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4

In the work reported here, the penetration of sound into the ground is
predicted for both spherical and plane acoustic waves incident upon two models
of the ground viz (i) a rigid porous solid half-space and (ii) a poro-elastic
granular half-space. 1In addition the plane wave analysis is extended to
incidence on a rigidly-backed finite rigid-porous layer

In the frequency range of interest (1 - 1000 Hz) the rigid porous model of the
ground is found to be sufficiently locally-reacting to predict identical
results for spherical and plane wave incidence. The predictions are found to
correspond to buried microphone measurements in sand and soils of above-ground
acoustic disturbances. Furthermore it is found possible to predict the results
of model measurements using continuous and pulsed acoustic sources and
microphone receivers above and below the surface of fibreglass blanket.

The plane-wave analysis for a poro-elastic half-gpace predicts the existence
in general, of three body waves i.e. two compressional waves which we call
"fast" and "slow"” borrowing from the literature on propagation in water
saturated sediments and one shear wave. The solid particle motion, in general
is the result of the contributions from all three wave types. At normal
incidence the contribution is mainly from the fast-wave type travelling
predominantly in the solid grains. The pore-fluid particle motion has a
primary contribution from the slow wave type and for dry soils is practically
identical to that predicted by the rigid porous model of the ground.

The predictions of the poro-elastic models for normally-incident plane-wave
incidence are found to explain qualitative features of plots of intensity
ratios reported in the literature and calculated from simultaneous.

measurements with microphones and geophones collocated ie. vertically separated
above and below porous ground surfaces.

The analysis for spherical wave incidence on a poro-elastic half-space
predicts that the surface motion potentially results from five wave
contributions viz. the incident wave and four coupled waves in the poro-
elastic medium. The coupled waves consist of two compressional waves,

a shear wave and a Rayleigh-type wave.

Computations of the near- and far-field approximations of the surface motion,
resulting from an above-ground acoustic peint source, for a horizontal source-
receiver separation of 100m and using a set of typical soil parameters, show
that, for source heights of zero and 1M (grazing-incidence) and low-frequencies
i.e. less than 100 Hz the Rayleigh-type wave is dominant. At higher frequencies
for grazing-incidence or for all frequencies if the source is elevated to 50M,
computations reveal that the direct-coupled plane-wave contribution is dominant.
All contributions are predicted to decrease with increasing frequency which is
in accordance with the trend exhibited by mzasured data.
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1.1

1.2

1.3

1 INTRODUCTION

Scientific interest in the phenomenon of acoustic-to-seismic coupling has
spanned at least the last thirty-two years [1.1]). The motivations have
included seismic exploration using sources in air, studies of sonic boonm
effects, and studies of the ground-induced motion due to rocket launches.
Purthermore ground-air coupling is an important phenomenon in any attempt

to monitor sub-surface conditions acoustically e.g. to detect buried objects

using sources in air.

Systematic experimental studies of the near surface seismic signals induced
by air-borne acoustic waves are relatively recent. Bass et al (1.2, 1.3]
have used continuous signals from a loudspeaker source and impulsive signals
directed along a line array of triaxial geophones and microphones and have
reported results in terms of the squared ratio of surface seismic particle
velocity to sound pressure immediately above the surface termed the intensity

ratic. Similar measurements have been carried out by Powell (1.1] and,

recently,by several delegates of NATO AC Panel III RSG II on mechanical Waves [1.4]).

Typical results show that
(1) the intensity ratio decreases with frequency overall but has several
peaks some of which fall outside the "exciting" frequency band

(i1) the coupling is not very sensitive to "incident” angle of excitation

B

- Agrae -
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{iii) the time of first arrival response at the seismic sensor to an abcve-ground
acoustic impulse corresponds to the speed of sound in air and is followed
by a dispersive Rayleigh wave train.

{iv) the amplitude of seismic disturbance is unaffected by depth up to 1.5 m.

(v) the nature of the acoustically-induced seismic disturbance is strongly

affected by the presence of snow.
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1.4 Cress and Flohr (1.3) have attempted an analysis of the coupling using !

oo

, assumptions of
(i) perfectly flat, homogeneous and infinitely deep ground.

" (ii) continuous vertical displacement across the boundary.

| (1ii) continuous vertical stress across the boundary.
] (iv) zero horizontal stress components at the boundary, and

t . (v) compressional wave velocity in soil = 34% ms-l (i.e. and equal to
J that in air).

‘ The boundary conditions are used to obtain a set of equations relating the

| reflected and transmitted displacement at the ground surface and hence the

pressure can be related to the particle velocity in air at the surface by

' [ vertical component of velocity. It is assumed further that the acoustic
¢
{
+

the usual plane wave relation.

The predicted intensity ratio is found to be independent of frequency and
very sensitive to angle of incidence. Both of these conclusions are at &4

) ) variance with measured results.
|

' 1.5 This report is concerned with the development of a theory for the phenomenon
of acoustic-to-seismic coupling which is in accordance with observation. The
starting point is the well-developed theorv for propagation of sound from a
point source above a locally-reacting boundary. Appendices 1 and 2 repeat

and confirm this analysis. In Chapter 2 the analysis is extended to predict

- — e =

l l the field within the locally-reacting homogeneous medium. The prediction is
found to depend crucially upon the acoustical characteristics of the locally-

reacting medium. Chapter 3 describes "model” experiments carried out in a

anechoic chamber to provide data for detailed comparison with theoretical

H
{ predictions and Appendix 3 describes the basis for the models and the

instrumentation. Consequantly, in Chapter 4, a developwent of the Rayleigh

model (1.5) for such a medium is found, in combination with the propagation

(transmission) theory, to give predictions that agree both with the data




1.6

obtained in "model” measurements using fibreglass as the "groungd”
medium and with microphone probe measurements made outdoors in sound

and soils.

These predictions do not agree, however, with the geophone data reviewed
in 1.3. Thus, in Chapter 5 and Appendix 4, a semi-infinite, homogeneous
poro-elastic model of the ground is adopted (1.6) and used to give
predictions of the surface intensity ratio after a review of model

parameters appropriate to sands and surficial soils.

Predictions are obtained for the surface intensity ratio due to acoustic
plane waves normally incident on both a semi-infinite and a finite depth
rigidly-backed poro-elastic layer and obliquely-incident on a semi-infinite
poro-elastic medium. Finally, since the plane wave analysis will not be
valid near grazing-incidence, the theory of spherical wave incidence on

an air/poro-elastic boundary is derived in Chapter 6 and Appendix 5 and shows
the possibility of five wave contributions at the interface. Near- and far-
field approximations are used in Appendix 5 to show the relative importance
of the various wave types in acoustic-to-seismic coupling. The predictions
are qualitatively in agreement with features of the measured data that are

available in the literature.
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4

TRANSMISSION OF A SPHERICAL WAVE AT A RIGID POROUS INTERFACE

Introduction

The sound field due to a point source above a plane interface separating
two semi-infinite fluid wedia is a problem of great interest to those
concerned with the propagation of sound over different types of ground
surface, where the s50il can be approximated by a rigid, porous absorbing
medium [2.1). Considerable effort has been made to evaluate the field

in the upper medium (air) in the short-wave, asymptotic limit. A geometric
approximation is adequate for sufficiently large elevation of the source

and/or receiver, but this breaks down at grazing incidence where small

correcting terms play an increasingly dominant role. The grazing-
incidence case, of course, is precisely that which applies in long-range
propagation studies. One of these correcting terms has the form of a
surface wave and in Appendix 2 we show that it corresponds to a physically-

real surface wave.

The evaluation of the field in the lower medium has recieved comparatively
little attention, but Paul ({2.2], {2.3]) and Brekhovskikh [2.4:)

discuss the problem in some detail. Our motivation for considering this
case arises from a desire to compare the magnitude of sound waves penetrating

into the ground with that of any accompanying seismic disturbance.

We start in a similar manner to Paul and Brekhovskikh, that is by expressing
the solution as an inverse Hankel transform. The resulting integral

is then evaluated asymptotically using two steepest descent contours which
pass around the two branch points of the integrand. The presence of a pole,
which affects the solution at grazing incidence over ground having a

high impedance, is also taken into account. We only consider cases for which

the refractive index has a magnitude greater than unity.




. —

In his first paper [2.2] Paul integrates around two vertical (in the

plane of complex wavenumber) paths originating at the branch points,

as opposed to the true saddle paths that we use. This initial simplification
still results in complicated algebraic espressions and furthermore no

ready physical interpretation is possible in terms of geometric ra;'s.

He deals with the pole by subtraction, and while this method appears to

be essentially equivalant to ours, we feel that the final result is not

expressed 8o simply.

Paul later donsiders alternative integration paths (2.3] which in
part resemble more closely those used here. He does not consider the

presence of the pole in this work.

Brekhovskikh {2.4] does not describe his derivation in detail, but

it would appear that he uses the true saddle paths as he is able to
identify geometrically the two wave types. It is not made clear,
however, how to deal with a complex refractive index (i.e. an absorbing
medium) except in an approximate form, and the problem of the pole is

only mentioned briefly.

In a more recent paper by Candel and Crance {2.5] the related problem of
a horizontal line source is discussed. Their stationary phase method
can only give a single term which is the same as that cbtained using
geometrical acoustics, and is therefore not suitable at grazing incidence.
They 40 not acknowledge the presence of a lateral wave, nor is the pole

taken into account.

-=1.
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2.2 The integral representation for the field

Expressed as an inverse Hankel transform the velocity potential in

the lower medium is given by [2.2]

-V1Z) - V222 + iKr 1 -
e B, (kr)e T

M
¢ = V(‘x'zz") T v T W, Kdx

-0

(2.1)

where 2 ., z_  are the depth of source and height of receiver and r is

1 2
their horizontal separation,

y

vy = (K ~ kil)" v = (K - k})°, Revl, Rev, > 0,

ki, k_zu'e the wavenumber (complex in general) in the upper and lower

media, and

M= °1/° 2 , the ratio of densities (again complex)

Bquation (2.1)  can be used to obtain an expression for the field

in the upper medium:

ikiRy ikiR2
2 s + tw 8,0,0 (2.2)

¢ &R, " T4 [

where B is the sum of source and receiver heighta and R » R, are the

distances from the receiver to the source and to its image.




The steepest descent method with a opnle near a saddle voint

The rapid oscillation of the integrand in eqguation {2.1) for large

source-receiver separations can be handled satisfactorily by using

the saddle~point method.

