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1. Introduction

Computations of distributed systems are extremely difficult to

specify and verify using traditional techniques because the systems

are inherently concurrent, asynchronous, and nondeterministic.

Furthermore, computing nodes in a distributed system may be highly

independent of each other, and the entire system may lack an accu-

rate global clock.

Finite-state machines, such as Petri Nets [PET77], SPECIAL

[ROB77, SUN791, and Right-Synchronization Controllers [CON791 have

been widely used to specify and verify concurrent systems. However,

there are several drawbacks to this approach. As the number of

possible states increases, analyzing all interactions becomes

impossible. Furthermore, rigorous analysis of possible behavior,

when practical, guarantees the safety of the system but does not

guarantee the liveness of the system. Liveness properties, which

are the requirements that certain events eventually take place, are

difficult to state or prove using a state-machine approach.

A more general problem using an operational model such as

PAISLEY [ZAV81] or GYPSY fGOO79] as a definition tool is the diffi-

culty of separating requirements from implementations. An opera-

tional model specifies a system's requirements by giving an

abstract implementation. There is no indication of what aspects of

the model should be -rigorously followed and what aspects merely

illustrate functionality.

For sequential programs, algebraic/axiomatic specification

techniques provide the abstraction necessary to state properties of

1 _ __ _ __W



a program without giving an implementation. Unfortunately, time-

dependent properties of concurrent systems such as concurrency or

mutual exclusion are difficult to specify in standard

algebraic/axiomatic approaches.

In this paper, we develop an event-based model to specify for-

mally the behavior (the external view) and the structure (the

internal view) of distributed systems. Both safety and liveness

properties of distributed systems are specified using two fundamen-

tal relationships among events: the "precedes" relation, represent-

ing time order; and the "enables" relation, representing causality.

No assumption about a global clock is made in the specifications.

The correctness of a design can be proved before implementa-

tion by checking the consistency between the behavior specification

and the structure specification of a system. Moreover, since the

specification technique defines the orthogonal properties of a sys-

tem separately, each of them can then be verified independently. In

this way, the proof technique avoids the exponential state-

explosion problem found in state-machine specification techniques.

Section 2 gives the conceptual models of distributed systems

from both a user's and a designer's view points. Section 3

discusses the event-based model, defining events and event rela-

tionships. Section 4 presents our Event-Based Specification

Language (EBS) together with the behavior specifications of several

examples. LBS structure specification language and the verification

technique for a design are then presented in Section 5. Finally,

comparisons of our approach with Temporal Logic [PNU77, 0W182], and

Trace approaches [MIS81, ZHQ813 are discussed and the advantages of

-- MumA



our approach are suimmerized in Section 6.

2. Conceptual Modeling

A distributed system may be described from two different

points of view. From a designer's view, it consists of local

processes interacting with users and communicating among themselves

via the communication media. Each local process can be described by

the operations responding to user's commands, messages from other

processes, or internal clocks. The structure is depicted in Figure

From a user' s view, a distributed system is a shared server,

or a black box with only the interfaces visible, as shown in Figure

2. In this case, except for performance issues, there is no essen-

tial functional difference between a distributed system and a cen-

tralized one. The only things interesting to the users are 'mes-

sages or events happen in the interfaces and the relationships

among the messages or the events. This kind of interface descrip-

tion of a system is called its behavior specification.

3. The Event Model

The model that our behavior specification is based upon there-

fore consists of events and their relationships.

3.1 Events

An event is an instantaneous, atomic state transition in the

computation history of a system. Examples of events are the send-

ing, the receiving, and the processing of messages. By



4-

"instantaneous" we mean an event takes zero-time to happen. By

"atomic" we mean an event happens completely or not at all. The

basic properties of events are similar to those in the ACTOR model

[HEW77J with some modification [CHE82aj.

3.2 Event Relationships

3.2.1 Time Ordering. In describing the time ordering among

events, a system-wide reliable clock is usually assumed to order

them totally. Unfortunately, the assumption of a global clock is

too strong in describing the computation of a distributed system.

Theoretically speaking, it is impossible, in some extreme cases, to

order two events totally. Practically speaking, implementing such

a global clock is quite expensive and unnecessary in a distributed

system having highly autonomous computing nodes. The "precedes"

relation [GRE77, LAM78J, denoted by "->", is a much weaker,

partial-ordering relation that can be used to represent the time

order.

The interpretation of "->" as a time ordering means that, if

el and e2 are events in a system and el->e2, then el happens before

e2 by any measure of time. To understand the meaning of "->", let

us look at Figure 3. Each vertical line in Figure 3 represents the

computation history of a (sequential) process. A process means an

autonomous computing node having its own local clock; different

processes may use different time scales. The dots denote events and

the dotted line between events denote messages. The relation "->"

has the following properties:

1. If el and e2 are events in the same process, and el comes
before e2, then el->e2 (e.g., pl->p 2 in Figure 3).

- - - -
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2. If el is the event of sending a message by one process and e2
is the event of receiving the message by another process,
then el->e2 (e.g., pl->q2 in Figure 3).

