ELECTROCHEMICAL AND SPECTROSCOPIC STUDIES OF POLYPYRIDINE COMPLEXES OF Fe... (U) YALE UNIV NEW HAVEN CT DEPT OF EPIDEMIOLOGY AND PUBLIC HEALTH...

S. SAHAMI ET AL. JAN 84 SUNYBUF/DC/TR-18

F/G 7/4
Electrochemical and Spectroscopic Studies of Polypyridine Complexes of Fe(II)/(III) and Ru(II)/(III) in the Aluminum Chloride: N-(1-Butyl)Pyridinium Chloride Molten Salt

Saeed Sahami and Robert A. Osteryoung

Department of Chemistry
State University of New York at Buffalo
Buffalo, New York 14214

Office of Naval Research
Chemistry Program
Arlington, VA 22117

January, 1984

39

Approved for Public Release: Distribution Unlimited

Molten Salts; Voltammetry; Polypyridine Complexes

The electrochemical and spectroscopic behavior of Fe(bpy)$_3^{2+}$, Fe(phen)$_3^{2+}$ and Ru(bpy)$_3^{2+}$ in an ambient-temperature molten salt system, aluminum chloride:N-(1-butyl)pyridinium chloride (BuPyCl) have been studied as a function of melt composition. The complexes show a single one-electron reversible oxidation wave from melt compositions of 1:1 to 2:1 (AlCl$_3$:BuPyCl mole ratio). Visible spect-
roscopic and electrochemical data indicate that these compounds are stable in the neutral (1:1) and acid (mole ratio >1) melts, while Ru(bpy)$_2^{2+}$ is stable in basic melts (mole ratio <1), but Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$ decompose to FeCl$_4^{2-}$. Comparison of the formal potentials for M(III)/(II)-polypyridine couples studied here and in other solvents indicate that the redox properties of these complexes are relatively insensitive to the nature of the solvent. It was shown that oxygen acts as an oxidant in the acid melts to oxidize Fe(bpy)$_3^{2+}$ Fe(phen)$_3^{2+}$ and Ru(bpy)$_3^{2+}$ to their corresponding 3+ form. The 3+ form of each complex was stable in acid melts for several weeks. Perchlorate is also shown to function as an oxidant in acidic melts.
ELECTROCHEMICAL AND SPECTROSCOPIC STUDIES OF POLYPYRIDINE COMPLEXES
OF Fe(II)/(III) and Ru(II)/(III) IN THE
ALUMINUM CHLORIDE: N-(1-Butyl)PYRIDINIUM CHLORIDE MOLTEN SALT
by
Saeed Sahami and Robert A. Osteryoung

Prepared for Publication in
Inorganic Chemistry

Department of Chemistry
State University of New York at Buffalo
Buffalo, New York 14214

January, 1984

Reproduction in whole or in part is permitted for any purpose of the
United States Government

Approved for Public Release: Distribution Unlimited
The electrochemical and spectroscopic behavior of Fe(bpy)$_2^{2+}$, Fe(phen)$_3^{2+}$ and Ru(bpy)$_3^{2+}$ in an ambient-temperature molten salt system, aluminum chloride:N-(1-butyl)pyridinium chloride (BuPyCl) have been studied as a function of melt composition. The complexes show a single one-electron reversible oxidation wave from melt compositions of 1:1 to 2:1 (AlCl$_3$:BuPyCl mole ratio). Visible spectroscopic and electrochemical data indicate that these compounds are stable in the neutral (1:1) and acid (mole ratio≤1) melts, while Ru(bpy)$_3^{2+}$ is stable in basic melts (mole ratio≥1), but Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$ decompose to FeCl$_4^{2-}$.

Comparison of the formal potentials for M(III)/(II)-polypyridine couples studied here and in other solvents indicate that the redox properties of these complexes are relatively insensitive to the nature of the solvent.

It was shown that oxygen acts as an oxidant in the acid melts to oxidize Fe(bpy)$_2^{2+}$, Fe(phen)$_3^{2+}$ and Ru(bpy)$_3^{2+}$ to their corresponding 3+ form. The 3+ form of each complex was stable in acid melts for several weeks.

Perchlorate is also shown to function as an oxidant in acidic melts.
INTRODUCTION

The molten salt system composed of aluminum chloride and N-(1-butyl)pyridinium chloride (BuPyCl) is liquid at ambient temperatures (∼30°C) over a wide compositional range varying from ∼0.7:1 to 2:1 (mole ratio of AlCl₃ to BuPyCl) (1,2). The Lewis acid-base properties of these melts change as the mole ratio of AlCl₃ to BuPyCl changes. The melts can be characterized as acidic, basic or neutral depending on the mole ratio of AlCl₃ to BuPyCl being greater than, less than or equal to unity (3). In the acidic melts, anionic species are Al₂Cl₇⁻ and AlCl₄⁻, in basic melts AlCl₄⁻ and Cl⁻, and in neutral, AlCl₄⁻. It has been shown that equilibrium (1) with the log K = -16.9 ± 2 (4) provides an adequate description of the system throughout the entire range of melt composition (2).

In view of their non-lability and extreme stability in the absence of direct illumination, low spin complexes of Ru(bpy)²⁺, Fe(bpy)²⁺ and Fe(phen)²⁺ (where bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline) were chosen to study in AlCl₃:BuPyCl melts. These complexes were selected for several reasons. Initially we were interested to know whether these compounds are stable in this molten salt media, i.e. whether the reactant's coordination sphere remains intact while the Lewis acid-base properties of the melts are varied. A second aspect of this work was the examination of the possible use of these complexes as internal reference couples. In addition, the use of these melts as solvents for modified electrode studies, which includes Ru(II)/Ru(III) polymers, suggested such studies (5).
Spontaneous oxidation of hydrocarbons in highly acidic AlCl₃:BuPyCl melts has been observed by Robinson and Osteryoung (1). The slow chemical oxidation of iodide in acidic AlCl₃:BuPyCl melts has been suggested to be due to a reaction with traces of impurity present in the dry box atmosphere, probably molecular oxygen (6). To determine the true nature of the oxidizing species in the melt, these polypyridine complexes proved to be useful.

The electrochemistry of these transition-metal complexes has been studied both in protic and aprotic solvents (7-17). The oxidation states frequently observed for these complexes are 2+ and 3+. Poly-pyridine complexes of Ru and Fe with total charges of 1+, 0, and 1- have been observed in solvents with very negative potential windows such as acetonitrile (7,9) and N,N-dimethylformamide (8). Recently more highly oxidized species such as Ru(bpy)₃⁺, Fe(bpy)₃⁺ and Fe(bpy)₃⁵⁺ have been reported in liquid sulfur dioxide (13). We report here electrochemical and spectroscopic investigations of Fe(bpy)₃²⁺/³⁺, Fe(phen)₃²⁺/³⁺ and Ru(bpy)₃²⁺/³⁺ in ambient temperature AlCl₃:BuPyCl ionic liquids.
EXPERIMENTAL SECTION

Preparation of N-(1-butyl)pyridinium chloride and purification of aluminum chloride have been described elsewhere (1). Ru(bpy)$_3$Cl$_2$·6H$_2$O, Fe(bpy)$_3$(ClO$_4$)$_2$ and Fe(phen)$_3$(ClO$_4$)$_2$ (G. F. Smith Chemical Co.), FeCl$_2$ (Alfa Products), FeCl$_3$ (Fisher), 2,2'-bipyridine (Baker) and 1,10-phenanthroline were used without further purification. Tetraethylammonium perchlorate (TEAP), (Baker) was dried in a vacuum oven and used for experiments testing the ability of perchlorate to function as an oxidant. Aluminum wire (Alfa Products) was cleaned in a 30:30:40 volume mixture of H$_2$SO$_4$:HIO$_3$:H$_3$PO$_4$, rinsed with water and dried. Chemicals were stored and all electrochemical experiments performed under argon atmosphere in a Vacuum Atmospheres Co. dry box.

