EXPLICIT FORMULAS FOR C^n PIECEWISE HERMITE BASIS FUNCTIONS

ROYCE W. SOANES, JR.

DECEMBER 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
LARGE CALIBER WEAPON SYSTEMS LABORATORY
BENET WEAPONS LABORATORY
WATERVLIET N.Y. 12189

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official endorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
Explicit Formulas for Co Piecewise Hermite Basis Functions

Abstract

Completely factored forms of the piecewise Hermite basis functions are derived. All necessary coefficients for any level of smoothness are shown to reside conveniently in Pascal's triangle.
TABLE OF CONTENTS

INTRODUCTION 1

DERIVATION 3

CONCLUSION 7

TABLES

I. COEFFICIENTS OF \(h_0 \) 6

LIST OF ILLUSTRATIONS

1. \(C^4 \) Basis Functions and Their Derivatives. 2
INTRODUCTION

We begin with a theoretical characterization of the C^n basis functions with which we are dealing. For a given node x_i in \mathbb{R}, there is a basis function $H_{ij}(x)$ associated with the jth derivative of any function f at x_i, where j ranges from 0 to n. In addition, each basis function is nonzero on only two adjacent subintervals. Continuing with the definition of the H's, we wish an approximation F to f of the form:

$$F(x) = \sum_{j=0}^{n} H_{ij}(x)f^{(j)}(x_i) + H_{i+1j}(x)f^{(j)}(x_{i+1})$$

where $x_i < x < x_{i+1}$.

In order that F and its n derivatives will agree with f and n of its derivatives at nodes x_i and x_{i+1}, it is sufficient that the basis functions associated with arbitrary node i obey the following conditions:

$$(k)\quad H_{ij}(x_i) = \delta_{jk}$$

and

$$(k)\quad H_{ij}(x_{i-1}) = H_{ij}(x_{i+1}) = 0$$

where $0 < j, k < n$.

On a given subinterval each H must obey $n+1$ conditions on the left extreme and $n+1$ conditions on the right extreme. The H's can therefore be represented by two distinct polynomials of degree $2n+1$.

The following series of pictures depicts the C^4 basis functions (scaled) and their derivatives. The five functions across the top are the basis functions associated with the 0th through the 4th derivatives of f, and the functions underneath them are their successive derivatives. Note that the
functions along the diagonal are nonzero in the center while all off diagonal functions are zero there.

Figure 1. C^4 Basis Functions and Their Derivatives.
Although subsequent analysis will enable us to compute all the basis functions for any given level of smoothness \(n \) in an extremely simple way, the author has not seen anything similar mentioned or referenced in any finite element text thus far.

DERIVATION

We begin by defining a finite support Taylor series (FSTS). Take the ordinary Taylor series for \(f \) around node \(x_i \), truncate it beyond \(n \)th derivative terms, and multiply each term by a function which will have the effect of (1) not disturbing the truncated Taylor series at all at node \(x_i \) and (2) zeroing the series and \(n \) of its derivatives at nodes \(x_{i-1} \) and \(x_{i+1} \). If we do this for each node \(x_i \), calling the result \(F_i(x) \), we get a global approximation to \(f \) which agrees with the truncated Taylor series of \(f \) at each node by simply summing the \(F_i \). This is just an alternative way of defining the piecewise Hermite approximation which we will find quite useful.

\[
\text{TS: } f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(x_i)(x-x_i)^j}{j!} \quad (1)
\]

\[
\text{FSTS: } F_i(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_i)(x-x_i)^j}{j!} g_j(R_i(x)) \quad (2)
\]

where

\[
R_i(x) = 1 \text{ if } x < x_{i-1} \text{ or } x > x_{i+1}
\]

\[
= \frac{(x_i-x)}{(x_i-x_{i-1})} \text{ if } x_{i-1} < x < x_i
\]

\[
= \frac{(x-x_i)}{(x_{i+1}-x_i)} \text{ if } x_i < x < x_{i+1} \quad (3)
\]

