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Abstrar .

Let G-(V,E) denote an undirected network with node set V and

arc set E={l,...,N} . Arcs fail randomly and independently with

probability l-qi for V icE . This paoer describes a numerical

procedure for estimating g(s,t) , the probability that nodes s and

t are connected for specified s,tEE , with bounds on absolute error

proportional to I/K for a specified nonrandom finite sequence and

proportional to log K/K for certain nonrandom infinite sequences,

where K is the number of replications. These convergence rates are

best possible. Although the infinite sequences have a slower convergence

rate than the finite sequence has, they offer the convenience of

allowing one to add replications and retain the rate whereas the finite

sequence does not. These bounds improve on the convergence rate

O(I/K 11 2) for the standard error in the case of independent Monte Carlo

replications based on random sampling. Moreover, they ho~d with

certainty. Algorithms for computing estimates are shown to have an

upper bound O(N)+O(max(N,IVI)) on time complexity per replication

as K-+-.
a S. K

The paper first describes the estimation of g(s,t) for ql= .. .=qN=P -..

by using a tabled truncated binomial distribution together with the

A-canonical representation of a positive inteoer. It then describes

how to incorporate stratified sampling to estimate g(s,t) as a

function of p at small marginal increase in time complexity. Next,

the paper extends the stratified sampling method to the case of

unequal ql""'qN N

An example based on a network of 30 arcs illustrates the techniques.

Lastly, the paper extends the method to the estimation of g(s,T) the

probability that s and t are connected for all tTCE-{s)

KEY WORDS: Monte Carlo methods, network connectedness,

network reliability, quasirandom points.



Introduction

Let G=(V,E) denote an undirected network with node set V

and arc set E={l,...,N) Arcs are assumed to fail randomly and

independently with probability l-qi for all iEE .We wish to

estimate

g(s,t) = the probability that nodes s and t
are connected for specified s,tEV

It is well known that direct evaluation of g(s,t) takes 0 (2 E1)

steps, a computation that can be infeasible even with a moderate

number of arcs. At least three approaches have been suggested to

reduce the severity of this difficulty. The first concentrates on

networks with special structure. For example, see Rosenthal (1977).

The second relies on finding bounding inequalities. For example, see

Ball and Provan (1983) and Zemel (1982).

The third uses estimation techniques among which the most common

are Monte Carlo procedures based on independent trials or replications

that use random sampling. Van Slyke and Frank (1972) describe how

Monte Carlo methods using a stratified sampling design lead to estimators

.of network reliability with considerably smaller variances than would

obtain if pure random sampling were employed. Easton and Wong (1980)

demonstrate a similar benefit using conditional sampling and Kumamoto,

Tanaka and Inoue (1977) show a like benefit for dagger sampling, a special

form of antithetic variates (Hammersley and Handscomb 1964). Karp and

Luby (1983) describe a Monte Carlo procedure based on importance

sampling whose computation time complexity to achieve a specified

accuracy is linear in the number of cutsets.

I-..
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While each exploits network structure in a specialized way, these

Monte Carlo procedures share one shortcoming in common. They all lead

to standard errors that converge as O(I/K 1 /2) where K is the number

of independent trials or replications. To improve this convergence

rate Fishman (1983) describes a numerical procedure that uses quasirandom
point sequences together with a conditionality property based on cutsets

to produce an estimate of g(s,t) whose absolute error has an upper

bound proportional to (log K)IP'RI/K where P denotes the union of

all minimal s-t pathsets and R is a minimal cutset with the property

that IRfnSI=l for each s-t pathset S . Moreover, since these

sequences are nonrandom, the bound holds with certainty. These results

imply that for a given network G quasirandom point sequences produce

a deterministic upper bound on absolute error that converges faster

than I/K1/2 .

.' The purpose of this paper is to describe related estimation techniques

that improve 4h-s convergence rate to l/K when a specified nonrandom

finite sequence of sample points is used and to (log K)/K when

certain nonrandom infinite sequences of sample points are used. In '.

addition, algorithms are given for computing estimates of g(s,t) with

1/K and (log K)/K convergence rates with computation time complexities

per replication having an upper bound O(N) + 0(max(N,IVI)) as K .. .

Although the infinite sequences have a slower convergence rate than

the finite sequence has, they offer the convenience of allowing one

to add replications as desired and retaining the rate. By contrast,

the finite sequence does not allow this addition, once K is initially

fixed.

-...
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Section 1 describes the technique for the special case of

equal failure probabilities. In particular, it shows how sampling

a.i from a tabled truncated binomial distribution and applying the

A-canonical representation of an integer B (Kruskal 1963 and
'

Katona 1966) make these convergence rates and time complexity Dossible.

