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lx\fhe extension of aerosol direct fluorination techniques to the syntheses of

the here-to—fore unknown highly branched perfluoroketones F-3,3-dimethyl-2-
butanone (F-pinacolone) and F-2,2,5-trimethyl-3-hexanone (ﬁﬁ-provaloue*) from
3,3-dimethyl-2-butanone (pinacolone) and 2,2,4,4-tetramethyl-3-pentanone
(pivalone) respectively demonstrates again the efficacy of the aerosol direct
fluorination process for the synthesis of perfluoroketones directly from
ketones. The interesting rearrangement of the hydrocarbon di-tert-butyl
ketone (pivalone) to the perfluorinated tert-butyl iso-butyl ketone,
9Efprovaloneq_1s unprecedented in our experience and does not occur at the
monofluorination step but later in the fluorination. Isolated yields of 12%
and 9% though modest are unadjusted by physical losses of recoverable
hydrocarbons present at the termination of the reaction. Perfluorinated
product distributions, concentrations of products collected from the reactor

effluent, are 23% and 71% of the total material traversing the reactor.
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Aerosol Direct Fluorination: Syntheses of the Highly

Branched Ketones, F-Pinacolone and F-Provalone

by
James L. Adcock and Mark L. Robin

Department of Chemistry

University of Tennessee

Knoxville, TN 37996-1600

The aerosol direct fluorination method provides a continuous process for
the production of perfluorocarbons from hydrocarbons with efficient fluorine
utilization and minimal fragmentation. The application of this process to
alkanes, ethers, cycloalkanes, and ketals has been demonstrated.l Exten-
sion of this noval process to ketones has provided direct access to analog
perfluoroketones in modest yilelds, and has led to the successful perfluorina-
tion of methyl ketones? as well as both symmetric and unsymmetric long
chain ketones.3 Aerosol direct fluorination of the cycloalkyl methyl
ethers or cycloalkyl ethylene glycol ketals have produced the corresponding
perfluorinated analogs, which can be converted in good yields to the corre-
sponding perfluorocycloketones via treatment with 1007 sulfuric acid.* We
report here the aerosol direct fluorination of the highly branched ketones
3,3-dimethyl~2-butanone (pinacolone) and 2,2,4,4-tetramethyl-3-pentanone
(pivalone); aerosol direct fluorination of 2,2,4,4-tetramethyl-3-pentanone
results in the first example of a skeletal rearrangement occuring during the
aerosol fluorination of ketones.
In general, routes to perfluoroketones, other than the aerosol direct

fluorination process, require either the prior preparation of highly chlorin-
ated species, or (in most cases) highly fluorinated species. The Swarts

reaction and other reactions involving halogen exchange require preparation
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of the corresponding chlorocarbons prior to fluorination, and the higher
perchlorocarbons are often difficult to prepare. Typical preparations of
perfluoro ketones include the decomposition over Lewis acid catalysts of
perfluoroalkyene epoxide36’13 and the reaction of perfluoroalkyl carbox-
ylates or perfluoroacyl chlorides with organometallic reagents such as
perfluoropropyl lithium, perfluoropropyl magnesium iodide, or perfluoropropyl
zinc iodide.l4~18 1In contrast to the above, the aerosol direct fluorina-
tion method has provided direct access to perfluoroketones from the relative-
ly inexpensive hydrocarbon analogs.3

Whereas a number of straight chain perfluoro ketones are known, rela-
tively few branched perfluoroketones are known. The fluoride ion catalyzed
addition of perfluoroacyl fluorides to F-propene affords a route to perfluoro
ketones containing the branched perfluoroisopropyl group,lg'23 and these
represent the majority of the known branched perfluoroketones. Only two
other branched perfluoroketones have been reported in the literature:
F-4-methyl-2-pentanone, formed via the Lewis acid catalyzed opening of
F-3-methyl-2-butenyl epoxide10 and F-4-methyl-2-heptanone, formed via the

treatment of F-2-chlorosulfato-4-methylheptane with potassium fluoride .24

Results and Discussion

The aerosol direct fluorination of 3,3-dimethyl-2-butanone produced
F-3,3-dimethyl-2-butanone, 3-difluoromethyl-F-methyl-2-butanone and 3,3-bis-
(difluoromethyl)-F-2-butanone as the major products, constituting 237, 25%,
and 127 of the total products collected by weight, respectively. The aerosol
system is dependent on the generation of a particulate aerosol that is
ideally crystalline, monodisperse, and with little tendency to aggregate. If
the conditions considered ideal are met, percent yields based on throughput

