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1.0 INTRODUCTION

This is the Third Annual Technical Report under Air Force Office of

Scientific Research Contract F49620-80-C-0088, "Fundamental Properties of

Soils for Complex Dynamic Loadings". The report covers the contractual

period 1 August 1982 through 31 July 1983, but the work discussed was

mostly accomplished after submission of the Second Annual Technical Report

in April, 1983 [Dass, Merkle, and Bratton (1983)].

The FY 1983 modification to the basic contract statement of work

contains three tasks:

E.l.e. Response of a Clay and Silt to Laboratory Boundary Conditions

E.1.f. Soil Element Model (SEM) Analysis of Laboratory Test Data

E.1.g. Theoretical Development/Modification of Constitutive Model

The first two tasks depend on laboratory test data not yet available, and

will be reported separately. The third task reads as follows:

Results of the previous work will establish a framework within
which the material models can be evaluated, and illustrate the
limitations of existing models. The theoretical development of
improved constitutive models can develop along one of two
paths. The first involves the development of a new model. The
second involves modification to existing models to include
effects not currently present. The selection of the preferred
technical approach will be made and preliminary work begun on
the new modeling procedure. The work begun last year on pore
pressure, rate effects, and shear behavior will be continued
and new aspects of soil modeling which come to light will be
reviewed. Where inconsistencies arise the emphasis will be
placed on matching insitu behavior as opposed to laboratory
behavior. The initial theoretical development work will be
checked in an ongoing fashion utilizing the Soil Element Model
and CIST calculations.

This report contains three major sections. The first section deals

with the general equations for dynamic response of a saturated soil, which

establish the mathematical and computational framework into which any soil

• ..... _.... . ..~~~~~~~~~~.......-........ -.......-.....- ....... ,.,...............,.......,,..,.....,,4 , .. :,:



constitutive model must fit. The second section deals with those aspects

of soil stress-strain behavior which a soil constitutive model may have to

S reproduce. The third and final section presents the equations of

elastoplasticity needed for model development, and then discusses the

initial phase of that development, viz the shear failure criterion. The

* proposed shear failure criterion has several convenient features:

1. It is related to stress through the first total stress invariant

and the second and third deviator stress invariants, each of

whiich has a simple physical interpretation.

2. Its parameters can be determined from simple linear plots.

3. The model can match unequal friction angles in triaxial

compression and extension.

4. The ratio of octahedral shear to octahedral normal stress can be

calculated directly (without iteration) when the value of Lode's

* parameter is known.

Other features of the model are yet to be determined.

2
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2.0 DYNAMIC RESPONSE OF SATURATED SOIL

2.1 Effective Stress

In a saturated soil having discrete grains with negligible

lntergranular contact areas each grain is completely surrounded by pore

fluid. Therefore the pore pressure acts throughout a soil element, in

both the pore fluid and the solid grains. Superimposed on the hydrostatic

intragranular stress acting within each solid grain due to the pore

pressure is the additional intragranular stress due to intergranular

forces. A plane section through soil will generally cut through both

solid grains and fluid-filled pore space. The intragranular stress acting

on the solid portion of the section must balance the pore pressure acting

on the cut grain surfaces on one side of the section, plus the

intergranular forces acting on the same cut grain surfaces. The pore

pressure acting on one side of the fluid portion of the section simply

balances the pore pressure acting on the fluid portion on the other side

of the section. This situation is shown in Figure 2.1. Sunning forces in

the vertical direction yields

EF + = EC + pAt) - (pAt + TAs ) = 0 (2.1)

so that the intragranular normal stress component, , equals the sum of

normal components of intergranular forces divided by the area of solids.

EC iv
(2.2)

5

It turns out to be more convenient to normalize the sum of normal

components of intergranular forces with respect to At, rather than with

3...
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respect to As, so we define the effective normal stress, a, by the

equation

Civ.-.- ( (2.3) "

t

Comparison of Equations (2.2) and (2.3) shows that

pA At _- :::

A At (2.4)
s

Returning to Equation (2.1), if we define the total normal stress, o, by

the equation

oAt= pAt  TAs = p+ At  (2.5)

then

=p +Y o(2.6)

so that

=0 - p (2.7)

Summing forces In the horizontal direction in Figure 2.1 yields

ZFh = iCih -TAs = 0 (2.8)

so that the intragranular shear stress, T , is

:T ih (2.9)

.

The effective shear stress is obtained by normalizing the sum of

tangential components of intergranular forces with respect to At, rather

than with respect to As, so that

4

.. .. .4' * * * - "
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ih
A-h (2.10)

t

and therefore

(2.11)

2.2 Grain Compression Due to Pore Pressure

If the bulk modulus of solid grains is Kthen because the pore

pressure, p, acts throughout each grain it is apparent that each grain

undergoes a compressive volumetric strain due to pore pressure of amount

(2.12)

s p s

2.3 Solid Skeleton Compression Due to Pore Pressure .,-

If each grain of the soil skeleton undergoes a compressive volumetric

strain due to pore pressure of amount pcK, then the entire soil

skeleton will undergo the same compressive volumetric strain, since the

skeleton is composed of grains in contact. (This argument assumes no

grain slippage.) Thus

AVt ",.'(2.13) 5;..

-(V t p

p

Note that the skeletal compressive volumetric strain defined by

Equation 2.13 is unrelated to effective stress. It is similar in nature

to displacements of a framed structurm due to temperature change.

2.4 Grain Compression Due to Effective Stress

There are two components of intragranular stress: p and o. Each

causes grain compression. The component of grain compressive volumetric

strain due to intergranular forces (effective stress) is

-. 5
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AV S) (2.14)

S S s

The intragranular shear stresses, aoj (1 A j), cause grain distortion,

and therefore skeletal distortion. However, this is assumed to have no

effect on skeletal volume, and is therefore viewed as part of the overall

skeletal shear response. The above discussion does not include dilatancy,

which is caused by relative displacement between grains due to

intergranular slipping, a separate mechanism.

2.5 Darcy's Law and Fluid Drag

If the volumetric flow rate of pore fluid through a soil cross

section of total area At is Q, the discharge velocity, w, is defined by

the relation

Q (2.15)
t

Of course, the actual fluid particle velocity, v, is larger than w, since

the actual fluid particle velocity is the ratio of volumetric flow rate to

flow cross-sectional area.

Q =(2.16)

Under steady flow conditions it has been found that the discharge velocity

is related to the pore pressure gradient by Darcy's equation

Wiz A kj' ( 2.17 ) ::"

where k1 j is the permeability matrix. Under steady flow conditions

inversion of Equations (2.17) yields

6 : I:::
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Ps a -k1  (2.18)

Now consider a pore fluid caused to flow under a given pore pressure

gradient through a soil element of unit volume, shown schematically in

Figure 2.2. The net force exerted on the bounding surface of the soil

skeleton is

fs -(1 - n)p,1  (2.19) .

and is independent of the nature of the flowing fluid, and of whether the *

flow Is steady or variable, since the pore pressure gradient is assumed

fixed. The reining portion of the pressure gradient under steady flow

is the drag force exerted on the body of the soil skeleton, which is

fdi a-Psi- fst a -Psi * (1-n)p,1 - -np,, - nkjj Vj (2.20)

Under unsteady flow conditions the fluid drag force exerted on the body of ,e-

the soil skeleton is assumed to still be given by the same expression

fdi " nk- (2.21)

2.6 General Equations

Up to this point normal stresses have been considered positive in

compression. However, for reasons of notae 4onal and computational

convenience, it turns out to be easier ler normal stresses

positive in tension, as well as longittu, ns positive in

extension. Since pore pressure is compressiw ty nature, however, pore

pressure will continue to be considered positive In compression. Thus the

relation between total stress, pore pressure and effective stress is

.°.=..



+ Pd P6 j (2.22)I~

The equation of motion for the soil skeleton must consider effective

stress (considered to act over the total area of a soil element), pore

pressure (acting over the bounding area of solids), fluid drag force

(computed per unit total volume of a soil element), gravity (acting on the

solid mass) and skeletal acceleration. Referring to the soil element

shown in Figure 2.3, the skeleton equation of motion is

Vi - - n ~ un * (1 - n)psg = ( - npsi (2.23)

where gi is the ith component of gravity.

The equation of motion for the fluid phase must consider the pore

pressure (acting over the bounding flow area), the skeletal drag force

(computed per unit total volume of a soil element), gravity (acting on the

fluid mass), and the fluid acceleration. Here it is important to

recognize that the discharge velocity, w, is measured relative to that of

the soil skeleton. Again referring to the soil element shown in "

Figure 2.3, the fluid equation of motion is

-np,1 - nk' w + npfg = npf(6j + -) (2.24)

or

-p1i - k W Pfg1 = PfU1 + PfWi (2.25)

Addition of Equations (2.23) and (2.24), setting

(1 - n)ps * npf p (2.26)

yields

8 , .. ,. ,.,, , S. ,
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0 1j.jU

The soil skeleton stress-strain equations, in incremental form, are

daij= Dijkldckl (2.28)

where dijj is the matrix of incremental skeletal strains associated

with effective stress, and Dljkl is the skeletal elastoplastic

incremental stiffness tensor.