3. Transitivity- If el->e2 and e2->e3, then el->e3 (e.g., pl->r2
in Figure 3).

4. Irreflexivity- -(e->e).

5. Antisymetry- If el->e2, then -(e2->el).

3.2.2 Concurrency. The concurrency relation can be defined easily

by the precedes relation as follows: two distinct evpits, say el

and e2, are concurrent iff -(el->e2) and -(e2->el). Figure 3,

for example, there is no way to tell whether pl or q -omes first;

they may be concurrent.

3.2.3 Enables Relation. Liveness properties are assertions that

certain events will happen eventually. Examples of liveness pro-

perties are guaranteed message delivery or starvation-free service.

Such properties can be specified by the "enables" relation, denoted

by "->", between events. Two events a and b satisfy the relation

a->b iff the existence of event a will cause the occurrence of

events b in the future. The relation -> has the following proper-

ties:

1. Being enabled in the future- if a=>b then a->b.

2. Antisymmetry- If a>b, then ~(b->a).

3. Irreflexivity- -(a->a).

4. Transitivity- If a->b and b->c, then a=>c.

In other words, the enables relation is also a partial-ordering

relation. Properties (2) and (3) can be derived from (1) and the

properties of "->" while (I) and (4) are axioms.

It



3.2.4 System, Environment, and their Interface Ports. It is con-

venient to categorize the event space into distinct domains for the

ease of specification. Three domains are identified: the system,

the environment, and the interface ports.

A system interacts with its environment by exchanging messages

through unidirectional interfaces called ports, as depicted in Fig-

ure 4. An inport directs messages from the environment to the sys-

tem while an outport directs messages from the system to the

environment.

Every port defines sequences of interface events. Every event

e in a port history is uniquely identified by an integer, called

its ordinal number, represented by ord(e). Thus, a port history is

a total ordering of events, although the events in system or in

environment are only partially ordered.

4. Behavior Specification with the UBS Language

Based on the event concept together with the first-order

predicate calculus (with equality "a"), we develop a language

called EBS (Event Based Specification Language) to specify the

behavior of distributed systems. The formal syntax of EBS can be

found in Appendix A. Examples will ue used to show its expressive

power.

".1 Example 1: Reliable Transmission Systems

A reliable transmission system (RT) is one through which mes-

sarzs are transmitted without loss, duplication, reordering, or

error from an inport to an outport (see Figure 5).
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No messages are lost during transmission when every message

sent from the inport A is eventually transmitted to the outport B.

This property can be specified as follows:

/* RT11(A,B): No loss of messages /
V a4A 4 b<B

a->b;

The operators and their precedence rules in EBS are as fol-

lows:

I. unary operators: V (for all), 4 (there exists) and - (logical
not);

2. relational operators: '(belongs to), = (equivalent), M

(equals to), -> (enables), and -> (precedes);

3. logical operators: v (logical or), ^ (logical and); and

4. #> (logical implication) and <#> (two way implication).

Similarly, the property that messages at B are not generated

internally or externally but are enabled by messages at A, is

specified as follows:

/*RT12(A,B): no self-existing messages */

V b4B 4 a4A
a-> b;

/* RT13(A,B): no internally or externally
generated messages */

V b,4B, s4SYS, e-ENV
(s-> b #> 4 A a=>s-.>b)
(e-> b #> 4 aA e->a->b);

where the notation "#>" represents logical implication. The

reserved word SYS (ENV) refers to the system event set (environ-

ment).

I. RT11 will be used to name this property afterwards for
convenience.
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The property that there is no duplication of messages is

specified as follows:

/* RT14(A,B): no duplication of messages */
V a4A, bl, b24B

a->bl - a->b2 #> blab2)

which says that every sending event can only enable a unique

receiving event.

The property that the order of messages is preserved after the

transmission is specified as follows:

/* RT15(A,B): no out-of-order messages *1
V al, a24A, bl, b24B
al-bl ^ a2->b2
#> (al->a2 - bl->b2) v

(alza2 - blab2) v
(a2->a2 - b2->bl)

which says that if al is sent before a2 then it will also be

received before a2 and vice versa.

The property that the contents of messages are preserved after

the transmission is specified as follows:

/* RT21(A,B): preservation of message contents e/
V a4A, b4B

a->b #> b.msg-a.msg

which says that the receiving and sending events carry the same

message contents.

These are the minimal properties that a reliable transmission

system should have. A very good feature of this kind of orthogonal

specification is that a specification can be easily adapted to dif-

ferent applications. For example, a system that not only transmits

messages reliably but also performs code conversion between com-

puter systems using different codes (e.g., ASCII and EBCDIC), can

be specified by modifying RT12 to

-'Nbe



/* Message transformer */
V a4A, b4B

a->b #> b.msg- F(a.msg)

where F is the code conversion function, leaving others unchanged.

Another example is that if properties RT11, RT14 and RT15 are

deleted, then the system is an unreliable one that may lose, dupli-

cate or reorder messages (see also Section 5.3).

4.2 Example 2: Multiplexors and Decoders

Two fundamental mechanisms in a packet-switched network to

share its expensive transmission capacity are multiplexing and

decoding. A multiplexor (see Figure 6) interleaves packets from

various sources into a single communication channel. A decoder

(see Figure 7) distributes the packets from a single channel to

various destinations.

