
RD-Ri40 628 DESIGN OF RN INTEGRATED SOFTW4ARE SYSTEM BASED ON THE V/2
RELATIONAL DATA BASE MODEL(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA P J HARRISON ET RL. DEC 83

UNCLASSIFIED F/G 5/1 NL

EEEmhEEohhEshI
IllllE EEEEIEllIEEEEElllm.
ElllEllEEEEEEI
llEllllEEEEIl '

EIIIIIIIIh, ,hE



o
..

11111 if~ *'2 .25

3j6

a1.

MICROCOPY RESOLUTION TEST CHART
NA1I0NAL BUREAU OF STANDARDS. 1963-A

,'4
["4.4

*.- .*.'c-- - ** -* ,,,.



NAVAL POSTGRADUATE SCHOOL
0 Monterey, California

I I

DTICd ELECTE !

" THESIS -
DESIGN OF AN INTEGRATED SOFTWARE SYSTEM BASED

ON THE RELATIONAL DATA BASE MODEL

by

Patrick John Harrison
and

Gracie Lee Thompson

December 1983
0-
C,

L.J LThesis Advisor: Dushan Bada

Approved for public release; distribution unlimited

I,

84 04 27 058

-_ .. -. . -. , . .. .. . ..-.. . . .. .. , .... .. ....... .,.... . .,... . . - . - . . . . .. . . .. ."-? ;:. : :. , ,,,:. :_.:,.,_..,., , ,,,. '- ,"- ," S. , ,-.-..,.S , ,:.--'-. -, ...



"P.
SECURITY CLASSIPICATION OF THIS PAGE (VfP. De Ente _ed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSI ,EP •MANAINPG BEFORE COMPLETING FORM

1. R[P@T NUMER 12.GOVTACCESSIONNO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and abitli) S. TYPE OF REPORT & PERIOD COVERED

me Master's ThesisDesign of an Integrated Software December, 1983
System Based on the Relational December,
Data Base Model 6. PERFORMING ORO. REPORT NUMBER

7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(#)

Patrick John Harrison
and
Gracie Lee Thompson

4C'. 9. PERFORMING ORGANIZATION NAME ANO ADDRESS W0. PROGRAM ELEMENT, PROJECT, TASK%'.' e"AREA & WORqK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

It. CONTROLLING OI0CR NAME AND AOORSS 12. REPORT DATE

Naval Postgraduate School December, 1983
Monterey, California 93943 s. NUMBER OPAGES

175
Is. MONITORING AGENCY N AMR & ADO5R6SS(S differen 1Ma Contolingd 0111c*) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED

154. OECL.ASSIFICATION/OOWNGRADING
SCH EDULE

S..%Sv.

" -It. OiSTRISUTION STATEMENT (of tile Rert)

- Approved for public release; distribution unlimited

17. OISTiI3UTION STATEMENT (of tre sbefroe eslined to Blek 20. It diffeeut from Report)

OIS. SUPPLEMENTARY NOTES

-o 5

19. KEY WOROS (Comilme on roeree sde if asseeew d Idsntif, by blek rnmboi)

ISS, Integrated Software System, Table, Relational Data
Base Model, Data Base, Operators, Applications
Database

I. LITRACT (Convomue on revese side at neso..e nd Idmiy by block inwo..)

Integration of application programs into a single system has
become increasingly important as the workstation environment
moves toward uniformity for easier learning and use. This
thesis proposes an Integrated Software System (ISS) based on
the Relational Database model as a suitable basis for integrating

-. five common applications found in a business office. Relations,
or tables, are defined as the common data objects (Continued)

cc Pa 147 - II POF I NOV GS IS @S@LETE

S/N 0102- L. 014- 6401 1 SECURITY CLASSIPICATION O' THIS PAGE (Whmn Dee. Entee
....

1.5. . , . , ' .". ,".v ." -'''" '. .. ."' ."'- •"-. ,"-" -". ".", -'. ,", ,' , . .,' '.," '-



.BCUYV CLASIICATION OF THIS PAGS Mb=n DOS ERM0u

ABSTRACT (Continued)

and it is shown how they are used to support each logical applica
tion. Operations based on relational algebra are defined which
extend the functions of ISS beyond the aggregate of the five
chosen applications. A simple graphical user interface is

- designed for the kernel of the system and a design for a kernel
prototype using a Unix environment is presented. The results of
this thesis are intended to lay the foundation for development of
an ISS using the relational database model.

. Accession For

NTIS GT{A&I

DTIC TAB0

UnanLIounred 03

I! Avallabilt

and/or

S,.N 0 102- LF- 0 14-6601

SaCURITY CLASSIFICATION O HSPWO 04&*O

4 . ,

;...: ; 7 ; e. ;¢: ¢ . ...: : .: :.: L -M .. . .. . . - . .. .



* ft!

Approved for public release, distribution unlimited.

Design of an Integrated Software System

Based on the Relational Data Base Model

by

Patrick John Harrison
Lieutenant, Royal Australian Navy

B.Sc., University of New South Wales, 1974

Gracie Lee Thompson
Lieutenant, United States Navy

B.A., University of South Florida, 1975

VSubmitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1983

Authors: "

dApproved by:

{, / ~Second Rede.1w"

Chairman, Department of Computer Science

,,;Dean o In fall£ and Policy Sciences

N 3S,!



7 7 -176. 7; 9

ABSTRACT

Integration of application programs into a single system

has become increasingly important as the workstation

environment moves toward uniformity for easier learning and

use. This thesis proposes an Integrated Software System

(ISS) based on the Relational Database model as a suitable

basis for integrating five common applications found in a

business office. Relations, or tables, are defined as the

common data objects and it Is shown how they are used to

support each logical application. Operations based on

- relational algebra are defined which extend the functions of

ISS beyond the aggregate of the five chosen applications. A

simple graphical user interface is designed for the kernel

of the system and a design for a kernel prototype using a

Unix environment is presented.

4



". TABLE OF CONTENTS

I. INTRODUCTION .............. ....................... 8

A. THE ISS ..................................... 9

B. THESIS OBJECTIVES ...... ..................... 10

C. THESIS OVERVIEW o................ .. 11

II0 RELATED WORK 15

A. INITIAL DESIGN ........ o ..................... 15

B. TEXT EDITING AND RELATION BROWSING .......... 19'I..

C. OTHER RDB MODEL APPLICATIONS ................ 24

III. STRUCTURE AND USE OF ISS TABLES ................. 29

A. SCHEMA TABLE ...... *..........*...... 31

B. ISSUSERS TABLE . 33

C. APPLICATION DIRECTORY TABLES ................ 36

D. ACCESS CONTROL TABLES ....................... 40

E. PARAGRAPH CLASSIFICATION TABLES ............. 43

F. CAPABILITIES LIST TABLES ..... ooe**........ 45

G. TEXT DATA TABLES ........................... 47

H. FORM DATA TABLES ............. o.............. 48

I DATABASE DATA TABLES ........ o .......... . .... 55

J. MAIL DATA TABLES .............. ............. 56

K. SPREADSHEET DATA TABLES ................ o.... 59

IV. CONCEPTUAL INTEGRATION ......................... 65

A. PRIMITIVE ISS OPERATORS ..................... 67

1. Insert .eo e..*@eeeoesooo..soe*.oo@.e 68
•* M d f oooooooooo ooeo el °oooeoo o eoe°6o

2. Modify .................................. 69

5

.4 -i"

-'i.~.;x~Y-



WO .7;N -k -

3. Delete ..... *.................9....... 69

4. Project ... 9**............... ............ 70

5. Select .................................. 70

16. Union ................................... 71

*7. Sort ...... 9*****.**..................... 72

8. Concatenate ........................ 72

B. REALIZATION OF 155 OPERATIONS ............... 73

1. Removal Of Rows .. .... ..... .. ............ 74

2. Location Of Rows ........................ 76

3. Addition Of Rows .. *...... ... ..... ........ 77

4. Updating Of Rows .. ... .... .. .... *....... 79

5. Copying Of Rows ...... ....... . ........... 81

6. Moving Of Rows ........ .. ........... ..... 82

7. Sorting Of Table Rows ................... 83

8. Merging Of Columns ...................... 84

9. Operator Combinations ................... 84

C. EXTENSIBILITY OF ISS ........... *... ....... 86

1.* Union o ................................. 87

-f2. Set Difference ........ o ....... o.... 92

3.* Intersection . ...... ,.. ... 96

4. Join .. ................. ....... ..... 98

5. Natural Join *...... . 9995999 104

6. Operators Summary............ 105

V. USER INTERFACE ................. 99999999s 107

A. Graphics Prototype Interface ................ 108

1. General CRT Layout .................. 109

N6



2. High Level System Commands .............. 112

3. Command Mode Commands ................... 114

4. Query Mode Commands ..................... 120

5. Combining Query Mode Commands ........... 133

B. Implementation Overview ..................... 137

VI. IMPLEMENTATION PROPOSALS ........................ 153

A. SYSTEM DESIGN .............................. 154

1. Entry Module ............................ 155

Z" 2. Command Interpreter ..................... 157
~~~3. Help ........... . . . . . . . . . . . . 157

4. Query Mode .............................. 157

5. GPI Package ............................. 157

6. Query Parser ............................ 158

*7 Other Commands ........ 158

8. Application Programs .................... 158

B. PROTOTYPE IMPLEMENTATION STRATEGY ........... 159

i.~l Strategy ................. 160

2. Data Base ............................... 162

3. A Simple GPI Package 163

4. Limitations 164

,5vii. CONCLUSION ............................ *e~.... ... 166

A. FINDINGS ............................. ..... 166

B. FOLLOW-ON RESEARCH .......................... 169

LIST OF REFERENCES .................................... 172

BIBLIOGRAPHY ..... * ....... * ....... . . . . . . . . . . 174

INITIAL DISTRIBUTION LIST ............................. 175

- * % • . ,n : S - , .. ... ..7



I. INTRODUCTION

%I1 The introduction of computers into the office and home

- environments has led to the development of numerous software

packages to achieve many different tasks. Common

applications such as word processing, form generation,

database management, electronic mail and spreadsheet

modeling have become almost essential in the workstation

environment. The unintegrated software packages generally

available have different operating instructions, different

command vocabularies and often different underlying

conceptual models of the system and its data. Data

structures and files belonging to one application are often

inaccessible to another. Users must learn the fundamentals

and conceptual model of each application separately, even

though many of the basic operations in the different

applications are essentially identical.

An integrated software system is a software package

which includes a number of logical applications and which

attempts to minimize the disparity by providing a single

conceptual model of the underlying system for all

applications. The single unified view of the system overall

allows a user to learn the system more easily and perceive

it as an actual single integrated system.

8



A. THE ISS

An integrated software system combines the functions of

its applications into a single package by using a single

conceptual data object and command vocabulary. The

vocabulary includes a basic set of commands, which apply to

every logical application, and application specific commands

for each application. The basic set of commands perform the

operations which are common to all applications. Since only

one conceptual data object is defined in the system, these

commands operate uniformly on their operands regardless of

the application, and represent the intersection of functions

between the logical application areas. By providing only

one set of common operators on one data structure, a user

can learn to use the system easily and quickly. A user may

become familiar with new applications by learning only a

small additional number of application specific commands and

functions.

This thesis describes the design of an Integrated

Software System, the ISS, which uses the Relational Database

modiel as the underlying conceptual model, with the single

data object being the relation. The relation is more easily

discussed and understood as being simply a table where the

tuples are just rows and the attributes just column names.

Both of these terminologies will be used in this thesis.

The ISS design integrates five applications or application

areas: word processing, form generation, database

~~ ~~~ ~~VV ~~ 9. ;.~.9:, .



~~~~~~~.4 7 - . . . .- - . -

management, electronic mail and spreadsheet modeling. A

table format is designed to support each application area

and the intersection of functions is described by defining

the primitive operators which operate on all tables and on

which applications and utilities may build to effect their

particular transactions.

B. THESIS OBJECTIVES

The first objective of this thesis is the design of the

system of tables to support the ISS. Data tables and system

A tables were designed also to support the concurrent research

into multilevel security (Ref. 21.

Secondly, a set of primitive table operators and general

system commands is defined which form the kernel of the ISS.

These operators may be used by a single user and by

applications to manipulate data tables in the desired

fashion. A set of extended binary operators is defined

N41 which is traditionally used in database applications, but

which is useful for other applications as well. Thirdly, a

simple graphics oriented user interface for the ISS is

defined.

Finally, a prototype implementation strategy for the

data table object and the primitive operators is described

for the Unix environment. This crude design when

implemented may then be used to prove the utility of the ISS

to support user needs in an operation environment.

10



* 7- .-

The work in this thesis is a refinement and extension of

the work carried out by Nishimura in his thesis, "Analysis

Of The Relational Database Model In Support Of An Integrated

Applications Software System." [Ref. 1] The tasks to re-

* evaluate the logical data bases and basic operators, to

* design the basic user interface and, to design a simple

prototype were chosen from Nishimura's suggestions for

follow-on research.

C. THESIS OVERVIEW

The system described in this thesis is the conceptual

model of the ISS, its data object and operations. The

design of tables and basic operators are complete in that

they can support all the application areas. As described in

section B above, the objectives of this thesis are to

address this kernel to ensure its completeness and

consistency with the overall conceptual model. This model

is developed as a *single user at a time* relational

database model .

* The intention is to develop the conceptual model for the

user without regard to physical realities which must be

considered in implementation of the system. Despite this

attempt at maintaining simplicity, a certain amount of

knowledge regarding fundamental relational database theory

is assumed, particularly regarding the material in chapter

II and section C of chapter IV.



Provision is made for multilevel security enforcement by

the inclusion of special tables and fields for that use and

are included for the furtherance of concurrent research

[Ref. 2] into multilevel security. Essentially multilevel

*security requires document access control by security

classification, special group membership or job status (by

compartment and caveats), or by explicitly named access

lists. This acces.., control must be enforceable at a

document and paragraph level and when combined with

generally accepted database controls on column values,

amounts to the requirement of controlling access to table

entries by column and row. In addition a table of

legitimate users is required to be kept which includes the

user's clearances and other covers. The maintenance of

multilevel security in any system is a complex problem and

is beyond the scope of this thesis. The framework for such

controls is included, but the issue is not developed

further. Interested readers may consult the references for

further details of multilevel security requirements.

Chapter II surveys related work in the relational

database (RDB) field, in particular the analysis which was

done to show the feasibility of using the RDB model in an

*integrated environment. Other research efforts are

discussed which bear little direct impact on the conceptual

design of the ISS but which may be helpful in subsequent

* work on implementation and application development. The use

12



77 -- 7 7-711 7W7-7..

of the RDB model for applications other than those chosen

for the ISS is briefly described.

Chapter III describes the set of tables which make up

the ISS: the system tables required to maintain the 155, the

data tables of each application, and how they both may be

- used to support their applications.

Chapter IV defines the abstract interfaces of the

primitive operators available to manipulate data tables, and

how they may be used to realize the basic operations common

to all of the applications. These operators form the kernel

on which applications may be constructed. A further set of

combining operators is defined which is commonly found in

database applications but which are shown to be of use in

the other application areas and in some cases in combining

tables from different applications.

Chapter V presents a simple, graphics oriented user

interface for the kernel of the ISS. The general system

operation and the form of the basic operators are defined in

this design. The design resembles a form filling process

similar but simpler than IBM's Query By Example database

query language. Commensurate with the goal of uniformity

for the ISS, this design Is intended to provide a basis for

the design of the commands in each application.

Chapter VI describes a simple prototype implementation

strategy for the kernel primitives and general system, using

4N the Unix programming environment. it describes the

13



methodology which can be used to write very simplified I/0

modules to map the designed user interface into the abstract

interfaces of the lower level modules.

Finally, chapter VII presents our remarks, conclusions

*and suggestions for follow-on research.

.14



II. RELATED WORK

2 In this chapter we discuss previous work in application

systems which use a Relational Database (RDB) as the

underlying model. Section A describes in detail the initial

design of the Integrated Application Software System which

motivated this thesis. Section B discusses previous work on

editing and relation browsing, general material describing

desirable features of editors, and how relation browsers and

editing may be implemented in the Relational1 Model. The

final section describes briefly other applications for which

the Relational Model can be used.

A. INITIAL DESIGN

The premise of this thesis proposal is an extension of

the research efforts presented by Nishimura, (Ref. 1]. In

the initial design phase, Nishimura evaluated the utility of

the Relational Database model to conceptually integrate the

five application areas of interest: text processing,

relational database management, form generation, electronic

mail and spreadshr v' leling.

motivation fo- esis research stemmed from the

realization that of these five applications perform

similar functions and are conventionally utilized as a non-

integrated collection of application software. In this

15



non-ISS, each application implements operations on

* dissimilar file types and the data among the files are not

directly sharable. In addition, in order for the user to

utilize them, he or she is required to learn a large number

of commands for each application, many of which are

synonymous. If the commonality of the application areas

could be collapsed into one application like the kernel of

an ISS, this would significantly reduce the redundancy and

minimize the command vocabulary needed to utilize the

applications.

After choosing the relational database model as the

kernel for the ISS, it was decided that the most natural

data object to use in the system was the table. In the 155,

each of the five applications is a logical database

4, - consisting of a set of tables. The set of tables are of

three classes: Application Directory, Data Table Schema, and

Data Table. Each column in the table represents one

attribute of the file and each row represents a unique

occurrence. The tables include columns which represent key

values to uniquely identify each row. Any datum in a table

* can be accessed by specifying the name of the table, the

value of the key, and the name of the attribute containing

the datum.

4 The Application Directory Table contains descriptive and

* - definitional data about the data tables in an application or

logical database. Each row in the Application Directory

4, 16



Table describes one data table and has a standard schema.

For each application, the schema of the Application

Directory Table can be augmented to include additional data

table attributes.

A data table represents the logical file of an

application. The data tables are typed in accordance with

their primary use, i.e., text, form text, database, spread

* sheet, and mail. The data tables are categorized by types

in order to logically organize those which are used

primarily by the same application. Since one of the key

objectives of an ISS is to be-able to share data, strong

4 data table typing is not a feature in the design.

The Data Table Schema Table contains a row for each

column in a Data Table. In some sense this schema represents

variable declarations in a conventional programming

language.

Each row in the Application Directory Table is linked to

a set of rows in the Data Table Schema Table and a Data

Table. The same relationship among the tables exist for

each application.

Since the Application Directory Table of each

application is identical, no further discussion of that

table type is necessary, however the data tables are

different. All data tables in one application, except the

database application, have the same structure. All tables

4 have an ID column. The Text Data Tables have just one other

17



-$. 1 7 - -W -- 4

column, TEXT LINE which is the text. Form data tables

similarly have two columns except the second column, FORM

LINE is meant to be used differently by the form processing

application. A Mail Data Table has eight columns which in

each row describe the origin and destination of each

-~ message, and hold the message itself or pointer to a large

message body. Spreadsheet Data Tables have six columns so

that every row describes an X,Y coordinate pair for the

conventional spreadsheet view. The Database Tables are the

only ones without a predetermined structure, they have the

ID column and any number of other columns required by a

user.

In order to realize the main objectives in an ISS, one

must present the user with a single conceptual view of the

-system regardless of the context of its use. The

practicality of this objective was demonstrated through the

use of tables as described above. In addition, the user

I must be provided with a common set of table operators as

well as a set of application dependent operators. The

intersection of operations proposed to manipulate data in

the files is comprised of the locate, insert, modify,

delete, copy, and move operations. Nishimura gave

conceptual descriptions of how the six basic ISS primitives

can perform the operations in the functional intersection.

The primitive operators suggested (insert, modify, delete,

S project, select, and union) are based on relational algebra.

.4 18



_177 . 7.3 1.7 . '

In the initial design phase it was shown how these operators

could be utilized on each application to yield the same

result as all conceivable queries in a non-Integrated

Software System environment.

It is the intent of this thesis to refine this

conceptual design and view. The refinement will ultimately

prove the feasibility of these concepts by implementing the

fundamental ideas presented herein.

B. TEXT EDITING AND RELATION BROWSING

The need to edit and browse relations is important to

each of the applications in an Integrated Software System.

Editing of text particularly is the subject of much

research, both psychological and technical, to determine the

qualities of a good editor.

An ideal editor is a subjective term determined by the

needs of the user, however the following general features

may be identified as desirable: [Ref. 3]

(1) A consistent conceptual model of the the system

with a clear and concise user interface including on-line

help and documentation.

(2) Powerful facilities that take advantage of computing

power, with an winfinite undo' capability.

(3) An ability to edit a format which closely resembles

the intended target format. (Whether it be intended for

hard copy or not.)

* 19



(4) Fast and visible responses to all commands however

trivial or complex.

(5) Access to shared information and other contexts on

the same display surface without leaving the editor, and the

ability to access other applications or to be part of a

larger integrated environment.

(6) The ability to edit mixed targets such as text,

forms, programs and data.

The above points are worthy goals for editor and

browsing interfaces and have been considered in our system

design.

A Browser, as its name implies, is a software facility

which allows the user to "browse" through information

related to an application. TIMBER (Text, Icon, and Map

Browser for Extended Relations), as discussed in [Ref. 4],

-. . is the design of a sophisticated user friendly, graphics

oriented browser for a relational database.

TIMBER was designed to meet the objectives of four

application areas. It provides user interface to a

relational database system that can be:

(1) a relation browser for fixed format relations;

(2) a sophisticated browser for relations with icons;

(3) an editor for text data stored in relations;

(4) a map browser for geographical data.

The designers of TIMBER propose that each of the

too aforementioned applications virtually perform the same

20

-V



*~~~~~~~T - '.7.-7w-. ~-

NI function and thus can be served by an Integrated Software

System.

The basic concepts of TIMBER are: a window on a

* sophisticated graphics terminal; a relation in a database;

and a cursor. The screen of the terminal can be split into

several rectangular windows to which relations are bound.

The tuples from the relations appear in the windows and can

then be manipulated by TIMBER commands. The cursor on the

- screen is controlled by a bit pad and a mouse and many

TIMBER commands affect the window in which the cursor is

currently positioned.