From Equation (2.13), the matrix of incremental skeletal strains due

to pore pressure is

-j = - i j (2.29)

Assuming there are no causes of skeletal strain other than effective

stress and pore pressure, it follows that the matrix of incremental

II skeletal strains, detj, is given by the expression

= dE (2.30)

so that

de i = dcj re - (2.31)

C..

Substitution of Equations (2.31) and (2.29) into Equation (2.28) yields

iklkd I (2.32)

The pore fluid stress-strain equation is simple in concept because

the pore fluid is assumed to have a constant bulk modulus, Kf, and zero

shear modulus. Not quite so simple, however, is evaluation of the rate of

fluid volumetric strain at a point. Note that the equations in this

. . . . . ..

9** 
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section concern the displacement of a point in the soil skeleton whose

initial coordinates are specified, and the pore fluid velocity at the same

displaced skeletal point. The analysis is Lagrangian with respect to the

soil skeleton, but neither Lagrangian nor Eulerian with respect to the

pore fluid. This is because Darcy's Law applies to skeletal and pore

fluid elements occupying the same point in space and time. Thus we track

neither a particular fluid particle nor the fluid velocity at a fixed
1.-.

point; rather we track the fluid velocity at a moving skeletal point whose

initial position is specified. Pore fluid velocity is thus a skeletal

quantity, like skeletal displacement, because it is a vector tied to a

point in the skeleton whose initial position is specified. Returning to

the problem of obtaining the pore fluid stress-strain equation, we use the

equation of pore fluid mass conservation to express the pore fluid

volumetric strain in terms of quantities already defined. The pore fluid

mass conservation equation is

(Ofwi),i = - (npf) (2.33)

Expansion of Equation (2.33) yields

pfiwi + PfwiI = -nPf - npf

or

, - Pf -Pf -)

Tff
.- n- n(f n.

- f. . .f ,I -. ,
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q

S. n uPf . .-. - ~~ Dp. (2.34)

The rate of increase of porosity, , is the sum of three terms:

() the rate of skeletal volumetric strain, ii"

N+) the rate of solid grain volume decrease due to pore pressure, per

unit total volume (see Equation (2.12), (1 np/K
-

-) the rate of solid grain volume increase due to effective stress,

per unit total volume (see Equation (2.14),

I.

-(1 - n)[ t °i

and the total rate of change of pore fluid density is

I D .f (2.35)

Thus Equation (2.34) can be written in the form

id',i = -dcii -(1- n)F -s- - n (2.36)
5 5 f

Equations (2.32) and (2.36) can be written in the form

- k~ dp Dijkldckl (2.37)

and • I
n n dwn (2.38)"""
,n K

S"s- 4l 'f+  )dp , deii + dwt 1  (2.38

5 f 5

Finally, the skeletal strain-displacement equations are

• - -J:

I ......-,,...
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i(i j U~ (2.39)

where uis the ith component of skeletal displacement.

Summarizing the above results, we have (cf Zienkiewicz and

Bettess (1982)):

Effective Stress Definition

aia = j +paij (2.22)

Soil Skeleton Equation of Motion

-(1-j n)p,i + nkij wj +pg Op-n s Cl 1~ (2.23)

Pore Fluid Equation of Motion

1* +. I-Psi - Wj Pfgj Pfu1 + PfW1  (2.25)

Total Density

( O- S+p nf~ = (2.26)

I Soil Element Equation of Motion

Uj Pg1 Z=u +Pw (2.27)

Soil Skeleton incremental Stress-Strain Equation

3K_ - dp - D ijkld ekl (2.37)

Pore Fluid Mass Conservation Equation

= n+ ) d 1 de dw (2.38)
s f s

12
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Skeleton Strain-Displacement Equation

7 (u 1 + Ujj) (2.39)

Emphasis in this research effort during the last three years has been

on Improving current models for the skeletal elastoplastic incremental -:

stiffness tensor, Dijkl. However, it is important to keep in mind how

the D tensor fits into the complete set of equations for the dynamic

response of saturated soils, which are needed to solve complex dynamic

problems involving wave propagation, liquefaction, and spall. - -

2.7 Undrained Behavior

As a particular example of the application of the above general

equations to the response of a saturated soil having compressible solid

grains, consider the case of undrained loading. Assume the skeletal

stress-strain response to be incrementally linear, with skeletal

u[ contrained modulus Mk, coefficient of lateral stress at rest Kok, and

bulk modulus Kk. For undrained loading we assume no flow (wi = =-,

wI = 0), and also neglect inertial effects .= ) The governing

equations then reduce to:

Ci Oia 04 pa44 (2.22)

elij Dijkl(dkl 4 6kl (2.40)

-do

S(n + n)dp (2.41)
s f 5

The skeletal incremental stiffness matrix, Dijkl, is:

13



kl

11 22 33 12 23 31 21 32 13

11 M k KMk KMk 0 0 0 0 0 0

22 K ok Mk M k K ok Mk 0 0 0 0 0 0

33 K M~ KkMk Mk 0 0 0 0 0 0

12 0 0 0 2Gk 0 0 0 0 0

Ij 23 0 0 0 0 2Gk 0 0 0 0
31 0 0 0 0 2Gk 0 0k

21 0 0 0 0 0 0G 0G 0 0

32 0 0 0 0 0 0 0 2Gk 0

13 0 0 0 0 0 0 0 0 2Gk

* where

2Gk z Mk(l Kok) (2.42)

* and

l+Kr K (2.43)
= k
k

*Equation (2.40) yields

ii ii---kl dK

= -s-- -~~-dp

s

14



= kci*Kk dpo(2.44

Substitution of Equation (2.44) into Equation (2.41) yields "

K1Kdc + dp) - + 1
d t s sKdi ]f s ""

Or "

-Kk [1 k 1 1
i - )diK - (1 " V -Fp _Y p.-

s s s f s

or

dc11 = dp = - F'.(2.45) ,l.,

where_

F = 1 (2.46)

so that

oro

dp n dp d (2.47)

s/ k

s~K

- Dijkld6kl + d

or ,--

. ~15"--
or

15:
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da = Di Jkldekl U ~.)6d p (2.48)
s

Substitution of Equation (2.47) into Equation (2.48) yields

UK

[D + (1 K k.)F~6 6 dek

D= Dkd ckl (2.49)

where the undrained elastoplastic incremental stiffness tensor, D~jl

is defined as

u Kk*Dik Dijk + (1 -r)F6 a k (2.50)

* For the hydrostatic component of undrained loading, Equation (2.49)

yields

dai 1  Di il*( K k
= ~ k vs-de1 -r iiSS

K
=CKk + (1 - Fd

K k

5

f
+ n

. - - -T- - - - - - - - - -



m I"~ n k  Kk..,

-- . -) -:::
.J

2 .1 1 d i-

1 n Kk( k..A (251

+n(KW- ) --

which is the result obtained by [Gassmann (1951: par. 59, p. 15)].

For constrained (uniaxial) compression, Equation (2.49) yields

Kk
da1 = Mkde1 + (1 - sFd 1

Kk :

= [Mk + (1 - )F] dc1

.

jk 1 1 ---,

1 1

1~ M k + de

1 1 dcl (2.52)

1
1 + n 

k

: . The relation between effective stress and total strain can be

obtained by substituting Equation (2.47) into Equation (2.40), or directly

-- from Equation (2.48): g

• 17
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djj ikiekl(2.53)

where

Kk

5ijkl =Dijkl - ' F kl 2.4
s

*Equations (2.53) and (2.54) can be used to construct effective stress

* paths with strain contour overlays.

Equations (2.51) and (2.52) define the undrained bulk and constrained

moduli, respectively.

1 1
- 1* nKk ( K-~

K1 1 (2.55)

FS k

1 K
k~ (M k) nF~k (f ks)

1 u (2.56)

1 Vf ' s

5

and from Equations (2.55) and (2.56), or directly from Equation (2.50) we

can obtain the value of Kou, Equations (2.55) and (2.56) yield

Ku l 2 ou (2.57)

so that

18



K
K 1u7(3 RU1 (2.58)

Iu
Equation (2.50) yields

Mu Mk+ F(2.59)

MuKOUM Kkuk oke (+ (2.60)

so that

- Mk~ok + (1 ~F (.1

K (2.57)

The imtnthing tonicabu Equation (2.57) is51)that(2it) holds ee

6c2 a o F B (2.58)

Equation (2.57) yields

= B 1
A a,+ 2A 03) =-B [AG 3 -+ AG - 3)] (2.59)

19
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3.0 SOIL DYNAMIC CONSTITUTIVE MODEL REQUIREMENTS

3.1 The Nature of Soil

Soil is a particulate material. Soil particles vary in size, shape,

hardness and surface texture, and although they can be bonded together by

mineral deposits, this is the exception rather than the rule. There are

* four primary consequences of the particulate nature of soil (Lambe and

Whitman (1969: Chapter 2)):

a) Deformation of soil is partly the result of individual particle

deformation, but primarily the result of interparticle sliding

and rolling.

b) Soil is inherently multiphase. The soil particles constitute the

solid phase, and the remaining space is pore space. The pore

space is filled by pore fluid, consisting of a gaseous phase

(usually air) and a liquid phase (usually water). In dry soil

the liquid phase is absent, and in saturated soil the gaseous

phase is absent. The pore fluid chemically influences the nature

of soil particle surfaces, including contact surfaces, and hence

affects the process of interparticle force transmission and

resistance.

