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The extension of aerosol direct fluorination techniques to the syntheses of 

the here-to-fore unknown highly branched perfluoroketones F-3,3-dimethyl-2- 

butanone (F[-pinacolone) and F-2,2,5-trimethyl-3-hexanone (rF-provalone v from 

3,3-dimethyl-2-butanone (pinacolone) and 2,2,A,4-tetramethyl-3-pentanone 

(pivalone) respectively demonstrates again the efficacy of the aerosol direct 

fluorination process for the synthesis of perfluoroketones directly from 

ketones. The interesting rearrangement of the hydrocarbon di-tert-butyl 

ketone (pivalone) to the perfluorinated tert-butyl iso-butyl ketone, 

/"F-provalone^ is unprecedented in our experience and does not occur at the 

monofluorination step but later in the fluorination.  Isolated yields of 12% 

and 9% though modest are unadjusted by physical losses of recoverable 

hydrocarbons present at the termination of the reaction.  Perfluorinated 

product distributions, concentrations of products collected from the reactor 

effluent, are 23% and 71% of the total material traversing the reactor. 

kit ,:   > 

I u M ' ; 

«v«>i! i *' * ** 

—  ..I   • — 



n 
i 

MS 3-307C REVISED 

Aerosol Direct Fluorlnatlon:  Syntheses of the Highly 

Branched Ketones, F-Plnacolone and F-Provalone 

by 

James L. Adcock and Mark L. Robin 
Department of Chemistry 
University of Tennessee 
Knoxville, TN 37996-1600 

The aerosol direct fluorination method provides a continuous process for 

the production of perfluorocarbons from hydrocarbons with efficient fluorine 

utilization and minimal fragmentation. The application of this process to 

alkanes, ethers, cycloalkanes, and ketals has been demonstrated.  Exten- 

sion of this noval process to ketones has provided direct access to analog 

perfluoroketones in modest yields, and has led to the successful perfluorina- 

tion of methyl ketones^ as well as both symmetric and unsymmetric long 

chain ketones.  Aerosol direct fluorination of the cycloalkyl methyl 

ethers or cycloalkyl ethylene glycol ketals have produced the corresponding 

perfluorinated analogs, which can be converted in good yields to the corre- 

sponding perfluorocycloketones via treatment with 100% sulfuric acid.  We 

report here the aerosol direct fluorination of the highly branched ketones 

3,3-dimethyl-2-butanone (pinacolone) and 2,2,4,4-tetramethyl-3-pentanone 

(pivalone); aerosol direct fluorination of 2,2,4,4-tetramethyl-3-pentanone 

results in the first example of a skeletal rearrangement occuring during the 

aerosol fluorination of ketones. 

In general, routes to perfluoroketones, other than the aerosol direct 

fluorination process, require either the prior preparation of highly chlorin- 

ated species, or (in most cases) highly fluorinated species.  The Swarts 

reaction and other reactions involving halogen exchange require preparation 

»i  •   



of the corresponding chlorocarbons prior to fluorination, and the higher 

perchlorocarbons are often difficult to prepare. Typical preparations of 

perfluoro ketones include the decomposition over Lewis acid catalysts of 

perfluoroalkyene epoxides"-^ and the reaction of perfluoroalkyl carbox- 

ylates or perfluoroacyl chlorides with organometallic reagents such as 

perfluoropropyl lithium, perfluoropropyl magnesium iodide, or perfluoropropyl 

zinc iodide.14-18 jn contrast to the above, the aerosol direct fluorina- 

tion method has provided direct access to perfluoroketones from the relative- 

ly inexpensive hydrocarbon analogs. 