Section 2 then shows how to incorporate stratified sampling to allow

the estimation of g(s,t) as a function of p at relatively small

increase in time complexity while retaining the desirable convergence

rates. Section 3 shows how the method of stratified sampling

facilitates the estimation of g(s,t) for the case of unequal

ql...,qN , while preserving the convergence rates and time complexity.

Section 4 illustrates the technique of Section 1 for a network of

30 arcs. Lastly, Section 5 extends the analysis to the case of
.J

estimating g(s,T) , the probability that s is connected to all

arcs in TC.E-{s.
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1. The Basic Method

For all nodes u,veV define:

C(u,v) = minimal u-v cutset of minimal cardinality

M(u,v) = minimal u-v pathset of minimal cardinality

L(u,v) = set of all minimal u-v pathsets

P(u,v) = union of all minimal u-v pathsets

and

V(u,v) = node set corresponding to P(u,v)

Let

F~(~e =i=~0 J 1

n = integer > 0 and 0 < e

0O:5j s n

For each arc 1=1,... ,N let

*q = probability that arc i operates

* and

z =1I if arc i operates

= 0 if arc i fails.

Then for the network, let

z = (zl1,9...9z N) = network state

Z a set of all network states z

Zm = set of all network states with z1+.+ ~

k(u,vlz) = 1 - n (I - n~ z.) (2)
SeL(u,v) 16 1

and

N

ZOEZ Mal M

0-0. *. zq*z. &%A A %L" %*.%
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Note that given z k(u,vlz) is the conditional probability

(0 or 1) that u and v are connected. Also Rm(u,v) denotes

the number of distinct states z that induce u-v connectedness when

m arcs operate and R(u,v) denotes the number of distinct states z

that induce u-v connectedness regardless of the number of operating

arcs.

Expression (2) is of seminal importance throughout this paper.

Suppose we collect data xl,...,xK on K sampling experiments or

replications where

x3 = (xIj ...,XNj) j=,...,K

and

xi = 1 if arc i operates on replication j

= 0 otherwise.

Here xl, ...,xK are sample network states and

A K
gK(st) - K k(s,tlx (5)

j=1

is the proportion of trials on which s and t are connected. As we

show shortly the sampling plan for choosing Xl,...,xK determines how

good an approximation AK(s,t) is to g(s,t)

It is important to note that (2) is used merely for representation

and analysis. To determine the value of k(u,vlx.) on each replication,

we assume that a "depth-first search" algorithm, as in Aho, Hopcroft

and Ullman (1974, pp. 176-177), is employed. This algorithm has an

upper bound on computation time complexity O(IP(u,v)I, IV(u,v)l) where

' '..' .. ." . ...- " .. " .. " ..- .. "- . .. ...
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ISI denotes the cardinality of the set S

Samp ing Sequeee4 and Evw Bouwd6

We now turn to the selection of a sampling scheme for generating

the data Xl,...,xK . In particular, we would like a scheme that enables

us to estimate g(s,t) by K(s,t) and related estimators in a

computationally efficient manner. To make an informed selection, we

first need to consider several basic ideas from the theory of

equidistributed points. Let

I[.$(x) = 1 if a:x<s

= 0 otherwise

and let v,, v2,... denote a sequence of points in [0,1) . Then the

sequence vi, v2,... is said to be uniformly distributed or equidistributed

on [0,1) if (Schmidt 1977, p. 1)

K. 1 K [a,) (vj) = 8-a (6)

for all a and B such that Ota<osl • Conversely, if VlV2

are equidistributed in [0,I) then (6) holds. As a measure of error

in estimating O-a one has the discrepancy measures

K  sup 1(v)- (-a) l (7a)

K O0acBsl jl a1 )

,, m m p I • • i -•8 , "o'," ,'e I, • 'u"b ., , mj e-m e -e,,, , .° -, " Qo ". °I
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and
I V (7b)DK = sup I K (v)-ciI,

K O < I "=

with the inequality (Kuipers and Niederreiter 1974, p. 91)

DK DK 2DK (8)

Note that DK and DK are worst case measures of the errors of

estimation.