\(R_i(x) \) is just one minus the hat function associated with node \(i \) or just the relative position of \(x \) in either the left- or the right-hand subinterval. The domain of the \(g \) functions is therefore just the interval \([0,1]\).
The objective now is to determine the g's. Since we want \(F_i \) and its derivatives to behave in a certain manner, we must first differentiate \(F_i(x) \) an arbitrary number of times. Using Leibniz's rule for differentiating a product, we have:

\[
F_i(x) = \sum_{j=0}^{\min(j,m)} \sum_{k=0}^{m-k} f(x_i) \frac{(k!) (x-x_i)^{j-k} (m-k)!}{(j-k)!} g_j(R_i(x))(R_i(x))^{m-k}
\]

and substituting \(x = x_i \) in Eq. (4) we have

\[
F_i(x_i) = \sum_{j=0}^{m} f(x_i) (j! g_j(0)(R_i(0)))
\]

We can define \(R_i(0) \) to be \(R_i(\pm \epsilon) \) or take limits from either side of \(x_i \).

We now want conditions on the g's which are sufficient for:

\[
F_i(x_i) = f(x_i)
\]

and

\[
F_i(x_i-1) = F_i(x_i+1) = 0
\]

for \(0 < m < n \).

We can get these conditions from Eqs. (4) and (5). Conditions on the g's sufficient for Eqs. (6) and (7) are:

\[
g_j(0) = 1 \quad 0 < j < n
\]

\[
g_j(0) = 0 \quad 0 < j < n, 1 < m < n-j
\]

\[
g_j(1) = 0 \quad 0 < j < n, 0 < m < n
\]

The 2n-j+2 conditions on \(g_j \) can be met by a polynomial of degree 2n-j+1.

The product of \(g_j \) and \((x-x_i)^j\) in Eq. (2) is therefore of degree 2n+1 for all \(j \), as expected.
The g of lowest degree is \(g_n \), which has defining conditions:

\[
g_n(0) = 1
\]

and

\[
g_n(l) = 0 \quad 0 < m < n
\]

This g, determined by inspection, is:

\[
g_n(x) = (1-x)^{n+1}
\]

Now, from Eq. (10), we see that all the g's have the same derivative behavior at \(x=l \). We then need only define \(g_j(x) \) as the product of some unknown polynomial \(h_j(x) \) and \(g_n(x) \):

\[
g_j(x) = h_j(x)(1-x)^{n+1} \quad 0 < j < n
\]

where \(h_j \) is a polynomial of degree \(n-j \):

\[
h_j(x) = \sum_{k=0}^{n-j} a_k x^k \quad 0 < j < n
\]

It may seem at first glance that the a's should have an extra subscript - namely \(j \), since we are seeking \(n+1 \) sets of coefficients. As will become immediately apparent, however, one set is sufficient and all other sets are subsets of this one. This subset property, along with the fact that the largest set of a's can be obtained in an almost trivial manner, makes the result of this analysis truly simple indeed.

If we now obtain the mth derivative of \(g_j(x) \) and evaluate it at \(x = 0 \), we get:

\[
g_j^{(m)}(0) = m! \sum_{k=0}^{m} a_k (-1)^{m-k} \binom{n+1}{m-k}
\]
Using Eqs. (8) and (9), we have:

\[a_0 = 1 \]

and

\[\sum_{k=0}^{m} a_k (-1)^{m-k} (n+1)^{n-k} = 0 \text{ for } 1 < m < n-j \] \hspace{1cm} (15)

This is a lower triangular system, which can be easily solved for the \(a \)'s by forward substitution. Note that the coefficients do not depend on \(j \); so we might as well solve the largest system (\(j=0 \)) and obtain all the \(a \)'s, although only the first \(n-j+1 \) \(a \)'s are needed for \(h_j(x) \).