A Metrohm glass cell covered with a teflon lid which had several holes for reference and counter electrode compartments, working electrode and thermometer was used for the electrochemical measurements. The entire cell assembly was placed in a furnace and the temperature controlled at 40 ± 1°C by a Thermo Electric Selector 800 temperature controller. Reference and counter electrode compartments were aluminum wires dipped into the 2:1 AlCl$_3$:BuPyCl melt and both were separated from the working compartment by fine glass frits. A glassy carbon disc (GC) electrode obtained from Pine Instrument Co. was used as the working electrode. The GC (with the area of 0.196 cm2 or 0.454 cm2) was polished with successively finer grades of 1.0, 0.3 and 0.05 micron alumina (Buehler), then rinsed with water and air dried prior to transfer to the dry box.

All voltammograms were obtained using a EG&G PARC 175 Universal Programmer with a PARC 173 potentiostat and a Houston Omnigraph Model.
2000 recorder. A Pine Instrument Co. electrode rotator (Model ASR2) was used for rotating disc electrode (RDE) studies.

UV and visible absorption spectra were recorded in either 0.1 or 1.0 cm path length quartz cells fitted with air-tight Teflon caps using a Perkin Elmer (Coleman 575) spectrophotometer. The cells were filled and sealed in the dry box.
RESULTS

1. ELECTROCHEMISTRY
 a. OXIDATION OF Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$:

 Fe(bpy)$_3(ClO_4)_2$ and Fe(phen)$_3(ClO_4)_2$ both dissolve in the neutral (mole ratio = 1.0) and acid (mole ratio >1) melts and give intense red-colored solutions. The solubility of Fe(phen)$_3(ClO_4)_2$ is less than that of Fe(bpy)$_3(ClO_4)_2$, especially in the neutral melt. In Figure 1, typical cyclic voltammograms at a GC electrode are shown for Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$, respectively. Cyclic and rotating disc electrode voltammograms for oxidation of polypyridine complexes of iron(II) were recorded as a function of melt acidity. Tabulations of cyclic and RDE voltammetric parameters, anodic to cathodic peak current ratios i^a_p/i^c_p, the difference between the anodic and cathodic peak potentials $\Delta E_p = E^a_p - E^c_p$, and $i^a_p/v^{1/2}$ for Fe(bpy)$_3^{2+/3+}$ and Fe(phen)$_3^{2+/3+}$ are presented in Tables 1 and 2, respectively. As shown in Figure 2 plots of the current vs. the square root of the electrode rotation rate at potentials on the rising portion of the waves and on the plateaus for oxidation of both complexes in the neutral melt were linear and passed through the origin, indicating that the oxidation is reversibly convective diffusion-controlled (18). Plots of E vs. $\log i$, constructed from RDE data for oxidation of both polypyridine complexes of Fe(II) were linear with slopes of 65 ± 1 mV (2.3 RT/F = 62 mV at 40°C) (see Figure 3). Solutions of Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$ in the neutral melt were found to be stable for a period of over a week. There was no change in the color of the solutions or their visible spectra. RDE voltammograms were recorded daily for polypyridine complexes.
of Fe(II) in the neutral melt. The values of $E_{1/2}$ and anodic limiting current, I_{a}^{a}, were found to be constant within experimental error for at least seven days. When a neutral melt containing either of the polypyridine complexes of iron was made acidic by addition of AlCl_3, RDE voltammograms showed both cathodic and anodic current, indicating the presence of both the reduced and oxidized form of tris-bpy and tris-phen complexes of iron in the solution. Indeed in the 1.05:1 melt the cathodic limiting current, I_{c}^{C}, is $\sim 5\%$ of the total limiting current, $I_{1}^{c} = I_{1}^{C} + I_{1}^{a}$. As the acidity of the melt increased the I_{1}^{c}/I_{1}^{a} ratio also increased and the color of the solution changed from red to dark brown and finally to blue. When the melt composition approached 1.9:1 almost all the complex was in the oxidized form. This oxidation of Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$ not only occurred with increased melt acidity (i.e., increase in AlCl$_3$ concentration), but as shown in Figure 4, even when a 1.2:1 melt containing 3.8 mM Fe(bpy)$_3^{2+}$ was kept in the dry box, I_{1}^{c} increased with time while I_{1}^{a} decreased. After about two hours I_{1}^{c} was ~ 3 times larger and $I_{1}^{a} \sim 3$ times smaller than their initial values. Thus, $\sim 75\%$ Fe(bpy)$_3^{2+}$ was oxidized to Fe(bpy)$_3^{3+}$ in less than two hours and eventually almost all of it was oxidized. It has been suggested that the slow chemical oxidation of I^{-} (with $E_{1/2} \approx 1$ V), in an acidic AlCl$_3$:BuPyCl melt, resulted from a reaction with traces of impurity present in the dry box atmosphere, possibly molecular oxygen (6). Although the dry box atmosphere had an oxygen level of <5 ppm, it may have been enough to slowly oxidize both Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$ complexes to their corresponding 3$^+$ form, although perchlorate can also function as an oxidant (see below). The formation of the oxidized form of these complexes was proved both by RDE
experiments and their visible spectra (see below). Neither the reduction of oxygen nor electrochemistry from its reduction product could be seen directly by the electrochemical techniques. To show that O_2 was an oxidizing species, several other experiments were performed. Acidic $\text{AlCl}_3: \text{BuPyCl}$ melts with various compositions (1.07:1, 1.2:1 and 1.9:1) were prepared and $\text{Fe(phen)}_3(\text{ClO}_4)_2$ dissolved in them. These solutions were taken outside the dry box in sealed tubes. When these solutions were purged with oxygen, their color changed from red to blue (although the color change in the less acidic melt, 1.07:1 was slower than in the other melts). The spectra of these solutions were identical to those for acidic solutions of Fe(phen)^{2+} which were oxidized slowly to Fe(phen)^{3+} in the dry box. These results clearly indicate that oxygen in the acid melts can oxidize Fe(bpy)^{2+} and Fe(phen)^{2+} to Fe(bpy)^{3+} and Fe(phen)^{3+}, respectively. The rate of the oxidation of these complexes appears to depend both on the amount of oxygen present in the dry box atmosphere and the melt acidity (see below, however). It is obvious from our results that the oxidation of any of these complexes in a given melt by traces of oxygen or perchlorate (see below) does not affect the E_1 or $E_1/2$ values. The only changes were in the values of I_1^C and I_1^O. In any case the sum of $I_1^C + I_1^O$ (i.e., I_1^T), remained unchanged within experimental error. The oxidized forms of these polypyridine complexes of iron i.e., Fe(bpy)^{3+} and Fe(phen)^{3+} were stable in acid melts for at least two weeks.

The possibility that perchlorate could function as an oxidant in these systems was examined. As mentioned above, both Fe(phen)^{2+} and
Fe(bpy)$^{2+}$, were added to the melts as perchlorate salts and underwent slow oxidation in the acidic melts, some of which, as demonstrated above, was due to oxygen, but some of which might have been due to the presence of perchlorate. As described below, although the oxidation of the Ru(bpy)$^{2+}$ complex was observed in very acidic (1.7:1) melts, it appeared much slower than that of the corresponding Fe(II) complexes. Since the Ru(bpy)$^{2+}$ salts were chlorides, they were used in experiments to ascertain the effect of perchlorate as an oxidant. If a forty-fold excess of TEAP were added to a 1.7:1 AlCl$_3$: BuPyCl melt containing ca 1 mM Ru(bpy)$^{2+}$, the orange solution took about 30 minutes to change to green. This compares to much longer periods of time in the absence of perchlorate (see below). In a 1.1:1 melt, visible changes in color took place much more slowly; this was under conditions where, in the absence of perchlorate, no change in the solution color or electrochemistry was noted. In both basic and neutral (i.e., 1.0:1.0) melts, no indication of the oxidation of Ru(bpy)$^{2+}$ was noted from spectroscopic measurements. These observations indicate that perchlorate, like oxygen, can act as an oxidant only in the acidic melt, that, qualitatively, the oxidation rate increases with increasing melt acidity and that there is no oxidation by perchlorate in the basic or neutral melt. Further experiments on this are in progress (19).