Whereas a number of straight chain perfluoro ketones are known, rela- 

tively few branched perfluoroketones are known.  The fluoride ion catalyzed 

addition of perfluoroacyl fluorides to F-propene affords a route to perfluoro 

ketones containing the branched perfluoroisopropyl group, 9-23 ancj these 

represent the majority of the known branched perfluoroketones.  Only two 

other branched perfluoroketones have been reported in the literature: 

F-4-methyl-2-pentanone, formed via the Lewis acid catalyzed opening of 

F-3-methyl-2-butenyl epoxide*" and F-4-methyl-2-heptanone, formed via the 

treatment of F-2-chlorosulfato-4-methylheptane with potassium fluoride.^ 

Results and Discussion 

The aerosol direct fluorination of 3,3-dimethyl-2-butanone produced 

F-3,3-dimethyl-2-butanone, 3-difluoromethyl-F-methyl-2-butanone and 3,3-bls- 

(difluoromethyl)-F-2-butanone as the major products, constituting 23%, 25%, 

and 12% of the total products collected by weight, respectively. The aerosol 

system is dependent on the generation of a partlculate aerosol that is 

ideally crystalline, monodisperse, and with little tendency to aggregate.  If 

the conditions considered ideal are met, percent yields based on throughput 

(amounts injected) and product (collected) percent distributions will differ 
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by only a few percent. As deviations from this ideality occur, the percent 

yields based on throughput begin to fall due to physical losses within the 

aerosol generator and initial reaction stage (see ref 1). These losses can 

be significant and result in sometimes significant amounts of unfluorinated 

or complex mixtures of generally less than trifluorinated products collected 

at the close of the reactions when the system warms to ambient or is opened 

for cleaning between reaction runs.  Although significant advances in optimi- 

zation have been made, this is as much art as science.  If no corrections are 

made due to recovered unreacted or partially reacted materials, the yield of 

F-3,3-dimethyl-2-butanone was 12%. 

The isolation of significant quantities of the mono- and di-hydryl 

products reflects the sterically crowded nature of the fluorinated tert-butyl 

group; wherein replacement of the final hydrogens becomes increasingly diffi- 

cult due to increased fluorine shielding of the residual hydrogens of the 

fluorinated tert-butyl group.  It should be noted that in the aerosol direct 

fluorination of straight chain ketones the major product in all cases is the 

perfluorinated product; mono- and di-hydryl products typically amount to no 

more than a few percent of the total products collected. »•* 

Aerosol direct fluorination of 2,2,4,4-tetramethyl-3-pentanone 

(pivalone) produced £-2,2,5-trimethyl-3-hexanone ("F-provalone") as the major 

product.  This result represents the first example of a skeletal rearrange- 

ment occuring during the aerosol fluorination of ketones.  Since the first 

step in the direct fluorination process involves the abstraction of hydrogen, 

it was originally proposed that this novel rearrangement involved a 

rearrangement of the initially formed primary radical to the more stable 

tertiary radical, followed by fluorination in the usual fashion: 



F2 —> 2F« 

CH3 

F«  + (CH3)3C-C—C-CH3 - 

! 
CH3 

• CH2 
0  I 0 

(CH3)3C-C—C-CH3  > (CH3)3C-(i-CH2-C-CH3 

•CH2 

-*•    HF + (CH3)3C-C—C-CH3 

CH3 

CH3 CH3 

(F2) 

0        V 
(CF3)3C-C-CF2-CF(CF3)2 

Subsequent experiments with a low concentration of fluorine (1:2 molar ratio 

of hydrocarbon to fluorine) showed however that the rearrangement must occur 

sometime after the first fluorine is added; the major product in these low 

fluorine runs (besides unreacted 2,2,4,4-tetramethyl-3-pentanone) is 

l-fluoro-2,2,4,4-tetramethyl-3-pentanone, resulting from the simple replace- 

ment of hydrogen by fluorine and involving no rearrangement.  The possibility 

of photolytic rearrangement of the starting material in the ultraviolet stage 

of the aerosol fluorination apparatus was also eliminated; reactions at low 

fluorine concentration both in the dark and with the operating ultraviolet 

stage produce l-fluoro-2,2,4,4-tetramethyl-3-pentanone as the major product. 