A multiplexor with two inports can be specified as follows:

System MX (A: inport;
B: inport;
C: outport);

Behavior

/* No loss of messages */
RT11(A, C); RT11(B, C);

/* No se-If-existing messages 4/
V c4c
(G a4A a=>c) v (G b4B b=>c);

/* Nc internally or externally generated
messages

* /
V c4C, s4SYS, e4ENV

(s=>c #> (G a4A a->s->c) v
(4 b4B b->s->c))

(e=>c #> (4 a4A e->a->c) v
(4 b4B e->b->c));

/* No duplication of messages */
RT!4(A, C); RT14(B, C);



- 10 -

/* No out-of-order messages */
RT15(A, C); RT15(B, C);

/* No erroneous messages */
RT21(A, C); RT21(B, C);

End behavior;

End system.

Note that the RT's were defined in the system RT. A decoder

is a system that distributes messages reliably from a single inport

to several outports according to some predefined distribution cri-

teria. It can be viewed as a set of filters. A filter is a system

that transmits a message reliably iff it satisfies some predefined

criterion. To specify a filter, only RT11 in the Reliable System

needs to be modified as follows:

/* A message at A will be sent to B
iff it satisfies P */
V ae-A

P(a) <#> (G b E a-> b)

where the notation "<#>" represents two way implication. A decoder

is essentially a collection of such filters. A decoder with an

inport A, two outport B and B2, and two distribution functions P1

and P2, can be specified by modifying RT11 as follows:

/* A message at A will be sent to B or B2
iff it satisfies P1 or P2 respectively */
V a'A

(Pi(a) <#> ( blGB1 a=>bl))
(P2(a) <#> ( b2<B2 a->b2))

while retaining the other RT's for both (A, B) and (A, B2).

4.3 Example 3: an Engine Monitoring System

A microprocessor aircraft engine monitor for use on both

experimental and in-service aircrafts is described in [ALF77]. The

capabilities of this Engine Monitoring System are as follows:

'A



1. Monitor 1 to 10 engines.
2. Monitor

a. 3 temperatures
b. 3 pressures
c. 2 switches.

3. Monitor each engine at a specific rate.
4. Output a warning message if any parameter falls outside

prescribed limits.
5. Activate an audio alarm if any parameter falls outside

prescribed limits.
6. Record the history of each engine.
7. The operator may change the warning or alarm limits and may

log the history of each machine.

The system interface structure is depicted in Figure 8. We

specify the behavior of this system in EBS as follows:

/* Engine Monitoring System /

System EMS (
engine[i)]newdata: inport;

/* i from 1 to 10; A port pt of
engine[i) is represented by
engine[i)lpt.*/

log-history: inport;
new-standard: inport;
engineli)lreaddata: outport;

/* i from 1 to 10. */
warning: outport;
ring: outport;
engine-history: outport;
inwarning: predicate;
inalarm: predicate;
realtime: function

Messagetype

newdata.msg: record
Ti, T2, T3, /* temperatures */
P1, P2, P3: /* pressures e/

real;
Si, S2: /* switches */

boolean;
Time: /* recording time */

end;
log-history.msg: /* engine id whose history is to be

logged */
integer;

new-standard.msg:
record

id: /* engine id whose standard
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is to be changed e/
integer;

engine-standard:
record
UWT1, /* upper warning margin for Ti e/
LWTI, /* lower warning margin for TI */

UATI, / upper alarm margin for T1 e/
LATi, /* lower alarm margin for T1 e/

: real;
end;

end;
engine-history.msg:

record
id: integer;
engine-data:

record
T1, T2, T3,
P1, P2, P3: real;
S1, S2: boolean;
Time: real;

end;
end;

warning.msg: /* engine id that is in warning range *1
integer;

ring.msg: boolean;
engine[illreaddata.msg: /* i from 1 to 10 */

boolean;

End messagetype;

Behavior

/* Part I: System's response to a newdata */

/* Part I.1: The relationship between ports newdata and
warning is a filter: output a warning iff a newdata is
in warning range. */

/* NW11: Output a warning message iff a newdata is in
warning range with respect to the most recent stan-
dard set up. */

x-engine[i]Inewdata,
mrs'newstand
mrs.msg-i - mrs->x
(V c4new-standard

c.msg-i - c->x #> camrs v c->mrs)
/* mrs is the most recent standard. e/
inwarning(x.msg, mrs.msg)

4> 4 w.warning x->w;

/* The specification of properties RTi2-RT15 are sim;-
lar to that of a multiplexor and is omitted here. "

/* NW21: a warning message returns the id of an engine
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that is is warning. */

x4engine[i] newdata, w4warning
x->w #> w.msg-i;

/* Part 1.2: The relationship between ports newdata and
ring is a filter: output an alarm iff a newdata is in
alarm range. */

/* The specification is similar to that in Part I.1 and

is omitted here. /

/* Part II: system's response to a log-history command */

/* LH11: all previous engine[i)Inewdata will be output to
engine-history in response to a log-history(i) command.