For the finite sequence {v ; j=l,...,K) it is knownj 2K ,.,)ii nw

(Niederreiter 1978, p. 972) that

DK = I/K, (9)

which is best possible. In this paper we devise a sampling scheme

that enables us to write 6K(st) and related estimates as linear

combinations of indicator functions with argument v. and thus are

able to realize the convergence rate 1/K

Although one can achieve this rate in practice for sK(st) in (5),

situations can arise in which after K replications, one finds that

a larger sample size is necessary. Unfortunately the finite sequence

{V 2K; j=I,...,K) does not allow for adding points

VK+1I vK+2'..9VK+J and achieving a bound proportional to I/(K+J)

on discrepancy. However, it is known that there exist infinite sequences

vl,v 2,... (Kuipers and Niederreiter 1974, p. 125) such that

DK 5 c (log K)/K (10)

-. "51-
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where c depends only on the sequence. One such sequence due to

van der Corput (1935) considers the unique dyadic expansion of the

integer n

I
n = Z ai21 ai{O,l} Oi<Ii=O

where LI= log2 nJ . Then the radical inverse function

(n a-2-111

-*. can be used to compute the van der Corput sequence {vi= 2 (n+j)

j=l,2,... for which unpublished results of Tijdeman (Niederreiter 1974,

p. 973) show that for all K>l

DK < ( log2K+l)/K (11a)

and
lim sup (KD3- (og2  ) > l o)

Bejian and Faure (1977) show that (11a) also holds for DK and (llb) holds

with equality for DK

Schmidt (1977, p. 28) shows that for infinite sequences the best

possible lower bound is

DK O((log K)/K)

so that the van der Corput sequence achieves the fastest convergence

rate with respect to K . Moreover, no other infinite sequence is

known that has uniformly smaller discrepancy than this sequence has
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(Kuipers and Niederreiter 1974, p. 127). Note that the van der Corput

sequence is one form of a quasirandom point sequence.

It is important to note that both the finite and infinite sequences

discussed here are nonrandom so that the equality (9) and the bound (10)

hold with certainty. By contrast, independent replications using

random sampling lead to (Chung 1949)

lim sup = w.p. 1

K v clog log K

indicating a considerably slower rate of convergence. Therefore,

provided that we can effectively control the time complexity of our

proposed sampling plans, the foregoing finite and van der Corput

sequences should be preferred to independent random sampling.

Canonic.aJ RepthentaUon

As we show shortly the sampling method that we adopt requires

that we be able to use a single number v. on replication j to select

the network state z from Z or, as in Sections 2 and 3, from Zm

To make this selection possible in a relatively efficient manner

we rely on an extremely useful'mathematical relationship. Let B be

a positive integer. Then there exists an A-canonical representation of B

(Kruskal 1963 and Katona 1966)t

B BA BA- (12)

B =(A) + ( A-1) +"+(t)

where

BA > BA.I>... >B {> z I

tI am grateful to my colleague, Professor Scott Provan, for making me

aware of this relationship.

.*1

J
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Most importantly, this representation is unique.

To determine BA9 BAI,...,BL for B>O one can use the relationship

(Ball and Provan 1983, p. 256)

BA = max[b: (b) B] (13a)

b*A
Bi = max[b: (i) 5 B - A )] iA-,A-2,...,

j=(+j

where
A B.

= max[i: B = Z (j); ial] . (13b)
j="

Suppose that we know that exactly A of N arcs operate on

N
replication j so that x ij = A . To determine exactly which of

i=l

the N arcs operate one can proceed as follows: Sample B from the

discrete uniform distribution on { The quantity B

is the "number" of the combination of A operating and N-A failed

arcs on replication j . Then if B=O one takes

x ij = I i=l,...,A (14a)
= 0 otherwise.

, If B>O and z=l one takes

xij = 1 i=Bm+l m=l,...,A (14b)

= 0 otherwise

Lastly, if B>O and t'l one takes

Xlj = I il,...,t-I , B +1,...,BA+I (14c)

30 otherwise.

,4

:, , .,,, ,,, . , w.:.' v, ' , -, , w -v;.,,....,, . ... . ,.., ....... ,.:.... .... ........ ,... .." ," e" 9" W " •• I • • " " i . .~ " dN" "l q p . . . . . • - • .. . , - - •"



Note that these assignmEnts are unique functions of A and B

Equa Pu'bobit., ti

We first consider the case of s-t connectedness with equal

operating probabilities qi=p ieP(s,t) For convenience of

exposition we take C=C(s,t) , L=L(s,t) , M=M(s,t), P=P(s,t)

and Rm=Rm(st) , and assume P=E so that IPI=N . Here the number

of operating arcs has the binomial distribution with probability

distribution function (1) with n=N and e=p

Algorithm C.l describes how to conduct the K replications that

lead to the computation of 6K(s,t) as an estimate of g(s,t) . Note

that the number of operating arcs A is determined (step 2c) from a

truncated distribution. To appreciate why this is so observe that if

the number of operating arcs on a replication exceeds N-ICI , then

s and t are connected with probability 1. Conversely, if fewer than (MI

arcs operate then with probability 1 s and t are not connected. Therefore,

it is to our advantage to restrict sampling (step 2c) to the uncertain

connectedness outcomes when the number of operating arcs exceeds

1MI-l but is less than N-ICI+l . Also note that A can be determined

on each replication with time complexity 0(1) using a procedure

described in Fishman and Moore (1981).