*c) The pore fluid can flow through the pore space. Whether flowing

or still, the pore fluid physically interacts with the soil

particles, thus further influencing the process of interparticle

1K force transmission and resistance.
d) Sudden load changes are carried jointly by the soil skeleton and

the pore fluid. The resulting change in pore pressure usually

I%

-
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causes pore fluid flow, which alters the proportion of load

carried by the soil skeleton and the pore fluid, as well as

changing the configuration of the soil skeleton.

Because soil deforms primarily by interparticle slip, soil strength

is basically frictional in nature; and because pore fluid pressure reduces

I ~ interparticle contact normal forces, the strength of a soil element is

controlled by the difference between the total normal stress acting on the

element and the value of the element pore pressure, i.e., by the effective

stress. Because of the nature of soil formation and deposition processes,

natural soil deposits are often inhomogeneous and inherently anisotropic,

and soil profiles are frequently erratically discontinuous.

3.2 Soil Stress-Strain Characteristics

Soil stress-strain characteristics are a consequence of the

particulate nature of soil and the processes by which soils are formed,

deposited and subsequently altered in place. The following list of soil

stress-strain characteristics is prioritized for construction of soil

constitutive models to predict the behavior of soil masses under complex

dynamic loads, such as explosions, earthquakes, and moving vehicles:

a) Soil deformation and strength are governed by effective stress.

b) Both volumetric and deviatoric stress-strain curves are

nonlinear, even at small strains, and the type of nonlinearity is

stress path dependent. Figure 3.1 shows the continuous

transition from concavity to convexity with respect to the

vertical strain axis of a plot of vertical effective stress

versus vertical strain, measured in a drained triaxial test. The

parameter controlling the shape of the stress-strain curve is the

21
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direction of the effective stress path. At mean pressures above

500 psi some volumetric stress-strain curves exhibit a convex

yield region due to grain crushing at highly stressed

interparticle contact points, but at even higher mean pressure

the volumetric stress-strain curve again becomes concave to the

strain axis. Figure 3.2 illustrates the above behavior. A

similar phenomenon is observed for one-dimensional compression

curves at much lower stresses, due to interparticle slip followed

by subsequent skeletal stiffening.

c) Under drained conditions, shear strain and volumetric strain are

coupled. This coupling is called dilatancy. Under undrained

conditions the tendency of the soil skeleton to change volume is

opposed by the relative incompressibility of the pore fluid,

which develops an excess pore pressure sufficient to maintain the

soil skeleton at constant, or near constant volume. It is vital

that soil dilatancy be correctly modeled in order to obtain the

correct pore pressure and effective stress under all loading

conditions.

d) At large shear strain a given soil approaches a residual or

ultimate shear stress and void ratio which depend on the

confining pressure, but are independent of the initial void ratio

prior to shearing. The residual or ultimate shear stress and

void ratio define the critical state at the given confining

pressure (Casagrande (1936: 262)].

e) In approaching the critical state an initially dense or over-

consolidated soil will attain a peak shear stress greater than

22
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the critical state value. The peak stress generally corresponds

closely to the maximum expansion rate. At larger shear strains

in a strain controlled test the shear stress decreases (strain

softening) and the soil continues to expand at a decreasing rate

until the critical state is attained. Both dense and loose soils

show a tendency toward densification at small shear strains, due

to particle rearrangement. Loose sands initially compact, then

' expand as they approach the critical state; normally consolidated

"7 clays compact throughout their approach to the critical state.

Loose sands exhibit steadily increasing shear resistance as they

approach the critical state; even normally consolidated clays can

exhibit a peak shear resistance with subsequent strain softening

as they approach the critical state. These basic soil stress-

strain phenomena are illustrated in Figures 3.3, 3.4, 3.5 and 3.6.

f) The intermediate principal effective stress can have a
:':'.,significant influence on both the peak and the ultimate friction

angles. Figures 3.7 through 3.26 [Merkle (1971)] show soil

0strength data plotted in the octahedral plane. In those plots

is the Mohr-Coulomb friction angle, and v is Lode's parameter.

If 72 had no influence on , the data points would all lie on a

straight line of constant . More will be said about these plots
in Section 4.

g) Because soil particles are generally not bonded together, soil

-* tensile strength is primarily the result of particle

interlocking, and is very small. Soil tensile failure causes

- stress redistribution in a loaded soil mass.

23
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h) Plastic (irrecoverable) volumetric and deviatoric strains are

both generated from the onset of loading. J

1) Separate yield and plastic potential functions appear to be

necessary for compression and shear, for a classical plasticity -

model. Plastic flow is frequently nonassociative, especially in

shear.

j) Soils exhibit the Baushinger effect, i.e., loading beyond the

virgin yield point in one direction increases the elastic range

and yield point for unloading and reloading in that direction,

but decreases the elastic range and yield point for subsequent

loading in the opposite direction [Timoshenko (1956 11:412);

Nadai (1950:20)].

k) Soil stress-strain behavior can be strain rate dependent, both

because the effective stress-strain behavior of the soil skeleton

is strain rate dependent, and because of the time dependence of

pore fluid flow and the associated pore pressure adjustment.

1) Cyclic loading in shear and/or compression produces a number of 771.
effects: initial densification; hysteresis; decreasing

.I,
increments of permanent shear and volumetric strain with each

cycle, leading eventually to stable hysteresis; stiffening; and

decrease in damping.

. m) Natural soil deposits exhibit both inherent (depositional) and

stress- (or strain-) induced anisotropy. a,!

n) Sample disturbance often makes the stress-strain behavior of a

soil sample different in the laboratory from what it would have %

been in-situ.

24
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The Soil Element Model has been and will continue to be used in this

research program to test the ability of soil constitutive models to

reproduce the above stress-strain characteristics. These characteristics

significantly influence the response of a soil mass to complex dynamic

loads associated with explosions, earthquakes and moving vehicles.

2.5

VPq

SSi

.U
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4.0 ELASTOPLASTIC MODEL DEVELOPMENT

n 4.1 Basic Equations

If a cylindrical soil specimen is consolidated under an isotropic

stress (c = 2c = c3, then subjected to drained compressive
c 2Cm3

loading, unloading, and reloading under constant confining stress

(T2 = c3 = 03c; 1 - 3 ) ' the stress-strain curve appears as

shown in Figure 4.1. Several important features are shown in Figure 4.1:

1. The stress-strain curve is nonlinear, even for small stresses and

strains.

2. Upon unloading from point A, some of the total strain is

recoverable (BE), but the remainder is irrecoverable (OB).

3. Reloading occurs along a path (BC) somewhat different from the

unloading path (AB), until reaching the previous maximum stress.

At this point additional loading approaches and proceeds along

what appears to be a continuation of the virgin compression curve

(OA), with little apparent influence of previous unloading or

reloading. ..

4. Unloading and reloading occur along paths whose secant from zero

to maximum stress has a slope very close to that of the initial

tangent to the stress-strain curve. This means that the

irrecoverable portion of any strain increment is essentially the

difference between the total strain increment and the strain

increment associated with a straight line stress-strain curve

having a slope equal to that of the initial tangent to the actual

stress-strain curve.

26
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By convention, recoverable strains are called elastic, and

irrecoverable strains are called plastic. If the unloading and reloading

curves in Figure 4.1 both retraced the virgin loading curve (OA) instead

of following curves (AB) and (BC) the stress-strain behavior would be

called nonlinearly elastic. As it is, the linear portion of the stress-

strain behavior shown in Figure 4.1 is elastic, and the nonlinear portion

is plastic. Since some of the stress-strain behavior is elastic and the
.- -

rest is plastic, the overall stress-strain behavior is called

elastoplastic.

Multiaxial elastoplasticity theory extrapolates the above one-

dimensional stress-strain observations, and assumes that plastic strains

are superimposed on elastic strains calculated according to the theory of

elasticity. Thus

e +Pe + (4.1)
gij~cij ij

where

e e- -,
O Ij D Djklckl (4.2)

When the elastic behavior is isotropic, Equation (4.2) reduces to the form
-, e e-5

.+ M( - K k (4.3)

where M z constrained elastic modulus

KO  coefficient of elastic lateral stress at rest.

S.The parameters M and K are assumed to be constant, independent of

strain.

From Equation (4.2) it follows that

dai1 * Dkld l (4.4) -
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so that a unique relation exists between the elastic strain increments at

a point and the corresponding stress increments. However, what is known

in a strain controlled formulation is not the elastic strain increments,

dij but the total strain increments, dci,, which differ from the

elastic strain increments according to the incremental form of

Equation (4.1),

d*i , + de j (4.5)

Once the possibility of plastic strains is recognized, four questions

arise:

1. Can plastic strains occur?

2. If they occur, what will be their relative algebraic values?

3. If they occur, what will be their actual algebraic values?

4. Will they occur?

Obviously, Question 2 is a subset of Question 3. The reasons for listing

the two questions separately are the mathematical and physical conditions

used to answer them, which are explained below.

