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Abstrac’

Let G=(V,E) denote an undirected network with node set V and
arc set E={1,...,N} . Arcs fail randomly and independently with
probability l-qi for V¥V iekE . This paper describes a numerical
procedure for estimating g(s,t) , the probability that nodes s and
t are connected for specified s,teE , with bounds on absolute error
proportional to 1/K for a specified nonrandom finite sequence and
proportional to log K/K for certain nonrandom infinite sequences,
where K is the number of replications. These convergence rates are
best possible. Although the infinite sequences have a slower convergence
rate than the finite sequence has, they offer the convenience of
allowing one to add replications and retain the rate whereas the finite
sequence does not. These bounds improve on the convergence rate
0(1/K]/2) for the standard error in the case of independent Monte Carlo
replications based on random sampling. Moreover, they hold with
certainty. Algorithms for computing estimates are shown to have an
upper bound O(N)+O(max(N,|V|)) on time complexity per replication
as K+ =,

The paper first describes the estimation of g(s,t) for Q)= .- =qy=P
by using a tabled truncated binomial distribution together with the
A-canonical representation of a positive integer. It then describes
how to incorporate stratified sampling to estimate g(s,t) as a
function of p at small marginal increase in time complexity. Next,
the paper extends the stratified sampling method to the case of
unequal Qqseeesly -

An example based on a network of 30 arcs illustrates the techniques.
Lastly, the paper extends the method to the estimation of g(s,T) , the
probability that s and t are connected for all teTCE-{s} .

KEY WORDS: Monte Carlo methods, network connectedness,

network reliability, quasirandom points.
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Introduction E‘.‘,
Let G=(V,E) denote an undirected network with node set V :"_
%éb and arc set E={1,...,N} . Arcs are assumed to fail randomly and ;i
% independently with probability l-qi for all i¢E . We wish to -
. estimate ?L
:" g(s,t) = the probability that nodes s and t ')":
are connected for specified s,teV .
-;} It is well known that direct evaluation of g(s,t) takes O(ZIE!) =
gjf steps, a computation that can be infeasible even with a moderate .
3 number of arcs. At least three approaches have been suggested to \,:
L reduce the severity of this difficulty. The first concentrates on
‘% networks with special structure. For example, see Rosenthal (1977).
: The second relies on finding bounding inequalities. For example, see ‘:
2 Ball and Provan (1983) and Zemel (1982). =
The third uses estimation techniques among which the most common
§§ are Monte Carlo procedures based on independent trials or replications -
o that use random sampling. Van Slyke and Frank (1972) describe how y
" Monte Carlc methods using a stratified sampling design lead to estimators .‘
~; - of network reliability with considerably smaller variances than would ':C;
obtain if pure random sampling were employed. Easton and Wong (1980) \
?°‘ demonstrate a similar benefit using conditional sampling and Kumamoto, _
A\ Tanaka and Inoue (1977) show a like benefit for dagger sampling, a special ’\
i..:‘: form of antithetic variates (Hammersley and Handscomb 1964). Karp and
::'1 Luby (1983) describe a Monte Carlo procedure based on importance ’:
'.’:\;'3 sampling whose computation time complexity to achieve a specified :::‘:
2 * accuracy is linear in the number of cutsets. o~
o 3
5
e o

J

.‘\.l.

'}(

(LYY
Ly

\'

\‘:

l\'I

. . N
AN SL U RS T LR W T K

-
.-‘J_

--------



a®a

-

LA

b
_ 4

.. -
2 LI NES

b 1R

AT YY)

2
o
f\
-

-2-

While each exploits network structure in a specialized way, these
Monte Carlo procedures share one shortcoming in common. They all lead

]/2) where K is the number

to standard errors that converge as 0(1/K
of independent trials or replications. To improve this convergence
rate Fishman (1983) describes a numerical procedure that uses quasirandom

point sequences together'with a conditionality property based on cutsets

SO SR R S S

to produce an estimate of g(s,t) whose absolute error has an upper
bound proportional to (log K)'P'RI/K where P denotes the union of
all minimal s-t pathsets and R 1is a minimal cutset with the property
that |RNS|=1 for each s-t pathset S . Moreover, since these
sequences are nonrandom, the bound holds with certainty. These results
imply that for a given network G quasirandom point sequences produce

a deterministic upper bound on absolute error that converges faster
than 1/K]/2 .

.~ The purpose of this paper is to describe related estimation techniques
that improve %gg;'convergence rate to 1/K when a specified nonrandom
finite sequence 6f sample points is used and to (log K)/K when
certain nonrandom infinite sequences of sample points are used. In
addition, algorithms are given for computing estimates of g(s,t) with
1/K and (log K)/K convergence rates with computation time complexities
per replication having an upper bound O(N) + O(max(N,IVl|)) as K +® .
Although the infinite sequences have a slower convergence rate than
the finite sequence has, téé;Loffer the convenience of allowing one
to add replications as desired and retaining the rate. By contrast,

the finite sequence does not allow this addition, once K is initially

fixed.
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Section 1 describes the technique for the special case of
equal failure probabilities. In particular, it shows how sampling
from a tabled truncated binomial distribution and applying the