Vi4{1..101, xe-log-history
x.msg-i #>
( e4engine[i])newdata

e->x > 4 h4engine-history
x->h - h.enginedata-e.msg
h.id-i);

/* LH12: Engine-history is enabled by a log-history com-
mand. */
V h4engine-history
4 x4iog-history, e4 engine[h.id]Inewdata

x->h - x.msg-h.id - e.msg-h.enginedata;

/* LH13: No internally or externally generated messages */
V s<SYS, e4ENV, hoengine-history

(s->h #> 4 x'log-history x=>s->h)
(e->h #> 4 x4log-history e=>x->h);

/* LHi14: No duplication of messages */
V hl, h24engine-history, x4log-history,

el, e24enginelx.msg]Inewdata
x->hl ^ x->h2 - hl.enginedata-h2.enginedata
#> high2;

/* LH15: No out-of-order messages */
V xl, x24log-history, hl, h24engine-history
xl>hl ^ x2">h2
#> (xl->x2 ^ hi->h2) v

(x2->xl - h2->hl) v
(xlgx2
((hleh2) v
(hl.enginedata.Tine<h2.enginedata.Time

Shl->h2) v
(hl.enginedata.Time>h2.enginedata.Time

h2->hl)))

/ Part III: The behavior of outport readdata '/

/* Read engine data repeatedly. '/



-14-

i{1..10}, x-engine~i~lreaddata
4 y4engine[iJlreaddata

/* Read engine data periodically. '1
/* The period is T. The function realtimeo) returns the

realtime between two events. */
; i4{1..10}, x, ycengine[i]ireaddata

ord(y)=ord(x)+1
#> realtime(x, y)- T;

End behavior

End system.

This example shows the capability of EBS in dealing with

"side-effects". we are not specifying the effects of a command by

changing the values of system "state variables", since no such

variables are allowed in the specification. Rather, the side-

effects of a command are made visible only when other commands read

its message contents. Also note that every engine can have its own

local clock to provide a timer value for engine data and to read

engine data periodically. A synchronized global clock is by no

means necessary.

5. Structure Specification and Verification

In a top-down development methodology, a system behavior (the

external view) is specified first. Then the behavior specification

is decomposed into a design structure (the internal view). A formal

design description of a system is called its structure specifica-

tion. Correctness of a design can then be established by proving

the consistency between the behavior specification and the design.
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5.1 System Constructs

The constructs that describe a design structure are: the sub-

system, the link, and the interface definition.

A system is decomposed into a set of subsystems communicating

among themselves via links, and a set of interface definitions to

communicate with the environment.

A subsystem defines a subset of events from its enclosing sys-

tem event set; every event in a subsystem is in its enclosing sys-

tem event set. The computation of a subsystem is described by a

behavior specification, which can be further decomposed into a

structure specification. In this way, the specification technique

supports the hierarchical design methodology.

A link connects an outport of a subsystem to an inport of

another subsystem. The construct "connect(P, Q)--R" specifies a

link named R that connects an outport P to an inport Q. When two

ports are linked, they are merged into a single port and become

identical: any event for one is an event for the other. Note that

a link is different from a reliable transmission system in that the

latter always introduces finite message delay.

An interface definition "X--Y" specifies that the inport (out-

port) X of a subsystem is used as the inport (outport) Y of its

enclosing system.

I

I
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5.2 Example 4: A Tandem Network

In a packet-switched network, a packet of messages is passed

via some intermediate nodes, instead of being sent directly from

the source node to the destination node using a long-haul transmis-

sion line. A packet is sent reliably from the source node to the

intermediate node and then sent reliably from the intermediate node

to the destination node. The structure of this communication sys-

tem can be considered to consist of a set of reliable transmission

subsystems connecting in series, which as a whole provides a reli-

able transmission system service. Such a serial connection of two

or more subsystems is call a tandem network (See figure 9).

5.2.1 The Structure Specification of a Tandem Network. The struc-

ture of a system SZ. which is composed of a serial connection of

two reliable transmission systems SX and SY,can be specified for-

mally as follows:
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System SZ (PA: inport;
PD: outport);

Structure

Subsystem SX (PA: inport;
PB: outport);

Behavior
RT's(PA, PB); 2

End behavior;

End subsystem;

Subsystem SY (PC: inport;
PD: outport);

Behavior
RT's(PC, PD);

End behavior;

End subsystem;

Network
connect(SX.PB, SY.PC)--SZ.PE;

End network;

Interface
SZ.PA--SX.PA;
SZ.PD--SY.PD;

End interface;

End structure;

End system.

System SZ is composed of two reliable transmission subsystems

SX and SY. A system name followed by a dot and a port name denotes

a port in the system. A link name PE in system SZ connects outport

PB of system SX to inport of SY. The interface part says that sys-

tem SZ uses system SX's inport PA and system SY's outport as inter-

face ports.

2. See Section 4.1 for the definitions of RT's.
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5.2.2 The Verification of the Tandem Network. Since the same

mathematically sound notations (i.e.,first-order logic and partial

ordering relations) are used in the behavior and the structure

specifications, the verification can be carried out as proving

theorems.

Theorem 1. A tandem connection of two reliable systems behaves as a

single reliable one.