The possibility of thermal rearrangement of the starting material in the 

flash evaporator/sublimator unit of the aerosol fluorination apparatus was 

also eliminated by subsequent experiments.  For all the reactions at low 

fluorine concentrations only very small amounts of other fluorinated 

materials were present, but difficulty in separation and minimal quantities 

prevented their characterization.  It would appear then that this 
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rearrangement occurs sometime after the introduction of the first fluorine. 

The elucidation of the mechanism of this noval rearrangement should prove to 

be interesting. 

For a typical run at high fluorine concentrations, £-2,2,5-trimethyl- 

3-hexanone constituted 71% of the total products collected by weight, without 

correcting for unreacted or partially reacted materials the percent yield 

based on the amount of 2,2,4,4-tetramethyl-3-pentanone injected was 9%.  The 

majority of losses are due to physical losses within the reactor as evidenced 

by the finding of unreacted 2,2,4,4-tetraraethyl-3-pentanone inside the 

reactor upon opening of the system for cleaning. 

The  F nmr spectrum of £-2,2,5-trimethyl-3-hexanone (see expt. section) 

consists of four multiplets of relative intensity 9:6:2:1 at 0 = -61.61, 

-71.82, -109.32, and -184.26 ppm (1% CFCI3/CDCI3 internal standard), 

corresponding to the tert-butyl CF3 groups, the remaining CF3 groups, the CF2 

group, and the methine fluorine, respectively.  The CF^  group appears as a 

hexadectet of doublets at 0  = -109.32 ppm due to coupling with all CF3 groups 

and the methine fluorine.  The hexadectet arises from the fact that the 

coupling constants of the CF2 group with the two different type CF3 groups 

are identical.  Further confirmation of the structure is supplied by the mass 

spectrum. The chemical ionization mass spectrum includes intense peaks at 

m/e • 483, 467, and 447 corresponding to the molecular ion plus CH5, the 

molecular ion plus hydrogen, and the molecular ion minus fluorine, 

respectively, in addition to a base peak, at m/e = 219 due to the C^F3+ 

fragment. The electron impact mass spectrum exhibits a peak at m/e = 447 due 

to the molecular ion minus fluorine and a consistent fragmentation pattern. 

Experimental 

The basic aerosol fluorinator design and a basic description of the 



The basic aerosol fluorinator design and a basic description of the 

process is presented elsewhere.  A modified aerosol generator adapted to a 

flash evaporator fed by a syringe pump driving a 5 raL Precision Sampling Corp 

"Pressure Lok" Syringe was employed for the reactions. "  Workup of 

products following removal of hydrogen fluoride consisted of vacuum line 

fractionation, infrared assay of fractions, gas Chromatographie separation of 

components using either a 7 meter x 3/8" 13% Fluorosilicone QF-1 (Analabs) 

stationary phase on 60-80 mesh, acid washed Chromosorb P conditioned at 225°C 

(12 h) or a 4 meter x 3/8" 10% SE-52 phenyl-methyl silicone rubber on acid 

washed 60-80 mesh Chromosorb P, conditioned at 250°C (12 h).  Following gas 

Chromatographie separation (Bendix model 2300, subambient multiController) 

all products of significance were collected, transferred to the vacuum line, 

assayed and characterized by vapor phase infrared spectrophotometry (PE 

1330), electron impact (70 eV) and chemical ionlzation (CH4 plasma) mass 

spectrometry (Hewlett-Packard GC/MS, 5710A GC, 5980A IIS, 5934A computer) and 

1      19 H and  F nuclear magnetic resonance (JEOL FX900, omniprobe) in CDCI3 with 

1% CFCI3 internal standard.  Elemental analyses were performed by Schwarzkopf 

Microanalytical Laboratory, Woodside, N.Y. 