In general we need to evaluate integrals of the form

1 =} amref ®ax (2.3

in which the behaviour of £(K) causes the integrand to oscillate rapidly.
The saddle points occur where £'(K) = 0, and the steepest descent paths
emanate from these in a direction in the complex plane in which the
exponential term decays most rapidly. The imaginary part of f£(X) is
constant along a steepest descent path and can be taken outside the
integral, leaving a purely real exponential term which decays on either

side of the saddle point., If t'(x.) = 0, then

£(K) = f(xs) - 8 for real S gives the behaviour of the
-
exponent along the steepest descent path. The integral along this path

becomes . ®

1. =o' | Ay %’s‘-;- s

SDP as (2.4)

b

g mr——— =

. ) » fo— .
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| If a(K) g—xs- can be expanded in a power series in S with a large radius

: of convergence we can inteqrate the successive terms. With

A(k)AK/dS = ¢(5), this results in

1 it 1.,
‘ Igp = Te (Kg) [0(0) +g ¢ 4 .] (2.5)

If one or more (but not necessarily all) of the steepest descent paths ,
are added in such a way that the resulting contour can be deformed into t
’ the real axis without crossing any branch points, then the resulting

integral, along with the contributions from any poles crossed, will be

equal to the integral in equation {2.3)

If the radius of convergence of the series for ¢(s) is limited by the

presence of a pole equation (2.5) may be inapplicable. 1In this case

we write ﬁ
o(8) = ¥(8) / (S - Sp) (2.6)

and use the series for (8., which has no pole, instead. We now

obtain

- of (K8) [1: (o)1
ISDP e °

+ V' (0) (SpI, + /r)

" 2 /— °
*N(O)(spx,+spw) :
+ 176 ¥7UUO0) IS T, 4 SP‘/;+ W)

i b e
2.7
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where I, = }
-~

Noting that ¥(Sp) = $(0) + v;'(O)sp + }w'(o)sp’ L

and making use of equation (2.6) gives

1 1
= ¢+ + ....)
Sp 28 ?

P

1 = alefXe) fvisp) (1, /7 +

+ um+%¢um+.“”4

It can be seen that

Iop wlef X8 (ye0) + 1/12¢°7(0) + .eunn.n]

as s_-» 0.
P

The expression therefore remains finite as the pole approaches the saddle

point.

We can write

W(s - 2 P H - )
I,‘i‘l(() e [m(s)]

- 2
where w(sp) =@ Sp erfc (-1SP) and H[ ) is the Heaviside step function.

This second term is cancelled by the contribution from the pole residue

if the pole lies between the SDP and the real axis, leaving the total

contribution
re = /et y(sp) A wisy ¢ -15; +5}';-,- MESEL

(2.8) ]

‘ AETCRE LI (2.9)
; 1
e
. 4 lF l
' : -t e T T "3 T e ———————
— - N3 "
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To investigate the behaviour of this expression for large values
of sp we use the asymptotic expansion

1 1

3
XHW(SP) - [g—-- +-2-§;5- z‘é‘?"’ ..-.-1

P

+ 28 [-xm(sp)le‘sp'

Substituting into equation 2.9) using only those terms shown gives

1 = /5 et ®e yi0) + 2ome0)
+ 28 [-In(sp)] e Py (sp))

ls)

As expected, this expression approaches the behaviour of equation (2.5)
along with the contribution from the pole when it lies between the SDP
and the real axis. In this application the latter term gives rise

to the famous ‘surface wave'.

Thus the SDP integral may calculated using equation (2.5) and if
the pole is near the saddle point we simply add the extra terms shown
in oquauén (2.9). This straightforward procedure appears to be
much less cumbersome than previous methods such as subtraction of the

pole.

The subsequent means used to evaluate the expression in equation

{2.5) are well-established and Brekhovskikh {2.4] gives a good

account of these, and the appropriate formulae.

(2.10)
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For the extra term in equation (2.3.9) we use

*(Sp) = lim (K-KP)A(K), (2.11)

K+*K
| 4

where Kp is the position of the pole in the complex K plane.

Returning to equation (2.1) we have

f(K) = -vi2y - vazz + iKr (2.12)
and A(K) = -“'—'- B (xo)e ) k/(vy + wvy). (2.13)

For grazing incidence, with zi, zz << r, there are two saddle points, one
near K = k1 and another near K = kz. The steepest degcent paths through
these points can be used to close the contour of integration without
enclosing the branch points. The pole, given by vy + Mv, = 0, can
closely approach the first of these saddle points at grazing incidence

if M <<, k2 > kl' and will be dealt with accordingly using eguation
(2.9)

At sufficiently large source heights or receiver depths closure of the
path of integration can be effected by using only one of the two paths.
Ve will not pursue this matter further, but both Paul {2,3] and

Brekhovskikh .{2.4] consider such cases.
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2.4 The geometrical wave

—

! The contribution from the saddle point near the K = k_ branch point

1
corresponds to the ray refracted according to Snell's law in the

; geometrical approximation.

We locate this saddle point using the interation
' Gy, = %18 /(x - 228 /yy) (2.14)
where v; = -ikja, v, = -ikyy, K = k8 with 8; = (1 - ai)*,

Y = (a; + n? - l)*, n = kKa/ky.

- For large angles of incidence (i.e. 23 < r) ay= 0 is a suitable
I 1\ .
! ’ starting value, and the calculations may be performed for complex
i ’ ky and ks . If z; =0 then a = 0, but equation (2.5) now
i becomes
1' -
‘ |
' : ) = ; ik;(ozl + Yo + B!‘)
‘ ] ] ISDP e
| "‘ * IV [} 2
; -2 1 £ _ 5 (£")
. ‘ x (f") ["“ M I L L T S L
4 kL ,
’ i A'g"’ A"
! h s v F (2.15)
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where
£" 3:‘—' :1; z2
k 3 3
1]a ny
e o Z38 [ B P2
2 5 S
k a ny
1
2 z z
IV . Z31U48 + D} 1 + T2
- 3 7 37
k a ny
1
and

iMx, B 2 \ 1
A= weor ) 1+ 81k B (a + My).

The first two terms of the asymptotic expansion

}
1 -iz 2 1
H,(z)e z 1;-:-) (1 *e1z * ....)

have been used. This is acceptable if |k181:| >> 1, that is when

klr >> 1 and the angle of incidence is large.

There is little necessity in seeking further simplification of
equation (2.15) once the appropriate differentiations of A(k)

have been carried out, except to ensure that the correct value is
given at a = 0, To do this we examine the limiting behaviour of the
various terms as a + 0, and find that only the last two terms in the

square brackets contribute.
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The lateral wave

To £ind the second saddle point we take into account the
fact that at grazing incidence it is close to the K = k,
branch point, and consequently va2}is small, and Vi is
predominantly real, We re-define a, 8, Y and use the
iteration

= 2.17
Yie, z,B,/(r + iz18,/a,) ( )

where v, = k&, v, = -ik, ¥, K = k, B

]
= - 2
and B, = (1 Y
= - -1— - 2 s =
ai (1 e’ Y e, Y, 0
This gives

f(K') = - kaz, + ik, (yz, + Br) .

From this we can see that the exponential term decays as z,,
the height of the source, increases. Further exponential decay

occurs if k, has a significant imaginary part,

The steepest descent method may now be applied in the usual
way, and in this case it will not be necessary to take into

account the presence of the pole.

Special cases

(1) The geometric approximation.
1f n, the refractive index, is real, then equation
(2.14) is satisfied if
a = cos © L
B=8in? ¢’

Y=n cosGr,

o = e

-t

——
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To calculate the further terms in equation (2.9) we need to

locate the position of the pole using vy + Mvy = 0. At this

point

vy = ~ikia vy = «ik K = kB
1 1 o’ 2 1Yp: 1 p

where
w2t
O T T %
P (1 - M)
b
- nM
g . - n'w)
P (1 - M)
= - M
Yp cp/
giving
2
sp = ik1 { (@ - ap)z1 + (y - yp)zz + (B - Bp):l

(2.16)
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sin ei/sinet = N, (Snell's Law) i

and 21, 23, r are as depicted:

23

z2

Taking the first term in equation 2.3.15 and using the

first term of the expension for the Hankel function so
that

1-1:;8('2")* iM 2 )i

T rilTw A |

f-
x expik;(az, + Yzz + Br)

. 2 Vainfi exp ik, (z1/co88, + nzz/cooet)
(2.18)

{r (z;/co-’ei + zg/n co-'G,)}’(n co-Gr + cosemf

M
which is the geometric approximation given by Brekhovskikh

i1) Grazing incidence with a largecomplex refractive index.

If n has an appreciable imaginary component then the
lateral wave will decay to negligible proportions at \

large distances.

If z, is sufficiently small so that in equation (2.3.14)

2By «r (2.19)

Then G = 2

T

- ~3 - :
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Since |8] < 1, a is small at grazing incidence
equation (2.3.29) becomes

z2

— << 1
r{(n2 -1) {2.20)

Under these circumstances O = cos® where tan®

r/z;

If in addition cos@ is sufficiently small so that the
terms containing z; are negligible in fll, fll‘, £V
Then (zy, Z.,r) *
X022 iz 0, 1)
‘ 25 ¥
- eikxzz(n sin“0 ) W21, 0, 1)
which gives a simple exponential relationship with the field

on the surface above the receiver. This expression is

derived somewhat less rigorously by Brekhovskikh.

.
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POINT TO POINT PROPAGATION MEASURMENTS USING ACOUSTIC MODELL ING

Introduction

In order to validate the foregoing theory for both reflection and
transmission of spherical waves, measurements of point propagation
over plane absorbing and rigid boundaries were made in the small

anechoic chamber. Two cases have been examined in detail:

(i) attenuation over a rigid boundary;

(ii) attenuation over and within a porous boundary.

The two materials selected to model these surfaces were varnished

blockboard and Crown 150 fibreglass quilt. The basis and facilities used for

these measurements are outlined in Appendix 3.
Rigid surface measurements

The rigid boundary measurements were made in order to examine the

effects of:

(i) source height uncertainty;
(ii) spectral smoothing;
{(iii) near surface turbulence; and

{(iv) source and receiver size.
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The source and receiver were placed 100 cm apart above the
varnished blockboard surface as shown in Figure (3.1). The source

and receiver heights could be varied independently.

An air jet was used as the sound source and a 1/4" microphone as
the receiver. A block diagram of the measurement system is shown

in Figure (3.2)
Source height errors

For a rigid boundary the excess attenuation minima result from the
destructive interference of the direct and reflected waves. The
frequencies at which these minima occur are therefore very sensitive

to source-receiver geometry.

Figure (3.3) shows a comparison of the measured and predicied excess
attenuation for propagation over a rigid boundary. The prediction
is based upon a source and receiver height of 5 cm. It can be

seen that the location of the predicted attenuation minima do not

coincide with the measured.

The source height estimate was based upon a measurement of the
distance between the rigid surface and the top of the air jet
nozzle. However, in view of the large mass of air flowing through
the jet, the acoustic centre of the source is unlikely to coincide

with the top of the nozzle.
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A better estimate of the source height can be obtained by
varying the height used in the pure-tone predictive algorithm
until the locations of the measured and predicted minima
coincide. The variation in the minima location and source height

can be seen in Figure (3,4) increasing the source height increases

the path length difference and hence moves the minima to lower

frequencies.

The results of this procedure indicated that the source height
is actually 5.3 cm above the rigid surface. A comparison of
the measured and predicted excess attenuation curves, based

upon a source height of 5.3 cm is shown in Figure(3.5)

. Spectral smoothing

The predicted excess attenuation curves shown in Figure (3.3)

and (3.5) exhibit much deeper minima than the measured results.