' Theorem 1 gives the implications of algorithm C.l.
4.

Theorem 1. Suppose algorithm C.1 is used to compute 4-K(s,t) . Then:

(i) For the finite sequence {vj - ; j,...,K)

lgK(St) - g(st)l s 2HQ/K (15a)

where

V
4%4

4.
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Q 5 miN-ICI N-ICI N m (15b)
m= Mi m=MIm

(ii) There exist infinite sequences {vj ; j=l,2,...)

such that the bound in (15a) holds with c(log K)/K

replacing 1/K and where c deDends only on the

selected sequence.

(iii) One can compute each iteration of step 2 with an upper

bound O(Np) + O(N) + O(max(N,IVI)) on time complexity

per replication as K

Proof. For (i) observe that the number of operating arcs A has a

truncated binomial distribution (step 2c) on the integers IMI,...,N-ICI

with parameters N and p . Also, for given A it is clear that any

of the ( combinations of A operating arcs are equally likely

(step 2d). The quantity B merely denotes the number of the combination

(given A) selected.

Let w-A and suppose that the (N) possible combinations ofm

operating arcs are numbered i N) . Let M = {1 ''.'' ( N)) denote

the set of all these indices, let J denote the subset of J for
which s and t are connected andr, finally, let Fm=Fm(N,p) . Then

the unique A-canonical representation of B leads to

N-IC NIZ Hvj-FmI+FM,_I
k(s~txj) = m4 MI EJ I[tV ( F F.,.m  Qm- Q Mm mm1

(16)
N-ICIa .M, Ij * '[a.. b m)(v j)

C [{m m

4r3

. , ,,.',• . in in . tin'' .•;.:, .. ,. .- .. .. .,. .- . .,. . .; - -
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Algorithm C.1

Purpose: To compute a (s,t) as an estimate of g(s,t)

Given: N, p, ICI , IMI , K , s and t.

1. Set parameters: n=N, e=p and S=0.

2. Perform K replications:

'1 a. For i=l,...,n set x. =0.
.. ? 13

b. Select v.

c. Determine the number of operating arcs:

A-minim: [F m(n,e)-F IMIl1(n,ofl/H>v; jMj~m~n-ICI}

where H =_F n-tC(n~e)-FIMjl(n~e)

d. Determine the "number" of the combination of A operating

V and N-A failed arcs:

L eOA (le,)fA]

4?e. Determine the A-canonical representation i B V.. . IBA Of B

using (13). If B=0 , Al.

f. If 1>1 , then for V =I,...,1-l ; Bv,=v-1

-2g. Set operating indicators:

For v=l,...,A ; set i=B v+1 andx j1

h. Use a labeling algorithm to determine k(s,tlx.

(k(s,tlx.i)=I if s and t are connected

=0 otherwise.

i. Accumulate results:

S=S + k(s~tlx)

3. Compute final estimate for K replications:

A (st) a bF ICI(n,e) + H-S/K

04. Done.
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where H is defined in step 2c and

amm [FNM--FIMI - + - F
T) (17a)

+ (Z-i) pm(l-p) N-m]/H

and

b = atm + [Pm(l-p)N-m]/H • (17b)

Now observe that one can write

N-IC I
g(s,t) = 1-FNIcI(NP) + I I * pm(1-p)

m= MI JtJm

Therefore,

OK(slt) - g(st) =-FNICI (HIP) +HtIk(s,tlx)
j-l

N-I C I

m= IMI LCJ*

5 HIN-CIK
,m~~nFM, LeJ*., K J 'i I [ a zm' b l m)" (vj)pm(I'-p)N'/

Using the results in (7) and (9) it is clear that this bound is bounded

above by 2HQ/K where Q is a function of the number of nonconnected

intervals in ([a , b ): tcJ* ; min=MI,...,N-ICI} In particular,

the worst possible arranqement of intervals leads to

N-ICl N-jNl
Q 5 min{mMj, RFM,')-R]

mm=IMl

which establishes (). The result (ii) follows immediately by using

(10) instead of (7) in (15a).

.5
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For the result in (iii) note that steps 2a and 2b have time

complexities 0(n) and 0(1) , respectively, per replication. Also,

step 2c can be performed with time complexity 0(l) per replication

using the cutpoint sampling method described in Fishman and Moore (1981).

There tables need to be computed (with time complexity 0(n) and

space complexity 0(2n)) prior to using algorithm C.l. Step 2d requires

O(1) time per replication. Also, the identification

of operating arcs (steps 2e and 2f) takes 0(n) time. As K-*- . step

2g takes O(ne) time on average, and step 2i takes 0(l) time.

