the browsing software.

3. Delete

The delete operator changes a target table by
deleting all rows which satisfy a given condition. In
addition the delete operator creates a temporary new table
of the same type and structure as the target table
containing the deleted rows. It is the table of deleted
rows which is returned by the operator when considering
combined operators. The system manages the re-numbering of

the ID column values in the target and deleted rows tables.

69

S e e
.

l‘l l.
.c a

P

KA, L
’ P * + -
@[

Dl AN ’

o

2 LY LA

LI RN
ol LT
N PRSI
. . .

S

BEACREAS
.

P}
.
.

4. Project

The project operator creates a new table consisting
of just those columns of the old table which are specified,
in the order that they are specified. The appropriate
columns of each row are copied into the new table, with rows
in the same order as the original table. It is important to
note that the resulting table will not in general be a table
of the same type as the original table unless both are
Database Tables, which have no specific schema like Text,
Form, Mail and Spreadsheet Tables. (See chapter III for
fixed schemas of non-database data tables.) In all cases
except the trivial case of projection of an entire table,
the projection will have a different structure than the
operand table. For example the projection of a Mail Table
on the FROM and TO columns gives a result with three columns
(ID, FROM, TO) which is not a Mail Table or any of the other
fixed schema type of tables.

5. Select

The select operator creates a new data table from
all rows of a given table which satisfy a given condition.
Its effect is similar to delete except the selected rows are
not deleted from the given data table. The result of the
operator is a newly created table of the same type and
structure as the operand, however no assumption can be made

about the order of the rows in the new table.

70

i v v o
A S At el At e e v S s e

TTITI TN

AR

o

»

R

6. Union

Dt ’Wr. A
e
Pyt

~—
a4 a4
v %

P
SRV I

Union operates on two data tables of possibly

v
a

ﬂal dissimilar types, producing a resultant data table. The two

operand tables are of unequal status in that one, for the

sake of a convention, will be referred to as the "left
operand®, dominates the other in that it determines the
structure of the resultant table. The other, or "right"”
operand table of the union operator must have a set of
columns (attribute names) which is a superset of the left

operand. That is: each column name in the left operand (and

hence result) must also be found in the right operand, or in
other terms, an appropriate projection of the right operand
could produce a table of the same structure as the left
operand. Synonymous attribute names as defined in the
Schema Table are considered equivalent for purposes of
structure comparison. If the right operand table has a set
of column names which contains two or more aliased names for
a column in the resultant, the first column from the left
will be used for the union.

The operator makes an identical copy of the dominant
table and then appends to it copies of the shortened tuples
from the other table. Like set union, a row from the second
table is not added to the resultant if an equivalent row has
already been included from the first table. If the

resultant table is assigned to the left operand then union

71

b may be viewed as an appending of one tables rows onto the
other.
Union is different from the insert operator in three

major ways: it truncates the longer table, it performs

theoretic set union on the set of rows and it always adds
the right table to the end of the left table.

7. Sort

Sorting of a data table on the values in a specified
set of <columns creates a new table of the same type and
structure with the values in the ID field corresponding to
the increasing or decreasing sorted order of those columns.
That is, the display order and conceptual ordering of the
rows in the table are now sorted in increasing size of the
values in the columns on which the sort was performed. 1f a
column 1is numeric then the sort is done in numerical order,
otherwise it is done in lexicographic order.

In some sense the sort operator 1is an aggregate
operator in that it is the result of many basic
manipulations which could be performed with much difficulty
by using the other primitives.

8. Concatenate

Concatenation 1is a specialized operator which
creates a new text data table from any other type of table.
The values of specified columns of the operand table are

concatenated into one single resultant table, row by row

72

f._.\(‘.'.:\";:'.""‘.‘-.." - ..~':.-‘ e \-‘.‘ e e e At o~
g N, WO I AP N T A AT RN - e RIS I N L W T T et e e T
b Bitn IR s BB LGN SUEIN I SNPINS POPEa S PP XN PRI AR R I ST, P S et s LR ;.:..-..‘-l AR S W

with each field in a row separated from the next by a space.

The system provides the ID field for the resulting table.

B. REALIZATION OF ISS OPERATIONS

The desired operations on logical files of the 1ISS,
regardless of the application, are -easily realizable in
terms of the primitive operators described above. These
operations are applicable to all types of data tables (Text,
Form, Mail, Spreadsheet and Database) and system tables
(SCHEMA, ISSLOGIN, Directories and security tables),
although the concern of this thesis 1is primarily the
manipulation of data tables. The utility of the operations
depend on the application, for example the moving of rows
within a table is absolutely essential for Text Data Tables,
but hardly useful at all in a database application. This
section describes the operations 1in terms of the ISS
primitives and their utility in the text, form, mail and
spreadsheet applications. The usefulness of these
operations on Database Data Tables depend entirely on the
meaning of the tables. Since form «creation is a text
processing application, descriptions of operations on Text
Data Tables always apply to Form Data Tables as well. The
desired content of a form can be as general as any document.

It must be understood that when discussing the
spreadsheet applications, there are two dimensions to the

descriptions given. The underlying data table drives the

73

.....
st

...........

S
P
PR

T

RN
l“'.l

LS .
Attt

BT

R |

W s sT T AT T T
OVI-' l.l‘.‘)
RSN

-G

v
&

T
<
’l

.

et

A
l‘ I »

RRER!

.
LR §

&.\ .i.

.

.

S T S e e TN

presentation of the traditional view and rows and columns of
the data table do not correspond to rows and columns of the
view. Each row of the data table corresponds to a filled in
position in the conventional view. The absence of a row in
the data table for an entry position in the view simply
means it is displayed as a blank. An empty Spreadsheet Data
Table corresponds to a blank spreadsheet view. In the
following descriptions an attempt 1is made to draw the
distinction between view and data table manipulations.

It is not the intent to repeat the full analysis of
possible wuses for operators carried out by Nishimura [Ref.
1}.

1. Removal Of Rows

Removal of rows in a data table is performed by
applying the ISS delete operator with a condition to select
the tuples for deletion. 1In a text or form application,
removal of row corresponds to the deletion of a line of
text, which may be selected by ID number or a pattern match
on the lines of text. The table of deleted rows created by
the delete operator can be used as part of an undo facility
in the editing environment of the text application area.

Removal of a Mail Data Table row or set of rows, 1is
simply the final disposal of a message or set of messages
from a mail table. The table created by the delete operator
may be wused to transfer mail to another table, such as a

dead letter box. The semantics of the delete operator

74

..........

-

AN RN NI RT L .ﬂ..u'm.e' Al‘fu‘\ -' o \t.:d:'d"c:"&.. S ‘h\.:";-"_.-"; 4";-_:1"“-."‘: .'_g".:

AN coe Sk AN v-v. T rVUY ,-quv.

................ DA L SR L Gl SoA T G PN AL i st o Lo ialaad

requiring a condition to be given, allows for qgreat
flexibility in defining the set of messages to be deleted.
Rows of a mail table may be deleted according to date of
message, range of dates, whether viewed or not, range of
date and whether viewed, individual names, pattern matches
on sender and/or addressee names, subject pattern match and
many other combinations given the mail table structure
described in chapter III.

In the spreadsheet application, removal of a row or
number of rows in a Spreadsheet Data Table corresponds to
the blanking or setting to "empty"” of an entry in the
traditional spreadsheet view. Since the delete operator is
specified with a condition on one or more of the Spreadsheet
Data Table columns, data table rows and hence view, entries
may be deleted according to a large range of criteria. This
is in contrast to current traditional spreadsheets which can
delete entries or "blank®™ by row, column or block only.

Deletion of a row or column in the spreadsheet view
is somewhat more complex and must be done by a combination
of operators. To remove a row in the view entries in that
view row (Y_ROW = view row) must be removed (leaving a blank
row), then all data table tuples for subsequent spreadsheet
rows must have their Y ROW values incremented by 1, forcing
the view mechanism to now display them one row higher. A

similar procedure is required for columns in the view.

75

IR SRR P . e
PSR IR) . e o A T
NG SrS, LR D PR M

EAUS R ACMRA AN At S T O A TS A A R AR AR T A A ey)
3 T S N LI R T LS

2. Location 0Of Rows

The location of a particular row or a set of rows of
a data table is simply an application of the select operator
described in subsection B.5 with the desired condition
imposed.

This operation may be wused to display particular
rows of a data table or to browse through a file. Browsing
is affected simply by locating contiguous blocks of 1ID

values, This type of browsing would be particularly useful

for Text and Form Data Tables where the ordering of rows is
meaningful. Using pattern matching, conditions this
operator allows pattern search within a document.

Similarly, Mail Tables can be browsed using the
select primitive operator, allowing a freedom to produce
message summaries based on any criteria rather than being
restricted by a predefined message summary.

In spreadsheet applications, with the traditional
spreadsheet view in mind and an understanding of the
underlying model (a Spreadsheet Data Table as described in
section III), a single entry position can be located by
selecting the row with the condition that X_COL and Y_ROW
match the desired entry. In addition, the location of a set
of rows in the data table correspond to search actions
throughout an entire spreadsheet view. Traditional
spreadsheet views generally reference only one entry

position at a time whereas the ISS primitives select allows

76

..- .- . - . . . - ~ . - =
et . . . STt 2. oo oot
(NI RN SV R R A S

.
l. LI .
D4 LR

s

P.

\".

i . o

Qg: an entire set of entry positions to be located in a single
- operation. A set of rows (entry positions in the view) may
A be selected according to their position, function, value or
. N

R even their format.

3. Addition Of Rows

Tuples may be added into data tables by applying the

ISS primitive operator insert. The BLANK table may be

inserted in the case of new tuples, or some other table for
simple additions of existing tuples from another table. An
empty row inserted would need subsequent modification to
fill out its wvalues. Appending rows to a table is simply
insertion at the last ID. Insertion may also be done by
using the ISS primitive operator union and assigning the
result to the required table. The union operator will add
rows onto the end of the table, adding only those rows from
the other table which are not already 1in the resultant
table. Generally insert will be more wuseful 1in the
applications which deal with tables where row order is
important (text and forms), and union in the others.

The general utility to be able to add rows to a
table needs hardly be mentioned -except to describe the
effect in each application area. A Text or Form Table
during creation or modification requires a facility to
insert new lines at specified locations, followed perhaps by

modification. During form processing the forms mechanism

must dynamically insert entire tables where indicated,

77

TETETYEy Y oy MMAEIAE S 4l b AR e i
R 1 N A A AT Sl S T A A T OGN I At SR P AR A i gl o) ey
.......

allowing standard blocks of text to be embedded in each of
the output documents. Any of the fixed data table types may
be inserted into a Database Data Table, providing new data
tuples with some of the column values already entered.

In the mail application addition of a new row in a
data table corresponds to <creation of a new message.

Addition via an insert or union command of a number of rows

selected from another Mail Table would get copies of some
other user's messages. Messages left in the care of another
user's Mail Table could be collected by inserting the result
of a deletion from that table (delete those for which
addressee is the eventual owner) into the addressees mail
table. A union of Mail Tables would create a list of unique
messages received by a set of users.

In the spreadsheet application the addition of a row
in the data table corresponds to the filling in of an entry
position in the view. When wusing union and 1insert with
Spreadsheet Data Tables <care must be taken to ensure view
entry positions are not duplicated, that is the X_COL and
Y ROW values together form a unigque Kkey. One of the
spreadsheet application area specific functions will need to
be the management of view row and column insertion
procedures, manipulating the Spreadsheet Data Table to
effect the changes required in the view. Insertion of a

(blank) row or column in a view is done by modifying the

78

- T .-. ... =, e . . .t . . - - N AU . N .
SIS SNEC S SV S N S . LI Bt I IS S W I R A I SR

A LRSI S R A Sl DRI I I bt S SRRt ALt st o i S S il st gl i

LA
M I SN AL S AL IS SR A LA L At o s St Jes i h iy et 2 gy S 20 o)

DT SR et S Rt S hac St Thdr e St Seh St

Spreadsheet Data Table and was discussed in the previous
section.

4. Updating Of Rows

Updating of data table rows is performed by applying

the ISS primitive operator modify with the appropriate
condition to select the desired rows. In this way, data
table values may be changed to new values explicitly given.
The insertion of the blank table and subsequent wupdating
completes the creation of new rows in a table.

Updating of text and form lines is clearly useful as
this 1is merely part of the ordinary editing function.
Global changes can be effected using pattern matching in the
condition for modification. For normal text editing and the
filling in of blank rows of other data tables, this raw use
of the 1ISS primitive modify operator is very clumsy, and a
control program such as mentioned in subsection A.2 to
browse and edit is required. For example the deletion of a
sentence spanning a number of lines would require updating
of the lines where the sentence begins and ends and deletion
of any intervening lines.

Updating a Mail Data Table is necessary after the
BLANK insertion, to fill in the details of the message to be

composed or to modify a message before "transmission”.

(Adding the message row to the addressees' Mail Tables.)

S
P
.

e Modification of the subject and message body of one Mail

[N

A

;‘} Data Table row and "retransmission" could ensure identical

s |

Tl 79 |

.._-':\- |

' @

T AT e T e e e e o L L o _ o

VRN "A*‘(‘-I.‘ WY Ay ‘-' g .- W .-'_." T 2 -.' oL e .- oo e o -t o L e R -.‘ 2. ..';‘-» NN '.'.‘
. Kerinsmtintiontie SR R RS AT T T L T GG S G R R R M e e AT AT e e -'.']

2

P
f .o
et e

ey
* : .
e

e TN T Yy W T N T R R N T TR TN TN RWEWW TE W TR e v v e ey
A T A L e L L N S T T T I W T T Y v v Sw =, = —y

A 8% i g
B

addressees for a sequence of messages, a function normally
handled by routing 1lists. Similarly Jjust the date and
addressees could be altered to send the message to an
amended distribution list. The mail application specific
software could provide simple procedures to assist the user

to effect these transactions.

Updating of Spreadsheet Data Table rows is essential
to the use of these tables as a modeling tool. By
thoughtful use of the conditions in the modify operator, a
powerful set of changes can be realized.

Entries in the view are placed in another location
by simply modifying the values of the X_COL and Y_ROW in the
appropriate data table row, to the desired row and column.
The wvalues in entire rows 1in the view may be moved to
another row by modifying Y ROW in the data table tuples to
the new value. That is: modify rows in which Y ROW = R, T
changing the Y_ROW column value to R + 1. When the modified
data table is mapped to the view all the entries which were
in row R will be mapped instead to row R+1l.

Formats for display in the view are <changed -easily
by updating the format string in the FORMAT column of the
data table. The format can be changed by single entry, by
view rows or columns, globally or by any composite condition
required.

Although some adjustment is required to think of a

spreadsheet in terms of the ISS Spreadsheet Data Table, once

80

VI AP S PP AR

. ‘ kTN YTy Y i Al & L2 - . v, hd - - -
AR P S et A e D B s " DRI T gl S S Sk S A e v T - e
. . - R R LT B Pl P . . L. . DS A - . . e e W W T T w—
- - N B - - - - - - . . - - - - " . - - . - - -
. RO AL S _C»_ .

accomplished, both the traditional view and the underlying

conceptual model <can be used to great advantage. For the
model to be useful, of course, the spreadsheet application
must have application specific operations to force
spreadsheet related functions such as: recalculation of
derived values after user changes to the entry position
values; change of entry function expressions involving moved
operands; increment or decrement X_COL and Y_RCW values when
rows in the view have been moved, deleted or inserted; and,
check on inconsistencies 1in the model such as duplicated
X_COL,Y ROW pairs.

5. Copying Of Rows

The copying of rows within a data table may be
performed wusing the ISS primitive operator select followed
by insert. Selection of the rows to be copied creates a new
table which then may be inserted at the desired location.
Similarly, copies of tuples from one data table may be
copied into another table of the same structure by using a
select followed by a union onto the desired table.

Generally it would be preferable to use the union operator

in non-text or non-form applications where order is

—
P

unimportant and duplicated rows are undesirable.

-
]
o
v
.

i;{ The utility of copying lines in a text document or
tfj form is self wevident, as it is a standard document
SO

e preparation feature. Electronic mail and spreadsheet

rrry
o e
s 2 4 o
ot

<, o'

e N

applications have little wuse for the simple copying of

31

0
R

.
PR BTN
BT .

o e
e v 'y
PR
.,

r"T"",','.Tr_r‘ .r‘ﬂv
L A

. et ,‘-"-.‘.'. "\.'.~"-\.—.'-
PRV, S S SR Y N

AN . RS U .- L e
A A Ty P e Ot S PN PLL R

A A A A A Al A i S i Tt g

& tuples per se, the utility being in the subsequent
meodification of the duplicated row.