Solving system (15) for \(j=0 \) and a few values of \(n \) gives us the following table of \(a \)'s

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6</td>
<td>21</td>
<td>56</td>
<td>126</td>
<td>252</td>
</tr>
</tbody>
</table>

Inspection of this table gives us a very simple recursion for the \(n \) set of coefficients in terms of the \(n-1 \) set:

\[a_n = 1 \]

\[a_k = a_{k-1} + a_k \quad 1 < k < n-1 \]

\[a_n = 2a_{n-1} \] \hspace{1cm} (16)

where the superscripts denote the level of smoothness.
We therefore have here nothing more than one-half of Pascal's triangle, viewed at an angle!

Recalling that:

\[g_j(x) = h_j(x)(1-x)^{n+1} \]

and from the FSTS that:

\[H_{ij}(x) = g_j(R_i(x))(x-x_i)^j/j! \]

we have, explicitly:

\[H_{ij}(x) = h_j(R_i(x))(1-R_i(x))^{n+1}(x-x_i)^j/j! \]

Therefore, \(f \) may be approximated on \([x_i,x_{i+1}] \) by:

\[
\sum_{j=0}^{n} \left\{ f^{(j)}(x_i)h_j\left(\frac{x-x_i}{x_{i+1}-x_i}\right)\frac{x_{i+1}-x}{x_{i+1}-x_i}\left(\frac{x-x_i}{x_{i+1}-x_i}\right)^{n+1} \right\} + \frac{f^{(j)}(x_{i+1})h_j\left(\frac{x-x_i}{x_{i+1}-x_i}\right)\left(\frac{x-x_i}{x_{i+1}-x_i}\right)^{n+1}}{j!} \]

CONCLUSION

In order to evaluate the derivatives of the \(H \)'s, one can expand the polynomials involved and multiply out or one can apply Leibniz's rule a couple of times. The latter course is deemed simpler and more numerically stable since it leaves a result which is in "nearly" fully factored form. The latter method was used to produce Figure 1.
<table>
<thead>
<tr>
<th>TECHNICAL REPORT INTERNAL DISTRIBUTION LIST</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CHIEF, DEVELOPMENT ENGINEERING BRANCH</th>
<th>CHIEF, ENGINEERING SUPPORT BRANCH</th>
<th>CHIEF, RESEARCH BRANCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: DRSMC-LCB-D</td>
<td>ATTN: DRSMC-LCB-S</td>
<td>ATTN: DRSMC-LCB-R</td>
</tr>
<tr>
<td>-DP</td>
<td>-SE</td>
<td>-R (ELLEN FOGARTY)</td>
</tr>
<tr>
<td>-DR</td>
<td></td>
<td>-RA</td>
</tr>
<tr>
<td>-DS (SYSTEMS)</td>
<td></td>
<td>-RM</td>
</tr>
<tr>
<td>-DS (ICAS GROUP)</td>
<td></td>
<td>-RP</td>
</tr>
<tr>
<td>-DC</td>
<td></td>
<td>-RT</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNICAL LIBRARY</th>
<th>TECHNICAL PUBLICATIONS & EDITING UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: DRSMC-LCB-TL</td>
<td>ATTN: DRSMC-LCB-TL</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR, OPERATIONS DIRECTORATE</th>
<th>DIRECTOR, PROCUREMENT DIRECTORATE</th>
<th>DIRECTOR, PRODUCT ASSURANCE DIRECTORATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRSMC-LCB-TL, OF ANY ADDRESS CHANGES.
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

ASST SEC OF THE ARMY
RESEARCH & DEVELOPMENT
ATTN: DEP FOR SCI & TECH
THE PENTAGON
WASHINGTON, D.C. 20315

COMMANDER
DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-DDA
CAMERON STATION
ALEXANDRIA, VA 22314

COMMANDER
US ARMY MAT DEV & READ COMD
ATTN: DRCDE-SG
5001 EISENHOWER AVE
ALEXANDRIA, VA 22333

COMMANDER
ARMAMENT RES & DEV CTR
US ARMY AMCCOM
ATTN: DRSMC-LC(D)
DRSMC-LCE(D)
DRSMC-LCM(D) (BLDG 321)
DRSMC-LCS(D)
DRSMC-LCU(D)
DRSMC-LCW(D)
DRSMC-SCM-O (PLASTICS TECH EVAL CTR, BLDG. 351N)
DRSMC-TSS(D) (STINFO)
DOVER, NJ 07801