Since step 2h based on a depth-first algorithm takes 0(max(NI,IVI)) time

the result in (iii) obtains. This completes the proof of Theorem 1.

Observe that the bounds on convergence in (i) and (ii) are

proportional to H=FNIcI(Np) - FIMI_(N,p) . In particular, for

fixed N, C and M this quantity decreases to zero as p4 and p-*l

Also if C and M are unknown one can substitute 0 for ICI , IMI

or both in algorithm C.1, which continues to compute correctly but

with a different coefficient in the bounds in (i) and (ii).

The quantity Q is of principal interest here. It depends on

the arrangement of subintervals in the unit interval assigned to the

sample outcomes for which s and t are connected for each m=IMI,...,N-ICI.

If for given m these subintervals form one long interval with no

breaks, then Q-N-ICI-IMI+ 1 . However, the number of steps necessary

to make this arrangement prior to sampling is comparable to the

direct computation of g(s,t) by total enumeration. Nevertheless,

arrangements that are clearly preferable to others hopefully can be made at

relatively small cost. These assignments are a topic of continuing

research.

V
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2. Stratified Sampling

We naturally would like to extend the techniques of Section 1 to

the estimation of g(s,t) when at least some of the probabilities

ql,...,qN are distinct. This extension is possible if one exoloits

certain features of a sampling technique known as stratified sampling.

Van Slyke and Frank (1972) propose this technique for estimating network

reliability characteristics in an environment in which ql,...,q N are

identical and samples are drawn randomly within strata. The effect

there is to reduce the variances of the resulting estimators below the

corresponding variances that would obtain for pure random sampling.

This section retains the restriction q,=.. .=qN=p but replaces random

sampling within strata with the nonrandom sequences used in Section 1

and demonstrates how stratified sampling affects the bounds on error

convergence. Then Section 3 shows how the stratified sampling plan

can be extended to the case of distinct ql,...,qN

Let

Wm(St) = probability that s and t are connected given
that exactly m arcs are operating. (18)

Now observe that wm(s,t) can be written in the form

wm(s,t) - Rm(St)/() = I k(s,tz) (19)
mm R

so that

g~~t N N N-ing(s~t) - mIoWm(S~t) (Qpml-p)N'

Mn=O
(20)

N-ICI N-mz I-F N. IcI(N,P) + I Pm(1 " ) k(s,tlz)•
m- MI Z M

' . "J f, - .,-; ; ,: - ' ".. . .; ' " " ,'' , , '._._.'.: .- '.../ -' . ..-. '.--., ,.'-.' ','-.. '',. .- -: _o , %-, .," "
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Algorithm C.2 describes a procedure for computing

m(st) = K j k(s,tlxj) (21)
j-1

as an estimate of wm(st) where B in step 2c gives the "number"
of the combination of A=m operating arcs on replication j

Algorithm C.2

Purpose: To compute m (s,t) as an estimate of w m(s,t)

Given: N, m, Km, s and t (IMI < m < N - ICI)

1. Set parameters: n=N, A=m and S=O

2. Perform K replications:m

a. For i=l,...,n set x ij=O

b. Select v .

c. Determine the "number" of the combination of A operating

arcs and N-A failed arcs:

B =L(n) vjJ

d. Determine the A-canonical representation t , Be,.. .,BA of B

using (13). If B=O , L=A+l .

e. If t>l , then for v=l,...,t-I ; Bv=v-l

f. Set operating indicators:

For v=l,...,A ; set i=Bv+1 and x =1

g. Use a labeling algorithm to determine k(s,tlx.)

h. Accumulate results:

S-S+k(s ,tIx ) .

3. Compute final estimate for Km replications:

wm(s.t) - S/Km
..

4'. 4. Done.
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Let

N-I CNI N N-m
K K(s,t) = IFNIcI(Np) + = w(st)lpm(-p)

(22)

K=K IMI+..+K N- ICI

denote an estimate of g(s,t) where {Wm(St); m=IMI,...,N-ICI} are

computed using algorithm C.2. Then Theorem 2 describes bounds on

absolute error.

Theorem 2. For ;m(s,t) and K(St) algorithm C.2 leads to:

m_ .,
(i) For the finite sequence {v.