Part of this discrepancy arises from the fact that the predictions
are based upon pure tone interference, whereas the measured values
are based upon the average energy in a 250 Hz wide filter, The

effect of increasing the analysis bandwidth is to increase the

sound pressure at the minima and so smooth the excess attenuation
spectrum.

Correction procedures for the pure-tone calculations have been

derived [3,1] but they cannot account for the observed differences.
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3.1.3.

Near surface turbulence

Another factor to consider when trying to account for the observed
difference between the measured and predicted excess attenuation

curves is the effect of near surface turbulence.

Daigle [3.2] has proposed modelling turbulent air motion as an
additional propagation path length, with random direction and
attenuation. The extra path length disturbs the strong interference
pattern due to the surface. A correction procedure based upon

the measurement of four meterological parameters shows good

agreement with experimental results. These parameters are:

variance of sound velocity deviations

variance of air temperature deviations
L, - sound velocity correlation length

L, - temperature correlation length

Lv and Lt are measures of the autocorrelation function of the wind
and temperature variations. The time delay corresponding to maximum
correlation is converted to an equivalent path length difference

by multiplying the velocity of sound by the time delay.

Whilst it has not been possible to measure the parameters required
to correct for turbulence effects, an examination of Daigle's
results indicate that they could account for the observed
discrepancies between the measured and predicted excess attenuation

curves.
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Fibreglass Measurements

Two sets of measurements were made using a fibreglass quilt material to
model a porous half-space, the first to measure the amplitude ratio of
the direct and transmitted sound fields and the second to measure the

phase difference between the arrivals of those fields

Amplitude Ratio Measurements

The source receiver geometry for these measurements is shown in Figure (3.1)
The surface receiver was a standard 1/4" microphone with a normal protection
grid, whilst for the sub-surface receiver the 1/4" microphone was fitted with
a nose-cone. The nose-cone serves two purposes, first its shape enables one
to ease the microphone through the fibreglass quilt and second it improves

the directivity response of the microphone.

The sound source used for these measurements was a mid-range loudspeaker,
with the cross-over network removed, and the source signal was derived from

a swept frequency oscillator covering the range 100Hz to 15kHz.

In order to minimise the effects of phase distortion that can arise from
incoherent averaging of swept frequency signals, a time gating system was
employed to synchronise the source signal sweep and the digital sampling of

the received signals.

The narrow band spectrum at each of the receiving microphones was measured
with the Nicolet 660B spectrum analyser, and the amplitudes ratio obtained
from the modulus of the 'transfer function'. Three sets of results are
reproduced here as Figure (3.5) Part (a) shows the amplitude ratio and

phase difference for a source height of 5cm and a receiver depth of 3cm.




lnplitude ratio

. 28 -
4_4.,Tr,,4__,h__4_,_*_ II
Phase
4] ~11

10
n
o

>
o

Amplituae Rati

Wz

(a} Rreceiver pepth 3@

11
phase

0 -11

S

D 20

2

)

% 40

»

-

§

L

(p) Rreceliver pepth Tcm

[,

(c} Receiver pepth 10cm

figure 3.6 mntude of surface and sub-surface spectra




3.2.2.

29 _

The ripple in the transfer function at 8kHz, arises from resonance of
the loudspeaker diaphragm. Parts (b) and (c) show the results for

receiver depths of 7cm and 10cm respectively.

A test of the reliability of these measurements was performed by calculating
the coherence function. The results for the three receiver depths, shown in
Figure (3.7),indicate that only the estimates of the amplitude ratio at a
depth of 10cm for frequencies above 8kHz may be erroneous; since the value
of the coherence function drops below 0.8. The reduction in coherence arises

from the high level of attenuation at this receiver depth.

A1l these results show that there is little attenuation of the transmitted
sound at low frequencies. At high frequencies the attenuation is dependent
upon the depth of the buried receiver, At 10kHz, the upper limit of the
measurements, the attenuation increases from 16dB at a depth of 3cm, to

approximately 50dB at a depth of 10cm,

Pulse measurements

The time delay measurements were made using the same source receiver
geometry described in section (3.2.1), but with the loudspeaker replaced
by an electrical spark discharge source. This device produces a low

intensity sound pulse of approximately 200 microseconds duration.

~ v
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The trigger transformer circuit used to generate the high voltage spark
can cause significant errors due to electro-magnetic radiation, which
swamps the response of the condenser microphone capsules. In view of
this the spark was operated at its minimum energy level of 4mJ, and time

averaging used to improve the signal to noise ratio.

Examples of the direct (surface microphone) and transmitted pulses are
shown in Figure (3.8) for a source height of 5cm and a receiver depth

of 3cm, The tetal) duration of the signal samples is 4 milliseconds.

The direct microphone signal shows a distinct pulse at 1 millisecond,
corresponding to the spark discharge. The other fluctuations at 2.5
and 3.5 milliseconds correspond to the arrival of reflections from
metallic fittings within the anechoic chamber. The transmitted pulse
occurs at the same time, but the trace shows no subsequent arrivals due

to extraneous reflections within the chamber.

The spectrum of the direct and transmitted pulses are shown in Figure
(3.9) for the range 125Hz - 50kHz. The upper trace corresponds to the
direct pulse and the lower trace the transmitted pulse. The raggedness
of these curves is due partly to the presence of reflection and partly

to the electrical noise in the microphone pre-amplifiers.
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The amplitude ratio and phase difference for the direct and transmitted
sound fields are shown plotted in Figure (3.10). Both curves show
considerable fluctuations below 5kHz, due primarily to the poor resolution
of the spectrum analyser at low frequencies. However, the underlying
shape of the amplitude ratio curve is similar to that obtained from the

Toudspeaker source measurements.

Measurements of the direct and transmitted pulses were made
for receiver depths of 3, 7 and 10 cm and the results are shown
in Figure (3.11). The pulse at a depth of 10 ca. shows considerable
attenuation and is only just discernable above the background

noise level.
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4 GROUND AS A RIGID POROUS MEDIUM
4.1 Introduction

The theories of spherical wave transmission and reflection at porous
boundaries that have been advanced in the previous chapters rely upon
the assumption that the ground can be regarded, effectively, either
as a locally reacting fluid or as a homogeneous isotropic fluid
sustaining a single (compressional) wave type. If the ground is
locally-reacting then for computation of the reflected field it may
be characterised acoustically by its normal (complex) surface
impedance, and for computation of the transmitted field the required
additional acoustical parameter is the propagation constant within the
effective fluid. For a model of external reaction then computation
of the reflected field requires knowledge of both surface impedance

and propagation constant.

A model of the ground as supporting a single compressional wave type
is consistent with propagation in a rigid porous medium in which the
acoustic disturbance is transmitted only through the pore fluid and is
attenuated by viscous and thermal effects. This model has been found
adequate to represent the behaviour of porous boundaries in room and

duct acoustics (4.1, 4.2] and in studies of outdoor sound propagation

(4.3].

-
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Indirect estimation of the surface impedance of any ground, that can
be modelled as locally reacting, is possible from a propagation
measurement with a fixed source-receiver geometry [4.3,4.4]. The
impedance values result from fitting the data on excess attenuation
between source and receiver after allowing for spherical divergence
air absorption. Since the surface impedance is complex, the fitting
procedure requires simultaneous variation of real and imaginary parts.
The questions arise (a) of a suitable initial guess and (b) of
suitable ranges and the type of relationship between real and
imaginary parts. Empirical formulae for impedance and propagation
constant in terms of a single parameter, the specific flow resistivity
of the porous medjum [4.5], originally developed from acoustical
measurements on glass fiber materials fix the frequency dependence of
the real and imaginary parts of the complex variables and the
relationship between them. They have been used to derive the
characteristics of ground surfaces needed for predictions of
propagation near to outdoor ground surfaces (4.4, 4.6, 4.7] in terms
of a best-fit flow resistivity. Although successful in some instances,
the empirical formulae have been shown to have shortcomings in this
application. These are evident particularly where measured values of
flow resistivity are available. In these circumstances the best.fit
value of flowresistivity has been found to be approximately half of the
mean measured value [4.4]. The large scatter in the deduced

impedance values with frequency, also obscures whether or not the

empirical formulae predict the correct frequency dependence. The
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transmitted field, which is of particular interest in this report,
depends upon the propagation constant. Although the empirical

formulae include a set for real and imaginary parts of propagation

constant, these have not been tested for soils and sands to the same
extent as those for surface impedance. For these reasons the
‘ - remainder of this chapter is devoted to the development of
theoretically-based alternatives to the empirical formulae for the
acoustical characteristics of rigid air-filled granular media and to
a consequent examination of the limits of applicability of the
. empirical formultae. Comparison of the theoretical predictions and
| ‘\ measured data are made for glass fibre materials, sands and soils.
! t | 4.2 The Modified - Raleigh Model
! 'l 4.2.1.Introduction.

I e

A comprehensive review of the available theories for propagation in
T, ‘ porous media is given elsewhere [4.8]. In granular media the micro-
i structure is  best described in termsof grain shape size and packing

l ) density, all of which may be determined accurately by non-acoustic

- . j means. However theoretical approaches which specify the form of the #

rigid solid constituent while attempting to describe the acoustic

f , field in the fluid~-filled interstices have been constrained in each case

. to particular grain shapes and find particular difficulties in
‘ describing the field near points of grain contact. There is a further
fundamental problem with such approaches, of course, where the rigid
porous medium is consolidated such that individual solid elements
cannot be identified. A conceptual model first suggested by Rayleigh,
of a rigid solid matrix through which run parallel identical circular

”~ o
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cylindrical pores normal to the surface, has been shown capable of
generalisation to many types of porous media [4.8]. The generalisation
is achieved at the cost of introducing an adjustable parameter, the
oscillatory-flow pore shape factor, which, strictly, is determinable
only from best-fit to acoustical measurements. On the other hand,

a suggested semi-empirical relationship between this parameter and
another, the steady-flow pore shape factor, which is calculable for
certain known pore geometries, means that, ‘in princiole, the acoustic
properties of a rigid fluid-saturated granular medium can be deduced
from four non-acoustic measurements. These are of flow resistivity,

volume porosity, grain shape and mean grain diameter.

4.3, Propagation in a single pore

In this development, viscous and thermal effects are treated separately.

Iwikker and Kesten [4.2] have shown that, at least in the
limiting cases of low and high frequencies, such independent
treatments give the correct result for the field within a
cylindrical tube with rigid but heat-conducting walls containing a
viscons, heat conducting fluid. Viscous effects may be imcorporated
into a complex (i.e. frequency-dependent) density of fluid in the
pore (p, (w) ) subjected to an oscillatory disturbance with time-
dependence exp(-iut), w being the angular frequency. The result of
analysis may be written [4.2] as

o () = py [1 = 2 (x, My (KCIT)]'1 (4.1)
where  T(x /M) = Jy (x /7T /9 (x ) (4.2)
Jo() and J'() being cylindrical Besse! functions of zeroth and first
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order, respectively, and

Ko = a (m/v)! (4.3)
where a is the pore radius and v is the Kinematic viscosity of the

fluid and o is its equilibrium density.