The relations of TIMBER are of four types, each of which

has a default screen format and coordinate system. The

types are: normal fixed format, text, icon, and map. There

- are three ways in which the user can alter the contents of

the windows on the screen. One can move the cursor, use the

ZOOM feature, or use the six relational commands affecting

the window.

NI TIMBER is composed of six major modules: Application

Program, Intelligent Buffer, High Graphics, Low Graphics,

Smart CRT, and INGRES. INGRES, however, does not support

TIMBER without several added extensions. First, ICON must

be added as a new data type. Second, the notion of ordered

relations must be incorporated in INGRES in order to support

the storage and manipulation of documents. Finally, there
Vt

is a need to incorporate an efficient concurrency control

.5 21



system which will enable multiple concurrent browsers which

perform updates.

In summary, the design of TIMBER, which is intended as a

sophisticated two-dimensional graphical browser for text

relations, fixed format relations, and relations containing

icons or maps, provides several impressive features which

support the use of the relational database model as the

kernel of an ISS.

Several research projects including those mentioned

below (section C.) have dealt with aspects of text editing

and storage within the relational model, but the most

extensive work in this area has been published by

Stonebraker and various co-authors. They have considered

the requirements of document processing and proposed

enhancements to RDB management systems to support two text

formats and a capable editor. [Ref. 5] Stonebraker's

proposal is to provide facilities in a RDBMS which can

support calls from a text editor running as an application

program

The two schema for text format are:

(1) a binary relation with attributes line number and

and a text line, and

(2) a ternary relation with attributes sentence, word

number and text word of some maximum length.

Each scheme has an advantage for certain relational

S operations and the authors suggest that both are appropriate

22



7 " 7 11; -77 " °.°°

L . *.

and that facilities are required to transfer from one to

another. The first enhancement is the inclusion of variable

length strings as table column types which may be stored as

.- variable length fields or external to the database with

pointers to their location. Since the order of these lines

of text (and the order of the words in the case of (2)

above) is important, Stonebraker describes the mechanism of

ordered relations in which the database manager effects the

ordering using unique tuple identifiers (TIDs) which are

assigned by the system to each new tuple added to the

relation. An ordered B-tree access structure is kept in

which TIDs are at the leaves in the intended ordering on the

tuples and each internal node holds the number of TIDS in

each of its subtrees. The TIDs then act as keys into the

relation containing the text, in which the text lines are

unordered. Access to a specified line number is easily done

by keeping count while traversing through internal nodes,

selecting the appropriate subtree to find the correct leaf.

Insertion and deletion is also easy, simply updating the

internal nodes of the access structure and inserting or

deleting the TID at the leaf, using standard B-tree

algorithms. A generalization of this structure is described

for format (2) above where the leaves contain a pointer to a

second B-tree holding the ordered words within the ordered

sentences.

23

,9....

[.°..



Stonebraker introduces the idea of "extended wild card"

substitutes for any character string, which may be used in

qualification and target lists of replace and substitute

commands. Essentially each extended wild card of form *i

, - (for i in some integer range), once matched to a substring

in an expression retains the value of that substring and so

may be used in the target list.

To support other substring operations a simple substring

operator is described which can select substrings between

" bounds set by position or content. A "break" operator is

defined to perform the transformation of text in form (1)

above to form (2), and a more generalized concatenation

operator described for the reverse transformation.

Stonebraker carried out some relative performance

evaluations of an editor running as an application program

on the Relational Database Management System INGRES under

UNIX, against the performance of the UNIX line editor ED.

His results may be found in the reference, but they were

sufficient to indicate that indeed a Relational Database

System could be useful in the processing of text in ordered

relations.

C. OTHER RDB MODEL APPLICATIONS

With the maturing of database technology, there has been

a growing awareness of its usefulness in applications other

than data processing. Areas such as Office Information

-, 24

47



Systems, Engineering Design, Programming Environments,

Operating Systems and recently, Artificial Intelligence,

have been considered as areas where the Relational Model

will be useful.

A recent approach to Automated Business Procedures has

been the development of a "forms" oriented design of an

integrated office, including word processing, mail and

office communication tasks. [Refs. 6 and 7]

Essentially forms are stored in a Relational Database,

each table representing a form type with each tuple an

instance of a raised form. Included in tuples can be fields

containing audit information, and of course integrity

constraints can be applied to signature and special data

fields. Each form type has its own display format which may

include the details currently shown on printed forms, or be

as simple as just one large text field for data entry for a

* text file. The display format for general users would not

include audit information and is actually a view of the

database. Forms can be used to display forms, enter data,

perform word processing, and execute queries with the

underlying RDB Management System providing the necessary

facilities. Queries can be expressed by general users using

* the display views much like QBE, and more detailed queries

may be framed on the conceptual database for audit and

statistical purposes.

'25



0:

The increasing size and complexity of designs, in

particular VLSI, and the problems of managing their data,

has led to much research on the use of Relational Database

Management Systems for these purposes. In doing so it is

felt that extensions are required to the RDB model to suit

the applications. Stonebraker, Rubenstein and Guttman [Ref.

*8] discuss the inclusion of abstract data types (structure

and operations) in INGRES and the use of extended indices

for them. They propose that these extensions will help to

improve the usefulness of database systems in Computer Aided

Design applications.

Lorie and Plouffe [Ref. 9] discuss extensions to System

R to make it more appropriate for engineering and design

applications. They describe a method of storing complex

objects, each spread across a number of different relations

in which each component of an object is related to a

hierarchical parent component in a tree structure. They

also describe a mechanism for the sharing of design objects

within a design environment which allows for the relatively

slow transaction time in a design activity as compared to a

straight forward data processing transaction. These ideas

have also been developed by IBM's Yorktown Heights Computer

*; Science Research Division [Ref. 101 and include designs for

the storage and retrieval of arbitrarily long fields for

* * both simple and complex data objects.

26
.--. ' . . . .

"--. -.- 26



Representation of programs in the Relational Model and

using that model to create, store, debug and manage program

information is the primary goal of the OMEGA programming

environment. (Ref. 11] An editor/query processor is

designed on top of a Relational DBM system which gives a

unified view of program and data and provides very powerful

.2facilities for debugging and monitoring execution of

programs. In this project they have found it necessary to

add variable length strings and ordered relations to the RDB

model, as well as three extensions which support the

programming environment.

A new approach to Operating Systems has recently been

suggested [Ref. 12] which uses an underlying RDB to present

a unified conceptual view of the system to both user and

systems programmer. An operating system can be implemented

as a large integrated package using a Relational DBM system

as a kernel. Interaction with such a system would be by

* access and manipulation of system -relations using a command

language based on a relational query language. The

inclusion of a transaction mechanism to abbreviate commonly

used commands would add a richness to the command language

while retaining the conceptual view of the operations. The

* authors suggest that a graphical database query and update

language like QBE would provide a flexible, easy, powerful

and friendly user interface to such an operating system.

27



There has been recent interest and discussion (Ref. 13]

on the possible uses of a relational DBM system as the model

for Artificial Intelligence expert system knowledge bases.

The similarity between stored data and "facts", the

potential to include in a database an inference mechanism,

- and the possible use of some sort of trigger to emulate

"rule firing" are questions which have been posed but not

yet researched.

-..

-'o.

.'°-

28

*% %

°'.- . . . , . . . . . . . . . . • . w: . . .



*~~~~~~~~~~ 'b -;" 71 N% .- ~ ..- -~ '-r.-J*--

III. STRUCTURE AND USE OF ISS TABLES

The set of tables chosen for the design of this system

is an extension and refinement of those described in Chapter

II, including extra system tables for system use to provide

a mechanism capable of supporting multilevel security. This

full set of tables are those designed for the conceptual

view of the system overall using the relational database

model and need not necessarily be implemented exactly as

described.

Within each of the five application areas there are four

classes or types of tables: Data Tables, a Directory,

Paragraph Classification Tables (PCTs) and Access Control

- Tables (ACTs). The data tables for each application are the

4'.' tables created or used by the user while the others can be

considered system tables for mostly system use. Although

the data tables in each application area differ, the system

tables have similar structure and function in each of the

five areas. In addition to the above tables which make up

the logical databases of the five applications, there are

three table types which are used by the ISS kernel: (1) a

Users Login Table, (2) a Capabilities List Table for each

user and, (3) a Schema Table which describes every unique

attribute or column of every table in the system. Of the

29



-r..

above tables the Login, PCTs, ACTs and CLTs are used by the

system to enforce security.

The sections of this chapter describe the structure and

general use of the above table types, first dealing with the

system tables and then each of the five application area

data tables: text, forms, data, electronic mail and

spreadsheet. The Schema Table is described first and then

its format is used to describe the structure of every column

of all fixed table types. The ISS must be installed with

the schema rows describing the columns of system tables and

the columns in the four standard table types for text,

forms, spreadsheet and mail. Schema Table rows for

previously undefined columns in Database Data Tables will be

added as users create the new database tables.

Reference and retrieval of tables and tuples by the

system is by name, with the advantage that this provides the

most easily understood interpretation of pointers.

In this thesis we will not discuss the recursive

problems encountered when those tables provided for

multilevel security are, themselves, treated simply as data

tables requiring coverage by further security controls. The

special multilevel security tables (ACTs, PCTs and CLTs)

have been included to provide a framework for future

research and are not dealt with in later chapters on

implementation strategies.

30

IV 0.



A. SCHEMA TABLE

The Schema Table is a single table which contains row

for each different column (attribute) name throughout all

tables in the ISS. The system uses the schema in

conjunction with a column listing in a directory to

determine the structure of a table it is about to

manipulate. The Schema Table columns are illustrated in

figure 3.1 and are described by tuples from the table itself

as shown in figure 3.2.

-, The ID column is a six digit integer which is a field

simply representing the conceptual ordering of the rows in

*the data base and their display order as a table. The

underlying physical system (implementation) need not store

the relation in this fashion. It is attached to all tables

in the system and corresponds to the record number in

'a systems such as DBASE II. It will not be described again

for other tables.

IID I NAME ITYPE IWIDTH ISYNONYM 1 TABE

Figure 3.1 - Schema Table Schema

The NAME column is simply the textual name of a column

which may appear in many tables of one or more types or a

single table such as some database table. "ID" and "NAME"

31

7 -.



are typical values which may be found in this column. TYPE

and WIDTH simply describe the physical data type and maximum

size with the convention of "0O meaning "of varying length".

SYNONYM is a column which gives the names of columns

throughout the system which have the same characteristics

and may be considered to carry compatible data under certain

-. circumstances. TABLE gives a particular table name or type

of table in which the column being described may be found.

A simple literal denotes a particular table, a literal

preceded by "-' indicates all of a particular table type or

class. For example the "-ALL" in the TABLE column of

figure 2.2 indicates the ID column is in all tables.

Similarly -TEXT in a TABLE column would indicate the column

being described by that row is in all Text Data Tables.

Similar meanings are attributable for the other fixed

structures, -FORM, -MAIL and -SPREAD.

The Schema Table is used by the system for retrieval of

tables and by a user while creating a new Database Data

Table. (The structure of tables in the other applications

are predetermined and are described in sections G through

K.) In the process of creating a new database table, its

structure will be defined as the user describes each new

attribute of the new table by appending a new row to the

Schema Table.

4- 32

L '.*.*.*.0 *4. .. * . wj-Y..* . . . * . .



ID NAME TYPE WIDTH SYNONYM TABLE

'.I ID IINTEGERI 6 1 1 -ALL
I~~~ I - -__ _ _ _ __I_ _ _ _ _ I __ _ _ _ _I _ _ _ _ _ _ __I_ _ _ _ _ _ _

I-""NAME I CHAR 20 SCHEMA

I ITYPE ICHAR 8 SCHEMA I
I _ _ _ _ _ _ _ _ _ _ I _ _ _ _ I
-. WIDTH IINTEGER 8 I ISCHEMA I

2~~,I __ __ _ __ __ _I __ _ _ _ _I __ _ _ _ _I I__ _ __ _ _ _ I__ _ _ _ _

SYNONYM ICHAR 0 SCHEMA I

STABLE I CHAR 1 0 I SCHEMA I
I I II

Figure 3.2 - Self Describing Tuples In Schema Table

B. ISSUSERS TABLE

The ISSUSERS Table is used by the system to establish

identities and security clearances of the user. The table

has one row for every logical user of the ISS and should be

accessible only to the database administrator (DBA). The

*table schema is illustrated in figure 3.3 and the columns

are described by the appropriate rows from the Schema Table

at figure 3.4.

The USERNAME is simply the name of a logical user and

need not be unique since the key to the table is the USERID

which must be a unique alphanumeric string for each logical

user. PASSWORD is an encoded password and each of the

fields with application names is a logical indicator of a

user's permission to access the directory and data tables in

33

_............................................



that application. CLEARANCE is the users security clearance

and CC is a record of the user's compartment and caveat

status in a multilevel security environment. ROLES is a

field which may be used to denote special functions a user

"* may have such as database administrator, or reviewer in a

multilevel security system. CAPABILITIES is the name of the

capabilities list table associated with that user and is

described in section F of this chapter.

When a user invokes the ISS, the system retrieves the

appropriate row from the ISSUSERS table and conducts a

standard password procedure. Enhancements may enable the

system to allow a limited number of password entry failures

and then lock the device or initiate some alarm procedure.

The users clearances, compartments, roles and access rights

are retained as system variables throughout the ensuing:4..

session and can be used for access control during all

transactions.

Insertion of new users may be done by the DBA by

appending new tuples to the ISSUSERS relation. Similarly

clearances, compartments and roles of the users may be

changed by the DBA by modifying the appropriate values in

the desired row. It may be desirable to include in the

system a routine or view mechanism to allow users to change

their own passwords, since a one way encoding step must

first be applied to a password before storage.

34

I o



IID 1USER NAME 1USERIDI PASSWORD ITEXT IDATABASE

FORMS1 SPREAD-1 MAIL I CLEAR-I CC IROLES ICAPABILITIESI
ISHEET I ANCE I II

Figure 3. 3 -ISSLJSERS Table Schema

ID NAME TYPE WIDTH SYNONYM TABLE

I IUSER-NAME ICHAR I20 1 ISSUSERS

I IUSER-ID I HR I10 IISSLJSERSI

I IPASSWORD ICHAR I7 20 I SSUER I

I ITEXT BOLA I 1 ISSUSERS

I- I DATABASE IBOENI 1 1 ISSUSERSI

I IFORMS FBOORLE A N 1 -rI ISSUSERSI

1-1 SPREAD- IBOLENI J I ISSUSERS
I SHEETIIIII

I I MAIL IBOENJ 1 IIISSUSERS I

1-1 CLEARANCE C-rHAR I 15 1 ISSUSERSI

I ICC 7! CHAR I 7II SSUSERS I
I IROLES I HAR I SSUSERSI
I _ _ __I__ _I _ I _U_ _ 7__

I 1 CAPABIL- I CH-AR I 20 ITABLE NAME I ISSUSERS I
I IITIESIIIII

4.Figure 3.4 -Schema Table Rows For ISSUSERS table

35

*.p .I-



C. APPLICATION DIRECTORY TABLES

A Directory Table exists for each of the five

application areas of the ISS with each row in the

application directory describing exactly one data table.

These directories can be used by users and by the system to

-, find particular data tables which exist for the selected

application. The schema for the Directory Tables is

illustrated in figure 3.5 and each of the columns is

described in figure 3.6 by the appropriate rows from the

Schema Table.

I ID I TABLE NAME I COLUMNSI KEYS 1 0_CLEAR 0 CC
I I I I I I

MCLEARIM CC I ACTNAME I PCTNAME IREVIEWED IREV _REQD
,--,,.I I I I I

VIRTUAL I CONDITION I GLOBALS I OWNER I DESCRI-I
I PTION I

_ _ _ _ I _ _ _ _ _ _ _ _ 1 _ _ _

Figure 3.5 - Directory Tables Schema

In each row of a directory, TABLE-NAME is the unique

name of a data table which is being described by the row and

is the pointer to that table in the underlying relational

database management system. COLUMNS is a list of the

columns in the data table, and with the Schema Table tuples

- 36

.... N 7. ' :-..



for those columns, completely describes the structure of the

data table. KEYS is a field containing the names of those

columns which comprise the key to a table. 0 CLEAR and 0 CC

are fields giving the overall security level, compartments

* and caveats of a table. MCLEAR and M_CC give the minimal

requirements to access some parts of the table, particularly

Text Tables, where low security paragraphs in a high

security document may be made accessible to those with the

lower security clearance. PCTPOINTER and ACT-POINTER are

the names of the two tables which control column and row

wise access to every data table. REVIEWED and REVREQD are

*logical values required by organizations practicing

* multilevel security. VIRTUAL is a logical field indicating

if the table is composed from other ISS tables, and if true,

then CONDITION is the description of the operations to be

performed to realize the table. GLOBAL is a text string

which may be used to contain print formatting or display

mode data, or other parameters useful to the system. OWNER

is simply the originator's userid and DESCRIPTION is a short

textual description of a table.

The Directory 'fable may be used by a user to view the

directory for any one application, and by the system to

*determine the structure of any retrieved table. The ID

field is always a key field for any table. The freedom to

select a key exists only for database data tables since

* other table structures are fixed. The setting up of access

37



structures (indices) using these keys is of no consequence

to the conceptual model and is not considered in this

thesis. During display of a directory, information in the

security fields may be used to filter the rows displayEd so

that users without sufficient clearances or need to know

will not discover the existence of tables that exceed their

clearances. During any call for a particular table the

directory may be consulted to confirm eligibility for access

to that table on the grounds of security clearances,

compartments and caveats.

The GLOBALS field may contain application specific

information in textual form, for example a text application

may place in the GLOBALS field of the directory entry a page

length for printed format by including .pl 60, or a page

header .ph "NPS THESIS". A Mail Directory Table row can

contain the name of the Mail Data Table owner, and possibly

redirection instructions. In a spreadsheet directory

GLOBALS may be used to store recalculation order. In any

case, the information in GLOBALS is related specifically to

the application so each application must have the

intelligence to retrieve and use the tokens in this field.

Creation of new data tables is done conceptually by a

user creating a new tuple in the directory or conversely

creation of a table causes a new entry to be placed in the

directory. I t should be noticed that with the full

multilevel security controls this would imply the creation

38



also of the two access tables to be described in following

sections. Figure 3.7 shows an example of a single row of a

text directory.

ID NAME TYPE WIDTH SYNONYM TABLE

)TABLE NAME I CHAR 1 20 1 I-DIRECTORYI
I I _ _ _ _ _ I _ _ _ I _ _ _ I _ _ _ _ _ I _ _ _ I

I ICOLUMNS CHAR 1 0 1 1-DIRECTORYI
I I _ _ _ _ _ I _ _ _ I _ _ _ I _ _ _ _ _ _ _

SIKEYS I CHAR 0 ICOLUMNS I-DIRECTORY1

10 CLEAR I CHAR I 0 ICLEARANCE, 1-DIRECTORY1
IM CLASS I I

1 1O CC I CHAR 1 0 ICC,MCC I-DIRECTORYI

VM CLEAR CHAR 1 0 CLEARANCE, I-DIRECTORYI
1 1 OCLASS I

I _ _ _ _ _ _ _ _ I _ _ _ I _ _ _ _ _ I _ _ _ _ I
IM CC I CHAR 0 CC,OCC -DIRECTORYI
CI NAME I CHAR I 2_ I TA__ENAM I -DCTRI

I IPCT NAME I CHAR 1 20 (TABLE NAME (-DIRECTORY

I_ _ _ _ __I _ _ _ I _ _ _ _ _ I_ _ _ _

I IACTNAME I CHAR 1 20 ITABLE NAME 1-DIRECTORYI

JREVIEWED IBOOLEANI 1 I 1-DIRECTORYi
I - I _ _ _ _ _ I _ _ _ I _ _ _ I_ _ I I _ _ _ I
I IREVREQD IBOOLEANI 1 I I-DIRECTORYI
I I _ _ _ _ _ I _ _ _ I _ _ _ I _ _ _ _ _ I _ _ _ _ I
I IVIRTUAL IBOOLEANI 1 1 -DIRECTORYI

ICONDITION CHAR 0 -DIRECTORY

I I_ _ _I _ _ _ I _ _ _ I_ _ _ _ _ _

IGLOBALS CHAR 1 0 1 1-DIRECTORYI
* I I _ _ _ _ _ I_ _ _ I _ _ _ I _ _ _ _ _ I_ _ _ _ I

I IOWNER CHAR 1 10 1 USERID [-DIRECTORYI

IDESCRIPTIONI CHAR 1 0 1 TEXT BODY 1-DIRECTORYI

Figure 3.6 - Schema Table Rows For Directory Tables

39



9-q

ID TABLENAME COLUMNS KEYS 0 CLEAR OCC

I I RECIPEI IID,TEXT LINEI ID I UNCLAS I

MCLEAR MCC ACTNAME PCT NAME REVIEWED REVREQD

UNCLASI I ACT1234 I PCT1234 I TRUE I FALSE
________I i_______ I ____________ ____________ I ____________I________

VIRTUAL CONDITION GLOBALS OWNER DESCRIPTION

FALSE J I.pl 60,.Im 10 1 2516P I Brownies I
_ _ _ 1_ _ _ _ I _ _ _ _ _ _ I _ _ _ I _ _ _ _ I

Figure 3.7 -Example Row From Text Directory

D. ACCESS CONTROL TABLES

Access Control Tables (ACTs) are tables which are

associated with every data table in the ISS. To satisfy

multilevel security and need to know arrangements the ACT

for a particular data table lists explicitly the userids

". allowed to access that table and what rights each userid has

concerning the table overall, the tuple level or on

individual columns. The ACT schema is illustrated in figure

3.8, however the number of columns depend on the number of

columns in the data table being described since the

attribute column is repeated for each column in the data

table. ACTs related to data tables within one of the text

processing, form generation, spreadsheet or electronic mail

applications will all be the same structure since data

40

k-

,* , • ,, , -.' ** ,.'* .' ",'''".- " ""* " " - '" ." " " '---"-" " 4 '." • ." " - '' - " . - " " - ,



. . ..- ° . . . . ° . . . -.-. . - . . .-

tables in one of these applications have a fixed number of

columns.

