THE TRANSFER FUNCTION MODEL
A computer program for determination of jet engine
test cell exhaust particulates and opacity

Clyde Richards
Atmospheric Physics, Inc.

February 1984
Final Report
March — September 1983

Prepared for
Naval Facilities Engineering Command
Code 032P

Approved for public release; distribution unlimited.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
This task was performed for Naval Facilities Engineering Command, Code 032P, Alexandria, VA 22332, under program element 63721N, sub-project Y0817 (NOSC 513-MB14). Contract N66001-83-C-0237 was carried out by Atmospheric Physics, Inc., P0216, Peralta, NM 87042, under the direction of Ray Glass, Naval Ocean Systems Center (NOSC Code 5134), San Diego, CA 92152.

Released by
E. Lindner, Head
Marine Sciences Division

Under authority of
H. O. Porter, Head
Biosciences Department
Transfer Function Model Final Report

Title
The Transfer Function Model (TFM) is an extensive computer program which is capable of computing the downstream parameters of a jet engine exhaust plume for generalized initial conditions, duct system geometry, and liquid and/or gas dilution.

Authors
Clyde Richards

Performance Organization
Atmospheric Physics, Inc.
PO 216
Peralta, New Mexico 87042

Contract or Grant Number
N66001-83-C-0237

Distribution Statement
Approved for public release; distribution unlimited

Security Classification
Unclassified

Abstract
The Transfer Function Model (TFM) is an extensive computer program which is capable of computing the downstream parameters of a jet engine exhaust plume for generalized initial conditions, duct system geometry, and liquid and/or gas dilution.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>II. INTRODUCTION AND BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>III. THEORETICAL BASIS AND COMPUTATIONAL TECHNIQUES</td>
<td>4</td>
</tr>
<tr>
<td>A. Exhaust Gas/Aerosol Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>1. Liquid Injection</td>
<td>5</td>
</tr>
<tr>
<td>2. Gas Injection</td>
<td>5</td>
</tr>
<tr>
<td>3. Aerosol Agglomeration</td>
<td>5</td>
</tr>
<tr>
<td>4. Liquid Droplet Evaporation (or Condensation)</td>
<td>6</td>
</tr>
<tr>
<td>B. Opacity and Electromagnetic Scattering Calculations</td>
<td>7</td>
</tr>
<tr>
<td>IV. CONCLUSIONS</td>
<td>8</td>
</tr>
<tr>
<td>V. RECOMMENDATIONS</td>
<td>8</td>
</tr>
<tr>
<td>A. Turbulent Agglomeration</td>
<td>9</td>
</tr>
<tr>
<td>B. Entrainment of Air Into the Plume</td>
<td>9</td>
</tr>
<tr>
<td>C. Condensation of Hydrocarbons</td>
<td>9</td>
</tr>
<tr>
<td>D. Chemical Reactions</td>
<td>9</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>APPENDIX--FORTRAN LISTINGS OF TRANSFER FUNCTION MODEL (TFM)</td>
<td>A-1</td>
</tr>
</tbody>
</table>
I. SUMMARY

The Transfer Function Model (TFM) is an extensive computer program which is capable of computing the downstream parameters of a jet engine exhaust plume for generalized initial conditions, duct system geometry, and liquid and/or gas dilution.

For example, the TFM can be used to predict the opacity of a plume at any distance from the engine exhaust plane, or the change in opacity as the engine load is changed.

More specifically, the following parameters of the exhaust plume can be calculated by the TFM at any arbitrary point downstream from the jet exhaust plane:

A. Particulate size distribution,
B. Gas temperature,
C. Gas density (and water vapor density),
D. Gas velocity,
E. Droplet size distribution (if condensation has occurred or if water has been injected),
F. Light scattered and absorbed by each of the various sized particulates, and
G. Total plume opacity.

The TFM can be used to determine the effects of changing any one of several control parameters. Some of the parameters which can be modified are:

At the exhaust plane:
A. Gas velocity (subsonic or supersonic)
B. Particulate size distribution
C. Mass flow rate
D. Gas temperature
E. Water vapor density

Within the test cell:
A. Injected air (or steam)
B. Injected liquid water
C. Variable test-cell cross section

The cost of running the TFM for a given situation is generally less than $100.00. Thus, the TFM should prove to be a very cost-effective tool for predicting jet test cell exhaust plume characteristics.

II. INTRODUCTION AND BACKGROUND

The U.S. Navy has a need to predict the opacity of jet engine test cell emissions and the parameters which affect the test cell exhaust opacity.

Because of the difficulty and cost in measuring the particulate size and opacity of jet engine emission plumes, a computer code has been developed which predicts the opacity. The code incorporates the basic laws of thermodynamics, hydrodynamics, and aerosol behavior, together with the laws which govern light scattering and absorption, to describe both the conditions inside the "smoke" as it moves away from the engine and the opacity of the plume itself.

Since the computer code describes the exhaust gas aerosol from the exhaust phase of the jet engine until the aerosol is transferred into the atmosphere, the code is called a Transfer Function Model (TFM).

In order to make the TFM as general as possible, allowance has been made for the injection of steam, air, other gases, or liquid water at arbitrary points downstream from the gas. This capability makes possible the study of the effect of such injections on the opacity of the plume as it rises into the atmosphere.
The original computer code upon which the TFM is based was a code used to simulate various pollution control devices. This aspect of the TFM would make it a valuable asset if, in the future, the Navy wanted to evaluate proposed test cell emissions control methods. The TFM could be used to simulate each of the proposed methods to determine energy costs, particulate removal efficiency, resultant plume opacity, etc.

Later sections of this report describe in detail the equations upon which the TFM is based and the computational techniques which are used. In short, the TFM follows a representative parcel of "smoke" from the time it leaves the jet engine exhaust until it rises into the atmosphere. As the TFM "steps" the parcel along, it calculates the changes in the intrinsic parameters (pressure, temperature, etc.) of the gas and the changes in the size distribution and number density of the aerosol particulates. If water has been injected, the TFM calculates (at each step) the amount of water which evaporates and the size distribution and number density of water droplets.

The second part of the TFM then uses the aerosol particulate and water droplet size distributions and number density to calculate the opacity of the plume. The second part of the TFM is based on the generalized scattering equations for electromagnetic radiation.

In developing the TFM, care was taken to make it as general as possible without increasing the computer time unnecessarily. The result is a model which can be easily modified or expanded as required.

The TFM should provide a very valuable, cost-effective tool for use in determining jet engine test facility emissions.
III. THEORETICAL BASIS AND COMPUTATIONAL TECHNIQUES

A. Exhaust Gas/Aerosol Dynamics

The TFM calculates the intrinsic parameters (temperature, pressure, density, velocity, etc.) of the exhaust gas as it moves away from a jet engine. These calculations are based on the basic principles of fluid dynamics and thermodynamics for compressible fluid flow (see references 1-4). Those basic principles include the following laws and assumptions:

1. Conservation of Mass
2. Newton's Second Law
3. First Law of Thermodynamics
4. Second Law of Thermodynamics
5. Equation of State for a Perfect Gas
6. Compressible Flow

The equations which represent these basic principles are formulated in the method outlined by Shapiro (reference 1). Using this method, a matrix of influence coefficients is formed, the elements of which can be used to calculate the change in each dependent variable due to changes in the independent variables.

In this method, the matrix elements of influence coefficients are first calculated using the initial values of the variables (i.e., the values specified at the jet engine exhaust plane). The TFM then calculates the changes in the independent variables between that point and a point lying a short distance downstream. The matrix of influence coefficients are then evaluated for the new point and then used to calculate the dependent variables at the new point. This process is repeated until the exhaust reaches a pre-specified point.
At each of the calculation points (dependent variable evaluation points), several other calculations are performed. References for the basis of each of these calculations can be found in the Appendix, which consists of a FORTRAN listing of the TFM with documentation. They fall under the following categories:

1. Liquid Injection. The TFM allows for the injection of liquid at arbitrary rates at arbitrary points downstream. The TFM checks to see if one of these ports has been passed in going from one calculation point to the next. If it has, the injected liquid is subjected to break-up into smaller droplets in a separate routine. The drag which the injected liquid exerts on the exhaust gas is calculated as is the cooling of the gas due to evaporation of the liquid and transfer of sensible heat from the gas to the liquid. The terms which arise from these calculations are added to the corresponding changes in the independent variables.

