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>Plots of acoustic power versus frequency, and acoustic pressure direc-
tivity at selecteA frequencies, are given for the separate cases of thin,
thick and exact plate theories in which the excitation is a vertical time-
harmonic point force; they illustrate the range of applicability of the
approximate theories. Plots of acoustic power and pressure directivity are
given for exact plate theory in which the excitation is a longitudinal force.
Plots of pressure transmission and reflection coefficients are given for exact
plate theory. Contour and perspective plots of pressure-frequency-angle data,
obtained from exact theory, provide vivid illustrations of the acoustic
properties of the plate.
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Pestell and James (1] have calculated far-field sound radiation from ..
layered media, excited by time-harmonic forces, by the method of dynamic
stiffness coupling in which each element of the system is represented by a
spectral, dynamic stiffness matrix. Based on this work, Spicer (2] has

simlified the mathematical derivation of the stiffness matrices and has

included uniform mean subsonic flow in the acoustic fluid elements. Fortran
progrI arising from the aforementioned studies have been used to predict V'

sound radiation from, and free-wave propagation in, a variety of layered
system. Additionally, a Fortran program has been written to calculate
reflection and transmission coefficients due to plane-wave excitation.

The acoustics of fluid-loaded infinite plates has been studied exhaus-
tively in the literature, but only a restricted number of graphical presen-
tations have been published. The mathematics of the 'thin' and 'thick' plate
theories can be found in the standard text on fluid-structure interaction [3].
Evseev et al (4] and Sergeev [5] have studied sound radiation using plate
theories which include the effects of longitudinal vibrations as formulated by
Lyamshev. Freedman (6] gives a limited comparison of the transmission
coefficient obtained from exact and approximate plate theories and discusses°',_
the effect of including the first symmtric longitudinal wave notion in the
thin plate model. Fiorito et al (7] have used a resonance formalism theory
which provides physical insight into the peaks and dips that occur in plots of
transmission and reflection coefficients versus angle of incidence. Woolley
(9] has extended thick plate theory to include symmetric modes of vibration.

It is the purpOse of this report to extend the range of published numeri-
cal results of sound radiation, reflection and transmission of an infinite
steel plate which is imrsed in water. Subsequent reports will include
numrical results of the acoustics of layered media and will also discuss
wavenuier versus frequency plots obtained from the dispersion relation of the
layered system. The nurical results contained herein will help to illustrate
and aid understanding of the acoustics of a steel platet they will also
provide reference plots for comparisons with plots obtained from simplified
theories.

Section 2, below, gives no details of the mathematics needed for both
eit and approximate plate theories, the exact theory being based on the
multilayer theory of Spicer (2]. The numerical results are discusse in
Section 3 and they are followed by some concluding remarks in Section 4.

2.."

(a) 19D Yamiao and Reflection.

In Figure 1A a time-harmonic plane-wave is incident on a layered system
whose elements are governed by the equations of acoustics, elastodynamics and
viso-dyNics. The incident, reflected and transmitted waves must be of the
form



P, " Piexp(iQox+o W-iYs Z)

Pr = Pi IR.exp( ii+i90y+iY z ) (2.1)

Pt - Pi7 ' exp(L n+i1f-iY2[z+H])

where Pi is the amplitude of the incident wave; R is defined as the complex
pressure reflection coefficient; T is defined as the complex pressure trans-
itted coefficientl a, 0, Vi and Y2 are wave-numbers which must satisfy the

constraints

YIM -i ,(2 -- 2 2)

Y2- W(k 2 -a2 -13 .)

because the pressures must satisfy the acoustic wave equations in their re-
spective domaina; k, and k2 are acoustic wavenumbers, w/c1  and w/c2g the
time-hazuonic factor exp(-iwt) is omitted throughout.

Spicer (2] has presented the mathematics needed to generate the matrix
relation connecting interface displacements and forces, viz.