The mathematical theory of elastoplasticity presented here contains

four parts, each needed to answer one of the above four questions:

1. A yield criterion, assumed to be of the form

fCaw , ) = 0 (4.6)

satisfaction of which is a necessary condition for the occurrence

of additional plastic strain at a point.

2. A plastic potential function, g(olj), for which

dcP x 'g (4.7)
ij a3 lij

28

%"3



k . .

which gives the relative algebraic values of the plastic strain

increments, i.e. the direction of the plastic strain increment

vector in stress space. Equation (4.7) Is called a flow rule,

and the scalar constant dx is determined by the next condition.

3. The requirement that Equation (4.6) be satisfied not only at the

beginning of yielding, but throughout yielding as well, so that
af a ]

df j- doij + --€. do?. = 0 (4.8)

Equation (4.8) is called the consistency condition, and yields

the value of dx in Equation (4.7). It therefore permits

calculation of the actual algebraic values of the plastic strain

increments.

4. The requirement that the calculated plastic strain increments

lead to a positive plastic work increment,

dWp = tjdc' > 0 (4.9)

If Equation (4.9) is not satisfied, then additional plastic

strain does not occur at a point, in which case all strain

increments are elastic.

Equations (4.6), (4.7), (4.8), and (4.9) have been written assuming

. one yield criterion (or yield surface), and one plastic potential

function. There can, however, be more than one yield surface, and an

equal number of corresponding plastic potential functions. If this

happens, then the above four equations apply to each active yield

surface, Thus, if m yield surfaces are active, there will be a set of

plastic strain increments for each active yield surface, the values of

29
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which are determined by 4m equations (counting Equation (4.7) as one

tensor equation.)

The stress tensor ot contains nine elements,

Oi 0c12 0231

aij 02 022 23(4.10)0

L "31 032 033]

but only six are independent because

S= (4.11)

Each stress component, oij, can be expresed as a function of the

three principal stresses, 01, 02, 03, and the nine direction cosines

of the three principal stress axes with respect to the arbitrary Cartesian

axes used to define the aij. However, if a unit vector pointing in the

direction of the ith principal stress axis is-el' then because the three

principal stress axes are orthogonal, we have

ei " ej =5 (4.12)

Equation (4.12) represents six independent scalar equations involving the

nine principal stress axis direction cosines. Thus, there are only three

independent principal stress axis direction cosines. Let them be a,

02, and 03. Then we can write

Vot= oij(ol, 02, 03; (11 02, a3) (4.13)

If a material is isotropic, the dependencies of the yield function,

f, in Equation (4.6) and of the plastic potential function, g, in

Equation (4.7) on the principal stresses all 02 , and 03 are-. _..

independent of the orientation of the principal stress axes with respect

30
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to the coordinate axes. This is a specific application of the principle

of material frame indifference [Malvern (1969:389)]. This means that not 0

only do aI, a2 0 and a3 not appear in either equation, but also the

stress functions which do appear are insensitive to subscript

interchanges, i.e., they are symmetric functions of , a and 03.

The total stress invariants I1, I2, and 13 satisfy the required

conditions of symmetry. They are:

11= 1 + 22+033 (4.14)

I'll *12 "22 (23 G33 "31 - .

I2-( + + (4.15)
21 022 a32 "33 "13 I'll '

Oil 012 013

13 = 021 022 023 (4.16)

"31 a32 033

Equation (4.7) gives the relative values of the plastic strain

increments, from which the relative values of the principal plastic strain

increments and the orientation of the principal plastic strain increment

axes can be determined. Since the plastic potential function, g, is a

function of the three total stress Invariants, I, 12, and 131 given

by Equations (4.14), (4.15), and (4.15), we have

g = gill, 12, 13) *41)1,,l

g g~l I 1(4.17)

so that Equation (4.7) can be written in the form

dcj dx 'I dx(a a 32 a 33 (4.18)
iIj 1 i a 2 ij 3 .i..
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Now Equations (4.14) and (4.15) yield

1 0 01 6 (4.19)0

0 0 1j

(a C0
22022 Y33) 021 031

32

-3~i 012 -("33 +0(11) 032

M013 0723 (a 11 + 022)

=ji~ I1ij aoj I1 6ij (4.20)

To obtain the derivatives 31/ oI we notice that if the matrix

of cofactors or signed minors of the stress matrix, a is denoted

Z, then since according to Equation (4.16) the determinant of a is

13- the inverse of a, denoted a is

-1 _ (4.21)

Now the Laplace expansion for the determinant 13 is

I~~j Ei (4.22)

and direct expansion will demonstrate that

33 -1,T
11 ij 3 cyj

SI T 1 ~- (4.23)

I. Substitution of Equations (4.19), (4.20), and (4.23) into Equation (4.18) -

* yields
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Since has the same principal axes as does , it follows from

Equation (4.24) that de also has the same principal axes as does a.

This condition is a consequence of the assumption of material Isotropy,

.. and not an independent assumption.

A convenient assumption concerning the dependence of the yield

function, f, in Equation (4.6) on plastic strain is that f is a function

. of stress, aij, and plastic work, WP, where plastic work is in turn a

function of plastic strain [Malvern (1969:367)].

CCUj, cP) = f(a1j, WP(lP)) (4.25)

" Now Equation (4.9) can be written in the form

dW =w d ap Y d (4.26)
i-

so that

S pp(4.27)

The application of the above equations can now be outlined.

4.2 Stress Control Formulation

When stress increments are prescribed, the elastic strain increments,

dE are calculated from the equation

* de1  - ii + -r aa(4.28)
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* where E =Young's elastic modulus

v Poisson's ratio

Provided Equation (4.6) is satisfied, so that yielding can occur, we write

Equation (4.8) in the form

df 'fdi f dWP 0 (4.29)0

Since the invariants 11' 12.ad1 are homogeneous functions of

* degree 1, 2, and 3, respectively, Euler's theorem states that

Equation (4.18) yields

dW~~~ ~ = ~d~ ~~jI 21+ 3.- ) 1 hdx (4.30)

where

h 1 .1 1~ 1 2. -2+ 3 a 13 (4.31)

Equation (4.30) can be verified by direct expansion of Equation (4.24).

Thus Equation (4.29) can be written in the form

*df 'f doij + dx(h !!.-)0 (4.32)

and therefore the flow rule proportionality constant is

af

p d~- 3~~ d 1  ~(4.33)

at~

The plastic strain increments are calculated from Equation (4.7),

dC dx ag (4.7)

and the plastic work increment is calculated from Equation (4.30) Q6
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af doijdWPfhdx (4.34)

Therefore when hdx > 0, Equation (4.9) will be satisfied. In that case

yielding will occur when Equation (4.6) is also satisfied, and the total

strain increments are given by Equation (4.5)

a dcij + dc (4.5)

The elastoplastic incremental compliance tensor is obtained by writing

.- Equation (4.5) in the form

d~~de *dpjdci ij + ii

dF ,dki + & U (4.35):. Fijld~k aoj

where, from Equation (4.28)

e + v 6  6
Fe (4.36)ijkl = - 6ijkl -E ik jl

Substitution of Equation (4.33) into Equation (4.35) yields

)cj ik f  dkI = Fel kl dokI (4.37)

h~ p

where
aL af

Fep e ij (4kl.

1-ij Flk d Flk d (4.37)
Ijl ijkl -k jl'k

h aW

• .4.3 Strain Control Formulation

When strain increments are prescribed, the elastic strain increments
are not Immediately known. Combining Equations (4.4), (4.5), and (4.7)

• ". yields
:" 35

-jlik] ha

...- p Fe. ." . . . "-"-""" " '" ' ". . ." ' ' " '" """
" "

"" """ 
'

"
" "

""""" """"""t "
" "

""""""""" 
'



- -. 7-.-. 1--

aij = Dijk1'ckl D ijkl"dckl NOki

. De 1 (dekI d), 'g1~ 14.39)
ijkl 30kl

and substitution of Equation (4.39) into Equation (4.32) yields -

df=- Dej (dckl dx9.) + dx(hA!- 0 (4.40)acij 0k1 k d

:1,and therefore the flow rule proportionality constant is

dx .. !!-De 2L ~(4.41)

Provided hdx is positive, the plastic strain increments are calculated

from Equation (4.7),

de? dx ai (4.7)

and the elastic strain increments are calculated from Equation (4.5),

dei 3  de ij -dei'i (4.42)

The stress increments are then calculated from Equation (4.4),

daii D D~kdc (4.4)

The elastoplastic incremental stiffness tensor is obtained by writing

Equation (4.4) in the form

do i=Djkl dkl -eIP k Djkl dkl -dx ag (4.43)6
akl

where, from Equation (4.3),

INDijkl W o8ijk M(1 K K)6Ik6j (4.44)
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Substitution of Equation (4.41) into Equation (4.43) yields

[e (e agL) af Dek 14
doij De ijpq ao pg )7a- rskl kdoi = DiJkl -af D• e - h af dekl

3-pq pqrs 3 3wp J

ep,-
= DjkldEkl (4.45)

where

,e ?f(~ De
D• Dep (Djpq ag )( rf  e

ep e rs (4.46)
ijkl D ikD ag h a D fe

apq pqrs aors

4.4 Mixed Boundary Value Formulation

When a complementary combination of stress and strain increments is

prescribed (e.g. as in constrained compression), Equation (4.32) can be

written in a form which is a combination of Equations (4.32) and (4.40).