Proof The no loss property can be proved as follows:

1. For all p in PA there is a q in PB such that p->q
(RT11 of SX)

2. for all r in PC there is an s in PD such that r->s
(RT11 of SY)

3. Let qmr (PB and PC are connected)

4. p->s (since -> is transitive)

Other properties can be proved similarly, independent of

one another.

5.3 Example 5: An Alternate-Bit Protocol

An Alternate-Bit Protocol (ABP) provides a reliable message

transfer service over an unreliable transmission medium from a

fixed sender to a fixed receiver. A transmission medium is unreli-

able if it may lose, duplicate or reorder messages; however, there

is a nonzero probability of successful message transmission. The

"nonzero probability of message transmission" means that if mes-

sages having the same contents are sent repeatedly then at least

one of them will reach the destination. The behavior of an unreli-

able system can be specified by deleting RT11, RT14, and RT15 from

a reliable system and adding the "nonzero probability" property as

follows:
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/* NZ(A,B): a nonzero probability of successful
message transmission.

,.*/

V ai4A
(V aj4A aj.msg-ai.msg

It> 4 ak'A aj->ak - ak.msg=ai.msg)
#> G~ a4A, bcB

a=>b a.msg-ai.ms$ - ai->a)

The precondition of the predicate says there is an unbounded number

of messages having the same contents as ai. The postcondition

specifies that at least one of them will arrive at B. The service

provided by the ABP is simply that of a reliable system.

5.3.1 Structure Specification of the Alternate-Bit Protocol. The

"nonzero probability" plays a key role in guaranteeing that a mes-

sage sent from one end is received at the other end. The structure

of the ABP is depicted in Figure 10. The SS (Send-Station) accepts

a message from IP and sends it repeatedly to the RS (Receive-

Station) via the Data Medium until an acknowledgement is received

from the RS via the Acknowledgement Medium. The RS acknowledges

all messages received. To avoid duplication of messages, a serial

(integer) number is attached to each message sent by the SS. RS

accepts a message only if its serial number has never appeared

before and acknowledges the receipt by sending back the serial

number. To avoid reodering messages, a message from IP will not be

sent until all previous ones are acknowledged.

These key concepts can be specified formally in EBS as fol-

lows:

/* Key Specifications in the ABP '/

Send-Statior:

P SSI: Guaranteed message transmission: sends
the same ressage repeatedly until get back
an a:!*.nowlecgement. '/
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V ip4IP
(4 ds<DS ip->ds)
((G ar4AR ar.msg-ord(ip)) v
(V d14DS ip->dl

#> 4 d2,DS ip->d2 - dl->d2));

/* SS2: Sequence control: do not send a new message
until all previous ones are acknowledged. '/
V ip4IP

(V k4N 3

k< ord(ip)
#> 1 ar<AR ar.msg-k - ar->ip);

/* SS3: Contents of messages: send out a message
together with a serial number as a unique id. '/
V ip<IP, ds<DS

ip->ds #> ds.data-ip.msg
ds.msgno-ord(ip);

Receive-Station:

/* RR1: Send acknowledgement for every message
received back to the Sender. /
V dr4DR 4 as-AS

dr->as;

/* RR2: Send back the serial number as an
acknowledgement of receipt. *1
V dr4DR, as4AS

dr->as #> as.msg-dr.msgno;

/* RR3: Accept those messages that never come
before /
V dr4DR

(4 op4OP dr->op)
<#> -(4 dr'4DR

dr'-> dr
dr'.msgno-dr.msgno);

5.3.2 The Verification of the Alternate-Bit Protocol. We will now

prove that the ABP makes an unreliable system into a reliable one.

Since the Data Medium is an unreliable one, the SS has to send the

messages repeatedly to guarantee that at least one will reach the

3. N represents the set of nature numbers.

. The message in a ds or a dr is of record type having two
fields: data and msgno.
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RS. However, since the Acknowledgement Medium is also an unreliable

one, it is possible that the acknowledgement may be lost. For-

tunately, it can be proved that if the SS sends the same messages

repeatedly, not only one but an unbounded number of messages will

arrive at RS. Since RS acknowledges all messages received, it is

guaranteed that at least one acknowledgement will arrive at SS.

Theorem 2. If the communication medium has a nonzero probability
of message transmission, and if an unbounded number of
messages having the same contents are sent from A, then
not only one but an unbounded number of messages will
arrive at B.

Proof By mathematical induction: Since an unbounded number of
messages having the same contents are sent from IP, at
least one of them, say x, will reach OP (the nonzero
probability property). Since the number of messages
after x is again unbounded, at least one of them will
arrive at OP. The same process goes on and on.

Theorem 3. Every message ip in IP will get back an acknowledgement
from RS, carrying ord(ip) as message contents.

Proof By contradiction: Assume there is no acknowledgement for
ip from RS (through AR) then an unbounded number of mes-
sages will be sent from DS (the SS1 property). By
Theorem 2, an acknowledgement will eventually be
received.

Theorem 4. The ABP makes an unreliable system behave as a reliable
one.

Proof The no loss property (RT11) is easy to prove based on
Theorem 3. Other properties can be proved one by one
similar to the proofs in the tandem network.

Refer to [CHE82b] for a complete specification and verifica-

tion of the ABP.