Aerosol Fluorination of 3,3-dimethyl-2-butanone.  3,3-Dlmethyl-2- 

butanone (Aldrich) was used as received. A pump speed corresponding to 2.8 

ramol/h was established and 0.8 mL 3,3-dimethyl-2-butanone was delivered over 

a 2.25 h period. Details of the aerosol fluorination parameters are given in 

Table 1. From the crude product was isolated 0.238 g (23%) F-3,3-dimethyl- 

2-butanone, 0.258 g (25%) 3-difluoromethyl-F-3-raethyl-2-butanone, and 0.134 g 

(13%) 3,3-bis(difluororaethyl)-F-2-butanone (GLC temperature program on the 

QF-1 column; 0°C, 2 m; l°C/m to 10°C; 10°C, 1 m; 20°C/m to 180°C).  The yield 

of £-3,3-dimethyl-2-butanone based on 3,3-dimethyl-2-butanone injected was 

12%. The characterization of these new compounds are given below. 
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F-3,3-Dimethyl-2-butanone.     CF3
AC(0)C(CF3

B)3:     IR  (cm-1)   1770   (m), 

1275   (vs),   1230   (s),   1200   (s),   1055   (w),   985   (m),   870   (m),   730   (m),   720   (m), 

690   (w).     Major  mass   cations  were   [m/e(int.)formula]:     [CI]   317(59)C6Fi20H, 

M+H;   297(84)C6FnO,   M-F;   97 (100)C2F30;   69(58)CF3:     [El]   181(16)C4F7; 

97(21)C2F30;   69(100)CF3.     19F  NMR   [1%  CFC13/CDC13]   0A = -73.88  ppm   (d) , 

0B  = -61.12   ppm   (q),   J^  =  6.1   Hz.     Anal.   Calcd   for  C6F120:     C,   22.80;   F, 

72.13.     Found:     C,   21.37;   F,   72.43. 

3-Dlfluoromethyl-F-3-methyl-2-butarione.     CF3
AC(0)(CF2

BHc)(CF3
D)2:     IR 

(cm-1)   3015   (w),   1760   (m),   1390   (m),   1370   (m),   1275   (vs),   1235   (vs),   1190 

(s),   1135   (a),   1120   (m),   1065   (m),   1020   (w),   980   (s),   910   (w),   870   (s),   765 

(m),   750   (m),   730   (s),   705   (m),   655   (m).     Major  mass   cations  were 

(m/e( int.) formula]:      [CI]   300(8)C6FUOH3 ,  M+2H;   164( 100)C^F6H2;   97(15)C2F30: 

[El]   231(28)C5F9;    164(33)C4F6H2;    160(61)CltF5OH;   97(50)C2K3O;   69(100)CF3; 

51(38)CF2H.      19F  NMR   [1%   CFC13/CDC13]   0A  =  -7_".85   ppm   (m) ,   0B   =  -126.69 

ppm   (m),   0Q =  -62.05   ppm   (m).   lH NMR 5C = +6.63   ppm   (t);   JCF?H 
=   51.5 

Hz. 

3,3-Bis(dlfluoromethyl)-F-2-butanone.     CF3
AC(0)(CF3

B)(CF2
cHD)2:     IR 

(cm-1)   3010  (w),   1755   (m),   1365   (w),   1275  (w),   1250   (vs),   1225   (vs),   1190 

(s),   1160   (a),   1130   (a),   1060   (m),   1020   (a),   900   (w),   870   (w),   730   (s). 