S 2K jmm

W(s,t)- Wm(St)l 5 2Qm/Km  (23a)

and N-ICI Qm (N pm lpN-m

lgK(S,t) - g(s,t)I 5 2m=IMI "n N m (23b)
mMIM m

where

1 Qm min[Rm(st) 'N) " Rm(S't)] m=IMI,...,N-ICI.

(ii) There exist infinite sequences {vj ; j=l,2,...1 such that

the bounds in (23) hold with c(log K)/Km  reolacinq 1/Km

The proof of (i) relies on observing that for m operating arcs

Km

m(st) -= Z k(s,tlx.)
m j=l

K

p.cj Km j., (N) Ir N) (
m

and on using methods analogous to those employed in the proof of

Theorem I (1). Part (ii) follows directly.

,
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ChooA.M a Sampte Size

Note that for a given set of samile sizes {K } the bound inm
(23b) diminishes to zero as p-+O and p-,l . However, the choice of

{K m  clearly affects this convergence. Observe that

N-ICI

m= M Im

where Q is defined in (15b). Therefore, if one chooses

K = K( N)pm(l-p) N-m/H m=IMI,...,N-ICI
m in

then the error bounds for IgK(s't) - g(st)l in Theorem 2 and

IgK(s,t) - g(st)l in Theorem 1 are identical for the finite sequence.

For the case of infinite sequences, the dominant term in the bound for

1gK(s,t) - q(st)l is identical to the bound for I K(st) - g(st)1

Moreover, the time complexities for computing gK(st) and gK(st)

are identical.

An alternative approach for assigning values to Km makes

considerably better use of a priori information, when it is available.

Let

Xm = mean number of steps needed to determine whether or nots and t are connected given that m arcs operate
m=IMI,...,N-ICI.

Then for a specified number of steps

. N-ICI
K N=MII Km m' (24)

the assignment

Km - K* N1Wm m=IMI,...,N-ICI , (25)

I

q

4
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where

j N )pJ(1-p)N-j/X 1/ 2  j=M',...,N-1C1

minimizes the bound in (23b). Since IQm) and {m } are rarely

known, the assignment (25) has limited practical vlaue. Note that

van Slyke and Frank chose to omit consideration of the computation

time when choosing their assignment of {Km } to minimize variance.

There is an additional feature of stratified sampling that makes

algorithm C.2 more appealing than algorithm C.l. Observe that once

{Wm(St) ; m=IMI,...,N-ICI} is estimated one can use (22) to estimate

g(s,t) for as many values of p as desired without the need for

additional sampling. By contrast, algorithm C.l applies for only one

value of p at a time. Van Slyke and Frank also mention this advantage

for stratified sampling.

3. Unequal Probabilities

This section describes how stratified sampling can be extended to

the estimation of g(s,t) with an accelerated convergence rate on the

error bound when at least some of the operating probabilities ql,...,qN

are distinct. Diegert and Diegert (1981) also describe a stratified

sampling plan for unequal probabilities, but theirs differs significantly

from the plan proposed here both in terms of procedural design and

sampling mechanism. In particular, their plan relies on independent

replications and random sampling whereas the present proposal uses the

specialized finite and infinite sampling sequences, discussed in Section 1,

to effect the accelerated convergence rates.

tj
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Let

d m(st) = probability that s and t are connected and
that exactly m arcs operate.

Observe that

z. l-z.
d(st) = k(s,tlz) qi (l-q.) (26)dmst ZEZm 1 l'q

so that 
E

N N-1g(st) = H q i + I dm(s't) " (27)

i=l M=IMI

Note the upper limit on summation N-l replaces N-ICI to account for

z. l-z. N
the probabilities qi(l-qi) i for N-ICl < I zi < N-1iCP i=l

Algorithm C.3 describes a procedure, based on the sampling

plan in algorithm C.2, for computing d m(s,t) as an estimate of
Wm

d m(s,t) . Then our estimate of g(s,t) is

N N-1
Ks't) = il qi + mM (S 't )  K=K IMI+...+KN-I (28)

Recall that for m operating arcs there are (N) possiblem m

combinations of operating arcs and that Jm=l .. ,() denotes the

set of all indices associated with these combinations. Also, recall

that Jm denotes the subset of Jm for which s and t are connected

when m arcs operate. Now let z.(4,m) denote the status (0 or 1)

of arc i on combination t when m arcs operate i=l,...,N; zcJm

and m-IMI,...,N-l . Then Theorem 3 gives the relevant bounds.
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Algorithm C.3

Purpose: To compute (s,t) ds an estimate of
m

d (s~t) = probability that s and t are connected
and exactly m arcs operate.

Given: N, {qi; i=1%,...,9N} , m, Km, s and t .(IMI :5 m :5 N-1).