In the context of developing a general theory for acoustic propagation in
fluid-saturated gqranular poro elastic media, Biot [4,10] considered
propagation in a paralled-sided infinite slit of semi-width b,
The expression for the complex fluid density in such a slit
corresponding to equation {4.1) may be deduced to be
pglu) = 0 {1 - [xg (-)¥7" tamh [<s(-i)9]}'1 (4.4)

where € = blu/v)? (4.5)
Analysis of the net flow of heat per unit mass within a circular
cylindrical tube containing a non viscous conducting fluid, supposing
(i) that heat is transported in transverse (radial) direction only and
(ii) that pressure is uniform over the pore cross section, produces

a relationship for the complex (frequency-dependent) compressibility

of the fluid within the pore, as follows [4.2]);
Co(w) = Gro)t 01+ 2ty - DT« /)T (a6)

pr C
where Npr is the Prandt]l number and
Clw) = 1 dp (4.7)
00

p and o being the time-dependent density and pressure respectively., A

similar analysis for net flow within a parallel-sides infinite slit of

thickness 2b produces {4.11]




and

- a2 -

cw = et Y tanh (M & (-1)H)
Nop xs(-i) (4.8)
The functions for complex density for the fluid in the circular
cylindrical tube and the parailel-sided slit have similar frequency
dependence. The frequency dependence of the functions for complex
compressibility are similar also. The real part of p(w) and the
imaginary part of C(w) show very little frequency dependence for a

wide range of x. However the variations of imaginary part of, (u)

and the real part of C(w) with x show that

(i)Im;k(u) for a slit of semi-width b = Imp_(y) for a circular
cylindrical tube of radius b/n

(ii) Recs(m) for a slit of semi-width 0 = Reccan) for a circular

cylindrical tube of radius b/n.

The value of n for which these approximations hold is roughly constant

and equal to 0.5 for 1.8g k. § 10.66 (see Table 4.1). This suggests

that for a pore of a general shape but with a constant characteristic
dimension 2 along its length, it is possible to_choose an equivalent

radius a = t/n and to evaluate o (x) and Clx.) where « = (2/n)(w/v)? (4.9).

n represents an oscillatory-flow pore-shape factor.

4.2.3 Extensfon to bulk medium

If the pores in the bulk medium may be assumed identical and to run
parallel to the surface then extension to the bulk medium from the
expression for a single pore is straight forward and introduces the volume

porosity and flow resistivity in addition to the single pore parameters

+ » .
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2 and n. In a real medium, for various reasons, including changing pore
orientation and cross section, the particle path lines will deviate from
the surface normal. The changing pore orientation is referred to as the
sinuosity or tortuosity, q, of the pore [4.2, 4.12, 4.13). The tortuosity
factor q has the particular value 1/cos e for a medium containing parallel-
cylindrical pores inclined at angle & to the surface normal., It is
possible to incorporate a further factor (>1) when the pores have
cross-section which vary along their lengths, However this possibility

ic not pursued further in the present analysis.

On the assumption that all of the pores are identical, the fluid velocity

averaged over a single pore's cross section, < v >, can be related to

the velocity u, averaged over unit cross-section of the porous medium by
<V> =qu /9

poy where @ is the volume porosity.

Consideration of the pressure gradient along a streamline in a

- , single pore during laminar flow gives [4.13]
_ 2
. . -4 cq e u (4.11)
] , dx Q
- op, the flow resistance per unit length in a single pore, is given by
y % - Bus/z2 (4,12)

where u is the dunamic'viscosity of the fluid, and s is a steady-flow

i ‘ pore-shape factor. s may be calculated from a standard fluid-dynamical

analysis for a pore of any regular cross-section. For a circular-

'1 cylindrical pore s has the value 1 and for a paraliel sided slit

-
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s = 1.5. A more extensive list of values of s corresponding to pores

of various regular cross sections is given in ref [4.13].

From equations (4.11) and (4.12) the fiow resistance per unit length, or

flow resistivity of the porous medium, which is a measurable quantity, can

be calculated from

2.,.2

¢ = 8uq°s/e n (4.13)

By eliminating the characteristic dimension 2 between equations (4.9)
and (4.13) it is possible to deduce that
« = (stm) (8oge? we)!  (a.14)

for pores of arbitrary cross-section.

The one-dimensional equations of continuity and motion in the rigid

porous medium which are sufficiently general if the medium is isotropic
may be written [4.2] as

-y gg) '_ag) (4.15)
> (“o‘)(ap (%

and -39 = (a%/@)p(w)du  (4.16)
5t

2E

Combining these equations with use of (4.7) enables production
of the compressional wave equation inside the rigid porous medium.

2
2y - a?o(u) cw) 3% (4.17)
X

tz

-4

——

bosnust QU o




—_— -

-y -

e e e e &
.

Finally from equations (4.1), (4.6) and (4.17) the propagation
constant k within the medium is given by
K2 s qiure )2 01 - 2 e T /) 1!

x (1 +2{y- 1)(N:rkff)'1 T, WDl (409)
and the relative surface impedance Z/oc = 1/8 which is the
characteristic impedance of a semi-infinite medium is given by

Z =wp (w)/k (4.19).

It is of particular interest to note that for low frequencies and
small values of the characteristic dimension, i.e. small pores or high
flow resistivity, equations (4.18) and (4.19) reduce to relatively
simple expressions by virtue of the small argument approximations of
the Bessel Functions. Hence, at Yow frequencies and for high flow
resistivities

Z/paCo = ks (1 + 1) (nPapyui(z,, sc2) )} (4.20)

4.2.4 Calculations of tortuosity

Tortuosity has an influence not only upon fluid-flow in porous media

but also upon their electrical conductivity when the pore space is

filled with an electrically conducting liquid and upon diffusion of water
vapour through the pore space. It has been related also to the index

of refraction of fourth sound when the porous medium is fixed with

liquid helium [4.14]. In the context of difusion of gases through

porous granular materials, the following relationship, known as
Bruggeman's relationship, has been found to hold [4.15],

@ =a" (8.21)

N
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where n' is a grain shape factor taking the value 0.5 for

spherical grains. This and other values of n' are listed in Table

4.2. Hence knowledge of porosity and grain shape should be sufficient,

in principle, to calculate the appropriate tortuosity value. It should
be noted that for porosities near unity, the tortuosity will also be . {
{

near unity irrespective of particle shape.

4.2.5 Calculations of shape factors

|
For packings of spheres, of porosities in the range 0.34 < q < 0.45 i f
!
!
|

CARMAN (4.13] gives a range of values of 2qzs,

4.5 < 2% < 5.1 |

Using the Bruggeman relationship (4.21) for spheres, the stated range i

of porosities implies a range of tortuosities given by
1.49 < q% < 1.715. i ; }
)
Hence from the range for 2qzs. it is possible to deduce s = 1.5 which : ‘)

is the value for parallel-sided slit pores. "

In principle it should be possible to deduce values of s for any l

regular microstructure from an analysis of steady flow through the X {
n, the oscillatory-flow shape factor would ! L
H

known pore cross-section.
require computation from a separate analysis of the microvelocity field
for each pore cross-section. Nevertheless the values of n and s for
the supposed extremes of circular cylindrical tube and parallel-sided
slit suggest the possibility of the relationship
n=2-s (4.22)
~caq .
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Consequently for a packing of spheres, with s=1.5, it is possible

to expect that n = 0.5,

For non-spherical and non-uniform particles appropriate values of n
and s are more difficult to specify. Indirectly if the flow
resistivity, porosity and mean grain shape are known then it may be
possible to deduce a value for s, and hence n through equation (4.22),
by utilising the concept of hydraulic radius.

Hydraulic radius, m is given by

m = q/S {4.23)

Where S is the exposed particle surface area per unit volume of
material. A more usual concept than flow resistivity in describing
flow through porous media is permeability. As long as the pores
have fairly smooth perimeters, the permeability 8 is related to m by
8 = an’ / (2q%) (4.28)
Flow resistivity and permability are related through
B = a%/s (4.25)
Since m is calculated from geometrical considerations then knowledge of

¢, @ and n' should enable calculation of s.
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|
4.3 Comparison of rigid porous model with reflection measurements j
Although there are many measurements available in the Titerature i

on the acoustical characteristics of materials of interest in room

acoustics and duct acoustics, there is a paucity of data for the acoustical E ;
characteristics of soils and sands. An exhaustive set of data, on [
! various types of sand and artificial porous granular media ,i l
consisting of spherical lead shot, were obtained by Ferrero and |
! Sacerdote [4.15]. Their measurement technique involved measurement l
of the pressure standing wave (plane wave fronts) formed in a l i !

‘ cylindrical tube with the sample forming one termination and the - o
loudspeaker source of pure tones forming the other. The propagation

constant and characteristic impedance were calculated from

boned  bvowed

measurements of surface impedance for two different thickness of
sample; one thickness being twice the other. This method was first ‘ \ o
advocated by Pyett [4.16). Ferrero and Sacerdote also measured the

porosities and flow resistivities of their samples. Thus for the

Bl bow

)
Mo AP T A

spherical lead shot and sand samples (n'=0.5) of all the parameters

are known, with the exception of the pore-shape factors for

| ==

application of the theory developed in earlier sections of this
- chapter. The appropriate value of q2 for all samples is approximately
1.6, since all g = 0.4. Best agreement is obtained with the

4 po: shape factor ratio n//s = 0.5 rather than 0.75 or 1. This value
corresponds approximately ton = 0.5, s = 1.5 i.e. the values for
parallel-sided slit pores as expected for packings of spheres (see

i ‘ section 4.6). The measured data and theoretical predictions are

shown in Figures 4.1 to 4.5,
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4.8 Comparison with transmission measurements

4.8.1 Soils and sands

The difference in sound pressure levels between a microphone at the

surface and a probe microphone (Figure 4.5) at various depths in several

soils and sands has been measured [4.17]. Assumine that the ground medium

is locally reactina then this difference should be aiven by
attenuation in dB = 20 Im(k) D/10g,10

Im(k) refers to the imaginary part of k, i.e. the attenuation constant,
and D is the depth of the probe. Figures 4.6 to 4.9 show the
comparison between the measured data and the predictions obtained
through (i) equation (4.19) (ii) measured values of flow resistivity,
using an apparatus described elsewhere [4.18]s and (iii) measured

values of porosity, deduced by weighing samples of known volume.