A-canonical representation of an integer B (Kruskal 1963 and

Katona 1966) make these convergence rates and time complexity possible.
Section 2 then shows how to incorporate stratified sampling to allow
the estimation of g(s,t) as a function of p at relatively small
increase in time complexity while retaining the desirable convergence
rates. Section 3 shows how the method of stratified sampling
facilitates the estimation of g(s,t) for the case of unequal
Qqseeesly o while preserving the convergence rates and time complexity.
Section 4 illustrates the technique of Section 1 for a network of

30 arcs. Lastly, Section 5 extends the analysis to the case of

estimating g(s,T) , the probability that s 1is connected to all

arcs in TCE-{s} .
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o 1. The Basic Method

kj For all nodes u,veV define:

\ C(u,v) = minimal wu-v cutset of minimal cardinality

2 M(u,v) = minimal u-v pathset of minimal cardinality

: L(u,v) = set of all minimal u-v pathsets

: P(u,v) = union of all minimal u-v pathsets

2 and

;; < V(u,v) = node set corresponding to P(u,v) .

< Let

3 _dony n-j

] Fy(n,0) = iZO () 0°(1-e) (1)

i n=integer >0 and 0 < ¢ <1

% 0<jsn.

For each arc i=1,...,N let

2 q; = probability that arc i operates ‘
'f and r
. z; = 1 if arc 1 operates

B =0 ifarc i fails.

;: Then for the network, let

- Z= (z]....,zN) = network state

2 Z = set of all network states 2z

2 e eV

Zm = set of all network states with z]+...+zN=m

. k(u,viz) =1 - 1 (V- n Zi) (2)
5 SeL(u,v) ieS
! [ = k ] 3
R, (usv) zsz (u,viz) (3) .
f and
Y N )
R(u,v) = k(u, = R (u,v) . 4
(u,v) zzz (u,vi2) mgl (Usv) (

N -. f'-“\ "\"\“ W -"-. "v..':-\' WA
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Note that given z k(u,vlz) is the conditional probability

A (0 or 1) that u and v are connected. Also Rm(u,v) denotes

LA

the number of distinct states 2z that induce u-v connectedness when

o A

m arcs operate and R{u,v) denotes the number of distinct states z

that induce u-v connectedness regardless of the number of operating

PR PUS e

arcs.

Expression (2) is of seminal importance throughout this paper.
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A Suppose we collect data XqseeesXg ON K sampling experiments or ?
5 replications where .
Xg = (Kypoeeeskyy)  37aeoK !
and ]
xij = 1 if arc i operates on replication j ?
y
= 0 otherwise. !
Here Xyse-+oXy are sample network states and
A 1 K
) gy(s,t) = E.jzl k(s.tlxj) (5)
E is the proportion of trials on which s and t are connected. As we
- show shortly the sampling plan for choosing XyseeeaXy determines how
good an approximation SK(s,t) is to g(s,t) .
It is important to note that (2) is used merely for representation
and analysis. To determine the value of k(u,lej) on each replication,
we assume that a "depth-first search" algorithm, as in Aho, Hopcroft
and Uliman (1974, pp. 176-177), is employed. This algorithm has an
upper bound on computation time complexity O(IP(u,v)!, IV(u,v)!) where

b *e . .8 amyemeac P I A L A L A YUY et e T e LT e N e e e Lt NN T et e T T w e B W x o . .- .
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» IS| denotes the cardinality of the set S .

'g Sampling Sequences and Erron Bounds

{i We now turn to the selection of a sampling scheme for generating
b the data XyseoesXy - In particular, we would like a scheme that enables
‘g us to estimate g(s,t) by ﬁk(s,t) and related estimators in a
;g computationally efficient manner. To make an informed selection, we

. first need to consider several basic ideas from the theory of L
'; equidistributed points. Let

L]

f» I[a’s)(x) =1 if  asx<g .
;% =0 otherwise

1 and let Vis Vos-en denote a sequence of points in [0,1) . Then the

. sequence Vis Vos-o. is said to be uniformly distributed or equidistributed {
< on [0,1) if (Schmidt 1977, p. 1)

4 ] K

W g Ll () = e ©)

% for all o and B such that Osa<gs] . Conversely, if v,,v,,... 5
g; are equidistributed in [0,1) then (6) holds. As a measure of error '
_ in estimating B-a one has the discrepancy measures !
; D = sup I '2< I (v;) - (B-a)! (7a) :
,§ K 0sa<gst K j=1 [ae8) 773 |
9

» z
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and

' K

'\‘.‘ D* = su l (7b)
098 = sup | ) I (v;) - al,

& K osast K ga1 [0:2)7

.-’d'

~ T with the inequality (Kuipers and Niederreiter 1974, p. 91)

3

% D, < D, < 2D,

:g g S D s2b . (8)

*

v Note that DK and DK are worst case measures of the errors of

N
3:: estimation.
W .
" For the finite sequence {vj=—522§—] s j=1,...,K} it is known

" (Niederreiter 1978, p. 972) that

1*

‘t *
'.,". DK = ]/K9 - (9)
.. "
.
. which is best possible. In this paper we devise a sampling scheme
i that enables us to write GK(s,t) and related estimates as linear
H »(\

o combinations of indicator functions with argument vJ. and thus are

_ able to realize the convergence rate 1/K .