1. Set parameters: n=N , A=m and S=0.

2. Perform K mreplications:

a. For i=1,...,n set x. j=O0

b. Select v.i

c. Determine the "number" of the combination of A operating

arcs and n-A failed arcs:

B = L(n) vJ

d. Determine the A-canonical representation k B'...B BA of B

using (13). If B=0 , L=-A+l

e. If L'l , then for v~,.,-;Bv=v-l

f. Set operating indicators:

'pFor v=l,.. .,A ; set i=B, +1 and x. j=1

g. Use a labeling algorithm to determine k(s,tlx.

h. Accumulate results:

N x. l-x..j
S-S+k(s,tlx. R qj 1 13qi

3. Compute final estimate for K mreplications:

d (s,t) ( M S K

V 4. Done.
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Theorem 3.. Consider a m(s,t) , based on algorithm C.3, and gK(s,t)

as estimates of d m(s,t) and g(s,t) respectively. Then

(1) For the finite sequence {v. 2i-l; l,.KIi 2K l**Km m

2(N) N z.(Z,rn) 1-z.(telm)
jam(s,t) - d y(st)I -- i q.I (l-q..) 1(29)

in m m j* i=l1

and

N-i (N) N z.(I',m) l-z (9-,m)
ligKslt) - g(slt)I :5 2 1 m n q.' (l-qi) 1 (30)

m=IMI Km tej* i=1 1
in

(ii) There exist infinite sequences {v. j=l,2,...j for which

(29) and (30) hold with c(log Kn)/Km replacing I/K

Proof. For (1) note that

N z (tE,m) l-z(tm
d (s,t) = I nq (1-qi) 1(3i)

whereas

CN) Km N x.. 1-x.
;m(s~t) II I ~ k(s~tix) in q13 (Il-qi) 13(2

N Km N z1(z,m) l-z.(,Inm)

1%-, I= F N 1=1

Therefore,

NN z.i(1,m) I -zi (t'm)la m(s,t) d dM(S-0)I= (M) I n qi (1-q.)

KM

KM ~ ,,. )(Vj) - IN
Km ~ (
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2(N) N z.(t,m) 1-zi(i,m)
_ wn qi I  

)q

which establishes (29). The result (30) follows by summation for

mIMIj,...,N-l . Part (ii) follows directly, completing the proof.

Note that, as in Theorem 2 and 3, the bound (30) diminishes to

zero as p*=max qi + 0 and p,min qi -I . However, in contrast to
I I

the case of equal qi , algorithm C.3 requires us to specify the unique

ql""..qN " Therefore, one needs to use algorithm C.3 for each such

set of probabilities considered.

There remains the issue of how to choose KIMI,...,KN-l ' This is

not a trivial problem, as Diegert and Diegert show. One possibility is

to choose
(*) em(1-p,)N'm

Km = K N-I m=j1jI,...,N-ICl . (32)X () (*)J( 1 P)N J

j-IMI

Then as p* -+ p, the bound on IgK(s,t) - g(s,t)l in Theorem 3

converges to the bound on I6K(st) - g(st)l in Theorem I for the finite

sequence. For the relevant infinite sequences the dominant term in the

bound on IgK(st) - g(st)l converges to the bound on IOK(st) - g(st)l

proportional to (log K)/K . Lastly, the time complexity for computing

gK(s~t) converges to that for 9K(st)

While (32) enables one to achieve the desired accelerated convergence

as in the case of equal probabilities in Section 2, better assignments

than (32) do exist and conceivably can be identified. But this

4 . . . . . ,.. ." ..,. . " .' ." .. .. " ' -"-;- " e ' '. '-, ? ". ,r"-'-',. '..+,.'- ... ., ,.
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identification calls for additional research.

4. An Example

Although the deterministic upper bounds and accelerated convergence

rates make apparent the superiority of the proposed method over any

alternative method based on independent replications that use random

sampling, there remain insights to be gained from an illustration of

how these new procedures work in practice. Accordingly, this section

illustrates the performance of algorithm C.l using the van der Corput

sequence for estimating g(s,t) in the network of Fig. 1 with s=l and

t=20 . Although slower in convergence than the sequence

{v. = KI ; j=l,...,K} , the van der Corput sequence enables us to

proceed sequentially in the process of achieving a specified accuracy.

Insert Fig. 1 about here.

The network in Fig. 1 has N=30 arcs and IVI=20 nodes. The

minimal cardinality among all minimal cutsets is ICI=3 and the

minimal cardinality among all minimal pathsets is IMI=5 . Suppose that

all arcs have operating probability p and that the objective is to

estimate g(s,t) to within ±56 Then for the van der Corput sequence

pr(I§K(s~t) - g(s,t)l s 6) = 1 (33)

for all K a K(6) where
-II

K(d) a mtn[j: J6 - 2NQ( log2 j + 1) - 0; j-2,3,...] . (34)

Although the certitude of (33) is appealing its value is, at the moment,
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academic since Q and hence K(6) , are unknown. Therefore we use

an alternative approach for studying the performance of algorithm C.l.