4.8.2 Fibreglass

Using the apparatus described in Chapter 3, measurements have been
made of the penetration of sound from an air-jet source into fibreglass
50 cm. thick. The probe receiver Microphone was at 1,4 and 7 cm.
beneath the surface. The comparison between measuréd one-third octave
averaged data and predictions based upon measured flow resistivity
(using apparatus conforming to ASTM) and the assumptions that

f=q=n/vszl,
are shown in Figures 4.10 and 4.11, Note that the results on pulse

penetration (Figure 3.17) are consistent with the air-jet results and

with prediction. In the case of the loudspeaker generated narrow-band pulses

predictions of both the real and imaginary part of the transfer function

between surface and buried receivers (see sections 2.3 and chapter 3) are in

good agreement with measurement (Figures 4.12 to 4,14),

RN ——
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5. GROUND AS A PORO-ELASTIC MEDIUM : RESPONSE TO PLANE WAVES

5.1 Biot theory and modification thereto

For a more complete description of ground response to an external
acoustic disturbance it is necessary to model the ground as a

poro-elastic medium,

We are concerned with the acoustic wave motion in ground, consisting
of solid particles and air in the interconnected voids. The solid
particles are assumed to be in firm contact with each other and
thus constitute a homogeneous elastic frame. The theory of wave
motion in such composite media, as derived by Biot (5.1], is widely
applicable, and predicts two types of compressional waves and one

shear wave.

In this section, we are interested in computing propagation constants
for the above three types of body waves, suitable for numerical
calculations and for parametric studies. For this purpose, it
is convenient to express the equations of motion in terms of two
scalar potentials ¢; and ¢, and two vector potentials h and _"_z .
Let u and U describe the displacement of the skeletal frame and
fluid respectively. Then displacemsent of the fluid relative to
the frame is

y=ou-v

Then we can express the two vectors as

=V +curl §;

=V + curl o

|
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| l Th led eq : ‘ ?
e coup equations of motion for the scalar potentials ¢; and ¢; !
' I
. are !
)
Bv2¢y - CV%4y = p41 - Peh2
?
. - “ o ne |
: cvi¢y - MV 4, = 9f¢1 - o2 - ¢z (5.1a) ‘
!

and another pair of coupled equations of motion for the vector

potentials ¥; and V¥, } !

1 6,71 = pyy - pf;g,

l ! %h“’f;.x'miz (5.1b)

| where H,C and M are elastic constants expressed in terms of elastic

q

‘[ i moduli of the grain-solid, fluid and frame.

[ ‘ = - 2 -

! 11 B= (K -K)*/(D-K)+K +4G/3 ) °

! ); C=K (K -K)/(D=~K)

i [ M= K: / (D - l%)

. ? and

- I D= Kr [1 + n(xr/xf - 1)1 (5.2)

} Kr is the bulk modulus of the individual grains, Kf is the bulk :

: ]
1

modulus of the pore fluid 'Gb is the shear modulus and Kb is the
v ) bulk modulus of the assemblage of particles. In BEq. (5.1), p
is the average mass density, Pe is the fluid density, n is the
. I dynamic viscosity coefficient and k is the nermeabilitv of the porous

frame with dimensions {L})*.
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The parameter m, related to the fluid motion, is sometimes called

effective fluid density and is given by

wneet ummmg ———

m= q’pf/n I

where 1 is porosity and q is tortuosity. The parameter q (> 1) accounts {
for the fact that the fluid flow is not in the direction of macroscopic

pressure gradient. Experimentally measured values of q for soils and ‘
sand have been reported in literature [5.2]. However in the present

study, we use ¢ as a model parameter through the relation

where n'"is a grain shape factor obtained from studies of gas and solute ‘ |

diffusion. f }

In the high frequency range, whexe the visosity effects begin to be
of important, we replace the ratio i‘ by n F()A)/k where F(\) is a

complex viscosity correction factor, given by

o

.- A T r(wvD)
FOO = (= V8 17570 tOwD /(i)

. .

and

1
(5.3) ]
A= (/3/n) /Baikw/u
e - - - ——— e —————————

—
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where u is kinematic viscosity (n/vg) is identified as a single model
parameter, i.e. shape factor ratio. Note that , from equation (4.1),
the complex density of fluid in the pores of a rigid fluid-saturated porous

medium may be written
p(A} = -ar (1) / OWinrp/D)

We seek solutions of the form

01 = ll exp(i(fx - wt)]
and
02 = Azexpli (Ix - wt)]

and Eqs. (5.1) provide a pair of simultaneous equations for A; and A:.
For a non-zero solution, we require that the determinant should vanish

and hence we obtain
opw? ~ HE cl- p o0

ofm" -t e - m + dwP(M)n/k

The above equation is quadratic in £ and has two diatinct roots
2 . (pt /B -4ACT / 2A

as long as B? - 4AAC £ 0.

b g
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vhere

A=C - HM
B = w*{mH - 20, + 0 M} - iwF (M\)nH/K
c= w"{pf’ - mp)} + 0?{ ipuwF(A)n/k) (5.6)

The two roots of £* as given by (5.6) correspond to "fast" and
"slow" types of compressional waves. The corresponding propagation
constant for shear wave motion can be obtained by assuming

¥1 =B expli(fx - wt)], ¥, = Baexpli(fx - wt)) (5.7)

Then it follows from the equations of motion (5.1b)

(5.8)
’ o w? mw? + 1wF(A)n/k

The phase velocity,s’Re £ and attenuation, Im £ of three types of
waves can be easily computed from (5.6) and (5.8). A FORTRAN program
has been written to compute propagation constants for two dilatational
waves and one shear wavc. The complex frequency correction factor
F(A) has been computed using Bessel functions of complex arguments

where the calculations are performed in single precision.

[~
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The pore parameter A as given in Eq.(5.3) enables us to consider the
influence of various parameter on phase velocity and attenuation of
fast and slow compressional wave modes. For the present, we restrict
the sensitivity analysis only to the parameters relating to the micro
structure and assume base values for the el&8ticC congtants of the

frame which are typical of sand.

A few remarks concerning the microstructural parameters are in order.
We have already note that the tortuosity is dependent on porosity
and this gives us two independent parameters n' and 2 . Although
permeability k and shape factor ratio are related, in the present
study we treat them as another pair of independent parameters. Thus
we choose the four parameters {1, n', k andn/vs to describe the
microstructure of the ground. (For a more detailed discussions on

this see references [5.3]).

-




Predictions of wave speeds and dispersion in air and water saturated sand.

The program described in previous section has been utilized to compute
phase velocity and attenuation in water filled saturated sediments [5.3)
where the values assumed for the various parameters used in the
computation are listed in Table 1. Here we present, in Figures 5.1 to
5.4 a sensitivity analysis of dispersion and frequency -dependent viscous
attenuation (fast wave) to porosity (0.3), grain shape factor (n' = 1.25)
permeability (10-7cn2) and shape factor ratio (0.6). The values given

in the brackets refer to base values.

The sensitivity of attenuation to permeability, shape factor ratio
and grain shape factor are similar to those obtained for varjations
in permeability and pore siza parameter and for structure factor
respectively by Stoll and Bryan (5 4], Viscoue attenuation appears to

be more sensitive to porosity as it affects tortuosity (structure factor).

TABLE 1
PARAMETER VALUE UNITS
Py 2.65 g/cm®
x, 3.6 x 10“ dyn/cwn?
¢ ]
Pe 1.0 g/cm
n 0.01 dyn - sec/cm?
G, 8.27 x 109 dyn/ce’
1% 1.38 x 1010 ayn/cw’
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Sensitivity of predicted fast wave characteristics in water-saturated sand to variation
in grain shape factor.
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In Fig 5.5(a), the prediction for the frequency~dependent phase velocity
and in Fig 5.5(b) the effect of variation in frame elasticity for the
fast-wave in air-filled sand are shown. The predicted attenuation is less

than Q.1dB/m in all cases. In Fig 5.6, we present real and

imaginary parts of propagation constants for slow wave for the sake
of comparison with those obtained using rigid-porous theory. This
shows that the slow wave corresponds to that predicted in the modified

fluid model of a rigid porous medium.

The range of values of oscillatory-flow pore-shape factor (see section
4.3) used in these calculations (equation (5.3)) differs from that
quoted in Chapter 4 since it is derived from comparison the forms of
F(A) for oscillatory flow in a cylindrical pore and parallel-sided
slit rather than those of p(w). The relevant parameter may be labelled
n(viscous) where

0.75 & n(viscous) £ 1

The bulk modulus of air, K_, must be complex to account for thermal

£
effects in air-filled porous media. The required complex value

may be obtained from equation (4.6) where xf = 1/C(w) and the required
value for oscillatory-flow pore shape-factor, n(thermal) is such
that

0.5 & n(thermal) g 1

Relationships equivalent to (4.22) may be invoked between the various
shape factors viz.
2n(viscous) = n(thermal) + 1

2niviscous) = 3 ~ g

1§8¢g1.5

mrem—
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where 5 is the steady flow shape factor defined in section 4.4.

For the computations in Figures 5.5 and 5.6, we have used the base values

n(thermal) = 0.5 and n(viscous) = 0.75,

values are given in Table II.

The remaining parameter

Note tnat a single value of oscillatory-flow pore-shape factor

n(viscous) may be used if C(w) is calculated from

clw) = (yp,)

1
} } 3
[2 -y + 2(y - "("m A/ r(nrrxli)/r(nprxli)l

where y is the ratio of specific heats, "P! is the Prandtl Number and

p_ is atmospheric pressure.
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TABLE 11

Parameters Required By Biot Theory
(As Modified By Attenborough/Rayleigh)

Parameter “Sand" value
Grain Bulk Modulus 3.6 x 10“ dyﬂ/cm2
Grain Mass Density 2.68 g em™ 3
Frame Bulk Modulus 8.27 x ,109 dyn/r:m2
Frame Rigidity Modulus 8.27 x 109 dyrx/t:m2
Fluid Bulk Modulus (isothermal)

Dynamic Viscosity of Fluid .00184 dyn-sec/cn’
Porosity 0.4

Permeability 3.76 x 107 c?

Grain shape factor 0.5

Shape factor ratic (n/vs) 0.6

-1
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Figure 5.5(b) Variation of fast-wave speed characteristic in
air-filled sands with labelled values of frame
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As has been shown, the values predicted for the fast wave propagation l i
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constant in air-saturated sand are very sensitive to the value taken by

b |
! :‘ the frame rigidly (shear) modulus (assumed equal to the bulk modulus). l ‘
The shear modulus for soils is affected by various soil parameters and the ;

state of stress., The important parameters include [5.7] effective

octahedral normal stress, void ratio, grain characteristics, shape, size,

"

grading, mineralogy, amplitude strain, ambient stress history, secondary

time-dependent effects, degree of water saturation, octahedral shear stress, 1

frequency of vibration, soil structure and temperature. This complexity

implies difficulty with selecting values typical of any given soil type. ; i

and enable a study of the sensitivity of propagation characteristics to !

shear modulus in air-filled soils. The values chosen (5.8] are set out below:-

2

Consequently three values have been chosen which indicate a typical range / /
|
Soil type Shear Modulus (G) dyn cm J ‘

|
‘ 1
‘ { Santa Barbara clay 1.38 x 108
P AGSCO No.2 5.17 x 10°

Ottawa sand 1.86 x 10°

)

\
|
1

Figures 5.7 to 5.10 show the relative speeds and atteauations of the three

possible wave types predicted by assuming equal shear and bulk moduli and

! using the base values of cther parameters given in Table II with the

exceptions n’ - | and sbape factor ratio = 0.75. Figure 5.7

shows that, for a relatively high value of rigidity modulus, the ‘slow’ ]

!

wave is clearly the slowest up to 1kHz, the fast wave having a frequency ;

independent value somewhat greater than the velocity of sound in air

5.8 it is clear that a small decrease in rigidity modulus causes the shear

wave to become faster than the slow wave neaxr {kHz. Note that both of

the rigidity modulus values assumed in generating Figures 5.7 and 5.8 produce

and similar to the value predicted for dzy sand. From Figures 5.7 and n &
fast wave speeds sowewhat less than the speed of sound in air. ﬂ
o S o—
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Further decrease in the rigidity modulus to the value assumed in Figure 5.10
produces the interesting situation where the 'slow' and 'fast' waves are
predicted to exchange roles above 100 Hz. It should be noted that still
lower values of rigidity modulus are possible for soils and these will
produce ‘slow' and ‘fast' wave exchange at still lower frequencies. Finally
addition of a complex component of the shear modulus is shown,in Figure 5.11,

to produce, as expected, much higher attenuations for the ‘'fast' and shear

waves.
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Predictions of surface solid particle velocity resulting from plane
wave incidence

The ratio of solid particle velocity to the pressure on the surface
has been used to describe the ground respongse. To facilitate
computations of this, we make use of a different but equivalent
formulation to that presented in section 1. The present formulation
enables us to express both solid and fluid displacement in terms of
two scalar potentials 01 and 02 and two vector potentials ?.1. and *_z .