2. Gas Injection. The TFM also allows for the injection of any gas (or gas mixture) at arbitrary ports downstream. At each calculation point the TFM checks to see if a gas injection port has been passed, the gas mass injection rate is added to the exhaust gas mass flow rate, the momentum of the injected gas in the direction of the exhaust gas flow is added in, and the injected gas is assumed to be completely mixed with the exhaust gas to determine the resultant specific heat capacity and temperature. The injected gas may have arbitrary temperature and relative humidity.

3. Aerosol Agglomeration. The size, distribution, and number density of the aerosol particles can change in several ways. At present, the TFM assumes that they may change as follow:
(1) Particulate-particulate collisions
(2) Particulate-liquid droplet collisions
(3) Liquid droplet-liquid droplet collisions
(4) Liquid droplet evaporation (or condensation)

The particulate-particulate collisions are assumed to occur via random motion of the particulate (diffusional agglomeration).

The particulate-liquid droplet collisions are due to both diffusional agglomeration and the fact that injected liquid droplets may have an "ordered" velocity which is different from the exhaust gas, in which case the collisions are due to inertial impaction.

The liquid droplet-liquid droplet collisions are calculated using both diffusional agglomeration and inertial impaction.

All of these calculations are done at each time interval corresponding to each downstream calculation point.

4. Liquid Droplet Evaporation (or Condensation). The TFM, in its present form, assumes that there are no chemical reactions downstream of the jet engine exhaust. Thus, it assumes that a given chemical species is conserved. As it now stands, the TFM monitors only one evaporating or condensing species—water. At each computational point, the TFM calculates the partial pressure of the water vapor present in the gas. If that pressure is greater than the saturation vapor pressure condensation on the particulates, then pre-existing water droplets can occur; if the existing vapor pressure is less than the saturation vapor pressure, then evaporation can occur. The TFM calculates the amount of evaporation (or condensation) which occurs at each computational point for each size class of particulates and water droplets.
The net water mass condensed between the two computational points is then calculated and the corresponding release of latent and sensible heat is added to the heat of the gas.

B. Opacity and Electromagnetic Scattering Calculations

The TFM can calculate the scattering (and absorption) by any arbitrary size spherical particle for a given wavelength of electromagnetic radiation and a given angle of scatter. Thus, by using these equations to calculate the extinction cross-section for each size-class particle (particulate or liquid droplet) in the jet exhaust (at a given point downstream from the exhaust plane), the total extinction cross-section can be obtained. Thus, the opacity of the plume can be found by knowing the number density of each size-class particle and the diameter of the plume.

The equations upon which the scattering and opacity calculations are based are the solutions to the general scattering theory (see references 5-10).

These solutions are in the form of a series of expansions, some of which are straightforward but others require evolved numerical techniques in order to assure rapid convergence.

The TFM must have the following parameters for each of the scattering calculations:

1. Diameter of the scattering particle
2. Wavelength of the electromagnetic radiation
3. Angle defined by light source : particle : observer
4. Imaginary and real components of the index of refraction of the particle or the conductivity and relative permittivity of the particle
Further documentation of and references for these calculations may be found in the Appendix.

IV. CONCLUSIONS

This model provides an ability to predict test facility particulate and opacity for any combination of gas turbine engine and test facility/control device configurations. The cost is estimated to 1/200th of the cost to measure the same parameters.

The TFM is a cost-effective tool for the determination of jet engine test cell particulate loading and exhaust opacity. It is both flexible and general. The flexibility manifests itself in the ease with which a specific situation (engine size and load, test cell geometry, liquid injection, etc.) can be modeled. It is general in the sense that other effects (such as chemical reactions, hydrocarbon condensation, etc.) can be added without modifying the theory and computational techniques upon which the TFM is based.

V. RECOMMENDATIONS

Two types of recommendations are pertinent concerning the model. First, the model must be validated using actual engine exhaust plane/top of the exhaust stack data. Validation will provide air pollution control districts with confidence of the model's accuracy. Second, the following additional efforts will make the model easier to use and more powerful when evaluating control devices.

A. Turbulent Agglomeration

As the TFM now exists, all agglomeration of the particulates is calculated using diffusional agglomeration equations only. However, turbulent agglomeration should be an important process in the modification of the size distribution and number density, especially for particulates greater than about 1 micron.
B. Entrainment of Air Into the Plume

As the TFM now exists, the amount of air entrained in the plume is an input parameter. However, more realistic method would be to have the TFM calculate the amount of air entrained in the plume after it leaves the test cell. The entrainment of air into the plume and the subsequent dispersion is required to predict opacity.

C. Condensation of Hydrocarbons

As the TFM now stands, water is the only liquid/vapor substance that is allowed to undergo phase transition. The evaporation/condensation of any other liquid can be added to the TFM if the saturation vapor pressure of the liquid is known.

D. Chemical Reactions

The TFM lends itself well to the addition of the effects of chemical reactions. If this feature were added, the TFM could model the effect of afterburning control devices on the plume opacity or injection of ammonia for NO$_x$ control.
REFERENCES

3. Sears, F. W., Thermodynamics, the Kinetic Theory of Gases and Statistical Mechanics, Addison-Wesley (1953).

APPENDIX

FORTRAN LISTINGS OF TRANSFER FUNCTION MODEL (TFM)
PROGRAM BUILD

DIMENSION DA(20),NAI(20),SLM(20),INSLM(20)

DA(I) is the initial diameter of the aerosol particles in the
I th size class, assumed to have (initially) the same tempora-
ture as the jet exhaust.
NAI(I) is the number density of aerosol particles initially in
the I th size class.
SLM(I) is the water-soluble mass in each of the aerosol par-
ticles in the I th size class.
INSLM(I) is the water-insoluble solid mass in each of the aerosol
particles in the I th size class.

1,DWI(20,20),NW1(20,20),TW1(20),NWIT(20)

DWI(I,J), NW1(I,J), and TW1(J) are the diameter, number dens-
ity, and the temperature, respectively of the I th size injected
at the J th port.NWI(I,J) can be given J port, since it is normal-
ized later.
NWIT(I) is an approximation to a typical water spray.

2,XWPORT(20),WMDOT(20),XAPORT(20),AMDOT(20),CONSOL(20)

XWPORT(J) is the distance to the J th water injection port.
WMDOT(J) is the mass injection water injection port.

XAPORT(J) is the distance to the J th air injection port.

AMDOT(J) is the mass injection rate of air at the J th port.

CONSOL(J) is the concentration of soluble salts in the injected water.

3,TIAIR(20),VXAIR(20),SPHUMD(20),MASEGW(20),SPHTAR(20)

TIAIR(J) is the temperature of the air injected at the J th port.

VXAIR(J) is the axial component of the velocity of the injected air
at the J th port.

SPHUMD(J) is the specific humidity of the gas being injected at
the J th port. It is defined as the ratio of the water vapor density to
the total density of the gas; thus a value of 1.0 corresponds
to steam.

MASEGW(J) is the mass equivalent weight (or kg./kmole)
of the gas injected at the J th port.

SPHTAR(J) is the specific heat (at constant pressure) injected at the
J th port (Joules/Kg-deg.Kelvin).

Now Dimension the working variable arrays.

4,RA(20),RW(20,20),SOLUMA(20,20),INSOLM(20,20),H20MAS(20,20)

RA(I) is the running radius of the aerosol particles.
RW(I,J) is the running radius of the injected water drops.
SOLUMA(I,J) is the running soluble mass in each of the(I,J) drops.
INSOLM(I,J) is the running insoluble mass in each of the(I,J) drops.
H20MAS(I,J) is the mass of water in each of the(I,J) drops.

5,TW(20,20),VXW(20,20),NW(20,20),NA(20),TA(20)

TW(I,J) is the running temperature of the water drops which were
injected at the J th and which were originally in the I th
size class.

VXW(I,J) is the running axial component of the velocity of the water
drops which were injected at the J th port and which were originally
in the I th size class.

NW(I,J) is the running number of water drops which were originally in
the I th size class and were injected at the J th port. (NW(I,J) must be
less than NW1(I,J) due loses by collision or coagulation with larger
drops or particles.)
NA(I,J) is the running number of aerosol particles which were originally in the Ith size class. NA(I) will, in general, be less than NAI(I) because of losses by collisions and coagulation with larger particles or water drops.

TH(I) is the running temperature of the aerosol particles, which can be different from the main gas flow because of condensation on the particles.

KWIJ(J), KAIJ(J), FNORM(J), DRDIF(J), WORKAR(J,J), TRW(J,J)

KWIJ(J) is a control array to determine if the Jth water spray has been injected; similarly, KAIJ(J) is for the air injection ports.