~ .

:;:- Although one can achieve this rate in practice for ﬁK(s,t) in (5),

P

'«': situations can arise in which after K replications, one finds that
- a larger sample size is necessary. Unfortunately the finite sequence
_"C {v‘).---g'%—'Kl ; j=1,...,K} does not allow for adding points

T . .

", Vka1® Vie2?o e e oVgey 2aNd achieving a bound proportional to 1/(K+J)
o) on discrepancy. However, it is known that there exist infinite sequences
o

{- VisVose-- (Kuipers and Niederreiter 1974, p. 125) such that
Y '

o D¢ s ¢ (log K)/K (10)
-

o)

et
N

‘q
!
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where ¢ depends only on the sequence. One such sequence due to

van der Corput (1935) considers the unique dyadic expansion of the

integer n
o
n= ] a;2 a;e{0,1}  OsisI

where LI= log2 nJ . Then the radical inverse function

-i-1
: ai2

L e Lo

$,(n) =

2 i
can be used to compute the van der Corput sequence {vj=¢2(n+j) H
j=1,2,...} for which unpublished results of Tijdeman (Niederreiter 1974,

p. 973) show that for all K21

* 1
DK < (§-logZK+1)/K (11a)
and
. * ] 4 1
l‘lrziup (KDK -3 ]092 K) 2 ] + 3 1092 3. (11b)

Bejian and Faure (1977) show that (11a) also holds for Dy and (11b) holds
with equality for DK .
Schmidt (1977, p. 28) shows that for infinite sequences the best

possible lower bound is
Dy 2 0((1og K)/K)

so that the van der Corput sequence achieves the fastest convergence
rate with respect to K . Moreover, no other infinite sequence is

known that has uniformly smaller discrepancy than this sequence has

P 4 » . AN At taa®s cRERE 4 8 A m Rak %

Py

P

LR

Ak B® ol

Al e o~

- e i m”




-9-

AN

-,

(Kuipers and Niederreiter 1974, p. 127). Note that the van der Corput

i: sequence is one form of a guasirandom point sequence.
It is important to note that both the finite and infinite sequences

discussed here are nonrandom so that the equality (9) and the bound (10)
hold with certainty. By contrast, independent replications using

random sampling lead to (Chung 1949)

! 1im su JéE‘B: =

; p —m—————— =] w.p. 1,

; K+ = /Tog Tog K

\ indicating a considerably slower rate of convergence. Therefore,
provided that we can effectively control the time complexity of our

3 proposed sampling plans, the foregoing finite and van der Corput
sequences should be preferred to independent random sampling.
Canonical Representation

. As we show shortly the sampling method that we adopt requires

that we be able to use a single number v on replication j to select

the network state z from Z or, as in Sections 2 and 3, from Zm .

To make this selection possible in a relatively efficient manner

we rely on an extremely useful mathematical relationship. Let B be

a positive integer. Then there exists an A-canonical representation of B

'i (Kruskal 1963 and Katona 'I966)'r
- B B B
- 12
, B= (M) + (A +.4(h) (12)
where
b BA > BA-.|>...>B£zzzl

y T am grateful to my colleague, Professor Scott Provan, for making me
aware of this relationship.

»
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Most importantly, this representation is unique.
To determine B,, BA-]""’Bz for B>0 one can use the relationship

(Ball and Provan 1983, p. 256)

BA = max[b: (g) < B]
(13a)
b A B,
By = max[b: (§) <B - 7} (.9)] i=A-1,A-2,...,2
j=1+1 3
where
A B,
g = max[i: B= 1} (;3); i21]. (13b)
j=i 9

Suppose that we know that exactly A of N arcs operate on
N
replication j so that 7§ Xij = AR . To determine exactly which of
i=]

the N arcs operate one can proceed as follows: Sample B from the
discrete uniform distribution on {0,1,...,(2)-1} . The quantity B
is the "number" of the combination of A operating and N-A failed
arcs on replication j . Then if B=0 one takes

X.. = 1 i=1,...,A

13 (14a)
=0 otherwise.

If B>0 and g=1 one takes

X;; = 1 i=Bm+1 m=1,...,A

1J (14b)
=0 otherwise .,
Lastly, if B>0 and 2>1 one takes
Xee = 1 i=1,...,2-1 , B +1,...,B,+]
ij ) A (14c)
=0 otherwise.