We write

le

= grad ¢, + curl ¥,
U = grad 01 + curl *z (5.9)

and they obey the following coupled differential equations

2 = 32 _3__, -
v (PQI + Q‘z) W(9101) + br(}) 3\:'.; 02)

2 .3t - e -
v (Q.1 + R‘t) T34 (0202) br()) 3t(.l 02) (5.10)

and

2 2
2y, o 2 2w -
Moy = ger (0,8 ¢ BFA) o v )

al

. 32
0= 3gr (9,9 - PN T (v -¥) (5.11)

(v
4
where b = n/k, ol and p, are densities of solid and fluid respectively.
The elastic peramsters P, O, R can be related to Kr [5.5]).

bulk mod:lur of grains , K, (bulk modulus of fluid), Kb (bulk modulus

4
of agyTigata)

IR e e
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N is the shear modulus of the solid and composite

(1-9Q) (1 ~-9) - Kb 1 xr + Kr Kh

xx xf
P = + ﬁN
1 -9- xb + 2K 3
xr xf
f1-0- EE 19 X
Q= Kr
[t - Q- EE + EE
xr xf
022 x
R = 3 (5.12)
tl-n-ﬁa»n:}:l
Kt xf

From the computational point of view, the present formulation does
not pose any additional problem as the previous program can be

still used and Eqs.(5.12) provide for the translation between

the two notations.
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S

For comparison with measurements it is convenient to calculate

the square of the ratio of surface particle wvelocity to pressure

henceforth called the intensity ratio. These calculations are

described for obliquely-incident plane waves on a semi-infinite

poro-elastic medium and normal-incidence on a rigidly-backed

poro-elastic layer in Appendix 4.

Figures 5.12 and 5.13 shov plots of normal-incidence intensity ratio
against frequency for the parameter values given in Table II.
These are expected to be representative of sand. It should

be noted that the number of layer resonances increases with
increasing depth.

The variation of intensity ratio with angle of incidence, on a \
semi-~-infinite layer of dry sand, measured away from the normal
and with frequency is shown in Pigure 5.14. The ratio decreases

with increasing angle of incidence and, for any given angle, the

ratio decresses with increasing frequency.
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6. THE SURFACE MOTION OF A PORO-ELASTIC HALF-SPACE DUE TO AN INCIDENT

SPHERICAL SOUND WAVE.

6.1 Introduction

While the treatment of the ground surface as a rigid porous medium
gives an adequate description of the reflected sound wave and the
transmitted slow wave {consisting of air motion within the pores),
any attempt to determine the seismic response must take into account

. the finite rigidity and density of the solid medium.

Here we take account of frame elasticity by using the theory of

e

propagation in poroelastic media ocutlined in the previous chapter.

This has been developed extensively by Biot in a number of publications.
In these he does not always use the same scheme of notation, and we opt
for the system given by him in 1961 [6.1]. This gives the most

i compact expressions in subsequent derivations, and many of the material
parameters are defined in such a way as to be identical to those of the

corresponding rigid porous material.

The problem of spherical wave incidence on a poro-elastic half space
is approached in the same manner as that for the more well-known
cases of fluid-fluid, fluid-solid and solid-solid interfaces, which

which are described by, for example, Ewing et al [6.2]. The

PO

axisymmetric displacement potentials are expressed in terms of
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inverse Hahkel transforms, the transformed potentials being determined by

the boundary conditions at the interface. 1In this case there are four potentials,

corresponding to the reflected compressional wave in the upper medium, the

transmitted slow and fast compressional waves, and the transmitted shear wave.

The complexity of the resulting integrals prohibits a thorough analysis using
the saddle point method as in the fluid-fluid case used to model a rigid porous
ground surface. However, a simpler, less rigorous approach enables us to
obtain asymptotic expressions for the various wave types at grazing incidence,
and it is also straight forward to identify the propagation paths and evaluate

times of arrival for transient sources.

Some simplification is possible by considering the limiting case when the
bulk modulus and density of the saturating fluid are much smaller than the
elastic modulus and density of the solid. The propagation constants of the
fast and shear wave are unaffected by the presence of the fluid, while that
of the slow wave is the same as for the rigid porous case. This 'light

fluid® limit should be applicable for air-filled ground surfaces.

Feng and Johnson (6.3, €.4] have recently considered the problem of a
fluid/porous solid interface. Their treatment, otherwise comprehensive,
gives results for the high frequency limit when the propagation constants
for the various wave types are all real and non-dispersive. This allows
them to define 'true’ surface waves with a velocity less than any of the
body waves, and to implemsnt the Cagniard method when evaluating the
response to a pulsed source. However, the simplest possible treatment

of ground surfaces must admit a complex slow wave propagation constant, and
as a result we are forced to give a more general analysis of surface wave

contributions.
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6.2. Displacement potential in the upper medium

f
The vector of fluid displacement in the upper medium is defined in terms

of the potential y:

v=9 (6.1)
The acoustic pressure is given by

p= -KaV.w = -K,9%% (6.2)

where K, is the bulk modulus

¢ obeys the wave equation

2y o 1
vy = 5o : (6.3)

everywhere in the upper medium except at the source.
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Displacement potentials in the lower medium

If the displacement vector of the solid matrix is u, then following
Biot [6.1] we represent the displacement of fluid in the pores relative

to the solid by the vector

w= Q- (6.4)

where I is the porosity and U is the actual average fluid digplacement.
Hence w is the relative volume displacement of the f£luid over unit

area of the bulk medium.

Because the solid can support shear stress the displacement are not
in general irrotational. They canp be detained in terms of scalar and

vector potentials aa follows:

o -_v_¢2+ lxx’ (6.5)
u -!0‘4' 1:& (6.6)

The coupled equations of propagation for dilatational waves are

2 - 2

v (RQ‘ + m’) n (po‘ + p"z) (6.7a)
El)

2 Sl L s ]

\j (Gﬂ, + mz) ) (9}0. + ",) * X 3 (6.7p)

and for shear waves
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Vi e Lo oy 4 0.x) (6.8a)
v X, e P, 13, :
ey ¥
x 3 o (n‘x‘+ mxz) (6.8b)

where H, u are elastic moduli of the medium with sealed pores,
M is the effective bulk modulus of the fluid in the pores,
py is the density of the fluid,

0 is the average density of the porous medium (including
fluid and solid),

m is the effective inertial density of the fluid in the pores,
n is the fluid viscosity,
’ X is the permeability of the porous medium,

F is a complex frequency dependent function which corrects for
departures from Poiseuille flow,

and a is a parameter which relates changes in pore volume to overall
changes in volume.
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Boundary conditions at the interface.

The definitions of fluid and s0lid displacement used here lead to

particularly simple expressions for theboundary conditions.

Assuming open pores at the interface, the boundary condition for

continuity of fluid displacemsnt is

n. (u+w =n.V

where n is a unit vector in the vertical direction. In terms of the

displacemsnt potentials this becomes

B.T (e ¢ 0’) *+n.¥x(x +x) =nW

Biot's notion of ‘effective stress' is particularly appropriate for
the application of stress boundary conditions. The effective stress,
L]
tij'
on both fluid and solid) in excess of the local fluid pressure. The

is that part of the total stress within the porous mediuam (acting

components of effective stress acting in the plane of the interface
must therefore be equal to zero. Pollwoing Biot's definitions and
using Cartesian coordinates x,y,z with the z axis in the vertical

normal direction, we have

t;‘-Zm'¢ (B - 2y - al)e + M(1 - a) &

=0

(6.9)

(6.10)

—t_

[ R
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vz 3zt s-y— = 0 {6.11)

(6.12)

~
/]
h ~4
{
Qr
s
N

where e

N

-2

N
—

Finally, the pressure in the pores must be equated to that in the upper

medium, giving

. e

i p+aMe - MT=0 (6.13) ) 4

jas]
———

We later express the stress boundary conditions in terms of the potentials

==

when transforming to axisymmetric coordinates.
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6.5 Time dependence

We subsequently assume that all Adisplacements and potentials vary as

e’iwt, so that

u-+ u .-i.ut etc.
> ¥ e-iut etc

In the wave equations we also have

Equation (6.3) becomes

92y + x;o =0 (6.14)

where k, =

nle

Equations (6.7a), (6.7b) pecome
2 2 -
v (50‘ + omz) 0 (pQ’ + 9102) 0 (6.15a)
2 2 -
v (um’ + mz) + @ (910‘ + pz‘z) 0 (6.15b)

inr
a-pm e+ 2B
where pz n

A

]
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The complex density pz is identical to that for the equivalent rigid
porous material. The reduction to -this case can be achieved simply by
setting the solid displacement potential 03 equal to zero in equation
{6.15b). This gives

2
v, + -‘;l—'%z =0
2

From equation (4.16) we can deduce the complex density for a rigid porous

material and we have
e, = (@ /Dplw), m= (q‘/ma1

From the associated wave equation (4.17) we can now also deduce that

1
i QC (w)
For the shear wave motion, equations (6.8a), (6.8b) become
92 2 - 6.16
ux_,+u(pl(3+pliz) 0 (6.16a)

PX +pPpX =0 (6.16b)
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The axisymmetric case

In cylindrical coordinates we have, typically,
!(er'z) ‘,!‘rl 8, z)

and in the axisymmetric case

and 379 = O
Equations (6.5) and (6.6) can now be written
3%y

—_—
LIz

[]
+
”o L'o

(6.17)

<
[ ]
b
)
“‘OLD
LI
|
0
- Nt St N eat bl

(6.18)

N -

The scalar potentials g, .z' ¢ Gepend on r and z only, and Xz, X,
’

are now defined in terms of the single axisymmetric scalar ¢ with
3
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and by noting that from equation (6.16b)