I ID I USERID I MODIFY I TUPLE I ATTRIBUTEI ATTRIBUTEII I _ _ _ _I _ _ __I __ _ _I __ _ _ _ _ _ _ _ I -

Figure 3.8 - Access Control Tables Schema

Figure 3.9 describes the structure of the three as yet

undescribed attributes of the Access Control Tables. The

USERID has already been described in figure 2.5 except that

the TABLE field for that row should now read "ISSUSERS ,-

ACT". MODIFY is a boolean indicating a users right to

modify the schema of the data table. This will generally be

NO (or FALSE) since the structure of all application tables

except Database Tables are essentially predetermined by the

design of the system. TUPLE is a field containing up to

four characters indicating the users right to insert(I),

delete(D), read(R) or update(U) entire tuples. The

repeating ATTRIBUTE columns may contain read(R) or update(U)

controlling each individual's access to the columns of a

data table in the order they are listed in the directory.

Explicit TUPLE column values of read or update imply the

value for all the individual attribute columns, for example

a TUPLE update(U) implies a U in all of the attribute

columns whether they are there or not.

41

* *° .



ID NAME TYPE WIDTH SYNONYM TABLE

I IMODIFY IBOOLEANI 1 1 -ACT

ITUPLE I CHAR I 4 I -ACTI _ _ _ _ I _ _ _ I _ _ _ I _ _ _ _ _ I _ _ _

IATTRIBUTE I CHAR 1 2 I I -ACTI _ _ _ _ I _ _ _ 1 _ _ _ _ _ _ I_ _ _ _

Figure 3.9 -Schema Table Rows For Access Control Tables

The ACTs are useful to enforce views and multilevel

security requirements. When accessing a data table via the

directory the number of columns in the data table and the

name of the associated ACT is retrieved. The system must

then enforce tho restrictions imposed by the ACT during use

of the data table. If an all users (USERID = -ALL) entry is

not in an ACT then users who are not explicitly on the list

have no access to the data table with which the ACT is

associated. An individual's rights to a file may be

determined by more than one entry, for example -ALL may read

tuples and 2516p in addition may update tuples. This

mechanism may be used in multilevel security to enforce need

to know lists of personnel for particular documents.

Although every table must have an associated ACT, there

is no requirement for the ACT to be unique provided it

describes the correct number of columns. For example within

an application one ACT may be used as a simple owner write,

all others read access table with which many data tables are

42

* ' . * - -.



associated. Figure 3.10 is an example of such a table which

may be named in the ACT_-PTR field of any text directory or

forms directory row because it has two attribute columns.

(One for ID and the other for TEXT-BODY or FORM-BODY.)

ID USERID MODIFY TUPLE ATTRIBUTE ATTRIBUTE

I -OWNER NO IU R DI

I I -ALL I NO I R II

Figure 3.10 -Example Access Control Table

In this example the hyphen is used to designate special

userids such as owner and all users.

Discussion and implementation strategies for these

tables are left for further research into multilevel

security issues in an 155.

E. PARAGRAPH CLASSIFICATION TABLES

The Paragraph Classification Tables (PCTs) are designed

to provide access control, primarily of Text Data Tables, at

a paragraph level as required for multilevel security

systems. Since a paragraph may consist of a single line of

* a Text Table, essentially line by line control is required.

Figure 3.11 illustrates the schema of PCTs and figure

3.12 shows the Schema Table row for the OFFSET column which

* has not already been described in prior sections.

4...-43



ID OFFSET CLEARANCE I CC II I _ _ _ _ I _ _ _ _ _ I _ _ I

Figure 3.11 - Paragraph Classification Tables Schema

Each data table is covered by a PCT although as in the

case of the Access Control Tables, the PCTs need not be

unique and may cover many data tables. The Paragraph

. Control Table for each data table is named in the PCT NAME

field of the directory entry for that data table.

ID NAME TYPE WIDTH SYNONYM TABLE

I IOFFSET IINTEGERi 6 I ID I -PCT

Figure 3.12 - Schema Table Row For PCT Column OFFSET

.

The table is ordered on the offset field, the first and

possibly only tuple being for an OFFSET of 1. The

clearances, compartments and caveats for an offset represent

those placed on the material in the associated data table at

that ID and greater, until superceded by another row in the

PCT. During retrieval and manipulation of tables,

particularly text, only those rows of data which are less

than or equal to the userid's security levels and clearances

will be made accessible.

44

• ... %
-..- ... -.. . , . . .. •. . . , ..... . . -. .. - , ... .,. . . .. ... . ..



Figure 3.13 shows an example of a simple paragraph

control table which will be pointed to by name from the

directory entry for some text data table.

ID OFFSET CLEARANCE CC

Il 11 UNCLAS I
.i -I _ _ _ _ _ _ _ _ I_ _ I

1-2 1 101 SECRET I I
I - I I_ _ _ _ _ _ I _ _ _ I
I 31 201 UNCLAS I

Figure 3.13 - Example Paragraph Classification Table

The PCT indicates that IDs (lines of a text document) 1 to 9

are unclassified, 10 to 19 are secret and 20 up to the end

of the document are unclassified. Should the user be

allowed access to the data table by the controls described

in the previous section, and have a clearance less than

secret, then he will be able to see the unclassified part of

the document. As with the Access Control Tables, strategies

for implementation and use of these PCTs to implement

multilevel security measures are left for further research.

F. CAPABILITIES LIST TABLES

Capabilities List Tables (CLTs) are a multilevel

security table associated with each userid in the ISS system

and will be named in each row of the ISSUSERS table in the

CAPABILITIES column. (See figures 3.3 and 3.4).

45

..-" .* '.°- a.



IID ITABLE-NAME ITYPE IOWNER

Figure 3.14 - Capabilities List Tables Schema

The information they contain is sufficient to determine

immediately all tables to which any userid has access. It

has been suggested [Ref. 2] that such tables are required in

a multilevel security environment, although the data they

contain is mostly redundant. One solution may be to provide

the tables as virtual tables. Figure 3.14 illustrates the

* schema of the CLTs. All the Schema Table rows for the

columns have already been described in previous figures

* except that now "-CLT" (all CLs) must be added to the TABLE

and OWNER columns in the appropriate Schema Table rows to

indicate that the columns are also used in the Capability

List Tables.

For each userid in the ISSUSERS table the CLT is simply

a list of tables to which he has access before security

* levels, compartments and caveats are token into account.

The CLTs are a redundant method of enforcing need to know

restrictions and requires positive input from the creator of

any data table. Mechanisms to maintain this list would

clearly he linked with the multilevel security precautions

46



used to create and manipulate tables and are not discussed

further in this thesis.

G. TEXT DATA TABLES

The Text Data Tables contain non-formatted textual

information. This data can be used in a myriad of

applications, including preparation of documents or computer

programs, or as textual information to be combined with

other application data tables by one or several of the 155

operators.

The Text Data Table contains two attributes, ID and

TEXT LINE. The schema for the ID has been previously

defined. The schema for the TEXTLINE attribute is shown in

figure 3.15. The O08 in the width field indicate that the

TEXTLINE is of varying length. As depicted, the FORMLINE

attribute of the form data table and the BODY attribute of

a., the MAIL data table can be aliased with the TEXT-LINE

attribute of the Text Data Table.

ID NM YE WDT YOY AL

TETLIEI.HR. OR IN -TX

BO.. I-

Fiue31 Shm al RwFrTxtDt.al

a.-47



Figure 3.16 shows an example of a Text Data Table. Each

*row is uniquely defined by the ID and TEXT_-LINE. Any type

information can be entered into the TEXT-LINE and all the

data, (except the ID), will appear on output in the same

format in which it was input. (Note that row 3 of figure

3.16 contains the characters ".sk 2". This character

sequence will have no special meaning in the context of the

155 Text application. However, the Text Data Tables can be

used as input to a TEXT FORMATTER APPLICATION SYSTEM in

* which these characters or similar syntax would have a

* special meaning, i.e. "skip two lines"). The key issue is

that all user input into the Text Data Table will be

operated on by 155 as pure textual or literal information.

*1ID TEXTLINE

I1IWhat can be better

12 than this?

3T .sk 2

rfDON'T ASK!

Figure 3.16 - Text Data Table

H. FORM DATA TABLES

The Form Data Tables are a special set of Text Data

*Tables. They act as a window or view into the ISS Database

K 48



Data Tables and may be used for entry or extraction of data.

Forms are generally used for repetitive tasks such as the

printing of letters with the same or similar bodies but many

* different addressees. Forms may also be used in order to

create facsimiles of documents on a CRT screen. These

facsimiles of documents can then be used to facilitate easy

insertion or retrieval into or from a Database Table. This

will serve as a valuable tool for users who are more

familiar with the order and relationships among entries on

the documents than with the standard tabular formats used to

manipulate data in a database system.

Form Data Tables are comprised of only two attributes,

ID and FORMLINE. Figure 3.17 illustrates the schema for

the FORM LINE. As shown, the TEXT LINE attribute of a Text

Data Table and the BODY attribute of a Mail Data Table can

be used synonymously with the FORM LINE attribute of the

Form Data Table.

ID NAME TYPE WIDTH SYNONYM TABLE

I I FORM LINE 1 CHAR 0 1 TEXT LINE I-FORM
I I - I i IBODY II I _ _ _ _ _ I _ _ _ I _ _ _ I _ _ _ I _ _ _ _ I

Figure 3.17 - Schema Table Row For Form Data Table

Figures 3.18 and 3.19 show examples of two distinct

types of Form Data Tables available in the ISS. In order to

49

°. ° o ° • - - .'.. .. %, . - , . *. .
• L'- % . % '. %''" ".% % ',*" '. ." ".



it.....

use either Form, the user must specify the name of the

underlying Database Data Table to be invoked, hereafter

referred to as the default Database Data Table.

Figure 3.18 is the simplest type form and can be used

both for extraction and insertion of data from or into a

single Database Data Table (file). In this type of form the

user may operate in two distinct modes: insert or retrieve.

In the retrieve mode a form with pre-printed attributes will

appear on the screen with the attribute designated as a key

enclosed in braces, I. The user has a choice of

specifying a unique tuple to be retrieved or requesting all

tuples. If he wants a unique tuple he will enter the value

of the key attribute for the desired tuple. The remaining

data will be retrieved from the database by the system and

inserted into the form. In figure 3.18, the user, operating

in the retrieval mode, entered the value "123-45-6789" for

the SS# database attribute. The ISS then used this value

to search through the database for the matching tuple and

automatically filled in the rest of the form with the

attributes desired from this tuple.

The user may request that all tuples of the database be

retrieved by using the KEY word , -ALL. If -ALL is used and

there are 100 tuples in the associated Database Table, then

there will be 100 forms filled in by the system. In all

cases, the FORM LINE(s) will appear in printed output

exactly as it appears on the screen, including the data

50

L.-, a. ° S -o ., ,

',' '" ' '..'jd "" " """"""""" "." ' . ." ". *"* * *.- "-".,. *



table attribute prompts. The ID of the FORMLINE will not

be printed.

In the insert mode the user will supply all the data as

indicated by the blanks following each attribute. This data

will be reformatted by the system to conform to the format

of the underlying database data table before it is inserted

into that table.

ID FORM LINE

I11 NAME: G. Thompson {SS#}: 123-45-678

1 21 ADDRESS: 2 Lane Rd ,Somewhere, Fl. 22222

1- ---------------------------------

1 41 OCCUPATION: Systems Analyst
1- -- ------------------------------

1 51 SALARY: $100,000.00
-------------------------------------

1 61

Figure 3.18 -Form Data Table

Forms of the type illustrated in figure 3.19 can be used

only to retrieve data from one or several underlying

Database Data Tables (files). In order to maintain database

consistency, no insertions into the database are possible

with these forms. Within forms of this type, text appearing

in the form line can be of four distinct types. These types

51



7.-. .

are distinguished by the presence or absence of special

symbols within the text entered on the FORMLINE.

If there are no special symbols within the text entered

on a FORM LINE, then the text is considered to be literal

and will be printed or displayed as is. Text entered

between two braces, f }, represent a key attribute of a

given database data file and will determine which tuple(s)

of the Database Data Table will be referenced for other

retrievable data on the form. The format for this data type

is [table.attribute} or {attribute}. The latter format

implies that the default table is to be used. The user can

enter a unique value to retrieve a single tuple, or he can

enter the system variable -ALL to retrieve all tuples in the

database.

The special characters, I}, can appear on a single form

more than once but there must be a one to one correspondence

between them and the distinct Database Data Tables

referenced on the form. For example, row 1 of figure 3.19

contains the text, {NAME). In this case, the user can enter

a unique name to retrieve a single tuple from the default

Database Data Table, or he can use a variable to retrieve

all tuples from the default database. In row 7, the ~L

(B.SWEEPSTAKE) entry indicates that the SWEEPSTAKE attribute

of database data table B will be retrieved. Table B must be

distinct from the default table.

52



. :~.....,... ... .. .. . ......,:_ , ! . I !* 1 I.- I[ i-1 l J !

I. •

ID FORM LINE

I l {NAMEJ

I 21 [ADDRESS]

1 131 (CITY], (STATE], (ZIP]

1 51 Dear (TITLE] (NAME],

1 61 You may already be a winner in our

1 71 {B.SWEEPSTAKE}. In order to find out

181 if you are an instant winner read the

191 following information.

IJ-O /Sweepnum. Txt/

ii

1121 If you are a winner, you may collect

i-31 your prize from (B.ADDRESS], (B.CITY],

1141 (B.STATE].

f1
IT I

ISincerely,

IT71

I1181 Sweepstakes Deluxe

Figure 3.19 - Form Data Table

Text entered between brackets, [ ], represent variables

or attributes to be retrieved by the system from the

corresponding tuples(s) retrieved previously using a "( }"

53



FORM LINE entry. The format for this type data is

(table.attribute], or [attribute]. This type data is

illustrated in rows 2,3,5,13 and 14 of figure 3.19. Note

that in row 1 the FORM LINE contains {NAME}, and in row 5

the FORMLINE contains [NAME]. Even though they refer to

the same field in the same database table, they differ in

that {NAME} is used both to extract the value of the

attribute, NAME, and to determine which tuple will be made

the current tuple in the default Database Data Table.

(NAME] simply extracts the value of the NAME attribute from

the current tuple. In other words, {NAME} means "retrieve a

new tuple with the given value in the name attribute,

substitute its value for the symbols, '{NAME}', and retain

the tuple as the current tuple of the default database data

table". (NAME] simply means "substitute the symbols

'[NAME]' with the value of the NAME attribute of the current

tuple in the default Database Data Table.

Another type of text which can be entered on the

FORM LINE is data entered between slashes, / /. This

indicates that the text to be displayed or inserted will be

obtained from an existing Text Data Table (file). Its

format is /filename.TXT/. In row 10 of figure 3.19,

/Sweepnum.TXT/ indicates that the text file named Sweepnum

will be inserted into the form upon view or print requests.

Forms of the types depicted in figures 3.18 and 3.19 are

54



basic, but powerful enough to facilitate most applications

involving Form Generation.

-* . I. DATABASE DATA TABLES

The Database Data Tables differ slightly from the Text,

Mail,Spreadsheet, and Form Data Tables in as much as there

is no predetermined set of attributes that will apply to all

Database Data Tables. More precisely, each Database Data

Table may have one or several attributes in common with any

other Database Data Table in the ISS. The attribute which

must appear in all Database Data Tables is, of course, the

ID. The ID is a key in each Database Data Table. Thus, as

a user creates a new database data table the only schema for

this table to appear initially in the Schema Table will be

that of the ID. As the user defines the schema of each

additional attribute of the given Database Data Table, these

schemas will be automatically added to the Data Dictionary.

The Database Data Tables are used to form relationships

among entity sets. Each Database Data Table defines one

entity as described by the attributes or columns, and each

row of the table represents a unique occurrence of the

entity. Figure 3.20 illustrates a Database Data Table with

an ID attribute and N user-defined attributes.

55



- - q .J '~ T

ID ATTR-l ATTR-2 ATTR-n
. I i I I I -

S.- .I I _ _ _ _ I _ _ _ _ I _ _ I _ __ I
--I " 1 2 I I I I

[? I I _ _ _ _ I_ _ _ I - _ I _ __ I

Figure 3.20 -Database Data Table

J. MAIL DATA TABLES

Electronic Mail is a utility which facilitates the

exchange of textual messages among system users. In the

ISS, each user with mail access rights will have a mail file

which is essentially a set of messages, i.e. a Mail Data

Table or set of Mail Data Tables.

The Schema Table rows for the Mail Data Table are shown

in Figure 3.21. As indicated in the figure, the TEXTLINE

attribute of the Text Data Table and the FORMLINE attribute

of the Form Data Table can be used synonymously with the

BODY attribute of the Mail Data Table.

The columns or attributes of the Mail Data Table are

predefined by the ISS, and as shown in figure 3.22, they

contain sufficient information to facilitate proper routing

of mail to the ISS user. Each row of the Mail Data Table

represent a complete message.

56

., ----



ID NAME TYPE WIDTH SYNONYM TABLE

I fVIEWED IBOOL I II NONE I-MAIL

I IFROM ICHAR I 0 1NONE f-MAIL

ITO ICHAR 1 0 1NONE I-MAIL

*I- I CUBJET ICHRARI 0 1 NONE I -MAIL

B ODY__________________C HAR____________ _____________ _0_______ T E XT___________________ L IN EA_______________________________ ____-M A IL__________________________

_____________________________________________ ____________________________ ____________________________ ____I _______________________________________ ___________________________________________
_____________________________________I______ I__________________________ I___________________________ _________________________________________ ________________________________________

FRM O OYTDT n SUBJECT atrbue CHARis the NN IAI

mot an Figur 3.21 tShemaeTabe ws orgally Dratd T Tbe

Teanro he VIEWED attributerqies asre "nof-exdaaetry.

whichiis usedhtooinicateowhetherathe crrespondingamessag

hasdibeen rad byoe wnter ofete Miat ale h

SFROM, TO, COYTOaATsndSBJC attributes cOY otin h etompis the

eaeftemessage. The DAToatriut will providesmuc o the rtln

*o All ofssthe mesag headitoner ttiues cfaybegused thor

queie wic oprae n essge stifyig gve



w .. . 7

The remainder of the text will be retrievable by the user

via a unique mail display operator.

If the length of the BODY column is insufficient to

contain the full message, this fact will be denoted by the

special characters, =>, appearing at the end of the column

-r as shown in row 1 of figure 3.22. Users also have the

option of typing in the name and type of an ISS data file in

the BODY column of the message. In this case, the name and

type of file, preceded by a hyphen, "-" and followed by

"=>U , will be displayed in the BODY attribute-but no

portion of the text of the file will be displayed. This

type message is illustrated in row 3 of figure 3.22.

ID VIEWED FROM TO COPY TO DATE SUBJECT BODY

I 11 NO ISPOT I SAM I PETE 1 10-41 GAME I The Game => I

1 YES IDAN MARY LEE 10-3 DINNER Cancel! I

I I _ _ _ _ I I - -_ _ I_ _ -_ _ I -T -_ I I_ _ I__ _ _

1 31 YES lIKE i TINA i i 0-li DANCE I -Details.TXTI
Ii =>

Figure 3.22 -Mail Data Table

In some cases the message body will be terse enough to

fit, in its entirety, within the allotted columns. In these

cases, the user will not be required to request further

display modes for the message, and the special characters,

58



=>,will not appear on the display. This type message is

illustrated in row 2 of figure 3.22.

K. SPREADSHEET DATA TABLES

An electronic spreadsheet, in its traditional form, is a

rectangular grid of rows and columns, like a large sheet of

graph paper, to facilitate organizing numeric data for easy

- .~ calculation and comprehension. It allows the user to model

a variety of numerical problems in a standard tabular format

on a computer with the elimination of the drudgery and

errors encountered by using the scratchpad and pencil or

-~ hand calculator.

* The schema for the columtns of the Spreadsheet Data Table

is illustrated in figure 3.23.

In the Electronic Spreadsheet application, the format of

the Spreadsheet Data Table is quite different from the

standard user's view of the spreadsheet. An example of a

Spreadsheet Data Table is shown in figure 3.24. Figure 3.25

illustrates an example of the standard user's view of the

Spreadsheet Data Table shown in figure 3.24.

In the view, the intersection of each row and column

form one addressable unit or entry position. Each entry

position in the view is described or defined by a row in the

Spreadsheet Data Table. Although the ID is a key attribute

in the Spreadsheet Data Table, it does not have any bearing

on the order in which the entry positions in the view must

59



appear in the data table. Blank entry positions in the view

do not have to be described in the Spreadsheet Data Table.

The XCOL attribute and Y ROW attribute are the column

position and row position, respectively, of a unique entry

* in the view. The FORMAT attribute of the Spreadsheet Data

* Table contains the information which determines how the data

*of the entry will be displayed in the view. This field

- - contains three distinct types of data: the entry data type,

right or left justification modes, and width of the column

displayed in the view.

The entry data type can be of four types: character,

integer,float, or monetary (dollars and cents number). To

avoid inconsistencies and maintain readability, the user is

prevented from declaring different column widths for entries

in the same column. For example, if entry position A-1 has

* a column width of 15, then entry positions A.-2 through A-n

must have a column width of 15, even though the data types

of the entry positions may differ.

The VALUE attribute contains either the display value of

the FUNCTION attribute of the literal string for character

entry types. The FUNCTION attribute contains either the

keyword NONE, or an expression. The keyword, NONE, is used

to indicate that the associated value of the entry is non-

numerical and will be displayed in the view exactly as it

was entered. The expressions in the FUNCTION column may be

* a numerical constant or an arithmetic expression. Numerical

60



W'd'.-'

constants are entered by the user and appear in the view in

the formats indicated by their data type. The arithmetic

expressions may be composed of system built-in functions and

operators or user defined functions or combinations of both.

*-The operands of these expressions will be numerical

constants and/or the values of other entry positions. Once

defined, these arithmetic operations are automatically

evaluated by the 155 and their values are displayed in the

view. For instance, in the example, the data table entry

for position B-S is the function "B:2 * B:3". When the

Spreadsheet Data Table is converted into the user's view,

the value of the function is displayed, (in this case

12.00). If the user decides to change the value of 'no.

ordered' (B-2), or the value of 'cost per item' (B-3), then

the system will automatically reevaluate the function and

immediately display the updated entry in the spreadsheet

view in entry position B-S.