5.4 Example 6: A Distributed Prime Number Generator

A Prime Number Generator (PNG) consists of one input port A

from the environment and an output port B to the environment. PNG

receives a bounded sequence of integers greater than or equal to
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two in ascending order; PNG outputs the sequence of primes from the

input sequence.

The behavior of the system PNG is simply a filter that filters

out the non-prime numbers, and is specified by modifying RT11 from

the reliable system to:

/* Output a number iff it is prime "/
V a4A

-(, a'4A a'->a - a'.msgla.msg)
<#> (11 b<B a->b);

A distributed design [HOA78] to generate prime numbers using

the "sieve of Eratosthenes" method, is depicted in Figure 11.

PNG consists of two types of processes: sieves and a printer.

To simplify the description, assume there are infinite number of

sieve processes, denoted by Sieve[l], Sieve[2] ..... Sieve[i].

Each Sieveli] has one inport PF[i by which it receives input from

Sieve[i-1) (or the environment, if i-1). Ports Pti), i-2, 3,

are internal to PNG, but P[11 is an inport directed toward PNG.

Sieve[i] has two outports P[i+lJ and Q[i]. The latter is directed

toward the printer. The printer has one outport B, which is also

the outport of PNG.

5.4.1 The Structure Specification of PNG.

5.4.1.1 A Sieve. The first message p received by a sieve (see

Figure 12) from P is sent to the printer through Q. Every subse-

quent message x received is then checked to see if it is a multiple

5. alb means a divides b.
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of p; if x is a multiple of p it is discarded; otherwise, it is

sent on to the next sieve through R. The relations between P and

Q, and between P and R, are also "filters".

/* Relation beteen P and Q: A message
is sent to Q ;ff it is the first in P

V p-CP

ord(p)-I <#> (4 q-4Q pi>q);

/* Relation between P and R: A message is
sent to R iff it is not a multiple of
the first one message

V pl, p2 4P
(ord(pl)=1 - ord(p2)>1 - -(pl.msglp2.msg)
<#> G5 r4R p2->r)

/* Messages will be received in order by
Q and R

V pl, p24P, q4Q, r-R
p1->q - p2=>r
#> (pl->p2 - q->r) v (p2->pl - r->q)

5.4.1.2 The Printer. The printer waits to receive input along all

input ports. Upon receiving an input message, it sends the

received value to the outport. The printing service is on a first-

come-first-serve basis. The behavior of a printer is simply as a

"multiplexor" (see Section 4.2) with a large amount of inports.

Once each subsystem has been specified, the structure specification

of PNG is straightforward and is omitted here.

5.4.2 The Verification of PNG. Since a message is sent to the

printer iff it first arrives at a sieve, a critical step in the

verification is to prove that a number will first arrive at a sieve

iff it is prime. This can be proved by the following lemmas and

theorems.

Lemma I. The message sequence in every port is in ascending
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order.

Proof By induction on sieves: because each sieve does not
reorder messages.

Lemma 2. If a number x appears at port P[i] then no number in
Q[1, ..... Q[i-1] divides x.

Proof By contradiction: If x is divisible by a y in Qjj], j<i,
then x is divisible by a z in P[j] (since RT12(P,Q)). X
should have been filtered in Sieve~j] and cannot appear
in Pci,.

Lemma 3. If a number x first arrives at port P[i] then every
number that is less than x is divisible by some number
in Q[13, .... , Q[i-11.

Proof By contradiction: If a number y less than x is indivisi-
ble by all numbers in Q[1], ..., Q[i-1] then it is indi-
visible by all the first p's in P[1], ..., p[i-1], and
will appear at PUi]. By Lemma 1, y will come before x.
This is a contradiction to the assumption "x first
arrive at Pi]".

Theorem 5. If a number x first arrives at port PUi] then no previ-
ous number divides x.

Proof By contradiction: If y is less than x then y is divisi-
ble by some z in Q[1], ..., Q[i-1], by Lemma 3. If y
divides x then z divides x. This contradict to the fact
that x is indivisible by z, by Lemma 2.

Lemma 4. Every number terminates at some port.

Proof In particular, a number x cannot survive beyond P[x]:
Assume x appears at P[x+I]. If a number y greater than x
appears in some Q[i], icx, then y first arrive at P[i]
(even before x), contradicting to Lemma 2. Thus all
numbers in Q[1], ..., Q~x] are less than x. However, it
is impossible to have x different numbers (numbers are
different because of the "no duplication" property of a
sieve) less than x.

Theorem 6. Every prime number first arrives at some.port.

Proof By Lemma 4, a prime x will terminate at some port, say
P[i. If x had not arrived first then it would have
been divisible by the first-arrived number in P[i] (oth-
erwise x would have been sent to P[i+1]). This contrad-
icts to the fact that x is a prime.

Based on Theorems 5. and 6, the following theorem is easy to

prove.

Theorem 7. The distributed PNG is a prime number generator.

;A
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Refer to ICHE82b] for a complete specification and verifica-

tion of the distributed PNG.

6. Conclusions and Comparisons to Other Approaches

6.1 The Temporal Logic Approach

Temporal logic was first introduced by Pnueli rPNU77) for

defining the semantics of computer programs, and has been used in

[OWI821 to specify and verify concurrent systems.