Al B 2 -

.'-_;-It-
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Note that these assignments are unique functions of A and B .

|
Equal Probabilities
We first consider the case of s-t connectedness with equal
operating probabilities 9;=p ieP(s,t) . For convenience of h

K exposition we take C=C(s,t) , L=L(s,t) , M=M(s,t), P=P(s,t) ,
| and Rm=Rm(s,t) , and assume P=E so that |[P|=N . Here the number

of operating arcs has the binomial distribution with probability

‘: distribution function (1) with n=N and e=p .
i Algorithm C.1 describes how to conduct the K vreplications that
': lead to the computation of ﬁK(s,t) as an estimate of a(s,t) . Note
:E that the number of operating arcs A is determined (step 2c) from a
'g truncated distribution. To appreciate why this is so observe that if
: the number of operating arcs on a replication exceeds N-|C| , then
i s and t are connected with probability 1. Conversely, if fewer than |M|
12 arcs operate then with probability 1 s and t are not connected. Therefore,
J it is to our advantage to restrict sampling (step 2c) to the uncertain
~ connectedness outcomes when the number of operating arcs exceeds
' {M|-1 but is less than N-|Cj+1 . Also note that A can be determined
o on each replication with time complexity O0(1) using a procedure
Q described in Fishman and Moore (1981).
_Ez Theorem 1 gives the implications of algorithm C.1.
;? Theorem 1. Suppose algorithm C.1 is used to compute GK(s,t) . Then:
ij (i) For the finite sequence {vj = z%il 3 j=1,...,K}
? |6K(s,t) - g(s,t) | s 2HQ/K (15a)
. , where '

L
".. LR P T S SO PN PP S I L PUL I U S SN . e O T e A e W - a® LY « “u oW Tw )
L e N N R T Ay Dy T A O T D TN Y e N
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N-IC| N-ICH

R, %
m=[M]|

Q s min{
m=§MI m

[ - R} (15b)

(ii) There exist infinite sequences {vj s 3=1,2,...})

such that the bound in (15a) holds with c(log K)/K

replacing 1/K and where ¢ depends only on the

selected sequence.

(ii1) One can compute each iteration of step 2 with an unper

bound O(Np) + O(N) + O(max(N,[VI)) on time complexity

per replication as K » =,
Proof. For (i) observe that the number of operatina earcs A has a
truncated binomial distribution (step 2c) on the integers [M],...,N-|C|
with parameters N and p . Also, for given A it is clear that any
of the (:) combinations of A operating arcs are equally likely
(step 2d). The quantity B merely denotes the number of the combination
(given A) selected.

Let m=A and suppose that the (:) possible combinations of
operating arcs are numbered 1.....(g) . Let JM = {1,...,(”)} denote
the set of all these indices, let J; denote the subset of Jm for
which s and t are connected and, finally, let Fm=Fm(N,p) . Then

the unique A-canonical representation of B 1leads to

N-1C Hv.-F__,+F
k(S,t'Xj) = % ! Z * 1[2,'1 L ) vJ m-1 " |M|-]
m=IMl ged IE; ’ zz;' Fm'Fm-1
N-1C] (16)
= x 1 (vs)
m=¥Ml zgdm [azm ’ bzm) VJ

.......
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Algorithm C.1

Purpose: To compute QK(s,t) as an estimate of g(s,t) .

1.
2.

3.

Given: N, p, ICl , IMI , K, s and t.

Set parameters: n=N, 6=p and S=0.

Perform K replications:

a.
b.

C.

For i=1,...,n set «x..=0.
1]

Select v. .

c vJ
Determine the number of operating arcs:

A=min{m: [Fm(n,e)-FIMI_](n,e)]/H>vj; M| smsn-|C|}

where H = Fn-ICI("’e)'FIMI-1("’°) .

Determine the "number" of the combination of A operating
and N-A failed arcs:

HY5Fa-1 (84 )y (n.8)
eA(]_e)N°A

Determine the A-canonical representation ¢ , B .,BA of B

g
using (13). If B=0 , &=A+] .
If 2>1 , then for V=1,...,8-1 Bv=v-'l .
Set operating indicators:
For v=1,...,A ; set i=Bv+1 and xij=l .
Use a labeling algorithm to determine k(s.tlxj) .

(k(s.tlxj)=1 if s and t are connected

=0 otherwise.
Accumulate results:

S=S + k(s,tlxj) .

Compute final estimate for K replications:

g(sst) = 1-F _;<,(n,0) + H.S/K .




-13-

where H 1is defined in step 2c¢ and

n = o1 P * A (PP ) 1M
" (172)
= P y=Fupa * (2=1) 2"0-p) "I/
and
i = 2 * ORI (17b)

Now observe that one can write
N-|C

| i
9ls.t) = 1-Fy o (Np) + T I, p"(-pM T
m=1M| 2ed,

Therefore,

K
B(sat) - als,t) = V-Fy i) (p) + ¢ § kis.tixy)

N-1C1 }
-1+ FN‘lCI(N’p) = z z pm(]'p)N "
m=|M| leJ;
N-|C| 1 K N-
sH | I [p 11 (v;)-p"(1-p)" "/HII .
m= M| zeJ; K j=1 [azm’bzm) J

Using the results in (7) and (9) it is clear that this bound is bounded
above by 2HQ/K where Q is a function of the number of nonconnected
intervals in {[azm’ bzm): Led* m=|M|,...,N-1C|} . In particular,
the worst possible arrangement of intervals leads to

N-|C| N-{CI[(N) :

R’ - R }9

m-§m ™ opetmg ™"
which establishes (i). The result (ii) follows immediately by using
(10) instead of (7) in (15a).