The user has the option of updating the Spreadsheet Data

Table directly or indirectly via the view. However, if the

view is chosen as a means for updating the data table, then

only the non-calculatable entries can be updated, (i.e.,

literal strings and constant expressions).

61



k, %.* o'%

ID NAME TYPE WIDTH SYNONYM TABLE

X COL CHAR 1 NONE -SPREAD

Y I ROW lINT I3 INONE I-SPREAD I

IFORMAT ICHAR J12 INONE I -SPREAD I

I IFUNCTIO I CHAR 10 1 NONE I SPREAD I

!111

Figure 3.23 Schema Table Rows For Spreadsheet Data Table

,69-74D NAE TP WDH SNOY AL

:- COL HARI i ONE.-S R62



4p.'"

ID XCOL YROW FORMAT VALUE FUNCTION

I 1! A 1 1 1 CHAR I******* NONE
I ILEFT
I I15

1 -I ---------------------

I 21 A 1 2 1 CHAR NO. ORDEREDI NONE
-- I I LEFT I II..1-,.I 15 1

----- ---- I -- - - - -

1 31 A 1 3 1 CHAR ICOST/ITEM I NONEI
I I I ILEFT I

15

141 A 1 5 1 CHAR ITOTAL COST I NONE
IILEFT I

"-'" I 15
* - ----------- I----------- I

1 51 B 1 1 1 CHAR ISTOCK1 I NONE
I IIRIGHT

I I I I 101
I - I----I I-- --- ------- I-----------

1 61 B 12 1INT 1 31 31
I IRIGHT
-II I 10

I ----- I---- ------- I-----------l-----------
1 71 B 1 3 1 MONEY 1 4.001 4.001
1 1 I IRIGHT
1 .-. ".I 1o1

-----I - -I------ -------
1 81 B 1 5 1 MONEY 1 12.001 B:2 * B:3 I

IRIGHT
I "I10

I -- I ---- I ----------------- I-----------I
" I 91 C 1 1 1 CHAR I STOCK21 NONE

I" IIRIGHT
I'I" 10

------------ -------------------------------

Figure 3.24 -Spread Sheet Data Table

63

.'K , ., ." . -' : ,, . , .o.. - .• . ..-• . . . . .• ..

, , " ' Z 'a, /. " ". ,""z ", " .- ' '-, '-".°''..-. '. '.-' .' °,, .. •-- ', - '" ."". "" - , -. . -'.. , - .. ", .'



7.. 7.- .*m W7 7

A B C

1 f****1 STOCKII STOCK21

2 INO. ORDERED 1 31I
I I__ _ _ _ _ _ _ _ I_ _ _ _

3 ICOST/ITEM 1 4.001

4!

5 ITOTAL COST 1 12.001I

6 1 1

Figure 3.25 Spread Sheet View

64



.7 17,1 - .4 0 7

IV. CONCEPTUAL INTEGRATION

**Conceptual integration of the five application areas of

the Integrated Software System (ISS) has two components from

a users perspective: a single data object, and a set of

common operators which operate on those objects uniformly

* regardless of the application. In addition to these common

* operators, each application must provide its own set of

specific operations to achieve its special functions. The

single data object, the table, has already been discussed in

chapter III.

The functional intersection of the five application

areas is best understood by describing the common operations

(as opposed to the actual primitive operators) which are

required to manipulate data in and extract data from a file.

The common operations can be performed by the eight basic

ISS primitive operators, six of which are based on

Relational Algebra, one which is an aggregate type of

operator (sort) and one which is a proposed extension to

Relational Algebra similar to Stonebraker's concatenation

operator [Ref. 5] described in section B of chapter II. The

primitive ISS operators are described in section A of this

chapter and their mapping to the common operations and the

utility of those operations are described in section B. The

descriptions given are of the conceptual view of the

65



operators and operations, not their form which is

. implementation detail. That is, their semantics and not

syntax are described.

A special table called "ISSBLANK" is defined to be

simply a blank row of any table. This convenience allows

the primitive ISS operators to be set theoretic with both

operands and results being tables.

The ID values in a table are the conceptual ordering of

the relation in the system and thus is maintained by the

system during operations cn the table. Rows are always

numbered contiguously from 1 to the number of tuples in the

relation. Manipulation of the ID values in a table by a

user is prohibited except indirectly via the re-ordering

(and re-numbering) required after insertion and deletion of

, rows. New tables created by operators have their ordering

imposed by the system as they are formed.

The effect of a primitive operator may be a change to

the operand or the creation of a new table or both,

depending on the operator. A created table can be assigned

to (overwrite) an existing data table, which may or may not

be one of the operands, or a new table. This is analogous

to a conventional programming language variable assignment x

funct(x) except that the variables are now entire tables

and the function is an ISS primitive operator. When

operators are nested they operate on the result of the

previous operator.

L.'i 66

* ." - ,, ., .-". , .. - ' . ,. ." " ..' .. - .. .. .- . .,. .v,..-. . ...... ..-



.7In addition to the primitive ISS operators provided for

data manipulation in tables, there is a set of binary

operators which operate between data tables. These complex

ISS operators, which contribute to the extensibility of the

ISS, may be applied to tables within and sometimes across

application areas. In many cases, in view of the meaning of

the structure of non-database data tables, inter-type

operations are conceptually meaningless. The semantics of

these operators and their utility is discussed in part C of

this chapter.

A. PRIMITIVE ISS OPERATORS

The eight primitive ISS operators insert, modify,

delete, project, select, union, sort and concatenate perform

their functions on tables of any type in any application.

Some operators are designed to change a target table while

others are designed to extract data from a table creating, a

new table for further use. The delete operator does both.

The modify, delete and select operators require a

condition which specifies which rows of the data table are

to be manipulated by the operator. The operands of the

condition are literal or numeric constants, arithmetic

expressions, column names or column values in the table.

eThe literal expressions may contain pattern matching

characters. The operators of the condition statement are

* the logical and arithmetic operators and the arithmetic

67



relational operators, (less than, equal to, etc.). One

common condition used will be specification of a line number

or range by using the ID values. For example: ( ID=I0 ), or

for a range: ( ID>=3 AND ID<=14

It should be mentioned here that although efficiency

is not a concern of the ISS at this time, operations which

cause rearrangement or re-ordering of rows in large data

tables such as large Database Tables, will be very

-. inefficient due to the amount of processing required.

~1 . Insert

Insert changes a target table by inserting into it a

table at a specified location (ID value). If no ID is

specified the new tuples are appended onto the end of the

target table. The columns of the table to be inserted must

contain a subset of those in the target table. The matching

of column names is satisfied by equivalent attributes or

synonymous attributes as defined in the Schema Table.

Matching of synonyms is in the leftmost sense from both

tables. Unmatched attributes in the target table have no

value placed in the new rows. Effectively, the insert does

row and column insertion, adding the extra structure

required to the rows from the inserted table. The result of

an insertion is the changed target table. Since the

location of the insertion may be internal to the target

table, the ID values of the inserted tuples and the

subsequent tuples must be re-numbered by the system.

68

- ,.-,..,,,I ,.,, . -t , . , .: ,:. ", ' '.' :. . -"- ; ,"- """""""".. . ".". ." ' .-.. ,- . '



2. Modify

Modify alters a target table by changing the value

of specified columns in a row or set of rows to new values.

The rows to be modified are determined by their satisfying a

given condition, all tuples which match the condition have

their values changed. The new value to be placed in the

rows chosen, may be specified absolutely or as a function of

the old value to be replaced.

One special use of this operator is modification of

the material under the curser during browsing or editing of

a relation. The curser in this case has two values

associated with it, the ID number (row) and the column name

in which it displayed. Direct editing of the displayed old

value becomes the new value. This use of the modify

operator will be managed by the browsing software.

3. Delete

The delete operator changes a target table by

deleting all rows which satisfy a given condition. In

addition the delete operator creates a temporary new table

of the same type and structure as the target table

containing the deleted rows. It is the table of deleted

rows which is returned by the operator when considering

combined operators. The system manages the re-numbering of

the ID column values in the target and deleted rows tables.

F 69



4. Project

The project operator creates a new table consisting

of just those columns of the old table which are specified,

in the order that they are specified. The appropriate

columns of each row are copied into the new table, with rows

in the same order as the original table. It is important to

note that the resulting table will not in general be a table

of the same type as the original table unless both are

- - Database Tables, which have no specific schema like Text,

Form, Mail and Spreadsheet Tables. (See chapter III for

fixed schemas of non-database data tables.) In all cases

except the trivial case of projection of an entire table,

the projection will have a different structure than the

operand table. For example the projection of a Mail Table

on the FROM and TO columns gives a result with three columns

(ID, FROM, TO) which is not a Mail Table or any of the other

fixed schema type of tables.

5. Select

The select operator creates a new data table from

all rows of a given table which satisfy a given condition.

Its effect is similar to delete except the selected rows are

not deleted from the given data table. The result of the

operator is a newly created table of the same type and

structure as the operand, however no assumption can be made

about the order of the rows in the new table.

70



6. Union

.2 Union operates on two data tables of possibly

dissimilar types, producing a resultant data table. The two

operand tables are of unequal status in that one, for the

sake of a convention, will be referred to as the "left

operand", dominates the other in that it determines the

structure of the resultant table. The other, or "right"

operand table of the union operator must have a set of

columns (attribute names) which is a superset of the left

operand. That is: each column name in the left operand (and

hence result) must also be found in the right operand, or in

other terms, an appropriate projection of the right operand

could produce a table of the same structure as the left

operand. Synonymous attribute names as defined in the

* . Schema Table are considered equivalent for purposes of

structure comparison. If the right operand table has a set

of column names which contains two or more aliased names for

Na column in the resultant, the first column from the left

will be used for the union.

The operator makes an identical copy of the dominant

table and then appends to it copies of the shortened tuples

from the other table. Like set union, a row from the second

table is not added to the resultant if an equivalent row has

already been included from the first table. if the

resultant table is assigned to the left operand then union

IrS)

71



may be viewed as an appending of one tables rows onto the

other.

Union is different from the insert operator in three

major ways: it truncates the longer table, it performs

theoretic set union on the set of rows and it always adds

% 

I

the right table to the end of the left table.

7. Sort

Sorting of a data table on the values in a specified

set of columns creates a new table of the same type and

structure with the values in the ID field corresponding to

the increasing or decreasing sorted order of those columns.

That is, the display order and conceptual ordering of the

rows in the table are now sorted in increasing size of the
values in the columns on which the sort was performed. If a

column is numeric then the sort is done in numerical order,

otherwise it is done in lexicographic order.

In some sense the sort operator is an aggregate

operator in that it is the result of many basic

manipulations which could be performed with much difficulty

by using the other primitives.

8. Concatenate

Concatenation is a specialized operator which

creates a new text data table from any other type of table.

The values of specified columns of the operand table are

concatenated into one single resultant table, row by row

72

...............................V



with each field in a row separated from the next by a space.

The system provides the ID field for the resulting table.

B. REALIZATION OF 155 OPERATIONS

The desired operations on logical files of the ISS,

regardless of the application, are easily realizable in

terms of the primitive operators described above. These

• >operations are applicable to all types of data tables (Text,

Form, Mail, Spreadsheet and Database) and system tables

(SCHEMA, ISSLOGIN, Directories and security tables) ,

although the concern of this thesis is primarily the

manipulation of data tables. The utility of the operations

depend on the application, for example the moving of rows

within a table is absolutely essential for Text Data Tables,

but hardly useful at all In a database application. This

section describes the operations in terms of the ISS

primitives and their utility in the text, form, mail and

spreadsheet applications. The usefulness of these

operations on Database Data Tables depend entirely on the

meaning of the tables. Since form creation is a text

processing application, descriptions of operations on Text

Data Tables always apply to Form Data Tables as well. The

desired content of a form can be as general as any document.

It must be understood that when discussing the

spreadsheet applications, there are two dimensions to the

descriptions given. The underlying data table drives the

73

..

L9-?.



71 IC 27 VV . . r I

* presentation of the traditional view and rows and columns of

* the data table do not correspond to rows and columns of the

view. Each row of the data table corresponds to a filled in

position in the conventional view. The absence of a row in

the data table for an entry position in the view simply

means it is displayed as a blank. An empty Spreadsheet Data

Table corresponds to a blank spreadsheet view. In the

following descriptions an attempt is made to draw the

distinction between view and data table manipulations.

It is not the intent to repeat the full analysis of

possible uses for operators carried out by Nishimura [Ref.

-11

* 1. Removal Of Rows

Removal of rows in a data table is performed by

applying the ISS delete operator with a condition to select

the tuples for deletion. In a text or form application,

removal of row corresponds to the deletion of a line of

* text, which may be selected by ID number or a pattern match

on the lines of text. The table of deleted rows created by

the delete operator can be used as part of an undo facility

in the editing environment of the text application area.

Removal of a Mail Data Table row or set of rows, is

r-simply the final disposal of a message or set of messages

from a mail table. The table created by the delete operator

may be used to transfer mail to another table, such as a

dead letter box. The semantics of the delete operator

V 74

-W



K7... . . . . . . . . . . .. . . . . . . . . . . . . . .

requiring a condition to be given, allows for great

flexibility in defining the set of messages to be deleted.

Rows of a mail table may be deleted according to date of

message, range of dates, whether viewed or not, range of

date and whether viewed, individual names, pattern matches

on sender and/or addressee names, subject pattern match and

many other combinations given the mail table structure

- . described in chapter III.

In the spreadsheet application, removal of a row or

*number of rows in a Spreadsheet Data Table corresponds to

* the blanking or setting to "empty" of an entry in the

traditional spreadsheet view. Since the delete operator is

* . specified with a condition on one or more of the Spreadsheet

Data Table columns, data table rows and hence view, entries

may be deleted according to a large range of criteria. This

* is in contrast to current traditional spreadsheets which can

delete entries or "blank" by row, column or block only.

Deletion of a row or column in the spreadsheet view

is somewhat more complex and must be done by a combination

of operators. To remove a row in the view entries in that

view row (Y ROW = view row) must be removed (leaving a blank

row), then all data table tuples for subsequent spreadsheet

rows must have their Y ROW values incremented by 1, forcing

the view mechanism to now display them one row higher. A

similar procedure is required for columns in the view.

75



'-:,:..

2. Location Of Rows

The location of a particular row or a set of rows of

a data table is simply an application of the select operator

described in subsection B.5 with the desired condition

imposed.

This operation may be used to display particular

rows of a data table or to browse through a file. Browsing

is affected simply by locating contiguous blocks of ID

values. This type of browsing would be particularly useful

for Text and Form Data Tables where the ordering of rows is

meaningful. Using pattern matching, conditions this

operator allows pattern search within a document.

*' Similarly, Mail Tables can be browsed using the

select primitive operator, allowing a freedom to produce

message summaries based on any criteria rather than being

restricted by a predefined message summary.

In spreadsheet applications, with the traditional

.- spreadsheet view in mind and an understanding of the

underlying model (a Spreadsheet Data Table as described in

section III), a single entry position can be located by

selecting the row with the condition that X COL and Y ROW

match the desired entry. In addition, the location of a set

of rows in the data table correspond to search actions

throughout an entire spreadsheet view. TraditionalK spreadsheet views generally reference only one entry

position at a time whereas the ISS primitives select allows

76

°. °

.J



an entire set of entry positions to be located in a single

operation. A set of rows (entry positions in the view) may

be selected according to their position, function, value or

even their format.

3. Addition Of Rows

Tuples may be added into data tables by applying the

ISS primitive operator insert. The BLANK table may be

inserted in the case of new tuples, or some other table for

simple additions of existing tuples from another table. An

empty row inserted would need subsequent modification to

fill out its values. Appending rows to a table is simply

insertion at the last ID. Insertion may also be done by

using the 155 primitive operator union and assigning the

* result to the required table. The union operator will add

rows onto the end of the table, adding only those rows from

the other table which are not already in the resultant

table. Generally insert will be more useful in the

applications which deal with tables where row order is

important (text and forms), and union in the others.

The general utility to be able to add rows to a

table needs hardly be mentioned except to describe the

effect in each application area. A Text or Form Table

during creation or modification requires a facility to

insert new lines at specified locations, followed perhaps by

modification. During form processing the forms mechanism

must dynamically insert entire tables where indicated,

77



allowing standard blocks of text to be embedded in each of

the output documents. Any of the fixed data table types may

be inserted into a Database Data Table, providing new data

tuples with some of the column values already entered.

In the mail application addition of a new row in a

data table corresponds to creation of a new message.

Addition via an insert or union command of a number of rows

selected from another Mail Table would get copies of some

other user's messages. Messages left in the care of another

user's Mail Table could be collected by inserting the result

of a deletion from that table (delete those for which

addressee is the eventual owner) into the addressees mail

table. A union of Mail Tables would create a list of unique

messages received by a set of users.

In the spreadsheet application the addition of a row

in the data table corresponds to the filling in of an entry

position in the view. When using union and insert with

Spreadsheet Data Tables care must be taken to ensure view

entry positions are not duplicated, that is the XCOL and

YROW values together form a unique key. One of the

spreadsheet application area specific functions will need to

be the management of view row and column insertion

procedures, manipulating the Spreadsheet Data Table to

effect the changes required in the view. Insertion of a

(blank) row or column in a view is done by modifying the

78



L
Spreadsheet Data Table and was discussed in the previous

section.

4. Updating Of Rows

Updating of data table rows is performed by applying

the ISS primitive operator modify with the appropriate

condition to select the desired rows. In this way, data

table values may be changed to new values explicitly given.

The insertion of the blank table and subsequent updating

completes the creation of new rows in a table.

Updating of text and form lines is clearly useful as

this is merely part of the ordinary editing function.

Global changes can be effected using pattern matching in the

condition for modification. For normal text editing and the

filling in of blank rows of other data tables, this raw use

of the ISS primitive modify operator is very clumsy, and a

S.. control program such as mentioned in subsection A.2 to

browse and edit is required. For example the deletion of a

sentence spanning a number of lines would require updating

of the lines where the sentence begins and ends and deletion

of any intervening lines.

Updating a Mail Data Table is necessary after the

BLANK insertion, to fill in the details of the message to be

composed or to modify a message before "transmission".

(Adding the message row to the addressees' Mail Tables.)

Modification of the subject and message body of one Mail

Data Table row and "retransmission" could ensure identical

79



addressees for a sequence of messages, a function normally

handled by routing lists. Similarly just the date and

addressees could be altered to send the message to an

amended distribution list. The mail application specific

software could provide simple procedures to assist the user

to effect these transactions.

Updating of Spreadsheet Data Table rows is essential

to the use of these tables as a modeling tool. By

thoughtful use of the conditions in the modify operator, a

powerful set of changes can be realized.

Entries in the view are placed in another location

by simply modifying the values of the X COL and Y ROW in the

appropriate data table row, to the desired row and column.

The values in entire rows in the view may be moved to

another row by modifying YROW in the data table tuples to

the new value. That is: modify rows in which Y ROW = R,

changing the YROW column value to R + 1. When the modified

data table is mapped to the view all the entries which were

in row R will be mapped instead to row R+l.

Formats for display in the view are changed easily

by updating the format string in the FORMAT column of the

data table. The format can be changed by single entry, by

view rows or columns, globally or by any composite condition

required.

Although some adjustment is required to think of a

spreadsheet in terms of the ISS Spreadsheet Data Table, once

80



* * 7 .7' 71

accomplished, both the traditional view and the underlying

conceptual model can be used to great advantage. For the

model to be useful, of course, the spreadsheet application

must have application specific operations to force

spreadsheet related functions such as: recalculation of

derived values after user changes to the entry position

-. values; change of entry function expressions involving moved

operands; increment or decrement XCOL and YROW values when

rows in the view have been moved, deleted or inserted; and,

check on inconsistencies in the model such as duplicated

XCOL,YROW pairs.

5. Copying Of Rows

The copying of rows within a data table may be

performed using the ESS primitive operator select followed

* by insert. Selection of the rows to be copied creates a new

* table which then may be inserted at the desired location.

Similarly, copies of tuples from one data table may be

* copied into another table of the same structure by using a

select followed by a union onto the desired table.

Generally it would be preferable to use the union operator

in non-text or non-form applications where order is

unimportant and duplicated rows are undesirable.

The utility of copying lines in a text document or

*form is self evident, as it is a standard document

preparation feature. Electronic mail and spreadsheet

applications have little use for the simple copying of

31



tuples per se, the utility being in the subsequent

- modification of the duplicated row.

The mail examples given in section 4 could be

preceded by a copy operation, thus keeping a complete record

of all messages or versions of a message sent to a group in

the first example, and keeping a complete record of dispatch

* dates and addresses in the second.

In the spreadshe&.. application the copy operation

would be useful more in filling out repetitive rows of the

* Spreadsheet Data Table, subsequently modifying the necessary

* columns.

6. Moving Of Rows

In the ESS, tuples may be moved within a data tabie

*by applying the delete operator to the desired rows

identified by ID number or other condition, followed by an

insert of the deleted rows at the required location. It is

of benefit only in situations where ordering of rows is

important.

In the text processing and form generation

application areas, this operation is a generalization of the

normal move operation allowed by editors. By the use of the

condition in the delete operator it enables the moving of

non-contiguous lines selected on content alone without the

- need to know line numbers.

In spreadsheet and mail applications the move

operation is not particularly useful as the ordering of the

82



rows in these data tables has little meaning. The operation

may be performed to satisfy personal preference when

browsing the entire Mail or Spreadsheet Table.

7. Sorting Of Table Rows

Sorting is done in the ISS by the operator sort

which can be thought of as a series of selective moves to a

new data table. It is useful to some extent in all

application areas for producing hard copy listings of all

rows for manual reference and personal preference when

browsing a file. Although not discussed in this thesis,

sorting a file on a key field will have considerable impact

on retrieval efficiency in an enhanced system which is

concerned with storage and retrieval efficiency.

In a text application a textual list could be

deleted, sorted and re-inserted in its original location. A

series of numbered one line points in a document or form may

be sorted after haphazard insertion.