FNORM(J) is a normalization array for the drop size distribution injected at the Jth port.

DRDIF(I) is a typical drop diameter distribution to represent the injected drops.

WORKAR(J,J) and TRW(J,J) are temporary storage arrays, used when injecting the water sprays.

WATM(I) is the array of the condensed water mass on each of the Ith size aerosol particles.

TYARDM(I) is a typical aerosol diameter array used to represent the size distribution of the aerosol particles.

TYNUMD(I) is an un-normalized size distribution which, with DAPLOT, is the plotting array for the diameters, in microns.

AA, BB, CC are the Shapiro matrices for the influence coefficients.

DAT(I) is the 'running' diameter of the aerosol particles.

DAIPLO is the plotting array for the initial diameters, microns.

REAL NAMIN, NWI, MASEGW, INSLML, NW, NA, NWIT,

1Meaw, Loadin, Mix1, Mdol1, Mdol2, Msar1, Msar2, Molwt1, Molwt2,

2NRBAR, INSLGN, MOWINA, L, MUH20, NAMAX

DATA Lognor /100, 112.5, 32.15, 3.75, 0.24, 0.02, 0, 0, 0/
DATA DRDIF /1.2, 3.5, 7.10, 14, 20, 27, 35, 47, 65, 80, 100.
1, 140, 200, 300, 400, 700, 1000.
DATA NWIT /0.1, 0.2, 0.4, 1.5, 2.5, 4, 6.0, 7, 10, 15, 20, 25.0.
1, 25.0, 35.0, 35.0, 35.0, 25.0, 15.0, 10.0, 0.00, 0.00, 0.00/
DATA XWPORT /0.50, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00,
1, 11.00, 12.00, 13.00, 14.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/
DATA XAPORT /1.50, 2.50, 3.50, 4.50, 5.50, 6.50, 7.50, 8.50, 9.50, 10.50,
1, 11.00, 12.00, 13.00, 14.00, 15.00, 16.00, 5.00, 5.00, 0.00, 0.00/
DATA WMDDOT /0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/
DATA AMDDOT /0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/
DATA CONSOL /0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/
DATA TDIAIR /150.0, 20.0, 70.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0,
1, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0,
DATA VXAIR /50.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
DATA SPHUMD /0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
DATA MASEGW /30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
1, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
DATA SPHTAR /1006, 1006, 1006, 1006, 1006, 1006, 1006, 1006
DATA TYARDI /0.05,0.10,0.20,0.30,0.50,0.75,1.0,1.3,1.7,2.3,3.1
DATA TYNUMD /500.,1000.,500.,200.,100.,50.,0.,10.,7.,4.,2.,
11.,0.1,0.01,0.001,0.001,0.0,0.0,0.0,0.0,0.0,0.0/

Now the Universal constants:

\[C_{va} = 766.4 \] \(\text{Specfic heat at constant volume of dry air.} \)
\[R_{das} = 8314.34 \] \(\text{Universal gas constant.} \)
\[R_{ma} = R_{gas} / 29.99 \] \(\text{Gas constant per mol of stack gas.} \)
\[R_{mw} = R_{gas} / 18.015 \] \(\text{Specific gas constant for water vapor.} \)
\[P_{I} = 3.14159 \] \(\text{Latent heat of vaporization of water.} \)
\[E_{ps} = R_{ma} / R_{mw} \] \(\text{Gamma for dry gas.} \)
\[C_{pa} = Gama \times C_{va} \] \(\text{Specific heat for dry air.} \)
\[C_{pw} = 4186. \] \(\text{Specific heat for liuid water.} \)
\[D_{ifl} = 2.39E-5 \] \(\text{Water vapor diffusion coefficient \text{m2/sec}} \)
\[R_{hol} = 1.63 \] \(\text{Density of liquid water.} \)
\[Cond = 2.83E-2 \] \(\text{Thermal diffusion coefficient in air.} \)

The units of Cond are Joule/(meter-sec.-deg.-Kelvin)

\[Beta = 0.036 \] \(\text{Beta is the condensation coefficient.} \)
\[Sig = 0.072 \] \(\text{Surface tension for water.} \)
\[E_{mob} = 2.2E-4 \] \(\text{Ion mobility in air at 1 atm.} \)
\[E_{ta} = 1.66E-5 \] \(\text{Kinematic coeff. of viscosity for air \text{m2/sec}} \)
\[MU_{H2O} = 1.143E-3 \] \(\text{Viscosity of H2O \text{Kgs/meter-sec.}} \)
\[ETAH2O = 1.143E-6 \] \(\text{Kinematic coeff. of vis. for liquid H2O \text{m2/sec}} \)
\[TAYLRC = 2.7 \] \(\text{Taylor's constant for drop breakup in fast gas flows.} \)
\[BOLTZ = 1.38E-23 \] \(\text{Boltzmann's constant \text{Joules/deg}} \)
\[COAGC = (2.7/3.) \times BOLTZ \times 293.16 / ETA \]
\[COLCON = (2.7/9.) \times R_{hol} / ETA \]
\[CNBRUP = 2.5 \] \(\text{CPH2O = 1980. } \) \(\text{Specific heat at constant pressure for H2O vapor.} \)

Now the initial intrinsic parameters of the aerosol.

\[P_{dens} = 2.0E3 \] \(\text{Particles' mass density.} \)
\[M_{eqw} = 58 \] \(\text{Eqwv. molecular wt. of NaCl.} \)
\[E_{v} = 2.5 \] \(\text{Van't Hoff Factor.} \)
\[Loadin = 5.000 \] \(\text{Particulate loading \text{grains/cu ft.}} \)
\[PO = 1.005E5 \] \(\text{Initial pressure.} \)
\[S_{hum} = 0.10 \] \(\text{Specific humidity.} \)
\[T_{0} = 555. \] \(\text{Jet exhaust temperature in degs. Centigrade.} \)
\[V_{0} = 2600. \] \(\text{Jet exhaust velocity in ft/sec.} \)
\[W_{0} = 1597. \] \(\text{Mass flow rate through jet engine, lbs/sec.} \)
\[X_{tot} = 350. \] \(\text{The initial cross-sectional area of the flow duct, sq. meter.} \)
\[Ratio = 2.5 \] \(\text{Ratio is the ratio of the max. to min. cross sect.} \)

Now some of the injected spray parameters.

\[RHOSOL = 1.05E3 \] \(\text{Density of liquid to be injected \text{ks/cu. meter}} \)

Calculate constants coefficients and convert all parameters to MKS System of units.

\[P_{1} = P_{0} \]
\[Ac = 2.0 \times Sig / (R_{hol} \times R_{mw}) \]
\[Bc = 3 \times 18.015 / (4 \times P_{I} \times R_{hol}) \]
\[C_{3} = L \times L \times D_{ifl} / (\text{Cond} \times R_{mw} \times R_{mw}) \]
C4 = 4*PI*Df/L/Rw
C5 = 4*PI/3.

C11 = 0.018*Emode%2*E19/(Pdens*4*PI)
C12 = 3/(Rhoi*Cp)
C13 = L/(4*PI)
C14 = 4*PI*Cond

Initialize particulate parameter arrays.