As is the case in other solvents, it was not possible to generate Fe(bpy)$_3^{3+}$ or Fe(phen)$_3^{3+}$ simply by adding ligands to an acidic solution of AlCl$_3$: BuPyCl containing FeCl$_3$. However, the polypyridine complexes of Fe(II) were easily obtained in acid melts by mixing FeCl$_2$ and ligands.
In basic AlCl₃:BuPyCl melts (mole ratio <1), it was found that complexes of both Fe(bpy)²⁺ and Fe(phen)³⁺ decompose and form FeCl₄⁻ (20). Upon dissolving either of these complexes in the basic melt a red solution was obtained initially which changed within minutes to a light yellow color. Cyclic and RDE voltammograms for Fe(bpy)₃(ClO₄)₂ in a 0.95:1 AlCl₃:BuPyCl melt are shown in Figure 5. These voltammograms actually correspond to the oxidation of FeCl₄⁻ to FeCl₆⁻. There is excellent agreement between these results and those obtained by Nanjundiah et al., who studied the FeCl₄⁻/Cl⁻ couple in basic AlCl₃:BuPyCl melts (20). In the "neutral" melt, i.e., mole ratio = 1.0, where the concentration of Cl⁻ is negligible, both Fe(bpy)²⁺ and Fe(phen)³⁺ are stable. We found, however, that the addition of even 20 mM BuPyCl (i.e., Cl⁻) to a neutral melt containing a 3-4 mM of either of the polypyridine complexes of Fe(II) was sufficient to cause their dissociation to FeCl₄⁻. Although Cl⁻ is a relatively poor nucleophile in aqueous solutions, it seems to be highly reactive toward charged ions in aprotic solvents (21). An investigation of decomposition of tris-phenanthroline Fe(II) in dimethylsulfoxide (DMSO) showed that Fe(phen)³⁺ reacts rapidly with chloride (21,22). The reaction was assumed to be due to anation by chloride, leading to the formation of blue-colored Fe(phen)₂Cl₂ complex (21). Thus, the complete dissociation of Fe(L)²⁺ (where L = bpy or phen) to FeCl₄⁻ (see equation 2) in the basic AlCl₃:BuPyCl is not surprising.

\[
\text{Fe}(L)_{3}^{2+} + 4\text{Cl}^- \rightarrow \text{FeCl}_{4}^{2-} + 3L
\]

(2)
b. OXIDATION OF Ru(bpy)$_3^{2+}$:

Ru(bpy)$_3$Cl$_2$·6H$_2$O dissolves throughout the entire range of melt composition giving highly colored orange solutions. The electrochemical oxidation of this complex has been studied by cyclic and rotating disc voltammetry. A typical cyclic voltammogram at a GC electrode is shown in Figure 1. Cyclic and rotating disc electrode voltammograms for oxidation of Ru(bpy)$_3^{2+}$ were examined as a function of melt composition from 0.8:1 to 2:1. Data obtained from these voltammograms are listed in Table 3. Ru(bpy)$_3^{2+}$ showed no oxidation or reduction in the basic melt. In acidic or neutral melts only a single oxidation wave was obtained. Table 3 shows scan rate dependencies of peak potentials and peak currents for the Ru(bpy)$_3^{2+/3+}$ couple. The ratio of one for i^a_p/i^c_p indicates that the electron transfer is reversible over the entire acidic melt composition. For a diffusion-controlled process, i^a_p/\sqrt{v} should be constant and independent of scan rate; this is true for the present case. Although ΔE_p increases slightly with the scan rate, it does not change with variation in the melt composition. The experimental peak separations (64-70 mV) correspond closely to the theoretical value for a one-electron process of 62 mV at 40°C. Plots of E vs. log [I$_1$-1/1] in all melt compositions studied were linear with slopes of 65 ± 1 mV (see Figure 3).

As with the poly(pyridine) complexes of Fe(II), RDE voltammograms showed that when the acidity of Ru(bpy)$_3^{2+}$ containing melt increased there was a small cathodic current due to the reduction of Ru(bpy)$_3^{3+}$.
present in the solution. This cathodic current could only be observed when the melt acidity (mole ratio) was greater than \(\approx 1.7:1 \). Apparently the oxidation of \(\text{Ru(bpy)}_3^{2+} \) is slower than that of the polypyridine complexes of Fe(II). The initial \(I_1^c \) in a solution of 1.9:1 \(\text{AlCl}_3: \text{BuPyCl} \) containing \(\text{Ru(bpy)}_3^{2+} \) was about 5% of the \(I_1^t \). Even after two weeks the \(I_1^c \) was less than 55% of \(I_1^t \), indicating that \(\approx 55\% \) of \(\text{Ru(bpy)}_3^{2+} \) was oxidized to \(\text{Ru(bpy)}_3^{3+} \). On going from the reduced to the oxidized form of tris-bpy-ruthenium the color of the solution changed from orange to dusty brown and finally to green. As before the nature of the oxidant (i.e., traces of \(\text{O}_2 \) in the dry box atmosphere) was confirmed by purging acidic solutions of \(\text{AlCl}_3: \text{BuPyCl} \) containing \(\text{Ru(bpy)}_3^{2+} \) with oxygen. Although it was possible to oxidize these solutions (in sealed tubes) over the melt compositions of 1.2:1 to 1.9:1 by oxygen, the time needed to convert \(\text{Ru(bpy)}_3^{2+} \) to \(\text{Ru(bpy)}_3^{3+} \) (i.e., change of color from orange to green) was longer as the acidity decreased. The green solutions of \(\text{Ru(bpy)}_3^{3+} \) was found to be stable for months.

c. AN ALUMINUM-OXYGEN CELL

In view of the observed oxidation of the polypyridine complexes of Fe(II) and Ru(II) by oxygen in acidic melts, an attempt was made to see if a cell using oxygen as an oxidant could be made. The reduction of \(\text{O}_2 \) by \(\text{Ru(bpy)}_3^{2+} \) is potentially a useful reaction for batteries since \(\text{Ru(bpy)}_3^{3+} \) is a strong and facile oxidizing agent. We have made a preliminary investigation (23) of this possibility by constructing the cell shown in Figure 6. Aluminum oxidation occurs at the anode and \(\text{Ru(bpy)}_3^{3+} \) reduction occurs at the cathode. The \(\text{Ru(bpy)}_3^{3+} \) is regenerated in the acid melt by oxygen and so \(\text{Ru(bpy)}_3^{2+} \) acts as a mediator for \(\text{O}_2 \) reduction at the
cathode. Thus the net cell reactions are Al oxidation and O₂ reduction; the product of O₂ reduction in the melt is not known at present, but is probably Al(OCl)₂⁻. Reduction of Ru(bpy)₃³⁺ by aluminum is extremely slow so no separator was necessary. The cell of Figure 6 gave an open circuit potential of ~1.4 V and passed a charge corresponding to 400 turnovers of the ruthenium complex with no significant deterioration. The potential is that which is expected based on the Ru(bpy)₃³⁺/²⁺ voltammogram (see Figure 1C). The current was limited by mass transport of Ru(bpy)₃³⁺ to the cathode.