(Z(a,13)J(U(a,j3)] - [Z(a,)] (2.3)
M*N Nw1 N'!

where M-3N+3 with N being the number of layers; (Z(a,13)] is the system
dynamic stiffness matrix;

(U( ,A ) ] -- (u X , Uy l U z i, . . Uxn Uyn Uzn ]IT

is a column vector of displacements at the n layer interfaces, where n-N+l;

E(aA)j - i , ... ,,0] T

is a column vector of interface stresses, assumed to be positive when acting
in the positive s-dlrectlion, that takes the above form for plane-wave
excitation because the excitation is simply the 'blocked pressure' (3],
-(pi +pr]zmo; the factor ezp(ci+iy) has been omitted from both sides of the
equation.

The normal displacements of the upper and lower surfaces of the system,
viz.,

U (a,13) -u (a~jl(a,)eP(io4y)
I ZI (2.4)

W U (a,,) u (a,3)eXp(iCoc+i3y)

are found by matrix inversion of equation (2.3).
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The boundary condition
Pi/,s apr/aZ]Z. o - p1 (a2U(a,3)

that requires continuity of fluid particle and interface displacements at the
upper surface gives

R-lz+p U u,3)iy
SuZ(a,)/iylP (2.5)

and a similar boundary condition applied at z--H gives

2
T - -P2 W uzn(,13)/"y2p i  (2.6)

For the particular case shown in Figure 1, the wavenumbers and angle of
incidence, 0i , are related by the simple equations

a klsin(ei)

Y, k COO(O)

y +vfk2-k 2sin 2 (e)

The angle of transmission, e t , can be found from Snell's law, viz.

x2 sin(eO - k 1sin(0i ) (2.7)

which gives

0t - tan [klsin9i/(k2 -k2sin 20) 1/2 (2.8)

It may be deduced from equation (2.8) that when c1tC 2 , there is always a real
angle of transmission; and when COlC2 there is a critical angle of inci-
den*e, * 1-sin- 1 (01/02), beyond which there is no transmitted wave. This
phenomenon is discussed in numerous texts, for example (9].

The pressure reflection and transmission coefficients in decibels are
defined as

d -20.0 x 1o 10 IRI (2.9)

Td - 20.0 x log10 ITI
de
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(b) soun 3i ion. m

In Figure 23, time-hazonic point forces and sources ezcite the layered
systm, whose fax-field pressure in the upper half-space is

2p(R.,O) - -pl0 u (a.0)exp ik R)/2fR (2.10)

in which the ,stationery phase' (3 ] vavenumbers are

a- k sin(e)Cos(*)

(2.11)3 = k sin(e)sin(*)

The displacement u z l (a,13) is found by matrix inversion of equation
(2.3) in which

(20,13)] - (FP lop IF if ... IF IF IF +5i (z~~aJ)] - [r l~rl z, .. lxn yn, zn+Szn]

A vertical point force, Po, located on the upper interface at (x-xw, yyo ), is
represented by, for example

pz t Focxp(-iax0-iy
o ) (2.12)

and a point source of sound, p~ep ik 2 R)/R, located at dstance XO below the
bottom Interface gives

S - 4wiPOeX-i"oO-i3Yo4iIZI1Y2 /Y2 (2.13)

"W sound level in do ref. 1 gI/U2 at 1- is defined as

43 - 20.0 X log t0 P(R'1,, )1 + 120.0 (2.14)

For the case of point force excitation with peak amplitude Po, the decibels

as defined above must be regarded as for force F0 rm.

