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I. INTRODUCTION

The performance of optical components can significantly affect the size,

weight, and efficiency of high-power laser systems. Component failure in

pulsed DF chain-reaction lasers presently imposes design limitations on laser

gain length and aperture size. Unique challenges associated with component

development for DF chain lasers are the laser's broadband spectral output of

3.58 to 4.78 Urn, the requirement for operation in the presence of a corrosive

F2 /DF environment, and the need to withstand high impact loadings associated

with combustion overpressures of from 6 to 8 atmospheres. Data on the failure

of DF laser optical components are restricted primarily to small-energy pulses

and, hence, to small spot sizes of the order of hundreds of micrometers.,"
2

The scaling of these results to large spot sizes of practical importance is

known to be unreliable. Damage thresholds of 52 J/cm 2 were recently reported

for ThF(ZnS) 3-coated mirrors
3 using beam spots up to I cm in diameter.4 Such

excellent damage resistance has, however, been observed only in benign (air)

environments. Similar coatings on internal mirrors and windows mounted in

repetitively pulsed systems have repeatedly failed after several shots at

incident fluences of several joules per square centimeter. Damage was by acid

etching and by blowoff induced by laser irradiation.

Coating failure in pulsed chain-laser systems has prompted us to examine

the suitability of carbyne coatings as hard protective films on pulsed DF-

laser optical components. Chaoite, the carbyne form of interest, has been

produced at The Aerospace Corporation by means of quench cooling of carbon

gas. 5,6 Early studies of chaoite films revealed several interesting proper-

- ties: (1) diamond-like hardness (greater than B4C), (2) chemical resistance

to acids, bases, and organic solvents, (3) good adhesion to copper, platinum,

glass, silicon, germanium, sapphire, and other materials, and (4) low absorp-

tion in the 2- to 40-un range. In view of these attractive properties, we

undertock a brief program to apply carbyne films to candidate DF-laser window

and mirror materials for evaluation with regard to adhesion strength, resis-

tance to HF/DF attack, abrasion resistance, optical absorption, and laser

5



damage threshold. During the two-week study of laser damage resistance, we

also measured damage thresholds for selected commercially available coatings

applied to both transparent and reflective optics for purposes of comparison

with chaoite film performance. The resulting data show that the best chaoite

films have high damage resistance, hardness, and resistance to acid attack,

and may be attractive for use on pulsed-DF-laser optical components if

coatings can be developed that are free of carbon particles.
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11. EXPERIMENTAL TECHNIQUE

A diagram of the laser damage apparatus employed in the present study is

given in Fig. i. A magnetically confined electron beam was used to initiate

the pulsed chain-reaction DF laser. 7 Mixtures containing 20% F2- 8% D2 by

volume were irradiated for periods of 0. 1 to I psec at current densities of 20

A/cm2 to accomplish laser initiation. Nominal laser energies of 10 to 20 J in

0.6 to 0.9 Usec (FWHM) pulses were delivered at cavity pressures of 800

Torr. Energy was extracted from the gain medium by means of a transmisston-

coupled half-symmetric unstable resonator and then collimated using a CaF2

lens of 8-m focal length. Laser windows were uncoated, .25-cm-thick CaF 2

crystals that were tilted with respect to the optical axis. A beam splitter

at nearly normal incidence to the laser beam diverted about 6% of the total

pulse energy into a 9-cm ballistic thermopile. Emission time history of the

laser was monitored with a gold-doped germanium detector. In a previous

study, the D2-F2 laser spectral output was measured and found to consist of up

to 69 lines operating between 3.58 and 4.78 jim. 8

The remaining energy in the pulsed DF-laser beam was focused by means of

a CaF 2 lens of 4 5-cm focal length. The lens was translated along the direc-

tion of the beam to vary the fluence incident upon the optical test sample. A

fluence range of 5 to 70 J/cm2 could be encompassed by this technique. To

obtain uniform beam spatial distributions along the focusing beam, an intra-

cavity soft-aperture filter was employed (Fig. 1). This filter suppressed

effects of Fresnel diffraction during focusing. The spatial distribution of

the focusing beam was determined from burn patterns on calibrated witness film

(Fig. 2). As illustrated in Fig. 2, a uniform (top-hat) spatial fluence dis-

tribution was obtained by use of the soft-aperture filter.

Laser damage measurements were carried out on a variety of transparent

and reflective optics in the present work (Table I). Antireflection (ar)-

coated windows of A12 03 and CaF 2 were obtained from Laser Power Optics (LPO)

and CVI Laser Corporation. Coatings on the A12 03 samples were ZnS/ThF4 and

TiO2 /A'2 03/MgF2 ; the ar coating on the CaF 2 sample was PbF2 /ThF4. Details of

7



Si FLAT (one side
INTRACAVITY SOFT AR coated)

e e e e APERTURE FILTER
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Fig. 1. Laser Damage Apparatus Layout
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1 cm I -...63 5 cm
a. LOW FLUENCE CASE b. HIL' _UENCE CASE

4.9 J/cm2  - 34.2 J/cm2

Fig. 2. Calibrated Film Burns Showing Typical DF-Beam
Spatial Fluence Distributions
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the coating designs are available from the vendors. 9 , 10 Bowl-feed-polished

samples of A12 03 and CaF 2 were also tested as a standard against which coated

window performance could be assessed. Two mirrors were tested in our study:

an uncoated laboratory-grade copper mirror (Spawr) and a carbyne-coated copper

mirror. The performance of carbyne-coated CaF 2 windows was also evaluated in

our work.