2. SPECTROSCOPY

UV-visible absorption spectra for both the bivalent and the trivalent complexes of tris-bipyridine complexes of iron and ruthenium and tris-phenanthroline iron in the neutral or acidic AlCl₃·BuPyCl melts are shown in Figures 7-9. The trivalent compounds were obtained by the chemical oxidation of the respective divalent complexes in acid melts either by bubbling with oxygen or by trace of O₂ impurity present in the dry box atmosphere. The spectrum of Ru(bpy)₃²⁺ did not change as the melt composition varied from basic to acidic. Thus Ru(bpy)₃³⁺, unlike Fe(bpy)₃²⁺ and Fe(phen)₃²⁺ complexes, does not decompose in the basic melt. The spectra of Fe(bpy)₃²⁺ and Fe(phen)₃²⁺ in the neutral melt are identical to their respective spectrum in the slightly acidic melt. In Table 4 the molar absorptivities and maxima wavelengths obtained in this work are summarized and compared with those reported in other solvents (24-31). There is good agreement between positions of the absorption maxima determined here and those from the literature. The intense bands in the visible regions of these compounds are due to the transfer of electronic charge between the d-orbital of the metal ion and the
π-orbitals of the ligand. For the bivalent complexes charge transfer takes place from the metal to the ligand i.e., \(t_{2g} \rightarrow \pi^* \) (MLCT) (24,25,30). In the case of trivalent complexes the charge transfer is from the ligand to the metal i.e., \(\pi \rightarrow t_{2g} \) (LMCT) (27,31). In addition to these bands, there are other bands in the shorter wavelength portions of all spectra, which because of their higher intensities are outside the spectrum range. Due to the melt UV cutoff at \(\approx 280 \) nm, the UV absorption bands of these compounds could not be recorded.
DISCUSSION

Spectroscopic and electrochemical results show that all the complexes studied here are stable (i.e., have fixed coordination spheres) in the melt compositions of 1.0:1.0 to 2:1 AlCl$_3$:BuPyCl. Although Fe(bpy)$_3^{2+}$ and Fe(phen)$_3^{2+}$ decompose in the basic melts to form FeCl$_4^-$, Ru(bpy)$_3^{2+}$ is stable and does not dissociate, perhaps due to the significantly greater lability of the Fe(II)-tris complexes over that of ruthenium.

Based on the foregoing observations and results presented in Tables 1-3, we conclude that in the entire region from neutral to 2:1 melts the oxidation of Fe(bpy)$_3^{2+}$, Fe(phen)$_3^{2+}$ and Ru(bpy)$_3^{2+}$ corresponds to a Nernstian one-electron electrochemically reversible process.

Reversible behavior for these couples has been found in other solvents (8,12,13). Consideration of E_f or $E_{1/2}$ from Tables 1-3 indicates that although these values shift slightly toward more positive potentials with increasing melt acidity, the variation in E_f or $E_{1/2}$ in going from 1:1 to 1.9:1 mole ratio for all of these redox couples is less than 90 mV (the reproducibility of Al/Al(III) reference electrode is ±10 mV). This indicates that the influence of variation in the melt composition on the redox properties of these polypyridine complexes is relatively small, but not as small as for ferrocene/ferricinium couple. Robinson and Osteryoung reported that the formal potential value of ferrocene/ferricinium in AlCl$_3$:BuPyCl melts was independent of melt acidity (with the E_f value of 0.27 V vs. Al/Al(III)) (1). This is understandable since the compact "sandwich" structure of ferrocene/ferricinium compared to the open structure of polypyridine complexes should prevent the close
approach of the solvent molecules to the metal redox center. A possible explanation of the observed variation in E_f for the polypyridine complexes with the melt acidity is the formation of ion-pairs, most probably with AlCl_4^-. As the acidity of the melt increases the concentration of AlCl_4^- decreases and E_f becomes more positive. In other words with increasing acidity of the melt the extent of ion-pairing between the polypyridine complexes of iron and ruthenium with AlCl_4^- decreases and the overall positive charge of the complex increases making it more difficult to oxidize.

Comparison of the E_f values for $\text{Fe(bpy)}^{2+/3+}$, $\text{Fe(phen)}^{2+/3+}$ and $\text{Ru(bpy)}^{2+/3+}$ (quoted vs. ferrocene/ferricinium) in different solvents with those in the neutral melt is shown in Table 5. It is obvious from this Table that indeed the redox properties of these couples are relatively insensitive to the nature of the solvent. This is expected since the polypyridine ligand should somewhat shield the solvent from the metal cation. Although the redox properties of these polypyridine couples appear to be largely independent of the solvent, indicating that they might be used as internal reference redox couples, they apparently do not offer any advantage over the ferrocene, particularly in AlCl_3:BuPyCl melts.

In Table 6 values of diffusion coefficients for the polypyridine complexes of iron and ruthenium are given. The values of D were obtained from RDE experiments using the Levich equation:

$$I_1 = 0.62 n F A D^{2/3} v^{1/2} C_0^{-1/6}$$

where I_1 is the limiting current in amperes, n the number of electrons transferred, F the Faraday constant, A the area of the electrode in cm2, and C_0 the concentration of the electroactive species in M.
the rotation rate in radians/sec, \(\nu \) the kinematic viscosity and \(C_0 \) the concentration of the electroactive species in mol/cm\(^3\) (18). Diffusion coefficient for \(\text{Fe(bpy)}_3^{2+} \) and \(\text{Fe(phen)}_3^{2+} \) were only determined in the neutral melt where there was no chemical oxidation of the Fe(II) complex and its concentration was known accurately. The observed change in the \(D \) value for \(\text{Ru(bpy)}_3^{2+} \) in Table 6 can be attributed to changes in the viscosity (\(\eta \)) of the melt. The values of \(D \) and \(\eta \) are related by the modified Stokes-Einstein equation (33):

\[
D = \frac{kT}{4\pi \eta r}
\]

where \(k \) is the Boltzman constant and \(r \) is the radius of the diffusing species. The \(\eta D \) values for \(\text{Ru(bpy)}_3^{2+} \) (tabulated in Table 6) are constant throughout the entire range of melt compositions studied here. Values of \(r \) calculated from equation (4) for polypyridine complexes are also listed in Table 6. These radii are in reasonable agreement with their corresponding crystallographic values (34, 35), indicating that solvation is not very important in this medium for these compounds.

Although the "spontaneous" oxidation of some aromatic hydrocarbons (with \(E_{1/2} \) of less than \(\approx 1.4 \) V) in highly acidic \(\text{AlCl}_3: \text{BuPyCl} \) melts has been observed by Robinson and Osteryoung, the nature of the oxidizing species was not speculated upon (1). It is clear from this work that oxygen is an oxidant which oxidizes species with the \(E_{1/2} \) of \(\approx 1.3 \) V and less in acidic \(\text{AlCl}_3: \text{BuPyCl} \) melts. Considering our results and those observed previously for oxidations of aromatic hydrocarbons (1) and iodide (6), we conclude that \(\text{O}_2 \) can oxidize any species with an \(E_{1/2} \) of \(1.4 \) V or less in the acidic melts regardless of its chemical nature. In other words the oxidation process is insensitive to the nature of the
reductant and only depends on its formal potential, presumably according to the following reaction:

$$O_2 + \text{Red} \rightarrow \text{Ox} + (\text{reduced } O_2)$$

with $$E_f O_2/(\text{reduced } O_2) > E_f \text{ Red}/\text{Ox}$$

Since neither the reduction of oxygen nor electrochemistry from its reduction product can be seen, it is not known whether the decrease in the rate of oxidation with decreasing melt acidity results from slow kinetics or unfavorable thermodynamics. One possible explanation is that by decreasing melt acidity, the value of $$E_f$$ for $$O_2/\text{reduced } O_2$$ shifts to negative potentials. Indeed the absence of chemical oxidation of these compounds in the neutral or basic melts is a good indication of such an explanation. The other possibility is that the solubility of $$O_2$$ decreases drastically as the acidity decreases, making the oxidation more difficult.

It should also be pointed out that $$O_2$$ impurity in the dry-box may not be the sole trace oxidant present in these melts. Perchlorate, as indicated above, also functions as an oxidant in acidic melts. Recent work on the reduction of proton arising from the addition of water to the melt indicates that the potential for evolution of hydrogen moves in the positive direction with increasing melt acidity, suggesting that the "proton", which may arise from HCl or an -Al-O-H entity formed as a result of water addition, is a stronger oxidant in acidic than basic melts (36). However, experiments at a platinum electrode in a melt containing both water and the Ru-complex indicated that the ruthenium reduction takes place at more positive potentials than does hydrogen evolution. Nevertheless, the ability of proton to act as an oxidant in these melts at the trace levels should not be overlooked.
ACKNOWLEDGEMENTS

We would like to thank Dr. Peter G. Pickup for helpful discussions and assistance. Helpful suggestions by other members of the molten salt research group, particularly Mr. T. Zawodzinski, Dr's. Z. Karpinski and M. Lipsztajn, are appreciated.