The mail examples given in section 4 could be
preceded by a copy operation, thus keeping a complete record

of all messages or versions of a message sent to a group in

the first example, and keeping a complete record of dispatch
dates and addresses in the second.

In the spreadshee® application the copy operation
would be useful more in filling out repetitive rows of the
Spreadsheet Data Table, subsequently modifying the necessary
columns.

6. Moving Of Rows

In the ISS, tuples may be moved within a data tabie
by applying the delete operator to the desired rows
identified by ID number or other condition, followed by an
insert of the deleted rows at the required location. It is
of benefit only in situations where ordering of rows 1is
important.

In the text processing and form generation
application areas, this operation is a generalization of the
normal move operation allowed by editors. By the use of the
condition 1in the delete operator it enables the moving of

non-contiguous lines selected on content alone without the

need to know line numbers.
In spreadsheet and mail applications the move

operation is not particularly useful as the ordering of the

- 82

S VPN PRSP WIS D . W e T e e . - TR T I
A PYREY Gy S WLy Gy T Wl S PO Ty SR SR e U VA WA L U PO L A U U

g

PIRIT I S Wy Sy

rows in these data tables has little meaning. The operation
may be performed to satisfy personal preference when
browsing the entire Mail or Spreadsheet Table.

7. Sorting Of Table Rows

Sorting is done in the ISS by the operator sort
which <c¢an be thought of as a series of selective moves to a
new data table. It is useful to some extent in all
application areas for producing hard copy listings of all
rows for manual reference and personal preference when
browsing a file. Although not discussed in this thesis,
sorting a file on a key field will have considerable impact
on retrieval efficiency 1in an enhanced system which is
concerned with storage and retrieval efficiency.

In a text application a textual 1list could be
deleted, sorted and re-inserted in its original location. A
series of numbered one line points in a document or form may
be sorted after haphazard insertion.

Mail Data Tables may be sorted accordingc to the
users desires. For example a user may like to regularly
browse his mail listings sorted by addressee, sender or
date. The data tables could be sorted and saved in that
order or into a temporary file for display purposes only.

Spreadsheet Data Tables may be sorted on X _COL and
Y ROW values to maintain a listing the user is comfortable

with., It is possible that users may become comfortable

g3

e T N T N Y T T T Y Y XS s v
AN RN AN e T .._,,-(~.‘1

[‘_.‘-:f\:; .'l"..r_'r‘ L gl o M e i AR S ettt b sk SR e A8 S I R B A YN S e it ey s 1
) o e TR TR B A A RS e A

RS CRIC R A i A St At oty Sy Sk st R Son Ang Ang 2]

dealing with a Spreadsheet Data Table directly, bypassing
the view during data entry and modification.

8. Merging Of Columns

The requirement to merge columns is essentially so

that columns which are conceptually different fields may be
merged into a single text field for display, or insertion
into a document. The operation is performed using the ISS
concatenate operator.

Uses of the column merge are to include part or all
of some data table in a text document or form. For example,
a letter detailing names and addresses of customers with
overdue payments in an accounts database may be drafted.
After drafting, a concatenated projection of the name and
address fields of the rows selected from a customer databtase
table on the condition of negative balance, can be inserted
into the letter. Similar examples can easily be concocted
for the use of merging columns in Spreadsheet and mail
Tables.

9. Operator Combinations

The basic 1SS operators alone and simply combined
provide low level powerful data manipulation tools to effect
the operations described above. Comhinations of operators
can provide much of the high level ictivities required by a
user. Many of the examples in the j(receding sections are
ones which wuse two or more primitirse operators to achieve

their purpose.

84

S T .__ SN e e .- ‘._1 ~ < o ~
P AW P LA YLAEARE O SR A S P R YA (‘:J:‘\-.l._ u‘:\-ﬁ._‘-_‘.‘“.‘\')"f-\i

e T e e .S Lt .
LENPL TSN SO AR SRLINY S Wl T Sl SR TP U,

-fﬁ One particularly important combination of operators

is that wused to modify the structure of existing Database

Tables (the others are fixed) without the re-entry of
existing data. This may be done by first using the ISS
primitive insert to create a new Database Table by inserting
a temporary name in the database directory and giving it the
required columns. The old table may then be inserted into
or wunioned with the new, producing a result which may then
be assigned to the new table. Insertion would be used when
the new structure 1is a superset of the old and union when
the new structure is a subset of the old, since insert will
add columns when necessary and union will remove them. The
0old table may then be removed from the directory with delete
operator, and the new table renamed to the old with the
modify operator.

It is the function of the separate application areas
to provide the mapping between the high level application
specific operations and the low level primitives. Utilities
in the kernel should provide convenience tasks such as the
relations browser previously mentioned and multiple data
entry routines, to repetitively apply- the primitive
operators. Utilities should also provide "walkthrough
paths" for table creation where the system requires more to
be done than just simple addition of a row to a Directory
Table. This applies particularly in the database

application where new attributes may have to be defined in

85

. N o ®* ¥V W _W
N R s e T e e A T L T R S G S N RN

Palhar i Sar et Jaske Shath 20dt Iaads Shge -2 k- e 2 -
M S e S T S T T RN T T TR I T DY TN R Y NV T

(d
ﬁf} the Schema Table and, where the full security provisions

alluded to in previous chapters is applied. Although these

functions are to be performed by the applications specific
and utility software, the wuser can still retain the
underlying Relational Database model in his thinking and
understanding of the system, and is always able to revert to
the primitive operators for data manipulation and retrieval

regardless of the application area in which he is working.

'C. EXTENSIBILITY OF ISS

The main thrust of the ISS 1is that it provides the
capability to combine tables of different types to form new
relationships and derive new information. This extension of
the ISS 1is made possible by incorporating into the system
some high level combining operators. Those chosen for this
system are Union, Set Difference, Intersection, Join, and
Natural Join. Using these operators on tables of the same
or different types adds much depth to the scope of the ISS.

Haphazard wuse of these operators can result in a
syntactic error or a new table which 1is semantically
meaningless. For example, to apply an operator which
requires two tables of the same structure to tables of
different structure would be syntactically incorrect.
Moraover, some combinations 1like a Jjoin of a Mail and
Spreadsheet tables 1is syntactically correct but has no

foreseeable meaning given the nature and design of the

86

3 Ca Te e T P *, -
PP S I . AL

-

1 _'l 5y K

LI o}
(e

by

.

1 et e,

» .- LR Y e
PR

. L] - l‘. .

.

1

Ll

8 4 o4 »
.

(SR

a®.'s

tables. If an attempt is made to apply an operator
incorrectly, the ISS sets a trap which prohibits the user
from performing the operation and displays an error message.
In the cases where the application of the operator is deemed
only semantically meaningless, the ISS trap will 1issue a
warning to the user. If the warning trap is invoked, then
the user has the option of aborting the operation or to
continue executing it.

In the following parts of this section each of the
combining operators are defined and described in general
terms, examples are presented which illustrate how using the
operators on tables of different types can result in some
meaningful relationships, and 1in cases where combining
tables wusing a given operator is meaningless or incorrect,
the traps are discussed.

The semantic meaningfulness of combining tables of the
same type wusing any of the operators discussed in this
section 1is considered to be obvious and will not be
discussed further in this thesis. An elaboration on this
type table combinations (Intra-Type Combinations) can be
found in [Ref. 1l].

The unicn operator has been described previously in
subsection 4.B.6 of this thesis. Conventionaliy, the union
operator requires tables to be of the same arity. However,

the ISS union operatcr embeds a default projection (the

87

B L S T
WY e N e S T T e e :
LS T N AP T L N T

{ mechanics of which have been discussed) which lifts the
arity constraint from tables. It should be noted that the
Lt user can effectively override the default projectricn by

first proceeding a union of two tables by a projection

oA operator which projects out attributes of the user‘s choice
-) from one or both of the tables. The user could then apply
e the union operator on the resultant table(s). Thus, the

extension of the meaning of the conventional union operator
is not a limiting factor, but to the contrary, it enables a
wide variety of table combinations and new relationships to
be achieved.

h g The following subsections illustrate how performing
a union on tables of different types can be semantically
meaningful. In the discussions the "+" is used to denote
(. the union operator.

a. Text + Form

'ﬁﬁ If A is a Text Data Table which contains the
T

e body of a letter which is to be sent to all employees of a
tﬁ- given company, and B is a Form Data Table which extracts
fgﬁ the name and addresses of all the employees of the company
Lff and places in letter head format, including a salutation,
E}: then performing the operation, A + 3, would be very useful.
SR
- It would yield a repetitive letter addressed to each
L
fjf) employee and the resultant table would be a Form Table.
QS’ As another example, if A is a Form Data Tabl2
b_':-:‘
= which contains intricate tax details for residents of a
k@
§§2 88
»}:
il.(:.
SO
NN
2.
"- ‘.:
2%

" X * - - " G - - - “- -. - B - - - - . - .

O e e N s T e o B e e S e R e e

DY
*

b Aanints
4
e

o
!

. % .
. e
[AN A

DA A

l". "t-'. .I *

P
()

rv
e
.
-

ﬂw

T T

O

MR O

.
(A -
(RIS £

given state and B is a Text Data Table which contains a
textual description or explanation of some of the columns on
the tax form, then, B + A would yield a new relationship
which contained both the explanation of the Form columns and
the Form itself. The resuit would be a Text Data Table.

Since the FORM_LINE and TEXT_LINE can be
aliased, and the two tables are of the same arity, no
projection would be necessary. This is essentially the same
as an Append.

b. Text + Database

If A is a Text Data Table and contains the names
of the 1local stores which sold shoes and B is a Database
Data Table which contains as one of its attributes the names
of local stores which sold clothes, then A + B would be
meaningful. First, ISS would project out all non-applicable
attributes of table B. Then it would yield a Text Data
Table which contained a list of stores that sold eitcher
shoes, <clothes, or both. 1ISS would eliminate any duplicate
tuples in table B.

If the order is reversed, i.e., B + A, then this
is only meaningful if table B contains only two attributes,
ID and STORES(or any column name wh:ch could be aliased with
TEXT_LINE). Applications for tables of these types are

numerous,

89

R S T T RSP . P .
!.- s e st T e e e s et ot e s
{‘ "' 8 e N N e e e T e e e
‘fg_ LJAA(.‘.“h(-l*l"‘;l‘l;“lA AT LAY N P T T W R A

N
s,
v

- “
A

’

LA T Y
f

..l »
o

(RS
L

r!"r“r'-* "
03

£ a

r T
[Ty
n

n o i

P
2 ke .

. .._."_"'..‘ RIS
PN P e

c. Text + Mail

This operation 1is semantically meaningful in
only one direction. If A is a Text Data Table and B is a
Mail Data Table, then the only feasible wunion is A + B.
This would yield a resultant Text Data Table whose tuple
contained the TEXT_LINEs of table A and the BODY of table B.

d. Form + Database

This combination has application similar to
those described for TEXT + Database since the Form Data
Table 1is essentially a "special” Text Data Table.
Therefore, they both have the same semantic meaningfulness.

e. Form + Mail

This operation 1is syntactically correct, and
thus semantically meaningful, in only one airection. For
instance, if A is a Form Table and B is a Mail Table, then A
+ B is syntactically correct.

One application using this operator would be to
have the BODY of a message in table B disseminated to all
employees in letter form. To effect this, one <c¢ould wunion
table A, a form which yields the letter heading for each
employee, to table B.

f. Spreadsheet + Database

This operation i3 only meaningful if the
attributes of the Database tab.e correspond to the schema of
the Spreadsheet Data Table. If so, then this wunion |is

meaningful in both directions and virtually would be the

90

RN SR Wi R

. L. e e e e L I - -
A e e e e e e e e el e
PP W v"A_."-A'-u.!.-l-l~.-.-.'~l-.- :I':.l'-_- el
Wy

PRI R I T S P S I S N A

-l.

|

................................... -

A S B AR A Bt A L gt 2 |

s same as unioning two Spreadsheet Tables or two Database
s Tables with identical attributes. It is recognized that
K this application would be very rare.

g. Database + Mail

RO If A is a Database Data Table which contains a
-~ subset of the attributes of a Mail Data Table then this
EEE application is semantically meaningful and syntactically
l;f correct. A + B would then result in a Database Data Table
‘:J with tuples from the Mail Data Table (after necessary
.:SS projections) or from the Database Table or both. In the
Eﬁ other direction, i.e. B + A, this operation would only be
;i, possible if all the attributes of the Mail Data Table also
$§ appeared in the Database Data Table.

The following combinations of tables using the union

operator are semantically meaningless or syntactically

o9
'ik incorrect.
Eﬁ h. Text + Spreadsheet

)
:%_ If A is a text data and B is a Spreadsheet Data
ﬁﬁf Table, then A + B and B + A are both syntactically
iiﬁ incorrect. Neither order meets the requirements that the
ji attributes of the right operand be a superset of the
~§5 attributes of the left operand. Since this operation is
.*; incorrect, it will be prohibite’ by setting a "prohibit"
f:ﬁ) trap condition.
@7

91

S RCARARAY Ao o e e S A2

- i. Mail + Text
This is syntactically incorrect in one direction
ﬂﬂ. only. If A is a Mail Data Table and B is a Text Data Table,

-ﬁ% then A + B is incorrect due to the fact that both tables

have predefined attributes and the text table can not be a
superset of a Mail Table. This operation will be
prohibited.
j. Form + Spreadsheet
This operation is essentially the same as that
discussed in the Text + Spreadsheet operation.
k. Mail + Form
This operation is syntactically incorrect in one
direction only. Due to their similarity, the discussion

presented in the Mail + Text operation applies here as well.

1. Spreadsheet + Mail
This is not meaningful nor syntactically correct
in either direction due to failure to meet the superset
constraints. This operation will be prohibited.

2. Set Difference

Given two data tables, A and B, set difference is
defined as the set of tuples in A that are not in B. This

operator requires that tables A and B be of the same arity.

e The following parts of this section illustrate how
;}; performing the set difference operator on data tables of
‘;:3 different types can be semantically meaningfuil. The "-" s
b

t;y used in the discussions to denote set difference. The
A

VL

N 92

b

\.:}.:}

)

o

e e e e ey e A AR

RN
e, N . S R FRRIR
- R AT LR SN - N Y. T A LI -
IO I N S A P I T PR T IR St At R T P I RIS
it ol - a - . - - L S " S -~ - - AN - “ . - - ' a

L I N PP UL .
bt ala's* s al 4 AMPSR AP, SI SPL]

.

N AR S S A R N I S A S A A S L EL AT N S A A " A gt e it By

resultant table of each operation below will be of the same
type as the table used as the left operand.
a. Text - Form
If A is a Text Data Table which <contains the
literal text of a corresponding form in a Form Data Table,
B, then A - Bor B - A would be very meaningful. For
instance, if there are many tuples in tables A and B and
table A has been slightly modified, then performing the
operation, A - B or B = A, provides a quick and easy way of
determining which tuples of the Text Table were modified
without the user having to do a line by line comparison of
the text.
b. Text - Database
If A is a Text Data Table and B is a Database
Data Table, then A - B is meaningful only if table 8
contains exactly two attributes, the ID and another
attribute , "b", of data type, character. In this case, set
difference would yield the tuples in A that are not in B.
Presumably, the TEXT_LINE attribute of table A and attribute
"b" would range over the same domain.
¢. Spreadsheet - Database
This operation is only meaningful in
applications c¢cf a limited nature. For instance, if A is a
Spreadsheet Data Table and B is a Database Data Table, then
A +~ B is meaningful only in the cases where the attributes

of table B3 are synonyms or aliases of those in table A. 1£

93

. * .
R TN R U LN
..... . LI STt Tl e N R
) R A A W S A A T L DT T O T O

Al Bt e Bl 4 hase b_ Saat had” A
Anfalnt At SR AT it A Bt A et et A AL A it i A A S i AUl AR oM S S A S b ae e ot S ar e g ST NS

table B meets those specifications then it could contain a
A subset of a spreadsheet defined and maintained in table A.
*“-‘ . v - .