Transparent carbon films for use in the present study were produced by

quenching carbon gas on selected substrates, including transparent and reflec-

tive optical elements." A schematic diagram of the equipment that was used

to produce exploratory carbyne films is shown in Fig. 3. The sample to be

coated and a piece of pure carbon were located near the center of the coating

pressure vessel. The optical sample could be heated to 180*C and was

discharge cleaned prior to coating application. The pure carbon source was

positioned in a carbon mandrel that was held in the chuck of a spinner

mounting. The spinning carbon target was heated by means of a focused L.5 kW

CO2 laser beam that entered the chamber through a NaC[ window. During laser

irradiation, the hot carbon rod was surrounded by a cloud of carbon gas that

impinged on the surface of the spinning optical sample. The temperature of

the solid carbon source was measured by an optical pyrometer of fast response

time (-0.1 sec). The pyrometer was located, as shown in Fig. 3, with its line

of sight at 30 deg to the laser beam axis. Careful temperature control of the

carbon source was crucial for production of the desired carbyne film. Chamber

pressure was measured by a Baratron gauge. Instability in the output of the

CO2 laser resulted in difficulties in the preparation of uniform, reproducible

coatings. In view of the unsophisticated nature of the coating apparatus, it
is believed that improvement in the quality and reproducibility of carbyne

coatings should be readily achievable.

Fifty laser shots were performed on the 10 samples that were available

for our damage study. Approximately one full day of testing was required to

determine the damage threshold of an optical component. During testing, the

sample was rotated after each exposure so that a fresh area was irradiated.

The large spot sizes used in our study implied that only a few exposures could

11
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Fig. 3. Diagram of Equipment Used to Apply Carbyne Films
to Optical Components
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be performed on each optical sample. Exposure began below 10 J/cm2 and was

increased in steps of 50 to 100% until small-scale and, finally, catastrophic

damage was observed. Component damage was determined by post-irradiation

inspection with a lOX microscope, using strong illumination.

13
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III. RESULTS AND DISCUSSION

Selected properties of carbyne films were briefly examined before

measurement of laser damage resistance. Absorption coefficients in the
2 1

infrared were found to increase from approximately 2 x 10 cm- at 10 jim to

3 -iapproximately 2 X 10 cm- at 1.0 Um. Index of refraction averaged about 2.1;

one film, however, gave a rather low index value of [.7. Absorption peaks at

3.1, 5.9, 6.2, 7.3, and 8.5 jim strongly indicated that the present carbyne

films were contaminated with pump oil. Contamination was possible because no

precautions were taken to prevent backstreaming of pump oil during the carbyne

coating process. Because pump oil would be expected to increase absorption in

the 3.6 to 4.8 urm bandpass, its presence probably would have reduced the DF
damage resistance of the carbyne-coated samples that were tested in this work.

An ion-microprobe mass analyzer (IMMA) was used to obtain unequivocal

identification of carbyne as the film that was produced. Although two

different carbon negative-ion spectra have been observed using the IMMA,

carbon films used in this study gave spectra that stopped at C4.

Unfortunately, the IMMA could not identify the particular carbyne form that

was produced in our work.

Abrasion tests were also performed on the carbyne films. The results

revealed that the films were more abrasion resistant than their substrates

(Ni, Al, Cu, CaF 2 ); they were determined, however, to be less resistant than

fused quartz. Adhesion strength of the carbyne films varied over the range

from 57 to 652 kg/cm2 . The diffusion of vacuum pump oil onto the substrates

could have accounted for these low values as well as the wide variation in

adhesion strength.

Chemical resistance of the carbyne films was evaluated using concentrated

HF acid. The films were unaffected by the acid. Penetration of the films by

way of imperfections was observed, however. One continuous film was tested

that was not penetrated during the time required for the droplet of acid to

evaporate (about 30 minutes).

1524s



The laser damage threshold measurements performed during the present

study are summarized in Table 1. Included in the table are component

substrate material, substrate thickness, component coating (when present),

coating vendor, type of damage observed, and incident laser fluence at which

damage was first detected. For the sapphire substrate case, both the ar

coating of TiO2 /AI203 /MgF2 and the bare substrate were found to exhibit high

surface-damage thresholds, i.e., 28 to 54 J/cm 2 . As anticipated, the exit

surfaces were damaged at thresholds well below those of the entrance sur-

face. The damage threshold of the ZnS/ThF 4 ar coating (17 J/cm
2 ) was found

to be the lowest of all the sapphire samples tested.

Damage tests on CaF 2 substrates showed that commercially available ar

coatings have damage resistance equal to that of the uncoated CaF2 surface

(Table I). The carbyne coatings on CaF 2 exhibited damage thresholds that

varied over a wide range of fluences (14-25 J/cm 2 ). The best carbyne film

was observed to have a damage resistance equal to that of the polished CaF 2

surface. On a microscopic scale, the coatings exhibited sample-to-sample

variations as well as variations across a given sample. The damage levels

could not be correlated with any particular deposition procedure. Figure 4 is

a micrograph showing damage to a carbyne film deposited on CaF 2 and exposed at

23 J/cm2 incident laser fluence. The damage is seen to have occurred pre-

ferentially at carbon-bearing spots in the carbyne film. It is likely that

* these carbon particles absorbed the laser radiation preferentially, but the

regions remote from the damage spots were observed to be coated with a carbyne

film that did not degrade at laser fluence levels at which the better com-

mercially available films did degrade. Carbyne coatings of very high damage

resistance should be achievable, therefore, if the coatings can be made free

of particulate carbon matter.

A limited number of damage tests were performed on reflective optical

components (Table I). An oxygen-free, high-conductivity (OFHC) copper mirror

of "laboratory grade" surface finish was measured to have the highest damage

threshold of all the component samples that were tested. Figure 5 is a

micrograph of the laser damage sites on this polished mirror. The degree of

damage is seen to be quite small, considering the high exposure fluence:

16



J.°

Fig. 4. Carbyne Film on CaF 2 Irradiated at 23 J/cm2

Showing Localized Damage at Carbon-Bearing (black)
Spots. Magnification 20OX
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A *

Fig. 5. Micrograph of Bare Copper (Spawr) Mirror Sh~wing
Damage Sites at Exposure Fluence of 58 J/cm and
DF-Laser Pulse Duration of 0.5 jisec (FWHM).
Magnification 37.5X
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58 J/cm2 . The carbyne-coated copper samples consistently failed at low

fluences of 9.5 J/cm2 or less. During the coating of copper samples, one half

of each substrate was masked from the hot carbon source. Figure 6a gives

clear evidence that particulate carbon contamination occurred on the half of

the copper mirror that was considered to have been shielded from the heated

carbon source. A method for interception of these carbon particulates must be

devised for future coating studies. The irradiation of the carbyne vapor

stream by a high-power laser beam would be one technique for interception of

particulate material before its impingement on a substrate surface. Figure 6b

is a micrograph showing laser damage to a carbyne film deposited on half of a

polished copper substrate. Preferential damage at carbon-bearing sites is

seen to be the failure mechanism, as was observed for the case of carbyne

coatings on CaF 2 samples. We speculate that carbyne films on reflective

optics would possess high damage resistance in the absence of these

particulate carbon sites.

j19
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IV. CONCLUDING REMARKS

Large-spot DF-laser damage thresholds have been investigated for bare

substrates, commercially coated components, and hard carbyne films deposited

on transparent and reflective optics. Damage resistance measurements on

candidate DF-laser window components have shown that high-quality antireflec-

tion coatings are presently available for CaF 2 and A12 03 substrates. Damage

resistance of OFHC polished-copper mirrors has been excellent at DF chain-

laser wavelengths. Unfortunately, the ability of these components to with-

stand high radiation fluxes in the presence of the hot corrosive gas flows of

repetitively-pulsed systems is limited. Because of this limitation, we

examined Aerospace carbyne coatings as candidate protective films for pulsed

DF optical components. In our study, the best carbyne coatings survived high

laser fluences of 25 J/cm2 . However, carbyne films as currently prepared for

laser-damage evaluation generally showed numerous particulate carbon sites

that were easily damaged. Areas free of these defects possessed high laser

damage resistance. We recommend, therefore, that improvements in carbyne-

coating preparation be pursued as a step toward the ultimate development of

practical, damage-resistant films for use both in repetitively-pulsed DF laser

devices and in other optical systems where corrosion resistance and high

laser-damage resistance are essential characteristics.
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ce '.tte, ;mlyc:,e end nw forms of curbon; component failure analysis nd
I, I v t-t st, 1AtIrS And stress corrtsion; evaluation of materials in
apir' t#-rc mrt; mteriall performance in space transp, rtation systems; anl,

-t- yist ' stems v sm pra illtv and smrvivability in enrne-lndnred environments.

<mm- c f,iencr_ !.abtrAtom-v: Atmospher!c and ionospheric physics, radiation
frm htV -m-sAhor, dermmty and composition of the upper atmosphere, aurorae

snd asitlow; magnet -apttri, physics, cosmic rays, generation and propagation of
plasua n-ves in the mgnetoaphere; solar physics, Infrared astronomy; the

effects of nut lear explosions, magnetric stores, and olar activity on the

eatrh', a-mnophere, Ionosphere, end aglecmaphere; the effects of optical,

eurmntr :g;metic, ad particulate rndlitons In space on space system.