(C) Sound Radiation of Plate*. Anooimate

For the special cases of thin and thick (Timoshenko-Mindlin) plate
theories the sound pressure is again given by equation (2.10) in which, for
point force eoitation

u (Ga)- PoeXp(-iaxo-i.y o )/z(*a, ) (2.1S)

where

h Z(a,,) - D(a 2 +1 )2 -w 2 ph-ip 1W 2/yl-L.P2 2/2

or (2.16)

-6-
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2 2 3 2 2 2 2 2Z(a,D) ([(D(a +,a )-P h Id /12)(a +a -p /KG)-- pSh]

/[ 1+D(a 2 2 ) / M k p 2Wz / l 2 =G ] )-. ,,2/Y1-P2 2/Y2

respctiv*ly. D Is the plate flexural rigidity; p, is it. density and h

its thickness; G is the shear modulus and K z- #r2/12 is a shear correction

factor; Y1 and /2 are given by equation (2.2). The plate theories are

discussed in some detail in the standard text E3] on fluid-structure
interaction.

A.
Md Power Radiation

The radiated power, in the upper half-space, is defined as

2 2/2

P = (1/PC) Ip(R,O,*)I 2 R sin(e)dWd) (2.17)

0 0

which becomes, on using equation (2.10)

2ff f/2

P- (PJ /4f2C) lUzla,O)l sin(e)dedi (2.18)

0 0

For the special case of aXiByMMetric excitation, it is relatively easy to show

that

ff/2

P " (PWI/21wc) z lzta (a-k IsinO)l 2 sin(e)de (2.19)

0

The sound power level in dB ref lpW is defined as

dB - 10.0 x logtolPI + 120.0 (2.20)

For the case of point force excitation with peak amplitude FO, this
definition of power level must be regarded as for force P0 rms; hence, the
customary multiplication factor of one-half has been omitted in equation
(2.17).

3. *NJICAL - ,

(a) 9fux"

In Figures 2-17, which show transmission, reflection and radiation

levels, the following SI constants were used:
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Steel plate: A , 10.437x10 ;L , 7.558x10 1 0

E " 19.5X1010 a " 0.29

PS W 7000.0 h 0.05

Water: p - 1000.0 C - 1500.0

Plate damping was included in the computations by setting the elastic
constants to omplex values, for example ZEE(1-i)), where 71 is called the
hysteretic loss factor.

(b) Acoustic Power

*Figures 2 and 3 show acoustic power radiated into the upper half-space by
a plate that is excited by a IkN point force. The lower half-space contains a
vacuum. The power levels were obtained via numerical integration of equation
(2.19). Small irregularities in the plots are due to the low, but adequate,
accuracy of the integrations.

Figures 2A, 2B and 3A form a comparison of power radiated by thin, thick
and exact plate theories in which the excitation is applied at the lower sur-
face in the vertical direction. The effects of increasing the damping factor
from 0.01 to 0.1 are quantitatively similar on all three plots, viz., a very
small effect at frequencies below 5k/z rising to an OdB reduction at 50k~z.
The levels, however, depend on the particular plate theory used; the thin
plate theory is inadequate above 5kz and the thick plate theory is wanting
above 40kHz.

A plot of acoustic power radiated by a longitudinal force applied to the
lower surface is given in Figure 3B. A comparison of Figures 3A and 3B shows
that while the power radiated by a longitudinal force is significantly less at
frequencies below 10k~z * it is only about 6dB loe than the power radiated by
a vertical force at higher frequencies. Because this plot was also obtained
via equation (2.19), allowance had to be made for the fact that the pressure
varies in the azimuthal direction as cos(*), i.e. this equation was multiplied
by one-half.

(C) Radiated Pressure- Comarison of Theories
Fi Pgures 4-9 show the variation with angle • of the far-field pressure,

at selected frequencies, of te three plte .theories. The lower half-space
contains a vacuum. The excitation in a lX point force which is appliedvertil~Bly at the loffr surface.

At 2kHz, Figure 4 ound levels of the three theories are virtually

identical. They arise from the first antisymmetric branch motion of the plate
surface, viz., simple plate flexure. The small notch at 170 in the plot using
exact plate theory marks the initial *developmnt of significant sound radi-
ation from the first symmtric branch motion of the plate, which is not built
into the thin and thick plate equations.