The shear wave motion governed by the vector equations (6.16a),(6.16b)

may now be described by a single scalar equation:

v2 2., .
09 * k“ oﬁ 0

2 2
where k% =28 (4 8L
4 u pp2

(6.19)

(6.20)
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6.7 Axisvmmetric boundary conditions

Using the definitions of the axisymmetric potentials already given and
the usual vector differential operators appropriate for cylindrical

coordinates, equation (6.9) becomes

9 .01 123 30'. o
B_z“z + 0’) + (1 -;?);a—r(!‘——at ) “35 " 0

2
or, since % 'g_:(’g;) g (V2 - %;- ) for axisymmetric cases
2
? 3 2 e, M
'ﬁ“z’ 0‘) + (1 - '6;) (v 0~ - —a—‘r) “n" 0 (6.21)

Equation (6.10) becomss

? [ 2%
2 ET: + v’¢. - —3-:-,'-] + (0 -2y~ ull)V’Q' - NQ1 - u)v’oz =0 (6.22)

Equations (6.11) and (6.12) are satisfied in the axisymmetric case if

< 2
7 '3 0

or, in terms of potentials,

2 | % %y

3 “‘Tl_l'zili""b =0

B

S -y
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Since the bracketted term must approach zero as r + , this boundary

condition means that it must be zero everywhere, that is

363 az‘t 2
2_5; - 2—3;r + v 0' =0 (6.23)
After substituting the appropriate potentials, equation (6.13) becomes
Mvzoz + amv’o3 - xav’o =0 (6.24)

We shall ultimately use the four boundary conditions (6.21) - (6.24)

to determine the four potentials ¥, 02. 03. §~-

——

!1
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General solutions

Assuming a point source of sound at a height z_, above the interface, the

solution to (6.14') may be written

ik R
e
v =5 + Ol(r.z)

where R* = ¢! + (z - 2,)?, and 01 represents the wave reflected from the

interface.

The general solution in axisymmetric coordinates may be written as an inverse

Hankel transform:

-
0y ~ [T e g reoxax €.25

vhers v = (K - x;)’, Re v >0, 230, In(k } >0. and §_is the

transformed potential for z = 0.

The total field above the interface, using the integral representation

for the point source, is

'Vllt‘:cl -
e + He 1% 5, (xo)max (6.26)

v = “




R

—

o
P
T2 ”
1
For the field below the surface, in equations (6.15a), (6.15b) we l
try solutions of the form ]
- | |
( '
4, = 62 x)e** 3, (Kr)KdK (6.27)
1
‘o
e |
9, = ¢ (x)1e*® 7, (xr)KaK (6.28)
‘o

where z < 0 and a is as yet unspecified. Substitution of these leads

to two linear equations for the transformed potentials:

2 H— + aM3 o a7 g = . :
at (B0 + oMy ) - wilpp ¢ Pt =0 (6.29) ,

 (aMb $) - wiips ) = 6.30
a’(a ¢3+M¢2) @ (o;¢3*oz¢z) 0 (6.30)

where a’ = K* - yz. Equating the determinant of these equations to zero '

gives the non-zero solutions, and we obtain ot ’

i
|
(a’H - w?p) (a’M -~ wzpz) ‘ 1

-(a’aM - w?py)? =0 (6.31) )

This quadratic gives two allowed values of a’, and we can rewrite it as :

| s

(at - K) (af - K} - ohlataM - w¥py)? = 0 (6.32) x

P

e e e ————— e i
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] W P2
where k, = —-—“— (6.33)
2 mzp
and Ky = 5 (6.34)

kK, is the propagation constant for the equivalent rigid porous material,
and k" is the propagation constant for compressional waves in the bulk
medium assuming that relative motion between fluid and solid is constrained

in some way.

Equation (6.32) is a quadratic which may be solved in the usual way

to give two possible values of a.

If the second term in (6.32) is negligible then we must have

'. l' "
K)o, 0 - )

b §
. kg ¢+
2 2

al

2 2
- k; or k'; (6.35)
For our application we do in fact expect that (6.32) will give two

wavenumbers corresponding to distinct wave types, and also that k) < k!

aAccordingly, we will call one solution k,, and this is approximately
equal to k; and associated primarily with motion of air in the pores
known as the ‘slow wave'. The second solution we call k,, and this is
the wavenumber of the compressional 'fast wave' determined chiefly by

the properties of the solid part of the medium.
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In equations (6.29) and (6.30) the two potentials must be in a fixed
proportion for each allowed wavenumber. When a = k; we use (6.29)
to obtain

$ wlp, - xlaM
a,, =:L PR oL EENEELL/ Shat k-
b,

) (6.36)
Bk - k,*)
and when a = k, substitution intc (6.30) gives
ry 2 - w2
a,, = % = XaaM - wp, (6.37)

, Mk - k)

. i Equations (6.15a4), (g.15b) therefore have two independent solutions.
1 For the slow wave
[ J
i |
TS 02 = [6;(eV2E g (kr)kak )
S B : )
.; ' ) ) (6.38)
| i o= a4, )
. and for the fast wave
- ® )
- v, 2 )
¢ = |9,(K) e’ T, (Kr)KAK )
)
Yo ) (6.39)
A )
.z = a,,¢; )
)
J ) where v, = (K - kﬁ)‘
BN : .
‘ . and vy = (K - )
o '
L \
! Y
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5; is that part of the transformed potential §; associated purely

with the glow wave. Similarly $; is the part of ;.s associated

with the fast wave.

In general we may write

o, = 1(3e"% 4 a,,4e”% 7, (kr)RAK

b
¢ = l(i;.""+ .,,5-,8’*’) J, (Kr)Kdk

Finally, the general axisymmetric solution for the shear wave

motion described by equations (6.19) is

., - e 3, (xr)KaK

2
where 2z<0, v = (K} - ks)‘
.

i
o
f
‘i
\
f
!
!
|
|
(6.40)
]
(6.41)
{
|
!
!
(6.42)
A
4

~ -

|
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Simultaneous equations for thc transformed potentials

The general solution given by equations (6.26), (6.40) - (6.42)

for Z = 0 are now substituted into the boundary conditions

(6.21) -~ (6.24). This leads to four linear equations in the

transformed potentials which, when satisfied, also satisfy the

boundary conditions.

Equation (6.21) is satisfied if

vE o+, a,, )8 + v (14 a,,)é) - K (1 - «:)lzl);b

= e-vlz.
Equation (6.22) is satisfied if
{2ua,,v - k2 [a,, (8 - 2u - aM) - M(1 -a)]} §;
+ (2u} - k[ H-2u-aM-a,,M01 - )]} §

- 2uv K* =0
uvu 6~

Equation (6.23) is satisfied if

20,,V,8 ¢ 2v,§ - (2K -k)¢ = O

[ [ ] S—— ——

—

.
.
| |
i t
(6.43) ' !
A
, 4
¥ |
o
g
(6.44) {l i "
I
(6.45) |

-1 B =D O =
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Equation (6.24) is satisfied if

-1y + KIM(1 4 aa,, )3 + kiM(a + a,,) )

-1 2
e 1Z0

Vi

where we have used k’xa = wip,

With some rearrangement we now write equations (6.43) - (6.46)

in matrix form:

-V129

(A} {§1 = {s}

Vi
This is shown in full in equation (6.47)

Using Cramer's rule the transformed potentials are

FoLb g0
i .Y Vi

O St
2 Ao v

oA e V1%
! .Y vi

j, . b &1
" 2 Vi

where Ag is the determinant of the matrix [A], and A;, A2, etc are the

determinants formed by replacing the appropriate column with the

vector S .

(6.46)

(6.48)

(6.49)

(6.50)

(6.51)

et [ )

o] oy e e .
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e ———




-119 -

Solutions in inteqral form

Substitution of the transformed potentials into the general solutions

(6.25), (6.40) - (6.42) gives

-vi (z + Zo)
Al e

= — -_-——|T

‘1 AO Vi O(KI)de

e-v;zo + V22
Jo (Kr)KdK

- 4
’Z l A° V1

—
Bo v 0 (Kr)KdK
©
[ A e-v;lo + vz
= —_t  ——————
9 JOA Vi o (Kr)K4K

-ViZg + Vaz
., - [-ﬁ-} S e (koK
[ ]

where z > O for ¢, and z < 0 for the other potentials.

These integrals are typical of those found in other two-media problems,
and we may consider them qualitatively in terms of saddle - point
integrals, branch ¢ut integrals and poles in the complex k plane.

The saddle points occur at the stationary points of the oscillating

integrand, and for large Kr some of these correspond to the ray paths

(6.52)

(6.53)

(6.54)

(6.55)




R

- 120 -

governed by the laws of reflection and refraction. The remainder
consist of inhomogeneous waves (see Brekhovskikh [6.5]) for which
there is no definite path, but which can be interpreted in terms of

Snell's law by considering complex angles of incidence and refraction.

The branch cut integrals correspond to rays which are in par¢ tied to
the interface. Some of the remaining parts of these paths are indefinite
since they consist of inhomogeneous waves, but again interpretation

is possible by allowing complex, as well as real, critical angles.

wWhen a pole of the integrand lies between the contour of integration and

the real axis there will be a surface wave contribution. Nearby poles may

also affect the saddle-point integrals as in the rigid porous case.

The eventual contour of integration may not always consist of all
possible saddle-point and branch cut integrals. If the source and/or
receiver are sufficiently distant from the interface, a single saddle
path may enclose more than one branch point, thereby excluding any
separate contributions from the associated branch cut integrals.
Physically, this appears to eliminate any path which consists partly of
inhomogeneous waves and whose tiwme of travel ig less than the
corresponding wholly homogeneous path. At grazing angles, however,
each saddle path encloses a single branch point, and all possible

arrivals have to be considered.
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These considerations are summarised diagramatically in Fig.(6.1)

! in a manner closely following that given by Ewing et al [6.2]) for ]
! a solid-solid interface. For this example we assume kz > k‘ > kl > k;' i
The wavy lines denote inhomogeneous waves, and in general two-part paths |

i
from branch cut integrals. The potential ¢} is associated purely l

with the slow wave and the potential ¢} with the fast wave, so that

in equations (6.53),(6.54) we could write

o = ¢ + 3,05, 4 = 4 + a,9;

In addition to these arrivals, of course, there may be surface wave

contributions.

It can be seen from the diagram that when the receiver is on the

‘ interface, the four paths for each branch point associated with the 1 :
- ' four different wave potentials coalesce into a single path. This T
: . I : reduces the total number of paths, excluding surface waves, from

sixteen to four, and this is a useful simplification when we consider

motion of the ground surface. Expressions for this are derived in

i
—
< g A

Appendix 5.
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CHAPTER 7

pu——

. :
CONCLUDING REMARKS

7.1 Although we have been able to predict qualitative features of

[ ] [

some existing data on acoustic-to-seismic coupling, in particular,

that used to compute intensity ratios (Chapter 5), the requirement E
for design of unattended seismic and acoustic sensor logic remains .
that good quantitative agreement with these ratios should be obtained }
and that there should be theoretical agreement with other data on ‘
acoustic-to-seismic coupling [7.1). These data include the results ;

of tests using impulsive acoustic sources above and below the surface

and sensors at depths of up to 1.5 m.