(amounts injected) and product (collected) percent distributions will differ
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by only a few percent. As deviations from this ideality occur, the percent
yields based on throughput begin to fall due to physical losses within the
aerosol generator and initial reaction stage (see ref 1). These losses can
be significant and result in sometimes significant amounts of unfluorinated
or complex mixtures of generally less than trifluorinated products collected
at the close of the reactions when the system warms to ambient or is opened
for cleaning between reaction runs. Although significant advances in optimi-
zation have been made, this is as much art as science. If no corrections are
made due to recovered unreacted or partially reacted materials, the yield of
F-3,3-dimethyl-2-butanone was 12%.

The isolation of significant quantities of the mono- and di-hydryl
products reflects the sterically crowded nature of the fluorinated tert-butyl
group; wherein replacement of the final hydrogens becomes increasingly diffi-
cult due to increased fluorine shielding of the residual hydrogens of the
fluorinated tert-butyl group. It should be noted that in the aerosol direct
fluorination of straight chain ketones the major product in all cases is the
perfluorinated product; mono- and di-hydryl products typically amount to no
more than a few percent of the total products collected.2>3

Aerosol direct fluorination of 2,2,4,4-tetramethyl-3-pentanone
(pivalone) produced F-2,2,5-trimethyl-3-hexanone (fg-provalone") as the major
product. This result represents the first example of a skeletal rearrange-
ment occuring during the aerosol fluorination of ketones. Since the first
step in the direct fluorination process involves the abstraction of hydrogen,
it was originally proposed that this novel rearrangement involved a
rearrangement of the initially formed primary radical to the more stable

tertiary radical, followed by fluorination in the usual fashion:
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(CF3)3C"E-CF2-CF(CF3)2

Subsequent experiments with a low concentration of fluorine (1:2 molar ratio
of hydrocarbon to fluorine) showed however that the rearrangement must occur
sometime after the first fluorine is added; the major product in these low
fluorine runs (besides unreacted 2,2,4,4-tetrametﬁyl-3-pentanone) is
1-fluoro-2,2,4 ,4-tetramethyl-3-pentanone, resulting from the simple replace-
ment of hydrogen by fluorine and involving no rearrangement. The possibility
of photolytic rearrangement of the starting material in the ultraviolet stage
of the aerosol fluorination apparatus was also eliminated; reactions at low
fluorine concentration both in the dark and with the operating ultraviolet
stage produce 1-fluoro-2,2,4,4-tetramethyl-3-pentanone as the major product.
The possibility of thermal rearrangement of the starting material in the
flash evaporator/sublimator unit of the aerosol fluorination apparatus was
also eliminated by subsequent experiments. For all the reactions at low
fluorine concentrations only very small amounts of other fluorinated
materials were present, but difficulty in separation and minimal quantities

prevented their characterization. It would appear then that this




rearrangement occurs sometime after the introduction of the first fluorine.

' The elucidation of the mechanism of this noval rearrangement should prove to

be interesting.

For a typical run at high fluorine concentrations, F-2,2,5-trimethyl-

sy

3-hexanone constituted 71% of the total products collected by weight, without 1
correcting for unreacted or partially reacted materials the percent yield |
based on the amount of 2,2,4,4-tetramethyl-3-pentanone injected was 9%Z. The
majority of losses are due to physical losses within the reactor as evidenced 1
by the finding of unreacted 2,2,4,4-tetramethyl-3-pentanone inside the 1
reactor upon opening of the system for cleaning.

The '°F nor spectrum of F-2,2,5-trimethyl-3-hexanone (see expt. section)
consists of four multiplets of relative intensity 9:6:2:1 at ¢ = -61.61,

-71.82, -109.32, and -184.26 ppm (1% CFCl3/CDCly internal standard),

T R TR

corresponding to the tert-butyl CF3 groups, the remaining CF3 groups, the CF;

group, and the methine fluorine, respectively. The CF, group appears as a

hexadectet of doublets at @ = —109.32 ppm due to coupling with all CF3 groups
and the methine fluorine. The hexadectet arises from the fact that the
coupling constants of the CF; group with the two different type CF3 groups
are identical. Further confirmation of the structure is supplied by the mass
spectrum. The chemical ionization mass spectrum includes intense peaks at
m/e = 483, 467, and 447 corresponding to the molecular ion plus CHs, the
molecular ion plus hydrogen, and the molecular ion minus fluorine,
respectively, in addition to a base peak at m/e = 219 due to the C4Fqt ]
fragment. The electron impact mass spectrum exhibits a peak at m/e = 447 due

to the molecular ion minus fluorine and a consistent fragmentation pattern.