At 5kfz, Figure 5, the 'hump' at 0-680 marks the development of coinci-

---



V dence lobe radiation: thin plate theory is now no longer suitable. At lOkHz,
Figure 6, there is still good agreement between the thick and exact plate
theories, except in the region of 0-170 where the first symetric branch
mo tion of the exact theory continues its development. At 20kHz, Figure 7, theN! . increasing inadequacy of thick plate theory is evident at 9=70 and at all

angles greater than 450. At 30kHz, Figure 8, thick plate theory is totally
inadequate, except over a small range of angles near to the coincidence lobe

At 40kfz, Figure 9, the emergence of sound radiation due to the second
antiszyitric branch motion of the plate is evident at 9=90 in both thick
and exact plate theories. However, while the thick plate theory is still
satisfactory at the coincidence lobe, 9-350, it does not predict correctly the
level of the lobe at 0=90.

*(d) Radiated Pressure. Exact Theory. Lonoitudinal Force

Figures 10-11 show the variation with G of the far-field pressure at
selected frequencies for the case of longitudinal point force excitation on
the lower surface, which is in contact with a vacuum. The pressure, which
varies in the azimuthal direction as cos(40), is plotted at the angle 0-00.

The sharp peaks at 9-170 are dominant. When allowance is made for the
inadequate resolution of the peaks, the maximum levels are seen to be close to
those levels that would have been obtained in the absence of the plate, viz.
20.0 x logl 0(Ff/c) + 120.0, which range from 182.5dB at 2kHz to 208.5dB at
40kHz. The levels of the broader coincidence lobes, which occur from 10kfz,
are only 3-6b less than the corresponding lobes due to vertical excitation.

(e) Exact Theory. Excitation on Eoler Surface

Comparisons have also been made between power and pressure plots obtained
from point force excitation on the upper and lower surfaces, respectively, but
the plots obtained from the former condition are not included herein. Power
levels show only small differences, whereas the pressure levels may differ
considerably in the continuum background but not too significantly in regions

-close to the resonant peaks.

(f) Reflection and Transmission. Exact Theory

Figures 12 and 13 show the reflection and transmission coefficients,
respectively, as a function of the angle of incidence, 9. The reflection
coefficient is close to 0dB, except at dips which occur at the coincidence
angles of the symmetric and antisymmetric branch motions. At 20 and 40kHz,

A. there are well defined peaks in the transmission coefficient at the coinci-
dence angles. The reflection and transmission characteristics of fluid-loaded
plates is discussed in some detail in the papers of Freedman [6] and Fiorito
(7].

(g) Perseoive and Contour Plots. Eact Thery

Figures 14-17 show perspective and contour plots of sound radiation,. ."-
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reflection and transmission in which the loss factor was chosen as 0. 1l. They
were obtained via the University of Bradford's SIHPLEPOT graphics package,
fro a 128x129 array of equispaced decibel data. The perspective plots are
for a user-selected angle of view of 600 with the horizontal; their appearance
is enhanced by setting a dynamic range of 40d, that is, values less than the
maxim minus 40dB are set to this base level. The perspective plots enable a
quick qualitative assessment of the acoustic properties of the steel plate in I
terms of the two antisymmeric and one symetric branch motions of the plate.
The contour plots present the same information =u=h less vividly, but are more
helpful if precise magnitudes are of concern.

Numerical results obtained from exact linear theory have been presented
for sound radiation, reflection and transmission of a steel plate in water.
Some of the plots are new to the literature and should aid physical under-
standing when studied in conjunction with som of the papers referenced
herein. The comarison of sound radiation predictions of thin, thick and
exact plate theories have illustrated the range of applicability of the

te plate theories. The predictions of sound radiation due to
longitudinal excitation serve as reference plots for use in the future when
predictions obtained from more refred plate theories become available.

E.J. CLEm" (HBO)

.- 1.-
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