• _-, ~ ~ d aft dotjd + [af = -Dtl (d.k d), ag_). o, ~l]e7 -
a~i ijdo* (-~ij jk 1 k I a old

+ dx (h af 0 (447

3Wp

where the symbols do and I & mean summation only over indices

of prescribed stress or strain increments. The flow rule proportionality

constant is therefore

E~~~a ad1 1*2Dkd 1
&d j do L kd J dE (4.48)

atDjk 1 atEk aa1  k1 d aWp
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Equation (4.48) reduces to Equations (4.33) or (4.41) in the cases of

prescribed stress or strain increments, respectively. Provided hdx is

positive, the plastic strain increments are calculated from Equation (4.7)

dCP% d, '9 (4.7)

and the elastic strain increments corresponding to the prescribed total

strain increments are calculated from Equation (4.5)

[d = deii - deij de (4.49)

At this point we know some stress increments but not the corresponding

elastic strain increments, and the complementary elastic strain increments

but not the corresponding stress increments. To calculate the unknown

stress and elastic strain increments we write Equation (4.42) in matrix

form as

{do} 1 -I 2 {(ce}
1 71 T7 11

-= _--__ - (4.50)

e e de
O{'} 2 Q 1  1 22  {de 2 70

where an overbar indicates a matrix of prescribed quantities, and the

partitioned matrices D and Be are square and symmetric. '4.=I1 -=22

*I Expansion of Equation (4.5) yields

{do} 1 e 2uf }1 +D2 {de  2 (4.51)

{do} 2 =e {Ie} 1 + -e2 {dce} (4.52)

Equation (4.52) yields
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{dce}2  D . -l { 2 4 (4.53)

and substitution of Equation (4.53) into Equation (4.51) yields

{do} 1 q I ej 1 + De  e  1 {21 e "271 1 2P2" 2- PI 1
e ne ne,-ln e) {-a€ e}  +e ne, - {-a' (4.54)-'-

=T 1 - 1222 -21' 1 12=2 2 2

The remaining unspecified total strain increments are calculated from

Equation (4.5),

[de. dce + d d (4.5)1 i ii do

The elastoplastic incremental compliance tensor, Fep givenijkl'
by Equation (4.38), and the elastoplastic incremental stiffness tensor,
Dep :.'
Djkl, given by Equation (4.46), are both functions of stress and

plastic work only, and are therefore independent of which stress and - -

strain increments are prescribed. Note that since

dotj DeP d. Dep eP do (4.55)i ijkldkl ijklklpq pq

it must be that

De p -eP a (4.56)

tjkl'klpq = ip jq

so that DeP and FeP are the inverse of one another.

4.5 Computational Format

For computing purposes, it is convenient to write many of the above

equations in matrix form, as was done with Equations (4.50) through

(4.54). First we set
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,np.

p..-

all '. 
.-

a22 "

033

012

{0*} = 023 450

031

021

032

-13

and
€11£..

£22

£-33

S 12
{g*} = £:23 (4.58)

£31

* £21

"322
£13

Equations (4.57) and (4.58) indicate that the stress and strain spaces are

nine-dimensional. However, since

.11 oi l ,(4.11)

and -,
"" €I,:i " t,:ll(4.59) : -,-:: :t:i

all stress and strain points are restricted to six-dimensional coincident

subspaces. We therefore set
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02 0220

0F3 a33

()= 04 J2 012 (4.60)

05 %,1 c30

06 -iT 031

and

£2 £22

£3 £33

E4 {e}= £412 (4.61)

£5 £23

*Equations (4.60) and (4.61) give the correct expressions for work and for

the derivatives of the stress invariants, '

TT
dW ={a} {dc} {c 1 T NdE* (4.62)

+o + (4.63)

S (102+ + 0301) +70 + 0 C52 + 062 (4.64)

12=1 ~(~2 002 2 2

13 =010203 $.040506 1 7(15 206 + 2)(465

al 1 (4.66)

3141



02 - 3 -y 1 'li

CY1 c3 Y2 11 c'22 11

312 ~ 1 01 31
{w- 4 1 (4.67)0

05 a5023

a6 06 V2 031I

1 2 1
c20c3 - a5

3 1 12

12 7 04 3

(4.68)

3o 1

J 0 -4 a015 J 23

0405 -0206 \1 31 7

There are other six-element stress and strain vectors which give the

correct expressions for work and for the derivatives of the stress &

* invariants; for example:

022 E22

33 and

012 2cl2

C 23 
2C23

031 2031
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The reason for defining the six-dimensional stress and strain vectors by

Equations (4.60) and (4.61) is that if the 9 x 9 elastoplastic incremental

stiffness matrix, Dep, in the equation

{do*} = Dep {dE*} (4.69)

is symmetric, then the stress and strain vectors, {a} and {c} defined by

Equations (4.60) and (4.61) are the only stress and strain vectors for

which the 6 x 6 elastoplastic incremental stiffness matrix, Cep . in the

equation

{do} = Cep {d,} (4.70)

will also always be symmetric.

In matrix form, the equations for a complementary combination of

prescribed stress and strain increments are as follows. Let

{da} = column matrix of unknown stress increments

dI} =column matrix of prescribed stress increments

{dy} = column matrix of prescribed strain increments

{d6} = column matrix of unknown strain increments

Then Equation (4.47) can be written in the form

,. )f T [{fT C. -
df = {ds {dy}- dx {2} + dx(ha-f) 0

(4.71)

so that the flow rule proportionality constant is therefore

T T
{.L {d8) + { f } If {dy}

d (4.72)
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J.e

The reduced elastic stiffness matrix, Cappearing in Equations

(4.71) and (4.72) contains only those elements associated with the
0

U prescribed strain increments, {dyl. and the corresponding (unknown) stress

increments, {dcL}. Provided hdx is positive, the plastic strain increments

are calculated from the matrix form of Equation (4.7),

.1{dePI dx 11(4.73)
a30

and the elastic strain increments corresponding to the prescribed total

strain increments are calculated from Equation (4.5)

{de} ={df} - {dyp} (4.74)

Equations (4.50) through (4.54) take the formi

e e - e,I Ca}IC1  {dy}

-- - -I -- (4.75)
~e Ce de,

or

Id C fd~ 2{ddee e} (4.76)

{d8} C {dye)+ 2  de (4.77)

so that

U~~~I Qd, } ellde1 y (4.78)

and therefore

{da} =(Ce -ee ~Ce ) del + Ce Cel {d8} (4.79)
11 -12l-22 -21 -12-=22

and

I{d6} {d6e} + {d6p} (4.80)

The elastoplastic incremental stiffness matrix is, from Equation (4.46),
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-v. . W" ...

fT Ce
C ep Ce ~ - a y a (4.81)V
-Z - ce_ -~

4.6 Material Behavior

So far the discussion of the theory of elastoplasticity has been -

mathematical. Material behavior comes into play in selecting the yield . -

function, f, and plastic potential function, g, on the basis of test

data. Frequently the mathematical form of the yield function is based on

strength or failure data, and a hardening function is added to convert the

failure criterion to a yield function. [Newmark (1960:24)] pointed out

that the definition of failure should be as precise as is the resulting

failure criterion. From a mathematical viewpoint, once the yield function

and plastic potential function are defined, failure occurs when the

elastoplastic incremental stiffness matrix, Cep, defined by CAL

Equation (4.81), becomes singular, i.e. when

I cep =0 (4.82)

The theory of plasticity was first developed for metals, for which

the yield function is often independent of the hydrostatic stress

component. (However, ductility of metals often increases with increasing

! hydrostatic stress.) What this means mathematically is that in three-

dimensional principal stress space metallic yield functions which are

independent of the hydrostatic stress component are right cylinders, with

their axis along the line ,= 02 = 03, called the hydrostatic

axis. In such cases interest naturally centers on the shape of the

intersection of the yield surface with a plane normal to the hydrostatic

axis, called a deviator or octahedral plane, and having the equation
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01 + 02 + 03 = = constant (4.83)

Figure 4.2 shows the hydrostatic axis and an octahedral plane in principal

stress space.

For soils the hydrostatic stress component definitely influences the

failure surface, but often in such a way that octahedral cross-sections of

the failure surface at different values of I are geometrically similar,

increasing in size as a function of I. When this happens all strength

data can be plotted on a single octahedral plot by normalizing the data

with respect to the I size function. This is how Figures 3.7 through

"- 3.26 were obtained. For example, The Drucker-Prager failure surface

assumes that octahedral cross-sections are circular, with the radius a

linear function of 11 (Drucker and Prager (1952:158)].

The geometrical justification for plotting shear strength data in the

octahedral plane using coordinates

a -3
sin i = (4.84)

and

2 - a1 3 (4 .85 )

01 c13

as shown in Figure 4.3 can be found in [Merkle (1971:346)]. Using the

form shown in Figure 4.4, strength data from many different investigations

can be compared on a common basis.