Exgerimental

The basic aerosol fluorinator design and a basic description of the
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The basic aerosol fluorinator design and a basic description of the

process 1is presented elsewhere.! A modified aerosol generator adapted to a
flash evaporator fed by a syringe pump driving a 5 mL Precision Sampling Corp
“"Pressure Lok" Syringe was employed for the reactions.2? Workup of %
products following removal of hydrogen fluoride consisted of vacuum line
fractionation, infrared assay of fractions, gas chromatographic separation of
components using either a 7 meter x 3/8" 13% Fluorosilicone QF-1 (Analabs) 1
stationary phase on 60-80 mesh, acid washed Chromosorb P conditioned at 225°C 4
(12 h) or a 4 meter x 3/8" 10% SE-52 phenyl-methyl silicone rubber on acid
washed 60-80 mesh Chromosorb P, conditioned at 250°C (12 h). Following gas
chromatographic separation (Bendix model 2300, subambient multicontroller)

all products of significance were collected, transferred to the vacuum line,

assayed and characterized by vapor phase infrared spectrophotometry (PE

% 1330), electron impact (70 eV) and chemical ionization (CH, plasma) mass 1
spectrometry (Hewlett-Packard GC/MS, 5710A GC, 5980A 1S, 5934A computer) and

1H and 19F nuclear magnetic resonance (JEOL FX900, omniprobe) in CDCl3z with

1% CFClj3 internal standard. Elemental analyses were performed by Schwarzkopf
Microanalytical Laboratory, Woodside, N.Y.

Aerosol Fluorination of 3,3-dimethyl-2-butanone. 3,3-Dimethyl-2-

butanone (Aldrich) was used as received. A pump speed corresponding to 2.8
mmol/h was established and 0.8 mL 3,3-dimethyl-2-butanone was delivered over
a 2.25 h period. Details of the aerosol fluorination parameters are given in
Table 1. From the crude product was isolated 0.238 g (23%) F-3,3-dimethyl-
2-butanone, 0.258 g (25%) 3-difluoromethyl-F-3-methyl-2-butanone, and 0.134 g
(13%) 3,3-bis(difluoromethyl)-F-2-butanone (GLC temperature program on the
QF-1 column; 0°C, 2 m; 1°C/m to 10°C; 10°C, 1 m; 20°C/m to 180°C). The yield
of F-3,3-dimethyl-2-butanone based on 3,3-dimethyl-2-butanone injected was

12%. The characterization of these new compounds are given below.




F-3,3-Dimethyl-2-butanone. CF3AC(0)C(CF3B)3: IR (em™!) 1770 (m),

} 1275 (vs), 1230 (s), 1200 (s), 1055 (w), 985 (m), 870 (m), 730 (m), 720 (m),
690 (w). Major mass cations were [m/e(int.)formula]: [CI] 317(59)CgF120H4,
MHH; 297(84)CgF110, M-F; 97(100)C,F30; 69(58)CF3: [EI] 181(16)CyF7;
97(21)C,F30; 69(100)CF3. ‘°F NMR [1% CFCl3/CDCl3] fs = -73.88 ppm (d),
#p = -61.12 ppm (q), Jpg = 6.1 Hz. Anal. Caled for CgF;0: C, 22.80; F,
72.13. Found: C, 21.37; F, 72.43.

3-Difluoromethyl-F-3-methyl-2-butanone. CF3AC(O)(CFZBHC)(CF3D)2: IR i

(cm_l) 3015 (w), 1760 (m), 1390 (m), 1370 (m), 1275 (vs), 1235 (vs), 1190
) (s), 1135 (m), 1120 (m), 1065 (m), 1020 (w), 980 (s), 910 (w), 870 (s), 765
(m), 750 (m), 730 (s), 705 (m), 655 (m). Major mass cations were
(m/e(int.)formula]: [CI] 300(8)CgF;;0H3, MH2H; 164(100)CyFgHy; 97(15)C2F30:
[EI] 231(28)CsFq; 164(33)CyFgHp; 160(61)C,F5OH; 97(50)C2F30; 69(100)CF1;
51(38)CFpH. '°F MR [1% CFCl3/CDCl3] P5 = -72.85 ppm (m), Pg = -126.69

i ppm (m), Pp = ~62.05 ppm (m). 'H NMR 8¢ = +6.63 ppm (r); Jop,u = 51.5

Hz.