Q s min{
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o For the result in (iii) note that steps 2a and 2b have time

}53 complexities 0(n) and O(1) , respectively, per replication. Also,
i?q step 2c can be performed with time complexity 0(1) per replication

*;f using the cutpoint sampling method described in Fishman and Moore (1981).
ﬁég There tables need to be computed (with time compliexity 0(n) and

> space complexity 0(2n)) prior to using algorithm C.1. Step 2d requires
o 0(1) time per replication. Also, the identification

5; of operating arcs (steps 2e and 2f) takes O(n) time. As K+ , step
133 2g takes O0(ne) time on average, and step 2i takes O0(1) time.

i& Since step 2h based on a depth-first algorithm takes O(max(H,[V[)) time
fgg the result in (iii) obtains. This completes the proof of Theorem 1.

< Observe that the bounds on convergence in (i) and (ii) are

,:u proportional to H=FN_ICl(N,p) - F|M|_1(N,p) . In particular, for

'jg fixed N, C and M this quantity decreases to zero as p+0 and p-1 .
I:}E Also if C and M are unknown one can substitute 0 for iC| , IM|

or both in algorithm C.1, which continues to compute correctly but
1:3 with a different coefficient in the bounds in (i) and (ii).
f‘j The quantity Q is of principal interest here. It depends on
?:? the arrangement of subintervals in the unit interval assigned to the
;,é sample outcomes for which s and t are connected for each m=IMl,... ,N-ICI.
f%ﬁ If for given m these subintervals form one long interval with no
‘LE breaks, then Q=N-ICI-IMi+ 1 . However, the number of steps necessary
N

to make this arrangement prior to sampling is comparable to the

direct computation of g(s,t) by total enumeration. Nevertheless,
arrangements that are clearly preferable to others hopefully can be made at
relatively small cost. These assignments are a topic of continuing

research.
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2. Stratified Sampling 4

ﬂ We naturally would like to extend the techniques of Section 1 to

-~

; the estimation of g(s,t) when at least some of the probabilities 1
Qqs--.5Qy are distinct. This extension is possible if one exploits

: certain features of a sampling technique known as stratified sampling.

¥

i Van Slyke and Frank (1972) propose this technique for estimating network

reliability characteristics in an environment in which Qyse-.5Qy are

identical and samples are drawn randomly within strata. The effect

o &-&dF

there is to reduce the variances of the resulting estimators below the
corresponding variances that would obtain for pure random sampling.
This section retains the restriction 9y=..-=Q\=p but replaces random
: sampling within strata with the nonrandom sequences used in Section 1

and demonstrates how stratified sampling affects the bounds on ervor

g convergence. Then Section 3 shows how the stratified sampiinag plan

? can be extended to the case of distinct Qyse-enQy -

o

: Let

. w (s t) = probability that s and t are connected given

X that exactly m arcs are operating. (18)
2 Now observe that wm(s,t) can be written in the form

y w(s,t) =R (s,t)/(M) =1 T «kis,tl2) (19)
v m’ m* m N 2¢7 ’

; m m

b

s so that

i N Ny.m N-m

! g(s,t) = T w (s,t) (O)p (1-p)"

: m=0 " "

: (20)
: N-1CI
= 1-Fuo 1 (Np) + ] p"(1-p M T k(s.tiz) .

S m= (M| 2el

) m

LY

}

.
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Algorithm C.2 describes a procedure for computing

~

m

as an estimate of wm(s,t) where B 1in step 2c gives the "number"

of the combination of A=m operating arcs on replication j .

w (s,t) =

nt~-1x

]
X . k(S,tIXj)

j=

Algorithm C.2

Purpose: To compute Wm(s,t) as an estimate of w_(s,t) .

Given: N, m, Km’ s and t (IMl sm<N- (C|).

1. Set parameters: n=N, A=m and S=0 .

2. Perform Km replications:

a.
b.

C.

For i=1,...,n set xij=0 .

Select -
c vJ

Determine the “number” of the combination of A operating

arcs and N-A failed arcs:

8= L() vy

Determine the A-canonical representation g , B ,...,B

L
using (13). If B=0 , &=A+]1.
If 2>1 , then for v=1,...,%-1 ; Bv=v-1 .
Set operating indicators:
For v=1,...,A ; set i=Bv+1 and xij=] .
Use a labeling algorithm to determine k(s,tlxj) .
Accumulate results:

S=S+k(s.tlxj) .

3. Compute final estimate for Km replications:

Done.

Gﬁ(s,t) = S/K -
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i
; ' Let
. -
1 Glsot) = 1Ry o ) + 3 (5,63 (Mpm(1py
;3 m=[M| (22)
K=K ., +...%+K
:: IM] N-1C|
3, denote an estimate of g(s,t) where {Wm(s,t); m=Ml,...,N-1CI} are
computed using algorithm C.2. Then Theorem 2 describes bounds on
!j absolute error.
: Theorem 2. For Wﬁ(s,t) and EK(s,t) algorithm C.2 leads to:
:: (i) For the finite sequence ({v. = Z%il : j=1,...,Km}
8 T
5
5]
| W (s,t) - w (s,t)] < 2Q /K (23a)
'J and
. - N-ICl Q -
3 Bts:t) - ols.thic2 1 g (Mypm(1-p) V" (23b)
~ m=|M| "m
_ where
4 . X )
‘5 1< Qm < m1n[Rm(s,t) R (m) - Rm(s.t)] m=|M}{,...,N=-IC}|.