Consider a set of 100 independent experiments on the Lth of

which (1=l,...,100) the van der Corput sequence (with randomly assigned

starting value) is used with algorithm C.1 to compute

g)(s,t),... (s,t) as estimators of g(s,t), where K* is

a large integer. Also, suppose that on experiment z the quantity

K(^6) = min(j: )(s,t) - g(s,t)l S 6 j s i < K*) (35)

is computed.

Since there is a global deterministic upper bound K(6) for all

van der Corput sequences, there must be a finite number of replications

associated with each experiment that guarantees the accuracy 6 with

certainty. If K* is sufficiently large, say, K* ! K(6) , then

K()=K(t)(8) z=l,...,l00 are the required numbers of replications for
these 100 experiments and a study of the properties of KO ), ,K(lO 0 )

should provide information about the required number of replications to achieve

the accuracy 6 with an arbitrary van der Corput subsequence and algorithm C.l.

For our experiments we used p=.95 , leading to

g(1,20) - 1-.295414 x 10 3 . This value of g(1,20) is actually a

long run estimate based on using algorithm C.1 with K=222=4194304

points generated from the van der Corput sequence. Suppose the objectiie

was to estimate 1-g(1,20) to within t6 where 6=10 -5 . A preliminary

analysis of the long run had indicated that our value for 1-g(1,20) was

well within this bound. Moreover, the long run had also provided evidence
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that setting K=221=2097152 in (35) was reasonable.

The quantities K(1),...,K(100) were computed on 100 independent

experiments each using the van der Corput sequence with a randomly

assigned starting value. The sample mean number of required observations

was 326469.58 with estimated standard error 21289.28 . The smallest

K(t) was 63343 , the largest K ) was 857595 and the sample coefficient

of variation was 65.211. Note that the largest value was well within

our specified K . Figure 2 shows the empirical distribution function

of the data with the deciles marked.

Insert Fig. 2 about here.

As a basis for comparison, suppose we had used algorithm C.1 with

pure random sampling to determine v,, v2 ... .  Then Chebyschev's

inequality gives for J independent replications

pr(Iej - gl - 6) a 1 - g(l-g)/J62

where Oj=Oj(s't) and g=g(s,t) If 6 is sufficiently small so that

J is sufficiently large, then

pr( A - gl 6) 2 6( /J/g(l-g)) - 1

where 0(-) denotes the cumulative distribution function of the

standardized normal distribution.

Suppose we specify a confidence level
pr lgj - g l s 6) = 1 - 0 < < I

Then for pure random sampling the approximating normal distribution
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leads to a minimal required sample size

J(6,c) :[d(a)/6]2 g(l-g) (36)

where

d(a) = min[d: o(d) = I - a/2]

* For a confidence level 1-a = .99 one obtains

J (.00001,. 01) 19506035

from (36), making apparent the considerably larger sample size that

random sampling requires to achieve the accuracy l0"5 99 out of

100 times on average.

A FORTRAN program based on algorithm C.1 with the van der Corput

sequence used an average of 1.391 microseconds per replication. The same

program using a sequence of independent uniform deviates required an

average of 1.329 microseconds per replication. Therefore, the

van der Corput sequence requires 326469.58 x .001391/60 = 7.57 minutes

to achieve the desired accuracy whereas independent uniform deviates

require 19506035 x .001329/60 = 432.06 minutes. The advantage of

using the van der Corput sequence for estimating g(s,t) for this network

is apparent.

5. (sT) Connectedness

We now turn to the estimation of

g(s,T) = probability that node s is connected to node
t for all" tTEE-(s} .

On replication j the conditional probability of (s,T) connectedness

is

k(sTIx ) n k(s,tlx4 ) • (37)

tCT

L
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Then analogous to (5) for the case of ql=...=qN=P , this suggests

the estimator

OK( s, T) K 1 k(s,Tlx )(38)

Ji.i if one modifies algorithm C.1 as follows:

(i) Replace the input node t by the node set T

(ii) Replace ICI and IMI everywhere by unity.

(iii) Replace k(s,tlx.) by k(s,Tix.) in steps 2h and 2i.

The motivation for modification (ii) is to account for the fact that

there may be different sets C(s,t) and M(s,t) for each tET and

these may not all be known. If they are known one can replace ICI

by min IC(s,t)l and IMI by min IM(s,t)l
teT tET

Note that the results in Theorem I continue to hold. It is also

possible to amend algorithms C.2 and C.3 in a similar manner and have

the corresponding properties in Theorem 2 and 3 continue to hold.

-. tA. _* P 4
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