Mail Data Tables may be sorted accordinc to the

users desires. For example a user may like to regularly

browse his mail listings sorted by addressee, sender or

date. The data tables could be sorted and saved in that

order or into a temporary file for display purposes only.

Spreadsheet Data Tables may be sorted on XCOL and

Y ROW values to maintain a listing the user is comfortable

with. It is possible that users may become comfortable

83



JO.7

dealing with a Spreadsheet Data Table directly, bypassing

the view during data entry and modification.

8. Merging Of Columns

The requirement to merge columns is essentially so

that columns which are conceptually different fields may be

merged into a single text field for display, or insertion

into a document. The operation is performed using the ISS

concatenate operator.

Uses of the column merge are to include part or all

of some data table in a 'text document or form. For example,

a letter detailing names and addresses of customers with

overdue payments in an accounts database may be drafted.

After drafting, a concatenated projection of the name and

address fields of the rows selected from a customer database

table on the condition of negative balance, can be inserted

into the letter. Similar examples can easily be concocted

for the use of merging columns in Spreadsheet and mail

Tables.

9. Operator Combinations

The basic ISS operators alone and simply combined

provide low level powerful data maniFulation tools to effect

the operations described above. Combinations of operators

can provide much of the high level ictivities required by a

user. Many of the examples in the ireceding sections are

ones which use two or more primitite operators to achieve

their purpose.

- '. 84
0 .



One particularly important combination of operators

is that used to modify the structure of existing Database

Tables (the others are fixed) without the re-entry of

existing data. This may be done by first using the ISS

primitive insert to create a new Database Table by inserting

a temporary name in the database directory and giving it the

required columns. The old table may then be inserted into

or unioned with the new, producing a result which may then

be assigned to the new table. Insertion would be used when

the new structure is a superset of the old and union when

the new structure is a subset of the old, since insert will

add columns when necessary and union will remove them. The

old table may then be removed from the directory with delete

-operator, and the new table renamed to the old with the

modify operator.

, It is the function of the separate application areas

to provide the mapping between the high level application

specific operations and the low level primitives. Utilities

in the kernel should provide convenience tasks such as the

relations browser previously mentioned and multiple data

entry routines, to repetitively apply. the primitive

. operators. Utilities should also provide "walkthrough

"' paths" for table creation where the system requires more to
0

be done than just simple addition of a row to a Directory

Table. This applies particularly in the database

K' application where new attributes may have to be defined in

85

"o." .-... ..... o-... . .L . **\**.~.2:-



the Schema Table and, where the full security provisions

- alluded to in previous chapters is applied. Although these

functions are to be performed by the applications specific

and utility software, the user can still retain the

underlying Relational Database model in his thinking and

understanding of the system, and is always able to revert to

the primitive operators for data manipulation and retrieval

regardless of the application area in which he is working.

C. EXTENSIBILITY OF ISS

The main thrust of the ISS is that it provides the

capability to combine tables of different types to form new

relationships and derive new information. This extension of

the ISS is made possible by incorporating into the system

some high level combining operators. Those chosen for this

*" system are Union, Set Difference, Intersection, Join, and

. Natural Join. Using these operators on tables of the same

or different types adds much depth to the scope of the ISS.

Haphazard use of these operators can result in a

syntactic error or a new table which is semantically

meaningless. For example, to apply an operator which

requires two tables of the same structure to tables of

different structure would be syntactically incorrect.

Mor eover, some combinations like a join of a Mail and

Spreadsheet tables is syntactically correct but has no

". foreseeable meaning given the nature and design of the

86

%.5

5 . ... 5 -°..



tables. If an attempt is made to apply an operator

incorrectly, the ISS sets a trap which prohibits the user

from performing the operation and displays an error message.

In the cases where the application of the operator is deemed

only semantically meaningless, the ISS trap will issue a

warning to the user. If the warning trap is invoked, then

the user has the option of aborting the operation or to

continue executing it.

In the following parts of this section each of the

combining operators are defined and described in general

terms, examples are presented which illustrate how using the

* operators on tables of different types can result in some

meaningful relationships, and in cases where combining

tables using a given operator is meaningless or incorrect,

the traps are discussed.

The semantic meaningfulness of combining tables of the

same type using any of the operators discussed in this

section is considered to be obvious and will not be

discussed further in this thesis. An elaboration on this

type table combinations (Intra.-Type Combinations) can bte

- found in (Ref. 1].

1 . Union

The union operator has been described pr-eviously in

subsection 4.B.6 of this thesis. Conventionally, the union

*operator requires tables to be of the same arity. However,

the ISS union operatcr embeds a default projection (the

87



,77 - .. 7- . ,

mechanics of which have been discussed) which lifts the

arity constraint from tables. It should be noted that the

user can effectively override the default projection by

first proceeding a union of two tables by a projection

operator which projects out attributes of the user's choice

from one or both of the tables. The user could then apply

the union operator on the resultant table(s). Thus, the

-extension of the meaning of the conventional union operator

is not a limiting factor, but to the contrary, it enables a

wide variety of table combinations and new relationships to

be achieved.

The following subsections illustrate how performing

a union on tables of different types can be semantically

meaningful. In the discussions the "+ is used to denote

the union operator.

a. Text + Form

If A is a Text Data Table which contains the

body of a letter which is to be sent to all employees of a

given company, and B is a Form Data Table which extracts

the name and addresses of all the employees of the company

and places in letter head format, including a salutation,

then performing the operation, A + B, would be very useful.

It would yield a repetitive letter addressed to each

• "employee and the resultant table would be a Form Table.

As another example, if A is a Form Data Tabl.

which contains intricate tax details for residents of a

88

*1,.% ' ' '' -'-' .+' .. ,- .- .,-. .- "- " . " - "" """ "" "".'' + "" """ "" * " - . , . . . , ., . . a - . , , -"- - , , . - . .-



given state and B is a Text Data Table which contains a

textual description or explanation of some of the columns on

the tax form, then, B + A would yield a new relationship

which contained both the explanation of the Form columns and

S".the Form itself. The result would be a Text Data Table.

Since the FORM LINE and TEXT LINE can be

aliased, and the two tables are of the same arity, no

projection would be necessary. This is essentially the same

as an Append.

b. Text + Database

If A is a Text Data Table and contains the names

of the local stores which sold shoes and B is a Database

Data Table which contains as one of its attributes the names

of local stores which sold clothes, then A + B would be

meaningful. First, ISS would project out all non-applicable

attributes of table B. Then it would yield a Text Data

Table which contained a list of stores that sold either

shoes, clothes, or both. ISS would eliminate any duplicate

tuples in table B.

- If the order is reversed, i.e., B + A, then this

is only meaningful if table B contains only two attributes,

ID and STORES(or any column name which could be aliased with

TEXTLINE). Applications for tables of these types are

numerous.

-'-%89

*I1.

.%4 .
4 .. **• *- - . . . *- 4 *



C. Text + Mail

This operation is semantically meaningful in

only one direction. If A is a Text Data Table and B is a

mail Data Table, then the only feasible union is A + B.

This would yield a resultant Text Data Table whose tuple

contained the TEXTLINEs of table A and the BODY of table B.

d. Form + Database

This combination has application similar to

those described for TEXT + Database since the Form Data

Table is essentially a "special" Text Data Table.

Therefore, they both have the same semantic meaningfulness.

e. Form + mail

This operation is syntactically correct, and

thus semantically meaningful, in only one airection. For

instance, if A is a Form Table and B is a Mail Table, then A

+ B is syntactically correct.

One application using this operator would be to

have the BODY of a message in table B disseminated to all

employees in letter form. To effect this, one could union

table A, a form which yields the letter heading for each

employee, to table B.

f. Spreadsheet + Database

This operation is3 only meaningful if the

attributes of the Database tab.*.e correspond to the schema of

the Spreadsheet Data Table. If so, then this union is

A meaningful in both direct.-ons and virtually would be the

90



same as unioning two Spreadsheet Tables or two Database

Tables with identical attributes. It is recognized that

this application would be very rare.

g. Database + Mail

If A is a Database Data Table which contains a

subset of the attributes of a Mail Data Table then this

application is semantically meaningful and syntactically

correct. A + B would then result in a Database Data Table

with tuples from the Mail Data Table (after necessary

projections) or from the Database Table or both. In the

other direction, i.e. B +I A, this operation would only be

possible if all the attributes of the Mail Data Table also

appeared in the Database Data Table.

The following combinations of tables using the union

operator are semantically meaningless or syntactically

incorrect.

h. Text + Spreadsheet

If A is a text data and B is a Spreadsheet Data

Table, then A + B and B + A are both syntactically

p.incorrect. Neither order meets the requirements that the

attributes of the right operand be a superset of the

attributes of the left operand. Since this operation is

incorrect, it will be prohibite' by setting a "prohibit"'

trap condition.

91



i. Mail + Text

This is syntactically incorrect in one direction

only. if A is a Mail Data Table and B is a Text Data Table,

then A + B is incorrect due to the fact that both tables

* have predefined attributes and the text table can not be a

*superset of a Mail Table. This operation will be

prohibited.

* -j. Form + Spreadsheet

This operation is essentially the same as that

*discussed in the Text + Spreadsheet operation.

k. Mail +- Form

This operation is syntactically incorrect in one

direction only. Due to their similarity, the discussion

presented in the Mail + Text operation applies here as well.

1. Spreadsheet + Mail

This is not meaningful nor syntactically correct

in either direction due to failure to meet the superset

*constraints. This operation will be prohibited.

* 2. Set Difference

Given two data tables, A and B, set difference is

defined as the set of tuples in A that are not in B. This

operator requires that tables A and B be of the same arity.

The following parts of this section illustrate how

performing the set difference operator on data tables of

different types can be semantically meaningfill. The isN

used in the discussions to denote set difference. The

92



resultant table of each operation below will be of the same

type as the table used as the left operand.

a. Text - Form

If A is a Text Data Table which contains the

literal text of a corresponding form in a Form Data Table,

B, then A - B or B - A would be very meaningful. For

instance, if there are many tuples in tables A and B and

table A has been slightly modified, then performing the

operation, A - B or B - A, provides a quick and easy way of

determining which tuples of the Text Table were modified

without the user having to do a line by line comparison of

the text.

b. Text - Database

If A i.s a Text Data Table and B is a Database

Data Table, then A - B is meaningful only if table 8

contains exactly two attributes, the ID and another

attribute , "b", of data type, character. In this case, set

difference would yield the tuples in A that are not in B.

Presumably, the TEXT LINE attribute of table A and attribute

"b" would range over the same domain.

c. Spreadsheet - Database

This operation is only meaningful in

applications cf a limited nature. For instance, if A is a

Spreadsheet Data Table and B is a Database Data Table, then

A - B is meaningful only in the cases where the attributes

of table B are synonyms or aliases of those in table A. If

93

I

L.°



.- .. ... . . .

table B meets those specifications then it could contain a

subset of a spreadsheet defined and maintained in table A.

Using set difference on these tables will yield entry

positions which are defined in A but not in B, or it will

reveal discrepancies in entry positions that are defined in

both tables. For example, assume entry position 2--1 was

defined in both -ables but the function attribute contained

a value of " 10 * G:2 " in one table and a value or 1000*

G:2 " in the other. Applying the set difference operator to

these tables would help to maintain consistency within the

tables.

d. Database -Mail

As with the Spreadsheet -Database operation,

Database - Mail operation is only meaningful in the special

cases where the attributes of the Database Table are aliases

of the predefined attributes of the Mail Data Table. if B

* - is a Database Data Table which meets those conditions and A

is a mail Data Table, then A - B would be useful in many

applications, and would be essentia'lly the same as

performing the set difference operator on two Mail Data

Tables.

* . The following combinations of tables using the set

difference Dperator are either semantically meaningless, or

syntactically incorrect.

K9



e. Text -Spreadsheet

The Text and Spreadsheet Cata Tables do not have

the same arity and there is no correspondence, in general,

among their attributes. Thus, this operation is both

meaningless and syntactically incorrect and will generate a

"prohibit trap" .

f. Text -Mail

The same argument applies for performing set

difference on the Text and Mail Data Tables as given in the

Text -Spreadsheet discussion above.

g. Form -Spreadshe-t

The same argument applies for performing set

difference on the Form and Spreadsheet Data Tables as given

in the Text - Spreadsheet discussion above.

h. Form - Mail

The same argument applies for performing set

difference on the Form and Mail Data Tables as given in the

* Text -Spreadsheet discussion above.

i . Text - Database

Applying set difference operator to a Text and

Database Table is syntactically incorrect only if the arity

* of the Database Table is not the same as that of the Text

table or the Database table attributes are not synonyms of

those in the Text table. In these cases, the Text

Database operation will set a "prohibit" --rap.

95



D-Ai4g 62 
8 DESIGN OF AN 

INTEGRATED SOFTW 
ARE'SYSTEM BASED ON THE 

2/2
RELATIONAL DATA BASE MODEL(LI) NAVAL POSTGRADUARTE SCHOOL

U UpiC 5 MONTEREY CA P J HARRISON ET AL. DEC 83

UNCLASSIFIED F/G 5/1 N

EEEEEEEEEEomiE
EhEEEEmhmhhEEI
smEEEmhhmhEEE
EhEEEmhEEmhshI



,.- -.

"-"2.2

.,' IHJlO. I* II'___ llW 132.

1111W1

1IL 25 111 .4 1.6

MICROCOPY RESOLUTION TEST CHART

N ., NATIONAL BUREAU OF STANDARDS-1963-A

-1

i.'

.

' V " , 4 ° -. . ' .-." ' - " ...' .. ' . .-.. ' .. "- ". - " " .. ' . " .. " .., 'm , . - . - . -



j.Form - Mail

The same argument applies for performing set

difference on the Form and Database Data Tables as given in

the Text - Database discussion above.

k. Spreadsheet - Mail

The same argument applies for performing set

difference on the Spreadsheet and Mail Data Tables as given

*in the Text - Spreadsheet discussion above.

I1. Database - Mail

'1 The same argument applies for performing set

difference on the Database and Mail Data Tables as given in

the Text - Database discussion above.

3. Intersection

Given two data tables, A and B, the intersection of

A and B is the set of all tuples that are in both table A

and table B. Both tables used as operands of the

- ~ intersection operator must be of the same arity. In

addition, the corresponding columns or attributes of the

tables must be aliases of each other.

The following parts of this section illustrates how

performing the intersection operator on data tables of

different types can be semantically meaningful. The &i0 is

used in the discussions to denote intersection. The

resultant table of each operation below will be of the same

k type as the table used as the left operand.

96



a. Text & Form

If A is a Text Data Table and B is a Form Data

Table, then the operation, A & B, would be useful in

applications to determine the commonality between the text

in table A and the literal text in the form in table B.

b. Text & Database

If A is a Text Data Table and B is a Database

Data Table, then as with the set difference operator, A & B

is meaningful only if table B contains only two attributes,

the ID and another attribute , "b", which can be aliased

with the TEXT LINE attribute of the Text Data Table. In

this case, intersection would be meaningful in many

operations. For instance, assume table A contained a list

of students taking Trigonometry and table B contained in

attribute Obw a set of all students taking Chemistry. Then,

A & B would yield a set of tuples corresponding to the names

of students enrolled in both courses.

co Spreadsheet & Database

-- As with the set difference operator, the

intersection of a Spreadsheet Data Table, A, and a Database

Data Table r B, is only meaningful in limited applications

and in the very specialized case where each of the Database

table attributes is an alias for one and only one

Spreadsheet table attribute. If table B meets these

constraints then, A & B would be essentially the same as

97



-, J yjy ~ I~y~'y''~v.-. . 77

performing the intersection of two Spreadsheet Data Tables

or two Database Data Tables with identical attributes.

d. Database & Mail

As with the Spreadsheet & Database operation,

Database & Mail operation is only meaningful in the special

cases where the attributes of the Database table are aliases

* of the predefined attributes of the Mail Data Table. If

table A is a Database Data Table which meets those

conditions and table B is a Mail Data Table, then A & B

would be useful in many applications, and would be

essentially the same as performing the intersection of two

Mail data tables.

Using -he intersection operator is either

R syntactically meaningless or semantically incorrect on the

same combinations of tables as using the set difference

operator. For that reason and to avoid redundancy or

duplication of the rationale, the reader is referred to

subsection 4.C.2. the discussion on the semantic

meaningless and syntactically incorrect uses of the set

difference operator on certain table combinations).

4. Join

A join of two data tables, A and B, is defined only

'4'if the two tables each have some attribute (column) which is

defined over some common domain and the join is over those

two corresponding columns. The result of the join would be

a new table of the type database, which contains tuples

98

t~ f.



41. O° . . U . -d% Ir .

qualified by the attributes of both tables. In other words,

the structure of the resultant table would contain all the

attributes of table A, followed by all the attributes of

table B. Each row in the new table would be formed by

adjoining tuples of table A with tuples of table B such that

the new tuples in the resultant table satisfy the predicate

(condition of the join) in the common columns.

In the ISS we expect that most joins will be formed

by an equality predicate, i.e. a condition of "equality"

between the values in the common attributes of table A and
V"

table B. This type join is called an equijoin. When the

equijoin operator is used, the duplicate column is not

eliminated, therefore, this operator can result in

redundancy in the database unless followed by a projection

operator to eliminate the common values. The ISS requires

the common attributes to be identified in the Schema Table

as aliases or synonyms of each other.

The semantic meaningfulness of combining tables of

different types using the join operator is discussed below.

There is a significant difference between the applications

discused in Nishimura' s analysis, [ref. 1], and those

- presented here. In that reference the applications

-• "described are based on the assumption that the user will be

able to use the ID attribute of a given table in performing

binary operations with the operators. Since that assumption

99

V.A



-3 -- . - WT .' .. . .a -

is not made in this thesis, the applications presented by

Nishimura are not valid herein.

The symbol "*" will be used in the discussions to

denote the join operator.

a. Text * Mail

The join of a Text Table, A, and a Mail Table,

B, is very practical. If the TEXTLINE ranges over the same

domain as the FROM, TO, SUBJECT, COPYTO,VIEWED, and DATE

attributes of the Mail Table, then A * B has many

applications. As an example of its applicability, suppose

table A contained a list of subjects considered high

priority and assume each TEXT-LINE of table A contained only

one of those subjects. Then, the equi join of A * B would

form a new relationship which groups messages in table B

which are of the same subject and which are also considered

high priority. Similar applications can be done using the

other type joins and/or Mail table attributes.

b. Form * mail

This is similar to the applications of Text*

Mail. However, in most cases the Form Table will contain

some FORM_-LINES which are not actually values in the domain

of the corresponding Mail Table attribute. For instance,

using the same example as used in the Text *Mail

application, more than likely some of the FormLINES will

have data that is not equivalent to a Subject in the Mail

System.

100



co Spreadsheet *Database

If table A is a Spreadsheet Data Table and table

B is a Database Data Table, then the meaningfulness of

performing A * B is dependent upon the context of table B.

As an example, assume that table B contains the attributes,

ID, XCOL, YROW, and DESCRIPTION. Then, the equijoin of B

*A would provide the user with a table that contains the

subset of the spreadsheet whose entry positions were

described in table B. The new relationship would give the

user a clearer understanding of the entries in the original

Spreadsheet Table.

It should be noted that this application can

*never have an effect on the spreadsheet view since the

resultant table will always be a Database Data Table, not a

Spreadsheet Data Table. Performing operations on

Spreadsheet views are not discussed in this thesis.

d. Database * Mail

On page 68 of (Ref. 1], Nishimura presented a

very detailed analysis of the applicability of joining

database and Mail Data Tables. These operations will not be

repeated here, but suffice it to say that with the exception

of the join created using the ID attributes, the examples

presented therein are considered feasible.

It should be pointed out though that the result

ofapplying ajoin toaDatabase Table adaMail Table

would be a Database Data Table which contains all of the

101



attributes of both tables. The resultant table, by no

means, is ever a mail data table as alluded to by the

examples. Further processing would be necessary to convert

4. the resultant table into a Mail Data Table which conforms to

-. the ISS Mail Data Table format.

The following subsections briefly discuss the

.4combinations of tables that are viewed as semantically

*meaningless or syntactically incorrect using the join

operator.

e. Text * Form

The join of a Text Table, A, and a Form Table B

can be performed syntactically on the TEXTLINE and

- ~ FORMLINE attributes of the corresponding tables. However,

this operation is viewed as having little significance or

usefulness. The join (equijoin), A * B would result in the

intersection of the two tables that would just be two copies

of the same text and would not contribute to any useful new

relationship among the tuples of the resultant table.

Furthermore, joins on these two attributes will usually

result in TEXT-LINES or FORM-LINES which are much too long

to be displayed or printed on the same line. In light of

this observation, this operation would tend to be more

annoying to the user than helpful to him. Any join

involving this combination of table types would invoke a

'warning" trap.

102



f. Text *Spreadsheet

The join of a Spreadsheet Table and a Text Table

is syntactically incorrect. None of the attributes of the

two tables are aliases of each other and rarely do they

/ .. ~ range over the same domain. This application would invoke a

"prohibit* trap.

g. Text *Database

The join of a Text Table, A, and a Database

Table, B, can only be performed on the TEXTLINE attributes

of table A and some attribute wbw of Table B. Joins of this

type seem to serve little purpose in as much as no new

relationship results, nor is there any outstanding inference

made from the join. Since the join is done on a tuple

basis, at best if the Text Table has only one TEXT LINE it

can be joined through a *not equal join" to produce a new

relationship, but not a very useful one. Since there are so

few realizable applications for this join, it too will

invoke a "warning" trap.

h. Form * Spreadsheet

The join of a Form and Spreadsheet Data Table is

P similar to the Text *Spreadsheet application discussed

above.

i. Form * Database

This combination will invoke a warning trap.

~, -See the Text *Database discussion for the rationale.

103



.>~ ~ ~ V7

j. Spreadsheet *Mail

A join on tables of this type is syntactically

incorrect. The attributes of the Spreadsheet Data Table in

no way have anything in common with the attributes of the

Mail Table. The schemas for both tables are predefined and

there has been no provision to alias any of the attributes.

This, then, supports the argument for the infeasibility of

combining these type tables through a join.