Several properties of concurrent systems can be stated using

two temporal operators: [] (henceforth) and <> (eventually). How-

ever, global invariants that should be true throughout the computa-

tion, rather than merely input/output relations, are stated as the

behavior specification of a distributed system. Though invariants

are helpful in the "implementation" verification, they are diffi-

cult to specify and understand. Proofs of global invariants also

require the consideration of "all" possible event interleaving of

parallel processes even though there might be no interaction among

them.

The time order relation among events in a computation is

implicitly expressed by the temporal operators. As the number of

temporal operators increases in a specification, it becomes quickly

very difficult to understand the meaning of the specification. The

"'precedes" relation in EBS seems to maintain the understandability

of the expressions better.
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6.2 The Trace Approach

The notion of traces of cozmnunicating sequential processes was

introduced by Hoare [HOA781, and was used in the specifications of

networks of processes by Misra & Chandy (MIS813, and Zhoa & Hoare

[ZHO81J. A trace of the behavior of a process is defined as "the

recorded sequence of comnunications in which the process engages up

to some moment in time" [ZH081]. In terms of EBS, a trace is simply

a sequence of interface events.

The specifications of system computations are expressed in

traces exclusively and the entire proof technique deals only with

propositions on traces. The notations for sequences such as "con-

catenation of sequences", "prefix closure of a sequence", and "the

length of a sequence" are basic to the trace specification

language.

There are several deficiencies in the trace approach. First,

describing the behavior of a distributed system by a trace dictates

a total ordering of events. Second, since notations for sequences

are used exclusively, trace specifications are awkward in express-

ing properties whose data structure are not well-defined sequences,

such as properties in the unreliable systems. Third, a rather

serious deficiency is that the "liveness" properties usually cannot

be specified and verified using the trace notion directly. In

[MIS81], only "safety" properties of the distributed PNG are proved

with the author's notice that the "liveness" properties may be

impossible to prove using the trace approach.

In comparison, events in EBS are only partially ordered; the
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concurrency is expressed by the lack of ordering. The concept of

events is more fundamental than that of traces (sequences of

events); consequently, some properties that can be easily specified

in EBS can only be expressed in traces with difficulty.

We conclude our discussion by listing the advantages of the

Event-Based Specification Language:

" Formality- partial ordering relations and the first order

predicate calculus are mathematically sound.

* Generality- safety, liveness, data-related and control-related

properties can be specified and verified.

" Accuracy- the inherent concurrent behavior of distributed sys-

tems is represented by the lack of ordering among events; the

mutual exclusion among events is specified by the precedes

relation.

" Orthogonality- properties are specified separately which makes

a specification minimal and extensible, and controls the com-

plexity of the verification process.

7. Acknowledgement

We would like to express our special appreciations for Prof.

Tang Chih-Sung. whose comments concerning both the first order

logic and distributed systems have been extremely helpful. Thanks

.go to members of the distributed system research group in. the

university of Maryland, Dr. Joy Reed, Mr. Gary Lackenbourgh, Pro-

fessors Yuan Pu-Chia, and Zhoa Pao-Suan, from whom our original

lp



-28-

ideas got refinements. Thanks go also to Professors Harlen Mills,

John Gannon, Virgil Gligor, and Pamela Zave for their guidance and

comments on the early draft of this paper.

JA



- 29 -

References

[ALF771 Alford, M. W. et al "Requirement Development using SREM
Technology" Vol. 1, Technical Report CDRL COOH, Oct. 1977

' BAR69) Bartlett, K. A. et al. "Note on Reliable Full Duplex
Transmission on Half Duplex Links", CACM 12(5): 260-261,
May 1969

[CHE81) Chen, B. and Yeh, T. Y. "Event-Based Behavior Specifica-
tion of Distributed Systems", Proc. of IEEE Symp. of Relia-
bility in Distributed Software and Database Systems: 46-52.
July, 1981, Pittsburgh, Penn.

[CHE82a] Chen, B. "Event-Based Specification and Verification of
Distributed Systems" Ph. D dissertation, Dept. of Comp.
Science Univ. of Maryland, May 1982

[CHE82b! Chen, B. and Yeh, R. T. "Formal Specification and Verifi-
cation of Distributed Systems" Proc. of the 3rd Int. Conf.
on Dist. Comp. Syst.: 380-385, Oct. 1982, Miami, Florida

[CON79] Conner, M. H. "Process Synchronization by Behavior Con-
trollers" Ph. D. dissertation, Univ. of Texas at Austin,
Aug. 1979

[DAN803 Danthine, A. A. S. "Protocol Representation with Finite-
State Models" IEEE Trans. on Comm. COM-28(4): 632-642,
April 1980

[END72] Enderton, H. B. "A Mathematical Introduction to Logic",
Academic Press, 1972, Chap. 2

[GOO79] Good, D. I. et al. "Principles of Proving Concurrent Pro-
grams in GYPSY", University of Texas at Austin, Technical
Report ICSCA-CMP-15, Jan. 1979

(GRE77] Greif, I. "A Language for Formal Problem Specification",
CACM 20(12): 931-935, Dec. 1979