V1 = V0/3.2808
DO 2 J = 1, 20
 TW(J) = 273.16 + TW(J)
 TA(J) = TO + 273.16
 CONTINUE
 SUMNUM = 0.
 PLDMKS = Losdin*2.293E-3 @ Convert particle loading into kg/cu.meter
 DO 9 I = 1, 20
 DAI(I) = TYARDI(I)*1.E-6
 RA(I) = DAI(I)/2 @ Calculate initial particle radii in MKS.
 DA(I) = DAI(I)
 SLM(I) = 0.
 WATM(I) = 0.
 SMFACT = C5*RA(I)**3*Pdens
 INSLM(I) = SMFACT - SLM(I)
 SUMNUM = SUMNUM + SMFACT*TYNUMD(I)
 DO 10 J = 1, 20
 NW(I, J) = NWI(T)
 NW(I, J) = 0.
 DWI(I, J) = DRDIS(I)*1.0E-6
 RM(I, J) = (DWI(I, J)/2.)
 DMASSE = C5*RM(I, J)**3*RHOS
 SOLUMA(I, J) = CONSOL(J)*DMASSE
 H2OMAS(I, J) = DMASSE - SOLUMA(I, J)
 INSOLM(I, J) = 0.
 TW(I, J) = TWI(J)
 VXW(I, J) = 0.
 WORKR(I, J) = 0.
 TRW(I, J) = 0.
 10 CONTINUE
 9 CONTINUE
 FACNR = SUMNUM/PLDMKS
 DO 7 J = 1, 20
 FNORM(J) = 0.
 KWIJ(J) = 0.
 KAIJ(J) = 0.
 DO 8 I = 1, 20
 FNORM(J) = FNORM(J) + NWI(I, J)*C5*Rhosol*RW(I, J)**3
 8 CONTINUE
 7 CONTINUE
 DO 6 I = 1, 20
 NAI(I) = TYNUMD(I)/FACNR
 NA(I) = NAI(I)
 6 CONTINUE
Condw = 0
Time = 0
Dtmax = 1.00E-4
Jt=5.0E-3
Deltim=St
X=0
KKK=1
Count=0
Lmn=0
C Initialize the plot parameters:
 DXPLOT=50.0
 XPLOT=0.0
 KPLOT=0
 Tl=TC+273.16
 WDOTC=W0/2.2
 EI=RH*Esat(T1)
 Mix1=Eps*E1/(P1-E1)
 Sphum1=Mix1/(1+Mix1) @ Specific humidity.
 Mix1=Sphum1/(1-Sphum1)
 El=Mix1*P1/(Eps+Mix1)
 Cv=(1+1.02*Sphum1)*Cva
 Cp=(1+0.9*Sphum1)*Cpa
 Gam1=Cp/Cv
 PrVarf=(Eps/Dif1)**(1./3.)
C
C Begin stepping.
C
30 CONTINUE
 KKK=KKK+1
 Lmn=Lmn+1
 Rm=Rma/(1-(1-Eps)*E1/P1) @ Gas constant for moist air.
 IF (Lmn.GT.1) GO TO 11
 Gasdn1=P1/(Rm*T1) @ Gas mass density.
 Mdot1=Gasdn1*V1*AO @ Gas mass flow rate.
 Mdot1=WDOT0
 V1=Mdot1/(Gasdn1*AO)
 Csard1=Gam1*P1/Gasdn1
 Msard1=V1*V1/Csard1
 Ssnsp1=Csard1**.5 @ Speed of sound in gas.
 Rhow1=El/(Rmw*T1)
 Rhod1=Gasdn1-Rhow1
 Molwt1=Gasdn1/(Rhod1/29.98+Rhow1/18.015)
 Area1=AO
11 CONTINUE
C Calculate factors for diffusion rate on small droplets.
 Frepht=Dif1/Beta**((2.*PI/(Rmw*T1))**(0.5))
C Set values for heat ventilation factors.
 FrHeat=(Eps*CP'*Gasdn1/Cond)**(1./3.)
 IF (X.LT.XPLOT) GO TO 3
 XPLOT=XPLOT+DXPLOT
 KPLOT=KPLOT+1
 IF (KPLOT.GT.1000) GO TO 100
 PLTXXX(KPLOT)=X
 T1YYY(KPLOT)=T1-273.16
 V1YYY(KPLOT)=V1
 RHYYY(KPLOT)=Gasdn1
 PRINT 202
 PRINT *, (PLTOUT(MPI,KPLOT),MPI=1,5)
 PRINT *, (PLTOUT(MPI,KPLOT),MPI=6,8)
 PRINT *, (PLTOUT(MPI,KPLOT),MPI=9,10)
 IF (KPLOT.GT.1) GO TO 333

A-6
IFT X.LT.XWFOR
r(JY
G00
10 :0
Se
f
J
Qt
C . 2
Check. to see if J th port has been reached.
KWIJ(J),NE.) GO TO 40 @ Check to see if injected on previous loop.
KWIJ(J)=J @ Set this water port flag non-zero.

C Now inject J th spray and shatter drops.
DO 41 I=1,20
NW(I,J)=NWI(I,J)/FDNORM(J)

C In order to obtain the number density of drops in the J th size
C range injected at the J th port, multiply NW(I,J) by the water
C mass injection rate at the J th port, and divide by the total
C (aerosol gas plus injected gas plus evaporated gas) volumetric flow
C rate of the gas (cu. meters/sec.)
NW(I,J)=NW(I,J)*WMDOT(J)/(MdotI/Rhow1)
NW(I,J)=NW(I,J)*WMDOT(J)/(MdotI/Rhow1)
C Check Taylor’s criteria for drop breakup.
VRELP=V1-VXW(I, J)
TEST=Rhow1*VREL**2/(2,*Sig/RW(I,J))
IF (TEST.LT.TAYLRC) GO TO 44

C Drop passes criteria; break it up.
VOLIJ=CS*RW(I,J)**3*NW(I,J)
RBAR=CWRUF*(2.*RW(I,J))**(.5)*(MH20*(Sig/Rho1)**.5
1/(Gasdn*VREL**2))**(1./3.)
NRBAR=VOLIJ/(CS*RBAR**3)
DO 42 K=1,19
TRCE=(RW(K,J)+RW(K+1,J))/2.
IF (RBAR.GT.TRCE) GO TO 42
JAY=K
GO TO 43
42 CONTINUE
JAY=20
43 CONTINUE
TRW(JAY,J)=((CS*WORKAR(JAY,J)*TRW(JAY,J)**3+VOLIJ)/
1((WORKAR(JAY,J)+NRBAR)*CS))**(1./3.)
WORKAR(JAY,J)=WORKAR(I,J)+NRBAR
GO TO 41
44 CONTINUE
TRW(I,J)=((WORKAR(I,J)*TRW(I,J)**3*NW(I,J)*RW(I,J)**3)/
1(WORKAR(I,J)+NW(I,J))**(1./3.)
WORKAR(I,J)=WORKAR(I,J)+NW(I,J)

41 CONTINUE
DO 45 I=1,20
NW(I,J)=WORKAR(I,J)
RW(I,J)=TRW(I,J)
DMASSE=CS*RHOSOL*RW(I,J)**3
SOLUMA(I,J)=DMASSE*CONSUL(J)
H2OMAS(I,J)=DMASSE-SOLUMA(I,J)

45 CONTINUE
C Set Dt for this iteration.
Dt=AMAXI(Dtmax,Dt)
C DO 200 J=1,20
C IF (KWIJ(J),EQ.0.) GO TO 200
C IF (WMDOT(J),EQ.0.0) GO TO 203
C DO 201 I=1,20
C IF (NW(I,J),EQ.0.0) GO TO 201
C VPRSR=Esat(TW(I,J))*(1.+Ac/RW(I,J))
C DMDTR=C4*RW(I,J)*(EL.T1-1.*VPRSR/TW(I,J))