(ii) There exist infinite sequences {vj s j=1,2,...) such that
the bounds in (23) hold with c(log Km)/Km renlacing 1/Km

The proof of (i) relies on observing that for m operating arcs

) = o
W (s,t) = — k(s,tlx.)
m Km §=] J

K

m
) 1 I L (v.)
* < [ ] ) j
sy feog EEy R

and on using methods analogous to those employed in the proof of

Theorem 1 (i). Part (ii) follows directly.
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Choosing a Sample Size

Note that for a given set of samrle sizes {Km} the bound in

%j (23b) diminishes to zero as p*0 and p*1 . However, the choice of :
L {Km} clearly affects this convergence. Observe that
% N-iC!
$ o m=§MIQm

where Q 1is defined in (15b). Therefore, if one chooses
_ pNym N-m _
3 Km = K(m)p (1-p)" "/H m=IMI,. .. ,N-ICI

then the error bounds for IEK(s,t) - g(s,t)! in Theorem 2 and

A
ng(s,t)_- g(s,t)! 1in Theorem 1 are identical for the finite sequence.

§ For the case of infinite sequences, the dominant term in the bound for
i I9~K(s,t) - g(s,t)| 1is identical to the bound for lﬁK(s,t) - g(s,t)! .
;- Moreover, the time complexities for computing GK(s,t) and EK(s,t)
4 are identical.

An alternative approach for assigning values to Km makes
1: considerably better use of a_priori information, when it is available. :
,E Let '
= Nm = mean number of steps needeq to determine whether or not -
& s and t are connected given that m arcs operate ‘
E m=IMl,...,N-ICI .
Q Then for a specified number of steps
R K" = N-ICIK A (24)
g m=IMl ™ m ’ X
2 the assignment
= . u
X K, = K ﬁ:Tt$_-_- m=IM],...,N=-1CI , (25)
: gt 419
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L]

SN PO

"o o BIRRRENLN N NN AN A

I
-



- 4 AL

n -20- <
oA where

3 - to.Mod(1omNd, V2 i i

E “j (QJ(j)p “ p) / J] J Ml,...,N=ICI

N

minimizes the bound in (23b). Since {Qm} and {km} are rarely
known, the assignment (25) has limited practical vlaue. Note that

van Slyke and Frank chose to omit consideration of the computation

RIS

time when choosing their assignment of {Km} to minimize variance.

There is an additional feature of stratified sampling that makes
algorithm C.2 more appealing than algorithm C.1. Observe that once

- {w (s,t) 5 m=IMI,...,N-1CI} is estimated one can use (22) to estimate

P AR

g(s,t) for as many values of p as desired without the need for

X : additional sampling. By contrast, algorithm C.1 applies for only one

N value of p at a time. Van Slyke and Frank also mention this advantage
for stratified sampling.

3. Unequal Probabilities

This section describes how stratified sampling can be extended to
the estimation of g(s,t) with an accelerated convergence rate on the

error bound when at least some of the operating probabilities Qys-- -Gy

PR ¥ Sl

are distinct. Diegert and Diegert (1981) also describe a stratified
sampling plan for unequal probabilities, but theirs differs significantly

3 from the plan proposed here both in terms of procedural design and

sampling mechanism. In particular, their plan relies on independent
replications and random sampling whereas the present proposal uses the
specialized finite and infinite sampling sequences, discussed in Section 1,

to effect the accelerated convergence rates.
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Let

dm(s,t) = probability that s and t are connected and
that exactly m arcs operate.

Observe that

2. 1-2z.

d(s.t) = I k(s,tlz) g q;'(1-q) (26)

Zel jeP
m
so that
(s.t) = 1 4 st

g(s,t) = naq, + d (s,t) . (27)

i=1 ' meMl ™

Note the upper limit on summation N-1 replaces N-ICI to account for

l-zi N
for N-{C| <.Z

Z.
the probabilities T qi‘(l-qi)
i=]

Z,i SN'l .
ieP
Algorithm C.3 describes a procedure, based on the sampling
plan in algorithm C.2, for computing am(s,t) as an estimate of
dm(s,t) . Then our estimate of g(s,t) is
N N-1

gK(s,t) = ifl q; + m=¥ d (s,t) K=K gy ¥ee-+Kyy - (28)

Recall that for m operating arcs there are (2) possible
combinations of operating arcs and that Jm={1,...,(g)} denotes the

set of all indices associated with these combinations. Also, recall

that J* denotes the subset of Jm for which s and t are connected

m
when m arcs operate. Now let zi(z,m) denote the status (0 or 1)

of arc 1 on combination 2 when m arcs operate i=1,...,N; zeJm

and m=|M|,...,N-1 . Then Theorem 3 gives the relevant bounds.
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Algorithm C.3

Purpose: To compute am(s,t) as an estimate of

Given: N, {q;3 i=1,...,N} , m, Km’ s and t . (IMl <m < N-1).

dm(s,t) = probability that s and t are connected

and exactly m arcs operate,

1. Set parameters: n=N , A=m and $=0.

2. Perform Km replications:

a.
b.

c.

