EFFECTS OF HEMATOPORPHYRIN (HPD) AND A CHEMILUMINESCENCE SYSTEM ON THE GROWTH OF TRANSPLANTED TUMORS IN C3H/HeJ MICE

by

M. J. Phillip, J. D. McMahon, M. D. O'Hara, F. W. Hetzel, C. Amsterdamsky, and A. P. Schaap

Department of Chemistry, Wayne State University
Detroit, MI 48202

April 6, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Effects of Hematoporphyrin (HPD) and a Chemiluminescence System on the Growth of Transplanted Tumors in C₃H/HeJ Mice

M. J. Phillip, J. D. McMahon, M. D. O'Hara, F. W. Hetzel, C. Amsterdamsky, and A. P. Schaap

Department of Chemistry
Wayne State University
Detroit, MI 48202

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

April 6, 1984

April 6, 1984

This document has been approved for public release and sale; its distribution is unlimited.

Photoradiation therapy is emerging as a promising technique for combating cancer. Fundamentally, this approach consists of two steps: (1) hematoporphyrin derivative (HPD) is used to selectively sensitize cancer cells to visible light; (2) after an appropriate time interval, light is introduced into the tumor via a laser-fiber optic system to trigger the cytotoxic action of HPD. The present investigation was initiated to determine the therapeutic potential of HPD in combination with a chemiluminescent activator in treating mice which had been transplanted with tumors.

Key Words: Hematoporphyrin, Singlet Oxygen, Chemiluminescence, HPD Localization, Cancer Treatment, Peroxides.
20. ABSTRACT CONTINUED
EFFECTS OF HEMATOPORPHYRIN (HPD) AND A CHEMILUMINESCENCE SYSTEM ON THE GROWTH OF TRANSPLANTED TUMORS IN C3H/HeJ MICE

M. J. Phillips, J. D. McMahon, M. D. O'Hara, F. W. Hetzel, C. Amsterdamsky, and A. P. Schaad

1School of Dentistry, University of Detroit
2Therapeutic Radiology, Henry Ford Hospital
3Department of Chemistry, Wayne State University
Detroit, Michigan

ABSTRACT

Photoradiation therapy is emerging as a promising technique for combating cancer. Fundamentally, this approach consists of two steps: (1) hematoporphyrin derivative (HPD) is used to selectively sensitize cancer cells to visible light; (2) after an appropriate time interval, light is introduced into the tumor via a laser-fiber optic system to trigger the cytotoxic action of HPD. The present investigation was initiated to determine the therapeutic potential of HPD in combination with a chemiluminescent activator in treating mice which had been transplanted with tumors.

INTRODUCTION

The principles on which photoradiation therapy (PRT) is based have been known for over 80 years. In 1900 it was discovered that certain fluorescent dyes could sensitize living organisms to visible light (Raab, 1900). Some time after this discovery, several investigators reported selective retention of photosensitizing agents by malignant tumors in animals as well as in humans (Auler and Banzer, 1942; Figge et al., 1948; Lipson et al., 1961; Gregorie et al., 1968; Winkelman and Rasmussen-Taxdal, 1969).

More recently, the specific uptake and retention of hematoporphyrin derivative (HPD) by malignant tissue followed by laser irradiation has been utilized in the development of a promising modality for the treatment of
cancer (Kelly et al., 1975; Granelli et al., 1975; Dougherty et al., 1975; Dougherty et al., 1978). Although the mechanism of tumor destruction by PRT has not yet been fully delineated, there is substantial evidence that singlet oxygen is involved as the active agent in the oxidation of biomolecules (Weishaupt et al., 1976; Moan et al., 1979).

Our present investigation was initiated to determine the therapeutic potential of HPD in combination with a chemiluminescent activator. This new approach is targeted at improving the delivery of light to the HPD by replacing the laser with an efficient chemiluminescent system (CLS) that can be injected directly into the tumor. Preliminary results have been obtained in treatment of transplanted tumors in C3H/HeJ mice.

As the chemical light source for this study, we have utilized a system related to the peroxyoxalate chemiluminescence developed at American Cyanamid (Rauhut, 1966; Rauhut et al., 1975; Tseng et al., 1979). The luminescence is produced in aqueous solution by treatment of the substituted oxamide 1 with 1% hydrogen peroxide in the presence of sulfonated rubrene 2 as fluorescer. The reaction is initiated by the addition of the hydrogen peroxide and the surfactant Deceresol N1 to 1 and 2. The intense yellow-red light from this reaction lasts for 10-20 min. The mechanism for this chemiluminescent reaction is thought to involve the formation of the high-energy cyclic peroxide, 1,2-dioxetanedione (3). Subsequent decomposition of peroxide 3 in the presence of rubrene 2 gives singlet excited 2, fluorescence from which provides the observed light.
MATERIALS AND METHODS

A transplanted mammary adenocarcinoma from a female C3H/HeJ mouse obtained from Henry Ford Hospital was excised after sacrifice of the animal. The tumor was carefully dissected and transplanted into the left axillary fold of 70 C3H/HeJ male and female mice using the technique described by Phillip et al. (1971, 1973). When the transplanted tumors became palpable, the animals were sensitized with 0.2 mL hematoporphyrin derivative (HPD) obtained from Henry Ford Hospital. The concentration of the HPD was 10 mg/kg body weight. Twenty-four h after sensitization the animals were treated with 0.2 mL of the chemiluminescence system (CLS) described below. The CLS was injected subcutaneously in the area of tumor localization.

