Efficient Realizations in Hardware Implementations for Digital Signal Processing

Richard A. Roberts, Professor of Electrical Engineering

University of Colorado
Boulder, CO 80309

U. S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

Final Report

DAAG29-80-K-0062

March 1, 1984

Approved for public release; distribution unlimited.

The view, opinion, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Structures for digital signal processing, VLSI implementations, digital processing algorithms.

Digital signal processing is an ever increasingly important application of theoretical principles needed to process numerical information by digital means. DSP has recently been impacted by the technology of microelectronics (VLSI). VLSI has changed certain previously held concepts on the complexity of algorithms and implementations. This research has been directed at understanding the important parameters in VLSI as applied to digital signal processing problems.
Digital signal processing is an ever increasingly important application of theoretical
principles needed to process numerical information by digital means. DSP has recently
been impacted by the technology of microelectronics (VLSI). VLSI has changed certain
previously held concepts on the complexity of algorithms and of implementations. This
research has been directed at understanding the important parameters in VLSI as
applied to digital signal processing problems.

In this research we use the terms task to mean the input/output description of a
DSP problem, algorithm or realization to define the actual computation and imple-
mentation to mean the hardware definition of the algorithm.

Our research began by concentrating on two important tasks in DSP - spectral esti-
mation and digital filtering. Spectral estimation algorithms are many and varied and so
our first problem was to really examine the assumptions inherent in the various available
algorithms. This resulted in research which investigated many different forms of spectral
estimation. The thrust of this research was to come up with estimators that would be
useful to implement in VLSI. One important class of nonparametric estimators is the
so-called discrete Fourier transform generally implemented using the FFT. Dr. Masud
Arjmand as part of his Ph.D. thesis [1] developed new structures for VLSI implementa-
tion of the DFT. These new structures possess many of the attributes needed for good
VLSI implementation. These include:
(i) a modular and regular structure
(ii) reasonably good finite register effects
(iii) high data throughput
(iv) reasonably complexity as measured by the relative chip area consumed vis-a-vis other implementations.

Based on this research another Ph.D. student, Dr. Allan Steinhardt, investigated parametric spectral estimators. These parametric estimators offer the advantage of apparent high resolution provided the class of spectra under study can be adequately characterized a priori. In order to implement spectral estimators in VLSI it is useful to obtain a simple characterization or models of the spectra. Dr. Steinhardt first tried to use finite-state systems to model spectra. The idea was that since a finite-state system is inherently digital its implementation would be "natural" for VLSI. Unfortunately, this research led us to the conclusion that such a characterization is not simple because it requires an enormous number of states. This blind alley was then replaced by an investigation of various parametric spectral estimators in the hope of consolidating many estimators into a single theoretical structure which then could be used as the basis for a VLSI implementation. This work resulted in the Ph.D. thesis [2] of Allan Steinhardt. It is more theoretical than the work of Arjmand but does serve to consolidate a great deal of parametric spectral estimation. What is needed at this point is further research to obtain VLSI implementations of these theoretical models.

In parallel with this research on spectral estimation algorithms was research carried out by Dr. Denis Henrot [3] on structures for digital filtering that could be efficiently implemented in VLSI. The digital filtering problem is easier to attack than the spectral
estimation problem because the input/output task is better defined. Spectral estimation has many algorithms dependent on the class of spectra to be estimated. Digital filtering consists of a single well-defined input/output task. Dr. Henrot was able to obtain what we consider to be an excellent structure for VLSI implementation. It is highly modular and regular, has good finite register effects, good data throughput, and is of reasonable complexity.

This research has resulted in several publications which are listed below, and three Ph.D. theses also included below.


Invited Presentations on Digital Processing Realization for VLSI