For i=1,...,n set xij=0 .

Select . .
Y;

Determine the "number" of the combination of A operating

arcs and n-A failed arcs:

B = L(R) ij
Determine the A-canonical representation 2 , B
using (13). If B=0 , 2=A+1 .
If 2>1 , then for v=1,...,%1; Bv=v-1 .

Set operating indicators:

For v=1,...,A ; set i=Bv+1 and xij=] .

Use a labeling algorithm to determine k(s,tlxj) .

Accumulate results:
N x.. 1-x,.
S=S+k(s,t|x.) maq, '9(1-q;) I .
3! !

3. Compute final estimate for Km replications:

N
dafsst) = (B s/, -

4. Done.
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Theorem 3. Consider am(s,t) , based on algorithm C.3, and éK(s,t)

as estimates of dm(s,t) and g(s,t) respectively. Then

. . _2§-1 . .
(i) For the finite sequence {vj = ?%;_ J L PPN
N
2(.) N z.(2,m) 1-z.(%,m)
18 (s,t) - d {s,t)] < =2 mogq, (1-q,) (29)
m m Kn gegr  q=1 i
and
N
( ) N z (l’m) 1 Z-(‘Q'sm) 30
15, (s.t) - g(s,t)] s 2 Z T q,1 q.) | (30)
K m=1M] Km ed* §=1 1

(ii) There exist infinite sequences {vj; J=1,2,...} for which

(29) and (30) hold with c(log Km)/Km replacing 1/K_ .

Proof. For (i) note that

N z.(%,m) 1-z.(2,m) -
dist) = I moat o (leg) (31)
zedﬁ i=1
whereas
- Ny K N 1-x, .
d (s,t) = T:')‘ 1 k(s tixs) @ q,’"" (1-9;) 3
J=] i=1 (32)
K
m N z.(2,m) 1-z.(2,m)
=M I -3 19 (V)1 1 a (1-q,) |
m !.GJ;‘ ﬂ'ﬂ } [() (m)) j 1
Therefore,
: N z.(2,m) 1-z.(2,m)
N
13,(s5t) = dp(s,t)1= 1) xgda Ja (kg
1 n
X = 1 zpl L ) -
G [ ,)(vj (,,,) o
lll
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7,

] (N N 1

. 2 m) zi(l.m) 'Zi(ﬁwm)

2 s LA 9) ’

g zeJm i=]

which establishes (29). The result (30) follows by summation for

. m=|Ml,...,N-1 . Part (ii) follows directly, completing the proof.

; Note that, as in Theorem 2 and 3, the bound (33) diminishes to

_‘ zZero as p*=max q; -+ 0 and p,=min q; + 1 . However, in contrast to

) i i

33 the case of equal 9 » algorithm C.3 requires us to specify the unique
d Qyseeesly - Therefore, one needs to use algorithm C.3 for each such

: set of probabilities considered.

ﬁ There remains the issue of how to choose K|M|""’KN-1 . This is
PN not a trivial problem, as Diegert and Diegert show. One possibility is
= to choose

; () (P*)"(1-p, V"

> Km = K m={Ml,...,N-|C| . (32)
% U Ny vyl NS

. I (53 (1-p,)

) J= M| ,

W

A Then as p* + p, the bound on |§K(s.t) - g(s,t)| in Theorem 3

= converges to the bound on |6K(s,t) - g(s,t)| 1in Theorem 1 for the finite
ﬁ sequence. For the relevant infinite sequences the dominant term in the
, bound on |§K(s.t) - g(s,t)| converges to the bound on lﬁk(s,t) - g(s,t)|
:‘ proportional to (log K)/K . Lastly, the time complexity for computing
S §K(s,t) converges to that for SK(s,t) .

: While (32) enables one to achieve the desired accelerated convergence
: as in the case of equal probabilities in Section 2, better assignments
2 than (32) do exist and conceivably can be identified. But this
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identification calls for additional research.

4. An Example

Although the deterministic upper bounds and accelerated convergence
rates make apparent the superiority of the proposed method over any
alternative method based on independent replications that use random
sampling, there remain insights to be gained from an illustration of
how these new procedures work in practice. Accordingly, this section
illustrates the performance of algorithm C.1 using the van der Corput
sequence for estimating g(s,t) in the network of Fig. 1 with s=1 and

t=20 . Although slower in convergence than the sequence

_23-1 ..
{vj = '%?T" j=1,...,K} , the van der Corput sequence enables us to

proceed sequentially in the process of achieving a specified accuracy.

Insert Fig. 1 about here.

The network in Fig. 1 has N=30 arcs and |V|=20 nodes. The
minimal cardinality among all minimal cutsets is |[C|=3 and the
minimal cardinality among all minimal pathsets is |M|=5 . Suppose that
all arcs have operating probability p and that the objective is to

estimate g(s,t) to within 2§ . Then for the van der Corput sequence
pr(18,(s.t) - g(s,t)1 s &) =1 (33)

for all K 2 K(8) where
K(5) = min[j: js - ZHQ(% log, § +1) = 0; §=2,3,...] . (3)

Although the certitude of (33) is appealing its value is, at the moment,




academic since Q and hence K(8) , are unknown. Therefore we use

an alternative approach for studying the performance of algorithm C.1.
Consider a set of 100 independent experiments on the 2%th of

which (2=1,...,100) the van der Corput sequence (with randomly assigned

starting value) is used with algorithm C.1 to compute

6%2)(s,t),...,6£&)(s,t) as estimators of g(s,t) , where Kk* is

a large integer. Also, suppose that on experiment £ the quantity

k#)(s) = min(j: l'g‘,gz)(s,t) -gls,t)l 6 §sisKe) (35)
is computed.