P@ Using set difference on these tables will yield entry
positions which are defined in A but not in B, or it will
{ﬁﬂ reveal discrepancies in entry positions that are defined in
Flﬂ both tables. For example, assume entry position G-l was
o defined in both .ables but the function attribute contained

a value of ™ 10 * G:2 " in one table and a value of " 1000 *

G:2 " in the other. Applying the set difference operator to
these tables would help to maintain consistency within the
tables.
d. Database - Mail
As with the Spreadsheet - Database operation,
Database - Mail operation is only meaningful in the special
cases where the attributes of the Database Table are aliases
of the predefined attributes of the Mail Data Table. If B
is a Database Data Table which meets those conditions and A
is & Mail Data Table, then A - B would be useful in many
applications, and would be =essentially the same as
performing the set difference operator on two Mail Data
Tables.
The following combinations of tables using the set
difference operator are either semantically meaningless, or

syntactically incorrect.

34

P.,
n' 7.'
%
P\t
al .." .

» ”'-“‘-.'\. ..

‘_.-'_.'~~." et RN RN N .
! EVRCTRIE AL IO AN ST AR L T R P .. I N . -
&t,‘v&a‘am-."&lkl b h IR NN PR S IR A P P . e e R B ..
a2 ’a a - 3 . - N R . o

j?ﬁ- e, Text - Spreadsheet
.'\'

“alS
. The Text and Spreadsheet Cata Tables do not have
o
#G the same arity and there is no correspondence, in general,
N among their attributes. Thus, this operation 1is both

meaningless and syntactically incorrect and will generate a

"prohibit trap".
f. Text - Mail

The same argument applies for performing set
difference on the Text and Mail Data Tables as given in the
Text « Spreadsheet discussion above.

g. Form -~ Spreadshe-~*

The same argument applies for performing set
difference on the Form and Spreadsheet Data Tables as given
in the Text -~ Spreadsheet discussion above.

h. Form - Mail

The same argument applies for perfeorming set
difference on the Form and Mail Data Tables as given in the
Text < Spreadsheet discussion above.

i, Text - Database

Applying set difference operator to a Text and
Database Table is syntactically incorrect only if the arity
of the Database Table is not the same as that of the Text
table or the Database table attributes are not synonyms of
those in the Text table. In these cases, the Text -

Database operation will set a "prohibit" =rap.

95

RD-R140 628 DESIGN OF AN INTEGRATED SOFTWARE SYSTEM BASED ON THE 2/2
RELATIONAL DATA BASE MODEL (U)> NAYAL POSTGRRDURTE SCHOOL
MONTEREY CA P J HARRISON ET AL. DEC

UNCLARSSIFIED F/G 571

i B
—— L F¥]
L [L3
9

rer
r
rr

it = =
= j&
2 s s |

MICROCOPY RESOLUTION TEST CHART i
NATIONAL BUREAU - OF STANDARDS:1963-A

." O LA R
CTRECIETT

-y v ew

. AT

g R
L N T

BN A Ak

)

@

s "a v
-‘n','-1
PP

@

jo Form - Mail
The same argument applies for performing set
difference on the Form and Database Data Tables as given in
the Text - Database discussion above.
k. Spreadsheet -~ Mail
The same argument applies for performing set
difference on the Spreadsheet and Mail Data Tables as given
in the Text -~ Spreadsheet discussion above.
l. Database - Mail
The same argument applies for performing set
difference on the Database and Mail Data Tables as given in
the Text - Database discussion above.

3. Intersection

Given two data tables, A and B, the intersection of
A and B 1is the set of all tuples that are in both table A
and table B. Both tables used as operands of the
intersection operator must be of the same arity. In
addition, the corresponding columns or attributes of the
tables must be aliases of each other.

The following parts of this section illustrates how
performing the intersection operator on data tables of
different types can be semantically meaningful. The "&" |is
used in the discussions to denote intersection. The
resultant table of each operation below will be of the same

type as the table used as the left operand.

96

................

a. Text & Form
If A is a Text Data Table and B is a Form Data
Table, then the operation, A & B, would be useful in
applications to determine the commonality between the text
in table A and the literal text in the form in table B.
b. Text & Database
If A is a Text Data Table and B is a Database
Data Table, then as with the set difference operator, A & B
is meaningful only if table B contains only two attributes,
the ID and another attribute , "b", which can be aliased
with the TEXT_LINE attribute of the Text Data Table. In
this case, intersection would be meaningful in many
operations. For instance, assume table A contained a 1list
of students taking Trigonometry and table B contained in
attribute "b" a set of all students taking Chemistry. Then,
A & B would yield a set of tuples corresponding to the names
of students enrolled in both courses.
c. Spreadsheet & Database |
As with the set difference operator, the |
intersection of a Spreadsheet Data Table, A, and a Database |
Data Table , B, is only meaningful in 1limited applications
and in the very specialized case where each of the Database

table attributes is an alias for one and only one

- Spreadsheet table attribute. If table B meets these

e
.. *
'.-' .
LY
CIRY
- i.'-
e
o
" ® .
o,
..
Lty
oo
- 'n.
.
.
‘e .
.
e .

»
rd
-~
-
v,
.

constraints then, A & B would be essentially the same as

.

N LU,

-4)
!:.

LAF)

&

(NS

97

AP
.
L]

A- o
PO R

P

F.
L} B

L R L P B .
LR - e et At et et LS

P

e el Tt T e, . St LR KRN . . U e N . e N

Yk '_.‘_A.‘_n".n?)\ e ad s -":AE.A*:L-‘;.",A}'S.M -l\:;‘_l_l-n_-‘ ‘;;":;\:L‘;_’.'l.:i'.'-."‘ N e et .".‘-‘-.' § \"' “'.'.\ t'.;'.;'-\'.\'
atazar e Selhle el el TN

IR R R S T L
-L. L“\"\‘“\‘“\ RN ‘\‘*

Bt i

‘i E’s’-.“ AT

'n .-

ONANF A
il l‘.. "f.

a

11

o+

P

Py

R R T

.".

[
g

-
ot
-..'
'

W\

W T AT T T e T AT e T AT AT TN T WP a Y W

performing the intersection of two Spreadsheet Data Tables
or two Database Data Tables with identical attributes.

d. Database & Mail

As with the Spreadsheet & Database operation,
Database & Mail operation is only meaningful in the special
cases where the attributes of the Database table are aliases
of the predefined attributes of the Mail Data Table. If
table A 1is a Database Data Table which meets those
conditions and table B is a Mail Data Table, then A & B
would be wuseful in many applications, and would be
essentially the same as performing the intersection of two
Mail data tables.

Using -he intersection operator is either
syntactically meaningless or semantically incorrect on the
same combinations of tables as using the set difference
operator. For that reason and to avoid redundancy or
duplication of the rationale, the reader 1is referred to
subsection 4.C. 2. (the discussion on the semantic
meaningless and syntactically incorrect uses of the set
difference operator on certain table combinations).

4. Join

A join of two data tables, A and B, is defined only
if the two tables each have some attribute (column) which is
defined over some common domain and the join is over those
two corresponding columns. The result of the join would be