In addition to syntactic infeasibility, this

operation does not result in a useful new relationship since

the semantics of the attributes of the spreadsheet and Mail

Data Tables have nothing in common. Since this particular

join is syntactically incorrect, it will set the "prohibit"

trap.

5. Natural Join

The natural join of two data tables is a special

-e %case of the equijoin which was discussed in section EA4

above. Simplistically stated, the natural join is an

equijoin followed by a projection. The result of this

operator contains no duplication since the common column is

eliminated by the projection.

The semantic meaningfulness of using the natural

join to combine tables has been discussed implicitly in the

4." join section with each reference to the equijoin, therefore

it will not be elaborated on further.

104

. q



6. Operators Summary

Figure 4.1 summarizes the information presented in

this section. The matrix depicts the type trap that will be

generated by the system when the user tries to use operators

to combine tables whose combination would be either

semantically meaningless or syntactically incorrect. If the

table combination is only semantically meaningless then the

-~ "warning* trap is generated and a message advising the user

of its potentially meaningless results is displayed. The

warning trap may also be generated when the operation

4 performed on the two tables is deemed to have only a limited

number of cases where it can be syntactically correct. if

using an operator to combine two tables is syntactically

incorrect in all cases, then this operation generates a

"prohibit" trap and a message is displayed to the user which

informs him that the transaction has been prohibited.

In figure 4.1, the small letters denote the

operators, i.e. "u' - UNION, "i = Intersection, "s" = SET

DIFFERENCE, "j* = JOIN, and wn = NATURAL JOIN. If an

'44-doperator does not appear in an entry in the matrix then this

implies that using that operator to combine the indicated

table types is both syntactically correct and semantically

meaningful. The column and row headings indicate the types

of the data tables used as operands.

105



* - - -0 J -. . € . , , .} .* -. .- . L ,. ,

TEXT FORM MAIL DBASE SPREAD

~T
.IE WARNING PROHIBIT WARNING PROHIBIT

IT j n i is i j n ui s j n

0 WARNING PROHIBIT WARNING PROHIBIT
R

M j n i s is j n u i s j n

A PROHIBIT PROHIBIT WARNING PROHIBIT. - II
L u i s u s u is u i s j n

-" B WARNING WARNING WARNING WARNING

S u i s j ni u i s j n1 u i s u i s
E

S PROHIBIT PROHIBIT PROHIBIT WARNING
P
R u i s j ni u i s j nI u i s j ni u i s I
D {

Figure 4.1 . Operators Usability

rap.

106

, .-.

- . ...



V. USER INTERFACE

This chapter focuses on the conceptual design of the

user interface to the Integrated Software System. For any

software system such as the 155, it is paramount that the

user interface is well designed. Two important design

issues to be considered are the ease of use and simplicity.

* In other words, the system should be constructed in such a

way that the user has only a few things to learn in order to

use the system effectively. These thoughts were the driving

forces behind the design of Graphics Prototype Interface

(GPI), which is the ISS Data Manipulation Language (DML).

GPI and its major features are thoroughly discussed in

section A of this chapter.

'A' Since the thrust of this thesis is the design of the

integration of the selected applications, little mention is

made of application specific user interfaces. However, some

consideration was given to the issue of the user making

' transitions from 155 integrated modes to application unique

* modes and vice versa. This is discussed briefly in the GPI

Command Mode commands section. Further application specific

user interface design details are considered to be outside

the scope of this thesis.

One other area that is not addressed in the user

interface is access rights and authorization. These issues

107

VV~ '

'--'A A



add another dimension to the User Interface design structure

and are highly important. Their absence from this thesis is

not an omission, nonetheless, since they are viewed as

matters of system security which are not implemented herein.

The framework for providing the user interface to effect

* security is, however, embedded within this chapter.

Section B of this chapter presents a brief overview of

the implementation of the conceptual design of the user

interface to the ISS.

A. GRAPHICS PROTOTYPE INTERFACE

Graphics Prototype Interface (GPI) is the Data

Manipulation Language designed for 155. It adopts some of

the constructs of Query By Example (QBE), a domain calculus

DML. Both GPI and QBE are designed for interactive terminal

use in composing queries and provide graphic table displays

to formulate user transaction requests and system responses.

GPI is primarily a tuple based language, however, it also

incorporates features from both relational algebra and

domain calculus as well. In addition, it contains some

additional features (such as insertion, deletion,

modifications, arithmetic capabilities, printing

capabilities, etc.) which are not part of the algebra or

calculus but serve to increase the power and usefulness of

the language.

108



The constructs or commands of GPI can be divided

logically into four parts. First there are the High Level

System commands which are used to control cursor movement

and browsing of displays and to change the mode of the

system. Second, there are Command Mode commands which

perform functions such as "RUN" and can be issued only when

the system is in the command mode. Third, there are Query

Mode commands which can be issued only when the system is in

the query mode, for example the "UNION" command. And

fourth, there are Help Mode commands which can be issued

only when the system is in the help mode. The commands

which are specific to the Help Mode are not addressed in

this version of GPI.

These command categories,(with the exception of the Help

Mode commands), and their usage are discussed below. Also,

a discussion on the general layout of the CRT display for

queries is presented.

1. General CRT Layout

The general structure or layout of the CRT is

depicted in figure 5.1. The figure illustrates the maximum

amount of information that can be displayed on the screen at

one time when the system is in the query mode (to be

discussed later). This layout is based on the assumption

that the viewing area is a 24 lines, 80 columns CRT screen.

In order to prevent overcrowding the screen and baffling the

4 user with too much information displayed at once, some

109



necessary limitations are embedded in the GPI query display

mechanism.

As shown, the screen is divided into four distinct

areas: two data table skeleton areas, a condition box area,

and a command/response area. For readability, each is

separated by two blank lines. The different types of areas

are discussed below.

a. Table Skeleton Areas

The table skeleton areas are reserved at all

times during the query mode. Each table skeleton occupies

exactly seven lines of screen area. The name and type of

table will appear on the first line of the table area. Line

two will be blank and on line three will be the data table

attribute names, preceded by the special column heading,

"COMMAND". The COMMAND column is used by the user in order

to specify what command is to be performed on the selected

tuples of the table. To distinguish this column heading

from one of the attributes, it will be highlighted.

Lines five through seven of each table skeleton

area are referred to as the query lines and are reserved for

user query entries. The use of the query lines to formulate

queries will become clear in later discussions.

GPI provides a mechanism for the user to change

table skeletons. This display facility is described in

detail in section 3.

110
'a

*6 , , ,' - ,'. - , - ,. -,' ." ,, ,, -k .,",. '.,-.-,- '.,'., ',. - . . , . v . . . , ' . " " . .



b. Condition Box Area

The concept of a condition box was adopted from

the QBE language. The condition box area is used to define

* conditions placed on attribute variables which are used in

the query. It follows the second table skeleton area and

occupies three lines on the CRT. The heading, "CONDITION

BOX ",is displayed on the left side of the condition box

area. The box area to the right side of the heading is

reserved for the user to specify conditions placed on

variables which represent attributes from the data tables.

For example, if "X" is a variable name used in the query

line of a table, a further condition can be on the value of

the attribute which "X" represents by placing a statement

such as 0?X > 10 " in the condition box (note that the

- question mark preceding the variable Ox" in this example is

part of the syntax and is not a part of the actual variable

name). This statement would inform the system that the user

wants to include in the query only those tuples which have a

* * value greater than 10 in the attribute corresponding to

variable "X".

Several unrelated conditions may be placed on

the same line of the condition box, however they must be

separated by a 0; character. The conventional arithmetic

[2 symbols are valid in writing GPI arithmetic statements,

(i.e. +, , ,I () ). In addition, the comparison

operators, (such as >, <, >-, <- can be used. The logical



operator symbols used are: in& (and), I (or), and

(not).

c. Command/Response Area

The Command/Response area occupies only two

lines. It is used by the system and by the user. When the

user is operating in the command mode, all Command Mode

commands ,i.e, RUN, CREATE, etc, must be entered in the

Command/Response area. In addition, once a user runs a

transaction the system issues a response in this area to

inform the user immediately as to where the results of the

transaction can be found or if further actions are necessary

* to complete the transaction. If a trap has occurred in an

attempt to execute a transaction, that information is

-~ displayed in this area as well.

2. High Level System Commands

The High Level System commands are of two types; one

type is for cursor control and the other type is for

changing the mode of the system. The cursor control

* commands are effected by special keyboard keys and their

function is to allow the user to easily browse or scan the

display. These commands also enable the user to edit data

entered on the table skeletons or condition boxes with ease

and they can be used regardless to which mode the system is

in (GPI operates in three distinct system modes: Command,

Query, and Help. Each of the modes allow mode specific

r ~ operations to be performed) .

112

1P** %* ** t t **t q -4. s . - -



Each High Level System command is defined below.

The first six are cursor control commands and the next three

are mode change commands. Each of the Mode change commands

are preceded by the symbol " which represents the control

keyboard key. This is to indicate that the control key must

be pressed simultaneous to the corresponding mode character

2< in order to activate all mode change commands.

a. move the cursor up one line from current

location

b. v move the cursor down one line from current

location

C. > *move the cursor one character position to

the right

d. < wmove the cursor one character position to

the left

4-.e. tab key -move the cursor to the beginning of

the next field

*f. carriage return - move the cursor to the

beginning of the first field in the next line

g. ^C -change the system to the command mode

h. -Q change the system to the query mode

i. H -change the system to the help mode

In the next two sections the specific commands which

can be run only in the command mode and the query mode are

discussed. The commands which are unique to the Help mode

are not presented since the Help Facility is not implemented

113

F U ~t t
U.<F



in this version of GPI. The Help mode was mentioned here

nonetheless, since its usefulness and importance is

0 recognized.

3. Command Mode Commands

GPI provides several commands which are unique to

the command mode. These commands are entered by the user on

the Command/Result area of the CRT display and are initiated

following a carriage return. In order to lessen the

probability of the user inadvertently executing a command, a

safety check is embedded in the commands which affect the

current data table.

Each of the commands are described in detail below.

In order to lift the burden of typing in long command words,

the user may use the default and type only the first two

letters of a given command. Also, in cases where the

A command requires one or more parameters, if the user types

in only the command the system will prompt him for the

parameter values.

a. Table

The TABLE command is used to draw a new table

skeleton. The format for this command is :TABLE <table

position> <table name> <table type> .Valid entries for the

parameter, <table position>, are either "l or "2". These

numbers correspond to table skeleton area one or two asKdisplayed on the CRT. The parameter, <table name> and

<table type> refer to the name and type of the desired data

1-

114

I.I.



table skeleton tha t the user wants displayed i n the

specified table area. Valid table types are TEXT, FORM,

.5 ~.,SPREAD (spreadsheet) , MAIL, and DB (database).

If a table position of 1 is issued then the

system will automatically erase the table skeleton already

displayed in table area one and replace it with the table

skeleton whose attributes correspond to the table name and

table type specified. For example, if area one contained a

text data table skeleton and the user issued the following

command : TABLE 1 message mail , then the text data table

skeleton would be erased and replaced with a mail data table

skeleton. The mail data table named "message" would then

become the current data table in table area one.

b. Erase

The ERASE command is used to erase user supplied

information from the table skeleton areas or the condition

box. The format for this command is : ERASE <position(s)>.

Valid entries for <position(s)> are "l, 20, "30, or "

Position number 1 or 2 correspond to the respective CRT

table skeleton area. Position number 3 corresponds to the

* condition box area and a position entry of "* refers to all

three of these areas. For instance, if the command, *ERASE

*N, was entered, then all query information entered by the

user in the data table areas and the condition box area

would be erased. The current skeletons for the areas would

be redrawn.1 

5



-. - --- . .. . .-.......... . .. - .... ... - ..

c. Run

The RUN command is issued in order to execute a

transaction (query). The format for this command is simply

: RUN. In cases where the execution of a transaction will

change the contents of either of the current data tables

(transactions involving INSERT, DELETE or MODIFY Query mode

commands) the user will receive a "COMMIT? " response from

the system. The user must then respond with a "yes" or "no"

answer. If the answer is yes then the current data table

will be updated after completion of the execution of the

transaction. This extra step provides a safety feature

which prevents the user from making irreversible mistakes.

d. Saveto

The SAVETO command is used to save the contents

of a system defined table, ISSRESULT, into a table of the

user's choice. The ISSRESULT table is a temporary system

table which contains the results of the most recent

successfully completed transaction. The table that is named

as the recipient of the save must be the same type and

structure and type as the ISSRESULT table. If the recipient

table does not exist already, then the system will

automatically create a table whose structure is the same as

the ISSRESULT table and assign it the user specified name.

The format for the command is : SAVETO <tablename> <table

type>.

116



e. Undo

The UNDO command allows the user to reverse the

effects of the most recently committed transaction. It

. takes no parameters and thus its format is just UNDO

f. Directory

This command will display the tuples of the

specified Appl-cation Directory table. Its format is

DIRECTORY <application type> . Valid entries for the

<application type> parameter are TEXT, DB,SPREAD, MAIL, and

FORM.

Once the Directory command is issued, the system

will automatically clear the screen and will display as many

tuples of the specified directory as will fit on one screen.

The user will be prompted by the system response "MORE?". A

user response of *yes" to the question will initiate

scrolling of the tuples in the Application Directory table.

Once the user responds with "no" , the scrolling will cease

and whatever contents were present on the CRT before the

DIRECTORY command was issued will be redrawn on the

terminal.

g. Application

This command enables the user to suspend any

actions being performed and to enter one of the five ISS

Application specific modes. The format used is

APPLICATION <application name>

117



As an example, if a user desires to use the

capabilities unique to the Spreadsheet Application Software,

then she would enter the command "APPLICATION SPREAD '

The current contents of the screen would be erased and the

*user would be placed in the SPREADSHEET application. The

user would then perform operations unique to the spreadsheet

application such as displaying a spreadsheet view. Once the

user terminates the application session, she may continue

from where she left off prior to executing the APPLICATION

command.

h. Create

The CREATE command is used to create new data

tables. It has several embedded prompts or subcommands

which make the task of creating new tables very elementary.

Its format is simply : CREATE.

Once the command is issued the user will

progress through a series of system prompts which will

ultimately build the data table. The first system prompt is

for the table name followed by a request for the table type.

If the type is one of the predefined structures, ie TEXT, DB

(Database) , FORM, SPREAD,or MAIL, then the prompting session

is over at this point and the system will add the new data

table to the appropriate Application Directory table.

If the new table is a database data table then

the prompting session continues and the user is asked to

provide the attribute name, data type, character width.

118



- - J--77-.w- -- 711 777 1777-7

Al so the use r is asked if the attribute is a key field.

After the user has completely defined the structure of the

new database data table and terminates the prompting

session, the new table will be added to the Database

Application Directory. Also, the system will then

automatically update the Schema Table as neccessary.

Following the CREATE command, the system will

issue a response on the Command/Response area to assure the

user that the new data table has been created and added to

the appropriate Application Directory table.

i. Delete

In the command mode, the DELETE command refers

to the deletion of a table from the ISS database. The

format is DELETE <table name> <table type>. Before

executing this command the system will first echo the user's

request and will ask the user if he is sure that he wants to

execute the command. If the user response is no then the

command is aborted. Otherwise, the specified data table is

deleted from the system by erasing all references to the

table in the application Directory table and other system

* tables.

j.Quit

The command, QUIT, enables the user to exit the

ISS system. The format for this command is simply :QUIT.

119



7. 77W 7, 76 .- 7; .9

4. Query Mode Commands

The Query mode commands of GPI provide the user with

a very simple technique for writing both elementary and

complex queries. A subset of the commands is based on the

Relational Database Model and corresponds to the ISS

* primitives and combining operators which were discussed in

chapter 4.

As mentioned earlier, each table skeleton display

* has a command column in addition to the data table attribute

* columns. It is in this command column that the user

specifies query commands to be performed on selected tuples

I. of the underlying data table.

- Query mode commands can be used in conjunction with

user specified variable names, literals, or order indicators

(described below). The variables are preceded by a question

mark. They are used as domain variables in cases where the

user desires that the operation indicated by the command in

the command column be performed only on tuples with certain

conditions placed on attributes represented by a variable.

Variables may also appear in the command column provided

that they are preceded by a query command. Variables of

thstype aereferred t astuple variables since they

y4 represent the entire tuple as opposed to only one attribute.

Variables which are used to express conditions other than

equality are further defined in the condition box.

120



Any character string which is not preceded by an "@"

or ""and appears in an attribute column is considered to

* be a literal. If a literal appears under an attribute name

then this implies that the query command only applies to

* tuples in the data table which have the same value as the

* literal in the specified attribute.

Order indicators can be used to specify attribute

- precedence or reordering of attributes. As an example, if a

data table is to be sorted on two or more attributes, then

the order indicator can be used to specify which field

(attribute) is the primary sort field, secondary sort field,

- ~ etc. The syntax for the order indicators is any integer

*preceded by an "@" sign, i.e. "@l", and if used they must be

placed in the column of the attribute to which they apply.

The lower number indicates higher precedence. Order

indicators can also be used with the project, print or

display command if the user desires to see the table

attributes stored, printed or displayed in an order

different from the way they appear in the data table.

The definition and usage of the individual Query

mode commands are given below. The semantics of many of the

commands have been defined in Chapter 4 and will not be

repeated. However, many examples will be presented in order

to show how the user can use the GPI language to effect the

queries. In addition, the use of the variables, literals,

121



-.- C . . .. . . . . . . ..

and order indicators will be more clearly illustrated in the

examples.

Each query command must be preceded by the symbol

now and at least the first two letters of the command must

be typed. The user may, however, choose to type the entire

command.

S•a. Delete

The deletion operator is effected by the GPI

* command "DELETE". The tuples deleted by this command are

stored in a system database data table named ISSDELETE.

ISSDELETE automatically assumes the same structure of the

table from which tuples were deleted. Figure 5.2 is an

example of a GPI query to delete all the tuples whose ID is

greater than 3 and less than 10. The command !DE is entered

on the first row underneath the command column. The "?X" is

a variable that represents the ID attribute and it is used

to qualify which records of TableA are to be deleted. The

qualification of the tuples is made complete with the

condition statement in the condition box.

After executing this query tableA would no

longer have the TEXTLINES which corresponded to ID numbers

4 through 9 of TableA prior to running the query. However,

the ISSDELETE table would contain the six deleted TEXTLINEs

and its structure would be the same as a text data table.

122

.. . / . ' . o ' , - . ' ' ' ' - . - .. - . --L- . . . . , . . . . . " - - ..t. . - -. . - . . -. . . . . . .



,-. b. Insert

The Insert primitive operator corresponds to the

command INSERT. It is used to insert a tuple or table of

tuples into a target data table at a specified location (ID

value). The command may be unary or binary, i.e. operate on

one or two data tables. If it is used as a binary operator

then the results of the command are stored in the table

whose structure appears in the first table skeleton area.

The contents of the second table will be unaltered by the

.~. ~execution of the INSERT command.

If the user desires that the tuple or table be

inserted into the target table at a given location or ID

value, he may indicate this by appending the value of the ID

to the end of the INSERT command in the first table. For

instance, figure 5.3, part A, gives an example of a query to

A.' insert TableB, a text data table into TableA, a form data

table, at location 3.

Part B of the figure shows an example of the

INSERT command used as a unary operation to insert a single

tuple at location four of the target data table. The

literals "48 Hours", "10" and "Eric" constitute the

attribute values of the inserted tuple.

Part C illustrates a query to insert TableB, a

smaller data table (one with fewer attributes) into TableA,

"" a larger data table. Since the attributes of TableB are a

Ojw subset of those in TableA, this is a valid insertion and is

123

LO,

-* -- . .J A -J > . .



consistent with the discussion of the semantics of the

Insert primitive operator given in chapter 4. Before making

S-[ the insertion the system will add the REVIEWER attribute to

TableB, but the Reviewer value for each tuple in the table

will be blank. Since there is no ID value specified in the

INSERT command, the tuples of TableB will be appended to

those in TableA.

Figure 5.4 shows the contents of TableA after

the execution of the query in part C of figure 5.3, assuming

that each table had only one tuple. Note that the REVIEWER

attribute of the "ET" tuple from TableB is empty.

c. Modify

The Modify primitive operator corresponds to the

GPI command, MODIFY. The execution of the command will

directly alter the contents of the underlying data table.

It can be used in several ways. Part A of figure 5.5

represents GPI syntax to perform a query to increase the

salary of all employees listed in TABLEB by ten percent. In

this example a variable and a condition is used to effect

this modification and all tuples are affected.

Part B represents the query change G.

Thompson's salary to $100,000 and JOBTITLE to manager .

Both literals and attribute variables are used to perform

the query. The variable "Y" listed under the NAME attribute

and qualified in the condition box by an equality statement

lets the system know to only modify the tuple in tableA that

124



F.Y . J% -~-7 w '

has a value of "G. Thompson* in the name attribute. The

literals nmanager" and 1100000n are the values that will

replace whatever was in JOBTITLE and SALARY attributes of G.

Thompson tuple entry.

d. Project

The Projection primitive operator is effected by

the command PROJECT. This command does not change the

operand data table and thus is committed as soon as the RUN

-* command is issued. PROJECT will create a new data table of

the same number of tuples as the table in which the

projection was performed. The attributes of the new table

will consist of the system generated ID and the indicated

subset of the attributes of the original data table. The

new table will be stored in the ISSRESULT temporary data

table. (Note that the ISSRESULT table can be copied into a

- . permanent user data table by using the SAVETO command as

discussed previously).

Figure 5.6 illustrates a query to project out

the NAME and SALARY attributes of TABLEB. It also shows the

structure of the ISSRESULT table after the projection query

*- terminates.

e. Select

The SELECT command corresponds to the Select

primitive operator. It is used to extract tuples of the

current data tables which satisfy some specified condition

and store them temporarily in the ISSRESULT table of the

125
. IF.

~im'.



,,9 7-U

same structure. The SELECT command is quite versatile and

is often used in the same query as other commands.