Although the Mohr-Coulomb friction angle, 6, and Lode's parameter, ,

are useful for plotting strength data in the octahedral plane, the

invariant quantities

46



. . . . . . . . . . . . . . . .. .

.0

1OCt = 2: (4.86)

Oct 1 2) (2 ~3) (3 01Ot = - --=1 -1 0 + 1 2 - 32, - 2o (4.87) ".

J3

cos 3w = (4.88)J2 312
J 2

(so-

J3= (o° 1 "oct)(a2 - aoct)(03 - 'oct) (4.89)

are more useful in constructing curves to fit the data. The variables

Coct , Toct and u are shown in Figure 4.3, where a1, 02, and 03

represent principal stresses.

4.7 Drucker's Equivalent Stress Function

Although his principal concern was developing an invariant shearing

stress-strain relation, rather than defining the shape of the octahedral

cross-secion of a failure surface, [Drucker (1949:352)] proposed what

amounts to a formula for variation of Toct with u. He proposed the

following expression fo- an equivalent shearing stress,q:

- =TOC (1 - 2.253/1 2 ) (4.90)
eq 32

where from Equation (4.88) we have

1 2"3 cos23w 1 + cos6w (4.91)
-2 = - = 1.W-.+

Substitution of Equation (4.91) into Equation (4.90) yields

T teq (4.92)Oct ( 1 + C0S6114/67
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Equation (4.90) defines a smooth curve in the octahedral plane for which

lines of symmetry occur at 30 degree intervals [cf Hill (1950:18)]. It .6

causes the value of Toct to be the same in triaxial extension ( -60°)

as in triaxial compression ( = 1200), and as Hill explains, such an

octahedral cross-section corresponds to an isotropic material which does 0

not exhibit a Baushinger effect. Equation (4.92) can be written in terms

of Lode's parameter, p, instead of the octahedral polar angle, , by using

the relation [Merkle (1971:733)]

23 2(9 _ P2)2 i-

cos 2 3w = 6.75 "2) (4.93)
J 2  (3 +1

so that Equation (4.92) takes the form

Teq (49 -

Oct 2 2 1/6 (4.94)

3(3 + )

When v = *1, Equation (4.49) yields

t == 1.07 eq(4.95)Oct -- 1/6'e

and when = 0, Equation (4.494) yields

Toct = Teq (4.96)

4.8 Topping's Failure Criterion

[Topping (1955:186)] proposeo a Mohr circle type relation in the 4_V

octahedral plane, to account for the possibility that the octahedral shear

stress values at failure in triaxial compression and triaxial extension

may be different at the same octahedral normal stress. His equation is

-',
• 48

--.-... , . .. - ,.. . .. ,' ..- ' .. ... . .. ,.'..... .. , ',-,- . _: . ,. ; :'-.. - ", , .- :



Oct cCo s  " + T e sin

- ce (w (4.97)

Equation (4.97) can also be written in the form r"

roct= A + (4.98)

where

A =0.5(Tc + e) (4.99)c e

B = 1.3(Tc - Te) (4.100)

or Ike

T P(9 2)

Oct A -23/2 (4.101)

where

C e0.5(T c  Te )  (4.102)

Note that Equation (4.101) permits evaluation of the constants A and C by

a straight line plot.

4.9 Kirkpatrick's Failure Criterion

[Kirkpatrick (1957)] performed both conventional triaxial and

thick-walled cylinder tests on Loch Aline sand, for the purpose of

determining the shape of the failure surface octahedral cross-section.

His results are shown in Figure 3.10, and he concluded that the

Mohr-Coulomb failure criterion was a good fit to the data. In fact,

Kirkpatrick felt the Mohr-Coulomb criterion fit his data so well that he

decided not to modify the axial load capability of his thick cylinder

device to obtain p values other than those shown in Figure 3.10.
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Both Topping's and Krkpatricks's results were cited by ,Ne. .ark

(1960:28)) as examples of failure criterii having roughly triangular

octahedral cross-sections, and unequal [octahedral shear) strengths in

triaxial compression and extension.

4.10 Coleman's Failure Criterion

[Coleman (1960:182)) proposed a failure criterion based on an

invariant formulation of the Mohr-Coulomb failure criterion for a

cohesionless material. From Figure 4.3 we have (for d o),

%T3ea sin proposed ( t crite1sin (4.103)

so that

.Jj (act)sin'J2oct)sin 0 ts(4.104)
-Toc

cO54j

* oclOoc,.2

* When +~1

w2 60*

S 
N

sin 2

1 1/cos Q2 7 Y (cos u2)

and when = 1

w2= 120

sin 2 =

1 1 1/3COS "2= :+= -Ccos 3w2)

Co 2 z Y20 -7.
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°m1*,

Therefore, if we replace sin 2 by JN/2, and cos 2 by

-1/2(cos 3u2)1/3. the resulting expression will match Equation (4.103) 0

for u * 1. The resulting expression is

(Oct -
sin i = .J T ct /

r27 ( t ( co s 3Y2) 
"m"''

k\0oct) '''

Vf~j 2(4.105)

Clearing of fractions and squaring yields

[ 21, + J3  1/31 2 
2U32 = + sin2 (4.106)

which is Coleman's expression. The mathematically convenient feature of
Equation (4.105) is that the invariants appear separately, and in a.

numerator.

Equation (4.103) can also be written in the form

When oc = S n-3nn (4.107)

When . -1 (triaxial compression) Equation (4.107) yields

2 -T-s in ic
a)oct = c (4.108)\coct c :3 - s fn7 €c-.-:

and when . = 1 (triaxial extension) Equation (4.107) yields

(1:O~t) .2 r2 s in je "::
O~t e 3 l e (4.109)

V0c t/e e
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4.11 Lomize and Kryzhanovsky's Failure Criterion

[Lomize and Kryzhanovsky (1967)] performed stress-controlled true .0

triaxial tests on a quartz sand from the Volga region, using V = -1, 0 and

1. They defined strength as the peak value of TOct on a plot of Tot

versus yoct' at constant and p, and used the following Invariant

expression as their empirical failure criterion:
3J

w e e= * 

( 4 .1 1 0 )

where -'

D 1 Toct (4.111)
k = ct

a = 1.73 (4.112)

"*=260 (4.113)

Now

i3 3 (6 "cos 3 Dk 3 9Dk 2+ 1) (4.114)3 Ooc t k k

where

cos 3w = - M2 ) (4.115)
(3 +

so that

m I13
1 27

1 = (4.116)
3 6 fcos 30 k - k 1

Equation (4.110) can therefore be written in the form

S(6 cos 3Dk3 " -9Dk 2  1.73 ( 27)1.73 Dk

r-or
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7777 ' 7.- . .

D ( 6 %jgcos 3Dk3- 9Dk2+ 1)173 (4.117)
k 1.1516

Equations (4.115) and (4.117) can be used to find the value of Dk for a

given value of w, by iteration. Figure 3.24 is a plot of the results.

For a more thorough review of investigations of the effect of the

intermediate principal stress on soil shear strength, see [Merkle

(1971:Chapter 6)].

4.12 Modified Lade Model

[Lade (1972:137, 138)] simplified the failure criterion of Lomize and

Kryzhanovsky by deleting the factor Dk in Equation (4.110). The failure

criterion which Lade fit to true triaxial test data on Monterey No. 0 Sand

was written in the form

I- klI 3  0 (4.118)

Using this failure criterion as a basis, Lade developed an elastoplastic 7i
constitutive model having one associative and one nonassociative yield -i

surface. His equations are given below, from [Lade and Nelson (1981)].

The associative compressive yield surface and plastic potential function ""

are

fc = fc(a) - f (Wc) = 0 (4.119)S c c c

where

2 2 2 2(410
fc 1 ~1 +22 01 02 a 3(410

f VL p (4.121)
c a~p

and
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9c (4.122)

=a atmospheric pressure

The nonassociative expansive yield surface and plastic potential function

p are

f =f ( i)- (W ) 0 (4.123)
p p Pp

- where

-f; 27)11- (4.124)

3

f=1 at failure (4.125)

f =aebWp(!E2) 1/q

an ~ '(q >0) (4.126)

as follows amj (4.127)

UThe octahedral cross-section of Lade's failure surface can be computed

=c friction angle for triaxial compression

1 + sin i0
Noc (4.128)

c

(N+ 2) 3 4:M
= ki -- ~- (4.129)

1*B D 1~ (4.130)
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A cos 3w~ (4.131)

'Oct B
z =Dk= - = ---- (iterate) (4.132)

k Oct 1.5 A

Octahedral cross-section values are tabulated for 6 =300 in Table 4.1,
iC

and plotted in Figure 4.5. This plot happens to be an excellent fit to

Von Karman's data in Figure 3.7.

Lade and Nelson state (p.504) that their "yield function defines the

stress levels at which plastic strain increments will occur" [emnphasis

added). The paper is silent about testing a given total strain increment

to see whether it will cause additional plastic strain, and in this

respect the model appears to be deficient. However, the deficiency is

easy to correct, and the correction is discussed below.