a new table of the type database, which contains tuples

98

Ve W L LW T e e N ey WL e Lt T Y Y T T v -y w———
. W, BN et g Ay T ST T W, WL T AR A AR A A SIS S T TN AR 2 DA T it b e 1)

~~~~~

qualified by the attributes of both tables. 1In other words,
the structure of the resultant tabie would contain all the
attributes of table A, followed by all the attributes of
table B. Each row in the new table would be formed by

adjoining tuples of table A with tuples of table B such that

the new tuples in the resultant table satisfy the predicate
(condition of the join) in the common columns.

| In the ISS we expect that most joins will be formed
by an equality predicate, i.e. a condition of "equality"
between the values in the common attributes of table A and
table B. This type join is called an equijoin. When the
equijoin operator is wused, the duplicate column 1is not
eliminated, therefore, this operator can result in
redundancy in the database unless followed by a projection
operator to eliminate the common values. The ISS requires
the common attributes to be identified in the Schema Table
as aliases or synonyms of each other.

The semantic meaningfulness of combining tables of
different types using the join operator is discussed below.
There is a significant difference between the applications
discused in Nishimura's analysis, (ref. 1], and those
presented here. In that reference the applications
described are based on the assumption that the user will be

able to use the ID attribute of a given table in performing

binary operations with the operators. Since that assumption

e 99




>

LARF AR | T

4

4
>

is not made in this thesis, the applications presented by

Nishimura are not valid herein.

The symbol “*" will be used in the discussions to
denote the join operator.

a. Text * Mail

The join of a Text Table, A, and a Mail Table,

B, is very practical. If the TEXT_LINE ranges over the same
domain as the FROM, TO, SUBJECT, COPY_TO,VIEWED, and DATE
attributes of the Mail Table, then A * B has many
applications. As an example of its applicability, suppose
table A contained a 1list of subjects considered high
priority and assume each TEXT_LINE of table A contained only
one of those subjects. Then, the equijoin of A * B would
form a new relationship which groups messages in table B
which are of the same subject and which are also considered
high priority. Similar applications can be done wusing the
other type joins and/or Mail table attributes.

b. Form * Mail

This is similar to the applications of Text *

Mail. However, 1in most cases the Form Table will contain
some FORM_LINES which are not actually values in the domain
of the corresponding Mail Table attribute. For instance,
using the same example as wused in the Text * Mail
application, more than 1likely some of the Form_LINES will
have data that is not equivalent to a Subject in the Mail

System.

100




?PEL S
ﬁ};ﬁﬁ?

YN
hY

22 1
”

XA
5, e
s

F.N%
oS!

-8

N

A
.,

197

s B %4
&
JJ¥;¢V.

b ]

14

o35 4

-ﬁ
g

Spreadsheet * Database
If table A is a Spreadsheet Data Table and table
B is a Database Data Table, then the meaningfulness of
performing A * B is dependent upon the context of table B.
As an example, assume that table B contains the attributes,
ID, X_COL, Y_ROW, and DESCRIPTION. Then, the equijoin of B
* A would provide the user with a table that contains the
subset of the spreadsheet whose entry positions were
described in table B. The new relationship would give the
user a clearer understanding of the entries in the original
Spreadsheet Table.

It should be noted that this application can
never have an effect on the spreadsheet view since the
resultant table will always be a Database Data Table, not a
Spreadsheet Data Table. Performing operations on
Spreadsheet views are not discussed in this thesis.

d. Database * Mail

On page 68 of [(Ref. 1], Nishimura presented a
very detailed analysis of the applicability of joining
database and Mail Data Tables. These operations will not be
repeated here, but suffice it to say that with the exception
of the join created using the ID attributes, the examples
presented therein are considered feasible.

It should be pointed out though that the result
of applying a join to a Database Table and a Mail Table

would be a Database Data Table which contains all of the

101




...........

attributes of both tables. The resultant table, by no
means, is ever a mail data table as alluded to by the
examples. Further processing would be necessary to convert
the resultant table into a Mail Data Table which conforms to
the ISS Mail Data Table format.

The following subsections briefly discuss the
combinations of tables that are viewed as semantically
meaningless or syntactically incorrect wusing the join
operator.

e. Text * Form

The join of a Text Table, A, and a Form Table B
can be performed syntactically on the TEXT_LINE and
FORM_LINE attributes of the corresponding tables. However,
this operation 1is viewed as having little significance or
usefulness. The join (equijoin), A * B would result in the
intersection of the two tables that would just be two copies
of the same text and would not contribute to any useful new
relationship among the tuples of the resultant table.
Furthermore, joins on these two attributes will wusually
result in TEXT_LINES or FORM_LINES which are much too long
to be displayed or printed on the same line. In 1light of
this observation, this operation would tend to be more
annoying to the wuser than helpful to him. Any Jjoin
involving this combination of table types would invoke a

"warning" trap.

102




g St N L ACA A YL 2SI g A it i i A S SPR iAo 1/ JA T APt Mgt I e B Sl 20 AFS B 200 S F i i &g i e T
. - . . - - . - . St et e . - - - - .- .. ~-

.......... oo '1.7-. .7‘

f. Text * Spreadsheet
The join of a Spreadsheet Table and a Text Table
is syntactically incorrect. None of the attributes of the
two tables are aliases of each other and rarely do they
range over the same domain. This application would invoke a
*prohibit" trap.
g. Text * Database
The join of a Text Table, A, and a Database
Table, B, can only be performed on the TEXT_LINE attributes
of table A and some attribute "b"™ of Table B. Joins of this
type seem to serve little purpose in as much as no new
relationship results, nor is there any outstanding inference
made from the Jjoin. Since the join is done on a tuple
basis, at best if the Text Table has only one TEXT_LINE it
can be joined through a "not equal join" to produce a new
relationship, but not a very useful one. Since there are so
few realizable applications for this join, it too will
invoke a "warning" trap.
h. Form * Spreadsheet
The join of a Form and Spreadsheet Data Table is
similar to the Text * Spreadsheet application discussed
above.
i. Form * Database
This combination will invoke a warning trap.

See the Text * Database discussion for the rationale.

103

.....




L W Ve sdO .
RS O G R LS A CS CSEAEAINOL COBEE LS L0 LA £ A SLCRI AT a1 A CATRIL DAL ACACYE SEAE AL o Aty

j. Spreadsheet * Mail

A join on tables of this type 1is syntactically
incorrect. The attributes of the Spreadsheet Data Table in
no way have anything in common with the attributes of the
Mail Table. The schemas for both tables are predefined and
there has been no provision to alias any of the attributes.
This, then, supports the argqument for the infeasibility of
combining these type tables through a join.

In addition to syntactic infeasibility, this
operation does not result in a useful new relationship since
the semantics of the attributes of the spreadsheet and Mail
Data Tables have nothing in common. Since this particular
join is syntactically incorrect, it will set the "prohibit"
trap.

5. Natural Join

The natural join of two data tables is a special
case of the equijoin which was discussed in section E.4
above. Simplistically stated, the natural join 1is an
equijoin followed by a projection. The result of this
operator contains no duplication since the common column 1is
eliminated by the projection.

The semantic meaningfulness of using the natural

= join to combine tables has been discussed implicitly in the

o
.
Lat

- join section with each reference to the equijoin, therefore

AR
. .‘:';"j

[
L3
o

it will not be elaborated on further.

lar s
L]

4

Al

104

R LN
.{" L -‘.}.' Y
£ U T O W

AT A A
- .

’

e




6. Operators Summary

Figure 4.1 summarizes the information presented in
this section. The matrix depicts the type trap that will be
generated by the system when the user tries to use operators
to combine tables whose combination would be either
semantically meaningless or syntactically incorrect. If the
table combination is only semantically meaningless then the
*warning” trap is generated and a message advising the user
of its potentially meaningless results is displayed. The
warning trap may also be generated when the operation
performed on the two tables is deemed to have only a limited
number of cases where it can be syntactically correct. If
using an operator to combine two tables is syntactically
incorrect in all cases, then this operation generates a
"prohibit"™ trap and a message is displayed to the user which
informs him that the transaction has been prohibited.

In figure 4.1, the small letters denote the
operators, i.e. "u" = UNION, "i" = Intersection, "s"™ = SET
DIFFERENCE, "j" = JOIN, and "n"™ = NATURAL JOIN, If an
operator does not appear in an entry in the matrix then this
implies that using that operator to combine the indicated
table types 1is both syntactically correct and semantically
meaningful. The column and row headings indicate the types

of the data tables used as operands.

105




A T NN

T

- B -

.oy

.1‘-. .-

.

w
RN

c = o e
| = [ 34 (&) -
[a) L U} - — — ™ z ] oy
Y m m m H :
(3] — 0 — n — 0 Z S
24 o o] o o] o o] 4 4 .
o, (@] - O -~ (o _—— Py 3 " ,
n (24 [+ 4 o = 5
[s1 3 n, 3 Q. 3 s 4
||||||||||||||||||||||||| ",
O [ = (&) e &) |&) 0 T
= =4 = (0} A > el
3] = K] [ m) — - ot o o
0 Z z z ot b4 oy S M
< 24 0 @ wu [:4 o o - !
m < < < o < - s
(a] = o = - = = 0 S '
% A
lllllllllllllllllllllll o ¢ ..-A
o RN
& £ (¢) ) 0 %
(o) -4 Z (7] -t oy [ 1
[ m m L m o] M
i o — A — - " o ’,
o o o4 u = 7] [+4 x o M
= (o} o $ 3 (@] ot o AN
o ot o ot =z [+ 4 @ v,
[N o, [« M = ] o, .w-
(@] Ve
llllllllllllllllllllllll o
[« [« I —~
(& | 4 O =
Z - zZ - —
M - m n (=] m .
z (= - Z 1] - 7] <
(o] 2 4 b o} ot [+ 4 j+ o}
fxq < ™ (o] oL et O ot [}
k4 € 3 k3 @ o
o, 3 [N 3 3
o
llllllllllllllllllllllll ol
[ =] o [
(&) E O E
N - N oy (=] ry
| 3] ] m 0n (= m
> = c = z 0 - un
€3] [+ 4 X -4 o &€
& L U (o] L ot (o] ot
= o 3 z [+ 4
o, 3 O, b=}
B+ [ > B EOmME = oL d
R AN S \....q.. ... ...J.... -..., "o [
‘ ! ....- \-. v, ) ’ 7 v n-l y -Q- \. ’ -l\




.........

V. USER INTERFACE

This chapter focuses on the conceptual design of the
user interface to the Integrated Software System. For any
software system such as the ISS, it is paramount that the
user interface 1is well designed. Two important design
issues to be considered are the ease of use and simplicity.
In other words, the system should be constructed in such a
way that the user has only a few things to learn in order to
use the system effectively. These thoughts were the driving
forces behind the design of Graphics Prototype Interface
(GPI), which 1is the ISS Data Manipulation Lanquage (DML).
GPI and its major features are thoroughly discussed in
section A of this chapter.

Since the thrust of this thesis is the design of the
integration of the selected applications, little mention is
made of application specific user interfaces. However, some
consideration was given to the 1issue of the user making
transitions from ISS integrated modes to application unique
modes and vice versa. This is discussed briefly in the GPI
Command Mode commands section. Further application specific

user interface design details are considered to be outside

the scope of this thesis.

One other area that is not addressed in the user

interface 1is access rights and authorization. These issues

o1

107

S NN, \_.£
aradlle el N



add another dimension to the User Interface design structure

and are highly important. Their absence from this thesis is
not an omission, nonetheless, since they are viewed as
matters of system security which are not implemented herein.
The framework for providing the wuser interface to effect
security is, however, embedded within this chapter.

Section B of this chapter presents a brief overview of
the implementation of the conceptual design of the user

interface to the ISS.

A. GRAPHICS PROTOTYPE INTERFACE

Graphics Prototype Interface (GPI) is the Data
Manipulation Language designhed for ISS. It adopts some of
the constructs of Query By Example (QBE), a domain calculus
DML. Both GPI and QBE are designed for interactive terminal
use in composing queries and provide graphic table displays
to formulate user transaction requests and system responses.
GPI is primarily a tuple based language, however, it also
incorporates features from both relational algebra and
domain calculus as well. In addition, it contains some
additional features (such as insertion, deletion,
modifications, arithmetic capabilities, printing
capabilities, etc.) which are not part of the algebra or
calculus but serve to increase the power and usefulness of

the language.

.
- LN L T}
L

2z '.". R
AL AL SHRERIRY

108

’.0‘ i.‘o
e

v -

NN

0
o !

F-
b
»




Ll .a'..-'

w

AR A

L A VUM EN
JAe

%

The constructs or commands of GPI can be divided
logically into four parts. First there are the High Level
System commands which are used to control <cursor movement
and browsing of displays and to <change the mode of the
system. Second, there are Command Mode commands which
perform functions such as "RUN" and can be issued only when
the system is in the command mode. Third, there are Query
Mode commands which can be issued only when the system is in
the query mode, for example the "UNION" command. And
fourth, there are Help Mode commands which can be issued
only when the system is in the help mode. The commands
which are specific to the Help Mode are not addressed in
this version of GPI.

These command categories,(with the exception of the Help
Mode commands), and their usage are discussed below. Also,
a2 discussion on the general layout of the CRT display for
queries is presented.

l. General CRT Layout

The general structure or layout of the CRT is
depicted in figure 5.1. The figure illustrates the maximum
amount of information that can be displayed on the screen at
one time when the system 1is in the query mode (to be
discussed later). This layout is based on the assumption
that the viewing area is a 24 lines, 80 columns CRT screen.
In order to prevent overcrowding the screen and baffling the

user with too much information displayed at once, some

109

.............




[;
L5

Pt
Y

o s

-
rs% %

%

o _.3'
. 4 s
R '1

2 [y
LI
.

" W

s ]
LA
:' »

%

]

-
[}
S PASL

a L]
PR
1]

Xy
A

LAY ‘l. -

4

@

*»

&

o
L I N i TR AP R L PEEREL PR RS Tt St I T A e i () . A

AR ARSI S S G L AC AR At RS R TR A Sk AR A I A e it S0 ke St e Biie et Sk nt tdt ol anll B 8- it

necessary limitations are embedded in the GPI query display
mechanism.

As shown, the screen is divided into four distinct
areas: two data table skeleton areas, a condition box area,
and a command/response area, For readability, each |is
separated by two blank lines. The different types of areas
are discussed below.

a., Table Skeleton Areas

The table skeleton areas are reserved at all
times during the query mode. Each table skeleton occupies
exactly seven lines of screen area. The name and type of
table will appear on the first line of the table area. Line
two will be blank and on line three will be the data table
attribute names, preceded by the special column heading,
"COMMAND". The COMMAND column is used by the user in order
to specify what command is to be performed on the selected
tuples of the table. To distinquish this column heading
from one of the attributes, it will be highlighted.

Lines five through seven of each table skeleton
area are referred to as the query lines and are reserved for
user query entries. The use of the query lines to formulate
queries will become clear in later discussions.

GPI provides a mechanism for the user to change
table skeletons. This display facility 1is described in

detail in section 3.

110

LA At i o 4
. L e




3 ay
LIPS

AR AR 4 AL
DA ". ,.] AN

o

27
)

w

w
P
W

b. Condition Box Area

The concept of a condition box was adopted from
the QBE language. The condition box area is used to define
conditions placed on attribute variables which are used in
the query. It follows the second table skeleton area and
occupies three lines on the CRT. The heading, “CONDITION
BOX ", 1is displayed on the left side of the condition box
area. The box area to the right side of the heading is
reserved for the user to specify conditions placed on
variables which represent attributes from the data tables.
For example, 1if "X" 1is a variable name used in the query
line of a table, a further condition can be on the value of
the attribute which "X" represents by placing a statement
such as " ?2X > 10 " in the <condition box (note that the
question mark preceding the variable "X"™ in this example is
part of the syntax and is not a part of the actual variable
name). This statement would inform the system that the user
wants to include in the query only those tuples which have a
value greater than 10 in the attribute corresponding to
variable "X".

Several unrelated conditions may be placed on
the same line of the condition box, however they must be
separated by a ";" character. The conventional arithmetic
symbols are valid in writing GPI arithmetic statements,
(i.ee +, =, *, /, (,) Yo In addition, the comparison

operators, (such as >, <, >=, <= ) can be used. The logical

111



(v )
. «
&

4. .
)

e

A

o
P i

-
X'y
N

operator symbols used are: "&&" (and), "||™ (or), ang "~"
(not).
¢. Command/Response Area

The Command/Response area occupies only two
lines. It is used by the system and by the user. When the
user is operating in the command mode, all Command Mode
commands ,i.e, RUN, CREATE, etc, must be entered in the
Command/Response area. In addition, once a user runs a
transaction the system issues a response in this area to
inform the user immediately as to where the results of the
transaction can be found or if further actions are necessary
to complete the transaction. If a trap has occurred in an
attempt to execute a transaction, that information is
displayed in this area as well.

2. High Level System Commands

The High Level System commands are of two types; one
type 1is for cursor control and the other type is for
changing the mode of the system. The cursor control
commands are effected by special keyboard keys and their
function is to allow the user to easily browse or scan the
display. These commands also enable the user to edit data
entered on the table skeletons or condition boxes with ease
and they can be used regardless to which mode the system is
in (GPI operates in three distinct system modes: Command,