CREDIT

This work was supported by the Air Force Office of Scientific Research and the Office of Naval Research.
REFERENCES

<table>
<thead>
<tr>
<th>Melt Composition</th>
<th>Scan Rate (v) mV/s</th>
<th>E^c_{p} mV</th>
<th>E^a_{p} mV</th>
<th>E_f mV</th>
<th>ΔE_p mV</th>
<th>$i^a_{p}/i_c p$ mA cm$^{-2}$</th>
<th>$i^{a/2}_{p,j}$ V$^{-1/2}$ s$^{1/2}$</th>
<th>Rotation Rate rpm</th>
<th>$E_{1/2}$ mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>10</td>
<td>927</td>
<td>992</td>
<td>960</td>
<td>65</td>
<td>1.00</td>
<td>0.507</td>
<td>600</td>
<td>957</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>927</td>
<td>992</td>
<td>960</td>
<td>65</td>
<td>1.01</td>
<td>0.510</td>
<td>900</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>922</td>
<td>996</td>
<td>959</td>
<td>74</td>
<td>1.01</td>
<td>0.514</td>
<td>1600</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>920</td>
<td>998</td>
<td>959</td>
<td>78</td>
<td>1.00</td>
<td>0.515</td>
<td>2000</td>
<td>959</td>
</tr>
<tr>
<td>1.05:1</td>
<td>10</td>
<td>935</td>
<td>1000</td>
<td>968</td>
<td>65</td>
<td>1.01</td>
<td>0.413</td>
<td>400</td>
<td>965</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>935</td>
<td>1000</td>
<td>968</td>
<td>65</td>
<td>1.02</td>
<td>0.420</td>
<td>600</td>
<td>965</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>936</td>
<td>1002</td>
<td>969</td>
<td>66</td>
<td>1.01</td>
<td>0.428</td>
<td>900</td>
<td>967</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>931</td>
<td>1005</td>
<td>968</td>
<td>74</td>
<td>1.00</td>
<td>0.430</td>
<td>1600</td>
<td>970</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>930</td>
<td>1010</td>
<td>970</td>
<td>80</td>
<td>1.00</td>
<td>0.433</td>
<td>2000</td>
<td>972</td>
</tr>
<tr>
<td>1.2:1</td>
<td>10</td>
<td>950</td>
<td>1015</td>
<td>982</td>
<td>65</td>
<td>1.01</td>
<td>0.451</td>
<td>600</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>950</td>
<td>1015</td>
<td>982</td>
<td>65</td>
<td>1.01</td>
<td>0.478</td>
<td>600</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>949</td>
<td>1015</td>
<td>981</td>
<td>67</td>
<td>1.00</td>
<td>0.480</td>
<td>900</td>
<td>967</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>945</td>
<td>1020</td>
<td>982</td>
<td>75</td>
<td>1.01</td>
<td>0.494</td>
<td>1600</td>
<td>970</td>
</tr>
<tr>
<td>1.4:1</td>
<td>10</td>
<td>963</td>
<td>1025</td>
<td>994</td>
<td>62</td>
<td>1.01</td>
<td>0.407</td>
<td>600</td>
<td>990</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>963</td>
<td>1025</td>
<td>994</td>
<td>62</td>
<td>1.00</td>
<td>0.412</td>
<td>600</td>
<td>990</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>960</td>
<td>1028</td>
<td>994</td>
<td>68</td>
<td>0.99</td>
<td>0.414</td>
<td>900</td>
<td>972</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>960</td>
<td>1030</td>
<td>995</td>
<td>70</td>
<td>1.02</td>
<td>0.414</td>
<td>1600</td>
<td>970</td>
</tr>
<tr>
<td>1.7:1</td>
<td>10</td>
<td>990</td>
<td>1055</td>
<td>1022</td>
<td>65</td>
<td>1.02</td>
<td>0.385</td>
<td>600</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>990</td>
<td>1055</td>
<td>1022</td>
<td>65</td>
<td>1.04</td>
<td>0.389</td>
<td>600</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>990</td>
<td>1057</td>
<td>1023</td>
<td>67</td>
<td>1.01</td>
<td>0.379</td>
<td>900</td>
<td>1034</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>985</td>
<td>1060</td>
<td>1022</td>
<td>75</td>
<td>1.00</td>
<td>0.383</td>
<td>1600</td>
<td>1034</td>
</tr>
<tr>
<td>1.9:1</td>
<td>10</td>
<td>1007</td>
<td>1073</td>
<td>1040</td>
<td>66</td>
<td>0.98</td>
<td>0.363</td>
<td>600</td>
<td>1038</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1007</td>
<td>1073</td>
<td>1040</td>
<td>66</td>
<td>0.99</td>
<td>0.358</td>
<td>600</td>
<td>1038</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1007</td>
<td>1075</td>
<td>1041</td>
<td>68</td>
<td>1.00</td>
<td>0.364</td>
<td>600</td>
<td>1038</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1005</td>
<td>1075</td>
<td>1040</td>
<td>70</td>
<td>0.99</td>
<td>0.369</td>
<td>600</td>
<td>1038</td>
</tr>
</tbody>
</table>

a. All potentials are in mV vs. Al/Al(III) in 2:1 AlCl$_3$: BuPyCl, at T=40$^\circ$ C.
b. Mole ratio of AlCl$_3$: BuPyCl.
Table 2 Summary of Voltammetric Parameters for Fe(phen)$_3^{2+/3+}$ in AlCl$_3$: BuPyCl Melts.

<table>
<thead>
<tr>
<th>Melt Composition</th>
<th>Scan Rate (°)</th>
<th>E^c_{mV}</th>
<th>E^a_{mV}</th>
<th>E^p_{mV}</th>
<th>ΔE_p mV</th>
<th>$i^{a}{p} / i^{p}{p}$ mA cm$^{-2}$</th>
<th>$i^{a}_{p} / V^{-1/2}$ s$^{-1/2}$</th>
<th>Rotation Rate rpm</th>
<th>$E_{1/2}$ mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>10</td>
<td>965</td>
<td>1033</td>
<td>999</td>
<td>68</td>
<td>1.00</td>
<td>0.242</td>
<td>600</td>
<td>1002</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>965</td>
<td>1035</td>
<td>1000</td>
<td>70</td>
<td>1.02</td>
<td>0.230</td>
<td>900</td>
<td>1005</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>965</td>
<td>1035</td>
<td>1000</td>
<td>70</td>
<td>1.01</td>
<td>0.226</td>
<td>1600</td>
<td>1007</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>962</td>
<td>1040</td>
<td>1001</td>
<td>78</td>
<td>1.01</td>
<td>0.233</td>
<td>2000</td>
<td>1007</td>
</tr>
<tr>
<td>1.05:1</td>
<td>10</td>
<td>976</td>
<td>1040</td>
<td>1008</td>
<td>64</td>
<td>1.02</td>
<td>0.268</td>
<td>600</td>
<td>1008</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>975</td>
<td>1042</td>
<td>1008</td>
<td>67</td>
<td>1.00</td>
<td>0.288</td>
<td>900</td>
<td>1008</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>973</td>
<td>1045</td>
<td>1009</td>
<td>72</td>
<td>1.01</td>
<td>0.293</td>
<td>1600</td>
<td>1007</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>973</td>
<td>1047</td>
<td>1010</td>
<td>74</td>
<td>1.11</td>
<td>0.293</td>
<td>2000</td>
<td>1007</td>
</tr>
<tr>
<td>1.2:1</td>
<td>10</td>
<td>990</td>
<td>1052</td>
<td>1021</td>
<td>62</td>
<td>1.03</td>
<td>0.341</td>
<td>600</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>990</td>
<td>1055</td>
<td>1022</td>
<td>65</td>
<td>1.02</td>
<td>0.343</td>
<td>900</td>
<td>1021</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>990</td>
<td>1058</td>
<td>1024</td>
<td>68</td>
<td>1.01</td>
<td>0.335</td>
<td>1600</td>
<td>1022</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>988</td>
<td>1060</td>
<td>1024</td>
<td>72</td>
<td>1.00</td>
<td>0.338</td>
<td>2000</td>
<td>1025</td>
</tr>
<tr>
<td>1:4:1</td>
<td>10</td>
<td>1007</td>
<td>1070</td>
<td>1038</td>
<td>63</td>
<td>1.02</td>
<td>0.319</td>
<td>600</td>
<td>1038</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1007</td>
<td>1070</td>
<td>1038</td>
<td>63</td>
<td>1.02</td>
<td>0.323</td>
<td>900</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1005</td>
<td>1072</td>
<td>1038</td>
<td>67</td>
<td>1.01</td>
<td>0.320</td>
<td>1600</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1000</td>
<td>1075</td>
<td>1037</td>
<td>75</td>
<td>1.00</td>
<td>0.314</td>
<td>2000</td>
<td>1040</td>
</tr>
<tr>
<td>1.7:1</td>
<td>10</td>
<td>1035</td>
<td>1100</td>
<td>1067</td>
<td>65</td>
<td>1.01</td>
<td>0.270</td>
<td>600</td>
<td>1065</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1035</td>
<td>1100</td>
<td>1067</td>
<td>65</td>
<td>1.01</td>
<td>0.276</td>
<td>900</td>
<td>1065</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1032</td>
<td>1102</td>
<td>1067</td>
<td>70</td>
<td>1.00</td>
<td>0.280</td>
<td>1600</td>
<td>1065</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1032</td>
<td>1105</td>
<td>1068</td>
<td>73</td>
<td>1.00</td>
<td>0.275</td>
<td>2000</td>
<td>1065</td>
</tr>
<tr>
<td>1.9:1</td>
<td>10</td>
<td>1052</td>
<td>1118</td>
<td>1085</td>
<td>66</td>
<td>1.00</td>
<td>0.264</td>
<td>600</td>
<td>1083</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1052</td>
<td>1120</td>
<td>1086</td>
<td>68</td>
<td>1.01</td>
<td>0.261</td>
<td>900</td>
<td>1083</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1050</td>
<td>1120</td>
<td>1085</td>
<td>70</td>
<td>0.98</td>
<td>0.261</td>
<td>1600</td>
<td>1083</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1050</td>
<td>1120</td>
<td>1085</td>
<td>70</td>
<td>0.98</td>
<td>0.260</td>
<td>2000</td>
<td>1083</td>
</tr>
</tbody>
</table>