It is convenient to let the index 1 refer to quantities related to t

the collapse yield surface, and the index 2 refer to quantities related to

the expansive yield surface. In addition, define the {s} matrix by

Equation (4.60). the {e) matrix by Equation (4.61), and the 6 x 6 elastic

stiffness matrix, C based on Equation (4.44), i.e.,

1 K0  K0  0 0 0

K0  1 K 0 0 0
Ce=M K K 1 0 0 0 (4.133)

0 0 0 1K

0 0 0 0 1-K 0  0

0 0 0 0 0- 0-
00
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Then

{dc) {dce + {dc (4.134)

{d} Ce {de} (4.136).-

Assuming both yield surfaces are active (which may not be the case), each

of the two consistency conditions takes the form

d = af T {d} af~ iT p

= {--} { do} *h ~ 0L , Qj 1, 2; no sum) (4.137)
3 wpJ

Now let

* af
F (4.138)

To,=i

ag.
Gi ao (4.139)

Then

{deP} G {dx} (4.140)

In addition, let

D h1  W~ (no sum) (4.141)

Equation (4.137) can now be written for a strain controlled condition in

the form
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{df} FT {do} + rD {d}'

FTCe {{dc} - G {dA} } + D. {d,} = {0} (4.142)

and Equation (4.142) can be solved for {dx}.

{d .. VCG _ F _ {d} (4.143)

To determine whether both yield surfaces are active, we examine the

plastic work increments,

dWp j = h dxj (=1, 2; no sum) (4.144) .. ".

Now let

hij = hi6ij (no sum) (4.145)

Then Equation (4.144) can be written in the form

{dWp  : rhd = {rh_ (FTCeG - 1D )- FTCe}{dE} : Q {de}(4146)

where

S= rh (FTCeG _ j)- F TCe (4.147)

The Q matrix is 2 x 6, which means that Equation (4.146) requires the

total strain increment vector {dc} to have positive dot products with both

the vectors LQJ 1 and Lj 2 in order for both yield surfaces to be

active. This requirement is shown graphically in Figure 4.6. The Q

matrix depends only on the current stress and both the collapse and '

expansive plastic work. Thus it is possible to tell beforehand whether a

- given total strain increment will cause both yield surfaces to be active,

when the current stress point lies on the intersection of the two current

* yield surfaces.

If de • Q1 and dc • are not both positive, then each yield

surface must be examined separately to see whether it is active alone.
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Thus there are four possibilities, as shown below. However, it is not .-

_ _ _ _ 0

Surface 2(P)
Active Inactive

Surface 1 (C) Active CP C

Inactive P E'

clear from a comparison of Equations (4.72) and (4.143) that the outcome

)f the above tests will be unique, unless the matrix FTceG is diagonal.

Provided both yield surfaces are active, substitution of

Equations (4.134), (4.140) and (4.143) into Equation (4.136) yields

{do} Ce {dce} Ce {{d} - {dP}1 Ce {{d.} - G {dx } }

= C [I - G(FTCCG - "0J )-1 FTCe] {dc {d (4.148)

where the elastoplastic incremental stiffness matrix, CeP, is

cep = ce_ CeG(FTceG r DJ )1_ FTce (4.149)

Figures 4.7 through 4.11 show stress-strain curves for Antelope

Valley Sand using the Lade model, computed by the ARA Soil Element Model

(SEM) program using model parameters given by [Lade (1981)]. Figure 4.7

shows hydrostatic compression with unloading and reloading. Since Lade's

* model unloads and reloads elastically, it does not show hysteresis. The

elastic moduli are independent of strain, so the two unloading lines in

Figure 4.7 are parallel. Figure 4.8 shows uniaxial compression with

unloading. Figures 4.9, 4.10 and 4.11 show curves for three isotropically

consolidated drained triaxial compression tests, at constant cell pressure

equal to the consolidation stress. Figure 4.9 shows plots of principal

stress difference versus axial strain. Since the three samples were at
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the same void ratio prior to consolidation, the sample subjected to the

lowest consolidation stress (14 psi) behaved as a dense sand, increasing S

in volume for axial strains larger than about 5.5 percent. The sample

subjected to the highest consolidation stress (71 psi) behaved as a loose

sand, decreasing in volume throughout shear. Figure 4.10 shows volumetric

strain plotted against axial strain, and Figure 4.11 shows the hydrostatic

component of stress plotted against volumetric strain. Figures 4.7 and

4.11 would be identical if the soil were linearly elastic. Obviously it

is not. Comparison of these two figures emphasizes the stress path

dependence of the stress-strain behavior of Antelope Valley Sand.

-~ 4.13 Model Development

The modified Lade model discussed above is a partly nonassociative,

isotropic hardening elastoplastic model, with both yield functions and

both plastic potential functions related to stress through the total

stress invariants, I1, I2, and 13. Using the total stress

invariants has the mathematical advantage that differentiation with

respect to total stress is straightforward. However, Lade's model has the

disadvantages that it cannot, in general, achieve an exact fit to

different friction angles in triaxial compression and extension, and the

total stress invariants, 12 and 13, lack a simple physical

interpretation.

In contrast to the above situation, octahedral strength plots of the

type shown in Figures 3.7 through 3.26 and Figures 4.3 through 4.5 do have m1

a simple physical interpetation. They relate 6 and v; or oct and ; or

J2 and J3 ' where J2 and J3 are the second and third deviator

stress invariants, arising in the solution of the principal stress

characteristic equation. Thus the question naturally arises whether it
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might be more convenient, especially from the standpoint of physical

interpretation, to make the yield and potential functions explicitly

depend on II, J2 ' and J3, rather than on II , 12, and 13.

First of all, it is well known that the plastic work increment,

dWp , can be expressed as the sum of a volumetric term and a deviatoric

or distortional term. This is done by defining the stress deviator

components, sij, and plastic strain deviator components, J.. by

the equations

"k k-.-.
Slj = aij - T 6i (4.150)

e = -C - 6ij (4.151)

The expression for the plastic work increment can now be written in

the form

dWp  a d p  = ( * i +- a)(dee + m )
= ij sii i )( +j -Q

=k k + si deP (4.152)

mm lj ij

The first term in Equation (4.152) is the volumetric plastic work

increment; the second term is the deviatoric or distortional plastic work

increment. So far, so good; Equation (4.152) suggests that relating f and

g to volumetric and distortional invariants has a physical basis.

The main question, then, ispwhether the flow rule will have a

convenient mathematical form if we write

g = git J2 ' J 3 ) (4.153)

In place of Equation (4.18), we can write -0
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al aJ as aJ as
d -d . 1  +.x.ga.I . 2 kl a 3 k!1) (4.154)

aa j 3 Gj 2 a Sk 1o.: 9+.3 ks 1  i

where

aiI
=~yij 6 1j (4.19)

and by analogy with Equations (4.20) and (4.23).

aJ2
s slk Skl (4.155) r,

aSkl ...,

aJ3
= Ski (4.156)

k I

and from Equation (4.150)

Skl135k= -k 1 (4.157)

Equation (4.54) can now be written in the form

de dxra + (a"' c~ = ii 'a ( (lk)(6ik'jl - 'kl "'_

- 11

+ ( l(kll(ik~j J1 "3 kl'ij

s (S+ " -dl2 ] (4.158) -1

Equation (4.158) yields the volumetric plastic strain increment,

d dx( a1' dx(21 (4.159) _

Oct

so that the deviatoric plastic strain increments are

de p
, -ek kde ii -T- -:::
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d 2 S j + 3_3 Sij - ij) ]  (4.160)

Equation (4.160) seems workable enough, so we proceed to investigate the

form of the expression for the plastic work increment, dWp.

Equation (4.152) yields

-'dWP dx 1 ~ (2- -J + 3 1-J) (4.161)
2 3

The first term in brackets on the RHS of Equation (4.161) is the

volumetric term; the last two terms comprise the distortional term.

Equation (4.31) thus has two alternate forms:

h - I1 + 2 a 12 + 3 a 13
1 2a

11 2+2 (4.162)
1 a2 +

which means that

2 12 + 3 . 13 I3= 2 .2 J2 + 3 +3 J3  (4.163)

"2 qa3 3

Thus, there appears to be no reason for not using J2 and J3 instead of

12 and 13 in the formulation of the yield and potential functions, and

good physical justification for doing so.