A-7
F L F r

C

```
HTRN=C14*RW(I,J)*(I+J-1)
DPRF=ABS((LX0*DTR-HRWIN)/C5*CWP*R0)*RHW(I,J)*GAM1/T
Rt0=AMINI(Dt*DtDt)
C201 CONTINUE
C200 CONTINUE
C Delim=Dt
C
Now calculate the coagulation.
DO 49 J1=1,20
IF (KIWI(J1),EQ.0) GO TO 49
DO 50 J2=J1,20
IF (KIWI(J2),EQ.0) GO TO 50

The coagulation rate is calculated by

\[ \text{rate} = \frac{K(n_1, n_2) \cdot n_1 \cdot n_2}{R_{W1} \cdot R_{W2}} \]

where \( n_1 \) is the number density of the smaller particle, \( n_2 \) is the radius of the smaller particle, \( n_1 \) and \( n_2 \) are the same parameters for the larger size particles. \( K(n_1, n_2) \) is given by:

\[ K(n_1, n_2) = \left( \frac{2}{3} \right) \cdot \frac{\kappa \cdot \eta}{\rho} \cdot \left( \frac{n_1}{n_2} \right)^{2/3} \]

**Boltzman constant, \( \eta \) is the viscosity of air at temperature \( T \).**

DO 51 I1=1,20
IF (NW(I1,J1),EQ.0) GO TO 51
DO 52 I2=I1,20
IF (NW(I2,J2),EQ.0) GO TO 52

\[ \text{DN1DT} = -\text{COAGC} \cdot (RW(I1,J1)+RW(I2,J2))^{*2} / (RW(I1,J1) \cdot RW(I2,J2)) \]

1*NW(I1,J1)*NW(I2,J2)
IF (RW(I2,J2).LT.RW(I1,J1)) THEN
ILOS=I2
JL=J2
IGANE=I1
JG=J1
ELSE
ILOS=I1
JL=J1
IGANE=I2
JG=J2
END IF
VLMOCA=DN1DT*RW(ILOS,JL)**3*C5*Dt
NW(ILOS,JL)=NW(ILOS,JL)+DN1DT*Dt
RW(IGANE,JG)=((C5*NW(IGANE,JG)*RW(IGANE,JG)**3-VLMOCA)/
1*(NW(IGANE,JG)*C5))**((1./3.),)
SLMGAN=-DN1DT*Dt*SOLUMA(ILOS,JL)
SOLUMA(IGANE,JG)=SOLUMA(IGANE,JG)+SLMGAN/NW(IGANE,JG)
INSLGAN=-DN1DT*Dt*INSLOM(ILOS,JL)
INSLOM(IGANE,JG)=INSLOM(IGANE,JG)+INSLGAN/NW(IGANE,JG)
H2OMAN=-DN1DT*Dt*H2OMAS(ILOS,JL)
H2OMAS(IGANE,JG)=H2OMAS(IGANE,JG)+H2OMAN/NW(IGANE,JG)
52 CONTINUE
51 CONTINUE
C Now coagulate the water drops and the aerosol particles.
DO 53 I2=1,20
IF (NW(I2,J),EQ.0) GO TO 53
DO 54 I1=1,20
IF (NA(I1),EQ.0) GO TO 54

\[ \text{DNARDT} = -\text{COAGC} \cdot (RA(I1)+RW(I2,J))^{*2} / (RA(I1) \cdot RW(I2,J)) \cdot NA(I1) \]

1*NW(I2,J)
VOLGER=DNARDT*RA(I1)**3*C5*Dt
NA(I1)=NA(I1)+DNARDT*Dt
RW(I2,J)=(C5*NW(I2,J)+NW(I2,J)**3-VOLGER)/(NW(I2,J)**C5)**
1*((1./3.),

A-8
```
INSOLM(I2,J) = INSOLM(I2,J) - DNARDT*DT*INSLM(I2,J) / NA(I2)
H2OMAS(I2,J) = H2OMAS(I2,J) - DNARDT*DT*WATHM(I2,J) / NA(I2)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

DO 55 II=1,20
IF (NA(I1),EQ.0.0) GO TO 55
DO 56 II=1,20
IF (NA(I2),EQ.0.0) GO TO 56
DNARDT = CNPQ*C(RA(I1)*RA(I2))**2/(RA(I1)*RA(I2)+NA(I1)+NA(I2))
NA(I1) = NA(I1) + DNARDT*DT
RA(I2) = ((NA(I2)*RA(I2))**3 - DNARDT*DT**3)/NA(I2)
SLM(I2) = SLM(I2) - DNARDT*DT*SLM(I1)/NA(I2)
INSLM(I2) = INSLM(I2) - DNARDT*DT*INSLM(I1)/NA(I2)
WATHM(I2) = WATHM(I2) - DNARDT*DT*WATHM(I2)/NA(I2)
CONTINUE

54 CONTINUE

55 CONTINUE

DNTHLA = 0.
C
DNTHLA is the energy added to the gas (per unit mass of gas)
C
by the injected air during Dt.

DMDOTA = 0.
C
DMDOTA is the total mass rate of dry air which is injected at
C
a given port.

MOWINA = 0.
C
MOWINA is the weighted molecular weight of the injected air
C
during Dt.

DMOMIA = 0.
C
DMOMIA is the total momentum (per momentum of the gas) which
C
is added to the gas by the injector.

VAPINJ = 0.0
C
VAPINJ is the mass rate of water vapor injected during Dt.

DO 60 J=1,20
IF (X.LT.XAPORT(J)) GO TO 60
IF (KAIJ(J),NE.0) GO TO 60

Inject air at Jth port.

56 KAIJ(J) = J
DNTHLA = DNTHLA - (SPHTAR(J)*(TI-TIAIR(J)))*VUK1/V1/2.)*AMDOT(J)/Mdot1
DMDOTA = DMDOTA + (1.0-SPHUMD(J))*AMDOT(J)
VAPINJ = VAPINJ + SPHUMD(J)*AMDOT(J)
MOWINA = MOWINA + AMDOT(J)*MASEQW(J)*Gasdn1/Mdot1
DMOMIA = DMOMIA + C.*VXAIR(J)/V1*(AMDOT(J)/Mdot1)
CONTINUE

Calc. the collisions of injected water drops with
C
the gas & aerosol at other ports.

DO 61 II=1,10
IF (X[JII]/X[J1],GT.0.6) GO TO 61
IF (WMOMI[I2],LT.0.0) GO TO 61
W[I2] = J2 = J3, 20
IF (X[J2],GT.0.6) GO TO 61
W[I2] = J2, 10.0) GO TO 61
W[I2] = J3, 0.0) GO TO 61

A-9
IF (NA(I).EQ.0.) GO TO 99
DA(I)=2.*RI(I)
DAILP(I)=DA(I)*K1.E5
NAMAX=ANAX1(NAMAX,NA(I))
DAMAX=AMAX1(DAMAX,DA(I)).
CONTINUE
PLOZZZ=ALOG10(NAMAX)*10.
NPLOZZ=INT(PLOZZZ+0.5)
MODD=MOD(NPLOZZ,5)
NPLOZZ=NPLOZZ+MODD
PLOZZZ=NPLZZZ/10.
NAMAX=10.**PLOZZZ
DAMAX=DAMAX*E1.66
XXSTP=DAMAX/10.
YYSTP=NAMAX/10.
PRINT *, NAMAX, DAMAX, XXSTP, YYSTP
CALL BGNPL(KPLOT)
CALL PAGE(12,9.0)
CALL NOBRDR
CALL AREAD2D(10.,7.5)
CALL XNAME('PARTICULATE DIAMETER (Microns)\$100')
CALL YNAME('NUMBER OF PARTICULATES/CURIC METER IN SIZE RANGE\$100')
CALL HEADIN('SIZE DISTRIBUTION CF PARTICULATES\$100,1.5,1)
CALL MESSAG('DISTANCE FROM ENGINE IS \$100,5.5,7.0')
CALL REALNO(X,2,'ABUT','ABUT')
CALL MESSAG('MEETERS\$100,100,100')
CALL GRAF(0.0,XXSTP,DAMAX,0.0,YYSTP,NAMAX)
CALL YLOG(0.0,XXSTP+0.0,7.5)
CALL VBARS(DA,'BASE',NA,20)
CALL CURVE(DAILP,NA,20,1)
CALL ENDPL(KPLOT)
GO TO 334
333 CONTINUE
CALL BGNPL(KPLOT)
CALL PAGE(12,9.)
CALL NOBRDR
CALL AREAD2D(10.,7.5)
CALL XNAME('PARTICULATE DIAMETER (Microns)\$100')
CALL YNAME('NUMBER OF PARTICULATES/CURIC METER IN SIZE RANGE\$100')
CALL HEADIN('SIZE DISTRIBUTION CF PARTICULATES\$100,1.5,1)
CALL MESSAG('DISTANCE FROM ENGINE IS \$100,5.5,7.0')
CALL REALNO(X,2,'ABUT','ABUT')
CALL MESSAG('MEETERS\$100,100,100')
CALL GRAF(0.0,XXSTP,DAMAX,0.0,YYSTP,NAMAX)
CALL MARKER(0)
CALL CURVE(DAILP,NA,20,1)
CALL MARKER(2)
CALL CURVE(DAILP,NA,20,1)
CALL ENDPL(KPLOT)
334 CONTINUE
C IF (KPLOT.GE.1) GO TO 100
C CONTINUE
C
\begin{verbatim}
IF (CGRPAR(.LE.,1.214)) GO TO 73
COLEFF=(1+0.75*KLOBA,2.,COLPAR(/COLPAR-1.214)**(-2)
DELNW1=VREL1*PK*(RW(II,J1)*RW(J1,J2)*RW(I2,J2)*RW(I2,J2))
NW(II,J1)=NW(I2,J2)*COLEFF
IF (RW(I2,J1)>NW(I2,J2)) THEN
 IL=II
 JL=J1
 IG=I2
 JG=J2
ELSE
 IL=I2
 JL=J2
 IG=I1
 JG=J1
END IF
DELNW1=DN1DT*Dt
IF (DELNW1.GT.NW(Il,JL)) DELNW1=NW(Il,JL)
NW(Il,JL)=NW(Il,JL)-DELNW1
C0LVOL= C5*DELNW1*RW(Il,JL)**3
SOLUMA(IG,JG)=SOLUMA(IG,JG)+DELNW1*SOLUMA(Il,JL)/NW(IG,JG)
INSOLM(IG,JG)=INSOLM(IG,JG)+DELNW1*INSOLM(Il,JL)/NW(IG,JG)
H20MAS(IG,JG)=H20MAS(IG,JG)+DELNW1*H20MAS(Il,JL)/NW(IG,JG)
RW(IG,JG)=(C5*NW(IG,JG)*RW(IG,JG)**3+C0LVOL)/(C5*NW(IG,JG))
1**((1./3.,))
73 CONTINUE
72 CONTINUE
71 CONTINUE
70 CONTINUE
C Now calculate the collisions between the aerosol particles and the
C injected liquid drops due to the difference in their directed motion,
C using the same method as above for the collisions of water drops with
C themselves.
DO 74 J2=1,20
IF (KWI2(J2).EQ.0) GO TO 74
IF (WMDOT(J2).EQ.0) GO TO 74
DO 75 I2=1,20
IF (NW(I2,J2).EQ.0) GO TO 75
DO 76 I=1,20
IF (NA(I).EQ.0) GO TO 76
VRELAW=ABS(V1-VXW(I2,J2))
DON
\end{verbatim}
COLPAR=COLCON*RA(I)*RA(I)*URELAW/KW(I2,J2)
IF (COLPAR.LT.1.214) GO TO 76
COLEFF=(1+0.75*ALOG2(COLPAR/COLPAR-1.214))+(-2)
DNARDT=URELAW*PI*RA(I)*RA(I)*K(W(I2,J2)*K(W(I2,J2)))*NA(I)*
NW(I2,J2)*COLEFF
DELAER=DNARDT*Dt
IF (DELAER.GT.NA(I)) DELAER=NA(I)
CS(I)=NA(I)-DELAER
SOLUAM(I2,J2)=SOLUAM(I2,J2)+DELAER*SLM(I)/NW(I2,J2)
SOLUAM(I2,J2)=INSLM(I2,J2)+DELAER*SLM(I)/NW(I2,J2)
NWAM(I2,J2)=NWAM(I2,J2)+DELAER*WM(I2,J2)
NW(I2,J2)=NWAM(I2,J2)
RETURN
CONTINUE