a. All potentials are in mV vs. Al/Al(III) in 2:1 AlCl$_3$: BuPyCl, at T=40°C.
b. Mole ratio of AlCl$_3$: BuPyCl
Table 3 Summary of Voltammetric Parameters for Ru(bpy)$_3$$^{2+}$ in AlCl$_3$: BuPyCl Meltsa

<table>
<thead>
<tr>
<th>Melt Composition</th>
<th>Scan Rate (v) mV/s</th>
<th>E_p^c mV</th>
<th>E_p^a mV</th>
<th>E_f mV</th>
<th>ΔE mV</th>
<th>i_p/i_c^c</th>
<th>i_p/\sqrt{v} mA cm$^{-2}$</th>
<th>$v^{-1/2}$ s$^{-1/2}$</th>
<th>Rotation Rate rpm</th>
<th>$E_{1/2}$ mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>10</td>
<td>1130</td>
<td>1198</td>
<td>1164</td>
<td>68</td>
<td>1.00</td>
<td>0.308</td>
<td></td>
<td>600</td>
<td>1163</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1130</td>
<td>1198</td>
<td>1164</td>
<td>68</td>
<td>1.03</td>
<td>0.300</td>
<td></td>
<td>900</td>
<td>1163</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1127</td>
<td>1202</td>
<td>1165</td>
<td>75</td>
<td>1.02</td>
<td>0.329</td>
<td></td>
<td>1600</td>
<td>1163</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1127</td>
<td>1204</td>
<td>1165</td>
<td>77</td>
<td>1.01</td>
<td>0.327</td>
<td></td>
<td>2000</td>
<td>1163</td>
</tr>
<tr>
<td>1.05:1</td>
<td>10</td>
<td>1140</td>
<td>1204</td>
<td>1172</td>
<td>64</td>
<td>1.00</td>
<td>0.357</td>
<td></td>
<td>400</td>
<td>1170</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1140</td>
<td>1204</td>
<td>1172</td>
<td>64</td>
<td>1.02</td>
<td>0.360</td>
<td></td>
<td>600</td>
<td>1176</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1138</td>
<td>1206</td>
<td>1172</td>
<td>68</td>
<td>1.03</td>
<td>0.364</td>
<td></td>
<td>900</td>
<td>1170</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1138</td>
<td>1208</td>
<td>1173</td>
<td>70</td>
<td>1.03</td>
<td>0.359</td>
<td></td>
<td>1600</td>
<td>1170</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1136</td>
<td>1210</td>
<td>1173</td>
<td>74</td>
<td>1.03</td>
<td>0.353</td>
<td></td>
<td>2000</td>
<td>1170</td>
</tr>
<tr>
<td>1.2:1</td>
<td>10</td>
<td>1152</td>
<td>1216</td>
<td>1184</td>
<td>64</td>
<td>1.04</td>
<td>0.331</td>
<td></td>
<td>600</td>
<td>1183</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1152</td>
<td>1216</td>
<td>1184</td>
<td>64</td>
<td>1.06</td>
<td>0.329</td>
<td></td>
<td>600</td>
<td>1176</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1150</td>
<td>1218</td>
<td>1184</td>
<td>68</td>
<td>1.05</td>
<td>0.322</td>
<td></td>
<td>900</td>
<td>1170</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1150</td>
<td>1220</td>
<td>1185</td>
<td>70</td>
<td>1.05</td>
<td>0.321</td>
<td></td>
<td>1600</td>
<td>1170</td>
</tr>
<tr>
<td>1.4:1</td>
<td>10</td>
<td>1170</td>
<td>1234</td>
<td>1202</td>
<td>64</td>
<td>1.02</td>
<td>0.344</td>
<td></td>
<td>600</td>
<td>1202</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1170</td>
<td>1234</td>
<td>1202</td>
<td>64</td>
<td>1.03</td>
<td>0.352</td>
<td></td>
<td>600</td>
<td>1202</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1170</td>
<td>1236</td>
<td>1204</td>
<td>68</td>
<td>1.03</td>
<td>0.343</td>
<td></td>
<td>900</td>
<td>1202</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1168</td>
<td>1240</td>
<td>1204</td>
<td>72</td>
<td>1.04</td>
<td>0.339</td>
<td></td>
<td>1600</td>
<td>1202</td>
</tr>
<tr>
<td>1.7:1</td>
<td>10</td>
<td>1198</td>
<td>1262</td>
<td>1230</td>
<td>64</td>
<td>1.02</td>
<td>0.332</td>
<td></td>
<td>600</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1198</td>
<td>1262</td>
<td>1230</td>
<td>64</td>
<td>1.03</td>
<td>0.338</td>
<td></td>
<td>600</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1195</td>
<td>1265</td>
<td>1230</td>
<td>70</td>
<td>1.02</td>
<td>0.339</td>
<td></td>
<td>900</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1195</td>
<td>1265</td>
<td>1230</td>
<td>70</td>
<td>1.04</td>
<td>0.340</td>
<td></td>
<td>1600</td>
<td>1230</td>
</tr>
<tr>
<td>1.9:1</td>
<td>10</td>
<td>1220</td>
<td>1284</td>
<td>1252</td>
<td>64</td>
<td>1.02</td>
<td>0.331</td>
<td></td>
<td>600</td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1220</td>
<td>1284</td>
<td>1252</td>
<td>64</td>
<td>1.01</td>
<td>0.333</td>
<td></td>
<td>600</td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1220</td>
<td>1288</td>
<td>1254</td>
<td>68</td>
<td>1.02</td>
<td>0.325</td>
<td></td>
<td>600</td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1222</td>
<td>1290</td>
<td>1256</td>
<td>68</td>
<td>1.03</td>
<td>0.327</td>
<td></td>
<td>600</td>
<td>1255</td>
</tr>
</tbody>
</table>

a. All potentials are in mV vs. Al/Al(III) in 2:1 AlCl$_3$: BuPyCl, at T= 40°C
b. Mole ratio of AlCl$_3$: BuPyCl
Table 4. Spectroscopic Data for Polypyridine Complexes Of Ru and Fe In
AlCl_3:BuPyCl Melts.a