Since there is a global deterministic upper bound K(8) for all
van der Corput sequences, there must be a finite number of replications
associated with each experiment that guarantees the accuracy & with
certainty. If K* 1is sufficiently large, say, K* 2 K(§) , then
K(g)=K(2)(6) 2=1,...,100 are the required numbers of replications for

these 100 experiments and a study of the properties of K(l),...,K(]OO)

should provide information about the required number of replications to achieve

the accuracy & with an arbitrary van der Corput subsequence and algorithm C.1.
For our experiments we used p=.95 , leading to

g(1,20) = 1-.295414 x 10°3 . This value of g(1,20) is actually a

long run estimate based on using algorithm C.1 with K=222=4194304

points generated from the van der Corput sequence. Suppose the objective

wes to estimate 1-g(1,20) to within *6 where &=10°° . A preliminary

analysis of the long run had indicated that our value for 1-g(1,20) was

well within this bound. Moreover, the long run had also provided evidence
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21

that setting K*=2%1=2097152 in (35) was reasonable.

The quantities K(]),...,K(loo)

were computed on 100 independent
experiments each using the van der Corput sequence with a randomly
assigned starting value. The sample mean number of required observations
was 326469.58 with estimated standard error 21289.28 . The smallest

K(z) was 63343 , the largest K(Z) was 857595 and the sample coefficient
of variation was 65.211. Note that the largest value was well within

our specified K* . Figure 2 shows the empirical distribution function

of the data with the deciles marked.

Insert Fig. 2 about here.

As a basis for comparison, suppose we had used algorithm C.1 with
pure random sampling to determine Vis Voseoo - Then Chebyschev's
inequality gives for J independent replications

pr(lGJ -gf<8)21- 9(1-9)/Js2

where 6J=6J(s,t) and g=g(s,t) . If & is sufficiently small so that
J is sufficiently large, then

pr(1g; - gls &) = 20(s /7g(T-g)) - 1

where ¢(:) denotes the cumulative distribution function of the
standardized normal distribution.
Suppose we specify a confidence level
pr(laJ -gls68)=1-a D<ac<l.

Then for pure random sampling the approximating normal distribution

L]
|

LI, L ST - . T R I .o T e T
o Xy 7'_ ¥ ‘ .‘.‘ . o ‘-"d’s q" f‘.f hEY “. 'f“‘ . ‘l\ W ‘- .

e



............
e i i R sV ataBal aP s -t Pl i o S S LR P A e T e R e I e e N L T R ]

leads to a minimal required sample size

3(6,a) = [d(a)/s1% g(1-g) (36)

where

FENSEL LN IR

5%

d(a) = min[d: o(d) = 1 - o/2] .

.99 one obtains

For a confidence level 1 - q
J(.00001,.01) = 19506035

from (36), making apparent the considerably larger sample size that

S 99 out of

random sampling requires to achieve the accuracy 10
100 times on average.

A FORTRAN program based on algorithm C.1 with the van der Corput
sequence used an average of 1.391 microseconds per replication. The same
program using a sequence of independent uniform deviates required an
average of 1.329 microseconds per replication. Therefore, the
van der Corput sequence requires 326469.58 x .001391/60 = 7.57 minutes
to achieve the desired accuracy whereas independent uniform deviates
require 19506035 x .001329/60 = 432.06 minutes. The advantage of
using the van der Corput sequence for estimating g(s,t) for this network
is apparent.

5. (s,T) Connectedness

We now turn to the estimation of

g(s,T) = probability that node s is connected to node
t for all” teTCE-{s} .

On repliéation J the conditional probability of (s,T) connectedness

is

DRI IR | "W MWW LIRS W

*,"L 1AL

k(s,Tlxj) = k(s,tlxj) . (37)
teT

¢
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Then analogous to (5) for the case of Q= .- =q=P » this suggests

the estimator

P o

8 ls.T) = }(-jzlk(s,nxj) : (3¢)

if one modifies algorithm C.1 as follows:

(i) Replace the fnput node t by the node set T .

(ii) Replace |C| and |[M] everywhere by unity.

(iii) Replace k(s,tlxj) by k(s,Tlxj) in steps 2h and 2i.

The motivation for modification (ii) is to account for the fact that
there may be different sets C(s,t) and M(s,t) for each teT and
these may not all be known. If they are known one can replace I[Ci

by min |C(s,t)! and [M] by min [M(s,t)| .
teT teT

Note that the results in Theorem 1 continue to hold. It is also
possible to amend algorithms C.2 and C.3 in a similar manner and have

the corresponding properties in Theorem 2 and 3 continue to hold.
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