3,3-Bis(difluoromethyl)-F-2-butanone. CF38C(0)(CF3B)(CF,CuD),: IR

(em~!) 3010 (w), 1755 (m), 1365 (w), 1275 (w), 1250 (vs), 1225 (vs), 1190
(s), 1160 (m), 1130 (m), 1060 (m), 1020 (m), 900 (w), 870 (w), 730 (s).
Major mass cations were [m/e(int.)formula]: [CI] 282(100)CgF;qOH,, M+2H;
212(36)C5F70H3; 97(65)CoF30; 69(43)CF3; [EI] 212(64)CsF70H3; 146(41)CgF30H;
162( 100)C, Fy O3 97(35)C2F30; 69(85)CF3; 51(43)CFH. 'F MR (1%
CFCl3/CDCl3] Pp = -74.61 ppm (m), Pp = -62.99 ppm (m), Pc = -125.18 ppm
(m). W MR 6p = +6.59 ppm (t); Jcp,u = 52.7 Mz,

Aerosol Fluorination of 2,2,4,4-Tetramethyl-3-pentanone. 2,2,4,4-Tetra-

methyl-3-pentanone (997%, Fluka Chemicals) was used as received. A pump speed

e as i B . sty b




corresponding to 2.9 mmol/h was established and 1.0 wmlL 2,2,4,4-tetramethyl-
3-pentanone delivered over a 2 hour period. Details of the aerosol fluorina-
tion parameters are given in Table 1. From the crude product (0.346 g) was
isolated 0.246 g (71%) F-2,2,5-trimethyl-3-hexanone (GLC temperature program
on the SE-52 gas chromatographic column: 30°C, 5 m; 5°C/m to 100°C; 100°C, 1
m; 20°C/m to 180°C). The yield of F-2,2,5-trimethyl-3-hexanone based on the
amount of 2,2,4,4-tetramethyl-3-pentanone injected was 97%. Upon opening up
the reactor for cleaning, significant amounts of unreacted 2,2,4,4-tetra-
methyl-3-pentanone were found. Runs with low fluorine concentrations (ultra-
violet stage on or off) produced 1-fluoro-2,2,4,4-tetramethyl-3-pentanone as
the major product. Characterizations of these compounds are given below.

F-2-2,5~Trimethyl-3-hexanone. (CF34)3CC(0)CF,BCFC(CF4P),: IR (em™t)

1770 (m), 1270 (vs), 1205 (m), 1150 (m), 1140 (m), 1045 (m), 980 (s), 730
(s), 710 (m), 680 (m). Major mass cations were [m/e(int.)formulal: [CI]
483(2)C1oF1g0Hs, M#CHs; 467(12)CqF1gOH, M+H; 447(54)CaF170, M-F;
247(55)C5Fq0; 219(100)C4Fq; 201(84)CyFg; 181(98)C,Fy; 69(75)CF3: [EI]

447(1)CqF}70, M-F; 247(37)CsFq0; 219(43)CyFq; 69(100)CF3. '°F MR (1%

CFCl3/CDCl3) Py = -61.61 ppm (t of m), Pg = -109.32 ppm (hexadec of
doublets), fc = -184.26 ppm (m), Pp = -71.82 ppm (t of d); Jag = Jgp

= 10.26 Hz, Jap = 0.88 Hz, Jac = O, Jpg = 4.40 Hz, Jcp = 6.10 Hz.

Anal. Caled for C9F;g0: C, 23.19; F, 73.37. Found: C, 22.33; F, 71.16.

1-Fluoro-2-2,4,4~tetramethyl-3-pentanone. (CH3A)3CC(0)(CHZBFC)(CH3D)2:

IR (cm‘l) 2980 (m), 2950 (s), 2900 (m), 2870 (m), 1680 (s), 1475 (s), 1360
(s), 1290 (s), 970 (s). Major mass cations were [m/e(int.)formula]: [CI]
161(4)CoH gOF, M+H; 103(28)CsHgOF; 101(46)CsHgOF; 59(100)C2FO: [EI)
69(30)CsHg; 57(23)CyHq; 44(71)CoH,0; 32(100)CH,F. !¢ MR (1%
CFCl3/CDCl3/.2% CHC13) fc = -221.76 ppm (t); 'H NR §, = +1.24 ppn (s),

8p = +4.40 ppm (d), Sp = +1.29 ppm (s); Joy,p = 47.4 Hz.
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