Query, and Help. Each of the modes allow mode specific

operations to be performed).

112



Each High Level System command 1is defined below.
The first six are cursor control commands and the next three
are mode change commands. Each of the Mode change commands
are preceded by the symbol """ which represents the control
keyboard key. This is to indicate that the control key must
be pressed simultaneous to the corresponding mode character
in order to activate all mode change commands.

a. " = move the cursor up one line from current
location

b. v ~ move the cursor down one line from current
location

c. > ~ move the cursor one character position to
the right

d. < ~ move the cursor one character position to !
the left

e. tab key = move the cursor to the beginning of
the next field

£. carriage return -~ move the cursor to the
beginning of the first field in the next line

g. °"C = change the system to the command mode

1

he ~°Q change the system to the query mode

i. “H = change the system to the help mode

In the next two sections the specific commands which
can be run only in the command mode and the query mode are

discussed. The commands which are unique to the Help mode

are not presented since the Help Facility is not implemented

113




.............
..................

in this version of GPI. The Help mode was mentioned here
nonetheless, since its usefulness and importance is
recognized.

3. Command Mode Commands

GPI provides several commands which are wunique to
the command mode. These commands are entered by the user on
the Command/Result area of the CRT display and are initiated
following a carriage return. In order to lessen the
probability of the user inadvertently executing a command, a
safety check is embedded in the commands which affect the
current data table.

Each of the commands are described in detail below.
In order to lift the burden of typing in long command words,
the user may use the default and type only the first two
letters of a given command. Also, 1in cases where the
command requires one or more parameters, if the user types
in only the command the system will prompt him for the
parameter values.

a. Table

The TABLE command is used to draw a new table
skeleton. The format for this command is : TABLE <table

position> <table name> <table type> . Valid entries for the

parameter, <table position>, are either "1" or "2". These

numbers correspond to table skeleton area one or two as

TR IRAC

displayed on the CRT. The parameter, <table name> and

¥
WRARARS
()

e

Ii {table type> refer to the name and type of the desired data
=3

»i: 114

s

b}:-'

yor,
»
~

%

»
-~
-~




table skeleton that the user wants displayed 1in the

specified table area. Valid table types are TEXT, FORM,
SPREAD (spreadsheet), MAIL, and DB (database).

If a table position of 1 is 1issued then the
system will automatically erase the table skeleton already
displayed in table area one and replace it with the table
skeleton whose attributes correspond to the table name and
table type specified. For example, if area one contained a
text data table skeleton and the user issued the following
command : TABLE 1 message mail , then the text data table
skeleton would be erased and replaced with a mail data table
skeleton. The mail data table named “"message"™ would then
become the current data table in table area one.

b. Erase

The ERASE command is used to erase user supplied
information from the table skeleton areas or the condition
box. The format for this command is : ERASE <position(s)>.
Valid entries for <position(s)> are "1%", "2", "3", or "*",
Position number 1 or 2 <correspond to the respective CRT
table skeleton area. Position number 3 corresponds to the
condition box area and a position entry of "*" refers to all
three of these areas. For instance, if the command, "ERASE
*" was entered, then all query information entered by the
user in the data table areas and the condition box area

would be erased. The current skeletons for the areas would

be redrawn.




T e R s e T e M e s L N L L T N Y O Y e VT W Yoy vy
) AR IO AR St s e, KR e T -

c. Run

The RUN command is issued in order to execute a
transaction (query). The format for this command is simply
¢ RUN. 1In cases where the execution of a transaction will
change the contents of either of the current data tables
(transactions involving INSERT, DELETE or MODIFY Query mode
commands) the user will receive a "COMMIT? " response from
the system. The user must then respond with a "yes"™ or "no"
answer, If the answer is yes then the current data table
will be updated after completion of the execution of the
transaction. This extra step provides a safety feature
which prevents the user from making irreversible mistakes.

d. Saveto )

The SAVETO command is used to save the contents
of a system defined table, ISSRESULT, into a table of the
user's choice. The ISSRESULT table is a temporary system
table which contains the results of the most recent
successfully completed transaction. The table that is named
as the recipient of the save must be the same type and
structure and type as the ISSRESULT table. If the recipient
table does not exist already, then the system will

automatically create a table whose structure is the same as

K

i
"‘ -.' LR

] the ISSRESULT table and assign it the user specified name.
S

Qj The format for the command is : SAVETO <tablename> <table
o

e type>.

e

@

£

t:."f 116

s

Y

-

e

RGN |



e, Undo

The UNDO command allows the user to reverse the
effects of the most recently committed transaction. It
takes no parameters and thus its format is just : UNDO .

f. Directory

This command will display the tuples of the
specified Application Directory table. Its format is :
DIRECTORY <application type> . Valid entries for the
<application type> parameter are TEXT, DB,SPREAD, MAIL, and
FORM.

Once the Directory command is issued, the system
will automatically clear the screen and will display as many
tuples of the specified directory as will fit on one screen.
The user will be prompted by the system response “"MORE?". A

- user vesponse of "yes"™ to the gquestion will initiate
scrolling of the tuples in the Application Directory table.
Once the user responds with "no"™ , the scrolling will cease
and whatever contents were present on the CRT before the
DIRECTORY command was issued will be redrawn on the

terminal.

g. Application

This command enables the user to suspend any

actions being performed and to enter one of the five ISS

Application specific modes. The format used is :

'Y
-
b
-
-

* -
.."
1@

Y 4wt

APPLICATION <application name> .

“

’
’
4
4
’

A

117

X

RRAH X

o, ., - A U I L S, T .t'( ‘. “a"-'_v"".-"."..".‘ FOEI .-.“‘-_._'-_._\_'. APV, St N TR . ._'\ PR A B R LT TR L
PRONCUNC LA ., AR S R AN WA AL AR RSN s':s('-.':_"g.'l_‘_’-_‘_'s'_' o .:"-;';'.'L'.\";-':' -‘.‘-':'-'j




@

A
«
.

’

I

&
)
»

!g

(S
o
b
A
\
»
\

As an example, if a user desires to use the

capabilities unique to the Spreadsheet Application Software,
then she would enter the command " APPLICATION SPREAD ".
The current contents of the screen would be erased and the
user would be placed in the SPREADSHEET application. The
user would then perform operations unique to the spreadsheet
application such as displaying a spreadsheet view. Once the
user terminates the application session, she may continue
from where she left off prior to executing the APPLICATION
command.
h. Create

The CREATE command is used to create new data
tables. It has several embedded prompts or subcommands
which make the task of creating new tables very elementary.
Its format is simply : CREATE .,

Once the command is issued the user will
progress through a series of system prompts which will
ultimately build the data table. The first system prompt is
for the table name followed by a request for the table type.
If the type is one of the predefined structures, ie TEXT, DB
(Database), FORM, SPREAD,or MAIL, then the prompting session
is over at this point and the system will add the new data
table to the appropriate Application Directory table.

If the new table is a database data table then
the prompting session continues and the user is asked to

provide the attribute name, data type, character width.

118




0 Also the wuser is asked 1if the attribute is a key field.
n After the user has completely defined the structure of the
new database data table and terminates the prompting

session, the new table will be added to the Database

AR MM
Fetet LT
[

.

Application Directory. Also, the system will then
automatically update the Schema Table as neccessary.

Following the CREATE command, the system will
issue a response on the Command/Response area to assure the
user that the new data table has been created and added to
the appropriate Application Directory table.

i. Delete

In the command mode, the DELETE command refers
to the deletion of a table from the ISS database. The
format 1is DELETE <table name> <table type>. Before

. executing this command the system will first echo the user's

request and will ask the user if he is sure that he wants to
execute the command. If the user response is no then the
command is aborted. Otherwise, the specified data table is
deleted from the system by erasing all references to the
table in the application Directory table and other system
tables.

jo Quit

The command, QUIT, enables the user to exit the

oz

oS
<

ISS system. The format for this command is simply : QUIT.

oy
7

e

XX
!. L)

119

XN
AANRAN

.
.
v

l‘n‘

&
s

LY

Pl
o, D
L]
S
& o 4
.

.

LA

A
.i‘
'

o0 ‘ B N P S S T S RPN
e e R T g T ST LI
¥ > W N AT R

h Y
hY
N
[N
2,
.

»
o\




= -
L Y .l [
Lt tet.

t'. fJ -.".“'_"-: .

ARl

AR

4. Query Mode Commands

The Query mode commands of GPI provide the user with
a very simple technique for writing both elementary and
complex queries., A subset of the commands is based on the
Relational Database Model and <corresponds to the ISS
primitives and combining operators which were discussed in
chapter 4.

As mentioned earlier, each table skeleton display
has a command column in addition to the data table attribute
columns. It is in this command column that the user
specifies query commands to be performed on selected tuples
of the underlying data table.

Query mode commands can be used in conjunction with
user specified variable names, literals, or order indicators
(described below). The variables are preceded by a question
mark. They are used as domain variables in cases where the
user desires that the operation indicated by the command 1in
the command column be performed only on tuples with certain
conditions placed on attributes represented by a variable.
Variables may also appear in the command column provided
that they are preceded by a dquery command. Variables of
this type are referred to as tuple variables since they
represent the entire tuple as opposed to only one attribute.
Variables which are used to express conditions other than

equality are further defined in the condition box.

120

P NP PSR R T A L N S Y I e T AT T et T e e et et et e - - - -
O A S N R W, S CALR NS - -ﬁ,\._-. Y A NN N

R R R S L _‘-‘:




....................

B N Y LT et aran w R R NTLEINY N " - e 4% '\-.-\ A it .“.At‘.v_ LA A A Ml A ol A S L Iy i Bl i AP i s e g |

-, Any character string which is not preceded by an "@"
- or "?" and appears in an attribute column is considered to
o be a literal. If a literal appears under an attribute name

then this implies that the query command only applies to

o tuples in the data table which have the same value as the
;§ literal in the specified attribute.

:3& Order indicators can be used to specify attribute
_ precedence or reordering of attributes. As an example, if a
xg data table is to be sorted on two or more attributes, then
;Eﬁ the order indicator can be wused to specify which field
1?# (attribute) is the primary sort field, secondary sort field,
;% etc. The syntax for the order indicators is any integer
;3 preceded by an "@" sign, i.e. "@l", and if used they must be
éﬁt placed in the column of the attribute to which they apply.
U;E The lower number indicates higher precedence. Order
Eﬁé indicators can also be wused with the project, print or
J? display command if the wuser desires to see the table
‘ﬁj attributes stored, printed or displayed in an order
Zés different from the way they appear in the data table.

o The definition and usage of the individual Query
if mode commands are given below. The semantics of many of the
?E' commands have been defined in Chapter 4 and will not be
‘;;i repeated. However, many examples will be presented in order
-iﬁ to show how the user can use the GPI language to effect the
1;? queries. In addition, the use of the variables, literals,
*

oy

5.-:' 121

)

\‘

o




;;
(
Lo
=

grr,

and order indicators will be more clearly illustrated in the
examples.

Each query command must be preceded by the symbol
"1* and at least the first two letters of the command must
be typed. The user may, however, choose to type the entire
command.

a. Delete

The deletion operator is effected by the GPI
command "“DELETE". The tuples deleted by this command are
stored in a system database data table named ISSDELETE.
ISSDELETE automatically assumes the same structure of the
table from which tuples were deleted. Figure 5.2 1is an
example of a GPI query to delete all the tuples whose ID is
greater than 3 and less than 10. The command !DE is entered
on the first row underneath the command column. The "?2X" is
a variable that represents the ID attribute and it 1is used
to qualify which records of TableA are to be deleted. The
qualification of the tuples 1is made complete with the
condition statement in the condition box.

After executing this query tableA would no
longer have the TEXT_LINES which corresponded to ID numbers
4 through 9 of TableA prior to running the query. However,
the ISSDELETE table would contain the six deleted TEXT_LINEs

and its structure would be the same as a text data table.

122

...........

3



.............

b. Insert

The Insert primitive operator corresponds to the
command INSERT. It 1is used to insert a tuple or table of
tuples into a target data table at a specified location (ID
value). The command may be unary or binary, i.e. operate on
one or two data tables. If it is used as a binary operator
then the results of the command are stored in the table
whose structure appears in the first table skeleton area.
The contents of the second table will be unaltered by the
execution of the INSERT command.

If the user desires that the tuple or table be
inserted into the target table at a given location or ID
value, he may indicate this by appending the value of the ID
to the end of the INSERT command in the first table. For
instance, figure 5.3, part A, gives an example of a query to
insert TableB, a text data table into TableA, a form data
table, at location 3.

Part B of the figure shows an example of the
INSERT command used as a unary operation to insert a single

tuple at location four of the target data table. The

- literals "48 Hours", "1l0", and "Eric"™ <constitute the
attribute values of the inserted tuple.
Q@ . Part C illustrates a query to insert TableB, a

smaller data table (one with fewer attributes) into TableA,

o a larger data table. Since the attributes of TableB are a
@ subset of those in TableA, this is a valid insertion and is
85

}-:; 123

o

e
RN




AR S i A Al el il — —
.. S At ot v'\r\i'.ri—‘-i \"‘ ?'\?'_ ..... .. .. .‘.'?. ." _'. Lol At S Bt ;"-“‘V}‘.T'."‘ A AR LD Wi W‘
R A P L S R Y

consistent with the discussion of the semantics of the
Insert primitive operator given in chapter 4. Before making
the insertion the system will add the REVIEWER attribute to
TableB, but the Reviewer value for each tuple in the table
will be blank. Since there is no ID value specified in the
INSERT command, the tuples of TableB will be appended to
those in TableA.

Figure 5.4 shows the contents of TableA after
the execution of the query in part C of figure 5.3, assuming
that each table had only one tuple. Note that the REVIEWER
attribute of the "ET" tuple from TableB is empty.

C. Modify

The Modify primitive operator corresponds to the
GPI command, MODIFY. The execution of the command will
directly alter the contents of the underlying data table.
It can be wused in several ways. Part A of figure 5.5
represents GPI syntax to perform a query to increase the
salary of all employees listed in TABLEB by ten percent. In
this example a variable and a condition is used to effect

this modification and all tuples are affected.

-

X

Part B represents the query " change G.

s

’l .l‘ g

Thompson's salary to $100,000 and JOBTITLE to manager ".

s
[

Both literals and attribute variables are wused to perform

19

i the query. The variable "Y" listed under the NAME attribute
S

?ﬁ- and qualified in the condition box by an equality statement
S0

@l lets the system know to only modify the tuple in tableA that
s,.:.

o

[N

o 124

[N

e

D I R A R N D N N O R R A ) P




-----

has a value of "G. Thompson™ in the name attribute. The
literals "manager®™ and "100000" are the values that will
replace whatever was in JOBTITLE and SALARY attributes of G.
Thompson' tuple entry.

d. Project

The Projection primitive operator is effected by
the command PROJECT. This command does not change the
operand data table and thus is committed as soon as the RUN
command is issued. PROJECT will create a new data table of
the same number of tuples as the table in which the
projection was performed. The attributes of the new table
will consist of the system generated ID and the indicated
subset of the attributes of the original data table. The
new table will be stored in the ISSRESULT temporary data
table. (Note that the ISSRESULT table can be copied into a
permanent user data table by using the SAVETO command as
discussed previously).

Figure 5.6 illustrates a query to project out
the NAME and SALARY attributes of TABLEB. It also shows the
structure of the ISSRESULT table after the projection query
terminates.

e. Select

The SELECT command corresponds to the Select
primitive operator. It is wused to extract tuples of the
current data tables which satisfy some specified condition

and store them temporarily in the ISSRESULT table of the

125




SRS Y RTINS T

same structure. The SELECT command is quite versatile and
is often used in the same query as other commands.

Figure 5.7, part A shows an example of a query
to select all tuples whose NAME value is "P. Harrison" and
JOBTITLE is "laborer™. The literal "P, Harrison"™ in the
name attribute and "laborer™ in the JOBTITLE attribute
determine which tuples are selected. In part b, the syntax
expresses a query to find the tuples of all laborers in the
data table whose salary is $9,000. It contains two
literals, "laborer"™ and "9000" on the same query line and
this implies an " AND" relationship. In other words, if a
literal or variable appears in the columns of more than one
attribute and on the same query line, then a "logical and"
on the values of the attributes is done to determine which
tuples are selected. Part c of the figure shows the same
query as part b, but uses variables and the condition box in
the syntax. Using the condition box adds greater query
flexibility since it allows one to ©place any number of
conditions on the variables. For instance, if there was a

desire that only the laborers whose salary is greater than

$10,000 be selected, then the entry in the condition box

would be ® ?Y > 10000.

! e ;

£f. Union

b |

This command 1is used to perform the wunion

Eﬁﬂﬁ

primitive operator whose semantics has been discussed in

T e, O
WA N Yy
A

chapter IV. Since union is a binary operator, the UNION

2]

7
-8 A I.’Q.’L LY

126

DOk

R

AP )

o

B "‘

~

[ .- . PR .

R A A R I e et Tt e T e, e A R N e e e . .-

I hl‘- .'A. adhall —L"-lJ'.o.'.(\.e. "1.' -.'_’":-‘l.'..'- .'-..'- . -..'.' ‘...'-‘ '~.,' . ".'-‘.'»'.' ..': '-‘, '-‘_‘«‘, .v-.‘.-\. NN s, "‘
. o By N R Rt




command always operates on two different data tables
simultaneously (this is the case with all commands which
represent binary operators). The data table which appears
in table area one is referred to as the dominant table (or
left operand) and it determines the structure of the results
from the union. The table that appears in table area two is
called the subordinate table (or right operand) of the
operation.

Consistent with the Union operator discussion in
chapter IV, the UNION command may be performed on tables of
different arity as long as the attributes of the dominant
table are a subset of the subordinate data table. The
syntax required to form a union query is very simple and is
indicated in figure 5.8. All that is requivred is that the
command !UN (or !UNION) be placed in the first row of the
command column of each data table. Part a of figure 5.8
represents a query to form the union of a text data table
and a form data table. TableA, the text data table is the
dominant table in this query so the attributes of the
ISSRESULT table will have the attribute names ID and
TEXT_LINE after execution of the query. The union of these
two tables is feasible since TEXT_LINE and FORM_LINE are
aliases of each other.

Part B of the figure illustrates a query to
perform the union of a text data table and a mail data

table. The results of this wunion would also have the

127

............
......................
........................

I
........

C e




..............
.......................

~————y
T

attributes only of the text data table. The contents of the
ISSRESULT table would be all the TEXT_LINE's of TABLEA
followed by the BODY of all tuples in TABLEC, the mail
table, which were distinct from the TEXT_LINE's of TABLEA.
The BODY attribute is used in the union since it is an alias
of the TEXT_LINE attribute. The rest of the attributes of
the mail data table would be ignored by the system.
g. Intersect
The INTERSECT command performs the intersection
binary operator. It operates on two data tables of the same
arity. In addition, each attribute in the dominant table
must have one and only one attribute in the subordinate data
table of which it is an alias or synonym and vice versa.
The results of the INTERSECT is a set of tuples that are in
K both the dominant and subordinate data tables. Figure 5.9
shows a query that will take the intersection of a text data
table and a form data table. Since IN is the short form of
the INSERT command, IT 1is wused as the short form of
INTERSECT in order to distinguish the two commands.
h. Sdiff
The SDIFF command corresponds to the set

difference operator. 1Is a binary command that requires both

- the dominant and subordinate data tables to be of the same
arity. It poses the same alias constraints on the

attributes as the INTERSECT command. SDIFF will compare the

!
'-’ .
b-~' .
i-..
"
Ve
'@
-
‘.-
-+,
--.

two data tables and store in the ISSRESULT table all tuples
.
L)
:.r. 128
o
L

..

p . . et L et~ e . . .

O o W e T T T e e e T e e e e T ettt ey e Ay et e e -
m- . "-‘*Jh\-‘".',;";'A'.'-'-"_-.--\ PRI ORI R AT A .-.‘_.:{l"..'..;-(:"_\:.'-:k\‘."_.\;,.\.:-W.;:'-'.\i\:‘




A

N

)
et e

LY
'

.............

that are in the dominant table that are not 1in the
subordinate table. . Figure 5.10 illustrates a Query to take
the set difference of two mail data tables.
i. Join

JOIN is a binary command that operates on two
data tables which may be of the same or different arity.
The semantics of the command is discussed in chapter IV. It
is only meaningful if the attributes on which the join is
performed range over the same domain. Figure 5.11
illustrates the syntax to perform the query " Jjoin tuples of
tableB to tuples of tableA if the subjects are the same ".
This essentially is an equijoin on the SUBJ attributes

In the figure the variable "Q" is used to denote
which of the attributes of the tables are used to form the
join. The fact that the same variable appears in both
tables under the appropriate attribute column implies an
equijoin. (If the condition of the join 1is other than
equality then two different variables must be used and the
relation between them must be stated in the condition box).
The ISSRESULT table will contain the results of the query
and the structure will be all the attributes of TABLEA
followed by all the attributes of TABLEB. Note that this is
redundant since both of the SUBJECT attributes will appear

in the results and will contain duplicate data.

129




A A N MM A L A AN ST AL AL AL A L AR SEAE Gl Rt AT ) S 100 sus st 208 arerire o
LI A UL L . B D A - -t L e L NLANL S A

jo Njoin
- The NJOIN command is used to perform the natural
join binary operation. By definition, natural join is an
equijoin with the duplicate attributes removed or projected
out of the resultant data table. Forming a query to perform
a natural join of two data tables follows the same structure
as a query to effect an equijoin (except of course the
command entered would be !NJ or !NJOIN as opposed to !JO or
1JOIN).
k. Concat
The CONCAT command is used to perform the ISS
specialized operator, concatenate. This command is unary,
i.e. it operates on only one data table at a time. It is
used to concatenate the values of the attributes of a data
table of arbitrary arity into a text data table structure.
The values of the attributes are separated by one space.
The results of the operation is stored in the ISSRESULT
table and the operand data table is not altered.
Figure 5.12 shows an example of a gquery to
convert a database data table into a text data table. Part
b shows the results as they would appear in the ISSRESULT

table.

o ——

Rr e

L

. l. Sort

’

The SORT command is not related to any 1ISS

R

Nl

-
,.c

Pal

primitive or combining operator. It 1is included in the

M A

command set because of the recognition of its great utility

o

a
Y
T

.(?‘. -

130

0

h

A

' ..'-.'_n. ISR "~'.- OSSN S I

R RN J T S P . L e . -
M ARN SRR PRI VAL . R S A A A T S e V.\ SOt e ‘..\ \.' TN 4
. £ - - - - .- e T




RS

R

>
PN N

S

T SRVY Y 2 TTa
[y .l ] . -u I
AL RN

R

=

~,
Fue

and its enhancement to the ISS. It provides the capability

for the wuser to sort a data table on any number of
attributes in ascending or descending order. The default
sort order is ascending.

The user designates the precedence of the sort
field or attribute by placing an order indicator (an integer
preceded by the "@" sign) in the column under the attribute
name. The integers must be unique and the lower one takes
the higher precedence. If descending sort order is desired
on any field then the order indicator should be followed by
the letter "D". Figure 5.13 shows an example of a query to
sort a mail data table in descending order based on the date
and within the each date sort on the TO attribute in
ascending order. No variables or condition statements are
required to effect a sort.

m. Display/Print

A Data Manipulation Language is not very useful
from the user's viewpoint if it does not provide a facility
for users to form queries that involve output. The commands
DISPLAY and PRINT are included among the Query Mode commands
for that reason. DISPLAY is used to direct output to the
CRT and PRINT directs output to the line printer. Both
commands operate on an entire data table which could -either
be the original current data table or the ISSRESULT table.
In other words, if the PRINT or DISPLAY command is the only

command in a query then all tuples of the original table

131




- v
Diaft Il b Ak ket . nbacanriec

will be printed (displayed), however if PRINT or DISPLAY 1is
preceded by other commands in the same query, then all
tuples of the ISSRESULT table will be printed (displayed).
(Note that the use of attribute variables with a PRINT or
DISPLAY command is simply ignored by the system since these
commands operate on tuples only.)

The PRINT and DISPLAY -commands can operate 1in
two output formats. The default format is to output the
attribute in table form with each row representing a tuple
and each column representing an attribute name (the names of
each attribute would appear at the top of each column). If
the default is desired the user may simply type the command
(PRINT or DISPLAY) or he may append a "1" to the end of the
command. Figure 5.14 shows an example which uses format
one, the default. As illustrated in the figure, if the user
requires that the attributes be printed in different order,
then the order indicators could be used to determine the
printing sequence for the attributes. The results of the
query are also shown. It should be noted that the generates
temporary output which is not stored in the ISSRESULT table.

The other output method will display or print

each of the attribute names on a separate line followed by

,; the attribute value and it is invoked by appending a "2" to
;ﬁf the end of the DISPLAY or PRINT command. This method limits
;fﬁ the amount of information that can be displayed on the CRT
»

o

e 132

'.:_:.

s

R

.I . -, - ..'.. .- -“' .............. S T A U P IR AT L S L N

I -
o e e v N LN e
U EINEN

L
B I T SN

............



'}
ATS

b
i

» v d TN J B AT | . Y L -
It Jl Va8 o« e e eTe N, ARACH AN SR SA S A S0 Sl g e, o R e

as compared to the default format. Figure 5,15 illustrates
a display query which invokes format method two.
S. Combining Query Mode Commands

Section 4 explained the query mode commands, defined
the command syntax required for each of them, and
illustrated their use by presenting various examples. In
each example, only a single command was used in each query.
This section addresses the issues of compound queries, i.e.
those involving more than one gquery command in the same
transaction.

Certain precedence rules apply when the user
combines query mode commands. First of all, the order in
which the commands appear in the table skeletons is
important. Straying from conventional programming languages
somewhat, if more than one command 1is 1listed in a table
skeleton then ISS will execute the commands in a "bottom up"
order and each subsequent command will operate on the data
table results of the previous command in the query. Also,
if two data tables are used in the query, then commands that
apply only to table number two will be executed before any
commands in table number one will be performed. Commands
which apply to both data tables will be executed last and
following the convention, they should be the appear on the
first query 1line of both data table skeletons. This
condition also imposes another important rule that must be

followed when wusing multiple commands. The rule is that

133




----------

only one binary command is allowed in one transaction. This
convention 1is necessary in order to keep the syntax simple
and limit the amount of meaningless queries that can be
formed by the user.

Another important issue to address is the use of
domain variables in multiple command queries. In the
queries where only one command was used this issue was not
pressing. But, when there are several commands used either
in the same data table or within both data tables a few
extra rules are necessary. For example, if the same domain
variable is used in an attribute of table one and also in an
attribute of table two, the convention is that only the
tuples of both tables that have the same value in those
attributes will be operated on.

Tuple variables were mentioned briefly 1in the GPI
introduction. These tuple variables, if used , must be
preceded by some query mode command in the COMMAND column of
the data table skeleton. They indicate that the command
applies to the entire tuple and they are optional in cases

where their absence presents no ambiguity. If a variable is

»f? used as a tuple variable in a transaction, it <c¢an not be

jﬁj used as a domain or attribute wvariable in that same
@y transaction or query.

(.

' Tuple variables differ from attribute (domain)

variables in yet another way. If the same tuple variable

appears in several different commands of the same data table

134

""" - SR IS PRI
- ~\.\_ .

e e "o N o h
oA, A R N U BN
P N A B A I L R L N N, G

L SR



it implies that the subsequent command only applies to
tuples that were qualified by the prior command. For
Example, 1in figure 5.16 the tuple variable "Z" appears both
with a SELECT command and a MODIFY command which operate on
the given data table. 1In this case, the SELECT commard will
be performed first and the tuple that has a value of "WEEZY"
in the name attribute will be selected and assigned to the
variable "Z". The MODIFY command will be performed next but
will only apply to tuples which are assigned to variable
"Z". If no tuple variable was associated with the MODIFY
command in this example, then execution of the gquery would
update all addresses in the data table to "1 Popeye ST"
instead of just modifying Weezy's address,

An example which 1illustrates most of the 1issues
discussed in this section 1is shown in figure 5.17. The
query represented opervates on two data tables, Salary and
Personnel. The query corresponds to "update all employees'
salaries by twenty percent and join the Salary and Personnel
tuples of all single male employees who work in either
department A or department B and whose salary is $45,000 or
more",

The SELECT command in table 2, Personnel, selects

tuples from the data table whose SEX attribute equals "male"

o and whose marital status equals "single" and assigns them to

v tuple variable "2Z". These tuples are the only ones from the

.‘c

.

'@ Personnel table that will be utilized in the JOIN. This is

e 135

»

&

::5; S AR '_‘-'.'-‘:';.:\.A'Li‘l';-" e -_';‘.:.' N e -1"-;.':..;.;::';&'.":'.!': .;:.-{.{'. . ‘_: ‘.-\:;- ;. _'~_-'~_ e I e i




A AR I R Il A S-S Rt gt St B s e e I 4 ARG AL vg ok s s o g g o)

n indicated by the presence of the same tuple variable, "2",
following the JOIN command in the Personnel table skeleton.
Before the join is done, commands which pertain only

to the Salary data table are executed. In this table, the

MODIFY command will be performed first and will increase the
SALARY attribute of all tuples in the Salary data table by
twenty percent ( all will be updated since no tuple variable
is indicated). The SELECT command will be performed next
and the two attribute variables, "S"™ and "D" will be used to
qualify the desired tuples. The condition box is checked to
determine the conditions placed on the attribute variables.
Since the Select command is followed by the tuple variable,

*"X", all tuples which meet the c¢riteria of the SELECT

command will be assigned to this variable. These tuples
will be the only ones from the Salary data table that will
be used by the JOIN command.

Now that all the table specific commands have been
performed, the system then executes the binary command,
JOIN. As indicated by the "E" attribute variable, the join

is performed on the EMP _NO and EMP_ID attributes of the

corresponding tables, and only the previously qualified

A AR
F N
e

tuples of each table will be joined together. The join

g e w
.o

o , performed is an equijoin.
Although this example is not very complicated, it

sufficiently demonstrates how one can utilize the

capabilities to <combine Query Mode commands in one

- rw s - .
PN N
)
LA

136

""s"l
As T A




L AT R A U D R A AN el T B It B S Y e hadl I v o b
- - L L. Pl B - ht
N A e SRR RS A A A A A SR 0 i SO S s S A M8 S RALA AT

...... .

transaction to compose dQqueries of varying degrees of
complexity. It also 1illustrates the flexibility and
simplicity the user is afforded with the Graphics Prototype

Interface Data Manipulation Language.

B. IMPLEMENTATION OVERVIEW
In the conceptual design of the user interface, several
intricate design implementation 1issues and requirements
arose. Due to the complexity of some of these 1issues and
time constraints, realization of the GPI as described has
been precluded. However, the intent of the design was to
present a model system on which to base implementation. In
order to test the feasibility of the design, the GPI
commands described in section A of this chapter were
. implemented (prototyped) by mapping them into Shell programs
written in the C and SHELL programming languages in the UNIX

Operating System environment. This prototyped

implementation, although not as elegant as the proposed
f;ﬂﬁ system suggests, also serves to demonstrate the usefulness
E!g: of GPI and ISS.

B In the following chapter the implementation strategy
used to effect the Prototype ISS is discussed, as well as
the limitations of the strategy. Any limitation which gives
rise to followw~on research is pointed out in chapter VII,

the conclusion.

.o‘
G
I- -
Ve L
I‘ ‘-. ‘
At
SAAAN 137
o
-Q ’q'..
SR
\:_~."_~.
A
et
T e
NN
-,
. B . - - - . .
N T WA e e e e s
N T Ot N S O P S A SRS R T G R e ey
Soindeand Dl P W VL L L, AR LSRR WA BT WAL L L'.\'_kl AT tat e L, 1'..1'_'-':-':‘.‘ AUORTAI S e e e e




COMMAND

Tablel

DATABASE

ID ATTR2 ATTR3

ATTR4

COMMAND

Table2 FORM

ID

FORM_LINE

CONDITION
BOX

COMMAND/
RESPONSE

Figure 5.1 = General CRT Layout

138

— “1’.':.‘1.

-t o T T

LR ,u'."'. .
2aralals all

-~
-
.

o

‘‘‘‘‘‘‘‘‘ .
PRI

POV T PR

...........
......




Ta

<
..l{l.l

"T'
[l .' .l‘ .l ’

AN

»
P .
% % 2

e e T ]

e

o,
[l N

TableA TEXT

COMMAND 1ID TEXT_LINE

CONDITION [ 72X > 3 && ?2X < 10
BOX !

Figure 5.2 ~ Delete Query

139

(Al aNC AR o RNl o Gt AR Tl WA A Sl Al Wl i S <af CIMCRA AL S s 4 I A A i I I i e oot

L v‘]




C OO T Sl A S e i M e S T R R I e /et A S S it J e et e s Je e e o ~vTvru

.............

TableA FORM

COMMAND ID FORM_LINE

TableB TEXT

COMMAND ID TEXT_LINE

Part A

TABLEA DATABASE

COMMAND 1ID MOVIE RATING REVIEWER 7

|"1INd 1 1 48 Hours | 10 I Eric I

| | | | | | ‘
i Part B

TABLEA DATABASE

COMMAND ID MOVIE RATING REVIEWER

| 1IN | 1N | | |

TABLEB DATABASE

-~ : § .
a2t n
L AL
- ! e o
LA a s ‘s s

COMMAND 1ID MOVIE RATING

:‘TTN'T1 [ I

T m e
.
.. ‘

354
Va2
v

Part C

-‘.‘l
X3
eV

{1

.
." Iy
.

Figure 5.3 = Insert Queries

v |
AR

e 140

AR
P TN KN LY




e A B INr e A e S AU dut i AR ARt e SN

-*."._‘ - '.-'"‘ AT N o e i i

TABLEA DATABASE

MOVIE RATING REVIEWER

| 10 | Eric I

L.

"1 | 48 Hours
2 | ET | 9 | |

O
NNy

Figure 5.4 — Insert Query Results

141

. \‘ TN
wy l-; L.\.&.\A.\ -\A“x Y ‘l;n_x.};. } AR RN

et N v -
IR W YR



.....

TABLEB DATABASE

[}
a_ st

PRCNON ~~ i
e

S

COMMAND ID NAME JOBTITLE SALARY

2

Dy
AN

Y

s | tMO | | { [ 2X |
] | ! | ! !
| | | | I

w~—

“~

CONDITION | 22X = 1.1 * 2X |
BOX | |

Part A

TABLEA DATABASE

COMMAND 1ID NAME JOBTITLE SALARY

| IMO 1 GRS | manager | 100000 |
I | ! | | I
I | ( I I I

CONDITION | ?Y = G. Thompson |
BOX { |

Part B

Figure 5.5 = Modify Queries

E NN
'-".'5
RS A
LY S Y G .

20
fl'

ooar |

oo 142

T e Y ‘_."j
POl . U N x'u':'l’. o '_\1‘




LAY i Radin i e g ol S Rk fon b g @ - W w
A R ARANA DA S GRLAILS LAk S L AL SN Al L Sl A A A A A A SR A A B s o v v

Pl

TABLEB DB

COMMAND ID NAME JOBTITLE SALARY

|"1PR ] | 2A ! [ 2B |
I ! I | | |
I I I I I I

ISSRESULT DATABASE

ID NAME SALARY

I o | I
f [ | I

Figure 5.6 - Project Query

.
0
¢
o

e
)

nl_ LY
oy
.- Il
N

[}
A
I

19

A
Y
- e
o
CAE
[}

AR

a8
Lare

.
.r T
.

.
. ]

Vg G

143

¢

o

._'i'&:h g

L)
-

e

S S S
A A L AT . I 2 AT
AR A o g I U N T S B R N WA U I SIS S S IO T I SR




TABLEA DATABASE

------

COMMAND 1ID NAME JOBTITLE SALARY
| ISE | {P. Harrison| laborer
| | | |
| | | |
Part A
TABLEA DATABASE
COMMAND 1ID NAME JOBTITLE SALARY
| {SE | I |  laborer 9000
| | I |
| | | I
Part B
TABLEA DATABASE
COMMAND 1ID NAME JOBTITLE SALARY
| ISE ! ! | 2X ?Y
| | | |
| | | |
CONDITION | ?X = laborer && ?Y 9000
BOX |
boae, Part C
L
o
| Jai) . .
N Figure 5.7 ~ Select Queries
<
-
'@
o
g 144
b-:J:
Vo
s
"’
Ry N L T T i e T S s

——
-

S I S G IR L IO R ot
- -.'\.‘\-"“.'.N.'Ah\,A"‘h‘..-\.\ -\‘L‘ﬂ N



TABLEA TEXT

!i_ COMMAND ID TEXT_LINE

| 1UN | | [

TABLEB FORM

l% COMMAND ID FORM_LINE

Part A

TABLEA TEXT

SO COMMAND ID TEXT_LINE

{g_ [T ION 1 T !
3 ol :
o TABLEC MAIL
COMMAND ID VIEWED TO COPY_TO DATE SUBJECT BODY

R
c
=

¢ .. e

A - 8

s
>/

Part B

Figure 5.8 =~ Union Query

n“’-.{l:'-_,-.'.:
[P R R U5 A |

5

»
WX

AR
. M

K .'q
e

145

AR
.‘ .I '. .

T

P .

o .
3 Y

%

i
}.

- .. - e e R .-
BRI A AR S o e e T N R IR .- .
% - leate v Ay T ™ IR Wy AT < ‘3 ’ .! ’ - Y - *at




=
SYAN
N

oy
A
fon
r.. ‘s

Q"

-
N
-:‘.-:"
NS

N
v
N
R

1@

>y
'.._-‘-‘..‘
LAYy
o 80 a8

[ s P o ]

.« o

A O e A A A A A LA PR R AL A i MRS

NS a4 et aes mod gud —~— Lok aee 4o
AR SN S A ol ik il \b Radha a0 avi oy yapy |

TABLEA TEXT

COMMAND 1ID TEXT_LINE

I tIT | I |

TABLEB FORM

COMMAND ID FORM_LINE

[~ 1IT | T l

Figure 5.9 = Intersect Query

146

S R R R Y, S R S Ny
L - 'f;’:‘,n‘.\{\._\’.‘\\.



AP PV N il e ot - -y
S T e S T TR T T F W R GRS TSI YRR il

TABLEA MAIL

i COMMAND ID VIEWED TO COPY _TO DATE SUBJECT BODY

N |~ 1SD Il [ l [ ! ! ] !
| | | | I | | | |
| | | | | | | ! |

TABLEB MAIL

COMMAND ID VIEWED TO COPY_TO DATE SUBJECT BODY

| tsD 1 T ' | | | l [
I
!

Figure 5.10 - Set Difference Query

'.a\ -" n. o.. n.. .‘

‘t':S'-!.

KIP R I S

147

W R
Pd




Rt A Mt de Sofe tnini it MM S T T It g sag e A

R R N T T T Y T U Y SN TR T T T T A
R By

...........

TABLEA DATABASE

COMMAND ID SUBJECT DATE PRECEDENCE

TABLEB MAIL
ID VIEWED TO COPY_TO DATE SUBJECT BODY
130 1 ! ! | 20 | |

! I l | I I | I !
[ I l ! l l ! l I

COMMAND

Figure 5.11 = Join Query

148

.....
-----




; -
DA VA NS N w o e T
< . RN N L e A =i e )

TABLEA DATABASE

COMMAND 1ID COUNTRY CURRENCY

| 1CO ] | ] | | |
| | | | |
| | | | |

Part A

ISSRESULT

1D TEXT_LINE

|1 | UNITED STATES DOLLAR |
| 2 | AUSTRALIA DOLLAR |
| 3 | ENGLAND POUND I
| | ]

Part B

Figure 5.12 -~ Concatenate Query

TABLEB MAIL
COMMAND ID VIEWED TO <COPY_TO DATE SUBJECT BODY

150 | | { | | @lD | ez | I
! ! ! I ! | | I
I I ! I I I I I

Figure 5.13 ~ Sort Query

« L

Il...n "'-.....I R . i . *

&

x5

149

AR T
LN
? te

T e e e e T T Tt et R
L e, . el A A et -
R LY LT TR AL A IO NN, AN SNV




PTG (S st o i ATl A et ant il e e .
- - O S . . v ST TS P Ml Sl Sl il A - A ha e At 4 —
- LR - P B O I LI O A DA LI Sl A At -"1":?'.‘:7-7-.';—7-1

|
I
i

TABLEA DATABASE

COMMAND 1ID NAME DEPT SEX

| *PR1 [ @1 | @2 I @4 E] I
I I I I I I
I | | | I |

1D NAME SEX DEPT
1 S. Snodgrass F A
2 P. Poopdeck M B

Figure 5.14 = Print Query

Dieg dif) r
A .

@

A T Aatnads St

TN

150

i e e By T S A o




4
t

R R A A L
Q@ HNSNNQ)

Ea0%

i
O
v e Nt

A

............

A I A Il Sl Bt Tt S i ol L I il o g g 0 S Bl Ml Bt Sk T

TABLEA DATABASE

¥, TR

w

COMMAND 1ID NAME DEPT SEX
| D12 | | I I
! I I I I
I | I I I
ID: 1

NAME: ©S. Snodgrass

DEPT: A

SEX: F

ID: 2

NAME: P. Poopdeck

DEPT: B

SEX: M

Figure 5.15 - Display Query

TABLEA DATABASE

COMMAND ID NAME ADDRESS
| tMO 2Z] 1 | 1 Popeye St.

| 'SE 22| | Weezy |
| | | |

Figure 5.16 = Select and Modify Query

151

oo

AL o Al S WA R aii e |

v ® e M Y




A Y L N W e T T T TS, T E TN T TR T YW LW TN AT VTN : -
....... e A A A A AN D 3 e 4 A e

SALARY DATABASE

COMMAND ID EMP_NO SALARY DEPT

| 130 2X]| [ ?E l ] I
| ISE 2X| | | 28 | 2D |
| 1MO | | | ?M | l

PERSONNEL DATABASE

COMMAND ID EMP_ID EMP_NAME ADDRESS SEX MARITAL

| 1J0 2?21 | ?E | I [ { |
| I1SE 22| | | | Imalel singlel
| | I | | | | |
CONDITION | 2D = A || ?2D = B ]
BOX [ 2M = 1,2 * 2M ; ?S5 >= 45000 |

Figure S5.17 = Multiple Commands Query

g8 152




R R P R e M L A G N N N R I A S v_r_-:-.'_-_vﬁ‘,)‘—_v L S e e e A Aat i il Gl il At il I BB A S A el sl R f ansiand SRR oo ]

Vi. IMPLEMENTATION PROPOSALS

This chapter proposes a high level design for an 1ISS

implementation and a strategy for a very simple prototype
implementation using C Shell in the Unix environment. The
prototype design 1is included to assist continuing research
efforts to quickly implement a prototype system. When the
basic system is working it may be evaluated, improved and
expanded in future refinements of the overall design. This
chapter is by no means a full design specification, as that
task itself would cover much of the material for a separate
masters thesis. The design proposal covers the ISS kernel
main modules only, describing the overall hierarchy of the
system, Subsequent refinements should include detailed
module interfaces, file usage and data descriptions.
Although not stated explicitly, the ISS itself is not a
database management system (DBMS) and so its design does not
include those issues handled by a DBMS. These include
rollback and recovery, concurrency control and retrieval
strategies. It should be recognized that the lowest level
modules in ISS, the primitive operators, will be highly

dependent on the underlying DBMS or operating system.

-
i)
‘.
o~
¢
e
.

153

. T T e W T

XA

.
.la




A, SYSTEM DESIGN

The basic structure of ISS operates upon an underlying
operating system, DBMS or file system for utilities, file
manipulation and management services. Figure 6.1 shows this

basic relationship.

] 1SS |
| |
—_—
I
| OS/DBMS |
| |
|
| Database |
| ]

Figure 6.1 - Basic ISS Relationships

Within the ISS there are five major 1levels which are
shown in figure 6.2 and correspond to levels of operation of
the system: system entry; command mode interpretation,
command, other mode and applications execution; graphics and

run time sequences; and at the lowest level the ISS

gfl primitive operators. The basic operators then translate
{6; . their calls into the appropriate calls on the operating
o

s system or DBMS.

ot

o The system database in wuse will include the Schema
;is Table, the Application Directories, the ISS Users Table, the

o]

4

154

»

AR RRNARS
. . »
RN
et

R i Y
Ry

2t
F's
]

I’

-, -, N e
PO N
L L.

O Lo e T T T e e TR R A U - e
PRI N N cdabsbalolaral 8’s ' w ' B Sl w8 a e e e



] Nane 4 — ey
AN a4 SO S I i L SSIF g SR e g gan oul aue S s deang o
R . BRI S SO 9 S T

ISSRESULT and ISSDELETE Tables as described in chapter three
of this thesis. In addition, a number of tables will be
required to hold error and trap conditions, warnings and
error messages, graphics data and probably other run time
requirements. A number of system variables will need to be
maintained to hold directory entries of current tables,
their types, system status, user and security information
and, of course, run time temporary variables.

The following subsections briefly describe the major
design modules and groups of modules in the system as
depicted in figure 6.2. Groups of modules are shown in open
boxes and represent separate equal level modules but are
compressed into one group for in order to prevent
overcrowding the diagram.

1. Entry Module

The Entry Module is responsible for invoking the ISS

password procedure and identifying the prospective users.

After a user is identified the entry module must perform the

necessary initializations and then call the command module.

If the password procedure fails after a predetermined number

fi- of times the system should take whatever action is

N determined appropriate.

h Sl
Pl
e 00
LI T

M

I Rk

'\

e
\"-.‘u

155

&

‘.‘ .‘
RN

10

'l ' '{ L)

»

S e T e At at A . vt A A e e - - e e e L
NATAT, NN \J"V'-",' ¥ Ol N . AP

-
»




-
| 3
f L}
. -
3 -
r.‘ ‘....\
i By
b g
. (A
b s
i X
i
[, (ua3shks up aiaymAue woaj ayqerIed) am
3 sar317rIN / swaea / wdisks burieaado o
“ i
3 % A
- Aerdsig ‘3utag ‘uror TeanjenN turopr ‘KAjrIpoy ‘@j3EU3]ERDUOD *339124a ~ .
3 jaasuy ‘uoyun ‘3Jaog ‘douUsi1ajzjig t9o0asa93juy ‘303f0ag ‘30335 saojeaadp 5S1 N ._
b* .nc.u.o -..-Q
A
p*. > R
2 e .
.. _ _ _ _ 5

. a3noaxy ‘A3randag {abeyoed| | dtay | p

‘syoayy 10211y ‘asied |__1d9 | ! ! o

... \J / .n\ﬂ&

w“. _ — [$)]

a v Vo)

o opun ‘Kao3o9a1q ‘®3I91ad |adsaeq| aseag |apow | sweaboad — 0

X ojaaeg’3Ind ‘83e31) | Kaanp| 3 aqel |Kaond | uoyjeorddy 1
. ~
¥ w
X o
h”, | &)
# 3
- _ { a

X | 1932adaasjul puewwo) | f
vu

, I |

" |_£2a3ug ssy |

N N N R T IR
NN Ol

G lr e T s Te 0



s Ve T Wa W, W Tarr o, 3 P o " g
_________ a, _‘ A -\'f.‘ _.v._r"r_‘ At T ——— T ey
RS T S T T cT Tt T st s T e T e e T R TR TR

2. Command Interpreter

The Command Interpreter is a simple interpreter
accepting commands or mode changes and calling the correct
command execution module. After each command terminates the
interpreter should reinstate the previous display. This may
require direct calls to the GPI

3. Help

Help is a simple help facility which may b
implemented in many different ways. Help is entered from
any interactive environment by the entry of control H (°H)
and returns control to the calling module. ;

4. Query Mode

The Query Mode is the module which allows entry of
user queries into the skeletons described in chapter V.
This modules draws heavily upon the services of the GPI
package to allow on=screen editing of queries. The editing
of the queries has no execution significance within the
gquery mode, it is simply an entry function. The query mode
is invoked by the entry of a control Q (°Q).

5. GPI Package

The Graphics Prototype Interface manages the

graphics interface and storage of current queries. It is

. Sl
. o .. -. -'
L[]

e used by the Query Mode Module to change and enter gqueries
el

&: and by the Query Parser to get the stored data. This module
Y

;{ is highly dependent on the physical characteristics of the
ﬂ! target system.

vt

25

ot 157

L.

e

. -
18-

LR

-
A

e N AT S e N TN LA R -.]

. . B T
W PN T PRI Y W RO, 5 LR AT R R Tt T R B T TN SRR S LTS R IR
e hal 2ol F IV Y L“MM,AL. n _“'}- AT A e - . AR ¥

- - . B
---------
-------




St et it LY. Tam e P st et

e e e A A O S A A YA A A el Sl 4

..................

6. Query Parser

The Query Parser translates the queries in the
skeleton form into a sequence of calls on the ISS operators
and is invoked by the RUN command. It must retrieve the
skeletons from the GPI Package, parse them, perform type
checking for the issuance of warning of warnings and traps,
check authorizations and privileges of the user, ask for
verification on transactions which change the database,
translate virtual tables to queries and, finally, execute
the final transaction using a sequence of calls to the basic
operators or return an appropriate error message.

7. Other Commands

Each of the other commands UNDO, SAVETO, DIRECTORY,
TABLE, ERASE CREATE, DELETE and QUIT invokes a module to
effect the command. The TABLE and ERASE commands must call
on the GPI Package since they affect the current skeleton
display of queries. The other commands may produce output
and temporarily displace the current query image but are
themselves overwritten by a redisplay of the current

skeletons after execution. Some commands such as SAVETO

will need to make direct:calls to the underlying operating
system or DBMS to perform functions.

. 8. Application Programs

Each of the logical applications is invoked from the

-
"
--\
-".
-
s
g
I
’l
<,
‘P.
-~

U

command interpreter module and 1is enclosed in 1its own

-y
@50

module. The applications may make calls to the operators

4'. -
s te

A

158

P 4 4
b IR

A X

i

e

B - -

PPN AL A P A T e e am e Nttt L . s e o . L.

A N Y N e i s S e L T e L e e
2 T _ e _ - P . ot - - K - -




A R T . et e e A ST W . -"~'-'~_*‘_'._'.»'.'.'._")',7', T —

and the operating system to achieve their objectives, but
are in reality very much like a view on the database., It is
the single wunderlying database with its set of operations

which is at the heart of the integration of the systenm.

B. PROTOTYPE IMPLEMENTATION STRATEGY

In any system design a prototype implementation is often
useful to determine unféreseen shortfalls and difficulties
of a proposed system. This section is intended as a brief
description of a strategy for implementing a simple ISS
prototype kernel using C Shell running under Unix on a Vax
11/780 system currently operating at the Naval Postgraduate
School, Monterey. As with many prototypes, efficiency,
completeness and absolute adherence to the defined system is
not intended, instead it represents the first step toward
the Unix environment philosophy to “get something small
working as soon as possible". [Ref. 14]

The target display is a simple 24 by 80 column display
with Unix as the underlying operating system with its
standard tools and file services. The following subsections
describe the overall strategy, the database and a simple
"graphics” implementation. The descriptions assume a
knowl edge of the C Shell interpreter and the Unix

programming environment.

159

P R N . PR . ST
. PR . ot -
I ST WA S G T Y S N SO T L RPN

2l o
e




"
S S T T T o e Ty ey
. I RS Jax Aan AU A iun e it it R iete g Rl e g ]

J
Tale Sy

’

sy
SN ok sl

1. Strategy

Each module described in section A may be

.’
I

4 2 5 e
I MR

o
)

P !
.l..l"l < *

implemented as a C Shell script, calling on lower level
scripts and Unix services when required. Tasks which are
difficult to achieve using the C Shell may be written as C
routines and then added to the standard set of Unix tools.

One such example  is the requirement for a utility to perform

set difference on unsorted files. A simple C program may be
written to perform this function, albeit inefficiently, and
then called in the same way as normal Unix commands.

Many of the Unix commands act as filters, acting on
standard input or specified files and send results to the
standard output, Unix's ability to redirect the standard
input and output provides powerful file manipulation
facilities, and since the majority of tasks in the 1ISS
kernel are file manipulations, this environment is ideal.
Figure 6.3 shows a very simple minded example of a shell
script for the DELETE operator using the Unix Awk pattern
program and redirection of the results into the desired
tables. Awk oper.tes as a filter reading the whole file and
performing the actions on each line in this case printing to
the desired file depending on the value of the condition for

the line. ( The $1 and $2 in the Awk command lines are

i expanded to the parameters of the call to the delete

script.)

et 160

i'o"'.n'.-' T e R TR P R T N

ety e e P T B N L S « ST -
e B A a2t a e ., NP R A P B P SR P L L IR I T e L o
A, I

I TR T S A feraal e "
® P 2 N - 0 . « - -t e .~ P Nyt~ LYNEN Q o \‘. . -
ttecseiintinct st il o LSS LI YT PN P ISR AN ARSI PR P SRR RSN -‘\‘_'},




RSt it L M . Sl bt v ‘Gl S B S g ) L,
DAL AR AL Sl A A S S T i i IV Ao e A iy s A A he As s B e Aoy g

AT P R e S AR A -

Operations on files may be implemented by using
filters to process 1input files into temporary files and
result files. Processing can continue through a series of

filters until the desired result is obtained.

Simple ISS DELETE operator script using

the Unix filter Awk. The script is called
with two parameters, the first a file name
and the second a string which is a correct
Awk field matching expression. Awk sends
its results to the standard output but this
script redirects that output to the file
ISSRESULT and then again to standard output.
(The script calling this may redirect the
result of this call to some other file!)
Usage: delete file ‘condition’

E I I S R o

awk =e ' BEGIN {FS = ":"\
OFS = F3\
{\

if ('$2') { print > "ISSDELETE" }\
else { print }\
b $1 > ISSRESULT\

cat ISSRESULT # To standard output

# End script delete

Figure 6.3 = Sample Delete Script

Variables which need to be passed down to lower
level scripts may be placed in the environment or passed as
explicit parameters of the call. Values can be returned
from lower levels by placing results in the standard output
while the calling routine redirects standard output to a
file or places it in a variable. This arrangement provides
flexibility, since the calling routines have the freedom to

place results, which may be entire files, wherever they

- 161

EaSan

P it
OV A

N
>
P AP
‘"
',

Pl <

7. LIPS L AU st s e L. . . i
A R e et L A A N A T - T T S TR A WA
adad Lu q"“{L“’L’l-'— IR Y ALY PRI IR A S I P S A R A .-'..- .-'..~' .~'. e et .-'. ....... .---\"\". =




Tt L e aT et e T e et TN e TR v1 I A A A0 “ Sl Al STt I St RN 'ﬁr‘fi"v"v"*v‘— -
.... MCARR GO AL : AN AR A NN

choose. This essentially is the philosophy of the Unix
filter, coupled with the freedom to redirect input and
output. The set of ISS operators can be realized by using
the Unix tools such as sed, Grep, Awk and Sort, and writing
C routines to perform other low level routines.

2. Data Base

Unix files are simply sequences of characters
organized in a hierarchical naming structure, Some Unix
commands provide field discrimination by the identification
of fields separators and thus for a first prototype it would
be best to use this facility. System and user tables can be
files with embedded file separators. The choice of
separators should be defined as a variable and placed in the
environment by the top level module. The use of field
separators removes the need to be concerned about field
lengths, therefore it 1is recommended that the prototype
dispense with field length checks altogether, effectively
making all fields of varying length.

The ID field should be explicitly included in every
file, although it 1is not <clear 1if this is necessary or
whether, when IDs are required for a data manipulation, the
builtin 1line counters of the Unix filters Awk and Sed are
sufficient to meet all needs. This uncertainty applies
particularly to the applications which use sorted files. In
any case, care must be taken to ensure line IDs are removed

before attempting line comparisons in the UNION, DIFFERENCE

162

ST IR I AP . S AT T Lt et T el e
A o AN ey e e
A A T R B q_\\\\-"'-'-‘\'---



L L o LA Bk T T A A e - B e Yhike “Ri ‘e Y4 ~y- -
R N N AR SR IO A A S DAL N S A A A SILASIACA A AT TS SR SRS o v

and INTERSECT operators, and resultant tables have all lines
renumbered contiguously. The tasks to strip the ID field
from a table and renumber a stripped table or result are
ideal tasks for C programs written as filters.

The Unix files comprising the system should occupy
their own set of sub-directories. It is suggested that the
single top 1level entry module called "iss" occupy a
directory as the only file with two sub~directories: "bin"
to hold all the executable scripts and object code of the C
programs in the system, and "data" to hold all the data
files for the system. The top level entry module may then

include the path to iss/bin in its path length and rehash to

allow access to the commands therein while executing the iss
and deeper level scripts. A third subr~directory may be used
to store all source programs for the entire system.

3. A Simple GPI Package

A very simple query entry facility may be
implemented wusing the Unix display editor Vi. It s
stressed that this is not a true graphics implementation,

but a simple measure for the first prototype. The essence

is that the display is simply a file which is typed to the
screen for display, or edited using Vi to enter queries.
3?5 The screen file may be initially created by combining in
: sequence three template files holding the empty skeletons
for the condition, and the selected tables. The templates

may be made up for each of the fixed structure types and for

163




e . e e L L R . e w W -
| 8 S e . . A e e L R e N R S N T T T T N T N T T T T e T e S T Y T T W T N W T W e N W v

every individual database data table. Since the copies of
.c the templates are a fixed number of lines in the screen
file, the screen file may be split up into the original
components for parsing or for replacement of part of the
f'le by a TABLE or ERASE command. Entry to the query mode
is then a simple call to Vi to edit the screen file.

This query implemeritation is proposed because it 1is
very simple and easy to implement. It does however, place a
burden on the user to use Vi to enter his gqueries, not
disturbing the number of lines 1in the file or the table
skeleton structure.

Parsing can be done by searching for the strings in

retween the table column boundaries ( the character |) line

by line from the bottom up. Parsing should be relatively
cimple because of the simple rules of the GPI, that is: each
sperator operates on the current table, or if it is linked
to a lower operator by a tuple variable it is applied to
ISSRESULT.

The use of the method outlined will require the

create command to produce the appropriate skeletons for new

database tables and the command parser to produce the
template for ISSRESULT each time it is created.

-q 4., Limitations

An implementation as described in this section will

prcvide a very basic ISS kernel which may be refined and

' @ improved in subsequent iterations of the project. The major
164
L
— R |




......... 2T AT AT LT L W, TLw L Y W T TR T T WY Y W T e, W - -
A s I T B ) e e i  fac e i e ol o ———

limitation is the graphics interface which will be
pacrticularly error prone if editing is not done «correctly.
The skeleton templates will be the definition driving the
field definition during parsing rather than the Schema as
should be the case, hence if the tables are changed during
guery entry there will most likely be unpredictable behavior
by the system.

Manipulation of files using filters will be very
slow, especially on medium to long files. Although it is
much easier to implement the basic operators this way, files
will need to be filtered three or more times for some
operations rather than the direct access methods available
using a proper DBMS. This will involve a high overhead of
processing as well as the overhead of the I/0O involved in
creating and using temporary files. Interpretation by the C
Shell will further slow down execution, thus on the whole it
will be unacceptably slow for any practical application.

The use of field separators and variable length
fields will cause tables not to appear as "neat" tables but

instead as untidy lines of uneven length.

- True security will not be possible since the Unix
o Operating System is not itself secure.

E‘i , Undoubtably, such an unsophisticated implementation
V“-.—:

will have many other limitations not described here, however

the intention 1is to provide some gquidance for future

research and prototype implementation.

e -.;_'.’_'.'_".":.','.‘\'.‘;"'.- '.-' " e -' T T N e et e e e e
D) e et - ' LR “ . DRSO S e K . et
AR N ) A RPN -"1 N .A‘-.A".r e e S L T T e R T ‘.",‘.'.1




A R T A Lt .—_’.v".-.-_:_'.a.v_i‘*_'h.'.-‘.‘_E?.ET‘JT..“T..'K LA Sy S e it ke vt SRk AR da Al i e oA s o e o TN T TN Y Ty e e
- - . A B N ‘A_*v".

VII. CONCLUSION

The results of this thesis research more than
sufficiently demonstrate that the Relational Database model
can indeed be used as the underlying model to conceptually
integrate the five application areas of interest: text
processing, form generation,database, spreadsheet modeling,
and electronic mail. The integration of the common
functions of these applications into one ISS kernel which
uses a relation expressed in table format as the single data
object and which uses a small vocabulary of commands is not
only feasible, but also of high utility.

The realization of all of the objectives stated in
chapter one support the aforementioned claim and serve as
the basis for the findings discussed in section A of this
chapter. Section B presents a brief discussion of related

research issues which are suggested for followron research.

5 A. FINDINGS
One of the primary objectives of this thesis was to

5£ perform a detailed evaluation and analysis of the conceptual

;ﬁ- level of the design proposed in Nishimura's thesis [Ref. 1l].
g% ' This included a rerevaluation of the 1logical databases
;E (tables) designed for the ISS and resulted in the design of
:’.'- supportive ISS system tables which could also be used to
@

2 166

2

e

LT
e .

..... DN D T N N O T T T Y PR e e . .
S S S W S S R A.(\ PSS AL 2% % a {L..A-‘L'..:,.A'!.- L l.-"_.._".-- ;'_-1"_‘.':-':‘.'_'.'}.‘ Tt I T YA ol \..\' “:'.‘ . “]




IR W N Y

A

-~ (\ \(‘.‘r(v-\.‘-‘-.-' - ‘-“:.-‘.,(?\v;-i-‘t;".;-'.—.‘::r'—-?\ . . ‘.. R

incorporate multilevel security 1in the system. Another
significant change made in the design of the tables was the
combination of the five application data table schema tables
into one common Schema Table which is owned and maintained
by the system. It was found that this method 1is more
efficient than maintaining separate schema tables for each
application and more truly reflects the idea of an
integrated system.

Another major objective was to carefully select or
revise the basic primitives needed to form the kernel
command vocabulary. It was found that the primitive
operators, Modify,Insert, Delete, Project, Select, Sort, and
Concatenate, and the combining operators, Join, Union, Set
Difference, Intersection, and Natural Join, form a complete
set of operators necessary to perform all operations common
and desirable to each specific application area. This set
of primitive and combining operators coupled with the
ability to combine data tables of different types prove to
be quite useful in expanding the expressive power of the
system.

In addition to refining the original thesis [Ref. 1],
major efforts went towards expanding it to include the
design of a User Interface to ISS and to propose an
Implementation Strategy for the system. This extension
resulted in the design of GPI (Graphics Prototype

Interface), a Data Manipulation Language which enables the

167

UV W PV IPVIN I BF DS AP I A AP AR v N L e O IO e S R R M A




D S S S T R SRt I TR S0 I TR I S L R R e g G am AP L e e el ——
I PLERS e e L T YT T 'n-v-,'.*_'—.-_‘!’_'_T::'?.i“"‘{':i'}-r‘—.—.r:‘—-v

user to use QBE-like simple graphics to easily express
queries of varying degrees of complexity. All  of the
primitive and combining operators are mapped into GPI
commands and the details of their implementation are
completely hidden from the user. Therefore, any subsequent
change to the GPI Language can be made without having to
completely redesign the system. Also, by abstracting the
implementation details from the User Interface, GPI lends
itself quite well to even the most naive user who has some
basic background with database query languages.

The Implementation Strategy proposed herein suggests
that the UNIX Operating System Environment ( including the
Shell and C programming languages) can be used to implement
a prototype of the ISS. The feasibility of this suggestion
was tested and proved by implementing crude prototypes of
the basic primitives and combining operators.

Having revised and extended the proposal of Nishimura's

E¢§ thesis [Ref. 1] down to the 1level of Implementation
Eé Strategy, we feel that we have strongly demonstrated that
rj using the Relational Database model in effecting the
?? Integrated Software System is highly feasible and useful.
E; Based on these findings it is suggested that furtherance of
ﬁé this research topic to the point of the completion of the
?% implementation of the proposed design is desirable.

ey

@

168




et Tt Nt Bl e 2 e 'S fiad i Sk 2evih e o v ——— - T 2
...... A A AC A A Y A LR A L SR T T —_y— MRt A Bt B b S b B4 2w oo e ]
B . R - LA A b CadS

B, FOLLOW-ON RESEARCH

During the design of the ISS several issues arose which
gave vrise to follow-on research ideas. Some of these were
viewed as shortfalls or limitations in the proposed design.
Others, such as Database Management System issues were
considered to be outside the scope of this thesis. These
and other related follow=on research ideas are discussed in
the subsequent paragraphs.

The current design of the ISS does not address the issue
of efficiency since the main concern was to prove the
feasibility of the proposal. Further iterations of this
same topic should address efficiency of the design as it
impacts on the physical implementation of the conceptual
design.

This iteration of the research focuses only on the
design of the kernel of the ISS, omitting efforts related to
the design of the non-integratable features unique to the
individual application areas. The conceptual design and
implementation of the application specific commands and
views need to be developed. It is recommended that the
framework of the design not deviate highly from that

suggested for the kernel. Also, in some cases a subset of

the five applications may need to perform the same or

ﬂﬁj similar functions. In other words, displaying a spreadsheet
f?. view is quite similar to displaying a view of a form. In
iﬁf order to continue with the premise that the total ISS
N

N

e 169

P




command vocabulary be small, it is suggested that "sub-
kernel®™ commands be developed to support those subsets of
applications that have similar functions that are not
applicable to all five applications.

The Implementation Strategy proposed addresses simple
graphics issuves, 1i.e., the drawing of tables on the CRT.
However, it is recognized that a much more sophisticated
Graphics Package 1is necessary to effect the High Level
System Graphics commands proposed in the design of the VUser

Interface. Such 1issues as widening columns during the

insert mode to accommodate the input of variable length data

attributes or displaying the complete field of a variable

)
.L‘:L'L'A._'-.A i

length attribute during the display mode should be

e ety
PP,
1.4

incorporated into the design.
' One further recommendation which is directly related to
the current design is that the Physical Level of the design
should be carefully studied. This will probably lead to a
revision of some of the features presented in the conceptual
design.
As stated before, the ISS system is based on the
Relational Database model but 1is not, within itself, a

Database Management System (DBMS), therefore, many of the

g!g . issues that would be handled by the DBMS are not presented
N
X g within this thesis. Nonetheless, it is recognized that in

-~

2
L

(N W

order for the ISS to be fully implemented and functional in

V@A a concurrent multi-user environment, the underlying DBMS
P
N ;
.
Fﬁﬁ 170
ort's
R

- '- v- .. *,
RTINS
v' ‘- s A' .'
BFARAY




must be designed. This would include the research and
design of ISS Security. Although this version of 1ISS does
not implement system security, it provides the basic
framework for incorporating multilevel security. It is
suggested that this framework be reviewed and modified as
necessary to support actual implementation of a secure ISS
package.

Another DBMS research effort which lends itself to the
current proposal 1is that of transaction recovery. This
issue was considered briefly with the inclusion of the UNDO
system command which enables the user to reverse the effects
of the last committed transaction. Of course this 1is a
simplistic view of a highly complex problem and it is
suggested that research in this area constitute a complete
thesis topic.

Both the non~DEMS and the DBMS issues discussed herein
are viewed as being important and necessary research
follow~on items. Furtherance of research on the suggested
topics would certainly provide tangible benefits and lead to
the completion of the design and implementation of ISS, the

Integrated Software System.

171

P SRV SN N T WS WY Ay . APV I

. ’.‘-' .-'_.-‘ A
S '.r\_-\}"_ti

N N e
P AL R R L R YR A P St SRt St S ST



A
N

s
St
o

LTI N L T

B AN
\"l:b \.'-fl

1

s

a

f
."

eSS

L}
.l.(.l

-
>

.. I*T'} (S 40 VF,;T“J_"}‘ _T'.\..‘L'_ CRACATASEA A Sl 5 ‘r.".':v."' EMOM M A AR AR s ar i s oot e our o e e oo

5.

6.

7.

8.

10.

LIST OF REFERENCES

Nishimura R., Analysis of the Relational Data Base
Model in Support of an Integrated Application Software

sttem, Master of Science Thesis, Naval Postgraduate

School, December 1982.

Wyatt R. W., Multilevel Secur1tx for the ISS Mail
Application, Master of Science Thesis, Naval
Postgraduate School, March 1984 (In preparation).

Meyrowitz N. and Van Dam A,, "Interactive Editing
Systems: Part 2", ACM Computing Surveys, Vol 14, No 3,
PP. 353~416, September 1982.

Stonebraker M. and Kalash J., "Timber: A Sophisticated
Relations Browser", Proceedings of the Eighth
International Conference on Very Large Data Bases, pp.
1-10, Mexico City, September 1982,

Stonebraker, M., and others, "Document Processing in a
Relational Database System"™, ACM Transactions on Office
Automation, pp 143-158, Vol 1, No 2, April 1983.

IBM Research Laboratory Research Report RJ3050,
Automating Business Procedures with Forms Processing,
by V.Y¥. Lum and others, March 1981.

Tsichritzis D. C., "OFS: An Integrated Form Management
System", Proceedings of the Sixth International
Conference on Very Large Data Bases, pp l6l-166,
Montreal, October 1980.

Stonebraker M., Rubenstein B. and Guttman A.,
"Application of Abstract Data Types and Abstract
Indices to CAD Databases", Proceedings of Annual

Meeting, Database Week: Engineering Design

Applications, pp. 107-114, May 1983.

Lorie R, and Plouffe W., "Complex Objects and Their Use
in Design Transactions"™, Proceedings of Annual Meeting,
Database Week: Engineering Design Applications, pp.
115~122, May 1983.

IBM Research Laboratory Research Report RJ3503, A
Relational Representation of an Abstract Type System,
by D.L. Weller, June 1982.

172

-------




K -1,1;

e
’

P
e

11.

T

e Y, WM

L
i“.l
Nt
.

-"“
- 12,
-

SN
b 13.

14.

@

: y " y -.‘l'.‘l'(l',l
l."..l
8 & U 0 4 2

LN K
.0 .-, :,

LS

AP
(dﬁ a

L.& ‘ s \ M‘ '.'- - ;. '- >‘ .-- - - ) j )
- LA SRR A SRS A e -e"-n-e - LA-\JC_.{.A-J':’A("J_._.- ST e

.- -)—-‘-n-u-.v.‘\.".ﬁ.",.iiv‘ '1‘-" -(*—r' - -,. A" Sia™ ‘ AP Tl i Anh. Suil sl il Sl e Mad e g -
" e e 1" A A et e - AP A T
i ) DRSRIPAE EAL Lt e PRI

..............

Powel M. L. and Linton M. A., "Database Support for
Programming Environments", Proceedings of Annual
Meeting, Database Week: Engineering Design
Applications, pp. 63=72, May 1983.

Traiger I. L., "Virtual Memory Management for Data Base
Systems", ACM Operating Systems Review, Vol 16, No 4,

SIGMOD 83, Proceedings of Annual Meeting, Abstract of
Session, p. 134, May 1983.

Bourne, S.R., The Unix System, Addison-Wesley, p. 5,
1983.

173

- .‘_-.' R S AT et _.. ‘.“ ) .
.y .~ -~ ".. ‘.._' Lt

e~~~




DR e st e s 4 ~—r vy
AAASRSLAR NI gt A MM v et a e g |

:ﬂ BIBLIOGRAPHY

éf: Day K. R., "Relational DBMS Development: an incremental
) Approach", Proceedings of Annual Meeting, Database Week:
Databases For Business and Office Applications, May, 1983.

Furuta R., Scofield J. and Shaw a., "Document Formatting
Systems: Survey, Concepts and Issues", ACM Computing
Surveys, Vol 14, No 3, pp. 417-472, September 1982.

Gates W., "The Future of Software Design", Byte Magazine,
Vol 8, No 8, pp. 401-403, August 1983.

Hancock L. and Krieger M., The C Primer, page 5, McGraw
Hill, 1982,

Henderson P. B., Sciore E. and Warren D. S., A Relational
Model of Operating System Environments, Dept. of Computer
Science, SUNY Stony Brook, NY 11794, undated.

IBM Research Laboratory Research Report RJ3070, Human
Factors Studies of Database Query Languaguages: A Survey and
Asessment, by P. Reisner, March 1981l.

: IBM Research Laboratory Research Report RJ3132, The
Capabilities of Relational Database Management Systems,
by E.F. Codd, May 1981.

IBM Research Laboratory Research Report RJ3182, On Extending
the Functions of a Relational Database System, by R.L.
Haskin and R.A. Lorile, November 1981.

Meyrowitz N. and Van Dam A., "Interactive Editing Systems:
Part 1", ACM Computing Surveys, Vol 14, No 3, pp. 321-~352,
September 1982.

jﬁf SIGMOD 83, Proceedings of Annual Meeting, "The Database
e language GEM", C, Zsniols, pp 207~218, May 1983.

e Spewak S.H., "A Pragmatic Approach to Database Design",
' . Proceedings of the Sixth International Conference on Very
fﬁj Large Data Bases, p 151, Montreal, October 1980.

iﬁ; Ullman J. D., Principles of Data Base Systems, Computer
e Science Press, 1982.

\.'_-.:

\ @9

L] ..3‘

&t 174

5




...... R A e AN A A S SV gl S NS areg |

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2, Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Professor Dushan Z. Badal, Code 52ZD 2
Department of Computer Science
Naval Postgraduate School
. Monterey, California 93943

4, Professor Gordon H. Bradley, Code 52BZ 1
Department of Computer Science
: Naval Postgraduate School !
Monterey, California 93943

5. Curricular Office, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, California 93943

6. DCCS, JMOP 1
Room F=3=47
Russell Offices
Canberra, ACT 2600.
Australia

7. LT G. L. Thompson, USN 2
1491 S. Carolina Avenue
Avon Park, Florida 33825

8. LCDR P. J. Harrison, RAN 1
¢/~ DCCS, JMQOP
v Room F=3=47
Russell Offices
Canberra, ACT 2600.
Australia

[
e &8 a2 X

v
‘i“t
-
N
“n

o

-

-
o

’
QN
3

A

. l"

r % Y

LA
L)
[V A

175

DWWA T Yy
.'\ 1

......

- - - - PO . . " o ST e .t et * - . - - -
Y .v".--' .-.?'._;""".' R .-'V‘\ ...... e l-‘(\ DI S AP
B, PN WV WL VLI AU ORI RS Y,




1

t
1
|
1

b




