ON THE EQUIDECOMPOSABILITY OF A REGULAR TRIANGLE AND A SQUARE OF EQUAL AREA

WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER D W CROWE ET AL. JAN 84

MRC-TSR-2632 DAAG29-80-C-0041

F/G 12/1

END

Page dimensions: 353.3x453.1
Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

January 1984

(Received December 16, 1983)

Approved for public release
Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709
ON THE EQUIDECOMPOSABILITY OF A REGULAR TRIANGLE AND A SQUARE OF EQUAL AREAS

D. W. Crowe and I. J. Schoenberg

Technical Summary Report #2632
January 1984

ABSTRACT

This paper deals with the subject of the first chapter of the second author's book "Mathematical Time Exposures". The equidecomposability of a regular triangle and a square of equal areas. A new solution of the problem is given, which also shows that the solution of the problem as given in the third edition of Hugo Steinhaus' "Mathematical Snapshots", is not correct.

AMS (MOS) Subject Classifications: 51-01, 51N20

Key Words: Equidecomposability of plane polygons

Work Unit Number 6 (Miscellaneous Topics)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
SIGNIFICANCE AND EXPLANATION

It is shown that the solution of the problem of the title, as given in the first snapshot of H. Steinhaus' "Mathematical Snapshots" is not correct. This is derived from a new solution of the problem.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
ON THE EQUIDECOMPOSABILITY OF A REGULAR TRIANGLE AND A SQUARE OF EQUAL AREAS

D. W. Crowe and I. J. Schoenberg

Two plane polygons are said to be equidecomposable if it is possible to decompose one of them into a finite number of parts which can be rearranged to form the second polygon (see [1] and [2, Chapter 1]). The proposition of our title is the subject of [2, Chapter 1, pp. 1-6], where Chapter 1 is entitled "On Steinhaus's first mathematical snapshot of 1939". The reason why we return to it now is to point out that the solution as sketched in Figure 2 on page 4 of [3] is not correct. This is shown by the following different solution of the problem.

Let $T = ABC$ be a regular triangle having side $s = 2$ (Figure 1), where D, E, O are the midpoints of its sides. We choose the lines OB and OA as coordinate axes. Let $0 < \xi < 1$ and $F = (\xi, 0)$; on CB we take the segment GF of unit length, hence $G = (\xi - 1, 0)$. Since $DE = CF = 1$, it follows that $DEFG$ is a parallelogram. We join

![Diagram of a regular triangle and a parallelogram](image)

Fig. 1

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
D to F, and draw GH and EJ perpendicular to EF. Finally, let T be dissected into three quadrilaterals and one triangle as follows:

1. \(I:= CGHD\), \(II:= ADJE\), \(III:= BFJE\), \(IV:= HGF\).

Because DEFG is a parallelogram, we have the segments \(a, c, b\), defined by

\(a = DJ = HF, c = DH = JF, b = GH = JE,\)

as indicated in Figure 1.

We claim: The triangle \(ABC = I \cup II \cup III \cup IV\) is equidecomposable with a rectangle \(R\) of dimensions \(a + c\) and \(2b\).

To prove this we assume \(T = ABC\) to be made of stiff paper, and we dissect it into the four polygons (1). These we assume to be hinged at the three points F, E, and D.

We now perform three turning operations as follows:

1. We turn IV about the hinge F by \(+180^\circ\), obtaining IV' of Figure 2.
2. We turn the union III U IV' about the hinge E by \(+180^\circ\), obtaining III' IV'' of Figure 3.
3. We turn the union II U III' U IV'' about the hinge D by \(+180^\circ\), obtaining the final union I U II' U III'' U IV''' of Figure 4.

If we observe the various segments of length

1, \(\xi, 1 - \xi, a, b, c\),
as indicated in Figure 1, and also in Figures 2, 3, and 4, we find the final figure of Figure 4 to be a rectangle \(R\) of dimensions as described by (3). This proves our claim.

So far the position of the point \(F = (\xi, 0)\), of Figure 1, has remained arbitrary. Now we wish to determine \(\xi\) so that the rectangle \(R\) should become a square. By (3) this will be the case, provided that

\(a + c = 2b.\)

We evidently need the length \(a, b, c\), as functions of \(\xi\). From Figure 1 we find that

\[(a + c)^2 = (DF)^2 = (\xi + \frac{1}{2})^2 + \frac{1}{4} = \xi^2 + \xi + 1.\]
whence

\(a + c = \sqrt{\xi^2 + \xi + 1} \).

Observe next that the normal form of the equation of the line \(DF \) is found to be

\[
\frac{\sqrt{3}x + (1 + 2\xi)y - \sqrt{3}\xi}{2\xi^2 + \xi + 1}
\]

This gives the distance \(b \) from \(E \) to the line \(DF \) to be

\[
b = \frac{1}{2}\sqrt{3/(\xi^2 + \xi + 1)},
\]

whence

\(2b = \sqrt{3/(\xi^2 + \xi + 1)}. \)

The desired equation (4) becomes

\(\xi^2 + \xi + 1 - \sqrt{3} = 0, \)

its solution being

\[
\frac{-1 + \sqrt{1 + 4(\sqrt{3} - 1)}}{2} = .490985.
\]

This accuracy should be sufficient for the realization of the ingenious linkage of four polygons (1) as described by Steinhaus (See [2, Figure 1.3 on page 2]).
Returning to the incorrect solution as given in [3, Figure 2 on p. 4], we observe that it assumes that the parallelogram DEFG of our Figure 1 is a rectangle. This gives the value \(\xi = .5 \), which represents a relative error of 1.8%.

That the "solution" \(\xi = 1/2 \) can not possibly be correct is immediately apparent from our Figure 1: Indeed, it would imply that DEFG is a non-square rectangle and therefore

\[
a + c = DF > GH + JE = b + b = 2b,
\]

and the equation (4) does not hold.

REFERENCES

Title: On the Equidecomposability of a Regular Triangle and a Square of Equal Areas

Authors: D. W. Crowe and I. J. Schoenberg

Performing Organization: Mathematics Research Center, University of Wisconsin

Address: 610 Walnut Street, Madison, Wisconsin 53706

Contract or Grant Number(s): DAAG29-80-C-0041

Report Date: January 1984

Number of Pages: 5

Distribution Statement (of this Report): Approved for public release; distribution unlimited.

Supplementary Notes:

Key Words: Equidecomposability of plane polygons

Abstract: This paper deals with the subject of the first chapter of the second author's book "Mathematical Time Exposures": The equidecomposability of a regular triangle and a square of equal areas. A new solution of the problem is given, which also shows that the solution of the problem as given in the third edition of Hugo Steinhaus "Mathematical Snapshots", is not correct.
END

DATE

FILMED

4-84

DTIC