DIRECTOR
BALLISTICS RESEARCH LABORATORY
ARMAMENT RESEARCH & DEV CTR
US ARMY AMCCOM
ATTN: DRSMC-TSB-S (STINFO)
ABERDEEN PROVING GROUND, MD 21005

MATERIEL SYSTEMS ANALYSIS ACTV
ATTN: DRSXY-MP
ABERDEEN PROVING GROUND, MD 21005

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,
US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, DRSMC-LCB-TL,
WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.
TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ARMY MATERIALS & MECHANICS RESEARCH CENTER</td>
<td>2</td>
<td></td>
<td>US NAVAL RESEARCH LAB</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: TECH LIB - DRXMR-PL</td>
<td></td>
<td></td>
<td>ATTN: DIR, MECH DIV</td>
<td></td>
</tr>
<tr>
<td>WATERTOWN, MA 01272</td>
<td></td>
<td></td>
<td>CODE 26-27, (DOC LIB)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WASHINGTON, D.C. 20375</td>
<td></td>
</tr>
<tr>
<td>US ARMY RESEARCH OFFICE</td>
<td>1</td>
<td></td>
<td>AIR FORCE ARMAMENT LABORATORY</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: CHIEF, IPO</td>
<td></td>
<td></td>
<td>ATTN: AFATL/DLJ</td>
<td></td>
</tr>
<tr>
<td>P.O. BOX 12211</td>
<td></td>
<td></td>
<td>AFATL/DLJG</td>
<td>1</td>
</tr>
<tr>
<td>RESEARCH TRIANGLE PARK, NC 27709</td>
<td></td>
<td></td>
<td>EGLIN AFB, FL 32542</td>
<td></td>
</tr>
<tr>
<td>US ARMY HARRY DIAMOND LAB</td>
<td>1</td>
<td></td>
<td>METALS & CERAMICS INFO CTR</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: TECH LIB</td>
<td></td>
<td></td>
<td>BATTELLE COLUMBUS LAB</td>
<td></td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td></td>
<td></td>
<td>505 KING AVENUE</td>
<td></td>
</tr>
<tr>
<td>ADELPHIA, MD 20783</td>
<td></td>
<td></td>
<td>COLUMBUS, OH 43201</td>
<td></td>
</tr>
<tr>
<td>NAVAL SURFACE WEAPONS CTR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: TECHNICAL LIBRARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODE X212</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAHLGREN, VA 22448</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US ARMY AMCOM, ATTN: BENET WEAPONS LABORATORY, DRSMC-LCB-TL, WATERTOWN, NY 12189, OF ANY ADDRESS CHANGES.
READER EVALUATION

Please take a few minutes to complete the questionnaire below and return to us at the following address: Commander, Armament Research and Development Center, U.S. Army AMCOM, ATTN: Technical Publications, DRSMC-LCB-TL, Watervliet, NY 12189.

1. Benet Weapons Lab. Report Number

2. Please evaluate this publication (check off one or more as applicable). Yes No
 Information Relevant
 Information Technically Satisfactory
 Format Easy to Use
 Overall, Useful to My Work
 Other Comments

3. Has the report helped you in your own areas of interest? (i.e. preventing duplication of effort in the same or related fields, savings of time, or money).

4. How is the report being used? (Source of ideas for new or improved designs. Latest information on current state of the art, etc.).

5. How do you think this type of report could be changed or revised to improve readability, usability?

6. Would you like to communicate directly with the author of the report regarding subject matter or topics not covered in the report? If so please fill in the following information.

 Name:

 Telephone Number:

 Organization Address: