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CHAPTER 1
INTRODUCTION

The objective of this study is the solution of two related prob-
lems concerning the diffraction of time~harmonic, electromagnetic, plane
waves. The first problem deals with the geometry given in Figure l.l and
is henceforth referred to as the interface problem. As seen in the fig-
ure, two half-spaces are separated by a planar interface which is coin~-
cident with the x'-z' plane. On the interface is a perfectly electrically
conducting (PEC), infinitely thin half-plane. The half-plane lies in the
plane y' = 0 and extends along the positive x' direction from an edge
which is coincident with the z' axis. An incident plane wave propagating
strictly in the x'-y' plane in medium 1 (characterized by constitutive
parameters (ui,ei)) impinges on the half-plane. There is assumed to be no
variation of fields in the 2z' direction, hence the problem is two-dimen-
sional.

The second problem, referred to as the slab problem, consists of the
above half-plane residing on a dielectric slab characterized by (ué,eé)
which is in turn imbedded in another medium (ua,ei) as shown in Fig-
ure 1.2,

Aside from the academic interest of studying such configurations,

they resemble or model junctions involving composite materials such as
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Figure 1.1. Geometry of the interface problem.
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Figure 1.2. Geometry of the slab problem.




occur in modern aerospace structures. Therefore diffraction from such
planar composite structures is of practical interest, The first prob-
lem is a fundamental building block toward solving and interpreting more
complicated diffraction problems involving media interfaces. The second
structure serves as a canonical problem modeling a lapped-junction between
a metallic and a composite sheet. It is desirable to be able to ana-
lyze these structures using the geometrical theory of diffraction (GID), !
but no diffraction coefficients are available for either of them. As a
result, scattering problems involving these canonical structures cannot
be modeled using the GTD at present. One purpose of this study is to
solve these problems in an asymptotic limit and extract the ray consti-~
tuents of the solution in order to derive the correct diffraction coef-
ficients for GID modeling of composite/metal junctionms.

The scope of study of the problem geometries is as follows. For
the interface problem the equations are formulated for four separate
cases: a TM (transverse magnetic) polarized incident plane wave with the
integral equations formulated first over the PEC screen and then over the
remaining (aperture) portion of the interface plane and a TE (transverse
electric) polarized incident wave again formulated over each half of the
interface plane. The case of the TM wave formulated over the aperture is
developed in full detail from the integral equation formulation to the
asymptotic analysis of the resulting radiation integrals, The other cases

can be developed in a like manner and the similarity of the analysis is

indicated. The interface problem is handled in full generality with the .




constitutive parameters of the media allowed to be independent and lossy
(though constrained to be passive). In the slab problem, only the TM in-
cident wave is considered with the integral equation formulated over the
PEC screen. The media are assumegl to be lossless with the permeabilities
equal and the permittivity of the slab greater than that of the surround-
ing medium.

The solution of diffraction from a half-plane can be traced back to
the problem of scattering from a half-plane in a homogeneous medium which
was solved iay Sommerfeld (1896). Over the years this problem has been
treated from a number of points of view. The application of the Wiener-
Hopf technique to the half-plane problem is described in Noble (1958).
The Wiener-Hopf approach was developed to deal with a class of integral
equations on a semi-infinite domain and is a special case of the Riemann-
Hilbert problem (Carrier, Krook and Pearson (1966)). It was applied to
diffraction problems by J. Schwinger and E. T. Copson. Applicatiom of
the Wiener-Hopf technique has been the principal subject of several books
(Noble (1958), Mittra and Lee (1971), Weinstein (1969)). In the Sommer-
feld hal f-plane problem, thg diffracted fields are couched in the form of
a Fourier inversion integral which can be computed as Fresnel integrals
or approximated asymptotically as rays. This ray-optic result was uti-
lized by Keller (1957,1962) to formulate a high frequency electromagnetic
scattering theory which he called the geometrical theory of diffraction

(GTD). The GTID has been extensively developed by others (see Hansen

(1981) for a survey). The solutions of various canonical problems are




collected in the GTD and one subsequently models scattering from complex
structures by isolating effects (localization) and syn:hesizing an approx-
imate response from the canomical building blocks. Each new solution ex-
tends the capability of the the?ry, and the solutions presented here are
intended to add two new canonical structures to those available for such
fay solutions.

The Wiener~Hopf technique is used in this research since it is appli-
cable to a planar geometry which leads to an integral equation on a semi-
infinite domain, and it yields exact results. The difficulty in Wiener-
Hopf analysis arises in performing the required factorization and decom-
position steps. Therefore, amy new factorization is of interest as it
increases the collection of known factorizations. The interface problem
has been addressed by several authors and the required factorization was
not found to be available. A reduced form of the interface problem invol-
ving wave propagation across a seashore was solved by Clemmow (1966),
Bazar and Karp (1962), Heins and Feshbach (1954), and others. Recogniz-
ing that a formal factorization integral exists in certain cases, several
authors have performed an analysis of problems closely related to the in-
terface problem. An analysis by Heitman and van den Berg (1975) resulted
in & numerical evaluation of the factorization integral and did not attempt
to examine the asymptotic field behavior. A recent analysis by Sunahara
and Sekiguchi (1981) considered a closely related problem. However, their
solution breaks down as the geometry limits into the interface problem.

Part of the purpose of this study is to develop an efficient integral




factorization which yields all the analytical properties of the factor-

ization and is easy to evaluate numerically. This represents a natural

; extention of the application of the Wiener-Hopf procedure from problems
: where the analytical steps required can be performed and the resuylts given

in terms of known functions to problems which do not yield such closed

form or determinate solutions.




CHAPTER I1

ANALYTICAL PRELIMINARIES

2.1 Notation

The purpose of this chapter is to summarize the fundamental mathe-
matical tools required for the solution of the problems of interest. It
is intended as a reference for the remainder of this work. Notation and
conventions are established in this chapter for the rest of the volume.
All configurations are assumed to be strictly two-dimensional (no varia-

tion along the z direction). The fundamental time convention used is

ejmt , which is suppressed. As a result, Maxwell's equations take the
form:
V.2 =qle (2.1.1.a)
¥xem-n-~ jush (2.1.1.b)
Vequn) =0 (2.1.1.¢)
Txh=7+ juce (2.1.1.d)

- -+

where e is the electric field, h is the magnetic field, q is the electric
-+ -

charge density, j is the electric current density and m is the magnetic

current density.

The media to be considered are passive and, in general, lossy. They
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can be characterized by complex cénstitutive parameters {(u,e) which are
complex numbers in the fourth quadrant (positive real part and nonpositive
imaginary part). Also, the complex wave numbers are written as:
k = kr_-jki , where kr> 0 and kiZ.O'

Wiener-Hopf analysis, which is used in the solution of the problems
to be considered, is performed in the generalized Fourier transform (spec—-

tral) domain. For this analysis we choose the following Fourier transform

pair:1
* +jk_x
1 x 0
F(k ) = F{£(x)} = — J f(x.) e dx (2.1.2.3)
x) Nors 0] 0
X A m=00
0
. wot+jc -jkxx
£(x) = FHE®R)} = — Flk) e ak,  (2.1.2.9)
Zm kx--w+jc

Here the transform variable is allowed to be complex. The constant ¢
is suitably chosen for convergence of the Fourier inversion integral in
analogy to the Bromwich contour of the Laplace transform (Mittra and Lee
(1971a)).

Various methods are available for arriving at the Wiener-Hopf equa-
tion for a problem. Because of the pervasiveness of the integral equa-
tion formulation for electromagnetic problems, we choose to use this

type of equation as the starting point in formulating the Wiener-Hopf

1Throughout this work we use capitalized function names to denote
the spectral (Fourier transform) domain image of a spatial domain function.
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equation. The integral involved will be a convolution of a desired
unknown in the problem with an appropriate Green's function, which, for
two-dimensional problems, is of the form H(g)(k |x-x0|). When the inte-
gral equation is Fourier transformed with respect to x, according to the
convolution theorem, the integral is reduced to the product of the trans-
form of the unknown times the transform of the Green's function. For

the Green's function in free space, we have (Jones (1964)):

; | ~iBly|
3 @ 3t = -4 2 e___] 1.
F{g(p)}-F{- {- H, (k|o|)} ’ U: 3 (2.1.3)
where B = sz-ki (the details of the definition of B are given

below) and 3 = (x)% + (V)F.
2.2 Specification of the Value of B = Vvk2 -ki

The two dimensional Green's function is the solution to the inhomo-
geneous wave equation with a line source at 3 = 0 where we require waves
emanating from the line source to be outgoing and decaying. This means
that all the components in the spectral domain along the Fourier inver-
sion path must also have these characteristics. Observe that in the in-
version integral of (2.1.3) for g( [ ), we must have Im(B) < 0 to give
rise to decay along the y axis.

Clearly all physical waves will have Re(B) > 0 to provide outgoing

wave behavior from y = 0 and will satisfy Im(B) < 0 so that the outgoing

waves decay (consistent with the passiveness of the medium). Hence any
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physical wave will lie in the region characterized by Im(8) <.0, so the
boundary of the allowed region .is Im(B)=0, that is, B8 is purely real.
In the B plane this is the real axis and in the B2 plane this is the

positive real axis so

B? = [(k2-k)) - (0% -] - 2i(k k, +0T] (2.2.1.a)

where +
k= kr - jki and kx = g+3T .

So in the 8% plane, the boundary is given by

InB = -2(k k, +0T) = 0 (2.2.1.b)

and
Re 8% = [(k2-k}) - (*-1tH] 20 | (2.2.1.¢)

Figure 2.1 which depicts the lines specified abgove in the
k, = O+jT plane, We observe that the condition Im(8) = 0 implies
Im(B?) = 0 and Re(B?) > 0. The equality obviously gives a pair of hyper-
bolas in the second and fourth quadrants. The branch cuts for the allow-
able regiom of kx (top sheet of 8 ) will run from t k to infinity along
these hyperbolas. To decide which part of the hyperbolas contain the
branch cuts of B, we observe that the cuts force In(B) < 0 on the top sheet
which implies that they lie along Im(B) = 0 and therefore Re(lez 0. So
the branch cuts lie along the lines shown in Figure 2,1, These are the

conventional hyperbolic branch cuts and preserve decay at infinity. Since

our analysis will take us off the real axis in the spectral domain, it is
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45°ASYMPTOTE Ky=o +jT
- BRANCH
cuT
Im(g82)=0
-K o_
+K
Im(82)=0
Re(82)=0
Re(82)=0 o
BRANCH
uT
45° ASYMPTOTE c

Figure 2.1. Domain of 8 = /Ez-kx! .
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important to understand where these cuts lie and to recognize that moving
them may cause problems in closing an integration contour at infinity.

We need a top sheet where the outgoing wave conditions stated above are
satisfied on the Fourier transform path (the real axis) and which allows
us to perform any semi-circular closures that we may need later, The kx
domain in Figure 2.2 shows the sign of Re(R) for points in the
kx domain.

One other related issue must be dealt with before we leave the sub-

ject of the definition of B. In some situations subsequently, we eval-

uate the factors of 8 = /kz—ki = /k+kx'/k-kx separately and must impose
the above conditions in so doing. The complex number (k-kx) can be re-
presented by a vector pointing from +kx to k. The modulus and argument
of the number are taken as the length of the vector and angle with res-
pect to a line running from +kx parallel to the positive real axis to-
ward infinity as shown in Figure 2.3, The complex vector representation
for (k+kx) = er(-k) points from -~k to k, and we utilize a similar defi-
nition for its argument as shown in Figure 2.3. As a result
[914-82]
B = ki-k2Z = [(k+k)'(k-k)]%- |k2-k2|li ej 2 (2.2.2)
X X X X

is found to obey our branch definition of R and so we have a simple
rule for establishing the arguments of /E:E;'and /E:E;'which is consis-

tent with the definition of 8.

Finally, a point of terminology needs to be established. It will

prove useful to consider branch definitions of 8 which have branch cuts
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K+Kx=Kx-('K)= |K+Kx.| e 182

Kx
8, .
/ i K'KX’IK'KXIeje'
-
¥
+K

Figure 2.3. Vector interpretation of (k+kx) and (k-kx).
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that are different than the hyperbolic branch cuts used in this section.
These alternative branches of B are arrived at by analytic continuation
of the function from the original branch definition. These new branch
definitions are described as analytic continuations of the function, 8,
arising from the movement of the hyperbolic branch cuts of 8. This
language is used to preserve the intuitive sense of connection between
successive branch definitions and an apology is made here to the precise

mathematician for the use of this phraseology.

2.3 Edge Condition

In order to uniquely specify the field solution for diffraction
from a surface which contains a discontinuity of the surface normal
vector, it is necessary to specify field behavior in the vicinity of the
edge since unbounded fields arise. This problem was dealt with by J.
Meixner (1954). He required that a satisfactory representation for the
fields in a small volume including the edge must be limited to a finite
amount of energy. For a problem involving scattering from a wedge in
the presence of different media, Mittra and Lee (1971b) have given the
general solution for three media. The asymptotic behavior of the fields
as the edge of the half-plane is approached from large distances is given

below for the problems to be considered in this study:

E transverse H transverse Ez,Hz

%y oo ™% oo . (2.3.1)

o(p
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2.4 Wiener-Hopf Technique

The Wiener-Hopf technique applies to problems formulated on a semi-

infinite domain in a separable coordinate system and its use is ubiqui-
tous throughout mathematical physics (see.Noble (1958)). For example,

in a two-dimensional boundary value problem where the boundary values

are specified along a line so that along one semi-infinite ray a Dirichlet

condition holds and along the remainder of the line a Neumann condition

. —

holds, a simple solution involving the Fourier transform of the differ-

ential equation and the boundary conditions cannot be effected since the

i
{
|

boundary conditions do not hold along the entire domain of the trans-
form. We do not repeat the development leading to the Wiener-Hopf sol-
ution since that is available in numerous references (see Mittra and Lee
(1971a)). We simply state the results of the development. For the
convenience of the reader, we follow the notation of Mittra and Lee.

An integral equation amenable to the Wiener-Hopf procedure is of

the form
A 0
- J £(x') g(x,x')dx' = h(x), x€ (==,0) , (2.4.1)
) /2_‘" x'--m

The semi~infinite domain involved in this integral equation precludes

| Fourier transformation of the equation as it stands. In order to trans-

form (2.4.1), it is necessary to extend the equation by introducing the

definitions
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{ 0, x>0
¢ _(x) = (2.4.2)
£(x), x<0
and
'0, x>0
a_(x) = 9 . (2.4.3)
h(x), x<0

\

With these definitions the integral equation may be rewritten as

— -

— J(b (x) glx-x")dx’ = a_(x) + b, (x), x€(=,%) , (2.6.4)
ol T

where b4ﬂx) is an unknown function which has support for x in (0,® )

and which must be introduced in order that the range of applicability of
the original equation (2.4.1) may be formally extended to a doubly-
infinite domain. Since b+ﬁx) is not a part of the original problem pre-
scription, it is a new unknown which should be recoverable in the solution

process,

The form (2.4.4) is amenable to Fourier transformation. With an ap-

peal to the convolution theorem of Fourier transforms, the equation be-

comes

O_(k ) +Gle) = A (k) +B.(k) . (2.4.5)

The constraints on the imaginary part of k  are dictated by the exis~

tence of the Fourier transforms of the functions in a particular problem.

!
]
!
3
7
b
5
3
]

} . The Wiener~Hopf procedure leads to a solution for the unknown
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functions ¢ (k_ ) and B_(k ) which are constructed as follows:
S_(k) (2.4.6)
¢-(kx) = G (k ) e
-x
(2.4.7)

B, (k) = = S (k) * G (k)

The functions G (k ) and G_(k ) are defined through the factorization
of the transform of the kernel, G(kx), as follows:
- . (2.4.8)
Gk ) = G (k) G (k)
where
G+(k12 is regular and non-zero for Im(kx) > T,

and
G_(kx) is regular and non-zero for'Im(kx) < T
The pair of functions S+(kx) and S_(kx) are defined through the decom-—

position of a function into two functions which are each individually

regular over respective halves of the complex plane as given below:

A_(k)
W = S+(kx) + S-(kx) (2.4.9)
where
S+(kx) is regular for Im(k’) >T_,
and

S_(kx) is regular for Im(k) T

Thus, in summary, we can recover the original unknown function,

f(x), through its transform as computed in (2.4.6). The other unknown,
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which is introduced in (2.4.4), is also recovered. To construct f(x), we
must find functions which are regular and non-zero over respective halves
of the complex kx plane according to the factorization definition (2.4.8)
and the decomposition definition (2.4.9). It is on these two steps that

attention is focused in the Wiener-Hopf solution process.
2.5 Normalization

Throughout the body of this study, a normalization has been used
to bring the scale of the variables to a consistent and convenient level.
Unnormalized variables in the initial problem formulations are primed.
So ui refers to the actual complex permeability of medium 1 (physical
property) and ké refers to the wave number of medium 2. Hence
ki = /FEETET . The normalization used is reflected in the following
equations where the unprimed variable is the normalized variable and
(uo,eo) are the constituﬁive parameters for free space:

" o . - LI . ' = .
kp =kt Ageeg )y uy = Wy tHgs €)= Ey0E,

The effect of this normalization is to reference values of any variable

to the value which holds for free space at the frequency of interest.

Because the transform variable, kx’ is normalized to the free space
wavenumber, ko = w Y uyte, it is necessary to normalize distance to the
free space wavelength:

x = ko'x" (27 (distance in wavelengths))

where x' is the unnormalized distance. This ensures that ke*x = k'*x' ,

where the unprimed quantities are normalized and the primed ones are not.
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CHAPTER III
WIENER-HOPF ANALYSIS OF THE INTERFACE PROBLEM
3.1 Statement of the Problem

The diffracting geometry to be considered is shown in Figure 3.1l.
The half spaces for y' > 0 and y' < 0 contain media characterized by
(ui,ei) and (ué,eé) respectively and their interface coincides with the
i x'-z' plane, The media are general and characterized by comstitutive
parameters which are complex numbers having real part greater than zero i

and imaginary part less than or equal to zero. An infinitely thin, per-

fectly electrically conducting (PEC) screen lies on the interface for

x' > 0. A plane wave is incident from medium 1 at an angle 8 to the PEC

screen (0 < 8 < W), The incident wave may be polarized either transverse
; : magnetic (TM) or transverse electric (TE) relative to the z' axis and is
; invariant with respect to z'.

We seek to determine the total fields everywhere in space in the
presence of the medium discontinuity and the diffracting PEC half-plane.

{' The more practical result developed, however, is the field at great
distances from the edge of the half-plane, that is, that which results
from applying asymptotic evaluation techniques to the inverse Fourier

transform integrals of the Wiener-Hopf solutions obtained.

A W g A mir v o ey

. i This problem may be formulated in terms of an unknown quantity which

o
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Figure 3.1. Geometry of the interface problem.
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resides on the interface and which is non-zero only over half of the do-
main, that is, for x' in (~ ®,®), Either the component of the total
electric field tangential to the interface plane is considered unknown
for x' in (- %, 0) or the surface current density on the PEC half-plane
for x' in (0,») is considered as unknown. In either case the quantity
in question vanishes on the complementary semi-infinite domain by the
physics of the problem.

We proceed in this chapter to state four integral equations result-
ing from the two incident field polarizations viewed both from the aper-
ture and the PEC half-plane formulations. The particular case of TM in-
cidence formulated over the aperture is treated in detail. The other
three integral equations admit to similar treatment. We conclude the

chapter by relating them to the TM aperture formulation.
3.2 Integral Equation Formulations

We begin by considering the formulation of the TM scattering problem
as an integral equation with the tangential electric field over the aper-
ture plane (x' < 0) as the unknown. The problem configuration is shown
in Figure 3.1. The analysis follows the procedure described by Butler
and Umashankar (1976). The problem is viewed as the composition of two
subsidiary problems, one equivalent problem for the half space above the
interface plane (y' > 0) and another below the interface (y' <0). 1In

each equivalent problem the PEC half-plane is extended to cover the en-

tire interface plane and an unknown surface magnetic current is intro-
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duced to provide the correct continuity across the shorted aperture of
the tangential components of the fields. The resulting integro~differ-

ential equation is given below:

0

inc ' ] l 32 . '
hx (x') = -Jwe, E» + (Tiv -—ax'{l J ez(xo) gl(x ,xo)dxo
X

Wl

0

: 13 '
+ waz E. + TE;F ax—,2] j ez(xo) . gz(x ,xo)dxo (3.2.1)
X

=00

for x' € (- »,0),

jkix'cose
! ' -E_.e

where kinc -0 sinf is the component of the incident

n'
1
magnetic field which is tangential to the interface

plane (Eg is the magnitude of the electric field of
the incident plane wave at the edge of the PEC screen

! =
and nl ul el )a
e is the total electric field over the aperture,

A (Ei, 1 ),(€;,k ) are the permittivity and wavenumber for the
' tiedium in the upper/lower half-spaces respectively,

and g, »8 pare the Green's functions appropriate to the respective
problems:

e e~ L.

' ), ' '
3(5)(1: ,xo)- -% H, (k(%)h! ‘xol) .

The TM problem can also be formulated in terms of the z' ~directed

current induced on the PEC half-plane as an electric field integral

equation. The resulting integral equation is i
) ©
D NP _ . alx’
’ ez I jz(xo) a(x ,xo)dxo (3-2-2)
XO-O
for x' € (0,®),

- —a - - .
| P vae -
[
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‘ where eNP is the total electric field present with the PEC half-plane
removed, that is, the total scattered field in the presence
of only the discontinuity of the media,

‘ jz is the unknown induced electric current on the PEC half-plane,

I
‘ a 1s the Green's function which serves as the kernel.
f

The kernel is usually expressed in the spectral domain as it involves a
Sommerfeld integral. For this problem the Fourier transform of the

kernel a(x') is

A(k!) = = . (3.2.3)
X ' t
; 2m = + =%

Similar procedures can be formulated for the TE case. The problem
can be formulated as an integro-differential equation either over the

aperture or over the PEC half-plane. The resulting equations are shown

below:

Aperture Formulation
0

1 hPC ) = j e, (xg) * (3.2.4)

‘; B - X, me0

[e]'_ . HéZ)(kilx'“xol) +ey . Héz) (k; lx'-xol)]dxo
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PEC Formulation
[+ -]
NP 1 3?2 .
e (x') = junu; |1+ ?2133- =T J 1, (xp) s atx",xg)dx, (3.2.5)
x . =0

0
for x' ¢ (0,x), where a(x',xo) is the kernel of the integral equation in

the TM case. The Fourier transform of this kernel is

_j e!
AK)) = 1 . (3.2.6)
* 2 €i E2
Vo (Bl) -S—i- +—B-§

It is noted that equations (3.2.1) and (3.2.5) are integro-differ- i
ential equations. As a result, the subsequent Fourier transformation of
them requires integration by parts which results in the formation of a l
term commonly referred to as the bilinear concomitant. A detailed exam-
ination of the conditions for the vanishing of this term results in a
boundary condition on the applicability of the Wiener-Hopf equation in
the transform domain. The remaining two integral equations are seen to
involve Sommerfeld integrals as part of the Green's function in the ker-
nel. On examining the regions of validity for the Fourier transform of
the integral equations resulting from the two formulations in a parti-
cular polarization, it is found that the regions are complementary in
the spectral domain; that is, rhe union of the domains for the two formu-
lations is always a strip in the transform domain which is bounded by
the branch points for that wavenumber in the problem which is closest to

the real axis. As a result if the strip of analyticity vanishes in one

formulation due to the angle of the incident plane wave, it is found that
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the other formulation will have a non-vanishing Wiener-Hopf strip.
3.3 Wiener~Hopf Formulation for TM Incidence: Aperture Formulation

The integral equation (3.2.1) may be formally extended to apply on an
i infinite domain as in (2.4.4) in order to allow it to be Fourier trans-

‘ formed into the form of (2.4.5) with the result

’ ©
'Y = =3 ! -..1—. : .a.i_. Y N 1
i a(x") + b(x") Jweg l-+[ki] 3573 w(xo) gl(x ,xo)dxo
} ' ~co
| - « (3.3.1)
| -jue! |1 + L o o(x.) * g (x'",x.)dx
: 2 ké ax’'2 0 2 >0 0
-ty
where
0 . 0<x' <>
|
a(x') = . (3.3.2)
hinc(X') ,» =2<x'<0
3 unknown function , 0<x'<®
4
' b(x') = , (3.3.3) |
0 =2 <x'<0
0 s, O0<x'<ow
o(x') = (3.3.4)

e (x') , the desired, ~»<x'<Q
z
unknown function
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The unknown function b(x') is, of course, not required by the original
integral equation. It is an artifice in the Wiener-Hopf procedure and

is ultimately eliminated.

The extended domain integral equationm (3.3.1) can be Fourier trans-

formed according to (2.1.2) to obtain

= k’ 2
T ' 'Y = a3 ' S . § YLty . '
A (kx) + B (kx) jwey /2n _} ki JE(kx) cl(kx)]

(3.3.5)
- k')
- T - |X Y'Y . '
Jwez T |1 kéJ ® (kx) cz(kx) ,

where we have used the convolution theorem of Fourier transforms. The

transformed kernels G1 2 contain the Fourier transforms of Hankel func-
’

tions and are given in (2.1.3) with y = 0,

At this point we introduce the following substitutions and normaliza-

tions:
A (k) j E, sin 6
- x 1 0
= A'(k .k ) = ——— (3.3.6)
— R .3,
NoXo 0x" " ok 37 n. (k.cos 8+ k)
1'1 X
B+(kx)
-EBEE—-- B'(kokx) = unknown function , (3.3.7)
<k, ®'(k. k. ) ~koE'(k.k )
o) »—2—p QX . T2 0% (3.3.8)

(3.3.9)
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With these normalizations, the result is that for !
(minlk ., Ky ) =1 ) <1< (r =minlky,, k, c0s6)) (3.3.10)
- gti -k
where kx jT and k = kr SL
the following equation holds in the Fourier transform domain:
8l 82
3\ = |— — . e
A_(ky, + B+(kx) ul + % ¢_(kx) (3.3.11)

This is the Wiener-Hopf equation which we must solve for ¢_, the Fourier
transform of the electric field in the aperture on the interface between
the two media,

Requisite to the Wiener-Hopf procedure is the determination of the
common strip of analyticity in the kx plane for the quantities appearing
in (3.3.11). One must consider the region of existence of the transform
domain functions appearing in this equation in the light of the Wiener-~
Hopf factorization defined in (2.4.8).2

Figure 3.2 depicts the complex kx plane and the boundaries delimit-
ing the half planes of analyticity for the functions involved and the

directions from each boundary in which the regular regions extend. (The

lthis restriction on the region of validity of the Wiener-Hopf
equation arises from the analyticity and existence of the various cons-
tituent transforms and is discussed subsequently.

2ye consistently use the (+) subscript to denote a function which

is regular and non-zero in the upper half plane and (-) to denote similar
behavior in the lower half plane.
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AT Kg3o+jT
G+.B+
A
Kz
o

COMMON 'REG|0V77
OF ANALYTICITY ; /
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Figure 3.2. Regions of analyticity of functionms
in (3.3.11).
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subscript notation introduced in equations (3.3.6) through (3.3.9) refers
to the regions of regularity for the functions defined there in antici-
pation of the Wiener-Hopf analysis which follows.) The common region of
analyticity for all the components is observed to be bounded by (3.3.10).
We also note that the Wiener—Hopf equation, when formulated over the

aperture, does not apply when T_ < T_ which occurs if k, _cos6 < -k, .

11 21
Observe that this can only occur for 8 > 7/2 when kli > k2i'

Our Wiener-Hopf system is (3.3.11) and applies in the domain defined

+

by (3.3.10). To use the Wiener-Hopf procedure, it is necessary to form

the factors G+ and G_ defined in (2.4.8).
3.4 Factorization of G(kx)

We consider in this section the factorization of the kernmel in the

Wiener-Hopf equation (3.3.11)

B8 8
1 2

Gk ) = —+ — . (3.4.1)
X ul uz

Before proceeding to formulate a formal factorization integral for G(kx)
some observations about the function are in order. G(kx) is analytic
except on the branch cuts of Bl = /QE:Ez and 82 = /Eg:ii, and is
bounded in any finite region of the complex kx plane, It is a multiple-
sheeted function with four Riemann sheets., It is also an even function.
There is a total of four zeros on all sheets and they occur ir pairs on

a sheet. Hence two sheets will have no zeros and two will have two zeros

each.
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It is useful to partially factorize G(kx) by identifying explicit

factors which are regular over the requisite half planes

Hy + U u u g
1 2 2 1 2
k) =G, (k)*G,(k) = 8 + =—1(3.4.2) .
G( x) 1( x) 2V x HiHy 1 u1+u2 u]_+u2 Bl

The first factor Gl(kx) is factorized by inspection:

Y ]
U, + U U, +u
k) = | 20 AT 2| -k . (3.4.3)
1Y% HiHy L x| UMy 1 x

S -

i The 62 factor is now the function which remains to be factorized. We

note that it is bounded except at k, = tky. In particular GZ(kx) + 1 as

Ikx|+ ©, It is a two sheeted function since the branch points are intro-
duced only in the ratio of (52/31). This is apparent if one considers

the value of the function on a closed path which encircles two of the four

branch points. It is an even function (as is G(kx)) and is bounded every-
where except at kx = th. Since there are two branches of Gz(kx), there
will only be two roots which will occur and they will be located at the

following positions:

(3.4.4)

i = = {

1f My " My there are no roots of GZ(kx) unless € = €,l.en unless the
media are identical signifying the degeneration of the two media problem
to the classical half-plane problem. It is readily determined on which P

i sheet of GZ(kx) the roots occur by substituting the roots of (3.4.4) into
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equation (3.4.2) for GZ(kx)' They can only occur on one sheet.

The two different choices of branch cuts shown in Figure 3.3 prove
useful in defining G2 in subsequent developments. The cuts shown in
Figure 3.3a are sectors of hyperbolas which are asymptotic to the coor-
dinate axes and pass through the branch points. A pair of these cuts is !

associated with the respective branch points at + kg and + k, and their

choice ensures that

ImB8, <0, ImB, <0 (3.4.5)

for all points in the ky plane as discussed in section 2.2, With Bl and
82 defined by the hyperbolic branch cuts, it is difficult to discuss the

occurrence of the roots on the top sheet of Gz(kx)‘ It is desirable to

consider an analytic continuation of the definition of the top sheet of
Gz(kx) which manifests the fourth quadrant branch cut as a curved line
connecting the branch points kl with k2 (and, similarly, another line
connecting -kl with -kz). The branch cuts for this analytic continua~-
tion of Gz(kx) are shown in Figure 3.3b and account for the two-sheeted
nature of G,. That this branch cut deformation is permissible is a
result of the radicals in G, appearing as a quotient only. The precise

definition of this branch cut and the properties of the new top sheet of

G2(kx) are discussed below.

I

In order to examine the functional behavior of Gz(kx) with the new

branch cut configuration, the functional mappings implied by Gz(kx) can

be viewed as a series of conformal mappings. For simplicity, only values
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AT Kx=0'+jT

-K2

-K;

K2

Figure 3.3.a. Definition of Gz(kx) with hyperbolic

branch cuts.




AT Kx=o+jT

-Kz

-K,

Vq

Figure 3.3.b. Definition of Gz(kx) with finite-length
hyperbolic branch cuts.
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of k with Im(kx) < 0 will be considered. (Similar arguments apply for

lm(kx) > 0 also.) The mappings are depicted in Figure 3.4 along with the

critical points kx = kl, kz, @,
The definition of the new branch cut of GZ(kx) is shown in the Yy
plane of Figure 3.4. The branch cut connecting ki and kg is a straight

line which, of course, goes through kx= . The transform shown as B(kx)
is a Mobius mapping and hence circle-preserving. However B(w) = 1 and
B(kZ) = 0 which causes the branch cut to map into the negative real axis
in the B plane. In order to define D = /B, it is necessary to specify
both the branch cut and a point on the top sheet of D. For this reason
the point D(») = [ is used. This causes Gz(kx) + 1 as |kx|+ o and pre-
serves the asymptotic behavior of G(k,) required by the integral factor-
ization theorem which we apply later. Since B(®) = D(x) = 1 and D = VB ,
it is clear that the specified branch cut maps into the imaginary axis in
the D plane. Observe that the root of Gy(k ) occurs at D = -(uZ/ul).
Since both My and u, are, in general, complex numbers in the fourth
quadrant, their ratio is a complex number restricted to the first or
fourth quadrants., Therefore, (-uzlul) must lie in the left half of com-
plex D plane; that is, the root of D must lie on the lower sheet of D.
This proves that the branch definition of G, which is specified by the
straight cut between k; and k, (and hence =k, and -k, ) in the vy = ki
plane and the asymptotic value of lim Gz(kx) =] as lkxl*w has no roots

on the top sheet. This cut in the Y plane may be mapped back into the

kx plane, of course. However it proves less complicated and no more
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Mapping Critical
Function Points Mapping

1. y=o? &) = K, %

1

YRy = K’ Y(K))
e Y(Kz)

0 - v Bkz)l B By

B(Kl) = ®

ST B(K)) 1

B(Kz) =0

B(w=) = 1

3. D=/B D(K)) =~ =

D(K,)) = 0

D(w) = 1

Figure 3.4. Conformal mappings implied by Gz(kx)'
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costly to transform the integral in kx to an integral in Y and thereby
obviate the need to explicitly define the cut in the kx plane.

We proceed to perform a formal integral factorization of Gz(kx)
defined in (3.4.2). The following factorization theorem (Mittra and Lee

(1971a), Noble (1958)) is applicable to G, as we have constructed it:

Let G,(k,) be regular and nonzero in the
strip T_ < T<t,. Within this strip, Gz(kx) + 1
uniformly as [Ol * ©, Then GZ(kx) can be fac-

torized such that

Gylk, )= G;(kx)'G;(kx) ,

where
**+3C9nlc, (5)]
2
+ - —_ as% , 1 <e<t<T, (3.4.6)
GZ (kx) exp 2"1 J § - kx - +
~o+jC

is regular and nonzero in the upper half
kx-plane defined by T > T_ ; and
L 77 aale, )
' = - _— —_— 46 » T <t<d<T, (3.4.7
G, (k) = exp {7 J e - + )
-aot§d
‘ is regular and nonzero in the lower half

ky-plane defined by 7 < 7.

Let us consider the integral in (3.4.6). Figure 3.5 shows the inte-
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| ASi
|
Kyx
-K cos 8
.l qu+ / 8>r
>- 2. > >
7 c}’Jl T~ Ki
INTEGRATION,, |
PATH FOR Gaz(Ky) K2

Figure 3.5. Integration path for the integral

factorization G;(kx).
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gration path in the & plane., Since we are considering a case which has
no roots of G2 on the top sheet, no additional cuts are required for the
logarithm. This analytic continuation of Gy has precisely the same val-
ues in the complex § plane as the original definition of the top sheet

of G, at all points except those in the region bounded by the hyperbolic
cuts and the new branch cut connecting k) and k, (and the symmetric image
of this region in the second quadrant). Since no roots occur in this de-
finition of the top sheet of G, and the function is bounded at all points

in the § plane except § = + k it is clear that no branch cut of the lo-

1
garithm specified in equation (3.4.6) need appear on the top sheet of the
integrand shown in Figure 3.5.

We observe that the principal value of the logarithm is an acceptable
definition for the integrand in (3.4,6), Such a definition can be seen
to have the logarithmic branch cut on the lower sheet of the integrand.
Considering the plot of the D plane in Fig;re 3.4, the logarithmic cut
will run from the root of G, along a line connecting D(«) = 1 and the
root, It will runm to D(k;) = ® in the direction opposite to D(®) =1,

We may close the integration contour at infinity either up or down
with no change in the value of the integral since the integrand is
uniformly asymptotic to zero along any arc at infinity. Closure down is
shown in Figure 3.6 where we show the integration path taken in the

negative direction (for convenience later), The rvegion enclosed by the

contour is analytic and therefore the contour integral equals zero.

Also the contributions from C1 and C2 cancel while all contributions
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AOi
Ky ¢,
. j __/ 5"
< 3
Cb
K2
Coo ¢
C2 Cco

Figure 3.6. Closure of the integration contour.
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from C_ are zero., Therefore we have

I J (3.4.8)
€)  ep g

We have converted the original infinite line integral into a finite loop
integral encircling the branch cut from S = k, to S = ke

We now coansider the loop integral around the branch cut. The loop
integral may be considered as four separate integrals as shown in Figure
3.7. We have taken the branch cut as the line connecting kl and k,
specified implicitly by the straight cut in the Y = ki plane. Therefore

we have the following:

3¢ gn 6, (8
.nTi(?)_ds-J .J+J+J+J . (3.4.9)
ot x ¢, C & ¢y €,

Using standard analysis one can show that the contour contributions

vanish on the two semi-circular arcs C2 and Ca. Thus the original inte-

gral reduces to

T a6, (6) tn G, (&)
X b3
—=+3jc C1 + C3

For purpose of computation it is necessary to establish the value of
G2 for points on the integration path Cl. This is straightforward since
the path specified by Cl does not cross the original hyperbolic cuts in

Figure 3.7 and the original hyperbolic branch values of the square roots

This can be shown by observing that the hyperbolas

may be used along C

1
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e —— e .

LOWER SHEET OF
ORIGINAL G2

Figure 3.7. Detail of the integration contour in
the vicinity of the branch cut.




46

correspond to straight linmes in the Y = ki plane which are parallel to the
real axis and pass through the branch points. Hence the hyperbolic lines
through k1 and k2 in the kx plane of a problem will map into straight
parallel lines in the Y plane while path Cl maps into a straight line

which connects the branch points. So the value of G2 on a path Cl will

always be that associated with the hyperbolic branch cut definition,

As depicted in Figure 3.7, the integral along C1 (path from k, to kz)

1

is on the original top sheet of the hyperbolic definition of G, and the

integral along C_ is on the original lower sheet of G2 (in the limit as

3

C3 approaches the branch cut), This is due to the fact that in the prob-

lem shown in Figure 3,7, the point § = k_ lies on the original hyperbolic

1

branch cut which was nearer the coordinate axes in the § plane. Had k2

lain on the inside hyperbola, we would have found that the path from kl

to k2 would have been C3 rather than Cl' This suggests an algorithm for
establishing values of 1n(G2) on the line integral.
The path Cl’ as defined, is always on the original top sheet of Gy

s0 tnat Bl and 82 are clearly and simply defined on Cl(with the hyperbolic

branch cuts). Alsc we observed that C3 lies just across the square root

branch cut from C, which simply means a change of sign for (BZ/ Bl).

Therefore we have

T3¢ 10 6,(6) tnfa + b 8,/8 ] tnla - b 8,/8,]
f = da-J oy dG-J e«
~o+3C Cl CZ
(3.4.11)

1
= J E:E; [Ln(a+b 82/81) - Zn(a=-b 82/81)]d6 ,
Cc

1
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where a = u,/ (U +u,) and b = W/ Hu,).
We have reduced the original infinite line integral to a finite line
integral. Since the ratio of the logarithm arguments in (3.4.11) is
less than 7 , it is permissible to express the integral as
+b
- o a+b 82/8l ln aBl 82
3¢ 90 6, (8) a <5 B,/8 aB, - bB
2705 2 1= 35 = L dé
§ -k § - kx § - kx ’
-o+jc x C1 C1
(3.4.12)
For k

1 o0 the inner hyperbola ( branch cut nearest the real and imagi-

u,B, + u,B
otjc Rn[ggél—fT_jﬁi%
HoBy = My

X

nary S axes):

Bl and 82 maintain the hyperbolic definition and ln is the principal

value. For k, on the inner hyperbola:
M, 8, +u,B
ot+jc ln[}zél—:—igé]
- P21 " H1 %)
§ -k
x

-4je c

ds . (3.4.14)

1

To consolidate these expressions we define a function DIR(kl):

+1, when kl is on the inner hyperbola

DIR(kl) = (3.4.15)

-1, when kl is on the outer hyperbola
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This leaves us with the final result

U8, + 1,8
21 T Mbp
"¢ ng, (8) ’“‘[uzsl 0,5,
f —2— 45 = (D1 - J — d6 . (3.4.16)
-o+jC X c x

Note that ln((u281+U132)/(u281-u182)) is a well-behaved function for &

on a line between k; and k,. As § » k; , ln > +jm and as 6 * k,, 1n + O,

2)

The function (3.4.16) is analytic in the region around the inte-

gration path except at kl and k2. In fact, the integral is a Cauchy

type integral since the logarithm is analytic along the integration path

except at kl and kz(see Markushevich (1977), Gakhov (1966)). That is,

‘the logarithm function is continuous on the integration path. The value

of the integral is an analytic function of kx for all points off of the
integration path and tends uniformly to zers for |kx| + o, We can charac-
terize the jump in the value of the integral as kx traverses the path of
integration using the Plemelj formulas. The important point is that the
integral constructed has well-behaved properties in the variable kx' At
this point we observe that the expression for G;, given by the formal
factorization formula, was asserted to hold just for kx such that
T_<T1¢< T, We now have a well-behaved form which is the analytic con-
+
2

zation of the original function G(kx), (3.4.1), given as follows:

tinuation of G, onto the entire kx plane. Therefore we have the factori-
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ln[?zsl(a) + U1BZ(6)1
H, + Uu u,8,(3) - u,3,(8)
1 2 e - DIR 2”1 17247
Gk = M 17%x * &¥P 1273 J T -k d$
172 c X
1 (3.4.17)

where Bl, Bz and /EI:E;' are the original values defined in Chapter 2,
In is the principal value of the logarithm and C1 is the path from kl
to k2 specified by §2% = (kz-ki)t+ki where t is a real parameter and t is
containad in [0,1].

It is a straightforward.exercise to formulate the integral in terms

of the real parameter t, which is used to characterize § on Cl' Direct

substitution results in the following:

(k%-ki) « DIR
(3.4.18)
1 T 1 ﬁ
J anZBI(G) + ulezcs)]
o uzﬁl(ﬁ) - u182(5) i |
¢ - kx)d 5
L —48(t) 1

where &(t) = V(k%—ki)t+ki ,using the principal value of the square root.
We now establish a useful relation between G+(kx) and G_(kx). It is

clear that G(k _)=G (k_ )G (k_) is an even function of k_. Therefore,
x + x - X X

G+(kx) - G+(‘kx)
G_(k)  G_(k)

for G_(<k ), 6_(k ) # 0 . (3.4.19)

Each side of the above equation is an entire function since G_(k, )/G_(-k,)
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is analytic for T > T_ and G+(-kx)/G_(kx) is analytic for T < T,. By the
concept of analytic continuation we assert that the two sides are equal
for altl k on the top sheet and are entire functions., As |kx|* ©, we have
by construction that G+ﬁ-kx) g ﬁ:;, since the exponential goes to 1 and,
similarly, G_(k,) 4;; Therefore, G (~k )/G_(k,) * 1 as ,kxl* @, Hence
G, (-k )/G (k) is an entire function, bounded at infinity. By Liocu-
ville's theorem from complex analysis, we have that G+(-kx)/G_(kx) is a
constant for all k  and hence is equal to unity. So we have that
G, (-k )= G (k) and we see that this symmetry ﬁill be true of the factor-
ization of any even function G(k,) which can be used in a Wiener-Hopf ’
analysis,

We note that G—(kx) is analytic in the lower half of the k_ plane.
Since G (k )= G(k /G _(k )= G(k )/G (~k ), the integral for G (-k ) in
this expression will converge more quickly for kx near the integration

path from k. to k2 than will the original expression for G+(kx). The

1
judicious use of these two representations for G+(kx) ensures conver-
gence of the integral which is to be evaluated numerically.

In a similar manner to the analysis leading to (3.4.18), we can
derive the integral representation for G_(k,) from (3.4.7), It can also
be shown using these two expressions for G+(kx) and G_(k ) that, in fact,
Gk )G (k= G(k ). It is also clear from their form that the func-
tions are analytic in the upper and lower portions of the complex k.

plane as required, The symmetry of the two functions (G+(kx)' G_(-kx))

is also apparent from the factorization integrals.

Before leaving the subject of the factorization -of G, it is

Y
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appropriate to examine the location of the roots of G+(kx) and G_(kx).

We observed that the integrals in the exponentials are analytic functions
except on the integration paths (kl, kz) and (-kl, -kz). They are bounded
except possibly in the vicinity of those lines. Therefore G, and G_

must be bounded except possibly in the immediate vicinity of those lines
(which are actually branch cuts of G+ and G_). Now we know that G(kx)

has four roots which occur in symmetric pairs on two of its four sheets.
If two of these roots occur on the top sheet of G then they also exist

for (G+-G_). However the arguments of the exponential factors

which appear in the expressions for the functions G+ and G_(using the al-

tered branch cut definitions) must be bounded and hence G, and G_ cannot

be zero (except possibly at the branch points kx = i'kl). This is a de-

monstration that G+ and G_ have no roots on the top sheet except possibly
at the branch points themselves if G has no roots on the top sheet with
the deformed branch cuts. Therefore the roots of G, G, and G_ lie on
the sheets adjacent to the top sheet. As noted above G_ and G_ are
related functions and therefore will each contain one root on the
improper sheet.

In closing this section on the factorization of G, we reiterate that
a knowledge of the position of the roots of G and construction of a cut
which placed them off of the top sheet is crucial to the formation of
the simplified integral expression (3.4.17) and is subsequently seen to

be important in forming an efficiently computable solution to a Wiener-

Hopf problem.
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3.5 Decomposition

In the analysis below we carry only the formal functional expressions

G+(kx) and G_(kx) to represent the functions derived in the preceeding
section. As pointed out there, the analytical behavior of the factorized
functions is simply inferred from their form, and they are straightfor~
ward to evaluate numerically. Therefore, having performed the factor-
ization, we may now proceed with the decomposition operation specified

in Section 2.4 (equation (2,4.9)). The function to be decomposed is

. o
- - = k) +5S (k (3.5.1)
3 ? S(kx) A-/G+ (klcose + kx) -G+(kx) S+( X) '( x)
where
E . JjE_.sin®
Q= -—'———0 o .
V2T N i

The decomposition is seen directly. G+(kx) with its branch cuts must be
part of S+ﬁkx) while the other singularity due to the root of (kx+k1cose)

will clearly lie in 8 , so that

9] 1

f s_(k) =

G, (-k,cosb)| (k + k, cos®) (3.5.2)
and
: 1 1 L
Syli) = 8 DEERG . (3.5.3)
+x G (k) G, (<kcos®) (k + k, cosb)

Note that the pole of S+ due to the zero of the denominator of the

second factor is cancelled by a zero in the first factor. An application
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tion of L 'Hospital 's rule shows that the funcrion S_ is bounded at this
point. Having performed the decomposition, we proceed with the Wiener-

Hopf analysis as follows:

) B,
h ® G ~S =—+S . (3.5.4)
- C. -7 6, +

We observe that the left side of the equation is an analytic function in

the upper kx half plane (T > T_) and that the right side is an analytic
function in the lower kx half plane. The equality stated in (3.5.4)

- holds in the domain (t_< 7 < T+)- Therefore by analytic continuation
we can assert that the two functions are analytic continuations for the
upper and lower half plane of an entire function P(kx).

Consider the asymptotic behavior of G+(kx) and G-(kx) as lkxl-> o,
Clearly the integrals in the exponents vanish since kx appears only
in the denominator of the finite integral. Hence G+ v G_ v Ikxl%,

and from the expressions for the decomposition functions, we see that

the asymptotic behavior is as follows:

-1
sk ) and 5 _(k ) " k| "as ]kxl+ ®, (3.5.5)

If we examine 9(x) = ez(x), we have from the edge condition that

d(x) x%. It can be shown (Mittra and Lee(1971a)) that this implies

-3/2
x .

O(kx) v ok Therefore we have

2y MY -t w0 L 3.5.6)

-3
P(k ) = &_+G_ - S_~[Ck y

We now have need of the asymptotic behavior of B+ﬂkx) which is essen-~

tially the Fourier transform of the difference current on the conducting
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i

half-plane due to the edge. It can be shown that B+(kx) v kx. There-
-1
fore we see that P(kx) v kx for Ikx'* ® and hence P(kx) = 0 for Ikxf = o,
We have shown that upon completion of the decomposition step we can
create a bounded entire function P(kx). By Liouville's theorem we know
that P(kx) is equal to a constant. However we know that P(kx) = 0, hence

within the strip of analyticity of the Wiener-Hopf problem we arrive at

|
|
|

(2.4.6).
Therefore we obtain the following result for the transform of the

! total electric field over the aperture of the interface problem:

! Sk /am 1 (3.5.7)
Bk T TRy | TR | T kg [Gekgeos®) C_(k)
' -4E_ sind
) where £ = i 0s .

ke nl G+(-k1cos6)
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CHAPTER IV
ASYMPTOTIC ANALYSIS OF THE INTERFACE PROBLEM

4.1 Fields in the Traasmission Region (y < 0)

4.1.1 General Formulation

As a result of solving the Wiener~Hopf problem for the interface
geometry in Chapter II1I, we have determined the Fourier transform of the
total tangential electric field over the plane y = 0. From aperture the-
ory we know that this can be directly related to e, anywhere in the tran-
smitted region (see Collin and Zucker (1969)). The electric field has
only the z component since the excitation is transverse magnetic to the
z direction.

Because the transform variable, kx, is normalized to the free space
wavenumber ko = w/EETEg , it is necessary to normalize distance to free
space: x = ko'x' = (2m+(distance in wavelengths)) where x' is the unnor-
malized distance. This ensures that k*x = k'*x' , where the unprimed
quantities are normalized and the primed ones are not.,

The total electric field ezin the transmitted region may be con-

structed to be
“‘*‘jC' Tre
e (x',y') = —— J E k') e &P qr gor y'< 0. (4.1.1)
4 /EF 2 X X

k' meotjc’
x
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-5
"2 (k')g- " 'a 3' = tenk! ''= 'A+ 'A-
where k' = (k)R (ky)y. ky 3, VEZZ kxz, o' = (x")R+H(Y"NY
Reverting to normalized parameters and substituting in Ez(Kx) from

(3.5.7), we have

m"‘j [o4 -j ( 82y+kxx)
e
e (x,y) = 3 (k +k,cos8)G_(k ) Ay
kxs-“'f'j o] x

for y<0 , (4.1.2)

where c places the inversion path in the strip of analyticity fixed in
the Wiener~Hopf procedure, i.e. that of (3.3.10) with & given in (3.5.7).

Equation (4.1.2) is an exact field representation of the solutionm to

the interface problem in the transmitted region. It is largely a formal

. result, however, since it manifests the computational formidability
typical of inversions of continuous spectra. For diffraction computa-
tion, the asymptotic evaluation of (4.1.2) for large P is quite useful,
however, and we turn our attention to this task.

The choice of the branch cut due to B, in Ez(kx) will not affect the
convergence of the inversion integral (since B, does not occur in the
exponential). The factor G_ contains cuts due to B; and 8,. Moving the
semi-infinite cut for Bl does not affect the convergence of the Fourier

‘ inversion integral since G_ does not have an exponential behavior. It

| is useful later to exercise this freedom in the asymptotic evaluation of
(4.1.2). We can analytically continue G—(kx) into the extended form
with the semi-infinite hyperbolic branch cuts from -k, and -kz without

1

affecting the integral or the convergence behavior at lkx| + o, 1In so

doing we may expose a vroot of G_ which resides on the exposed portion of

the lower sheet. Alsc the method for evaluating G_(kx) in this region of
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the kx plane is to use G_= G/G+ where we use the original definition of
G(kx). This continuation of G causes the integrand to have the hyper=-

bolic branch cuts extending from -kl and —k2 to ©® in the second quadrant.

4.1.2 Angular Spectral Mapping

We now make use of the trigonometric substitution ky = kg sina, where
0 is a complex variable, to map the integral onto the o domain. Such a
mapping is conventionally referred to as determining the angular spec-
tral domain, a. The cuts become the lines in Figure 4.l which are asymp-
totically vertical and pass through a = + 7/2 and - 7/2. The lower
sheet of the original plane is mapped into the regions indicated with
crosshatching in Figure 4.1. The former two-sheeted plane of Sz(kx)
thus becomes the periodic plane shown in Figure 4.1 with the role of
the branch cuts replaced by lines which are their images . The effect
of this mapping is to open up the function 82= vig:_Iz , and fix a

saddle point in the integral which may be used in a steepest descent

analysis., Substituting kx = k2 sin o, x = p cos ¢, y = 0 sin¢ for

-m < ¢ < 0 into (4.1.2), we obtain

kz cosa -j(kzo) * sin(a=-¢)

e (p,0) = & f G_(k,sina) - (k,sina + k,cos8) €
r (4.1.3)

da,

where [ is the mapping of the integration path with ky on (=2+jc,+®=+jc).

In Figure 4.1 is shown the portion of the complex o plane which is
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Figure 4.1. The angular spectral plane, kx=kzsin o.
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of interest and the position »f several key features »f the k., plane.

For simplicity and definiteness we take the inversion path to be the real
kx axis (this is correct for 0 < 8 < 7/2). A discussion of the equations
for various o plane contours of interest is given in Appendix A. As not-
ed above, the boundary of the top sheet in the kx plane, which is defined
by the branch cuts of 82, corresponds in the o plane to the curve repre-
senting the image of the real kx axis moved to intersect the real a axis
at a = * /2 (see Figure 4.1).

The next stage in the asymptotic analysis of e, is to deform the
integration path to the steepest descent path (SDP) through the saddle
point. In the process of deforming to the SDP, singularities of the
integrand may be crossed and must be considered separately. The saddle
point is characterized as a point in the & plane at which the derivative
ot the exponent vanishes.

&[5k, psin@ -0)] = -j k
d 2 s

a
s

zgacos(as—¢) =0 (4.1.4)

m . . . .
as = ¢+3E ,0 is an integer (only n =1 is of interest),

Note that as the angle of observation moves from ¢ = 0 (on the lower edge
of the PEC half-plane) to ¢ = -7 (on the lower edge of the interface aper-
ture), the saddle point moves from ¢ = 7/2 to a = -n/2. The shape of SDP
is a function of (og9) and hence of (a—as), therefore it is unaffected

as the observation angle changes. That is, the SDP' s shape is fixed for

a specific problem but its position moves so that it crosses the real a




60

axis at g Therefore, once the curve of the SDP is found, only the re-~
gion of the a plane between the integration path and the SDP need be
examined for singularities of the integrand. Hence a graphical proce-
dure can be used to locate the dominant contributors to the far field.
The total field is represented, after deformation of [ to the SDP,
as the sum of an integral along the SDP and the singularity contrib-
utions swept during the deformation. For |k20‘ =+ ©  the SDP contribution
is asymptotic to a term containing the value of the integrand of (4.1.3)
at the saddle point. The contributors to the far field are the follow-

ing:

1. SDP integral contribution — Present in all

cases and is equivalent to the diffracted ray

for the half-plane in a homogeneous region,

2. Pole due to the root of (kzsinaﬂclcose) -

Contributes when swept and is the counterpart
to the geometrical optics field in the homoge- f

neous half-plane problem,

3. Pole due to the root of G_ — Contributes if

crossed in the deformation to the SDP,

4, Branch point of G_ at kx'-kl — Contributes when

swept and denotes a term arising from the pres-—

ence of the semi-infinite opposing half space

which is filled with a contrasting medium.

DU -
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All the singularity contributions are functionally characterized by the

integrand evaluated at the singularity position in the @ plane :

= +
€z (ez)saddle + (ez)g.o. + (ez)Bl (ez)root

point pole of G_
branch (4.1.5)

cut
When the terms of (4,1.5) are evaluated asymptotically, they exhib-
it an exponential behavior which is determined by the position of each
contributor in the @ plane. It is useful toc determine what region of
the o plane will correspond to outwardly decaying waves (and therefore,
physical ones), Clearly these waves have the real part of the exponent

less than zero,

Re[~] k2 sin(o-¢)] = -RZisin(u-¢)cosh v + ercos(u-¢)sinhw: (4.1.6)

where @ = u+jv and k,= kz;jRZi. Therefore the boundary of the @ plane

corresponding to physical waves has

k tan(u - ¢) = k2r tanh(v). (4.1.7)

2i

We observe that the mapping of the real kx axis into the & plane is
given by: kzi tan(u) = koo tanh(v). Hence the boundaries of physical
waves are given by the real kx axis mapping shifted to the position u = ¢
and u = ¢ + 7 (the region from m/2 to the left of the saddle point over
to m/2 to the right of the saddle point).

If the inversion path [ is the mapping of the real kx axis (which

is permissible if 0 < 8§ < w/2), then we are guaranteed that only
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singularities for decaying waves can be crossed for all observation angles
-7 < ¢< 0. See Figure 4.2 for the case ¢ = - T (maximum negative position
of the saddle point). On the other hand, if m/2 < 8 < 7, then the inte-
gration path in the kx plane must be below the real axis and map into a
curve to the right of the mapping of the real axis. Because the path lies
to the right of the mapped real axis, as ¢ = -7 it is possible to sweep
a region between the real axis mapping and the path of integration which
causes non-decaying components, However we observe that there are no
zeros of G(a) in this region of the a plane. Hence the only possible
i singularity is the pole at (kzsina+klcose) = (0, Though it appears to be
anomalous that a field contributor can becom e unbounded as one moves to an
infinite distance from the diffracting edge of the half-plane, this can
occur and is interpreted as follows. For 7/2 < 8, the incident field
along the interface becomes unbounded as X*~®. For ¢ <¢° (which is the
angle that the refracted wavefront makes with the half-plane), the obser-
vation direction cuts across planes of growing amplitude as p*®, There-
fore this nonphysical behavior of the pole is due to the fact that a plane
i & wave in a lossy medium does, in fact, correspond to a wave which decays
as it propagates in from p=®, We note that the pole arising from the
root of (kzsina+klcose = () corresponds to the geometrical optics pole in
the half-plane diffraction problem in homogeneous space and gives rise to
the simple transmitted field for the unobscured portion of the half space

below the interface, It is therefore clear that, with the exception of

the geometrical optics field, this problem can only give rise to decaying,

outgoing fields in the transmitted region.
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asz=-w/2
FOR¢p =-»
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Region of wave singularities with exponential decay

Figure 4.2. Region swept in the deformation
to the steepest descent path
through a = -n/2.
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4,1.3 Identification of Asymptotically Dominant Singularities

In diffraction problems where the media are lossless, the exponen-
tial behavior of dominant field contributors is that of a propagating
wave and the asymptotically dominant field terms are identified based on
the exponential decay of the non-propagating factor. The presence of
material loss introduces a new complexity in that all of the singulari-
ties are complex-valued and exponential decay occurs concomitantly with
propagation. We therefore must identify relative rates of this exponen-
tial decay for the various contributors and identify the dominant terms.

Since all observation angles contain the diffracted field due to
the steepest descent integral, it is useful in the spirit of the above
analysis to compare the exponential decay of swept singularity waves to
that of the SDP diffraction wave as one moves radially away from the edge
of the PEC screen., Saddle point analysis allows an asymptotic approxi-
mation of the SDP integral to be made for © * ® (see Appendix B) yield~
ing

PV

? 2 -1
1 -jj;-Eokobsinesinl¢| j(kobo) 'jkobp |
' [e ] — _ e ’ '
z sa:iie an+( klcose)G+( kobcos¢)(kobcos¢ + klcose)
po (4.1.8)
where v v is the principal value, and kK,p ® ky. Note that this

is the leading term in the asymptotic expansion of the saddlepoint inte-
gral and represents the contribution to the radiation field (varies as

0—1/2) of that integral, For observation angles in the vicinity of the
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interface, the dominant contribution is a lateral wave type field (var-
ies as 0-3/2) and the relative significance of these two fields is dis-
cussed in Appendix B.

The dominant far field contributor (or contributors) is determined
by identifying regions in the 0 plane which have greater or lesser expo-
nential decay than Re (-jkzp)- For & = 0, this region is bounded by a

contour defined by

Re[-jkzsin(a—¢)] = -k,

h . (4.1.9)
- kZiSin uecosh v + k2rcos u+sinh v 24
i
. where @ = u+j v. After algebraic manipulations we have
- URE
1 % cos|u'|+|1+ 21
k.
2r i
ginh v = ” " sin u' , (4.1.10) ]
2r 2 , 2i 2,
N sinu’ - T cosu ;
21 2r '
L .

f where u' = (u-us), u is the position of the saddle point. Note the

following properties:

- . Use (+) for the (v > 0) leg ( bounded by = (T=u__ )< u'< (F=u__ ))
res — - res

Use (-) for the (v < 0) leg ( bounded by “u_ S u'<u.  where

-1 ..
U g ™ taN (kZi/RZr), principal value).

The double sign on the square root reflects the fact that there are two

curves in the o plane on which the exponential decay is the same as that

of the saddle point contribution.
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A typical plot of the equal decay contours derived above is shown

in Figure 4.3, 1It is seen that these contours divide the @ plane into
four regions in which the exponential decay is either greater than that
at the saddle point or less than it, Clearly the SDP will lie in the two
regions of greater decay and therefore identify them., Several observa-

tions are appropriate. While the expression for the equal decay curves

f
|
{
i
!
i

was derived for ¢ = 0, it applies for any ¢ with u replaced by (u - ¢)
in (4.1.9). These curves cross the real a axis at the saddle point just
as the SDP does and therefore the entire set of curves (SDP, equal decay
) contours) can be considered a template which slides across the q plane
as ¢ moves from 0 to -t. We refer to this collection of curves as the
dominance template.
The foregoing analysis allows the determination of the most signif-
icant contributors in a particular problem for any specific angle of
observation. Most of the ¢ plane lies in the region of greater decay

than the saddle point value and hence any singularities occurring there

can be ignored since the greater exponential decay implies asymptotic

i insignificance as p > ©, On the other hand, if a singularity lies in
the region of lesser decay, then the saddle point value can be ignored.
Only the dominant contribution needs to be considered asymptotically in
the far field, therefore this analysis of the significance of the vari~
ous contributors is fundamental to the problem for observation points

which are far removed from the edge of the PEC half-plane. Note that the

equal decay contours are functions only of kz and do not involve K.
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\ CONTOUR ‘\‘é / ? §

4‘\\ Region containing singularities which represent waves
with exponential growth, non-physical

/7 Region containing singularities which represent waves
with greater exponential decay than the saddle point

Region containing singularities which represent waves
with less exponential decay than the saddle point

Figure 4.3. Demarcation of regions in the a plane about the
saddle point characterizing the exponential decay
rate of waves associated with singularity
locations. (Dominance contours).
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As kZi + 0 (medium 2 becomes lossless), one equal decay contour co-
incides with the real g axis in the vicinity of the saddle point. Thus,
in the lossless case, the geometrical optics pole and the diffracted
(saddle point) contribution manifest the same exponential decay rates,
i.e. no decay. For lossy media the two contributions will not be of the
same asymptotic order since the exponential decay rates will be differ-
ent. For kZi << k2r the region of exponential dominance over the saddle
point contribution collapses to a narrowly defined region. Then it is
approximately true that any singularity off the real g axis can be ig-
nored. However as kZi increases, this is not valid and the significance

of the various regions of the o plane must be considered.

Another interesting question is to determine what portion of the
plane gives rise to outgoing waves and what portion gives rise to incom-

ing waves. These regions are separated by lines of zero phase given by H

Im[-jkzsin(a—¢)] = -kzrsin(u-¢)cosh v - kZicos(u-®)sinh v =0 (4.1.11)

or for ¢ =0

——

er
- tanh v = - — tan u (4.1.12)
21

This is the equation for the mapping of the imaginary kx axis onto the a
plane and, in particular, it describes two loci shifted so that they
intersect the real ¢ axis at u = ust 1 /2 where ug is the saddle point

location. The region between these two lines has a negative phase change

as o increases (outgoing wave) while the region outside of these lines
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has a positive phase change (incoming wave).. This wave interpretation
can be incorporated into the dominance template discussed above as shown
in Figure 4.4,

Diffracted waves must manifest the phase progreassion of outgoing
waves only. Incoming waves are excluded in the solution process due to
the fact that the swept region characterized by incoming waves cannot
contain singularities. For example, Figure 4.5 shows the largest region
swept between the real axis and the SDP for ¢ = 0 that violate outgoing
wave behavior. A similar plot can be made for ¢ = - T with the saddle
point at as=~ﬂ/2. It is clear that the swept regions of outgoing waves
in these extreme cases lie in the mappings of the first and third quad-
rants of the original kx plane. There are no singularities of the inter-
face problem occurring in those quadrants.

Summarizing these results, we see that given a specific comp-
lex medium, k2’ one can construct a dominance template which centers on
the saddle point and divides the O plane into quadrants of exponential
growth or decay relative to the diffraction term of the saddle point con-
tribution. The dominant contribution can be determined graphically (or
by simple algorithms on the computer), Since the only possible scattered
waves are decaying, outgoing waves, one can infer that no singularities
arise in regions of the & plane which would violate this property.

The contribution of the geometrical optics pole which arises from

the factor (kzsina+k1cosﬁ) in the denominator of the inversion integral

is given as follows (see Appendix B):
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Region containing singularities which represent inwardly
propagating waves

Figure 4.5. Example of the integration path deformation to the
steepest descent path through u = 7/2.

71




72
2E .si -3 : I
o] ) gSiné . 3k 2 sm(Ctrh@D , (4.1.13)
2z’ geom. n G(-klcosé)
optics
pole

where & is the pole location and kg G(a) = (3.4.1).

R

Also the contribution at the root of G_(a) is given as follows (see Ap-

pendix B):
e ] . ZEosine G+(kob51nar)
- : ] "
z :?oé an+( klcosé) (kobsmar + klcose)G (kob31nar)

) e-j(kobo) sin(a_+ lol) (4.1.14)

=u,

where o 1is the root location, k =k u. =y, u
T 2 opp 1

ob 2’ Tob

and ) )
H - ¥

ob OPPi¢an o
Mo, u T

G'(a) =
ob opp

Note that when u, =y, no root of G_ occurs (see (3.4.4).

4.1.4 Branch Cut Contribution

In order to consider the evaluation of the branch cut contribution,
it is necessary to review (4.1.8,13,14) and consider how the function
G+(a) is to be evaluated. From (3.4.17), we observe that the factor
/EI:K; exhibits a simple square root branch cut running from k, =k,

while the exponential factor has a branch cut running from ky tn kyo As

noted in section 3.4, the factor G2(kx) (which factorizes positively into
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the exponential in (3.4.17)) is a two-sheeted function; and if the R and
1

82 cuts are chosen to coincide, they can be viewed as annihilating each

another, resulting in a finite branch cut. If the B and 8 branch cuts
+ 1 2

of G2 (kx) are allowed to separate, we can view the process as evolving

as shown in Figure 4,6, If the result shown in Figure 4.6¢ is combined
with GI(kx), the derived value of G+(kx) uses the simple hyperbolic

values for Bl and 82. However it is difficult to see how to perform this
continuation in light of the integral factorization available in (3.4.17).

The simplest procedure is to view G+(kx) as follows:

(3.4.18); for Im(kx)>0 or if Im(kx)=0, then Re(kx)io
G+(kx) = (4,1.15)
G(kx)/ngx) = G(kx)/G+(-kx);otherwise

where G(kx)=(3-4.l) and G+('kx)=(3.4.18)

Here we are assuming that the branch cuts for 81 and 82 do not cross the
real k axis. Observe that G+(-kx) is unambiguously given by the inte-
gral factorization formula for kx in the lower half of the complex kx
plane. The branch cut behavior is contained in the factor G(kx) and can
be dealt with conveniently in this form since the effect of shifting the
branch cuts is manifest directly in G(kx?as the functions Bl and 62 .
It is useful to recognize this method of evaluating G+(kx) since
in the process of evaluating the branch cut contribution to the radi-~
ation integral (4.1.3), it is necessary to deform the Bl branch cut and

the various singularity contributors can be swept by the branch cut.

When a contributor is swept, the evaluation procedure given in (4.1.15)
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allows the factor Sl given in G(kx) to be easily determined.

The development of the asymptotic formula for the branch cut contri-
bution for kx = -kl follows the analysis of Felsen and Marcuvitz (1973a).
It requires that the branch cut from kx = -kl be deformed in the O plane
so that it lies along the steepest descent path (SDPb) from the branch
point., It must be emphasized that the SDPb changes as the saddle point
moves. The locus along which the SDP, lies is a line of constant phase
of the exponential and points on this line have the greatest possible
change in the magnitude of the exponential factor. Hence these lines are
. ‘ contours in the o plane where (4.1.11) equals a constant Y < 0, Figure

4.7 shows such a set of phase contours in the & plane. Clearly these

phase contours move with the saddle point (since Y =--k2r corresponds to

the SDP). Hence the SDPb , which must lie on the phase contour running

through the branch point corresponding to kx = -kl and be asymptotic to

the SDP through the saddle point, changes continuocusly as the saddle

point moves with varying observation angles. A detailed discussion of

the formulas describing these SDP, contours and the effect on the other
Ay asymptotic contributors is given in Appendix C. We summarize below the

conclusions given there,

In deforming the branch cut in the o plane for the branch point cor-
responding to (-kl) to a line along the SDP,, we may be forced to cross a
singularity contributor, e The result is that the value of Bl(ax) which

we must use in the asymptotic formulas is given by

(Bl(ax)) 8-(81(ax))original hyperbolic definition’

swept
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Figure 4.7. Contours of constant phase in the a plane
about the saddle point location.
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Looking at the asymptotic formulas (4.1.8,14) we see that G+(-klcose)
must be evaluated. One of the results of Appendix C is that the geomet-
rical optics pole for an observation point in the transmission region

(y <0) is never swept by the Bl branch cut. Hence G, (~k;cos®) may be
evaluated in all cases using the original definition of Bl(Section 2.2).
Also, in the process of deforming the branch cut for 81 to the SDPb
configuration, a portion of the lower sheet of G_(a) is brought onto the
top sheet. This may result in the root of G_(a) being brought onto the
top sheet, a detail which is dealt with in Appendix C.

Having performed this deformation we observe that when the branch
point is crossed, the entire cut is crossed. The branch cut contrib-
ution is now amenable to an asymptotic analysis somewhat similar to the
usual steepest descent analysis about the saddle point. The rather

complicated result is stated below:

2 PV 38+
£ uob G+(-kopp)v2vkopp explj —5—

[ez]branch b - 3/2
Sut, uopp(kopp-klcose)VEobcosab lkobpc05(a6+]¢[)|
OopPP
LIk sin(a, +[0]) , (4.1.16)

—PV . ..
opp’“opg -(kl,uﬂ, is the principal

value; 6+ is the angle of the SDP, from a, (corresponds to k= -kopp)

where (kob’ uob) = (kz,uz); (k

in the a plane relative to a ray from abin the positive real direction,

where 8 _ > [Arg(kopP)-Arg(kob cos(a))], modulo 27 (that is, if
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[ Arg(kopp) - Arg(kob-cos(ab))] = Bg, then eg <9, < 6g+2n).
4,1,5 Uniform Asymptotic Expansion

In general the wavenumbers for the two media involved in the inter-
face problem have different loss tangents and as a result will not lie
on a common line in the k, plane running through the origin. One expects
that the geometrical optics pole will lie on a curve in the o plane which
only intersects the saddle point locus at the origin. As a result the
asymptotic expansion of the radiation integral given in (4.1.8) is an ade-
quate representation for observation point sufficiently removed from the
edge of the PEC half-plane.

In practice one would like to have an asymptotic form which is appli-
cable at smaller radii. This necessitates utilizing a uniform asymptotic
expansion of the steepest descent integral. The resulting expression is

given as follows:
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2 Eosine -jkob:
(e ] = ~jp— —————e x
z ' saddle o] nl

point, L
g.0. pole

.

J_ 1 kob. Sinlrbl

— - . - 8Y) e
/:ako;“7G+( kobcose) G+( klcosv) (kobcosﬁ + klcose)
(4.1.17)

1 1

+
~PV . Yp Is
V=3K 0 2 G(k cosB) * sinf > )

o_~0

; 2 s
] ZkObosin (—%—)
v2D e
G(klcose)

EN

\

a_-Q
Q Ij'-jZkbprvéinf—EE—i) L

me— A > . J
for Im [/-JZkob -SLn((ap-as)/Z)]< 0, where kop = kz,as is the saddle
point location in the a plane and ap is the geometrical optics pole loca-

tion, Q(y) is the complementary error function defined by

-]

Q(y) = f e
y

dx (4.1.17.a)

The first term in the braces in (4.1.17) is the original non-uniform ex-

panson contribution (4.1.8).
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4,1.6 Remarks Concerning the Asymptotic Analysis

It is clear from the form of these asymptotic constituents to the
far field that their exponential factors depend on the location of the
singularities causing them as stated earlier regarding the dominance
analysis of the various contributors. Extreme care must be exercised in
this analysis to determine whether or not the root of G_(a) occurs on
the top sheet of the integrand used for the asymptotic analysis. The
expression for the saddle point contribution given in (4.1.8) is the non-
uniform asymptotic version where no singularities are assumed to lie in
the vicinity of the saddle point, For the transmitted region (as long as
k2/kl is not purely real) this is the case. In the homogeneous half-plane
problem, the geometrical optics pole (a function of 6, the angle of inci-
dence) lies on the real o axis between (-m/2,m/2). Therefore as the ob-
servation angle ¢ approaches the shadow boundary (which is in the trans-
mission region), the saddle point expansion becomes unbounded due to the
breakdown of the asymptotic analysis. To avoid this singular behavior,

several uniform asymptotic expansions are available for a pole in the vi-

cinity of the saddle point. However, in the interface problem when kz/k1 R

the contrast ratio of the media, has a significant imaginary part rela-
tive to the real part, then the geometrical optics pole follows a locus
as a function of 8(the angle of incidence) which is off the real O axis
and crosses it at a = 0., Nonetheless, a uniform asymptotic expansion is

given in (4.1.17) to allow a more accurate evaluation of the saddle point

contribution for small observation radius.
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An interesting physical interpretation can be given to the smooth
behavior of the steepest descent integral when the observation angle
brings the saddle point near the geometrical optics pole (Felsen(1982)),
In the well-understood problem of diffraction by a half-plane residing
in a homogenecus medium, the singular behavior of the saddle point con-
tribution (diffracted wave) in the vicinity of the boundary between the
region lit by the incident wave and that shadowed by the half-plane
(hence, the shadow boundary) clearly indicates the physical importance
of the shadow boundary. Therefore, the fact that the contribution of
the diffracted term is well-behaved for distant observation points near
the position of the shadow boundary in the interface problem means that
the complex contrast ratioc causes a ''smearing" of the shadow boundary in-
to a smooth transition from the lit space to the shadowed space. This
is true except for the case of normal incidence when the geometrical op-
tics pole is located at & = 0, Therefore the complexity of uniform asymp-—
totic analysis is not warranted in the transmission region for distant
noints of observation. Equations describing the locus of the geometrical
optics pole are given in Appendix A.

It is important to realize that in some problems where the medium
of the transmitted region is significantly lossy, it is quite possible
for the diffraction term arising from the saddle point to be dominated
by one of the terms arising from the singularities mentioned for some ob-

servation angles. It is not possible to discard these field constitu-

ents until the problem is specified and the positions of the singularities
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is determined. The saddle point contribution is a homogeneous cylindri-
cal wave which appears to emanate from the edge of the PEC half-plane.
The other waves are, in fact, inhomogeneous plane waves which exist in a

region bounded by a ray (extending from the edge of the PEC at a critical

angle) and the interface plane and do not appear to come from the edge.

This can be seen by considering the exponential

=i (k,p) sin(x-4)

e
where p is the normalized distance from the edge, ¢ is the observation
angle (-m < ¢ < 0) and a is the position of the mode singularity. Consi-

dering the constant phase planes, we have the following:

Im[-j(kzo) sin(a-¢)] = Im{ jkyy - ijXI = [kyry -ox] =0 (4.1.18)

where kx = k251na = g+]T and kz = kzr-JkZi;kzr,kZi>0. Recognizing

that the direction which is normal to a constant phase plane (given by ep)

is characterized by tanep = 1/(-dy/dx) = - kyr/c , we have

k..tan u stanh v -k .
tan ep - 2 2x (4.1.19) i

v T k21tanh\: + kzrtan u

where a = u+jv, Bp is the apparent angle of phase progression relative

to the interface (Sp = 0 is the positive x direction) and does not refer

to the edge of the half-plane.

A similar derivation for the constant amplitude planes, ignoring

algebraic decay, leads to an angle Ga of apparent maximum decay:
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k., tan u «tanh v + k

= 2r 21 20
tan.aa k. tanh v + k_.tan u ' (4.1.20)
2r 21

It is clear from these expressions that, in general ea # 9p. 1f k, is
taken as lossless (k,; = 0), it is apparent that the two directions are
normal to each other, the usual property of inhcmogeneous plane waves in

a lossless medium.
4.2 Solution in the Reflection Regilon (y > 0O)

From the solution of the Wiener-Hopf equation we have the Fourier
transform for the total electric field along the interface. An expedi-
ent way of constructing the solution in the upper half space is to consi-
der the toral field as composed of three terms: the incident field, the
short circuit reflected field, and the field due to the scattering from
the interface structures., The sum of the incident field and the short
circuit reflected field has a null at the interface by definition., If
we now inc’ude that field which gives the correct tangential electric
field on the interface, then the soclution is complete. The field which
we must construct below is the field due to e, on the interface. This
is simply the field in the aperture radiating into the upper region.
Therefore the inversion integral is closely related to that for the tran-

smission region,

o+je L ~j (Sly +kxx)
ez(x’Y) = £ J (k +klcose) G (k) dkx
kx-~®+jc x -

el
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for y >0 where ¢ is in the strip of analyticity of the Wiener-Hopf formu-

lation and where

-jEOsine
Ty G+(—k1cosc)

£ =

and

At this point the mapping kx = k,;sina is used and the resulting equation

1

is found to be

klcosa -j(klp)sin(a+¢)
G_(klsina) ~(klsina ¥k.cosB) © do , (4.2.2)

ez(o9¢) = gJ

r 1

where 0 < ¢ < 7,
The analysis fol'~.3 in the same way as in the transmitted case.

The asymptotic forms there are valid here also if (k ) are taken as

ob*Hob
(kl,ul) and (kopp’uopp) are taken as (kz,uz). We observe that the saddle
point is now given by a = 1/2-¢, so that we may take a, = ﬁ/2—l¢[ as

oy characterizing the saddle point in both half space inversion integrals.

One significant difference between the two solutions is that the geometri- W

cal optics pole now moves along the real a axis between (-7/2,m/2) re-

gardless of the medium parameters, Hence the reflection boundary will be
a distinct physical feature of the problem as in homogeneous problem. The

problem of a uniform asymptotic expansion for the saddle point integral

in the vicinity of the geometrical optics pole is an issue here. There-
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fore the uniform asymptotic expansion given in (4.1.17) with Kop™ kq
must be used when the saddle point is in the vicinity of the geometrical
1 optics pole to avoid the singularity resulting from the non~uniform expa-

sion given in (4.1.8).

4.3 Validation and Sample Data

It is clear that the solution of the interface problem should reduce
to the diffraction from a half-plane in a homogeneous space as the media
parameters limit to each other., It is also clear that the numerical

evaluation of the factorization integral im (3.4.18) will become unstable

as the two media limit to the homogeneous case since the integration path

vanishes while the integrand becomes unbounded. As a test of the algo-

rithm, the case shown below was evaluated on a computer:

\ 1.~-3. =, = 1. i i = -3 z
My j.001, 1 1. resulting in kl 1.-3.000500 (4.3.1)

Mp = 1.-3.0003, ) = 1.-3.001 resulting in k, = 1.-j.000650

. - o . . .
Incidence angle, § 457 and observation radius, 2 = 5

in free space.

The resulting evaluation of (4.1.83) for the cylindrical wave of the

v . diffracted field was compared with the Keller diffraction coefficient.
Plots of the two diffracted field computations were found to overlay one
another except in the vicinity of the observation angle, 3 = 180°., The
modulus of the diffracted field for the parameters given above is plotted
in Figure 4.8 as a function of the observation angle, 3, taken with res-

pect to the illuminated side of the PEC half-plane where 0°<3<360°,

The anomaly in the vicinity of & = 180° arises from the vanishing
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of the leading term in the asymptotic expansion of the steepest descent
integral about the saddle point as discussed in Appendix B. As indicated
there, this failure of the leading term to suffice in the asymptotic exp-
ansion is localized to roughly a + 2° sector about the interface in the
present example. As the contrast between the media is increased, the de-
parture from the Reller diffraction coefficient around ¢ = 180° is en-
hanced. This behavior is seen in Figure 4.9.

In Figure 4.9 another feature of the diffracted field is apparent,
namely, the spur occuring at ¢ = 156°, For this configuration the angle
of total internal reflection is ¢ = 24°., The spur occurs at this criti-
cal angle and always lies in the more dense medium (i.e., that medium
having the lagger magnitude of the real part of the complex wave
number}). Figure 4.10 is the same configuration as in Figure 4.9 but view-
ed at an observation radius of p = 50 X from the edge of the PEC half-
plane. It is evident that the spur is diminished as the observation ra-
dius increases,

The spur arises when the two media have almost the same loss tangent.
In that case the branch point for the less dense medium (-k2 for the ex~
ample shown in Figure 4.10) approaches the line in the ko plane which con-
nects the branch point of the denser medium (-kl) to the origin. This
line segment maps into the line segment between o = -7/2 and a = 0 which
is the locus of the saddle point. In essence, the spur represents the ef-
fect of the branch point due to (-k,) on the saddle point integral as the

saddle point passes near the branch point.
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The validity of the asymptotic expansion is questionable for obser-
vation angles near the spur unless P is large. In order to determine

, under what conditions the asymptotic saddle point expansion is valid,

it is necessary to establish a minimum limit for the observation radius,
p. This can be done by considering the value of the exponential enve-~

i lope of the integrand in the saddle point integral. We may consider a

i
H
i

ci‘cular region in rhe a plane which is centered on the saddle point
and has the branch point on its boundary (the region of validity for the
Taylor's series expansion of the integraﬁd). If we require the magnitude ;
of the exponent in the integrand to drop to one tenth of its value at the
saddle point then it can be shown that the smallest observation radius
for which the simple asymptotic value of the saddle point integral is

'i vaiid is given by

o % .73/% , (4.3.2)

o r———

where 0 is the observation radius in wavelengths in the medium containing -

the observation point, r is the separation of the branch point and the

the far field of the diffraction pattern and represents an interaction

saddle point in the o plane.
It must be said, however, that the spur is a valid phenomenon in
between the radiation portion of the saddle point contribution and the

4 branch point of the opposing medium. If the loss tangents of the two

j ; media are fixed and the contrast is decreased, the spur is seen to move

b toward ¢ = 180°.

A typical situation is shown in Figure 4.l1, where all the terms con- .
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tributing to the scattered field are shown. The geometrical optics field
contributes in the region bounded by the reflection and shadow boundaries
of geometrical optics. In the reflection region (y > 0) the total geome-
trical optics field is composed of the sum of the short circuit field
(that due to the incident plane wave reflecting off of the interface plane
where the PEC half-plane has been extended to cover the apérture) and the
scattered field of the geometrical optics pole. 1In the portion of the

reflection region which lies beyond the reflection boundary (m-8 < p < 9)

these two constituents must sum to equal the field that would exist with
no half-plane present. As a result the field of the geometrical optics
pole can have a magnitude greater than one in a lossless configuration
due to phasing between the short circuit and geometrical optics pole
fields.

In the transmitted region (y < 0) the geometrical optics pole is the
total geometrical optics field. Since we require the total tangential
fields to be continuous across the interface and the short circuit field
vanishes at the interface, it is seen that constituents of different
radial behavior must be continuous across the interface.

The decrease in the geometrical optics field as ¢ moves away from
the interface is a manifestation of the greater loss in medium 2 since
the ray must attenuate more quickly as the ray path in medium 2 increa-
ses. If medium 1 is much more lossy than medium 2, it is possible that
the geometrical optics pole field will actually increase in magnitude

with increasing ¢ from the interface. It is noted that when medium 1 is

more dense than medium 2 and the angle of incidence exceeds the critical
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angle of total internal reflection, a cutoff effect of the diffracted
field structure is seen in medium 2.

The lateral wave field arises from the branch cut integral and is
seen to lie in the more dense medium with its peak magnitude occurring
near the critical angle for internal reflection. As is seen in Figure
4,11, it seems probable that the mechanism which creates the spur on the
saddle point diffraction field represents some interaction with the la-~
teral wave as both occur at approximately the same observation angle.

In Figure 4.12 the configuration of Figure 4.8 is shown versus
increasing radius., It is clear that the lateral wave suffers a larger
algebraic and exponential attenuation than the other contributors and
therefore decays more quickly with distance.

An interpretation of the phenomena may be offered to suggest the
physical mechanism which gives rise to them. The lateral wave has been
described in numerocus places (Felsen and Marcuvitz (1973b,c¢), Felsen
(1967)) as the result of a ray which propagates along the media
interface in the less dense medium and leaks energy into the more dense
medium at the critical angle due to refraction of the ray. In these in-
terface problems one may visualize the initial scattering from the PEC
half-plane as launching a homogeneous c¢ylindrical wave as in the diffrac-
tion from a PEC half-plane in a homogeneous medium. However the ray bun-
dle which propagates along the interface experiences precisely the same

environment as a lateral wave source ray. The differing phase velocity

of the two media refracts energy into the more dense medium as the source
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ray propagates and depletes the energy of the cylindrical diffraction
wave in the vicinity of the interface. The greater the contrast, the
greater the energy loss of the diffraction field, thereby minimizing the
scattered energy in the direction of the interface.
This viewpoint also explains the mechanism by which the lateral wave
is launched. Oﬁe asks the following question: how can the diffracted
field propagate with gjklp in the upper region and e-jkzp in the lower
region along the interface and represent a valid solution to the boundary
value problem? Surely even an approximate solution will manifest I
continuity of the tangential electric field across the interface. The
solution to this paradox lies in the realization that the radiation field

(which varies as O-%) arising from the asymptotic evaluation of the steep-

est descent integral at the saddle point vanishes along the interface

and the second term in the expansion is the leading term. Recognizing

-3/2

that both the saddle point and branch cut contributions vary as p but

-jklp and e-szp respectively, one suspects

with a propagation behavior of e
that the saddle point ¢ontribution for region 1 will equal the branch cut
contribution for region 2. This can be shown to be the case, Therefore
we see that the lateral wave contribution is essential along the inter-
face to match the saddle point contribution for the other medium and to
provide continuity of the total diffracted field across the interface.

This viewpoint would seem to explain the mathematical necessity of the

existence of the lateral ray to provide continuity of phase and attenua-

tion across the interface when combined with the saddle point contribu-
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tion. It also provides a useful device for estimating the magnitude of
the second term in the asymptotic expansion for the saddle point integral.
That is, the second term will equal the lateral wave term. Clearly for
p =35 A this contribution is small as seen in the data presented below,

In Figures 4.13-4.18 sample data is presented for a number of possi-
ble media combinations. All media parameters are normalized to free space.
In all cases By =Wy = 1, the permeability of free space. Plots to the
left are associated with higher loss in medium 2, while those further
down are associated with increasing contrast (that is, the modulus of
ez/el) between the two media . The data in Figure 4.13 serve as a
reference case where the angle of incidence is § = 45°, the radius of ob-
servation is p = 5 \in free space. The contrast ratio increases by a fac-
tor of three as one moves down and the ratio is one on the top row. It
is clear that increasing contrast causes the angle of refraction of the
geometrical optics ray to increase and causes the lateral wave peak to
shift away from the interface. Also a general flattening of the diffrac-
tion contribution from the saddle point (particularly about the interface)
Ls seen with increasing contrast . Increasing the loss of medium 2 is seen
Primarily to attenuate the fields in the transmitted region.

Figure 4.14 is identical to Figure 4.13 but with the radius of
observation increased to p = 20 wavelengths in free space. The magni-
tude of the lateral wave in the case of no contrast (top row) is ex-

plained by noting that the middle picture depicts a case of almost equal

loss tangent in the two media. Clearly the branch point which gives rise
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to the lateral wave is nearer the real axis of the a plane than in the
two surrounding pictures on the top row of Figure 4.13, Therefore the
lateral wave- contribution should be greater at a given observation ra-
dius, Also noticeable is the fact that the peak of the saddle point term
is greater on the reflection boundary than on the shadow boundary. In
fact, the peak on the reflection boundary is truly a singularity (of the
non-uniform asymptotic expansion) since the geometrical optics pole re-
sides on the real o axis for observation points in the incident medium.
The peak on the shadow boundary is not truly singular since the geometri-
cal optics pole will lie on the a axis only at a = 0 (¢ = 90°) for pro-
blems involving media with unequal loss tangents.

Figures 4.15 and 4.16 are given for comparison with Figure 4.13 and
depict the same case but with the incidence angle shifted to & = 30° and
60° respectively. As anticipated the shift in the reflection and shadow
boundaries is apparent. Figure 4.17 is included as an example where
medium 1 is essentially lossless (kl = 1,-j.00005). The second row in
this figure corresponds to a value of €, such that Re(ez) = 3 which is
typical of many plastic dielectric materials. The third row character~
izes medium 2 with Re(€2) = 9 which is near the value for ceramic dielec-
trics. In contrast to the earlier cases, Figure 4,18 depicts a case where

medium 1 is relativelv dense (k1 = 1.732-j.,000029). The top row of this

figure represents a contrast ratic which is less than | (|ezlel| = 1/3)

as opposed to equality as in all of the earlier figures. This implies a

critical angle of total internal reflection of about 55° and therefore the
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E plot of this figure exhibits the phenomenon of total reflection.
Figure 4,19 depicts the case given by
Ul = Uz =1
€ = 1.-3.00001, k1 = 1.-j.000005
€, = 3.-3.00001, k, = 1.732-3.000003 (4.3.3)

p = 5\ in freespace

Unlike the earlier figures, this one shows the diffraction as the angle
of incidence increases from 15° to the maximum incidence angle for
the validity of the Wiener-Hopf analysis (-Im(kl cosemax) = Im(kz))
which for this case is emax = 137°.

It must be pointed out that in none of the data computed has the pole
due to the root of G_ significantly contributed to the field structure
in a problem. This pole is associated with the root of (3.4.1) and seems

to correspond to the Zenneck pole contributed since they both are roots

It

of the same equation., This pole contribution arises only when the branch

e

cut in the a plane exposes the pole. No clear determination has been
possible to extablish the actual existence of the contribution of this

term to the far field structure in a problem.

4.4. Interpretation of Results

: R e P e T
- -

The intent of the analysis in the study of the interface problem is
to provide a means for readily computing the various ray optic
! contributors which arise and thus a means to apply the GID to

configurations that contain features for which the interface problem is
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a suitable canonical geometry. It is desirable, therefore, to discuss
the scattered fields in physical configuration space (that is, the
spatial domain) and describe the relative magnitudes of the ray
contributors.

A ray representation of the contributing fields given by (4.1.8),
(4.1.13) and (4.1.16) is shown in Figure 4.20 where both media are
assumed to be lossless, and the lower medium is assumed to be the more
dense, That the Zenneck pole contribution (4.1.14) arises is a
possibility, too. As discussed above, however, no cases have been found
where it does arise, and no further address is made to it here,

As shown in Figure 4.20 the geometrical optics field in the upper
half space is given by the simple reflection off the PEC half-plane in
the region lying between the half-plane (at ¢ = 0) and the reflectiom

boundary (at ¢ ). For the remaining portion of the upper half

B qJrefl
space the geometrical optics field is simply the reflection of the
incident wave off the media interface. 1In the lower medium the

transmitted wave is seen to bend to an angle ¢ and represents the

refr
refraction of the incident wave at the media interface.

The presence of the edge of the half-plane launches two different
waves: an edge-diffracted wave and a lateral wave. The diffracted wave,
which appears as a cylindrical wave propagating away from the edge of
the PEC, is seen in all observation directions, When the media
parameters are equal, this wave is described by the Keller diffraction

coefficients (see Figure 4.8). However, as the contrast is increased,

the diffracted wave is quite different from the "Reller" wave (for




107

*umoys 9sed 3yl 103J ISuIp
210w 3Y) ST wWNipam 1amof 3yl eyl pouwnsse sy 3] -wajqoiad
8op3JI2]uT ayl ul pakaauod sT A8asue yorym Buoie syied LAey Q7 % 2andyy

C e N e N
_ T . - AHYANNOS g,
L .. MOavHs X

INVId-4WHO3d




- .

108

example, the diffracted wave decreases to near zero as the observation
angle approaches the interface while the "Keller" wave does not, see
Figure 4.9).

The lateral wave is launched by the PEC half-plane. This wave is an
inhomogeneous plane wave which may be represented by a ray bundle
emanating from the edge and propagating along the interface in the less
dense medium, shedding energy into the more dense medium through
refraction. This energy thus propagates away from the interface aﬁ the
critical angle of total internal reflectionm, ¢cr‘ This field is
present in the region of space between the boundary ray emanating from
the edge of the PEC half-plane at an angle of ¢cr and the interface.
The lateral wave is a plane wave which propagates in the direction ¢cr
and is most intense along the boundary ray at ¢cr' At a fixed radius
the magnitude of the lateral wave decays rapidly as the angle of
observation rotates from ¢cr toward the interface, This lateral wave
is a unique manifestation in problems involving an inter face between
media and does not occur unless dissimilar media are present in a
scattering configuration, Note that in Figure 4.20 the lateral wave is
shown propagating into the lower medium. This is due to the assumption
that the lower medium is more dense than the upper medium. Had the
reverse been assumed then the lateral wave would propagate into the
upper medium,

Figure 4.20 shows all the possible ray contributors at an

observation point. It is clear that when the upper medium is less

dense, any observation point in that medium will receive scattered
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radiation from the geometrical optics field and the cylindrical edge-
diffracted field. The geometrical optics field will dominate in the
upper half space when lossless media are involved except for observation
points near the reflection boundary ®ref1 where the geometrical optics
field and the edge-diffracted field will be of the same magnitude., It
is noted that since the lower medium is assumed more dense, the lateral
wave contribution in the upper medium is quite small and evanescent in
nature, decaying away from the interface.

In the lower medium, it is seen that observation points in the
shadow region will only be illuminated by the edge-diffracted field.
For observation angles between the interface and the shadow boundary,

¢

refr’ the geometrical optics field contributes as does the edge-
diffracted field and the lateral wave contributes in the sector between
the interface and the ray at ¢cr’ the critical angle of total internal
reflection. Throughout most of the "1lit" region of the lower medium the
dominant contributor is the geometrical optics field and the least
important contributor is the lateral wave field. However, the lateral
wave dominates the others in a small angular sector bounded by the ray
at ¢cr‘ In essence a pencil beam of lateral rays appears to be
emanating from the edge roughly in the direction ¢cr and is the
dominant field contributor there. The hierarchy of contributions to the
total field is summarized in the table in Figure 4.21.

It is emphasized here that when the two media are different, the

edge~-diffracted field is substantially different from that in the

homogeneous problem. The lateral wave also is a manifestation of the
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presence of the interface. Hence the field structure manifests markedly
different features from the classical problem of scattering from a hal f-
plane in a homogeneous medium.
When losses are introduced several interesting changes occur. Most |
marked is the possibility that the dominance of the geometrical optics i
. field over the edge-diffracted field in the lower medium can reverse j
when the constrast ratio of the media wave numbers (kZ/kl) attains a
: significant imaginary part. 1In this circumstance the locuys of the
geometrical optics pole leaves the real axis in the angular spectral
plane and induces the exponential dominance of the edge-diffracted field
as discussed in Section 4.1.3. A second manifestation of the presence

of media loss is that the shadow boundary is seen to '"smear’" and lose

definition., Further, the significance of the lateral wave contribution
is strongly dependent on the comntrast ratio (kzlkl) between the two
media. In some cases the lateral wave will dominate both the
geometrical optics wave and the edge-diffracted wave for observation

points sufficiently close to the interface.
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CHAPTER V

THE SLAB PROBLEM
5.1 Statement of the Problem

The structure considered in this chapter is shown in Figure 5.1. A
dielectric slab of thickness t' with constitutive parameters (ué,eé) is
embedded in a surrounding medium with constitutive parameters (ué,si)
where Ei and eé are real and Eé > Ei. The upper surface of the slab lies
in the plane y' = 0. Residing on the slab's upper surface is a PEC screen
covering the half-plane (x' > 0) with its edge at x' = 0. A plane wave is
incident from the upper half-space (y' > 0) and propagates toward the slab
at an angle O with respect to the PEC half-plane., The incident wave is
assumed to be polarized transverse magnetic (TM) to the z' axis. As in
the interface problem, we assume no variation in the z' direction and so
this is a strictly two-dimensional problem. It is noted that only loss-
less media are admitted. This stands in contrast to the general media

considered in the slab problem.
5.2 Wiener-Hopf Formulation over the PEC Half-Plane

For this problem we structure the integral equatiocn over the PEC

half-plane rather than over the aperture (as in the interface problem)

to demonstrate the features of this formulation and how they contrast to
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Figure 5.1. Geometry of the slab problem.
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the features of the aperture field formulation used to solve the inter-
face problem. The resulting integral equation is an electric field
integral equation (EFIE) which enforces that the total tangential elec-
tric field over the PEC screen be zero and has the electric current on
the screen as the unknown function. Since we are considering the TM

case we see that the surface current on the plane is purely z' directed
and therefore induces only the z' component of the magnetic vector po-
tenti;l, A,. To formulate the integral equation, we must solve two asso-
ciated problems. First, the problem of a z' directed filamentary source

' directed electric current located on the upper surface of the slab

of 2z
(at x' = 0) is used to establish the Green's function for the integral
equation. Second, the problem of the plane wave incident on the slab with

the PEC screen removed is used to establish the source field for the inte-

gral equation. Having established these two functions, we form the EFIE,

NP Rad 1 ] ] ] ]
e (x') = -e (x') =-— I j(xo)k(x ,xo)dx0
: : /zm x'=0 (5.2.1)

for x' e (0,») ,
where ezp (x") is the total field present due to a plane wave impinging
on the slab in the absence of the screen and k(x',xé) is the Green's
function relating the z'~directed electric field on the interface elec-

tric field on the interface to a z'-directed current filament residing

there. It is convenient to consider this equation directly in the Fourier
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transform domain, therefore we extend the definition of the functions in

the manner described in section 2.4 to arrive at

) + 0l = = J 04 (xg) k(x" ,xg)dx for x'€(-=,®)
- 0 0" 0
* L (5.2.2)
u
=0, *k ,

where ¢: (x') = jz(x') and a: (x') = efp(x') for x' > 0. Fourier trans-

forming this equation with respect to x', we arrive at

' Ap(k!) + BI(kT) = ¢ (k) « R(k)) (5.2.3)

for k; within a strip where all the functions are analytic. We now
establisﬁ the Fourier transform of the known functions, K and A:.

We require the kernel k(x') im (5.2.2), that is, the Green's func-
tion relating the e, field in the y'= O plane to a z'-directed filament of
) current in that plane. Actually, since a Wiener-Hopf analysis is subse-

quently used, we need only the Fourier transform of this kernel. The
' analysis for the transform is given in Whitmer (1948) and results in
y'20

fal

akl) =123, » -t' <y'<0 (5.2.4)
X

a ’ Yi_t'
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_jeitl _ijyv -
al- e 2 -9—-1..— Ce L 4 , (5.2.5.a)
2/
' ' ' JB'(Y""t')
-38 (y'+t") 2 -
a = le 2 -l =i , (5.2.5.b)
2 227
JBI(y'+t")
a. = -% C —-l— e 1 » (5-2.5.C)
3 2/27
and
Tl
Bl + 8
2
C= o7 ToT
-szt jBZt

' \J l
(B +B)(T e -%e )

The Green's function which we require for (5.2.3) is given by a

above with y' = 0, Hence we have

wué
K(kx) = -2-8_]':' F(kx) (5.2.6)

where
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H
4 3
—jBit' jBét'
' ' (Bi - Bé)e - (Si + Bé)e
F(k)) = {28) Iy TR (5.2.7.a)
(Bl - 82) e - (iB1 + 62) e
( J .
or equivaleatly,
jBle' + Blt'cot(Blt")
1 2 2 (5.2.7.b)

F(k;!)'zel’.t' '12 "2 .t 1.1 [ I |
J[(Blt )T+ (62: )71 + 2(81c )(th Yeot (85t )

An interesting observation can be made at this point regarding
(5.2.6). The poles of the Green's function characterize the surface
waves for the dielectric slab while the roots characterize the surface

¥ waves of the problem of a slab with the upper surface covered by a PEC

screen, The problem treated here is a composite of these two problems
for the two regions x' 2 0. One expects the solution for these two re-
gions to manifest the wave structure appropriate to each region in the
vicinity of the slab. As is seen later, one result of the Wiener-Hopf

analysis is that both roots and poles of (5.2.6) are singularities of

- . -

the integrand of the radiation integral and contribute in the two regions
>
X < 0 as expected.

To formulate A: (k;), which is the Fourier transform of the incident

' plane wave in the presence of the slab but with the PEC screen removed,
we must solve the requisite boundary value problem, The analysis is rela-

tively straightforward and the resulting fields are given below:

f
\
f
L
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¢ jki(x'cose + y'siné) jki(x'cose - y'singd)
EO e + Ae . y'.ZO
NP jki(x'cose + y'sinf) jké(x'coss - y'sin8)
2 - Be +Ce » "t <y'<0
jki(x'cose + y'sinb)
D e . y'i't'
" (5.2.8)

where ki cos(e)-ké cos(ez) and 9,62 are the ray directions
ted and transmitted ray respectively from the plane of the

constants in (5.2.8) are

A= -Eo +B+C

= 4+

[sine 51“92]
’ ’ 1ot
ﬂl nz jkzt sin62 2E.sinf

0
B = -e —_—
A nl
sinb _ Si“ez
S né -j2két'sin62
C=-B ( $inb e

sind + 2

[ [
et 2

for the reflec-

slab. The

(5.2.9.a)

(5.2.9.b)

(5.2.9.¢)
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t ' '
0. 28 sinB2 j(klsine + kzsinez)t
in® : e (5.2.9.4d)
sing s 2 n2
YT
1 2
where
2 1ot ket
N s1in8 .\ sinez jkzt sinez s1ind sine2 jkzt sinez
|t e - e
1 2 1 2

ny = glel b np = AgTET,

If y' is set to zero in (5.2.8) and the resulting function is then Four-

ier transformed (leading to a semi-infinite integral from x' = 0 to

x' = ©), the resulting transform is
1% Eo

V2r (k, + k&

(5.2.10)

u
AL(k!) =
+ x icose)

where E is the magnitude of the incident plane wave

jki(x’cos@ + y'sin6)

e = E e and Fé = F(k; = k'cosf).

1

Applying the normalizations defined in section 2.5, we arrive at the

following form for the Wiener-Hopf equation:

A+(kx) + B-(kx) = ¢+(kx) G(kx) (5.2.11)

where
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i Fg E _
Al = T+ igcossy » Fa 7 Flky = Kyeosth0)
B_(kx) = unknown function
o, (k) = wu(')EJz(ko' k )y T (kyk ) = F{jz(x')}
G(kx) = F(kx)/B1

5.3 Factorization of G(k})

The next step in the Wiener-Hopf analysis is the factorization of

G(k}? given in (5.2.11), This function is composed of two factors which
i are considered separately, that is, 1/31 and F(kx). We see that (1/81)

factorizes by inspection as in (3.4.3). Therefore we concentrate on the
factorization of F through the formal integral factorization formula
given in (3.4.6).

To meet the hypothesis of the integral factorization, we require
that F(k})" 1 uniformly within the Wiener-Hopf strip of analyticity as
|o| > = where kx =0+)]T. We observe from (5.2.7.a) that as Ikx| > ®gon
the top sheet of F (where 31 and 32 assume the original definition of Sec-

- . tion 2.2),

Re(-szt) + - @

+j82t
L |07 GrtBpe .
and therefore F.2 = 28 fo—m——— .
1 2 +j82t 1 81+82

0 - (61+Bz) e
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However Bl v 82 v vkZ o=k k  such that Im(B) < 0 as Ikx{ + o, There-
fore F v 1, as [kx]+ = We observe that even if we move to k = along

the hyperbolic BZ branch cut (and therefore Re(-szt) = Q), again F + 1 as

the coefficient (BI-BZ) + 0., It is clear that F + 1 as ]kx|+ © anywhere -
on the top sheet.

We may therefore perform the integral factorization of F and it will
apply along the real kx axis since the Wiener-Hopf strip collapses to the
real axis., It is necessary to consider the definition of 1n(F) which ap-
pears in the factorization formula (3.4.6). In order to establish an
] acceptable definition, we must consider in detail the behavior of F(kx)

in the complex kx plane.
The details of the behavior of F are essentially the same as those
for the Green's function of the slab problem and have been considered by
* several authors (e.g. Whitmer (1948), Barone (1956), Collin (1960)). The
important facts concerning F are presented below and in Appendix D.

i The points kx = + k. will be branch points of F due to the function

1

Bl. However, kx = k2 are not branch points., Observe that F is, in fact,

R an even function of Bz. If we consider a path encircling k2 in the kx
plane, we observe that 82 -+ -62 but F - F. One can make the observation
here that the Fourier transforms of the Green's functions for the slab
problem and the interface problem exhibit branch points at the wave num-

bers for the media which span a half-space but do not exhibit branch

points for the media whose extent in the y direction is finite (that is,

the slab medium). Therefore the only branch points of F lie at kx = # kl.
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In addition to the branch point singularities, F also has poles
which occur at the roots of the denominator of F. These roots are consi-
dered in Appendix D and they are found to lie on the real kx axis between
k; and k, (and therefore, by symmetry, between -k, and -k;). Interspersed
alternately between the poles of F are roots of F due to roots of the nu-

merator of F (also constrained to the real kx axis between (+k +k2) and

1’
(-k,,-k,)). The number of poles and zeros is a monotonically increasing
22 "1

function of (a -Vez-sl t,normalized values). No roots or poles of F exist

off of the real axis between (-k2 ,-kl) and between (+k, ,+k.). If the

172

interval (k kz) on the positive real kx axis is considered, the typical

l’
distribution of the singularities of ln[F] is shown in Figure 5.2.
Consider F as given in (5.2.7.b). Since kl and k, lie on the posi-

tive real kx axis with k2 > kl, we observe that values of kx in the inter-

val (kl, kz) must have'B = -3 ¢(kx) and 82 2 + w(kx) where ¢, Y are po-

1
sitive real functions. Substituting for Bland 82 in (5.2.7.b), we see
that F is purely real. Therefore if we consider the principal value of
the logarithm for 1n(F), the branch cuts required will connect respective
roots with poles as shown in Figure 5.2 and lie on the real k, axis. The
logarithmic branch cuts are restricted to lie on (kl,kz) and similarly

on (-kz,-kl). We recall that F * 1 as Ikxl+ ©, so there are no logarith-
mic branch cuts running to k, = ® It can be shown that a path in the ko
plane which encircles a pole and its adjacent root will not suffer an in-

crementing of the argument of F as the value of kx moves around the path.

Therefore we have adequately described In(F) with the branch cuts
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FOR a<sw/2 ¢ OwaX a
! w/2<a<wr . 0O Omni a
|
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: w<a<3w/2: OwX OwX O
34/2<a<2w: O OmwsX OmX 0O
haaatid Branch cut of the logarithm
; 0 Root of F (and branch point of 1n{F])
X Pole of F (and branch point of 1n[F])
Figure 5.2. Depiction of the branch cuts of 1n[F] due to
the root and pole progression of the function

F in (5.2.7) as the thickness of the slab

increases (a = /(az-el)tz)
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described above using the principal value of the logarithm.
The integral factorization of F is given as
. x
1 2n(F)
= d8} fort= Im(k ) =0 (5.3.1)
Fo(kp) = exp 1503 J 5-k ° mk,)
§=m—m X

where the path of integration is indented below ¢ = kx as shown in Figure
5.3. As noted above F(kx) + 1 uniformly for {kxl* ©, hence we can deform
the path of integration of (5.3.1) to that shown in Figure 5.4. It is

clear that with this deformed path

j Egéfl 48 = 327 a[F(k )] * u(o) + J2TH(Kk) (5.3.2)
X
1, 0>0
where u(g) =4 % , 0=0 with O=Re(kx)
0, 0<0 i
jwz [F(5)]
1 n
and H(kx) = 2.n.j J s—kx dé ’
_jw
Therefore,
u(o) | -
F (k) = [F(kx)] exp{H(kx)} for Im(kx) 0. (5.3.3)

Let us consider the behavior of (5.3.2) for k, off of the real

axis. Since F is an even function, the integral can be reduced to

-] joo
In(F) s . tn (F)
} =y 46 = 2% f =y s . (5.3.4)
-jm 0

Since 1n(F(§)) - 0 as {8|> © and the integration path is removed from
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Figure 5.3. Integration path for F+.
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Figure 5.4. Deformed integration path for 1-"+.
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any singularities of the integrand (as long as kx is off of the imaginary

S axis), it is seen that

£nF

T < /|82

for a suitably chosen constant M. Now the right hand side of (5.3.4) can

be partitioned as j[ZIm(kx)] 3
I + :
0 j[ZIm(kx)]
The first integral is clearly convergent for any kx and for the second.
M < M < — M .
2.2 — ta . = Sy,
l62-k2| = [6-k |+ [8] T [5]-16]

Therefore (5.3.4) is uniformly convergent and is a regular function for
kx off of the imaginary § axis (see Mittra and Lee(1971), sectiom 3.3).
Hence if ko is any point in the complex plane, then (5.3.2) applies and
is the analytic continuation of the exponential factor of F+(kx). Also
(5.3.3) is the valid expression for the factorization of F for all points
in the k, plane.

Observe that with the expression given in (5.3.3), it is unneces-
sary to be concerned with the detailed behavior of the roots and poles of
the function F(kx) in evaluating the integral H(k,). It is a  straight-
forward operation to parameterize (5.3.4) using S = j cot(Tt/2), for t om

the interval (0, 1), to arrive at

3 0

2n{F({6]} 2n{F(8(t)]} g F_dc

ka J —%7:£71_ dé = ka J 2(Tt 2 3 2 2 (L

§=0 x =l -cot GEJ -kx sin (2)
1

aF
==k J dt (5.3.5)
X =0 cosz(lzt-) + [kXSin(lzt')]z
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Observe that (5.3.5) is an odd function of k., implying that

exp{(5.3.5)} = 1 for k = 0.

Some interesting observations can be made concerning the factoriza-

tion process and how it works.

In electromagnetics problems one often

encounters a function G(e) which must be factorized and satisfies the

following conditions:

l. G is an even function of €.

2. The Wiener-Hopf strip includes the real ¢ axis.

3. G meets the conditions of the integral factorization

theorem.

Then

-}

1
G+(e) = axp 713 [

5-—@

§-¢

for € in the Wiener-Hopf strip and Im(€£)> 0.

rest of the complex plane, we have

(5.3.6)

When € is extended into the

1 2n G (&)
€XP \om3 f §-¢ » Im(e) >0
- . .3.7
. G, (€) 4 (5.3.7)
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If we consider only the integral in the exponential, then we observe that

it must be an odd function of € .

-] -0

1 J tn G(8) 45 a1 J 2n{C(=C=N]F 3¢ )3

H(-€) =

2m3 5= (-¢€) 2y =[(-8)-€]

§m—o (=§)=

1 Ln G(-Y) - -

'YI—-@
H(-€) = - H(€) (5.3.8)
Therefore if we consider an € such that Im(€)> 0, then we have

G+(—€) = G(-€) * exp[H(~€)] = G(&) * exp[-H(e)] = G(E)/G+(€). (5.3.9)

Therefore if we accept G _(¢) = G+(- €) (as can be seen directly from the
formula for the function G_), then
G+(e) *G_(e) = G(g)

: where G+ is analytic in the upper half-plane and G_ is analytic in the
lower half-plane. Since H(g) is analytic and therefore bounded, G+ and
G_ will be non-zero in their respective half-planes of analyticity.
‘ We collect below the results for the factorization of the slab
ﬂ problem:

G+(kx) = F+(kx)/ l.-kx

G_(k ) = F_(k )/ +k_ (5.3.10)

where the square root functions are interpreted as in section 2.2 and
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’F(kx) rexp(H(k )], Re(k ) >0
F+(kx) - ﬁ (5.3.10.a)
kexp[H(kx)] » Re(k ) <0 ,
where
ko { }
- . X n{F[&(t)]
H(kx) > J s ) T dt (5.3.10.b)
cmg €O8 GEJ + [&xsinfiﬂ] ’
s(e) = i co:(§§J ,
and F(kx) = (5.2.7.b) with (k}'{,t')-*(kx,t:),

F_(k) = F (k).

To complete the factorization analysis, it is necessary to determine
the asymptotic behavior of G+(kx) as Ikxl* ®©, We consider first H(kx) as
Ikx‘* ® along a ray, then

1 1

k k
H(kx) --—zx- f T fo¥ Tty s dt - -Tx I —le—n_t—dt
Ul e 2042
t=g COS [2] + [kxsin(z)] =0 kxsin PEJ
M
-ﬁ_ (5.3.11)
x
since 1ln(F) - 0 as t > 0. Therefore
F+(kx) - F(kx)'exp(H(kx))-*l'l (5.3.12)

and so

-;2 o e
G (k) ~ lkxl as |kxl . (5.3.13)
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A similar result applies for G_(kx).

5.4 Decomposition

Having performed the factorization of the function G(k,) in (5.3.10),
ve proceed to the decomposition of the function A /G_. As in the inter-
face problem, this step can be carried out by inspection, The resulting

functions are

s_(k) = G_(k) + (k_+k cosb) - G_(-k; cos) + (k_+k cos8) (5.4.1)
and
S (k) = ¥ (5.4.2)
+ % G_(-klcose)(kx+k1cose)

where ¥ = jFg°E,, defined in (5.2.7) and (5.2.11). The formal steps to
complete the Wiener-Hopf analysis are similar to those given in section
3.5. Therefore the Fourier transform of the current on the PEC screen

is

1
G+(kx)'(kx+klcos6)

1 1 ¥
I (kgk ) = o (k) = -
z 0'x wué g. + X wu,ﬁ; G_( klcose)

(5.4.3)

To establish the radiation integral for this problem, it is neces-
sary to reconsider the initial formulation. The procedure was to parti-
tion the fields of the problem into two components: the fields due to

diffraction of the incident plane wave from the slab inhomogeneity with

no PEC screen present and the fields radiated by the induced electric !

currents on the screen. Therefore
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Rad
e
z

total
=
2

NP
e
z

+ (5.4.4)

NP . .. .
where e, 1is the field structure due to the incident wave with no PEC

Rad | . .
screen present and e, is the radiated field structure of the currents

on the PEC.

is given in (5.2.8) and will not be consider=-

Rad
z

. NP
The expression for e,

ed further, The expression for e is given in (5.2.1) with the kernel

given in (5.2.4) and (5.2.6) but with y # 0. In the sections which fol-

low the asymptotic evaluation of the radiation integral is considered for
the two half-spaces involving medium 1.

The asymptotic expansion of the field in the slab itself will consist
of modal waves propagating in the positive and negative x directions.
While these fields are certainly of interest, they are left for future

work.

5.5 Asymptotic Evaluation of the Radiation Integral for the Reflection

Region (y > 0)

The Fourier transform of the radiation integral for the reflection

region is written as

Bl (kl,y') = F{e53d} - F J 3, (e m S et gy g
x6-0
., refl, , 5.1
=, (k) (V2T G (kysy "] (5.5.1)
—wu! -38.y' F(k})
u 'y . 0 ' 1 ' - X
= ¢+(kx) - G(kx)e where G(kx) Bi s
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When converted to normalized coordinates, we have
- -jB.y
ERad(k yy) = —L (k_)*G(k_ e 1 where y = koy'. (5.5.2)
2 X /Z_Tl'k + X X
0

Now the radiation integral itself is the inverse Fourier transform of

(5.5.1),

. ~jk'x’

JERad'e = (5.5.3)

eRad(x',y') - F-l ERad - .

2
2 V2

-l
Again reverting to normalized coordinates,
[~}

~j(B,y+k x)
Rad i ! . 1 x
e, (x,y) > J ¢+(kx) G(kx)e dk

-0

3 b4 1 -3 (B,y +k %)
2n i G_('klcose)] (kx+k1<:ose) .G+(kx) G(kx)e dkx_

(5.5.4)

Substituting for ¢ from the definition following (5.4.2), we arrive at

G (k) -3 (B.y+k x)
Rad -x 1 X
- x 1
where
£ - -j Eoklsine G+(—k1cose)
2n
and (G+, G_) are the factorizations discussed in section 5.3.

The integral in (5.5.5) can now be transformed into one in the

angular spectral domain using the substitution, kx =k sin(a), to give
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cos (@) *G_(k,sina) =k, psin(otd)
(sina + cosd) e (5.5.6)

Rad

eZ (p,9) = J
r

where ¢ is the angle of observation (0 < ¢ < T), The saddle point for

(5.5.6) is given by o = (7/2)-9 and the equation for the SDP is given

by (A.5.2) with ¢ replaced by -¢ and k;=0; that is,

cos(u-us) cosh{v) = 1 (5.5.7)

where ug is the saddle point location and & = u+jv. The integrand of

(5.5.6) contains no branch cuts since the mapping removes the Bl branch

cuts and 32 has none. Therefore the singularities are as follows:

l. Geometrical Optics Pole = Root of (sin® + cosB). It is

clear that this pole lies on the real 0 axis between =(m/2)
and +(7/2).
2. Poles of G_ - Lie on the line u = =(7/2), v < 0 between

@ = =(T/2) and the mapping of -k,. X

Forming the asymptotic form of the steepest descent integral for

(5.5.6) through the saddle point proceeds as in the foregoing analysis

and is given by
k sinfsind G (k,cosB) G (k,cosd) -jklo
Rad) ~[—j ’_1 -1 -1 £ ejﬂﬂ] e {
2 SDP 2m (cos8 + cosd) 0 /5
(5.5.8)

Similarly the analysis leading to the residue contribution of the geome-

trical optics pole is straightforward and results in » }
ik, pcos (6+¢) i
(el:ad)g .. = ~12mEG_(-k cosd)e 1 . (5.5.9)
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Observe that the geometrical optics contribution suffers no decay as p

increases and will therefore dominate the saddle point contribution if it
is present. As in the classical Sommerfeld half-plane diffraction prob-
lem, the diffraction term is only important in the shadow region of the
problem.

To formulate the residue contribution for the poles of G_(klsimm),
it is necessary to determine

: Lim {(a—ap) G_(klsina)} = H(db)' (5.5.10)

a->a
P

To evaluate (5.5.10), G is reconstructed as G/G+ and it is recognized

that G+ is analytic and well-behaved at ¢ .
p

G(klsina)
H(a ) = Lim (a_a ) e a————————
P o, P G+(klsincz)
1
b 1
) & ——eee— 1,im {(a_a ) G(k sina)} 511
G+(klsinap) aa, p 1 (5.5.11)

- Using (5.2.7.b) for G=F/Bl, we have

Z(jel(ap) + 32<“p)’°°t(32(“p>'t)

H(ap) -
G+(klsinup)

a-a

x Lim p .
o |3[8](a) + B3()] + 2+ 8, (a) - 8y(a) + cor(By(a)+e)

(5.5.12)
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Applying L'Hospital's rule to (5.5.12) and recognizing that the denomi-

nator in the braces in (5.5.12) is zero for a =1p, we arrive at

o-a -j2B8. (2+jB8. t)sina
Lim |7 ]9 = lp " Ip R (5.5.13)

a~o sin?(8, t
. (Zp)

where Blp = Bl(ap) and 82p= 82 (ap). Using (5.5.12) and (5.5.13), the

residue contribution for the surface wave poles is

Rad cos(ap)-H(ap) -jk psin(ap+¢)

(ez )G = j2mé [sin(ap)+cosa] e

1

-jk
2 .
| ) -ansin (szt)[JBli—B;pcot(ant)] e
! lelp(2+JBIPt) G+(k sinap)'tan(ap)°(sin(ap)+cose)

losin(cx +)
P

1

(5.5.14)
Note that (5.5.14) exhibits the exponential decay factor,

e-klp sin ¢ sinh [vpl

s
where ap = -(ﬂ/2)+jvp. Therefore at large 0 the surface wave contrib=-
utions are dominated by both of the other two components. This is not
surprising since large P implies an observation point far from the slab
3 while the surface waves are confined to the region near the slab's
surface.

Since the geometrical optics pole is present in every problem and
lies on the real o axis between ~(T/2) and (7/2), it is necessary to for-
mulate a uniform asymptotic expansion for the SDP contribution to the rad-

iated field when the saddle point is near the geometrical optics pole.

' This result is given below:
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~-ik o)
Rad ¥y
(e, Jgpp ~ "M & e
unif
jZklpcos2 (-9?5-)

x sgn(9+¢—n)G_(-klcose)e
x Q /2k10 cos(ggga ej“/AJ
dT/4 [ V2 sind G_(kjcosd)  G_(-k cos8)

+ - s (5.5.15)
/EIS (cosd + cosf) J3 cos(gggﬂ

where Q(y) is given in (4.1.17.a).

Before moving on to the fields for the transmitted region (y < - t},
the following observation can be made. Recall from (5.4.4) the parti-
tioning of the fields in the problem. For y > 0 the fields, which arise
from the diffraction of the incident plane wave off of the slab with the

PEC screen removed, can be written as

NP inc erefl . jkl(x cos8 + y sing)

e, = ez + 2 EO e (5.5.16.a)

jkl(xcose - ysing)
+ EO(Fe-l)e

where Fe = F(klcose) with F defined in (5.2.7) or can be written as
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jkloc059cos¢
¥ = Eje [§2sin(k, psingsine) ]
z
jk, pcos (6+d) !
+ Egk,5in8+G(k cosd) e 1 . (5.5.16.b)

Observe that the second term of (5.5.16.b) is canceled by the geomet-
rical optics contribution (5.5.9) in the shadow region for observation
angles such that the geometrical optics pole is crossed, ¢ > (m-0),
See Figure 5.5. The term in (5.5.16.b) which is canceled is the reflec-
tion which would be seen from a PEC screen covering the entire upper in-
terface of the slab. Since the actual screen is only a half-plane, this
' geometrical optics field is forced to zero in the shadow region, but the
correction term (compensating between the slab and a PEC sheet) repres-

ented by Fe remains.

5.6 Asymptotic Evaluation of the Radiation Integral for the Transmission

Region (y < -t)

To begin the asymptotic evaluation of the radiation integral, it is
necessary to form the Fourier transform of the Green's function for the

' transmission region. This is done using (5.2.4) and (5.2.6) to arrive

at
iB
SETEm g s . Fn ejB]_c 8, eJ Y
x*Y 7 0 . 3Bt NELZE
(81-82) e - (81+82) e (5.6.1)
‘ where normalized coordinates are used and no = /56723 . Now the radiated

field is given by the inverse Fourier transform (in normalized coordinates&
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Figure 5.5. Geometrical optics field structure in
the reflection region.
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j81t

- G_(kx) 82 e
= - -38,t jB,t
~o0 (kx+k1cose)[(81-82)e - (81+Bz)e ]
J(B,y ~k_x)
xe X g (5.6.2)

X

where £ is given in (5.5.5).

Before proceeding we note the singularities of the integrand of
(5.6.2). As in the radiation integral for the reflection region, this
integral has a geometrical optics pole at the root of (kx +klc059 ). For
values of k  with T = Im(k,) < 0 (or if T = 0, then T = Re(k) > 0),
G_(kx) is analytic and non-zero. Therefore the roots of the bracketed ex-

pression ip the denominator of (5.6.2) with ¢ > 0 (which lie on the posi-

tive real kx axis between kl and k2) are poles of the integrand, While
the symmetric roots with g < 0 are canceled by the corresponding roots of
G_. However for 0 < 0, G_(kx) has poles of its own. Therefore exclusive
of the geometrical optics pole, the integrand has poles at the poles of

G_(kx) which lie between -k, and -k; and poles at the roots of the
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denominator factor which lie between kl and k2. These poles correspond
to the surface waves for the slab problem.

It is interesting to note that for o < 0 the pole locations corre-
spond to the surface waves for a slab of thickness t and must propagate
in the negative x direction. Clearly the field, which is launched by
the presence of the PEC screen, that propagates in the negative x direc-
tion from the edge of the PEC screen, must be a surface wave for the
slab. On the other hand the waves moving in the positive x direction
must characterize the surface waves for a slab of thickness (2t) due to
the imaging of the slab through the PEC screen. In fact, the pole reso-
nances for ¢ > 0, which characterize the waves propagating in positive x
direction, show just this behavior since they are roots of G_ and hence
roots of the numerator of G. These details are discussed in Appendix D.

To conveniently evaluate the poles of (5.6.2) exclusive of the

geometrical optics pole, two alternative forms can be used.

- jBlt
B, e B,y -k _x)
Rad 2 1 b3
e, (x,y) = -ZSJ m B(kx)e dkx (5.6.3.a)
with
¢ G—(kx)
-szc szt » 020
[(B,-8,)e ~ (B;*8,)e ]
B(k ) = 4 ¢ (5.6.3.b)
2
G+(kx)[(81-82) e - (61+82) e ]
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Moving to the spectral domain using the mapping, kx ='klsin a1 , the
radiation integral becomes

jk,t cosa
Sz'cosa'e

X% (0,9) = ~2£J B(k, s1n0)

r

(sina + cosB)

-jklosin(a-¢)
X e do (5.6.4)

where ¢ is the observation angle with respect to the PEC half-plane
(-m < ¢ < 0). The integration in the O« plane is shown in Figure 5.6
(where the integration path is offset for clarity).

The asymptotic form of the saddle point integration is

(-jkltsin¢+j%)
B, (k. cosd)*sind e, A
Rad VAl 2°1 n -jk.c
(e, Jspp~ 28 [% 0 (cos® + cosB) u(klcos¢) e 17 .
' (5.6.5)

The residue contribution for the geometrical optics pole is

Rad jk, tcosb

(e, )g.o. = j(4“5)[32(-k1c058)-B(—klcose)e ]

pole

jklﬂcos(6-¢)
X @ . (5.6.6)

The geometrical optics pole is captured in the deformation of the inte-
gration path for ¢ > (8-m).

Finally the residue contribution for the surface wave poles must be
given. Clearly the integration path must indent to the right of the
poles when Re(ap) < 0 and to the left of the poles when Re(ap) > 0. When

the residue is formed, the result is
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Figure 5.6. Integration path for the radiation integral.
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jkltcos(ap) )
B,(a)*cos a_ e ~jk,psin(a_-9)
(2= (sTam)- (jrme) (2P P e 1 LI
P [sin(up) + cosf] J
x Lim [ (o-a )'B(klsina)] (5.6.7)
ava P
p
where
SIGNS 1 for Re(a ) = ¢ =
p 2
The limit in (5.6.7) must now be evaluated. Consider the case when
Re(ap)'-(ﬁ/Z), then
2 3%
212 [(a-ap)-B(klslna)] = E:fklsih ap) ziz \ —jBZt \ j82t
P p|[(B,-B,) e - (B,+8,)%e
172 1 72
(5.6.8)
Applying L'Hospital's rule to the limit expression and simplifying,
j(B, =B, )t
fad §4nE82 cot o e 1p "2p -3k osin(a_-6)
(ez )pole' kl(sin ap + cosf) e
-ik o]
-1 3
x e 1L (5.6.9)

2
(2+jBlpt)(Blp+62p) G+(k1sin ap)

for Re(ap) = -(m/2), where Blp = Bl(ap) and sz = Bz(ap). A similar anal-
ysis to that used in (5.6.8) and (5.6.9) but using the other expansion for

B(k1 sin(a)), given following (5.6.3), results in
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j(B, -8B, )t
( Rad) jlmEBz;cot ap e P2 -J’klosin(ap-Cb)
z ‘pole kl(sin ap + cosf) e
G_(klsin qp) (5.6.10)
208 ¥B ), ) (T+IE E) o

' for Re(ap) = +(7/2).
) As in the asymptotic analysis for the reflection region, it is
necessary to give the uniform asymptotic expansion for the saddle point !

contribution since the geometric optics pole will approach the saddle

g point as ¢ approaches (-T+8). The result is as follows:
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-jk.p
(eiad)snp ~+2e !
unif.
' jkltsine j2klocoszfggga
x sgn(6—¢-n)j2/5828 e B(-klcose)e
X Q[/Zklp]cosﬁ%?gl ejﬂ/a]
-jkltsin¢
+jIej7r/4 /5 st-sin¢-B(klcos¢) e
klp cos¢ + cosé
jkltsine
82 B(-klcose) e
+ =B - (5.6.11)
/7 cos(359)
J

where Q(y) is given in (4.2.l7a),82g = Bz(ago) and st = Bz(as).

Finally for convenience, the portion of the total field in the

transmitted region due to the incident plane wave with the PEC screen
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removed 1is

18, (8-9)
-4E R B, e jk,pcos(B-¢
2 1
ezp(p,db) = = 2 t I8t © (5.6.12)

3 2 2 2
((8-8)% 2 - (3+8,)% ° ]

where Bl = klsin(e), Bz = kzsin(ez) = /ii-ki cos2(H)




CHAPTER VI

CONCLUSIONS

The objective of this study is the solution for the scattering of an
electromagnetic plane wave from a PEC half-plane in the presence of pla-
nar media discontinuities. Two specific geometries are addressed. The
interface problem represents a basic canonical configuration in this
class of problems while the slab problem is one of practical interest.
The case of TM incident polarization was chosen as manifesting all the
primary characteristics of interest. It is the author’'s belief that the
TE polarization will not manifest any new phenomena. In particular,
the functions to be factorized in the interface problem are very similar

. to that of the case considered in Chapter III. Based on this it is as-
serted that the analysis presented here can be generalized to the other

. - polarization.

B In the interface problem the analysis leading to the radiation inte-
gral for the TM polarized wave is given along with an efficient form of
the integral factorization. The asymptotic formulation of the various
far field contributors is given. Numerical data is presented at the end
of Chapter IV to demonstrate the behavior of the various field contribu-
tors as parameters are changed. It is seen that a diffracted cylindri-
cal wave is launched from the edge of the half-plane which is similar to

the wave described by the Keller diffraction coefficient as the media
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contrast is eliminated. An interesting feature of the diffracted wave
for the interface problem is the decrease in the radiation field as the
observation angle approaches the interface. This condition is seen to be
necessary for the total solution to provide a continucus tangential elec-—
tric field across the interface.

The typical geometrical optics field for the interface problem is
seen to reflect and refract acording to the theory of geometrical optics,
A peculiar feature of the interface problem is the launching of a lateral
wave which is seen to have its peak amplitude in the more dense medium
{(which is defined as the medium having the greater real part of its wave-
number). Finally, the theory indicates the possibility of a pole term
which appears to be similar to the Zenneck pole. An example of this pole
has not been found which contributes significantly to the asymptotic
field.

The analysis of the slab problem is presented in Chapter V. In this
case no lateral wave is present but surface waves are launched instead.
The asymptotic analysis has been performed for the media surrounding the
slab but is not presented for the slab itself as a self-consistent ex~
pansion has not yet been found. No data is presented for this case.

While this investigation has laid the foundations for study of the
interface and slab geometries, it has by no means exhausted even the
theoretical topics of interest. In the interface problem the issue re-
mains concerning the possibility of a Zenneck~like pole contribution.
While this pole occurs in the TM case only if the media have dissimiliar

permeabilities, it may occur in the TE case for media which have
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differing permittivities and is therefore of importance in the TE case.
Another area of future work would be the development of the uniform
asymptotic expansion of the saddle point integral in the presénce of a
branch point. The data given in Chapter IV seems to imply that the local
disturbance in the diffracted cylindrical wave due to the lateral wave
is representative of the field structure at small observation radii even
though the formal mathematics of asymptotic theory breaks down. It
would be useful to confirm this conjecture. Clearly, another avenue of
possible work would be to perform the analysis for the TE case. In the
slab problem numerical implementation remains to be performed. The a-
symptotic expansion of the field structure in the slab also must be per-
formed and the work completed indicates that an explicit modal field
will result,

The form of the solutions is structured to generate the ray-type
diffraction coefficients needed for GTD analysis. While the diffracted
cylindrical wave and the geometrical optics field behave as simple homo-
geneous waves, the lateral wave and Zenneck~type pole wave are inhomogen-
eous plane waves and will require an extension of the GTD to include
scattering of complex rays in order to be utilized. It is hoped that
this work provides a clear demonstration that the numerical evaluation
of the formal Wiener-Hopf factorization integrals is a feasible process
for generating ray-optic solutions to complex scattering geometries.

The application of the GTD to model lap junctions between metallic and

composite dielectric sheets is a relatively straight forward result of

this work.

r——




APPENDIX A

CHARACTERISTIC EQUATIONS OF THE

MAPPING kx = k sin o
A.l Introduction

The purpose of this appendix is to establish the principal results
which determine the mapping of significant curves in the complex kx plane
onto the a plane. In the mapping we take k = kr-jki as the complex wave
number of the medium of observation and define @ = u + jv. The mapping

is written as follows:
o+ jt= (kr-jki)sin(u+jv) = (kr-jki)(sinlxcoshwz + j cosusinhv)

0 = k sinucoshv + kicosusinhv; T = krcosusinhv - kisinucoshv.
T

(A.1.D)

Note that (A.l.l) maps the entire kx plane into a finite-width strip in
the o plane and that the & planme is periodic in its real part with peri~
od 27. These results are based on the assumption that both media are
lossy in the problem treated.

It is also of interest to provide an inverse mapping from the top

sheet of the k  plane onto the O plane. This is given by
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(i(kx 3

=—'Lg— -_—
atop I Angly + o (A.1.2)
sheet
where ln is the principal value of the logarithm, i.e. if Arg(ln) = §

then =T < 8 < 7 and B = sz-k; as defined in Section 2.2.

A.2 Real and Imaginary k  Axes

By setting the real and imaginary parts of (A.l.l) to zero, we
arrive at mappings of the axes in the kx plane onto the & plane. The

real axis is mapped into the contour defined by
tanh(v) = (ki/kr)tan(u). (A.2.1)

From this formula it is clear that the mapping of the real kx axis (about
a = 0) lies in the regions of the o plane characterized by (u,v) > 0 and
(u,v) < 0 for any media to be considered. Also the origin in the kx
plane corresponds to the origin in the & plane.

The imaginary kx axis maps into
tanh(v) = -(k_/k;) tan(u) (A.2.2)

Therefore the imaginary kx axis maps into the two regions in the & plane

which do not contain the real axis mapping.
A.3 Hyperbolic Branch Cuts for k

The branch cuts for %k in the kx plane can be shown to "open up" so
that no branch cuts for 8 are required in the o plane. The multiplicity

of function values for 8 as kx migrates between the two sheets of the k.

_- & -—
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plane is manifested in the periodicity in Re(%) under the mapping.
However the mappings of the branch cuts on the O plane delimit the boun-
daries of the top sheet of the function /EE:EE .

The branch of 8 = /E?:EE is given by Im(B) < 0. Therefore the

branch cut lies on Im(B) = 0.

Im(BR) = Im(vk2(1l -~ sin2(a)) ) (A.3.1)

= -krsin(u)sinh(v) - kicos(u)cosh(v) =0

Hence

-(ki/kr) = tan(u)tanh(v) (A.3.2)

After some simple manipulation we find that the curves in the O plane

which correspond to the branch cuts from ¥ k in the kx plane are given by
tanh(v) = (ki/kr) tan(u £ m/2), (A.3.3)

These lines correspond to the mapping of the real kx axis onto the Q
plane but offset by *(7/2) along the u axis. This region corresponds to
the top sheet of the functions involving 8. Therefore these lines toge-
ther with the mappings of the real and imaginary kx axes divide the top
sheet region of the @ plane into the mappings of the four quadrants in

the kx plane.

A.4 Hyperbolic Branch Cut for (-kop)

The integrands in the field integrals arising in the interface

problem will involve the factorization function G_(kx) which contains
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functions with the original hyperbolic branch cut for 2 extending from

op

k (We have chosen to use k as the wave number of the observa-

x = “kop
tion medium, therefore kop is the wave number for the opposing medium).

Hence it 1s necessary to determine the position of the mapping of this

branch cut.
As in the case of the branch cuts for B, the Bop branch cuts lie
along the curve Im(By;) = Im(Vkép- ki) = 0. So ng must be positive and

real for points on the cut. Therefore
2y _ o 12 ain2 =
Im(B5p) = Im(k3,- k* sin®(a)) =0

yields the defining equation for the locus of points on the Bop branch

cut,

2.k2) (si inh v cosh v) =
(kop,r)(kop,i) + (kr ki)(51nt1c05115 nh v cosh v)

(krki)(sinzu cosh?v - cos?u sinh?v) (A.4.1)

where kop = kop p=jkpp i and k = kp—jkj.

After algebraic ma..ipulations, we arrive at

a? - 2ab sin(2u)sinh(2v) + b%sin?(2u)sinh?(2v) = cos?(2u)cosh?(2v) !

[b¥sin?(2u) - cos?(2u)]sinh?(2v) - [2ab sin(2u)]sinh(2v) + {a®- cos?(2u)] = O

(A.4.2)

where a = 1 = 2 (kgp r"kop,i)/(ke ki),

and b = (k3- k§)/(2°kp ky).

Applying the quadratic formula and simplifying:

! ~3
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sinh(2v) = L ab sin(2u)

[ (bsin(2u))? = cos®(2u)]

(A.6.3)

tlcos(2u)| V(aZ-1) + (b2+1)sin?(2u) 5

where the correct sign for the square root must be chosen. The analysis
for choosing the appropriate sign of (A.4.3) is straightforward and the

results are given below,

For |a| > 1,

sinh(2v) = 1 x

[(bsin(2u))? - cos?(2u)] :

ab sin(2u) - sgn[%-+ u)-sgn[%; + u)

x |cos(2u) |/ (a2=1) + (b2+1)sin?(2u) (A.4.4)

_l
- < < < 0.
for (- T+ tan (ki/kr)) u<ug ok fnd v<O
X op
where sgn is the signum function.

For !al <1,

cos(2u) = 22P Sig;iuigish(ZV) (A.4.5.2)

for v > v )and ~(m/2) < u< 0,

(k_=-k
X op

where
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sin(2u) = 1 x
[cosh?(2v) + b?sinh?(2v)]
r
[?b sinh(2v) - cosh(2v) /=(a<+b%) + (b?+1)cosh?(2v)
(A.4.5.b)

For |a| = | there are two cases: a = £1. If a = -1, then

(k k

op, T op,i) = (kr ki) and the branch cut for Bop will coincide with at

least a portion of the locus of points on the B cut in the @ plane from
a = -(m/2). In fact, either (A.4.4) or (A.4.5.3) may be used recogniz-
ing that (A.4.4) gives the portiom of the Bop branch cut for v < 0 and

(A.4.5.a) will give the portion for v going to + ®, On the other hand

if a =1, then &k = 0 and the Bop cut must run along the projection

op,i

of the positive imaginary kx axis, hence we must use (A.4.5.a).
A.5 Steepest Descent Path

The characteristic curves discussed in previous sections of this

appendix are fixed for a given problem once the media are specified. As

stated in Section 4.1.2, the saddle point for the field integral is found
as a root of the derivative of the exponent in the integrand and is found

to be given as ag = ®+7/2, At the saddle point the exponent 1is
: . . . T .
~jkp sin(a_-¢) = -jko sin(z) = -jke. (A.5.1)

Now the steepest descent path is determined such that the imaginary part

of the exponential for all points on the path is equal to the saddle .
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point value, i.e.
Im(-jk sin(a-¢)) = -(kr sin(u-¢)cosh(v)+ki cos(u=®)sinh(v)) = -k
or equivalently
1 - sin(u-¢)cosh(v) = (ki/kr)cos(u-¢)sinh(v). (A.5.2)

This expression may be reduced to an explicit formula for the steepest
descent path.
By manipulating (A.5.2) and using the quadratic formula, one arrives

at

tanh(v) = (~B+/BZ-AD )/a , for v < 0, (A.5.3)

where A = | + (kicos(u-¢)/kr)2,

B =Y sin(2(u-9))/2,
D = - cos’(u-0),
Y= ki/kr,

We observe here that as v * + ©, the asymptotic form for the original

expression 1is:
- tan(u=-¢) ~ (ki/kr)tanh(v) g (ki/kr)' (A.5.4)

Using the trigonometric identity tan(u-us+n/2) = -l/tan(u~us) where u
is the position of the saddle point (us = ¢+ 7/2), we arrive at the

following:

tan{u-u ) = 1/(k,./k ) + u-u = W/Z-tan-l(k /k ). (A.5.5)
s i r s i r




So as v + +» we see that u + us+(ﬂ/2-tan-l(ki/kr)). Similarly as v +» -,
u us-(W/Z-tan-l(ki/kr)). Using these values it can be seen that when
the saddle point lies at u = %7/2, the asymptotes of the steepest descent
path are the same as the asymptotes of the respective boundaries of the
top sheet (mappings of the hyperbolic branch cuts from the points
kx = k),

One final point of interest, which is important in the evaluation
of the steepest descent integral through the saddle point, is the value
of the slope of the path at the saddle point. If we consider points in

je

‘ the vicinity of the saddle point ( a = u t pe ), then the exponent of

the integrand of the field integral will be given by
(A.5.6)

g = -jk sina-¢) ¥ -jk +(jk/21)(ama ).,
= -3k =3k )+(3/2) (kc_=jk;)p?(cos(20)+] 5in(28))+. ..
= (-ki+(oz/2)(ki cos(28)-k_ sin(26)))

+j(=k_+(p?/2) (k. cos(28)+k;sin(26)))

f. Now since (Im(g))saddle = -kr , then we must require
point
(kr cos(26)+ki sin(20)) = 0, (A.5.7)
Hence:
(tan(ze))saddle = -(kr/ki) (A.5.8)
point

which is the slope of the steepest descent path at the saddle point.
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A.6 Path of Integration

The field integral involves an integration path which lies in the
Wiener-Hopf strip. The path will lie in a region bounded by the singu-
larity at kx =~k cos(8) which represents the incoming wave in the upper
half space. Therefore we can take this path to lie along the real kx
axis for 0 < 6 <m/2 using the aperture formulation. For T/2 < 8 < T, we
can take the path to lie on a line with the imaginary value of kx given
by T = Im(-kl cos(8)) and indented counterclockwise below the pole. For
this case we can use the expression

Im(-kl cos 8) = k. .cosf = Im(k sin &)

1i

= kr ¢cos u sinh v - ki sin u cosh v. (A.6.1)

However this is not convenient. The ma’n significance of this curve is
the following observation. If we consider the integration path to be the
real axis in the & plane for the sake of simplicity, then as the geometri-
cal optics pole moves to the right of the real k, mapping 8 >m/2), it
will only be crossed in the deformation of the original integration path
) when the steepest descent path is to the left of the geometrical optics
pole. This point is made visually in Figure A.l. Put another way, the
only possible singularity of the integrand which can lie between the true
integration path and the real kx axis mapping is the geometrical optics

pole.

A.7 Locus of the Geometrical Optics Pole

A singularity whose residue contributes to the far field and is of
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particular interest is the roor of (k sin a+ klcose)‘ where k is the wave
number of the observation medium, kqy is the wave number of the upper
medium and € is the angle of the incident plane wave (0 < 8 <7). This
contribution constitutes the so-called geometrical optics field. Clearly,
if k = ky (that is, the observation point is in the upper medium), then
o, = 8 - m/2 and the locus of the geometrical optics pole (GOP) in the
o plane is the real o axis between u = ~(7/2) and u = +(r/2)., If k = ky
(lower med?um wave number), then the locus of the GOP leaves the real o
axis, crossing it at a = 0.

To compute the locus of the GOP for k = kz, we expand the root o

in the O plane

kzsin(ar) = -klcos(e). (A.7.1)
Substitute kl = klr_Jkli’ k2 = kzr-Jk21 and 0 = u+jv and after some alge-
braic manipulations arrive at
+ k. .k

kyRop *kyikog
tan(u) = % -k X tanh(v) for klrkzi # klier' (A.7.2)

1r 21 1i2r

Note that if klr'k21 = kli°k2r’ then k1 lies on the line in the kx plane
which runs through both k, and the origin. In this case the GOP locus

along the line segments shown in

will run between - a(k ) and + a(k

1 1)
Figure A.2.

Clearly for a specific value 9 we can use the standard mapping for-

mula (A,1.2) to find the location of the GOP and it will lie on the curve
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%

-7 -/ 2 w/2

X 2

Figure A.2. Locus of the geometrical optics pole
when klr' k21 = kli. er'
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specified by (A.7.2). We note in passing that it is possible for (A.7.2)

to specify a curve which moves from a onto the lower sheet of the

-k
(-k))
plane and running to @ = - T rather than to @ = 0 as one might expect.
This corresponds to the situation in the kx plane where the locus of the

GOP (a straight line from -k, to +kl) crosses the 32 branch cut, In ef-

1
fect, a pole moving from kx = -kl to kx = 0 is seen to move onto the lower
sheet projection and simultaneously, the root from the lower sheet is seen
to emerge onto the upper sheet projection.

It is useful to establish the slope and curvature characteristics
of the GOP locus in the & plane (only the projection of the second quad-
rant of the ko plane is of interest). Before proceeding it is necessary
to consider a classification scheme for the second quadrant of the kx

plane (and its image in the & plane) which is based on the properties of

the mapping kx = kzsina. The following equivalences hold in all cases:

kx plane 0 plane
l. The straight line segment 1. The segment of the real
between k, = 0 and k, = -k;. axis between u = 0 and
u = =(T/2).
2. The extension of the above 2. The line segment for
line segment from k, = -k, u = =(T/2) and v < 0.

to %,




r———-

3., The straight line segment 3.
for (kx)r = ‘er and
(kg 2 ke

4, The extension of the line 4,

segment in 3 for (k,); < ko

5. The extension of the 5.
branch cut hyperbola
from kx = -k2 (asymptotic
to the negative real

k axis).
x

These images are shown in Figure A.3.

166

The SDP through

o= =(m/2).

The SAP through a = =(7/2)
(only the portion on the top

sheet is of interest).

The locus for v < 0
represented by the
mapping of the
imaginary kx axis

moved to intersect u = -(m/2).

As mentioned these particular

loci will always map as indicated. Now we classify the second quadrant
of the kx plane and its image in the o plane as shown in Figure A.4.
For the purposes of this discussion we will treat regions 2A and 2B as 2

combined domain, region 2.

First we form the derivative (dv/du) of the GOP locus equation

(A.7.2) as
dv . cosh?(v)
locus cos {u
where klrer + klikZi - ! ]
klrkZi - klier (_ kli) - (_ kZIJ
k k
1r 2r
el v gy wp—
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Ky PLANE Wi ///G)P/Lyﬁ / v//
» 3 -rr}ﬁosﬂcio?v/z //‘ K AxiS
Ne
O % 2 7
= LL4 7 o / Lo ‘ 4
z p ou

N
R

Region of no interest
(a) (b)
Figure A.3. Prominent lines in the kx plane and

their projections in the a plane.

et s —— e

a. Lines in the kx plane.

b. Curves in the a plane.
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(a) (b)

Figure A.4. Regions in the k_ plane and their projections in
the a plane.

a. Regions in the kx plane.

b. Regions in the & plane.
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Clearly < > Q if the line in the k, plane from -k,r to the origin lies
above the GOP lscus (that is, ('kl) in region 2); otherwise < < (.
Forming the second derivative,

2(l+k3)c:sh“(v) sin(u)cos(u)

<2cos” (u) K

duz}GOP
locus

2
{d J (A.7.4)

For & in region 1, € < 0 and -(7/2) < u < 0 so (dzv/duz).i 0. For o
in region 2, K > 0 so (d%v/du?) £ 0. For & in region 3 we see from
Figure A.4.a that the GOP line will cross the boundary between regions 1
and 3. Now since ay is in region 3, ¥ < 0; but for the region 1 portion
of the GOP locus, =(7/2) < u < 0 while for the region 3 portion of the

GOP locus, =7 < u < =(m/2), These results are collected in table A.l

for the GOP locus in the O plane and shown in Figure A.5.

For ab in %% %é%
Region 1 <0 >0
Region 2 >0 <0
Region 3 (ag Regl) <0 >0
Region 3 (a€ Regl) <0 ] <0

Table A. 1. Curvature characteristics
of the Locus of the Geometrical Optics
Pole.
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SDP —z
THROUGH -m/2

Ve

Examples of loci of the geometrical optics
pole in the a plane.

Figure A.5.
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A.8 Locus of the Connection from -kl to -k2

In Section 3.4, which deals with the factorization of the function
Gy, we saw that the branch cuts for 31 and 32 can be deformed along the
connection lines between the branch points and will cancel on the semi-
infinite portion of the cuts resulting in finite cuts between the branch
points. (See Figure 3.3). It is also demonstrated in Section 3.4 that
the function G2 (and hence G) will not have roots on the top sheet using
these finite branch cuts. It is important to the discussion in Appendix
C, which examines the exposure of these roots in the process of deforming
the 81 branch cut, that the locus of the connection between -kl and —k2
in the o plane be established.

In this section the formula for the connection locus from ~k; to -ky
in the @ plane is given for observation angles in the lower medium, k2'
A similar analysis can be performed when the observation angle lies in
ki. We start with the parametric description of the connection in the kg

plane:

ki = kj+ (k] -k, for t € 0,11, (a.8.1)

Substituting k= k, sin(®) into (A.8.1), the expression can be reduced

to the equality of the real and imaginary parts.

1 + cos(2u)cosh(2v) = =-(¢-2)¢t (A.8.2)

-sin(2u)sinh(2v) = -Vt (A.8.3)

where O = u+jv and 9, ¥ are given by

— e r———y et WS - e -
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*
. = j - = + 9 8.4
(e ky) = (ky ko + kg ko ) + 30k Koy = kyyky ) = a+3B (4.8.4)
2 (ke ko2
¢ 2_p2
1 2 |2 SB)) ) 38 gy (4.8.5)
u 4 in
o | gl |

After manipulations the quadratic formula can be applied to arrive at

sinh(2v) = ET%;? [s+tc v1-(c2-52) ] (A.8.6)

2

©

where ¢ = cos(2u) and s = sin(2u).

y

It is necessary to establish which sign is appropriate and in the proc-

ess the behavior of (A.8.6) must be examined. The result of this analy-

sis for the path between kxf -kl and -k, is

i ﬂ
sgn(z - Ju+z])
4 2 ,
sinh(2v) = TT.gt * ~7-az ¢ /1-(cZ-s?) (A.8.7)
20
for V('kl)
d either -1 <u<au
an 7Sus (_kl)
<y<-o
or u<_k y < us-3
1
where

¢ = cos(2u)

s = F%FZ) sin(2u)

¢,¥: Defined by (A.8.4) and (A.8.5).
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An exceptional case for (A.8.7) occurs 1f ¥V = 0, then s >~ ®, This will

occur if

k

kiekog = K1i%or

(A.8.8)

»
[N

11 | fat
1r  for

-

Hence when this case occurs, —kl and -kz lie on the same ray from the
origin in the ky plane. If k;,. < kyp, then we have that v = 0 on the
connection path in the & plane and the locus lies on the real O axis.

If ky, < kj, then the connection must lie on the line u = =(7/2), v < 0.

We now examine the slope and curvature characteristics of the
connection line in the @& plane using the same classification system as
in Section A.7. By forming the derivatives of the locus equation for
the connection line between -k; and -k, and manipulating the results, it

can be shown that the curvature of the locus is as given in table A.2.

du 4%y
For & in v av? :
Region 1 >0 >0
Region 2 <0 <0
Region 3 >0 <0

Table A. 2. Curvature Characteristics of Connection
from -kl to -kz.




-
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These results imply that if R (kx = —kl) is in region 1l or 2, then
the entire locus is in that region. It 1is possible for %, to be in
region 3 to have the locus cross the SDP boundary and its image appear
in region 1. This case is considered in more detail in Section C.4.

In concluding this section on the connection line between ~k; and
-k2 , it is interesting to note that in the kx plane the curve is actu-
ally a portion of a hyperbola which passes through kx = -kl and -k2 and
has asymptotes which are perpendicular. This is due to the fact that
the connection line lies on a straight line in the ki plane, This is a

property of the mapping ki and accounts for the fact that the hyperbolas

used to define the original branch cuts for 81 and 82 will map into

parallel straight lines in the k; plane.




APPENDIX B

ASYMPTOTIC FAR FIELD RESULTS

FOR THE INTERFACE PROBLEM

B.l Introduction

The purpose of this appendix is to present explicitly the asympto-

tic contributions to the far fields in the interface problem. The solu-
. tion in the transmitted region (y < 0) is derived in this appendix, Simi-
lar steps can be followed in the reflected region and the generalized re-
h sults are given in Chapter 4. Throughout this appendix we follow the ap-

proach of Felsen and Marcuvitz (1973a).

B.2 Asymptotic Far Field Constituents in the Transmission Region

The integral to be evaluated is shown below:

kzcosa jRZDSin(G-¢)
ez(x,y) ’EJ G (k.sina) (k. sina + k_ cos8) e do (B.2.1)
, & o 2 2 1
for y<0
. -jEO sin®
where £ = constant = E. = magnitude of incident field

Wn1G+(-klcose) 0

angle of propagation of incident
plane wave

observation angle (~m<¢<0)

factorizations
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p = radial distance from the edge of
the PEC screen, normalized

n,.k

1 1’k2 = normalized values

' = path of integration in the a plane

The singularities, which may be crossed (thereby contributing explicitly

to the asymptotic field), are as follows:

l. Geometrical optics pole due to the root of

(k2 sin o + k, cos 9).

1

2. A pole due to the root of G_ in the mapping of

¢ : the secoﬁd quadrant of the ky plane (or on the adja-
cent lower sheet),
3. Branch point of 81 = /E?—:EZ— in the mapping of
the second quadrant of the kx plane. Due to

G_(kzsin a).
Each of these countributors is considered below.

B.3 Steepest Descent Integral

After having deformed the integration path of the radiation inte-
gral (B.2.1) to the steepest descent path through the saddle point,
QS = ¢ + T/2, one is in the position to evaluate an asymptotic approxima-
tion to the saddle point integral.

The first two terms of the asymptotic expression for the steepest

descent integral are known to be (Felsen and Marcuvitz (1973a))
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;’ |
2
) N / TtV e Fa)  d'Gy) |
z’saddle d - k2 b Dok 3/2 4 dg?
point e J 2 P &
for $ <0, -jk,p
where e 72 (B.3.1)
£ k, cos a
£ (@) = 2 , (B.3.2)

G_(k2 sin a) (k2 sin o + k, cos B8)

1
A, = m/2 o+ 9 and p is the normalized distance from the edge of the

PEC half-plane (P = 2T distance in wavelengths in free space). As long

as ¢ is not in the meighborhocod of ¢ = 0° or ~180°, the lead term in the :

series will dominate for observation distances greater than a wavelength |

in free space from the edge of the PEC half-plane. As the observation

point approaches the interface between the media, however, the {(cosx)

factor in (B.3.2) causes the lead term in (B.3.1) to vanish and the

second term dominates the expansion. In principle this evaluation can

be performed but this avenue of work has not been pursued since the ex-

pressions are tedious and of little practical value. Instead, the fol-

lowing observations are made concerning the significance of the second
term in the asymptotic expansion.

For observation radii exceeding one wavelength in free space, the
lead term dominates the first part of the second term in (B.3.1). It is
appropriate, therefore, to compare the behavior of the lead term with
the second part of the second term in (B.3.1). For ¢ ~ - 180°, the

second derivative of f(as) behaves as
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- Z‘Ul'i'kz

2
uz'Bl'(kzsin as)-G_(kzsin as)'(kzsin ag + k

sin g (B.3.3)

! " N
' £ (as) ™ jc0s 9)

If the modulus of the ratic of the lead term to the second term in
(B.3.1) is evaluated in the vicinity of &, = - T/2 (that is, for

¢ = - 180°) using (B.3.3), we see that

|
!
|

v o uz-Bl(k2 sin as)

first term uf (B.3.1) =R
tan as-sin as M

second term of (B.3.1)|

1

(B.3.4)
As long as the contrast of the two media is substantial, we see that an

estimate of the relative significance of the two terms is given by

R ~ £ tan ¢ (B.3.5)

cos ¢

We observe that if p is taken as one wavelength in free space, then R = 1
for ¢ = 171° and if p is taken as five wavelengths, then R = 1 for

o = 178°.

In effect, we assert that the "propagation field" (which behaves
as Q-%) dominates the saddle point field contribution except in the vici-
nity of the interface plane where a lateral wave type of field exists and
preserves the pha¢e and amplitude propagation behavior of the total field
across the interface aperture. The lead term in (B.3.1) is given by

(4.1.8) when generalized to observation points in either medium,

B.4 Geometrical Optics Pole

This pole occurs at agc such that k, sina_ + k. cos6 = 0,

2 go 1
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Since the integration path [ runs from v = == to v = + x(where x = u+jv),
we see that the pole of the integrand at lgo will be encircled either
positively or negatively when crossed depending on whether the geometrical
optics pole lies to the left or right of the path of integration. All

that remains is to evaluate the residue of the pole,

-jkzosin(a-¢)
(Ek.cosa e )
Residue(a ) = [(o=a ) 2
go go G_(kzsinx)(kzsimu + klcose)
oLy,
go

2 -jkzosin(a~¢)
(e2)8° = j27 Res(ago) = G_(-klcose) e (B.4.1) ;
¥

2E_sind -jk,psin(a__=~9)
g 2 go (B.4.2)

(e ), = = e
z’go nlc_( klcose)

B.5 Root of Gz(kzsin a)

It is noted in Section 3.4 that G (&) = G_(-a), G(a) =G _(a)*G_(a)
and that G, and G_ each have a single root which must be located at the
same position as the roots of G. It was shown that G does not have
roots on the top sheet of the analytic continuation of G2 which has the

finite branch cuts coanecting the branch points, (Here we refer to the
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partition Gy of G given in (3.4.2)). However when the branch cut for

31 is deformed in the process of evaluating the asymptotic contribution
for the branch cut integral, this root may be brought up to the top sheet
and be crossed as the integration path deforms to the SDP, In that case
this pole contribution must be included and is discussed in this section.
The question of when the root is exposed and crossed is discussed in Ap-

pendix C. The residue at the root of G_ is given as

-jkszin (O-"¢)

£ kzcosa e
Resid =
esidue (ar) (a~ar) G_(kzsina)(kzsina + klcose)
=0,
T
-jkzpsin(a =)
£ k,cosa e r (a-a )
= - Lim |setee
kzsinar + klcose a*ar G_(k251na)
(a-o:r)
=y * Lim :
=g G_fk251na)
T
(a~ar)
=y ¢ G (k,sina_) Lim |~op————mtv
+ 2 r o Lq(kzsina)

Y ‘G+(kzsinar)

L
G (kzsinar)(kzcosar)

Now we observe
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-
. 3 | 1l
- __1+_2_=_k\,13 +_1_3_ ) (B.5.2)
dk Wy Yy x|M3y W7o
J L
However at @ = Q. G(%.) = 0 implies
B - - = . (B.5-3)
By (8241)/u2 at o=
Substituting this into (B.5.2) yields
1 1
G'(k,sina ) = {-k - — +
2 r x ) { BZUIJ UZBZ
oy k_=k,sina
x 2 r
2 2
Hy, = U
= |2 Lltana (B.5.4)
u2u £
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B.6 Branch Cut of Bl for kx = -kl

The last singularity contriburor that we need to evaluate is the
branch cut integral due to the presence of G_(kx) in the integrand of
(B.2.1). As we deform from the integration path T to the SDP, there
will be a critical angle ¢cr such that the SDP will cross the branch

point ¢y for all ¢ such that l¢[.i Lo In order to deal with the

crl'
contribution of the branch point in a systematic manner which will be

amenable to asymptotic evaluation, we choose to follow an approach which

is analogous to conventional steepest descent analysis.
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The essential point in steepest descent analysis is to deform the
integration contour to lie along a path of constant phase in the expo-
nential factor. As a result, we are guaranteed that the magnitude of the
exponential factor will change most rapidly along such a path. Because
this path is chosen to pass through the saddle point of the exponential,
there are, in fact, four possible paths along which we may proceed. Two
of the paths are colinear at the saddle point and are referred to as the
steepest descent path (SDP) while the remaining two colinear paths make
up the steepest ascent path (SAP), However if we choose some other
point in the complex plane and examine the contours of constant phase of
the exponential, we find that there is only one set of colinear paths
from the chosen point (see Figure B.l1). One direction will follow a
path which is asymptotic to the SDP while the other direction will cause
one to move on a path which is asymptotic to the SAP.

Consider the following procedure. We specify a given observation
angle ¢ such that |¢] Z_]@Cr] and therefore the integration path must cap-

ture the branch point which characterizes = -kl as it deforms to the

Y

SDP. We deform the branch cut for Bl to the steepest descent path through
ay (SDPb) which is the portion of the constant phase contour that is asymp-
totic to the SDP, Then we deform the integration path to the SDP. In

the process of this deformation we must enclose the entire Bl branch cut
and the integration paths for this branch cut integral will lie along the
steepest descent path from Xy The specifics of this deformation are con-~
sidered in Appendix C. For our purposes here, we assume that such a de-
formation has occurred and the branch cut for 81 lies along the SDPb from

. We are now interested in evaluating the branch cut integral and fol-

2

b
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loci for an arbitrary point o -

Figure B.1l.
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low the analysis discussed in Section 4.8 in Felsen and Marcuvitz (1973a).

We want to characterize the portion of the integrand in (B.2.1) exclusive

of the exponential in the vicinity of %y Hence,

£ kzcosa

£(@) =g G;etm0)  (ko1na + k;cos0)

E'kz-cosa-G+(kzsina) 1
- kzsina + klcose G(kzsina)
™ U(G)
kfma I-HSma
u + vk, +k_sina
2 “1 1 72
k.cosa JE-TTEEETEE
) ey 4 ||
2 M2_12.402 U M
Ezcosoj ) k] -k3sin® (@) 2 1
u 2
2 ¥y
\ J
(B.6.1)

For & near ab’ we have

£ u,G, (<k,) - £ V7 u? 6 (-k,)
[:ZJI- 1]...[- 2 "+ 1 VWe

k, (cosf~1)
1 _— PV
l_ My BT) (cost-1) (8.6.2)

(£(a)]

=
near
o
b

where 6 refers to the analytic continuation of the original branch

v
of Vﬁlsz sin® in the vicinity of Gb(discussed below). VFP is the

principal value with the branch cut along the negative real axis.
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Before proceeding we need to clarify the meaning of VE_:_E;.B. To
do this we begin with JE;E:;—;I;—E. The original specification of this
function is given in Section 2.2 ( specifically (2.2.2) and Figure 2.3).
We see there that the quantity ( kytk ) = kx-(-kl) can be considered
as a vector from (~k;) to k,. If this is done then the following

equations hold for the branch definition:

je/s2

‘If (ky+ k) = lk1+ kxleje , then J(kl+ k) = ]kl+ kx];i e (B.6.3)

It is shown in Section C.3 that the SDPb branch cut for Bl never crosses
the @ plane locus of the straight line from kx = -kl to kx = 0 in the kx
plane (locus of the geometrical optics pole). Hence the function /EI:E;e
will retain its original value from the hyperbolic branch cut definition
for all points on this line. If we examine points on this line (referred
to as ag) in the o plane near o, we find that
(-kz)t = (1<l+k2
~ <~k + Bz(kl)'(ag-ab)

sin a ) for te[0,1]
8 (B.6.4)

8,0k ]e (o))~ (1=t

We have:

Arg Bz(k1) + Arg (ag-ab) = Arg kl
and

Ars(VElxﬁx ) =Y Arg k,-.arg( /32(k1)°(a8-ab)]
Hence

Arg[/sztkl)-(ag-ab)el =35 Arg B,(k;) + % Arg (o ~0q) = ¥ Arg Ky




e g

So

Arg(ag-ab) = 68 = Arg kl - Arg Bz(kl)

and

18g/2
=) = B -lmg-oab[*5 e

/Bz(k1)°(a8

e 9 .
Having specified values on the branch of /" near Gb, we can analytical-
ly continue them. So,

/Bz(kl)'(a-ab)“ = /B, (ky)

Jerz.

a,—a,bl;2 (B.6.6)
where O is near %, and O assumes a value by rotation from eg' Consider, -

in particular, the ray from abalong the SDPb which results from the coun-

terclockwise rotation from 68 and call the angle 9+. Then

f@) =y + m/?E:E;$e : (B.6.7)

: 6 8,/2
where Y and M are given in (B.6.2) and YO _ - Q  ~ = |G+ - Gblk ej o
with 08 <6, < 98+2ﬂ and O_ is the angle of the SDP, from op. Turning to
the analysis of Felsen and Marcuvitz, we see that the branch cut contri-
bution for a branch integral, which has the integration path running coun-

terclockwise around the branch point, is given by

T _exp(y36+/2)  IKpPSin(e,0)
Ikzpcos(ab-¢)|3/2

(B.6.8)

Ib..

Generalizing the result for the reflection half space gives (4.1.16).
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APPENDIX C

DEFORMATION OF

THE Bl BRANCH CUT

C.l Introduction

The case to be considered in this appendix is that of the interface
problem where the field integral is to be evaluated in the transmitted
region, i.e. the same case as that in Appendix B (specifically(B.2.1)).
As discussed in Section B.6, it 1s useful to deform the branch cut of Bl
from k = -k; arising in the factor G_(k,sin a) in (B.2.1). 1In partic-
ular, we deform to the steepest descent path (SDPb) from the point o
where -kl- kzsinab. Section C.,2 examines the constant phase contours
specifying SDP, for a given saddle point location (as) and develops the
relevant equations. In Section C.3, we examine the effect of the deform-
ing branch cut integral on the various singularity contributors. Final-

ly, in Section C.4 we consider the exposure of the root of G_(kzsina).
C.2 Constant Phase Contours

The steepest descent path (and steepest ascent path) from the saddle
point ag is actually a path in the 0 plane along which the phase of the

exponential in (B.2.1) is constant, Therefore

Im[-jkz sin(a-¢)] = Im[-jkzcos(a-as)] . (c.2.1)
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where & = u +j v, k2 = kzr-j kZi; kzr, kZi _?_ 0.
So the phase is given by

Y= RZisin(u-us)sinh(v)-RZrcos(u-us)cosh(v).

Along the SDP (with respect to as)’ Y = -er. It is clear from the
discussion in Section 4.1.3 (ana Figure 4.4), that if @, = 0, then the
region between the two shifted mappings of the imaginary kx axis (the
zero phase lines) will have Y < 0. It is useful to consider the
contours of constant phase which lie to the right ;f fhe SDP ( and hence
characterize points which will be crossed by the SDP for -m < ¢ < -m/2),

2
less vertically and lie between the SDP/SAP and the right zero phase

See Figure C.1. Obecerve that for -k r <y £ 0, the contours run more or

line. For Y < -k2r the contours curve downward and lie between the SDP
and SAP. We observe another point: namely it is clear that the portion
of the contour which is asymptotic to the SDP is the SDP, from the point
%, Hence if v > -k, the SDP, runs up and to v = +* while if Y < “kyos
the SDPb curves to the left and down to v = = ®, Therefore as the
saddle point moves to -T/2, the SDP, deforms continuously as shown in
Figure C.2. We notice in particular that when % lies on the SAP, the
SDPb may be taken as running to either v = - ® or v = + ©, We can view
the phase contour plot of Figure C.l1 as fixed to ag and visualize a, as
moving to the right on the phase plot as ag moves from 0 to -T/2,

We have seen in the above discussion that the SDPb alters radically

as a_ moves to -T/2. However, note that the SDP will always lie to the

left of the SDP through Og which passes through Ay This can be seen by




asu+jv
y=phase

Steepest descent
path

=-|10

7=-20 ,

Figure C.1. Contours of constant phase in the a plane
about the saddle point location.
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observing that if the derivative (dv/du) is formed from (C.2.1), then in

all cases the SDPy will have a tangent from Qy which moves into the
region to the left of the SDP through ab.and remains in that region.
Also we know that the SDP, is bounded on the left by the SDP through Qge
So for any o and o we have a band between the two SDP loci in which a

- root of G_(kzsina) may be exposed (and obviously crossed by the SDP

; through as). Viewed the other way if the root of G_ lies outside this
band then it cannot lie on the top sheet and be crossed by the SDP so it
can be ignored. To use this information it is helpful to know the value

of as(referred to as asb) such that the SDP runs through @ To deter-

bo

{ mine this we set Y = =k_. and ¢ = a in (C.2.1) and solve for @ .. The
: 2r b sb

result is

1

[k
A%+B2

<
cos(usb) = A:/BZ(A2+Bz-k7Z_r)] for v>0 . (C.2.2)

2r

where o= u+jv,

i A= Re[Bz(ab)] - kzrcos(ub)cosh(vb) - kZisin(ub)sinh(vb)
B = Re[kx(ab)] - ersin(ub)cosh(vb) + kZicos(ub)sinh(vb)

m
and - i<usb<0.

Now consider an arbitrary point Gb(which must lie in the second

e A m—

quadrant of the k, plane) and an arbitrary saddle point as(between -%/2

. and 0). We wish to derive an explicit equation for points on the SDP, .