Figure 5.7, part A shows an example of a query

to select all tuples whose NAME value is P. Harrison" and

-" JOBTITLE is "laborer". The literal "P. Harrison" in the

name attribute and "laborer" in the JOBTITLE attribute

S.-determine which tuples are selected. In part b, the syntax

expresses a query to find the tuples of all laborers in the

data table whose salary is $9,000. It contains two

literals, "laborer" and "9000" on the same query line and

, this implies an " AND" relationship. In other words, if a

literal or variable appears in the columns of more than one

attribute and on the same query line, then a "logical and"

on the values of the attributes is done to determine which

tuples are selected. Part c of the figure shows the same

query as part b, but uses variables and the condition box in

the syntax. Using the condition box adds greater query

flexibility since it allows one to place any number of

conditions on the variables. For instance, if there was a

desire that only the laborers whose salary is greater than

$10,000 be selected, then the entry in the condition box

would be " ?Y > 10000.

f. Union

This command is used to perform the union

primitive operator whose semantics has been discussed in

chapter IV. Since union is a binary operator, the UNION

126
J, 

.-



command always operates on two different data tables

simultaneously (this is the case with all commands which

represent binary operators). The data table which appears

in table area one is referred to as the dominant table (or

left operand) and it determines the structure of the results

from the union. The table that appears in table area two is

called the subordinate table (or right operand) of the

o pe ration.

* Consistent with the Union operator discussion in

chapter IV, the UNION command may be performed on tables of

different arity as long as the attributes of the dominant

table are a subset of the subordinate data table. The

syntax required to form a union query is very simple and is

indicated in figure 5.8. All that is required is that the

command 1UN (or !UNION) be placed in the first row of the

command column of each data table. Part a of figure 5.8

represents a query to form the union of a text data table

and a form data table. TableA, the text data table is the

dominant table in this query so the attributes of the

ISSRESULT table will have the attribute names ID and

TEXTLINE after execution of the query. The union of these

two tables Is feasible since TEXTLINE and FORM LINE are

aliases of each other.

Part B of the figure illustrates a query to

perform the union of a text data table and a mail data

IS table. The results of this union would also have the

127



-1

attributes only of the text data table. The contents of the

ISSRESULT table would be all the TEXTLINE's of TABLEA

followed by the BODY of all tuples in TABLEC, the mail

table, which were distinct from the TEXT LINE's of TABLEA.

The BODY attribute is used in the union since it is an alias

of the TEXT LINE attribute. The rest of the attributes of

the mail data table would be ignored by the system.

g. Intersect

The INTERSECT command performs the intersection

binary operator. It operates on two data tables of the same

arity. In addition, each attribute in the dominant table

must have one and only one attribute in the subordinate data

table of which it is an alias or synonym and vice versa.

The results of the INTERSECT is a set of tuples that are in

both the dominant and subordinate data tables. Figure 5.9

shows a query that will take the intersection of a text data

table and a form data table. Since IN is the short form of

the INSERT command, IT is used as the short form of

INTERSECT in order to distinguish the two commands.

h. Sdiff

The SDIFF command corresponds to the set

difference operator. Is a binary command that requires both

the dominant and subordinate data tables to be of the same

arity. It poses the same alias constraints on the

attributes as the INTERSECT command. SDIFF will compare the

two data tables and store in the ISSRESULT table all tuples

128

, ' '-. *,'- ".""." " ." '-.:. " "."'.".- " "'" "'.' ". " '" . ".-".""-.'.. ,. .".-' .' .- -. "- ". . ." ." -. -,"-". " .'. " .. -" " , .-".- .-.



that are in the dominant table that are not in the

subordinate table.. Figure 5.10 illustrates a query to take

the set difference of two mail data tables.

i. Join

JOIN is a binary command that operates on two

data tables which may be of the same or different arity.

The semantics of the command is discussed in chapter IV. It

is only meaningful if the attributes on which the join is

performed range over the same domain. Figure 5.11

illustrates the syntax to perform the query " join tuples of

tableB to tuples of tableA if the subjects are the same

This essentially is an equijoin on the SUBJ attributes

In the figure the variable "Q" is used to denote

which of the attributes of the tables are used to form the

join. The fact that the same variable appears in both

tables under the appropriate attribute column implies an

equijoin. (If the condition of the join is other than

equality then two different variables must be used and the

relation between them must be stated in the condition box).

The ISSRESULT table will contain the results of the query

and the structure will be all the attributes of TABLEA

followed by all the attributes of TABLEB. Note that this is

redundant since both of the SUBJECT attributes will appear

in the results and will contain duplicate data.

129



j. Njoin

The NJOIN command is used to perform the natural

join binary operation. By definition, natural join is an

equijoin with the duplicate attributes removed or projected

out of the resultant data table. Forming a query to perform

a natural join of two data tables follows the same structure

as a query to effect an equijoin (except of course the

command entered would be !NJ or !NJOIN as opposed to !JO or

!JOIN).

k. Concat

The CONCAT command is used to perform the ISS

specialized operator, concatenate. This command is unary,

i.e. it operates on only one data table at a time. It is

used to concatenate the values of the attributes of a data

table of arbitrary arity into a text data table structure.

The values of the attributes are separated by one space.

The results of the operation is stored in the ISSRESULT

table and the operand data table is not altered.
*4

Figure 5.12 shows an example of a query to

convert a database data table into a text data table. Part

b shows the results as they would appear in the ISSRESULT

table.

1. Sort

The SORT command is not related to any ISS

primitive or combining operator. It is included in the

command set because of the recognition of its great utility
.- 13

,-. 130

i..

"°''

.............................- -.- -S - - '--N -V-" ',,., , % z-'-".' ' "- % : "j ',' .. . . . . , . . . ,-. ., . .. ." .. .-



and its enhancement to the ISS. It provides the capability

for the user to sort a data table on any number of

attributes in ascending or descending order. The default

-. sort order is ascending.

" * The user designates the precedence of the sort

field or attribute by placing an order indicator (an integer

preceded by the "@" sign) in the column under the attribute

name. The integers must be unique and the lower one takes

the higher precedence. If descending sort order is desired

on any field then the order indicator should be followed by

the letter "DO. Figure 5.13 shows an example of a query to

sort a mail data table in descending order based on the date

and within the each date sort on the TO attribute in

ascending order. No variables or condition statements are

required to effect a sort.

m. Display/Print

A Data Manipulation Language is not very useful

from the user's viewpoint if it does not provide a facility

for users to form queries that involve output. The commands

DISPLAY and PRINT are included among the Query Mode commands

for that reason. DISPLAY is used to direct output to the

CRT and PRINT directs output to the line printer. Both

commands operate on an entire data table which could either

be the original current data table or the ISSRESULT table.

In other words, if the PRINT or DISPLAY command is the only

command in a query then all tuples of the original table

131

, *m n m... matin..* *.**ua . .-. . . . . .nl dl~...i inalni - *' ., - ,** ,, , , , ' . .,._



will be printed (displayed), however if PRINT or DISPLAY is

preceded by other commands in the same query, then all

tuples of the ISSRESULT table will be printed (displayed).

(Note that the use of attribute variables with a PRINT or

DISPLAY command is simply ignored by the system since these

commands operate on tuples only.)

The PRINT and DISPLAY- commands can operate in

two output formats. The default format is to output the

attribute in table form with each row representing a tuple

and each column representing an attribute name (the names of

each attribute would appear at the top of each column). if

the default is desired the user may simply type the command

(PRINT or DISPLAY) or he may append a "l" to the end of the

command. Figure 5.14 shows an example which uses format

one, the default. As illustrated in the figure, if the user

requires that the attributes be printed in different order,

then the order indicators could be used to determine the

printing sequence for the attributes. The results of the

~C' .. query are also shown. It should be noted that the generates

temporary output which is not stored in the ISSRESULT table.

The other output method will display or print

each of the attribute names on a separate line followed by

the attribute value and it is invoked by appending a 02 to

the end of the DISPLAY or PRINT command. This method limits

* the amount of information that can be displayed on the CRT

132



as compared to the default format. Figure 5.15 illustrates

a display query which invokes format method two.

5. Combining Query Mode Commands

Section 4 explained the query mode commands, defined

*the command syntax required for each of them, and

*illustrated their use by presenting various examples. In

each example, only a single command was used in each query.

This section addresses the issues of compound queries, i.e.

those involving more than one query command in the same

transaction.

Certain precedence rules apply when the user

combines query mode commands. First of all, the order in

which the commands appear in the table skeletons is

important. straying from conventional programming languages

somewhat, if more than one command is listed in a table

skeleton then ISS will execute the commands in a "bottom up*

order and each subsequent command will operate on the data

table results of the previous command in the query. Also,

if wodata tables aeused in the query, then commands that

apply only to table number two will be executed before any

commands in table number one will be performed. Commands

which apply to both data tables will be executed last and

following the convention, they should be the appear on the

first query line of both data table skeletons. This

condition also imposes another important rule that must be

followed when using multiple commands. The rule is that

'.4- 133



only one binary command is allowed in one transaction. This

convention is necessary in order to keep the syntax simple

and limit the amount of meaningless queries that can be

formed by the user.

Another important issue to address is the use of

domain variables in multiple command queries. In the

queries where only one command was used this issue was not

pressing. But, when there are several commands used either

in the same data table or within both data tables a few

extra rules are necessary. For example, if the same domain

variable is used in an attribute of table one and also in an

attribute of table two, the convention is that only the

tuples of both tables that have the same value in those

attributes will be operated on.

Tuple variables were mentioned briefly in the GPI

introduction. These tuple variables, if used , must be

preceded by some query mode command in the COMMAND column of

the data table skeleton. They indicate that the command

applies to the entire tuple and they are optional in cases

where their absence presents no ambiguity. If a variable is

used as a tuple variable in a transaction, it can not be

used as a domain or attribute variable in that same

transaction or query.

Tuple variables differ from attribute (domain)

variables in yet another way. If the same tuple variable

appears in several different commands of the same data table

134

'-o q'.;.* v ... . -. ** . .



it implies that the subsequent command only applies to

- . tuples that were qualified by the prior command. For

Example, in figure 5.16 the tuple variable "Z" appears both

with a SELECT command and a MODIFY command which operate on

the given data table. In this case, the SELECT command will

* be performed first and the tuple that has a value of "WEEZY"

in the name attribute will be selected and assigned to the

variable "Z". The MODIFY command will be performed next but

will only apply to tuples which are assigned to variable

"Z". If no tuple variable was associated with the MODIFY

command in this example, then execution of the query would

- update all addresses in the data table to "1 Popeye ST"

instead of just modifying Weezy's address.

An example which illustrates most of the issues

discussed in this section is shown in figure 5.17. The

query represented operates on two data tables, Salary and

Personnel. The query corresponds to "update all employees'

salaries by twenty percent and join the Salary and Personnel

tuples of all single male employees who work in either

department A or department B and whose salary is $45,000 or

more".

The SELECT command in table 2, Personnel, selects

tuples from the data table whose SEX attribute equals "male"

and whose marital status equals "single" and assigns them to

tuple variable "Z". These tuples are the only ones from the

Personnel table that will be utilized in the JOIN. This is

135

- . *o*-.o. .-.-.... 
. . . . . . .



indicated by the presence of the same tuple variable, "Z",

following the JOIN command in the Personnel tab.e skeleton.

Before the join is done, commands which pertain only

to the Salary data table are executed. In this table, the

MODIFY command will be performed first and will increase the

SALARY attribute of all tuples in the Salary data table by

twenty percent ( all will be updated since no tuple variable

is indicated). The SELECT command will be performed next

and the two attribute variables, "S" and "D" will be used to

qualify the desired tuples. The condition box is checked to

determine the conditions placed on the attribute variables.

Since the Select command is followed by the tuple variable,

uX", all tuples which meet the criteria of the SELECT

command will be assigned to this variable. These tuples

will be the only ones from the Salary data table that will

be used by the JOIN command.

Now that all the table specific commands have been

performed, the system then executes the binary command,

JOIN. As indicated by the "E" attribute variable, the join

is performed on the EMP NO and EMP ID attributes of the

corresponding tables, and only the previously qualified

tuples of each table will be joined together. The join

performed is an equijoin.

Although this example is not very complicated, it

sufficiently demonstrates how one can utilize the

capabilities to combine Query Mode commands in one

136



transaction to compose queries of varying degrees of

complexity. It also illustrates the flexibility and

simplicity the user is afforded with the Graphics Prototype

Interface Data Manipulation Language.

B . IMPLEMENTATION OVERVIEW

In the conceptual design of the user interface, several

intricate design implementation issues and requirements

arose. Due to the complexity of some of these issues and

time constraints, realization of the GPI as described has

been precluded. However, the intent of the design was to

present a model system on which to base implementation. In

order to test the feasibility of the design, the GPI

commands described in section A of this chapter were

implemented (prototyped) by mapping them into Shell programs

written in the C and SHELL programming languages in the UNIX

Operating System environment. This prototyped

* implementation, although not as elegant as the proposed

* * system suggests, also serves to demonstrate the usefulness

of GPI and ISS.

In the following chapter the implementation strategy

* * *used to effect the Prototype ISS is discussed, as well as

the limitations of the strategy. Any limitation which gives

rise to follow-on research is pointed out in chapter VII,

the conclusion.

137



Tablel DATABASE

COMMAND ID ATTR2 ATTR3 ATTR4

Table2 FORM

COMMAND ID FORM LINE

CONDITION
BOX ____________

COMMAND/
RESPONSE I________

Figure 5.1 General CRT Layout

138

N *-

*.*.''* p* * d . 24



N. - . -

i~ TableA TEXT

COMMAND ID TEXT LINE

I !DE I ?X III I
II I

CONDITION I ?X > 3 && ?X < 10
BOX I I

Figure 5.2 -Delete Query

Nei

139

l4. 
"

{ ! F tI, , . i l P i ! l - iL I & . %
% % % -.. 

'. 
L - -. .. ". . % ; .. *% ", * _ :. .>:-' . *,% % % 'I % I* '



-V

" 'TableA FORM

COMMAND ID FORMLINE

I !IN3 I I
SI I II

TableB TEXT

COMMAND ID TEXT LINE

! IN Il<I I I

Part A

TABLEA DATABASE

COMMAND ID MOVIE RATING REVIEWER

I !IN4 I I 48 Hours 1 10 I Eric
I I I II

Part B

TAB LEA DATABASE

COMMAND ID MOVIE RATING REVIEWER

I !IN I I I
I I I III

TABLEB DATABASE

COMMAND ID MOVIE RATING

I !IN I I
I I I II

Part C

Figure 5.3 Insert Queries

140

.



- - . - "-, - . - . - , - . . .. ".. . . .

'-I

TABLEA DATABASE

ID MOVIE RATING REVIEWER

.t I 1 1 48 Hours 1 10 I Eric

12 lET I 9

Figure 5.4 Insert Query Results

14

.°

141

.o

<% ..' -..' .., *.. ..-. . . ...



• ,. . .. . .. - ,,. , D i .. .. j ._.. .ob m . - -. -• -

TABLEB DATABASE

COMMAND ID NAME JOBTITLE SALARY

I ,MO I I I I?XI I I I I
I I I I II

CONDITION I ?X = 1.1 *?X

BOX I _ _ _ _ _ _ _ _

Part A

TABLEA DATABASE

COMMAND ID NAME JOBTITLE SALARY

! IMO I 1 ?Y I manager I 100000 1, :I I I I I
I I I I II

CONDITION I ?Y = G. Thompson
BOX I _

Part B

Figure 5.5 Modify Queries

142

JO



TABLEB D B

COMMAND ID NAME JOBTITLE SALARY

I!PR I ?A I ?B

ISSRESLJLT DATABASE

ID NAME SALARY

Figure 5.6 -Project Query

143



R-7.. -,. K.[... - . T' .i .-. . . .. .. -.' , . -

kq

TABLEA DATABASE

COMMAND ID NAME JOBTITLE SALARY

I !SE I 1P. Harrisonl laborer ISI I I I II
I I IIII

Part A

TAB LEA DATABASE

COMMAND ID NAME JOBTITLE SALARY

" !SE I I I laborer I 9000I I I I II

•"I I I I

Part B

TABLEA DATABASE

COMMAND ID NAME JOBTITLE SALARY

I !SE I I I ?X I ?Y;..'.II I I I
I I I I II

CONDITION I ?X = laborer && ?Y = 9000
BOX I I

Part C

Figure 5.7 Select Queries

144

J. - . . , ' . . . - . ', , . ...."-'" " ' ''' ','" ''"_: '.,''' ' .,



TAB LEA TEXT

COMMAND ID TEXT LINE

I UN I I
-. I I II

- -- I I II

TAB LEB FORM

COMMAND ID FORM-LINE

I !UN I II I I
. ' .I I II

Part A

TABLEA TEXT

COMMAND ID TEXTLINE

f UN 1SI I II
I I II

TABLEC MAIL

COMMAND ID VIEWED TO COPY TO DATE SUBJECT BODY

I !UN I I I I I I, . .I I I I I I III
1] 1 1 1 I I I I

Part B

Figure 5.8 Union Query

145

, :,,,.,,,... ,., ,...... "... ............ .... . ...... .. ......• ,, . '-"'"."'" ."', "" ."". -', ... '.". .''..''"'"." "" '"• ." -. "" ." ,, ." -" 4',< - C t' -' . -"'". . . "



).~ * . .'* -. .. V -7. 77.

TABLEA TEXT

COMMAND ID TEXT-LINE

I !IT I

TABLEB FORM

COMMAND ID FORM-LINE

I !IT I

Figure 5.9 Intersect Query

lei(

146



TABLEA MAIL

COMMAND ID VIEWED TO COPYTO DATE SUBJECT BODY

I !SD 1I

TABLEB MAIL

COMMAND ID VIEWED TO COPY-TO DATE SUBJECT BODY

I !SD I II

Figure 5.10 Set Difference Query

147



- - - - - - - - - - - - - - - -- - - - - .. . . . . . . . . . . . . . . . . . .

N-,Ct

TABLEA DATABASE

COMMAND ID SUBJECT DATE PRECEDENCE

-!JO I I ?Q I I
" .i I I I Ii

TABLEB MAIL

COMMAND ID VIEWED TO COPY TO DATE SUBJECT BODY

i !JO i? I I ?Q I iSI I I I I I t
I I I i I 1 I

Figure 5.11 Join Query

N'14

-.,4

148



% 
I

TABLEA DATABASE

COMMAND ID COUNTRY CURRENCY

I ,CO I I
I I I 

II I I 
1I

Part A

ISSRESULT

ID TEXT LINE

I I UNITED STATES DOLLAR
I 2 I AUSTRALIA DOLLAR
" 3 I E N G L A N D P O U N D

. Part B

Figure 5.12 Concatenate Query

TABLEB MAIL

COMMAND ID VIEWED TO COPYTO DATE SUBJECT BODY

1I!SO 1 I I @1D I @2

':2:I 
I I I I I I1I

Figure 5.13 Sort Query

149



-:

TABLEA DATABASE

COMMAND ID NAME DEPT SEX

I!PR1 1 @1 I @2 @ 04 I @3II I It
-. I I I

ID NAME SEX DEPT

1 S. Snodgrass F A
2 P. Poopdeck M B

Figure 5.14 - Print Query

1

150

9 . , ... ., , .,._ . .. .: ., . . .° .. ...: -. .. : , .., : ," , .-.. ...: ...... .:, . . .:,.. . -...: ...-:- ...-,, .-, ,.



* ~dA. - - -vp.~,

TABLEA DATABASE

COMMAND ID NAME DEPT SEX

I D 2 ISI IIII
I I III

ID: 1
NAME: S. Snodgrass
DEPT: A
SEX: F

ID: 2
NAME: P. Poopdeck
DEPT: B
SEX: M

Figure 5.15 -Display Query

TABLEA DATABASE

COMMAND ID NAME ADDRESS

I !MO ?ZI I I 1 Popeye St.
I !SE ?ZI I Weezy II i II

Figure 5.16 Select and Modify Query

151

I. 
.- . - -



SALARY DATABASE

COMMAND ID EMP NO SALARY DEPT

I!JO ?XI ?E II
I !SE ?XI I ?S ?D

IM I ?M I

PERSONNEL DATABASE

COMMAND ID EMPID EMPNAME ADDRESS SEX MARITAL

I!JO ?Z1 I ?E II
I!SE ?ZI I Imalel ige

CONDITION I?D =A 11 ?D=B
BOX I?M = 1. 2 *?M~ ?S >= 45000

Figure 5.17 -Multiple Commands Query

152



VI. IMPLEMENTATION PROPOSALS

This chapter proposes a high level design for an ISS

implementation and a strategy for a very simple prototype

implementation using C Shell in the Unix environment. The

* prototype design is included to assist continuing research

efforts to quickly implement a prototype system. When the

* basic system is working it may be evaluated, improved and

-expanded in future refinements of the overall design. This

* chapter is by no means a full design specification, as that

- task itself would cover much of the material for a separate

masters thesis. The design proposal covers the ISS kernel

- main modules only, describing the overall hierarchy of the

-system. Subsequent refinements should include detailed

* module interfaces, file usage and data descriptions.

Although not stated explicitly, the ISS itself is not a

database management system (DBMS) and so its design does not

include those issues handled by a DBMS. These include

- rollback and recovery, concurrency control and retrieval

* strategies. It should be recognized that the lowest level

modules in ISS, the primitive operators, will be highly

dependent on the underlying DBMS or operating system.

153



A. SYSTEM DESIGN

The basic structure of ISS operates upon an underlying

operating system, DBMS or file system for utilities, file

manipulation and management services. Figure 6.1 shows this

basic relationship.

ISS

IOS/DBMS

IDatabase

Figure 6.1 Basic ISS Relationships

Within the ISS there are five major levels which are

shown in figure 6.2 and correspond to levels of operation of

the system: system entry; command mode interpretation,

command, other mode and applications execution; graphics and

run time sequences; and at the lowest level the ISS

primitive operators. The basic operators then translate

their calls into the appropriate calls on the operating

system or DBMS.

The system database in use will include the Schema

Table, the Application Directories, the ISS Users Table, the

154



El7

ISSRESLJLT and ISSDELETE Tables as described in chapter three

*of this thesis. In addition, a number of tables will be

required to hold error and trap conditions, warnings and

error messages, graphics data and probably other run time

* requirements. A number of system variables will need to be

* maintained to hold directory entries of current tables,

their types, system status, user and security information

and, of course, run time temporary variables.