Initial samples of oxamide 1, sulfonated rubrene 2, and Deceresol N1 were generously provided by American Cyanamid. We also thank Dr. A. G. Mohan for a description of the procedures for the syntheses of 1 and 2. The chemiluminescence system was prepared by adding 180 mg of oxamide 1, 25 mg of sulfonated rubrene 2, and 0.1 mL of Deceresol N1 to 5 mL of 1% hydrogen peroxide.

RESULTS AND DISCUSSION

This investigation was conducted to evaluate the therapeutic potential of HPD in combination with chemiluminescence. A standardized suspension of viable adenocarcinoma cells excised from a tumor-bearing C3H/HeJ mouse was
injected into the axillary fold of young healthy mice. A group of animals were given HPD/CLS therapy as soon as the transplanted tumors were palpable. The treatment was administered on two successive days. On the first day the animals were sensitized with HPD and 24 h later the animals were treated with the CLS, injecting directly into the tumor to activate the HPD.

There were four different groups of animals in the investigation. Group I was treated with HPD + CLS; group II was treated with CLS only; group III was transplanted and untreated; and group IV was neither transplanted nor treated and served as a control against the development of spontaneous tumors. The animals in each group were carefully examined at weekly intervals and tumor development was monitored by computing tumor volume.

Average tumor volumes for each group eight weeks after transplantation are shown in Table I. Significantly, group I which was treated with HPD + CLS exhibited approximately four times smaller tumors than the tumors in group III (transplanted and untreated controls). Photograph I shows a typical mouse with a large tumor that was not treated with the chemiluminescence system. In contrast, photograph II demonstrates the typical reduction in tumor volume that is effected by the combined HPD/CLS treatment.

<table>
<thead>
<tr>
<th>Table I. Average Tumor Volumes Eight Weeks After Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>I (HPD + CLS)</td>
</tr>
<tr>
<td>II (PCS only)</td>
</tr>
<tr>
<td>III (transplanted and untreated)</td>
</tr>
<tr>
<td>IV (normal, not transplanted)</td>
</tr>
</tbody>
</table>
These results are presently interpreted in terms of a mechanism for tumor destruction involving: (1) localization of HPD in malignant mouse tissue; (2) absorption by HPD of the CLS-produced luminescence; (3) energy transfer from excited HPD to oxygen to generate singlet oxygen; and (4) oxidation of biomolecules in the tumor by singlet oxygen.

Although the results described above are preliminary, we have demonstrated that a chemiluminescent system in combination with HPD may provide an alternate approach to treatment of malignant tumors. This investigation is continuing with studies of various chemiluminescent reactions with other photosensitizing dyes.

Photograph I. Typical mouse with tumor not treated with chemiluminescence system.

Photograph II. Typical reduction in tumor volume upon treatment with HPD and chemiluminescence system.
ACKNOWLEDGEMENTS

The authors wish to express their appreciation to Dr. Arthur G. Mohan, American Cyanamid Company, for his assistance with the oxamide chemiluminescence system. A. Paul Schaap also gratefully acknowledges support from the U.S. Office of Naval Research (N00014-82-K-0696).

REFERENCES

TECHNICAL REPORT DISTRIBUTION LIST, 051A

Dr. M. A. El-Sayed
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. E. R. Bernstein
Department of Chemistry
Colorado State University
Fort Collins, Colorado 80521

Dr. J. R. MacDonald
Chemistry Division
Naval Research Laboratory
Code 6110
Washington, D.C. 20375

Dr. G. B. Schuster
Chemistry Department
University of Illinois
Urbana, Illinois 61801

Dr. A. Adamson
Department of Chemistry
University of Southern California
Los Angeles, California 90007

Dr. M. S. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. A. Paul Schaap
Department of Chemistry
Wayne State University
Detroit, Michigan 49207

Dr. Gary Bjorklund
IBM
5600 Cottle Road
San Jose, California 95143

Dr. Kent R. Wilson
Chemistry Department
University of California
La Jolla, California 92093

Dr. G. A. Crosby
Chemistry Department
Washington State University
Pullman, Washington 99164

Dr. R. Hautala
Chemical Research Division
American Cyanamid Company
Bound Brook, New Jersey 08805

Dr. J. I. Zink
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. D. M. Burland
IBM
San Jose Research Center
5600 Cottle Road
San Jose, California 95143

Dr. John Cooper
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Dr. W. M. Jackson
Department of Chemistry
Howard University
Washington, D.C. 20059

Dr. George E. Walrafen
Department of Chemistry
Howard University
Washington, D.C. 20059

Dr. Joe Brandelik
AFWAL/AADO-1
Wright Patterson AFB
Fairborn, Ohio 45433

Dr. Carmen Ortiz
Consejo Superior de Investigaciones Cientificas
Serrano 117
Madrid 6, SPAIN

Dr. John J. Wright
Physics Department
University of New Hampshire
Durham, New Hampshire 03824
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ONR Pasadena Detachment Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106</td>
<td>Naval Weapons Center Attn: Dr. A. B. Amster Chemistry Division China Lake, California 93555</td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401</td>
<td>Dean William Tolles Naval Postgraduate School Monterey, California 93940</td>
</tr>
<tr>
<td>1</td>
<td>Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375</td>
<td>U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314</td>
<td>Mr. Vincent Schaper DTNSRDC Code 2830 Annapolis, Maryland 21402</td>
</tr>
<tr>
<td>1</td>
<td>DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401</td>
<td>Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232</td>
<td>Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801</td>
</tr>
</tbody>
</table>