You calculate the evaporation; the release of latent heat, and the
induction of heat from the drop to the gas flow.
The equations used for these calculations are as follows:
1) (VAP.PRES.at drop surf.=[satur.press. at Tr][1+4.6*10^(-3)]
2) dm/dt=(4*Pi*Kr*Di/Fw)/Eo*(Tr-Er/Tr)

where K is proportional to the surface tension at the droplet,
K I is a constant in the amount of soluble salts in the
droplet; it is the mass rate of evaporation of a droplet of radius
Di, Fw is the water vapor diffusion coefficient, K I is the gas constant
for water vapor, Eo is the temperature for from the drop,Tr is the
temperature r from the droplet, Tr and Er are the corresponding quantities
at the surface of the droplet, Tr is the latent heat of vaporiza-
tion of the liquid, Cwp is the specific heat capacity of the liquid
water, and Kond is the thermal diffusion coefficient in air.

IF CON=0,

IF CON is the total amount of heat (per mass of gas) conducted
via thermal diffusion from the aerosol particles and injected
water drops to the gas during the time.

IF CON=0,

TDMAS is total momentum per unit momentum of gas
which is added to the gas by evaporation of liquid during
it. (Shapiro's 2.*subl*(r*subl/w))

TDMAS=0,

TDMAS is the total mass condensed (per unit mass of the gas)
in the gas.

TURFEN=0,

TURFEN is the energy (per unit mass of the gas) added to the gas
by the evaporated liquid during it.

I=1720
IF (NA(I).LE.0.4) GO TO 90

PRSR=ESsat(TA(I))*[1.+AC*RA(I)*Ew*3.3*SLM(I2,J2)/SALM(I2,J2)]
+DT*SLM(I2,J2)/TA(I)-SRPR/TA(I)

PRSR is the evaporation rate for small droplets:

PFR=0.8*RA(I)*FRA(I)*FRA(I)*FRA(I)*FRA(I)*
+RAP+D14*RA(I)*FRA(I)*FA(I)*FA(I)*FA(I)}

A-12

BEST
AVAILABLE COPY
A-13

```
ENDIF

* TCNMAG = TCNMAG + CONDNM
IGIN = (SLM(I) + INSOLM(I)) / G - Sdnl
THTNAN = THTNAN + HTRACN * NA(I) * Dt / Gasdn1
TEVPEN = TEVPEN - CONDNM * (CPH20 * (TA(I) - T1) - L) * NA(I) / Gasdn1
DTRDT = (L * DMDTR - HTRACN) / (C5 * Rhol * CPw * RA(I) * **3)
TA(I) = TA(I) + DTRDT * Dt

C IF (TA(I).LT.Dtemp{x}) TA(I)=Dtemp{x}
80 CONTINUE
DO 81 J = 1, 20
IF (KWI(J).EQ.0) GO TO 81
IF (WMDOT(J).EQ.0.) GO TO 81
DO 83 I = 1, 20
IF (NW(IPJ).EQ.0.) GO TO 83

YPRSR = Esat(TW(Iv,j)) * (1.+Ac/RW(I,J) - Ey*Bc*SOLUMA(I,J)
1/(Rb(I,J)**3))
DMDTR = C4*RW(I,J) * (E1/T1 - YPRSR/TW(I,J))

C Modify the evaporation rate for small droplets and ventilation:
SRey = (2.*RW(I,J) * ABS(V1-VXW(I,J)) / Eta)**(0.5)
Fross1 = 1.0 + 0.276 * SRey * PrVapf
DMDTR = DMDTR * (RW(I,J) / (RW(I,J) + Freept)) * Fross1
HTRACN = C14 * RW(I,J) * (TW(I,J) - T1)

C Modify the heat flow rate caused by ventilation:
Fross2 = 1.0 + 0.276 * SRey * PrHeat
HTRACN = HTRACN * Fross2

END IF
TCNMAS = TCNMAS + CONDNM * NW(I,J) / Gasdn1
THTNAN = THTNAN + HTRACN * NW(I,J) * Dt / Gasdn1
TEVPEN = TEVPEN - CONDNM * (CPH20 * (TA(I) - T1) - L)
1/(V1*V1-VXW(I,J)*VXW(I,J)) / 2.) * NW(I,J) / Gasdn1
TEVHOM = TEVHOM + (2.*VXW(I,J)/V1) * (EVAPMS*NW(I,J)/Gasdn1)
DTRDT = (L * DMDTR - HTRACN) / (C5 * Cw * Rhol * RW(I,J) * **3)
TW(I,J) = TW(I,J) + DTRDT * Dt
C IF (TW(I,J).LT.Dtemp{x}) TW(I,J)=Dtemp{x}
83 CONTINUE
81 CONTINUE
```
TEVPMS=-TONMAS

TEVPMS is the total liquid mass from gas mass evaporation during Dt.

Now calculate and collect all of the changes in the independent variables for input into the Shapiro matrix.

First calculate the work done on dragging injected water.

SHFPDWX=0.0

SHFPDWX is the total work done by the gas (per unit mass of gas) on the injected water via drag forces during Dt.

DXAKPM=0.0

DXAKPM is the total drag force exerted by the gas on the injected water during Dt.

DO 90 J=1,20
IF (KWJ(J),EQ.0.0) GO TO 90
IF (WMDOT(J),EQ.0.0) GO TO 90
DO 91 I=1,20
IF (NW(I,J).EQ.0.0) GO TO 91
FORSIJ=DRAGF(RW(I,J),V1,VXW(I,J),Gasdn1)

SHFPDWX=SHFPDWX+FORSIJ*VXW(I,J)*Dt*NW(I,J)/Gasdn1

DXAKPM=DXAKPM+FORSIJ

DMSSE=INSOLM(I,J)+SOLUMA(I,J)+H2OMAS(I,J)

VXW(I,J)=VXW(I,J)+FORSIJ*Dt/DMSSE

91 CONTINUE
90 CONTINUE

DXAKPM=DXAKPM/(Area1*Gasdn1*V1*V1/2.)

Now sum Shapiro's energy terms.

DDQWDM=THTCON-SHFPDWX+(DNTLA+TEUPEN)

Next collect Shapiro's momentum terms.

SHPMOM=DXAKPM-(DMOMIA+TEVMOM)

Sum injected and evaporated mass.

SHAPDW=(VAPINJ+DMDOTA)/Mdot1+TEVPMS

Calculate the change in the density and molecular wt.