Major  mass   cations  were   [n>/e(int. )formula]:      [CI]   282( lOOCgF^OH^,   M+2H; 

212(36)C5F7OH3;   97(65)C2F30;   69(43)CF3;   [El]   212(64)C5F70H3;   146(41)C6F3OH; 

142(100)C4F1+OH2;   97(35)C2F30;   69(85)CF3;   51(43)CF2H.     19F  NMR   [1% 

CFC13/CDC13]  0A = -74.61   ppm  (m),  (Ög - -62.99  ppm  (m),  0C = -125.18  ppm 

(m).     *H NMR 6D = +6.59  ppm  (t);   JCF2H 
= 52-7  H»' 

Aerosol  Fluorination  of  2,2,4>4-Tetramethyl-3-pentanone.     2,2,4,4-Tetra- 

methyl-3-pentanone   (99%,   Fluka  Chemicals)   was   used   as   received.     A  pump   speed 
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corresponding to 2.9 mmol/h was established and 1.0 mL 2,2,A,4-tetramethyl- 

3-pentanone delivered over a 2 hour period.  Details of the aerosol fluorina- 

tion parameters are given in Table 1.  From the crude product (0.346 g) was 

isolated 0.246 g (71%) F-2,2,5-trimethyl-3-hexanone (GLC temperature program 

on the SE-52 gas Chromatographie column:  30°C, 5 m; 5°C/m to 100°C; 100°C, 1 

m; 20°C/m to 180°C).  The yield of F-2,2,5-trimethyl-3-hexanone based on the 

amount of 2,2,4,4-tetramethyl-3-pentanone injected was 9%.  Upon opening up 

the reactor for cleaning, significant amounts of unreacted 2,2,4,4-tetra- 

methyl-3-pentanone were found.  Runs with low fluorine concentrations (ultra- 

violet stage on or off) produced 1-fluoro-2,2,4,4-tetramethyl-3-pentanone as 

the major product.  Characterizations of these compounds are given below. 

F-2-2,5-Trimethyl-3-hexanone.  (CF3
A)3CC(C)CF2

BCFC(CF3
D)2:  IR (cm

-1) 

1770 (m), 1270 (vs), 1205 (m), 1150 (m), 1140 (m), 1045 (m), 980 (s), 730 

(s), 710 (m), 680 (m).  Major mass cations were [ra/e(int.)formula]:  [CI] 

483(2)C10Fi8OH5, M+CH5; 467(12)C9Fi8OH, M+H; 447(54)C9Fi70, M-F; 

247(55)C5F90; 219( 100)C4F9; 201(84)C1+F8; 181(98)C,F7; 69(75)CF3:  [El] 

447(I)C9F170, M-F; 247(37)C5F90; 219(43)C4F9; 69(100)CF3.  
19F NMR (1% 

CFC13/CDC13) 0A = -61.61 ppm (t of m), 0B = "109.32 ppm (hexadec of 

doublets), 0Q  = -184.26 ppm (m), Op = -71.82 ppm (t of d); JAB = JBD 

= 10.26 Hz, JAH = 0.88 Hz, JAC - 0, JBC = 4.40 Hz, JCD = 6.10 Hz. 

Anal. Calcd for CgF180:  C, 23.19; F, 73.37.  Found:  C, 22.33; F, 71.16. 

l-Fluoro-2-2,4,4-tetramethyl-3-pentanone.  (CH3
A)3CC(0)(CH2

BFc)(CH3
D)2i 

IR (cm-1) 2980 (m), 2950 (s), 2900 (m), 2870 (m), 1680 (s), 1475 (s), 1360 

(s), 1290 (s), 970 (s).  Major mass cations were [m/e(int.)formula]:  (CI) 

161(4)C9Hi8OF, M+H; 103(28)C5H8OF; 101(46)C5H6OF; 59(100)C2FO:  [SI] 

69(30)C5H9; 57(23)CtH9; 44(71)C2^0; 32(100)CH2F.  
19F NMR (1% 

CFCl3/CDCl3/.2% CHC13) f)c  = -221.76 ppm (t); lH NMR fiA = +1.24 ppm (s), 

6ß • +4.40 ppm (d), ^n • +1.29 ppm (s); JcH2F = ^•* i{z' 

—   _. ..... M 
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