The proposed expansive yield criterion is of the form of

Equation (4.123), i.e.

f = f p(aoc t , J2 ,  )  fp(W) 0 (4.164)

where

62

.. A-



17; F.~

f; = 'Ot - e cos 3.)(- + b) (4.165)
Pa Coct

f =a at failure (4.166)
p

Pa = atmospheric pressure

*At failure, substitution of Equations (4.165) and (4.166) into

Equation (4.164) yields

-t( e cos 3w) = a a (4.167)

o0ct b 1 b

The parameters a, b, and e can be determined from a series of triaxial

compression and extension tests. For triaxial compression (w 120),

Equation (4.167) reduces to

Toct (rPa9
1 t)

or

- -e 1+ b (ct =k. k (4.168)
T ct a 8 ic 2c a~

where

1-e
kic (4.169)

k -( -U! e!) (4.170)
2c a

For triaxial extension (,=60*), Equation (4.167) reduces to
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N~ a ( e)(Oct)Toct 1-+ e (T) (4.7-)

_ .1 +"b

aa

k-bI *1Le)1 b(ot e 'e( (4.171)

Toc a Pa / .O
Octc Pa " "

1a + e - - ::-"'

koc = 1 + e)[ ac + t~ t (4.173)

2e a

Plots of Equations (4.168) and (4.171) are shown in Figure 4.12. Such

plots are often referred to as Southwell plots (Timoshenko and Gere

* (1961:191)]. Having determined the parameters kit. k2c, kiel and

k2e, the parameter b can be calculated from the expressions

k 2c k2
b + e (4.174)

k ic - le

which provides a consistency check. The parameters a and e can be

calculated from Equations (4.169) and (4.172), written in the form

kiea -e =1

so that

2 a (4.175)
le 1c

e=1- kica =1 (4.176) -1-
I c le le 1c .

64.-i

9++

* .. *-* ... * * * *-



- - * 'P~.r,~.r **j ~ .- ...

Having calculated the parameters a and b (and e) from triaxial

compression and extension tests, the accuracy of the assumed octahedral

cross-sct .,.m can be investigated by a series of true triaxial

tests. If. in Equation (4.167) we set

a .p (4.177) '0o°ct'
I b ( '

then Equation (4.167) can be written in the form

OCt cos3 (4.178)

Oct - O3.

which is the equation for an ellipse in polar coordinates.

Equation (4.178) can be written in a linear form to obtain the octahedral

eccentricity, e, as a consistency check on the previously determined value

from Equation (4.176) S

o 1 e cos3w (4.179)

Oct".-"

A plot of Equation (4.179) is shown in Figure 4.13 MAN

Octahedral cross-section data for the case (b = o; - = 320;

= 35) are tabulated in Table 4.2 and plotted in Figure 4.13. The

calculation sequence used to obtain the values shown in Table 4.2 and

Figure 4.13 is as follows

Stan = (4.180)

rsin icZc 3- sin c (4.181)

cc

2 sin -I

Ze (4.182)Ze " ..3 +sin 0e"
e
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Cz 0

0

c e-a (4.183)
.p. zc  + Ze  '-,

c e
e z c e (4.184) .

a (4.185)
Sz =T - cos3,

sin -= -Iz S 2  (4.186)
z °" sj2

- The forms of the compressive yield criterion (cap), and the plastic

potential functions for the proposed model are yet to be determined, and .,

Ul will be the object of major effort during FY84.
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5.0 SUMMARY

Recognizing the load-deformation response of a soil mass is governed

by effective stress, this report begins by developing the general

equations for dynamic response of a saturated soil element. Particular

attention is paid to the physical significance of the parameters and the

equations. These equations are the framework into which a soil

constitutive model must fit. As an example of the application of the

general equations, the problem of determining incremental total stress

moduli for static undrained (no flow) conditions is examined, for both

isotropic (hydrostatic) and constrained (one-dimensional) compression.

The results for isotropic compression agree with those of Gassmann. The

results for constrained compression should be useful for studies of soil

liquefaction under explosive or earthquake loading.

Types of soil stress-strain behavior observed in tests are examined,

to see what features a dynamic soil constitutive model should possess.

Included are effective stress dependence, nonlinearity, stress path

dependence, dilatancy, criticial state behavior at large shear strains,

peak strength behavior (or lack of it), influence of the intermediate
,-,

principal stress on shear stength, low tensile strength, inelasticity,

nonassociated plastic behavior, the Baushinger effect, rate dependence,

- hysteresis, decrease of damping with the number of cycles of reversed

loading, anisotropy, and sample disturbance.

The soil constitutive model proposed for complex dynamic loading is

• :an isotropic, strain hardening elastoplastic model. The basic equations

of elastoplaticity are developed in this report for the purpose of

emphasizing their logical structure. A direct (non-iterative) solution is ___
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developed for the case of mixed boundary conditions, because several of

the most coummon laboratory soil tests are of this type (e.g. strain- .0

controlled triaxial compression and confined or uniaxial compression), and

also because mixed boundary values occur frequently in dynamic finite -

difference and finite element computer calculations of the type in which0

the proposed model will be used. Criteria for distinguishing between

loading and unloading are carefully examined, because of the oscillatory

nature of soil stress-strain response under explosive and earthquake

* loading.

The proposed model shear failure criterion has the following

convenient features:

1. It is related to stress through the first total stress invariant

and the second and third deviator stress invariants, each of

which has a simple physical interpretation.

2. Its parameters can be determined from simple linear plots.

3. The model can match unequal friction angles in triaxial

compression and extension.

4. The ratio of octahedral shear to octahedral normal stress can be

calculated directly (without iteration) when the value of Lode's

parameter is known.

*Other features of the model are yet to be determined.

The objectives of the next year's effort are to complete the proposed

model formulation, and to demonstrate its ability to reproduce important

aspects of observed soil stress-strain behavior discussed in Section 3.
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TABLE 4.1

LADE FAILURE SURFACE OCTAHEDRAL CROSS-SECTION
FOR Oc =30 DEGREES

w 2 z sin$

DEG

120 -1.000 0.56569 0.500

115 -0.808 0.56149 0.534

-110 -0.630 0.55012 0.559

105 -0.464 0.53434 0.576

100 -0.305 0.51694 0.586

95 -0.152 0.49991 0.592

90 0.000 0.48442 0.594

*85 0.152 0.47071 0.591

80 0.305 0.45893 0.587

75 0.464 0.44949 0.579

70 0.630 0.44263 0.570

S65 0.808 0.43847 0.560
60 1.000 0.43708 0.548

sin 3 - z~ sin w

T2 z COSw
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TABLE 4.2

U PROPOSED FAILURE SURFACE OCTAHEDRAL CROSS-SECTION
FOR (b =0; c =32 DEGREES; je 35 DEGREES)

w2 si

-1.0 120.000 0.60679 0.530

-0.9 117.457 0.60589 0.550

-0.8 114.791 0.60304 0.569

-0.7 112.006 0.59810 0.586

-0.6 109.107 0.59105 0.602

-0.5 106.102 0.58198 0.614

-0.4 103.004 0.57118 0.625

-0.3 99.826 0.55901 0.632

-0.2 96.587 0.54597 0.636

*-0.1 93. .,04 0.53259 0.637

0 90.000 0.51938 0.636

0.1 86.696 0.50681 0.633

0.2 83.413 0.49526 0.628

S0.3 80.174 0.48500 0.622
0.4 76.996 0.47620 0.615

0.5 73.898 0.46894 0.608

0.6 70.893 0.46321 0.600

0.7 67.994 0.45897 0.593

0.8 65.209 0.45610 0.586

0.9 62.543 0.45449 0.580

1.0 60.000 0.45398 0.574

74



AT

As =(1 n)A T

______ _____ a--__ gt__ ao- dr--

V

C1  H

I,'C 2 p C3

Figure 2.1 Free Body Diagram for Definition of Effective

75



V: w . - F

0

-~ W Pf

v V
4A -=

v VV

V T

Figure 2.2. Saturated Soil Phase Diagram.

76



-0

x3

dx3

ddx
1

dx 2 x

xl

Figure 2.3. Soil Element Used in Deriving Basic Equations.

77 -

J9f

4-7a.



.0.

V r
q=

Kf line

2 03

0v Ur

Mohr Circle Center Stress

V 1 2
1 isotropic compression (Er COO)
2confined compression (d-o K da ~)

3 compressive loading (d-O =0)

4 compressive unloading (dcJyv 0)

4LJ

EU

4.,

LC

Vertical Strain
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78



0

0LJ

'4-r

Volumetric Strain
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Tests by Von Karman (1911) and Boker (1915)
3003Q0 Data from Rutledge (1940)
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Data from Kirkpatrick (1957)

-
1 .0

0.9

0.81

0.74

0.

0.1
870

- -. - I.. 
. .- 0-2



,f(D-R139 358 FUNDAMENTAL PROPERTIES OF SOILS FOR COMPLEX DYNAMIC 2/2
LOADINGS; DYNAMIC CON..(U) APPLIED RESEARCH ASSOCIATES
INC ALBUQUERQUE M D H MERKLE ET AL. 81 DEC 83

UNCLASSIFIED AFOSR-TR-84-e166 F49628-80-C-09 F/6 8/i3 RmBmnBommo|m|oo
mo||o|iomommomEhEhhE|i~h



i%.l -I.

2.2

1...
1.25_ m 13. 12.2

11111W

MICROCOPY RESOLUTION TEST CHART

NATIONAL SUR(EAU OF ,y 1 ~ts,6A

br. -



Ip

S0.

.7

40.

S0.

.0.

0.21
04,

Colt.-0.4

0 1 0 2 0 3 0.4 0.5 0.6 0.7 0 8 0. -0.9

Figure .i Effect of

con the Strength Of Glen Shira Dam Mtr~
Materio.

88



300 Data from Haythornthwaite (1960)
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Data from Wu, Loh and Malvern (1963)
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Data from Casbarian (1964)
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300 Data from Casbarian (1964)
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