The following subsections briefly describe the major

design modules and groups of modules in the system as

depicted in figure 6.2. Groups of modules are shown in open

boxes and represent separate equal level modules but are

compressed into one group for in order to prevent

overcrowding the diagram.

1. Entry Module

The Entry Module is responsible for invoking the ISS

password procedure and identifying the prospective users.

After a user is identified the entry module must perform the

necessary initializations and then call the command module.

If the password procedure fails after a predetermined number

of times the system should take whatever action is

determined appropriate.

155



.1.

0 
VW

*0 , 4J

C> a

100

U Q
0.4 (D -

(a A. it

434j

n U

• -,,. ,L, - C L

4)3

--- >01 jj L.
.0 (C1 zCf0

"-. M

0- 41 .,

c'-,, 0I .. :

6f jm 4

C 02 0

E'0l 41 0

C

4 /0-* 43

414

M

o01
Ld

Figure 6.2 - ISS Hierarchy Diagram

156

I,.[



2. Command Interpreter

The Command Interpreter is a simple interpreter

accepting commands or mode changes and calling the correct

command execution module. After each command terminates the

*interpreter should reinstate the previous display. This may

require direct calls to the GPI

3. Help

Help is a simple help facility which may be

implemented in many different ways. Help is entered from

any interactive environment by the entry of control H (^H)

and returns control to the calling module.

4. Query Mode

The Query Mode is the module which allows entry of

user queries into the skeletons described in chapter V.

This modules draws heavily upon the services of the GPI

package to allow on-screen editing of queries. The editing

of the queries has no execution significance within the

query mode, it is simply an entry function. The query mode

is invoked by the entry of a control Q (^Q).

5. GPI Package

The Graphics Prototype Interface manages the

graphics interface and storage of current queries. It is

YI . used by the Query Mode Module to change and enter queries

and by the Query Parser to get the stored data. This module

is highly dependent on the physical characteristics of the

target system.

157

• . ......,.........................*...x**%*.*:~.



4.

6. Query Parser

The Query Parser translates the queries in the

skeleton form into a sequence of calls on the ISS operators

and is invoked by the RUN command. It must retrieve the

skeletons from the GPI Package, parse them, perform type

checking for the issuance of warning of warnings and traps,

check authorizations and privileges of the user, ask for

verification on transactions which change the database,

translate virtual tables to queries and, finally, execute

the final transaction using a sequence of calls to the basic

operators or return an appropriate error message.

7. Other Commands

Each of the other commands UNDO, SAVETO, DIRECTORY,

TABLE, ERASE CREATE, DELETE and QUIT invokes a module to

effect the command. The TABLE and ERASE commands must call

* on the GPI Package since they affect the current skeleton

display of queries. The other commands may produce output

and temporarily displace the current query image but are

themselves overwritten by a redisplay of the current

skeletons after execution. Some commands such as SAVETO

will need to make direct calls to the underlying operating

system or DBMS to perform functions.

8. Application Programs

Each of the logical applications is invoked from the

* command interpreter module and is enclosed in its own

module. The applications may make calls to the operators

158

L1



and the operating system to achieve their objectives, but

are in reality very much like a view on the database. It is

the single underlying database with its set of operations

which is at the heart of the integration of the system.

B. PROTOTYPE IMPLEMENTATION STRATEGY

In any system design a prototype implementation is often

useful to determine unforeseen shortfalls and difficulties

of a proposed system. This section is intended as a brief

description of a strategy for implementing a simple ISS

prototype kernel using C Shell running under Unix on a Vax

11/780 system currently operating at the Naval Postgraduate

School, Monterey. As with many prototypes, efficiency,

completeness and absolute adherence to the defined system is

not intended, instead it represents the first step toward

the Unix environment philosophy to "get something small

working as soon as possible". (Ref. 14]

The target display is a simple 24 by 80 column display

with Unix as the underlying operating system with its

standard tools and file services. The following subsections

describe the overall strategy, the database and a simple

"graphics" implementation. The descriptions assume a

knowledge of the C Shell interpreter and the Unix

programming environment.

159

." . -. - -. - ., . .. . -', ., . ..- * ., ,. * , - .. - . . . -.. ,-.- . . , . -
' " -" ','- " " , = --,, ..,-- "'* * ... *.,,,,,, . . U,/ .. ,.. . , • * - - - ... ... * , " -. . . - -. . , ' _.



.. 7 
TV.7-..

1.Strategy

Each module described in section A may,, be

implemented as a C Shell script, calling on lower level

* *scripts and Unix services when required. Tasks which are

* ..difficult to achieve using the C Shell may be written as C

- . routines and then added to the standard set of Unix tools.

One such example-is the requirement for a utility to perform

set difference on unsorted files. A simple C program may be

written to perform this function, albeit inefficiently, and

then called in the same way as normal Unix commands.

Many of the Unix commands act as filters, acting on

standard input or specified files and send results to the

standard output. Unix's ability to redirect the standard

input and output provides powerful file manipulation

- . facilities, and since the majority of tasks in the ISS

kernel are file manipulations, this environment is ideal.

Figure 6.3 shows a very simple minded example of a shell

script for the DELETE operator using the Unix Awk pattern

program and redirection of the results into the desired

tables. Awk oper~tes as a filter reading the whole file and

performing the actions on each line in this case printing to

the desired file depending on the value of the condition for

Sthe line. (The $1 and $2 in the Awk command lines are

expanded to the parameters of the call to the delete

script.)

160



Operations on files may be implemented by using

filters to process input files into temporary files and

result files. Processing can continue through a series of

filters until the desired result is obtained.

# Simple ISS DELETE operator script using
# the Unix filter Awk. The script is called
# with two parameters, the first a file name
# and the second a string which is a correct
# Awk field matching expression. Awk sends
# its results to the standard output but this
# script redirects that output to the file
# ISSRESULT and then again to standard output.
# (The script calling this may redirect the
# result of this call to some other file!)
# Usage: delete file 'condition'

awk -e ' BEGIN {FS =:"\
OFS =F$\

if ('$2') [ print > "ISSDELETE" }\
else { print }\

$1 > ISSRESULT\

cat ISSRESULT # To standard output

*.'J # End script delete

Figure 6.3 -Sample Delete Script

*-.. Variables which need to be passed down to lower

level scripts may be placed in the environment or passed as

explicit parameters of the call. Values can be returned

from lower levels by placing results in the standard output

while the calling routine redirects standard output to a

file or places it in a variable. This arrangement provides

flexibility, since the calling routines have the freedom to

* : place results, which may be entire files, wherever they

161

"-..

". .



choose. This essentially is the philosophy of the Unix

filter, coupled with the freedom to redirect input and

output. The set of 155 operators can be realized by using

the Unix tools such as sed, Grep, Awk and Sort, and writing

C routines to perform other low level routines.

*2. Data Base

Unix files are simply sequences of characters

organized in a hierarchical naming structure. Some Unix

* commands provide field discrimination by the identification

of fields separators and thus for a first prototype it would

be best to use this facility. System and user tables can be

files with embedded file separators. The choice of

separators should be defined as a variable and placed in the

environment by the top level module. The use of field

separators removes the need to be concerned about field

lengths, therefore it is recommended that the prototype

dispense with field length checks altogether, effectively

making all fields of varying length.

The ID field should be explicitly included in every

file, although it is not clear if this is necessary or

whether, when IDs are required for a data manipulation, the

builtin line counters of the Unix filters Awk and Sed are

sufficient to meet all needs. This uncertainty applies

particularly to the applications which use sorted files. In

any case, care must be taken to ensure line IDs are removed

* before attempting line comparisons in the UNION, DIFFERENCE

162



W W

and INTERSECT operators, and resultant tables have all lines

renumbered contiguously. The tasks to strip the ID field

from a table and renumber a stripped table or result are

ideal tasks for C programs written as filters.

The Unix files comprising the system should occupy

their own set of sub-directories. It is suggested that the

single top level entry module called "iss" occupy a

directory as the only file with two sub'-directories: "bin"

to hold all the executable scripts and object code of the C

programs in the system, and "data" to hold all the data

files for the system. The top level entry module may then

include the path to iss/bin in its path length and rehash to

allow access to the commands therein while executing the iss

and deeper level scripts. A third sub-directory may be used

to store all source programs for the entire system.

3. A Simple GPI Package

A very simple query entry facility may be

implemented using the Unix display editor Vi. It is

stressed that this is not a true graphics implementation,

but a simple measure for the first prototype. The essence

* is that the display is simply a file which is typed to the

screen for display, or edited using Vi to enter queries.

The screen file may be initially created by combining in

sequence three template files holding the empty skeletons

*for the condition, and the selected tables. The templates

__ may be made up for each of the fixed structure types and for

163



. .. - " -' " ''- " -.- -' _--1.'-, - ---------- w--,  .- - . -. :

every individual database data table. Since the copies of

the templates are a fixed number of lines in the screen

file, the screen file may be split up into the original

components for parsing or for replacement of part of the

f' e by a TABLE or ERASE command. Entry to the query mode

is then a simple call to Vi to edit the screen file.

This query implementation is proposed because it is

very simple and easy to implement. It does however, place a

burden on the user to use Vi to enter his queries, not

disturbing the number of lines in the file or the table

skeleton structure.

Parsing can be done by searching for the strings in

between the table column boundaries ( the character I) line

by line from the bottom up. Parsing should be relatively

: -ple because of the simple rules of the GPI, that is: each

operator operates on the current table, or if it is linked

to a lower operator by a tuple variable it is applied to

SSRESULT.

The use of the method outlined will require the

create command to produce the appropriate skeletons for new

database tables and the command parser to produce the

template for ISSRESULT each time it is created.

4. Limitations

An implementation as described in this section will

provide a very basic ISS kernel which may be refined and

improved in subsequent iterations of the project. The major

164



limitation is the graphics interface which will be

particularly error prone if editing is not done correctly.

The skeleton templates will be the definition driving the

field definition during parsing rather than the Schema as

should be the case, hence if the tables are changed during

query entry there will most likely be unpredictable behavior

by the system.

Manipulation of files using filters will be very

slow, especially on medium to long files. Although it is

much easier to implement the basic operators this way, files

will need to be filtered three or more times for some

operations rather than the direct access methods available

using a proper DBMS. This will involve a high overhead of

processing as well as the overhead of the 1/O involved in

creating and using temporary files. Interpretation by the C

Shell will further slow down execution, thus on the whole it

will be unacceptably slow for any practical application.

The use of field separators and variable length

fields will cause tables not to appear as "neat" tables but

instead as untidy lines of uneven length.

True security will not be possible since the Unix

Operating System is not itself secure.

* Undoubtably, such an unsophisticated implementation

will have many other limitations not described here, however

the intention is to provide some guidance for future

* research and prototype implementation.

165



VII. CONCLUSION

The results of this thesis research more than

sufficiently demonstrate that the Relational Database model

can indeed be used as the underlying model to conceptually

integrate the five application areas of interest: text

processing, form generation,database, spreadsheet modeling,

and electronic mail. The integration of the common

functions of these applications into one ISS kernel which

uses a relation expressed in table format as the single data

object and which uses a small vocabulary of commands is not

only feasible, but also of high utility.

The realization of all of the objectives stated in

chapter one support the aforementioned claim and serve as

the basis for the findings discussed in section A of this

chapter. Section B presents a brief discussion of related

K research issues which are suggested for follow-on research.

A. FINDINGS

One of the primary objectives of this thesis was to

perform a detailed evaluation and analysis of the conceptual

level of the design proposed in Nishimura's thesis [Ref. 1).

This included a re-evaluation of the logical databases

(tables) designed for the ISS and resulted in the design of

supportive ISS system tables which could also be used to

166



- .

incorporate multilevel security in the system. Another

significant change made in the design of the tables was the

combination of the five application data table schema tables

into one common Schema Table which is owned and maintained

by the system. It was found that this method is more

efficient than maintaining separate schema tables for each

application and more truly reflects the idea of an

integrated system.

Another major objective was to carefully select or

revise the basic primitives needed to form the kernel

command vocabulary. It was found that the primitive

operators, Modify,Insert, Delete, Project, Select, Sort, and

Concatenate, and the combining operators, Join, Union, Set

Difference, Intersection, and Natural Join, form a complete

set of operators necessary to perform all operations common

and desirable to each specific application area. This set

of primitive and combining operators coupled with the

ability to combine data tables of different types prove to
.

1" be quite useful in expanding the expressive power of the

system.

In addition to refining the original thesis (Ref. 1],

major efforts went towards expanding it to include the

design of a User Interface to ISS and to propose an

Implementation Strategy for the system. This extension

resulted in the design of GPI (Graphics Prototype

kO,. Interface), a Data Manipulation Language which enables the

167

--. . . . . . . . -



user to use QBE-like simple graphics to easily express

queries of varying degrees of complexity. All. of the

primitive and combining operators are mapped into GPI

commands and the details of their implementation are

completely hidden from the user. Therefore, any subsequent

change to the GPI Language can be made without having to

completely redesign the system. Also, by abstracting the

implementation details from the User Interface, GPI lends

itself quite well to even the most naive user who has some

* basic background with database query languages.

The Implementation Strategy proposed herein suggests

that the UNIX Operating System Environment (including the

Shell and C programming languages) can be used to implement

a prototype of the ISS. The feasibility of this suggestion

was tested and proved by implementing crude prototypes of

the basic primitives and combining operators.

Having revised and extended the proposal of Nishimura's

thesis [Ref. 1] down to the level of Implementation

Strategy, we feel that we have strongly demonstrated that

using the Relational Database model in effecting the

Integrated Software System is highly feasible and useful.

Based on these findings it is suggested that furtherance of

this research topic to the point of the completion of the

Implementation of the proposed design is desirable.

168



B. FOLLOWi-ON RESEARCH

During the design of the ISS several issues arose which

gave rise to follow-on research ideas. Some of these were

* viewed as shortfalls or limitations in the proposed design.

* Others, such as Database Management System issues were

considered to be outside the scope of this thesis. These

and other related follow-on research ideas are discussed in

the subsequent paragraphs.

The current design of the ISS does not address the issue

of efficiency since the main concern was to prove the

feasibility of the proposal. Further iterations of this

same topic should address efficiency of the design as it

impacts on the physical implementation of the conceptual

design.

This iteration of the research focuses only on the

design of the kernel of the I85, omitting efforts related to

the design of the non -integratable features unique to the

individual application areas. The conceptual design and

implementation of the application specific commands and

views need to be developed. It is recommended that the

fraewrkof the design not deviate highly from that

suggested for the kernel. Also, in some cases a subset of

the five applications may need to perform the same or

similar functionks. In other words, displaying a spreadsheet

* .view is quite similar to displaying a view of a form. In

toj* order to continue with the premise that the total ISS

169

*~~~~'3 . ..-. *



command vocabulary be small, it is suggested that "sub-

kernel" commands be developed to support those subsets of

applications that have similar functions that are not

* applicable to all five applications.

The Implementation Strategy proposed addresses simple

graphics issues, i.e., the drawing of tables on the CRT.

However, it is recognized that a much more sophisticated

- Graphics Package is necessary to effect the High Level

- System Graphics commands proposed in the design of the User

Interface. Such issues as widening columns during the

I Im insert mode to accommodate the input of variable length data

attributes or displaying the complete field of a variable

length attribute during the display mode should be

incorporated into the design.

* One further recommendation which is directly related to

the current design is that the Physical Level of the design

should be carefully studied. This will probably lead to a

revision of some of the features presented in the conceptual

design.

As stated before, the ISS system is based on the

Relational Database model but is not, within itself, a

Database management System (DBMS) , therefore, many of the

issues that would be handled by the DBMS are not presented

within this thesis. Nonetheless, it is recognized that in

order for the ISS to be fully implemented and functional in

bW~ a concurrent multi-user environment, the underlying DBMS

170



~~~~~~~........ .. .....,....... ... . ,. ,, .....- ,....... ..-

must be designed. This would include the research and

design of ISS Security. Although this version of ISS does

not implement system security, it provides the basic

framework for incorporating multilevel security. It is

suggested that this framework be reviewed and modified as

necessary to support actual implementation of a secure ISS

package.

Another DBMS research effort which lends itself to the

current proposal is that of transaction recovery. This

issue was considered briefly with the inclusion of the UNDO

system command which enables the user to reverse the effects

of the last committed transaction. Of course this is a

2simplistic view of a highly complex problem and it is

suggested that research in this area constitute a complete

-. thesis topic.

Both the non-DE, S and the DBMS issues discussed herein

are viewed as being important and necessary research

follow-on items. Furtherance of research on the suggested

topics would certainly provide tangible benefits and lead to

the completion of the design and implementation of ISS, the

r Integrated Software System.

r.. -.

.. l

- . 171



LIST OF REFERENCES

1. Nishimura R., Analysis of the Relational Data Base
Model in Support of an Integrated Application Software
System, Master of Science Thesis, Naval Postgraduate
School, December 1982.

2. Wyatt R. W., Multilevel Security for the ISS Mail
Application, Master of Science Thesis, Naval
Postgraduate School, March 1984 (In preparation).

3. Meyrowitz N. and Van Dam A., "Interactive Editing
.-- Systems: Part 2", ACM Computing Surveys, Vol 14, No 3,

pp. 353416, September 1982.

4. Stonebraker M. and Kalash J., "Timber: A Sophisticated
Relations Browser", Proceedings of the Eighth
International Conference on Very Large Data Bases, pp.
-i0, Mexico City, September 1982.

5. Stonebraker, M., and others, "Document Processing in a
Relational Database System", ACM Transactions on Office
Automation, pp 143-158, Vol 1, No 2, April 1983.

6. IBM Research Laboratory Research Report RJ3050,
Automating Business Procedures with Forms Processing,
by V.Y. Lum and others, March 1981.

7. Tsichritzis D. C., "OFS: An Integrated Form Management
System", Proceedings of the Sixth International
Conference on Very Large Data Bases, pp 161-166,
Montreal, October 1980.

8. Stonebraker M., Rubenstein B. and Guttman A.,
"Application of Abstract Data Types and Abstract
Indices to CAD Databases", Proceedings of Annual
Meeting, Database Week: Engineering Design
Applications, pp. 107-114, May 1983.

9. Lorie R. and Plouffe W., *Complex Objects and Their Use
in Design Transactions", Proceedings of Annual Meeting,
Database Week: Engineering Design Applications, pp.
115-122, May 1983.

10. IBM Research Laboratory Research Report RJ3503, A
Relational Representation of an Abstract Type System,
by D.L. Weller, June 1982.

172

n.. .

A- Y , . -. ., .,. , '., - .. ,,,, , _,.. - . ,",-, . . , . . . .". . ,,. . ' . , , , , , -



11. Powel M. L. and Linton M. A., "Database Support for
Programming Environments", Proceedings of Annual
Meeting, Database Week: Engineering Design
Applications, pp. 63-72, May 1983.

12. Traiger I. L., "Virtual Memory Management for Data Base
Systems", ACM Operating Systems Review, Vol 16, No 4,
pp. 26-48, October 1982.

13. SIGMOD 83, Proceedings of Annual Meeting, Abstract of
Session, p. 134, May 1983.

14. Bourne, S.R., The Unix System, Addison-Wesley, p. 5,

1983.

0:1,

-A1

: :2173

I " .
°

,



BIBLIOGRAPHY

Day K. R., "Relational DBMS Development: an incremental
Approachn, Proceedings of Annual Meeting, Database Week:
Databases For Business and Office Applications, May, 1983.

Furuta R., Scofield J. and Shaw a., "Document Formatting
Systems: Survey, Concepts and Issues", ACM Computing

-- Surveys, Vol 14, No 3, pp. 417-472, September 1982.

Gates W., "The Future of Software Design", Byte Magazine,
Vol 8, No 8, pp. 401-403, August 1983.

Hancock L. and Krieger M., The C Primer, page 5, McGraw
Hill, 1982.

Henderson P. B., Sciore E. and Warren D. S., A Relational
Model of Operating System Environments, Dept. of Computer
Science, SUNY Stony Brook, NY 11794, undated.

IBM Research Laboratory Research Report RJ3070, Human
Factors Studies of Database Query Languaguages: A Survey and
Asessment, by P. Reisner, March 1981.

IBM Research Laboratory Research Report RJ3132, The
Capabilities of Relational Database Management Systems,
by E.F. Codd, May 1981.

IBM Research Laboratory Research Report RJ3182, On Extending
the Functions of a Relational Database System, by R.L.
Haskin and R.A. Lo.e, November1

Meyrowitz N. and Van Dam A., "Interactive Editing Systems:
Part 1", ACM Computing Surveys, Vol 14, No 3, pp. 321-352,
September 1982.

SIGMOD 83, Proceedings of Annual Meeting, "The Database
language GEM", C. Zsniols, pp 207-218, May 1983.

L Spewak S.H., "A Pragmatic Approach to Database Design",
Proceedings of the Sixth International Conference on Very
Large Data Bases, p 151, Montreal, October 1980.

Ullman J. D., Principles of Data Base Systems, Computer
Science Press, 1982.

174

..- . . .rj,,, ., . m:; .,, a ' -,",- : , ,- ,, : .-,: ' '.- ' .. '..'.'.'.":



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Professor Dushan Z. Badal, Code 52ZD 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Professor Gordon H. Bradley, Code 52BZ 1
Department of Computer Science
Naval Postgraduate School

-.. Monterey, California 93943

. 5. Curricular Office, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943

6. DCCS, JMOP 1
Room F-3-47
Russell Offices
Canberra, ACT 2600.
Australia

7. LT G. L. Thompson, USN 2
1491 S. Carolina Avenue
Avon Park, Florida 33825

8. LCDR P. J. Harrison, RAN 1
c/- DCCS, JMOP

*. ,Room F-3-47
Russell Offices

.t.-.. Canberra, ACT 2600.
Australia

I. 175

_ _.-- .a. L . . _ . .d., *_ . ., , S " * "* ' ,,. . . . -. . .. . . . " . . . -



Ift .

j4<
0~ 

rk

lA .

tnwt

j

(4P hh ?# rt'i~~ ;.t!;*lit,

*''-

0,Y 4 - - . 4.1.1 
4 ~

k6- 
4 44