; To begin we solve (C.2.1) for @, Then we invert (C.2.1) for to arrive

— e b e cmmt——
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at the following expressions:

If£Y _>_ ‘kzr:
sin(u-u ) = -B +A/AZ+BZ-1| for (u-u ) >0, all v,(C.2.3)
-} 2 2 S
A+B
where
k2rcosh(v)
a=u+jvand A= s
1)
kZisinh(v)
B -
lyl
1 'TT JATTBZ=AZ4T
sinh(v) = [B-sgnfi - u+u_) YAZ(BZ-A7+1)]
A%+B2 s
for -61 < (u—us) < 61, v<0, (C.2.4)
where k2r°cos(u)
A=s———— (C.2.4.a)
vl
k,,*sin(u)
B2 (C.2.4.b)
Iyl
k
8, = tan "t _k2_r (C.2.4.c)
21

Note that in the limit of Y = -k,,» these equations describe points on
the SDP and SAP which define the bounds of their respective regions
>
(v < -er)‘ However we recognize the following limitations for the appli-

cation of (C.2.3) and (C.2.4) when Y = ~ky.t

(C.2.3) gives u as a function of v for: a. SDP for v > 0
b. SAP for v < 0
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(C.2.4) gives v as a function of u for: a. SAP for-u > u
s
b. SDP for u < ug .
These results can easily be extended by recognizing that the SDP and SAP

are symmetric with respect to the saddle point Q.
C.3 Effect of Deformation on the Contributing Singularities

As discussed in Section B.6, it is desirable to deform the Bl branch
cut from k = -k, whichAarises from G_(kx) in the denominator of the
field integral, to lie along the SDPb in preparation for the deformation
of the path of integration to the SDP through the saddle point. This
permits a formulation of the branch cut contribution which is amenable
to asymptotic analysis. As is recognized in Sections B.5 and B.6, this
deformation of the Bl branch cut has two effects on the integrand
resulting from the fact that the steepest descent analysis is performed
on an analytic continuation of the integrand. First, the question
arises concerning value of Bl( that is, + or - the original hyperbolic
definition of Bl). Since we only evaluate the integrand at the positions
of the singularities in the complex O plane, the question reduces to
determining if the specific singularity is crossed in the process of
deforming the Bl branch cut. The second issue arising from the deforma-
tion is the determination of whether a root of G_ is brought onto the
top sheet of the integrand (and is crossed by the integration path as we
move to the SDP of integration). This question is rather involved and

is considered in Section C.4.

We begin by recalling the field integral to be evaluated
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e 1 3 (Byy-k _x)
L= [ G (k_)e(k +klc056) e dk

—~tjc - X x
T s 3(B,y-k_x)

- J G(k_) * (k_+k_ cos8) © dk for y<0, (C.3.1)

X x 1
—ﬁﬁ-jc

We note that the second form displays explici + the Bl and 82 branch

cuts in the second quadrant of the kx plane t +« _h the function G(kx).

The branch cut for Sl affects only the portion of the integrand outside

of the exponential, hence deformation of the Bl branch cut does not

affect convergence of (C,3.1). In the second form given in (C.3.1) the

value of G+ﬂkx) is unaffected by the deformation of the branch cut from

k™ -k, and can be evaluated using the factorization integral without N
alteration.

We utilize the classification scheme of the & plane given in
Section A.7 and add a level of refinement. We now break region 2 into
2A and 2B as shown in Figure A.4.

Having stated this classification, we begin by considering the
saddle point contribution. Consider ay in regiom I, It is clear from
the phase contour plots (Figure C.l) that the SDP, will have v 2 0.
However it is also clear from Figure A.4.a that the original hyperbolic
branch cut for & in region 1 will lie in region 1 and not cross the

connection from -k, to the origin., Therefore we have demonstrated that
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if the branch point oy is in region 1 then the deforming branch cut 31

will not cross the real o axis and so the saddle point contribution will

use the original Bl definition. Now consider ay in region 3. Similar

arguments to those for o, in region 1 apply and the conclusion is that,

b

again, for a, in region 3 the original value of 81 is correct for the

b

saddle point contribution.
We now consider a in region 2 and must consider regions 2A and 2B

separately. Consider first o, in region 2B. When we examine Figure

b

A.4.a, it is clear that the original hyperbola will cross the ray from

the origin through -k, at some point beyond -k Therefore in the o

1 2°
plane it must cross the line u = =(T/2) for some point v < 0 and curve
down into region 3. At this point we consider the SDPb for ab in region
2B, Referring back to Section C.2, if we consider the derivative

(dv/du) of (C.2.1) and set it to zero, we have

F, _tan(u-u ) + k., tanh(v
Ggg S - s 21 ) =0 (c.3.2a)
du const kzrtanh(v) - kZitan(u-us)
phase
contour
which gives
kzrtan(u-us) = -RZitanh(v) (C.3.2b)

We note that this equation is identical to (A.2.2) with the exception
that the intersection with the real o axis occurs &t u = ug . Hence the
locus of zero tangent lines to the constant phase contours lies on the

image of the imaginary kx axis mapping shifted to u = ug and when

ug = -(m/2) this locus can be shown to map back into the kx plane as the
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extension of the hyperbolic branch cut through -k, which is asymptotic

2
to the negative real kx axis. This implies that the boundary between
regions 2A and 2B in the o plane (which is the extension of the hyper-
bola going through -k, in the k plane) is the locus of zero slope for
all the phase contours with vy < “k,. and ug = -(m/2). Hence we are guar-
anteed that the SDPb will go into region 3 and that in the course of de-
forming to it we will not cross the saddle point. So for abin region 2B
we also have that the original Bl definition is correct.

Finally we must consider ay

We note that the original hyperbolic branch cut will now cross the

in region 2A, a more difficult case.

saddle point locus (Figure A.4.a) in all cases. Specifically we will

assume that the original hyperbola crosses the real o axis at ¢ = u
g 1 yP P

where =(1/2) < u < 0. Consider the behavior of the SDPb as u_ moves

from u = 0 to u = -(1/2). We recognize that given & there is a unique

b

value u = usbspecified by (C.2.2) for the saddle point at which the SDP

through the saddle point u ., crosses the branch point QO It is clear

sb b’
that for ug > max(ucr,usb), the saddle point moves on the original top
sheet of Bl‘ Now, if u® u, the SDP, must lie on the SDP through u
and run to v = -o», For simplicity, we will deform the Bl cut to this lo-
cus initially, recognizing that in the process all values of u < u, on
the real o axis enforce the lower sheet value of the original hyperbolic
definition of B+ Now as u_ proceeds from u = 0 to u = -(x/2), it will
run into either u__or u . If it encounters u ., first there is no ef-
cr sb sb

fect on 31 since the SDP_ must curve below the real o axis until the SAP

b

crosses o. Therefore only top sheet values of 81 will be achieved until
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ug reaches either u __ or the value of ug at which the SAP crosses Oy

cr
referred to as Ysap® Assume that usap <U.p then for Usap <ug <uLn,
the lower sheet value of Bl is correct. Since for all ug < usap the SDPb

must lie to the right of the saddle point, we must use the top sheet value
of as the deformation from the original Bl branch cut to the SDPb will not
cross the saddle point. Therefore for the case where usap < u.. » we have

the following:

[+(8,)

s U <u

orig cr — s
Bl = J_(Bi)orig s> Ugap < us<ucr where - %i u < 0 (c.3.3)
L+(Bl)orig » Yy < Ysap
Now we assert that U sap <u., for all cases. This can be seen from

a somewhat heuristic argument based on Figure A.3. Clearly the possible
exceptional points must occur in the triangle in Figure A.3.a bounded by
the lines 1, 4 and the real k’{axis, since branch points outside this

region (but in region 2A) will not have u ap > -(7m/2). But observe that

s
the SAP in A.3.b maintains a constant acute angle from the saddle point
with respect to line 1. Since the mapping (er kosin o is conformal
except at g = -(n/2), this angle is maintained in the kx plane with
respect to line 1, However the By hyperbola clearly has a tangent line

at the intersection with line 1 which maintains a greater angle (usually

obtuse) with respect to line 1. This angle must be maintained in the «

plane. But both the original By hyperbola and the SDP, must originate
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at Oq» SO clearly usap < Ul
Summarizing the results for the value of Bl to be used for the
saddle point contribution, when the effect of the deformation of the Bl

branch cut to the SDPb is included, we have:

For ap in regions 1,2B and 3: Use Bl = +(Bl)original'

(C.3.4)
For oy in region 2A: Use Bl= (c.3.3).

Now we consider the effect of the Bl deformation on the geometrical
optics pole (GOP). We recognize that the locus of the pole is a straight

line in the kx plane connecting -k, with the origin. Consider the case

1
where O is in region 1, Examining Figure A.4.a, we see that the
hyperbolic branch cut and the GOP locus intersect only at the branch

point, -k Considering Section A.7 and examining Figure A.5 (which de-

1'
picts the curvature of the locus of the geometrical optics pole in the

o plane), we see that the same will be true for the SDPb » which must run
up from oy to v = 4o, Therefore the GOP locus will not be crossed during

the deformation of the Bl branch cut to the SDP, when oo is in region 1

b
and hence the original top sheet definition of Bl is correct. A similar
analysis is seen to apply for o in region 2. Finally we consider O in
region 3. As mentioned above all GOP locus lines will cross the boundary
line between regions 1 and 3. Also we know that for ab in region 3 the
deformed SDPb cut must stay in region 3. Regarding the original hyper-

bolic branch cut for Bl’ we see from Figure A.4.a that it does not cross

the GOP locus and in deforming to the SDPb(which lies totally in region
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3) that it will not cross the locus. Therefore for oty in region 3, the
original top sheet value of is correct., Collecting these results for the
GOP contribution, we see that the original value for 81 will always apply.
Having established these rules for choosing the value of Bl when
evaluating the asymptotic contribution of each singularity, we see that
they are amenable to implimentation during numerical evaluation of the

far fields in a problem.

C.4 Effect of the B, Branch Cut Deformation on the Root of G_(kx)

1

We begin by determining under what situations the root of G_(kk),
is exposed in the deformation of the Bl branch cut to the SDP.b and is
crossed by the deformation of the integration path to the SDP through
the saddle point. We utilize the same division of the @ plane as pre-

sented in Section A.7 (that is, into regions 1,2 and 3). In addition !

we need the following terminology:

o = u+jv

a, = ub+jvb is the branch point in the & plane such that
-k'l- kzsimbo
{ i - <y <
a_ or u is the value of the saddle point (~(7/2)< u < 0).

a +jv

o ™ Ug*ivgy is the root of G_(k ).

@, oru is the value of the saddle point such that the SDP
s intersects Qe

a . or u . is the value of the saddle point such that the SDP

s0 ifitersects ao.

refers to points on the connecting line between

a u +j
conn conn

v
conn

kx = -kl and -kz (discussed in Section A.8).
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Y(a,us) refers to the value of the phase function (C.2.1)

We recognize that the branch cut for 62 in the second quadrant of
the kx plane exists in both the exponential factor of the integrand of
the field integral and in the denominator factor G_(kx), vhile the B8,
branch cut exists only in G_(kx). Therefore we can view the Bl branch
cut as deforming from the original hyperbolic locus to overlay the hyper-
bola as depicted in Figure C.3.a. In the ¢ plane the configuration will
appear as in Figure C.3.b (shown for o, in region 3). We will take this
as our initial 61 branch cut configuration since we are guaranteed by the
analysis of Section 3.4 that no roots of G_ will occur on the top sheet.

For all values of the saddle point such that u < ugs there will be no

sb

roots crossed in deforming to the SDP. We know that the root of G_ lies

somewhere in the region Re(kx)_z 0 and the point at issue is whether it

is exposed on the top sheet and crossed in deforming the integration path.

We also know that for a root to be crossed by the integration path,

-(m/2) < ug < u_n.
Consider oy in region 1. When ug < Ugps then the SDPb must run up

to v = + ®», Since the initial branch cut for Bl also runs to v = + »

along the SDP through a = =-(w/2), it is clear that any root % with

Vo < 0 will never be brought to the top sheet and can therefore be ig-

nored., We assume now that Vo > 0. We now observe that the root %y must

lie to the left of the SDP through %ep and Qe Since all SDPb contours

lie to the left of this boundary line, any root which may be exposed in

the branch cut deformation must lie to the left of this curve. Hence we
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have ‘that usO<usb in order for aoto be exposed at all. The one excep-

tion to this is if the connection line from -kl to -k2 of the initial,
root-free top sheet configuration is indented below the SDP through %op
and the root a lies in this indention. (Note that the connection line
has positive curvature and positive slope). If this is the case then

for all u <u the root will be both exposed and crossed by the SDP

s0
through ug See Figure C.4, This is due to the fact that for u < u_g
the branch cut for Bl which initially coincides with the connection line
must deform to coincide with the SDP (which goes through ao). Further
movement of ug toward u = -(7/2) will force the branch cut to expose the
root which is clearly crossed by the integration path deforming to the
deforms up

SDP through u_since u_ < u Once u < u ., the SDP
s =} s sb

s0’ b
toward v = +» and the root will continue to be exposed as us progresses
to -(n/2).

Continuing the analysis for ay in region 1, we consider that
ugg < ugp, $o that the root may be exposed. If a5 lies to the left of
the curve defined by the connection from -k; to -k, and the SDP, running
from o, to v = + ©(See Figure C.5), then the root has been exposed on
the top sheet (and crossed by the integration path since ug < ugq).
Otherwise the root is not exposed and does not comtribute.

Consider o in region 2. We again note that unless ugg < ugy the
root cannot be exposed and there is no exception this time as the

connection line has positive curvature and negative slope. See Figure

C.6. Now for in region 2 it is possible for the SDP, to go to -
% g b

v = t+ = depending on whether Yy = Y(ab), the phase function for the phase
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AV

|_REGION OF EXPOSED
| _="[ AND SWEPT ROOTS

CONNECTION
LINE —__

oY

SOP
<=|" THROUGH
Ugh AND ab

Figure C.4. Possible region of exposed roots of G_
in the a plane.
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AV
NmAL g 17} =] bEFORMED 8,

BRANCH CUT" ~BRANCH CUT

SDP_ < | SOPy
R Lo
TH O-P?_,'j REGION OF
=5 - EXPOSED ROOTS
Ap

W= u

...7.7. \ —

2 CONNECTION
LINE

Figure C.5. Possible region of exposed roots of G_
in the & plane.
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CONNECTION
LINE / I\,
-77’/2 / u
| INITIAL 3] Al
;' BRANCH CUT
. N—
- REGION OF ap
- EXPOSED
ROOTS SDP
THROUGH
SDP 2p
; THROUGH
a=-m/2 Y/SDP
9 N i
] DEFORMED B,
' BRANCH CUT
Figure C.6. Possible region of exposed roots of G_

in the a plane.
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contour through o, is 2 =kg.. Assume first that vy, < -ky, so that the
SDPb curves down to v = -, Clearly if vy > 0, then the root is never
exposed. Assume v, < 0. Then a possible situation is shown in Figure
c.7. 1If a5 lies between the curves defined by the lower leg of the SDP
through @ = -(7/2), the connection line from -(T/2) to ay and the SDPb,

then o is exposed (and crossed since ug < ugp)

Consider the same situation as that discussed in the paragraph
above but with ko, < Yp <0, so that the SDPy runs up to v = +% Then
we may encounter into the situation shown in Figure C.8. As for the
case when Yy, < -kzr, we find that if %4 lies between the upper leg of
the SDP through a = -(7/2), the connection line and the SDP, , then Q,
is exposed.

Finally we consider a in region 3. We saw in Section A.8 that the
slope and curvature of the connection line was given by Table A.2. If
we consider sets of these curves we arrive at Figure C.9. We observe,
in particular, that it is possible for a, to lie in region 3 and have
its connection line appear in region 1. This is of particular signif-
icance since the SDP, loci must lie completely in region 3. Therefore

if a root appears in region 1 between the connection line and the SDP

through =(7/2), it is exposed and crossed for ug < ugy. Otherwise, if

v<)2p, the root is never exposed. Now assume that the root has v, < 0.
Assuming that ug < ugy, %0 that the branch cut has deformed from the

initial position to the SDPb and exposed a portion of the lower sheet of
G_, then any root in the region bounded by the lower portion of the SDP

through -(7/2), the connection between -(T/2) and Qb, and the SDPb will
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SDP THROUGH
a=-m/2 L

DEFORMED B,

INITIAL 3 —_
BRANCH ‘CUT| Za/ SRANCH CUT

REGIONS OF
EXPOSED ROOTS

/‘/ {
-m/2

N,

SDPb

>

Figure C.8. Possible region of exposed roots of G_
in the a plane.




209

SDP THROUGH
Q=-m/2

'\
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' \ LINE FROM Qp TO -7/2

/
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POSSIBLE

l
l~e,CONNECTION LINES
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e
|

Figure C.9. Loci of connection lines from -kl to -kz
in the o plane.
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be exposed and crossed (since ug < uso).

We can summarize the results of this analysis in a manner amenable

to implementation on a computer. We accept the following definitions:

ug is the given saddle point value

u is the saddle noint value for which the SDP runms through GD’ the
root of interest.

(ub,vb): & = u +jv,, o is the branch point for k = -k, .
(uo,vo): ub = ug*ivy, aO is the root of interest.

U is the saddle point value for the SDP running through Q.

; Yy is the value of the phase function for ab and ug-

+jv

,

3

P’ SDP through u = -‘% i for u, < -

N

Vsp 0

T .
s value on connection curve; for - E< uo< ub Lo

(- %) to a

[1€ w > - (1/2)] = {¥conn

Vapp® SDP through Qs for w Ly,

\

& vcon(uO)E J
' p» SDP through u = - %; for - T<u

Vsp 2 <%

; for u.b<u0<-12r-

[1f W <= (m/2)] = {Veonn’

p> SDP through o ; for uy vy

Vsp

Y




e -

i
3
.
.
w
¢

’

uSDPb , on SDP, ; for vb < vo
ugpp. (Vo) 2
b
U fixed; for v0<vb
’VSDP’ SDP through o ; u, < Yg
m
_ . .z <
Vspp, (ug) = Vspe,* " SDP,; for [usb 2] Yo%
< I
—o ; for Y, LIRS )
\
im - -
v(:on(uo) = ‘vc (=m uO)
Veon(¥p) 3 for wy 2y
Veest (“0) : l
tvsm,b s On SDPb ;s for u0<“b
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We enumerate the following inequalities which will be use in the

logical constructions of the flowchart derived from the earlier

analysis:
T im
a. 2 <Y 8 V9”Veon B V9> Veon
b. ug < U0 h. Yy < uSDPb n. u_ < qu
. > . .
c. v 2 0 i Yy > er o. v, > Viest
3 d < -1 3 v <v_<
'i e " Yeon " Yo " VsDR
s )
" “ . > .
o e Yo 2 0 k VSDPb “V0“Veon
* > .
£ us() Z Ysp 1 Yo > uSDPb

We can then organize the logic of this section into the flowchart
shown in Figure C.10. The question concerning the value of Bl to be
used in the residue contribution of the root of G_ does not arise

because the form of the contribution (Section B.5) implicitly includes

| the correct value of Bl due to (B.5.3).
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APPENDIX D
BEHAVIOR OF THE GREEN'S FUNCTION IN THE SLAB PROBLEM

In this appendix the behavior of the Green's function for the slab
problem is considered when the media are lossless, have the same permea-
bility ué and the‘slab has a greater permittivity than the surrounding
wedium (€ > €. The Green's function is given in (5.2.6) and we
consider here the functional form, F(k;), given in (5.2.7). 1In normal-

ized coordinates, we have

,

-jBét' jBét'
(8]-83)e - (B]+B))e
Fleg) =126, S0y T8 @1

' ] 2 1 1\ 2
(B]-85)%e - (Bj#+By)%e

185" + Byt'cot(Byt")

F(k;) - 2Bit' 1,132 taty2 tot [ tet
10(BJE? + (Bye")?] + 2(Bie") (Bt ot (Bye")

)

(D.2)

The slab is taken to have thickness t' (expressed in normalized coordi-
nates, t = t"ko). Also the normalized permeability is equal te 1, so
ki = el' Only the roots and poles of the expression in brackets need be
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discussed in detail, so the factor 31 will be ignored. We follow the
analysis of Barone (1956) and give the results for our formulation in
the present notation.

Consider the vroots of the numerator of (D.2),

- D.3
jBlt + th cotht 0o . (D.3)
Letting Blt = yw = y+jv and SZL = 7 = x+jy, then (D.3) becomes
w = jzcotz (D.4)
We recognize that
2,2 o (12-12V42 = - 2 o a2 .
z¢=w (k2 kl)t (e2 el)t a (D.5)

where a > 0. Analyzing (D.4) and (D.5) together allows for the locus of
the roots as a function of (a) to be determined. It can be shown that
all the roots reside on the lower sheet except for a finite number which
must lie between k., and k, on the real kx axis (and their images which

1 2

lie between -k2 and -kl on the negative real axis). Determining the

location of the roots requires solving the equations,

x°+ v- = g (D.6)
and

v = + a cos(x) such that v < 0, simultaneously. (D.7)

This can be thought of graphically as shown in Figure D.l, where the

locus defined by (D.6) is shown as a circle of radius a and (D.7) is

e s 4
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Figure D.l. Graphic determination of the roots
of the numerator of the function F
in the slab problem. Roots of
X = % asinx




shown for v < 0, Alternatively, the roots of

x = * a sin(x) (D.8)

can be determined (clearly |x]| < a) and then (D.7) gives v. It is
evident from Figure D.l that no roots occur until a > (m/2). This
being the case, there will be n roots on the interval (k,, k2), where n
is the integer portion of (a/m + 1/2).

The roots of (D.3) are seen to correspond to the surface waves of a
dielectric slab waveguide of thickness t with one surface covered by a
PEC screen (that is, the so-called short circuit bisection problem). It
is shown in the asymptotic analysis for the transmitted region (y < -t)
that the roots give rise to surface waves propagating in the positive x
direction from the edge of the PEC screen. It is no surprise that
these surface wave roots are the same as the surface wave roots of the
slab structure since for x > 0, the configuration is coincident with
that of the short circuit bisection problem.

Consider now the roots of the denominator of F(kx),

-jB,t iB,t
-8.)2 2 2" 2 . (0.9)
(Bl 52) e - (Bl+82) e 0
After some manipulation this reduces to two families of roots,
8.t 8.t B, t
_32-.. - _g_ cot % (D.10.a)
and
8.t B, t g,t
L a-y % can|-2 (D.10.b)
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Comparing (D.10.a) with (D.3), it is clear that an identical analysis
applies using (t/2) rather than t. In particular, from (D.5) we see

that a becomes b = (a/2). Therefore we have no roots until a = T and

then n roots such that n is the integer portion of (b/m + 1/2), These
roots solve (D.6) and (D.7) or (D.8) with the appropriate adjustment in
t and a. From thé earlier discussion, it is clear that these poles
correspond to the short circuit bisection problem for a slab of thick-
ness (t/2), Thus these waves have an odd functional behavior with
respect to the center of the slab.

Examining (D.10.b), it can be shown that using (Bl t/2) = w and

(B,t/2)=z, the equation can be reduced to
2 .

w = -jztan(z) (D.1l1.a)

and

2
22=w? = b? = (e,~€,) [%] (D.11.b)

. Hence the respective real and imaginary parts of the roots satisfy
i
Y . x2 + y? = p? (D.12.a)
-
and

v =2%b sin(x) , (D.12.b)

or

. x = b cos(x) . (D.13)
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The graphical depiction of (D.12) is shown in Figure D.2. Observe that
this pole does not suffer a cutoff for b < (7/2) unlike the short
circuit waves discussed previously. These waves represent the even
functional waves characterized by the surface waves of a dielectric slab
of thi;kness t/2 with one surface covered by a perfectly magnetically
conducting screen (the open circuit bisection problem for a slab of
thickness t/2).

By combining the functions shown in Figures D.l and D.2, it can be
shown that as a (which equals /E;_:—EI t ) increases from zero, the
following sequence of roots and poles appears on the interval (kl, kz)
of the real kx axis (and by symmetry, on the interval (-k2, -kl)).

First, a pole emerges from k, and moves toward k, as a increases to (7m/2),
For a > (71/2), a root then emerges and follows the preceding pole

toward kz. Then when a reaches T, a second pole emerges from kl and
moves toward k2' This alternation between poles and zeros is seen to
continue as a increases. This progression of roots is shown in Figure

5.2 which describes the behavior of the logarithm of the Green's func-

tion of the slab problem.
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X ROOT
LOCATION

J

T 3w/2

It—(+b)—+(+ b)—*—(—b)—*—(-b)—a’

- = = Roots of x = + b cos X

Roots of x = £ b sin x

Figure D.2. Graphic determination of the roots
of the denominator of the function

F in the slab problem.
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