[HAI801 Hailpern, B. and Owicki, S. "Verifying Network Protocols
Using Temporal Logic" In Trends and Appl. 1980: Comp. Net-
work Protocols, IEEE Computer Society, May 1980

[HEW77J Hewitt, C. and Baker, H. J. "Laws for Communicating Paral-
lel processes", IFIP 987-992, 1977

[HOA781 Hoare, C. A. R. "A Model for Communicating Sequential
Processes" Comp. Lab., Oxford Univ., Dec. 1978

[LAM781 Lamport, L. "Time, Clocks, and the Ordering of Events in a
Distributed System", CACM 21(7): 558-565, July 1978

[MIS81J Misra, J. and Chandy, K. M. "Proofs of Networks of
Processes" IEEE Trans. on Soft. Engr. SE 7(4):417-426, July
1981

[OW182J Owicki, S. and Lamport, L. "Proving Liveness Properties of
Concurrent Programs" ACM Trans. on Prog. Lang. and Syst.
(4) 3: 455-495, July 1982

[PET77] Peterson, J. L. "Petri Nets" ACM Computing Survey 9(3):
223-253, Sept. 1977

[PNU773 Pnueli, A. "The Temporal Logic of Programs" Proc. of the
18th Symp. on the Foundation of Comp. Science, IEEE: 46-57,
Province, Nov. 1977

[ROB77) Robinson, L. and. Roubine, D. "SPECIAL: A SPECIfication and
Assertion Language" Technical Report CSL-46, Stanford
Research Institute, 1977

[SCH81] Schwartz, R. L. and Melliar-Smith, P. M. "Temporal Logic
Specification of Distributed Systems" Proc. of the 2nd Int.



- 30 -

Conf. on Dist. Comp. Syst.: 446-454, Paris, France, April
1981

[STE76] Stenning, N. V. "A Data Transfer Protocol" Computer Net-
works 1(2): 99-110, Sept. 1976

[SUN79] Sunshine, C. "Formal Methods for Communication Protocol
Specification and Verification", WD-335-ARPA/NBS, Working
Draft, Rand Corp., Sept. 1979

(YEH80] Yeh, R. T. and Zave, P. "Specifying Software Requirements"
Proc. of IEEE, Oct. 1980

[ZAV81] Zave, P. and Yeh, R. T. "Executable Requirements for Enbed-
ded Systems" Proc. of the 5th Int. Conf. on Soft. Engr.,
San Diego, 1981

[ZHO81J Zhoa, C. C. and Hoare, C.A. R. "Partial Correctness of Com-
municating Sequential Processes" Proc. of the 2nd Int.
Conf. on Dist. Comp. Syst.: 1-12, Paris, France, April 1981



- 31 -

Appendix

The syntax of EBS is defined in the extended BNF as
follows:

<system>::- System <head>
<message type definition list>
<behavior>
<structure>

End system.
<head>::- <id> ({<parameter>;1 <parameter>);
<parameter>::- <id> : <parameter type>
<parameter type>::- inport I outport I function

I predicate
<message type definition list>

::- Messagetype
[message type definition;]

End messagetype; I <empty>
<message type definition>::- <id> : <data type>
<data type>::- <simple type> I <structure type>
<simple type>::- integer I character I real

boolean
<structure type>::- record

[<id>: <data type>;)
end

<behavior>::- Behavior
[<wff>;]

End behavior; I <empty>
<structure>::- Structure

[<subsystem>;]
<network>;
<interface>;

End structure; I <empty>
<network>::- Network

[link(<portname>, <portname>)
-- <portname>;)

End network
<interface>::- Interface

[<portname>--<portname>)
End interface

<portname>::- <id>.<id>
<empty>::-

A specification begins with the reserved word System
followed by the name of the system and the names of inter-
face ports. The message type definition list defines the
data types of messages associated with each interface port.

IThe behavior part consists of a sequence of well-
formed formulas (wffs) of first order predicate calculus
(with equality) separated by semicolons. The structure,

subsystem, network, and interface parts are used in system
structure specification. To support extensible specifica-
tions, the message type definitions, the behavior part, and
the structure part are not required initially; any of them
can be deferred to later phases of system development.

S. S



- 32 -

Refer to (ENT72) for the definitions of expressions,
terms, atomic formulas, and well-formed formulas. The
abbreviation rules for wffs are given below. The pre-
cedence rules can be found in Section 4.1.

(1) V X4A S abbreviates V x (x4A #> S)
(2) V x, y4A S abbreviates Vx Vy (x-A - y4A #> S)
(3) V x4A, yeB S abbreviates Vx Vy (x<A ^ y4B #> S)
(4) 4 x4A S abbreviates 4x(x4A - S)
(5) 4 x, y 4A S abbreviates 4x 4y (x4A y<A S)
(6) a x4A, y4B S abbreviates 4x 4Y (x4A - y4B S)
(7) a->b->c abbreviates a->b - b->c
(8) a->b->c abbreviates a->b - b=>c
(9) x-y abbreviates = x y
(10) Rules similar to (9) are for other two-place predi-
cates
(11) x<>y abbreviates - x y
(12) S1 <#> S2 abbreviates S1 #> S2 ^ S2 #> SI
(13) Outermost parenthesis may be dropped.

L
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