DRGSIN=DMDOTA*Gasdn1/Mdot1
INDENS=VAPINJ*Gasdn1/Mdot1
EVDENS=TEVPMS*Gasdn1
Gasdn2=Gasdn1+EVDENS+INDENS+DRGSIN
Molwt2=(Gasdn1*Molwt1+EVDENS*18.019+MOWINA)/Gasdn2
Rhow2=Rhow1+EVDENS+INDENS
Rhoda2=Gasdn2-Rhow2
Mdot2=Mdot1+SHAPDW*MDOT1

Now set up the matrix coefficients and calculate the independent variables. Calculate deltas of the independent variables to set to state 2.

Condw=Condw+Tdeltm
Time =Time+Deltim
Delx=V1*Deltim
X=X+Delx
IF (X.GT.Xtot) GO TO 100
Area2=FNAREA(X*A0+Ratio)
W2=Rhow2/Rhoda2
U2=W2/(1.0+U2)
Gam2=(1.0+0.90*XU2)/(1.0+1.02*XU2)*Gam4

Calculate the independent variables.
Calculate the new values of the intrinsic parameters of the gas.
C
Msord2=Msord1*(1.+Aa*(1))
V2=V1*(1.+Aa(2))
Snsd2=snsd1*(1.+An(3))
T2=T1*(1.+Aa(4))
Gasdn2=Gasdn1*(1.+Ae(5))
P2=P1*(1.+Aal0))

Re-initialize with the new values.

Msord1=Msord2
V1=V2
Snsd1=Snsd2
T1=T2
Gasdn1=Gasdn2
Mix1=W2
P1=P2
Rhow1=Rhow2
Rhowa=Gasdn1-Rhow1
E1=Rhow*Rhow1*T1
Rm=Rma/(1.-E5)*E1/P1
Cv=(1.+1.02*U2)*Cva
Cp=(1.+0.90*U2)*Cpa
Gam1=Gam2
Area1=Area2
Mix1=Mdot2
DO 93 I=1,20
DAPLOT(I)=RA(I)*2.0E6
93 CONTINUE
GO TO 30
100 CONTINUE
IF (KPLOT.LE.1) GO TO 101
T1MAX=-1.E6
V1MAX=-1.E6
RHOWMAX=-1.E6
T1MIN=1.E6
V1MIN=1.E6
RHOWMIN=1.E6
DO 350 I=1,KPLOT
T1MAX=AMAX1(T1MAX,T1YYY(I))
V1MAX=AMAX1(V1MAX,V1YYY(I))
RHOWMAX=AMAX1(RHOWMAX,RHYYY(I))
V1MIN=AMIN1(V1MIN,V1YYY(I))
T1MIN=AMIN1(T1MIN,T1YYY(I))
V1MAX=AMAX1(V1MAX,V1YYY(I))
RHOWMAX=AMAX1(RHOWMAX,RHYYY(I))
RHOWMIN=AMIN1(RHOWMIN,RHYYY(I))
350 CONTINUE
INT1MX=INT(T1MAX+0.5)
IDEL=MOD(INT1MX,5)
T1MAX=INT1MX+5-IDEL
INT1MN=INT(T1MIN-0.5)
IDEL=MOD(INT1MN,5)
T1MIN=INT1MN+5-IDEL
INV1MX=INT(V1MAX+0.5)
IDEL=MOD(INV1MX,5)
V1MAX=INV1MX+5-IDEL
INV1MN=INT(V1MIN-0.5)
IDEL=MOD(INV1MN,5)
V1MIN=INV1MN+5-IDEL

A-16
IINRHMX=INT(RHOMIN*5)
IDEL=MOD(INPLOX*5)
RHOMAX=INRHMX+IDEL
INRHMN=INT(RHOMIN-0.5)
IDEL=MOD(INRHMN*5)
RHOMIN=INRHMN-IDEL
INPLOX=INT(PLTXXX(MPL3T)+0.5)
IDEL=MOD(INPLOX*10)
FLOXMX=INPLOX+10-IDEL
XXSTP=FLOXMX/10,
V1STP='(TMAX-V1MIN)/100,
T1STP=('TMAX-T1MIN)/10,
ROSTP=('RHOMAX-RHOMIN)/100,
CALL BGNPL(KPLOT+1)
CALL PAGE((12),9)
CALL NOBRDR
CALL AREA2D(10.7.5)
CALL XNAME('DISTANCE FROM ENGINE,(Meters)$,100)
CALL YNAME('TEMPERATURE,(Degrees Centigrade)$',100)
CALL GRAF(0.0,XXSTP,FLOMX,T1MIN,T1STP,T1MAX)
CALL CURVE(PLTXXX,T1YYY,KPLOT+1)
CALL ENDPL(KPLOT+1)
CALL BGNPL(KPLOT+2)
CALL PAGE((12),9)
CALL NOBRDR
CALL AREA2D(10.7.5)
CALL XNAME('DISTANCE FROM ENGINE,(Meters)$',100)
CALL YNAME('EXHAUST GAS SPEED,(Meters/Sec.)$',100)
CALL GRAF(0.0,XXSTP,FLOMX,V1MIN,V1STP,V1MAX)
CALL CURVE(PLTXXX,V1YYY,KPLOT+1)
CALL ENDPL(KPLOT+2)
CALL BGNPL(KPLOT+3)
CALL PAGE((12),9)
CALL NOBRDR
CALL AREA2D(10.7.5)
CALL XNAME('DISTANCE FROM ENGINE,(Meters)$',100)
CALL YNAME('GAS DENSITY,(Kg./Cubic Meter)$',100)
CALL GRAF(0.0,XXSTP,FLOMX,RHOMIN,ROSTP,RHOMAX)
CALL CURVE(PLTXXX,RHYYY,KPLOT+1)
CALL ENDPL(KPLOT+3)
101 CONTINUE
CALL DONEPL
202 FORMAT(/)
STOP
END

FUNCTION Esat(T)
DATA Ts/373.16/
DATA D05/3.0057149/
D5=ALOG(EWS), where EWS=1013.246 millibars.
IF (T.GT.Ts) GO TO 1
A=Ts/T
B=(1.-1./A)*11.344
C=-3.49149*(A-1.)
D1=-7.90298*(A-1.)
D2=5.02808*ALOG(A)
D3=-1.38166E-7*10.**(B-1.)
D4=8.1328E-8*10.**(C-1.)
Tt=D1+D2+D3+D4+D5
FUNCTION FNAREA(Z+R,Ratio)
 ZZZZ=Z
 RATT=Ratio
 FNAREA=AO
END

FUNCTION DRAGF=V*AIR*VDR*VR
 VR=V*VDR
 DRAGF=3.129E-4*R*VR*(1+2.34*E4*R* VR)

The drag force is calculated from the following formula:

\[
 (\text{drag force}) = 6\pi \eta R V (1 + (3/16) \text{Re})
\]

where \(\eta \) is the viscosity, \(R \) is the radius of the drop, \(V \) is its velocity relative to the air flow, \(\text{Re} \) is the Reynolds number, defined by

\[
 \text{Re} = \frac{2 \rho V}{\eta},
\]

where \(\rho \) is the density of the air.

END

PROGRAM MIESCAT

DIMENSION JAY(300),WHY(300),SIGH(300),CJAYPM(300),SIGHPM(300),

The nomenclature used in the documentation of this program follows that used in "HANDBOOK OF MATHEMATICAL FUNCTIONS", edited by ABRAMOWITZ and STEGUN, published by NATIONAL BUREAU OF STANDARDS, December, 1965.

JAY(N) are the Spherical Bessel Functions of the first kind,
WHY(N) are the Spherical Bessel Functions of the second kind,
SIGH(N) are the Riccati-Bessel Functions (with real argument),
CJAYPM(N) are the first derivatives of the Spherical Bessel Functions of the first kind,
SIGHPM(N) are the first derivatives of the Riccati-Bessel Functions.