<table>
<thead>
<tr>
<th>Complex</th>
<th>color</th>
<th>λ_{max} nm</th>
<th>molar abs. b M$^{-1}$ cm$^{-1}$</th>
<th>Values from the Literature a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(bpy)_3^{2+}</td>
<td>orange</td>
<td>454</td>
<td>14,000</td>
<td>453(13800)c, 450(14000)d</td>
</tr>
<tr>
<td>Ru(bpy)_3^{3+}</td>
<td>green</td>
<td>424</td>
<td>3200</td>
<td>418(\sim3000)c</td>
</tr>
<tr>
<td>Fe(bpy)_3^{2+}</td>
<td>red</td>
<td>523</td>
<td>8700</td>
<td>522(8740)e, 520(8240)f</td>
</tr>
<tr>
<td>Fe(bpy)_3^{3+}</td>
<td>greenish-blue</td>
<td>627</td>
<td>380</td>
<td>618(284)g, 613(289)h</td>
</tr>
<tr>
<td>Fe(phen)_3^{3+}</td>
<td>red</td>
<td>512</td>
<td>10,800</td>
<td>510(11300)i, 510(11100)j</td>
</tr>
<tr>
<td>Fe(phen)_3^{3+}</td>
<td>blue</td>
<td>\sim610</td>
<td>800</td>
<td>590(600)j, 602(870)k</td>
</tr>
</tbody>
</table>

a these spectra were obtained either in the neutral or acidic melts (see text for details)
b molar absorptivities are accurate to $\pm 5\%$.

$c.$ reference 24
d. reference 25
e. reference 26
f. reference 27
g. reference 13
$h.$ reference 28
$i.$ reference 29
$j.$ reference 30
$k.$ reference 31
Table 5. Formal Potentials for Polypyridine Complexes of Ru(II)/(III) and Fe(II)/(III) in Various Solvents vs. Ferrocene/Ferricinium Couple.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Fe(phen)$_3^{2+/3+}$</th>
<th>Fe(bpy)$_2^{2+/3+}$</th>
<th>Ru(bpy)$_3^{2+/3+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>743b</td>
<td>718b</td>
<td>921b</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>686c</td>
<td>670d</td>
<td>900e</td>
</tr>
<tr>
<td>1:1 AlCl$_3$:BuPyCl</td>
<td>730f</td>
<td>690f</td>
<td>894f</td>
</tr>
<tr>
<td>Nitromethane</td>
<td>721c</td>
<td>727d</td>
<td></td>
</tr>
</tbody>
</table>

a. Formal potential for each redox couple is quoted in mV vs. E_f for Ferrocene/Ferricinium couple in same solvent i.e., $E_f = E_f$ (redox couple) - E_f (Ferrocene/Ferricinium)

b. Reference 17
c. Reference 12
d. Reference 16
e. Reference 37
f. This work
Table 6. Diffusion Coefficients (at $T = 40^\circ C$) and Radii of Polypyridine Fe(II) and Ru(II) Complexes in AlCl$_3$:BuPyCl Melts.a

<table>
<thead>
<tr>
<th>Melt Composition</th>
<th>D_{x10^7}</th>
<th>D_{x10^8}</th>
<th>D_{x10^7}</th>
<th>D_{x10^7}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm2/s</td>
<td>g cm/s2</td>
<td>cm2/s</td>
<td>cm2/s</td>
</tr>
<tr>
<td>1:1</td>
<td>2.75</td>
<td>6.05</td>
<td>2.61</td>
<td>2.43</td>
</tr>
<tr>
<td>1.05:1</td>
<td>2.88</td>
<td>6.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2:1</td>
<td>2.99</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4:1</td>
<td>3.35</td>
<td>6.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7:1</td>
<td>3.67</td>
<td>6.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9:1</td>
<td>4.07</td>
<td>6.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average = 6.04 0.04

Calculated radius of the complex, nm

- 0.57
- 0.60
- 0.64

a. Values of the viscosity (η) and density used in the calculation of D, D_η and radius are taken from reference 20.
FIGURE CAPTIONS

Figure 1. Cyclic voltammograms in 1.05:1 AlCl₃:BuPyCl melts. Scan rate = 50 mV/s; T = 40°C. (a) 3.2 mM Fe(bpy)²⁺, GC electrode with A = 0.454 cm². (b) 1.8 mM Fe(phen)²⁺, GC electrode with A = 0.454 cm². (c) 2.8 mM Ru(bpy)²⁺, GC with A = 0.196 cm².

Figure 2. Plots of current at various potentials vs. ω¹/₂ for the oxidation of Fe(bpy)²⁺ (dashed lines), and Fe(phen)³⁺ (solid lines) in 1.0:1.0 AlCl₃:BuPyCl. E in mV: (1) 1000, (2) 1050, (3) 1300.

Figure 3. Plots of E vs. log I/I₀ for the oxidation of (1) Fe(bpy)³⁺, (2) Fe(phen)³⁺, (3) Ru(bpy)³⁺ in 1.05:1 AlCl₃:BuPyCl.

Figure 4. RDE voltammograms for a 1.2:1 AlCl₃:BuPyCl melt with initial concentration of 3.8 mM Fe(bpy)(ClO₄)₂, recorded as a function of time. Scan rate = 5 mV/s; rotation rate = 600 rpm; T = 40°C; GC electrode with A = 0.454 cm². Time in minutes: (1) 0, (2) 35, (3) 65, (4) 110, (5) 300.

Figure 5. Voltammograms for 3.1 mM Fe(bpy)³⁺(ClO₄)₂ dissolved in a 0.95:1 AlCl₃:BuPyCl melt (which actually corresponds to 3.1 mM FeCl₄⁻, see text). T = 40°C; GC electrode with A = 0.454 cm². (a) Cyclic voltammogram with scan rate = 100 mV/s. (b) RDE voltammogram with scan rate = 5 mV/s and rotation rate = 600 rpm.

Figure 6. An Aluminum-Oxygen cell configuration.

Figure 7. Absorption spectra of a 1.05:1 AlCl₃:BuPyCl (dashed line) and 0.96 mM Ru(bpy)³⁺ in 1.05:1 AlCl₃:BuPyCl melt (solid line). Cell thickness = 0.1 cm.

Figure 8. Absorption spectra of: 1.17 mM Fe(bpy)³⁺ in 1:1 melt, cell thickness = 0.1 cm (---); 2.5 mM Fe(phen)³⁺ in 1.9:1 melt, cell thickness = 1 cm (—).
Figure 9. Absorption spectra of: 1.45 mM Fe(phen)$_3^{2+}$ in 1:1 melt, cell thickness = 0.1 cm (---); 1.7 mM Ru(bpy)$_3^{3+}$ in 1.9:1 melt, cell thickness = 0.1 cm (---); 3.87 mM Fe(bpy)$_3^{3+}$ in 1.2:1 melt, cell thickness = 1 cm (---).
FIGURE 1
FIGURE 3
FIGURE 4
FIGURE 5
Anode

\[\text{Al} \rightarrow \text{Al}^{3+} + 3e^- \]

Cathode

\[\text{Ru(bpy)}_3^{3+} + e^- \rightarrow \text{Ru(bpy)}_3^{2+} \]

\[\text{O}_2 + \text{Ru(bpy)}_3^{2+} \rightarrow \text{Ru(bpy)}_3^{3+} + ? \]

FIGURE 6
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 92152</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. A. B. Amster</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Dean William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, California 93940</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Mr. Vincent Schaper</td>
<td>1</td>
</tr>
<tr>
<td>DTNSRDC Code 2830</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21402</td>
<td></td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Mr. A. M. Anzalone</td>
<td>1</td>
</tr>
<tr>
<td>Administrative Librarian</td>
<td></td>
</tr>
<tr>
<td>PLASTEC/ARRACOM</td>
<td></td>
</tr>
<tr>
<td>Bldg 3401</td>
<td></td>
</tr>
<tr>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 051B

Dr. M. B. Denton
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. J. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. B. R. Kowalski
Department of Chemistry
University of Washington
Seattle, Washington 98105

Dr. H. Freiser
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Dr. H. Chernoff
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. A. Zirino
Naval Undersea Center
San Diego, California 92132

Professor George H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Alan Bewick
Department of Chemistry
Southampton University
Southampton, Hampshire
ENGLAND 5095NA

Dr. S. P. Perone
Lawrence Livermore Laboratory L-370
P.O. Box 808
Livermore, California 94550

Dr. L. Jarvis
Code 6100
Naval Research Laboratory
Washington, D.C. 20375

Dr. G. M. Hieftje
Department of Chemistry
Indiana University
Bloomington, Indiana 47401

Dr. Christie G. Enke
Department of Chemistry
Michigan State University
East Lansing, Michigan 48824

Dr. D. L. Venezky
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Walter G. Cox, Code 3632
Naval Underwater Systems Center
Building 148
Newport, Rhode Island 02840

Professor Isiah M. Warner
Department of Chemistry
Emory University
Atlanta, Georgia 30322

Dr. Kent Eisentraut
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433

Dr. Adolph B. Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. B. E. Ouda
Chemical Sciences Branch
Code 50 C
Naval Weapons Support Center
Crane, Indiana 47322

Dr. John Eyler
Department of Chemistry
University of Florida
Gainesville, Florida 32611
TECHNICAL REPORT DISTRIBUTION LIST, 051B

Professor J. Janata
Department of Bioengineering
University of Utah
Salt Lake City, Utah 84112

Dr. J. DeCorpo
NAVSEA
Code 05R14
Washington, D.C. 20362

Dr. Charles Anderson
Analytical Chemistry Division
Athens Environmental Laboratory
College Station Road
Athens, Georgia 30613

Dr. Ron Flemming
B 108 Reactor
National Bureau of Standards
Washington, D.C. 20234

Dr. David M. Hercules
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania

Dr. Frank Herr
Office of Naval Research
Code 422CB
800 N. Quincy Street
Arlington, Virginia 22217

Professor E. Keating
Department of Mechanical Engineering
U.S. Naval Academy
Annapolis, Maryland 21401

Dr. M. H. Miller
1133 Hampton Road
Route 4
U.S. Naval Academy
Annapolis, Maryland 21401

Dr. Clifford Spiegelman
National Bureau of Standards
Room A337 Bldg. 101
Washington, D.C. 20234

Dr. Denton Elliott
AFOSR/NC
Bolling AFB
Washington, D.C. 20362

Dr. B. E. Spielvogel
Inorganic and Analytical Branch
P.O. Box 12211
Research Triangle Park, NC 27709

Ms. Ann De Witt
Material Science Department
160 Fieldcrest Avenue
Raritan Center
Edison, New Jersey 08818

Dr. A. Harvey
Code 6110
Naval Research Laboratory
Washington, D.C. 20275

Dr. John Hoffsommer
Naval Surface Weapons Center
Building 30 Room 208
Silver Spring, Maryland 20910

Mr. S. M. Hurley
Naval Facilities Engineering Command
Code 032P
200 Stovall Street
Alexandria, Virginia 22331

Ms. W. Parkhurst
Naval Surface Weapons Center
Code R33
Silver Spring, Maryland 20910

Dr. M. Robertson
Electrochemical Power Sources Division
Code 305
Naval Weapons Support Center
Crane, Indiana 47522

CDR Andrew T. Zander
10 Country Club Lane
ONR Boston
Plaistow, New Hampshire 03865
TECHNICAL REPORT DISTRIBUTION LIST, 051B

Dr. Robert W. Shaw
U.S. Army Research Office
Box 12211
Research Triangle Park, NC 27709

Dr. Marvin Wilkerson
Naval Weapons Support Center
Code 30511
Crane, Indiana 47522

Dr. J. Wyatt
Naval Research Laboratory
Code 6110
Washington, D.C. 20375

Dean William Tolles
Naval Post Graduate School
Spanaughel Hall
Monterey, California 93940

Dr. H. Wohltjen
Naval Research Laboratory
Code 6170
Washington, D.C. 20375
Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 5NH
United Kingdom

Dr. T. Katan
Lockheed Missiles and Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Lab.
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201

Dr. B. Brummer
EIC Incorporated
111 Chapel Street
Newton, Massachusetts 02158

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
M.S. 6B025 Forrestal Bldg.
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. William Ayers
ECO Inc.
P.O. Box 5357
North Branch, New Jersey 08876

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Corporation
111 Chapel Street
Newton, Massachusetts 02158

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SOL 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Denton Elliott
Air Force Office of Scientific
Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>City</th>
<th>State/Province</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. David Aikens</td>
<td>Chemistry Department</td>
<td>Troy</td>
<td>New York</td>
<td>12181</td>
</tr>
<tr>
<td>Dr. A. P. B. Lever</td>
<td>Chemistry Department</td>
<td>York</td>
<td>Ontario</td>
<td>M3J 1P3</td>
</tr>
<tr>
<td>Dr. Stanislaw Szpak</td>
<td>Naval Ocean Systems Center</td>
<td>San Diego</td>
<td>California</td>
<td>95152</td>
</tr>
<tr>
<td>Dr. Gregory Farrington</td>
<td>Department of Materials Science and Engineering</td>
<td>Philadelphia</td>
<td>Pennsylvania</td>
<td>19104</td>
</tr>
<tr>
<td>M. L. Robertson</td>
<td>Manager, Electrochemical and Power Sources Division</td>
<td>Crane</td>
<td>Indiana</td>
<td>47522</td>
</tr>
<tr>
<td>Dr. T. Marks</td>
<td>Department of Chemistry</td>
<td>Evanston</td>
<td>Illinois</td>
<td>60201</td>
</tr>
<tr>
<td>Dr. Micha Tomkiewicz</td>
<td>Department of Physics</td>
<td>Brooklyn</td>
<td>New York</td>
<td>11210</td>
</tr>
<tr>
<td>Dr. Lesser Blum</td>
<td>Department of Physics</td>
<td>Rio Piedras</td>
<td>Puerto Rico</td>
<td>00931</td>
</tr>
<tr>
<td>Dr. Joseph Gordon, II</td>
<td>IBM Corporation</td>
<td>San Jose</td>
<td>California</td>
<td>95193</td>
</tr>
<tr>
<td>Dr. D. H. Whitmore</td>
<td>Department of Materials Science</td>
<td>Evanston</td>
<td>Illinois</td>
<td>60201</td>
</tr>
<tr>
<td>Dr. Alan Bewick</td>
<td>Department of Chemistry</td>
<td>Southampton</td>
<td>England</td>
<td>S09 5NH</td>
</tr>
<tr>
<td>Dr. E. Anderson</td>
<td>NAVSEA-56Z33 NC #4</td>
<td>Arlington</td>
<td>Virginia</td>
<td>20362</td>
</tr>
<tr>
<td>Dr. Bruce Dunn</td>
<td>Department of Engineering & Applied Science</td>
<td>Los Angeles</td>
<td>California</td>
<td>90024</td>
</tr>
<tr>
<td>Dr. Elton Cairns</td>
<td>Energy & Environment Division</td>
<td>Berkeley</td>
<td>California</td>
<td>94720</td>
</tr>
<tr>
<td>Dr. D. Cipris</td>
<td>Allied Corporation</td>
<td>Morristown</td>
<td>New Jersey</td>
<td>07960</td>
</tr>
<tr>
<td>Dr. M. Philipott</td>
<td>IBM Corporation</td>
<td>San Jose</td>
<td>California</td>
<td>95193</td>
</tr>
<tr>
<td>Dr. Donald Sandstrom</td>
<td>Department of Physics</td>
<td>Pullman</td>
<td>Washington</td>
<td>99164</td>
</tr>
<tr>
<td>Dr. Carl Kannewurf</td>
<td>Department of Electrical Engineering and Computer Science</td>
<td>Evanston</td>
<td>Illinois</td>
<td>60201</td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 68025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
710 E. Ogden Avenue #108
Naperville, Illinois 60540

Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234