ICPI(300),CTAU(300),CDPI(300)

CPI(N) are the Nth order Legendre Functions divided by the Sine of the scattering angle, \(\Theta \),
CTAU(N) are the first derivatives of the Legendre Functions with respect to the scattering angle \(\Theta \),
CDPI(N) are the first derivatives of the Legendre Functions with respect to the Cosine of the scattering angle \(\Theta \),

COMPLEX CHI(300),ETA(300),CHIFRM(300),ETAPRM(300),CSIGHR(300),
CH1(N) are the Spherical Bessel Functions of the third kind,
ETA(N) are the complex Riccati-Bessel Functions with complex arguments,
CH1FRM(N) are the first order derivatives of the Spherical Bessel Functions of the third kind,
ETAPRM(N) are the first order derivatives of the Riccati-Bessel Functions,
CSIGHR(N) are the ratios of SIGHPM(N) to SIGH(N) for complex arguments.
CS1TH is the S sub 1 element of the amplitude scattering matrix.
(See "ATMOSPHERIC RADIATION", vol. 1, by R. M. Goudy for the definition and nomenclature of the scattering equations.)
CS2TH is the S sub 2 element of the scattering matrix.
CCEXT is the extinction cross-section.
CEM is the complex index of refraction of the scatterer.
CXM is the complex wave number (=CEM*K0A).

REAL JAY, JAYO, K0A, K0, LAMBDAn, MM1, MM2

K0A is the wavenumber (=2PI/LAMBDA).
K0 is 2PI/LAMBDA.
LAMBDAn is the wavelength (in meters) of the incident radiation.
MM1 is the real part of the index of refraction.
MM2 is the imaginary part of the index of refraction.

DATA CPI(1), CPI(1), CPI(2) /-1.0, 0.0, -3.0/
DATA F, EPSG, CSPLGT /3.1415927, 6.8419413E-12, 3.00E8/
DATA RADIUS, LAMBDAn / 1.00E-6, 4123.0E-10/
DATA MM1, MM2 / 1.50, -0.01/
DATA THETA / 0.000000/
DATA RNDERR / 1.00E-8/
K0 = 2.0*PI/LAMBDAn
K0A = K0*RADIUS
CEM = CMPLX(MM1, MM2)
CXM = K0A*CEM
TEST1 = CABS(CXM)

IF (K0A.LT.0.5) .AND. (TEST1.LT.0.5) GO TO 50
IF (K0A.LE.1.0) GO TO 60
RNDA = -ALOG(10.**(-RNDERR))
RNDA323 = (3.0*RNDA)**(2./3.)
B = RNDA323/10.
NMAX = RNDA323
IF (K0A.GT.B) NMAX = RNDA323+(RNDA323**2+(2.0*K0A)**2)**(0.5))**0.5)/2.
UNEUNN = NMAX+0.5
TANHAL = (1.0-(K0A/UNEUNN)**2)**(0.5)
ALPHA = 0.5*ALOG((1.0+TANHAL)/(1.0+TANHAL))
JAY(NMAX) = EXP(UNEUNN*(TANHAL-ALPHA))/(2.0*(K0A*TANHAL*UNEUNN)**0.5)
NMAX = NMAX-1
IF (NMAX.GT.299) GO TO 100
JAY(NMAX+1) = 0.0
SUMJ = (2*NMAX+1)*JAY(NMAX+1)*JAY(NMAX)
DO 1 I = 1, KMAX
N2N1 = 2*(NMAX-I+1)+1
JAY(NMAX-I) = N2N1*JAY(NMAX-I+1)/K0A-JAY(NMAX-I+2)
SUMJ = SUMJ+JAY(NMAX-I)*JAY(NMAX-I)*N2N1
CONTINUE
JAY0 = 2.0*K0A-JAY(1)
SUMJ = SUMJ+JAY0*JAY0
SUMJ = SUMJ**0.5
JAY(I) = JAY(I)/SUMJ
WHYO = -COS(K0A)/K0A
WHY(1) = WHYO/K0A-SIN(K0A)/K0A
WHY(2) = WHYN(K0A)
COSTH = COS(THETA)
SINTH=(1.-COSTH*COSTH)**(0.5)
SINTH=SIN(THETA)
CPI(2)=-3.*COSTH
SINTH2=SINTH*SINTH
CTAU(1)=-COSTH
DO 2 N=2,NMAX
WHY(N+1)=(2*N+1)*WHY(N)/KOA-WHY(N-1)
JAY(N)=JAY(N)/SUMJ
CHI(N)=CMPLX(JAY(N),WHY(N))
CPI(N+1)=((2*N+1)/N)*COSTH*CPI(N)-((N+1)*N)*CPI*(N-1)
CTAU(N)=COSTH*CPI(N)-SINTH2*CPI(N)
CPI(N+1)=((2*N+1)/N)*COSTH*CPI(N)-((N+2)/N-1)*CPI*(N-1)
2 CONTINUE
CHI(NMAX+1)=CMPLX(JAY(NMAX+1),WHY(NMAX+1))
CHECK ACCURACY OF JAY'S HERE BY JAY0 AND JAY1
CEN=CMPLX(MM1,MM2)
CXM=KOAK*CEM
DO 3 N=1,NMAX
SIGH(N)=KOAK*JAY(N)
ETA(N)=KOAK*CHI(N)
CJAYFM(N)=(N*JAY(N-1)-(N+1)*JAY(N+1))/(2*N+1)
CHIFRM(N)=(N*CHI(N-1)-(N+1)*CHI(N+1))/(2*N+1)
3 CONTINUE
CS1TH=(0.0,0.0)
CS2TH=(0.0,0.0)
CCEXT=(0.0,0.0)
DO 4 N=1,NMAX
NFAC21=2*N+1
NFAC12=NFAC21/(N*(N+1))
CS1TH=CS1TH+NFAC12*(CAMIM(N)*CPI(N)+CBMIE(N)*CTAU(N))
CS2TH=CS2TH+NFAC12*(CAMIM(N)*CTAU(N)+CBMIE(N)*CPI(N))
CCEXT=CCEXT+(2*N+1)*(CAMIM(N)+CBMIE(N))
QSCA=QSCA+NFAC21*(CAMIM(N)*CONJG(CAMIM(N))+
1CBMIE(N)*CONJG(CBMIE(N)))
4 CONTINUE
CS1TH=CS1TH*ELECO*(0.0,-1.0)
CS2TH=CS2TH*ELECO*(0.0,-1.0)
CCEXT=(2.*PI/KOA)*REAL(CCEXT)
QEXT=(2./(KOA*KOA))*REAL(CCEXT)
QSCA=QSCA*(2./(KOA*KOA))
QABS=QEXT-QSCA
CPUT IN PRINT STATEMENTS HERE
GO TO 200
50 CONTINUE
CMPLF1=(CEM*CEM-1.)/(CEM*CEM+2.)
CS1TH=KOAK**3*CMPLF1
CS2TH=CS1TH*COS(THETA)
REEL=CMBS(CMPLF1)
QSCA=REEL**2.*QMAG(CMPLF1)
QABS=4.*AIMAG(CMPLF1)
PRINT out RAYLEIGH scattering here,
GO TO 200
60 CONTINUE
A=MM1
B=MM2**2

A-20
Z1 = (A+B)**2 + 4 \times (A-B) + 4.
Z2 = 4 \times (A+B)**2 + 12 \times (A-B) + 7.
QSCA = 9 \times (((A+B)**2 + 1) + (A-B)**2) \times 2 + 36 \times (A-B) \times KOA**4
QEXT = 1 \times (1.2/\sqrt{Z1}) \times (A+B - 3) \times KOA**2 + 8 \times MM1*MM2*KOA**2/\pi**2/Z1 \times (3 + Z1**2)
QH = 1 \times (Z1**2/2) \times (A+B)**2 + 4 \times (A-B - 5) \times MM1*MM2*KOA**3
2 + 8 \times (3 \times Z1**2) \times (((A+B)**2 + A-B - 2) \times (A+B) \times KOA**4
PRINT OUT HIGHER ORDER EXPANSION RESULTS HERE
GO TO 200

CONTINUE

COMPLEX FUNCTION FMCalc(X,N,RNDErr)
COMPLEX CIX*X,CNUM(300),CDEN(300),CAH(300),FMCalc,CNUM
CDE = CDEN(1) / (1.0,0.0)
CIX = CDE**X/X
DO 1 M=1,300
CAH(M) = -(2*(N+M)) * CIX
CONTINUE
CNUM(1) = CAH(1)
CNUM(2) = CAH(2) + 1.0 / CAH(1)
CDEN(2) = CAH(2)
FMCalc = CNUM(1) * CNUM(2) / CDEN(2)
DO 2 H=3,300
CNUM(H) = CAH(H) + 1.0 / CNUM(H-1)
CDEN(H) = CAH(H) + 1.0 / CDEN(H-1)
CNUM = CNUM(H) / CDEN(H)
FMCalc = FMCalc * CNUM
F = CABS(CNUM)
ABS = ABS(D-1.0)
IF (ABS LT PM DeRR) GO TO 3
CONTINUE
RETURN
END