! 7.2 The main obstacles to such requirements at this stage are lack of
information on the frame elastic constants required to characterise [

poro-elastic soils (Chapter 5) and the complex-layered and possibly

e

anistropic structure of real grounds.

{ 7.3 The analysis has shown that surface particle velocity prediction

is particularly sensitive to the value chosen for the frame rigidity

- ' modulus.

numerical predictions of coupling from above-ground point acoustic

sources to sub-gurface geophones are possible in certain well-defined

JRp——

. . . . e . N
——— — St — [E—

|

J 7.4 The model developed in this work has been brought to the stage where
t

]

gituations viz. near-surface sources and air-saturated, isotropic,

porous ground of infinite depth. Alternr:ively, if the acoustic

S

{ source is sufficiently far removed from the ground surface for the
incident sound waves to be treated as plane, then not only can

predictions be made of the coupling to the surface of semi-infinite

t ;
ground but also to ground in the form of a hard-backed porous layer.

L B I —— QR =S|
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7.5 Extension of this model to allow for anistropy and for more
complicated ground structures and continuous sources will be
straight forward albeit sufficiently algebraically cumbersome to
warrant a semi-numerical approach, such as that adopted by the

Fast Field Program and its successors in Underwatexr Acoustics.

7.6 Further extension of the model to allow for impulsive rather
than continuous sources, should also be possible using a numerical

approach as suggested recently by Feng and Johnson (7.2].

7.7 The model may also be extended to include the effects of partial

water-saturation of poro-elastic soils along the lines suggested

by Brutsaert [7.3).

7.8 Finally, it should be noted that the theories developed in this

report are applicable to seigmic disturbance of poro-elastic ground
by direct mechanical contact. Consequently it is possible to envisage
prediction and analysis of seismic refraction results in a way that
differas from established methods. Furthermore the possibility arises

of the prediction of ground vibration due to road and rail vehicles

in terms of basic fundamental attributes of intervening terrain.




- 126 -

REFERENCES

[7.1]

[7.2]

K. Attenborough Draft chapter on Acoustic-to-Seismic coupling

for NATO A/C Panel III RSG-II Final Report (1983)

S. Feng and D.L. Johnson High Frequency Acoustic Properties
of a Fluid/Porous Solid Interface II. The 2D Green's Function

J. Acoust.Soc.Am. 74(3) 915-924. September 1983.

W. Brutsaert The Propagation of Elastic Waves in Unconsolidated

Unsaturated Granular Mediums J. Geophys.Res. €9 (2) 243-257

(1964)

L Y

[ JORY o S——

[ RO

[

. o ———— o ——— L — et e et . et




- 127 -
APPENDIX 1

WEYL ~ VAN DER POL FORMULA -- CONFIRMATION

The method of steepest descents has been employed extensively to obtain
a computationally feasible solution for the field from a point source
of sound in air above a locally reacting ground plane. Various
mathematical approaches which arrive at the above solution under various

approximations are listed in reference [1].

The important case of near grazing incidence requires additional care while
handling the steepest descent integrals and this is chiefly achieved by a
method known in the literature ([2) as subtraction of the pole.” This method
often leads to laborious calculations. A simple alternative solution can

be obtained by an appropriate application of the method of stationery phase. In
general, the method of stationary phase yields useful approximation as long

as the integrand is a slowly varying function of irtegration variables in the
neighbourhood of the stationary point. After a suitable choice of integration
variables, the integrals are approximated in the usual way and the final results

for the reflected field confirm those obtained previously.

The physical problem under consideration can be formulated in terms of the following
boundary value problem. For convenience, we choose a cartesian coordinate system
The acoustic velocity potential satisfies Helmholtz wave equation in both the

media (z < 0 and < 0) which are characterised by their densities p; and p;

and propagation constants «; and K3, regpectively. Thus we have,

e R o | v
———

'
— e —— gt
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(92 + k199 = 8(x)  Sy) S(z-2zp) 2>0 (a1.1)
(92 + %)y = 0 ,  2<0

where x3 = k1 + isl and K2 = k2 + 132 and the source term is

symbolically represented by Dirac delta function. The time

dependence of exp (-iwt ) is suppressed throughout The boundary

conditions under consideration are continuity of pressure and normal

velocity across the interface z

=0 i.e.
p1vix,y,0-) = pad(x,y,0+) (A1.2)
) and
* ?__W(XIYIO') = Lw(le'o"’)
az 9z

By making use of two dimensional Fourier transform in space variables

x and y we obtain the following for the reflected field z > O,

- -
v - o iK1Ry . Iei°“ o I 1 P X _pPX
o T 4mR 4x2 2i +
Do "Ry e = 2x P X *oX
§
o

% e—ixl(z + z,) +iBy a8

where o and B8 are transform variables and X, , " 41 - a? - p? (A1-3)

The square root functions are defined in such a way that

x1 2 - xi , " a2 when B = 0 and K when a = 0, The integral
’
[

12

in (2.3) can be approximately evaluated for large source - receiver

e

)

. —t [
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distances by the method of stationary phase and we obtain

. R(8) e iRy
4 R2

where R: = xz + yz + (Z + Z )2
/2 2
R(g) = <°8 € -M/n -sin o

co-e+|4/nr- sin” ©

and M = 01/92 and n = lenl. The above asymptotic approximation

is of limited use and breaks down when © is near w/2 and this is

due to the fact that the integrand in (A1.3) no longer remains a
slowly varying function, but will oscillate rapidly between -1 to +1
In this case, (@  v/2], the contribution from the stationary point
has to be considered more carefully. 1In order to facilitate this

computation, we rewrite the integral in (a1.3) as

-iklkz s W().)
4n R2

- o

P-X ~iX, (z-z ) +iBy
(1) i fox 12 1 [}
where ) =3 ) e da X(P X 3P X e as
4 120 172
= ->
(A1.4)

The integration is performed successively, first with respect to

(from now on abreviated as w.r.t.) g and then w.I.t.a. The integral
w.r.t. B is evaluated after deforming the contour into the complex 8
plane and then approximating the resulting integral by the method of

stationary phase.
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This is accomplished by first ohserving the branch point and pole

singularities of the integrand in the complex 8 plane. In the
pregsent case the integrand has branch points at

M2l
g =2t 2 _qg2 mdsimplepolasatﬁ-tﬁ%ﬁ_:i'—'})—)xlz—az

2

' The integrand is made single valued by introducing the branch cuts

as shown in Fig. Al.1.

-tk,? -aty?

r_ 1,4
u-(k‘ -a)

. 1.0}
. (kl-c)

t,2ah?

FIGURE Al.l Branch cuts in the complex-B plane

e
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The deformed contour consists ¢f two circular arcs of large
radius going round the branch cuts. The contribution from the

circular arcs is zero.

L]

The contribution from the branch point
—(rzz - a?) can Be shown to be

o(exp{-i(xlz - a?)" (z4z ) - & (xzz -a2)® yh

and will be neglected.

Thus we are left with the following integral
Pix
172 ‘-i'xlvlcosel +1i .vas:Lnel
(p x+ )
X P P °
C

a8

(A1.5)

where we have lety-rl sin el, z+z =r cos 61 in A1.5 and

C is the contour round the branch point - (:12 - “z)ﬁ. This

integral is approximately evaluated by the method of stationary

phase. The exponent in Al1.5 has a stationary peint at

B--/xl!-a!

interested in, we observe that the stationary point is in close

proximity of the branch point - ]Klz - a2,

sin 01. When 6 v 1/2, the situation we are

Now the main contribution to the integral arises from the neighbourhood
of stationary point, in that part of the integrand which is slowly

varying. The case where the integrand is not slowly varying has to
be considered separately. In order to do this, we first rewrite (a1.5)as

-Hl\'(a,o7-1}{/¢2-azcoao +cA} x
1 1 1

e




|
a
“i

-1 )l.x (z+z°) +iBy

X e
—_—— A8
+
X (g *e, )
(=]
2
where A = M 2 _J‘ and
1-M-
P X _ P x
R(,0)= 217 172
p +p
2% 1%2

Now we write

- 132 -

at 8 = - 'xlz-uz sin @

(A1.6)

Y 4
X, = /-clz - a? - g2 = (/zlz - a2+ 8) ‘/‘12 - a2 - g

In the neighbourhood of the stationary point, the second factor is slowly

varying and we put B = - “12 - a2

(as 01 ~w/2).

On the remaining integrand, we put

L]
{ Klz-a2+8}

-3 .lw/C T

where T is a real parameter and varies from -» to + ® on C.

After some algebra, #e have from (Al.6)

{nv(a,el) -1} {cos @,

Ny

+ :l(xlz -a?)y a)

[ [ I S .

G E EE e e eeel e e

=

@ Seaat e e

~
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-1

x exp { - 1y, /xlz -aZ (1 +4 cotzell } =¥ Qrsin e,) (A1.7)
) L]
I 2
where I{u) = e-t u ae
t +b
-
! and
! -in/a 2 ¥ 2 &
; b=he {(.c1 -a?) cot e + kA e 2 - a?)"'} (a1.8)
l

!

i The integral defined by I(u)} can be expressed in closed form involving
| ' error function complement and we can write it as
N
o
C - ‘ () = ~ /B exp (-iv/4) .F(b exp (1 v/4) /D)
Loy ‘

- ‘r Thus we have from (A1.4) and (A1.7),
: !
co _ y/ 2 2 2
1 . m , 4 eiax b -<1 6 (1+4 cot sl)
- ' 4n? ) o
v x {cos o + xl(zll - a?) A) 1(2:1 sin 911_ & (*1.9)
)

S
i ’ .
. | \ ﬂ
: “ '
i [
' »

v et = [N

-~
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I
N
In the present case of interest y(l + & cot2 01) Yy since cos o, 4
. |
is small. The final evaluation of wClT is carried out by a further l |
application of method of stationery phase. Now the integral I(21-1 sin61)
does not contribute to the exponential and the stationary point of
8
2 2
ax - r 12 - a2 occurs at g = - kx/(x" + r,°) . The relevant terms at ;
this point are given by |
\/ 2 .42 K P K cos 0 K Y
< at Lt - 1 f
R ‘
cos el R sin 91 ‘
i
since sin @, = 1 ‘
1 ! |
j !
/4 R |
b = 0.5 exp (-in/4) {A + cos @} 1 i :
r, . '
i
i !
From (A1.3), (Al.4) and (A1.9), we finally obtain for the reflected field ) i
in z » 0 as [ )
e-ir R e-ix R l T
Ve ekt St {1420y (RE) -1 F(n) ) (A1.10) o
1 2 i
3

where y = v ;‘1R2 (A+ cos ©)

2 1

A=M

* 8 when |pn|2 >> 1 and M2 << 1
1-m

and F(a) = exp (112) onp (-ttz) qat

After some simple algebra the above solution for the reflected field is

easily shown to bs equivalent to those previously obtained.

e
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APPENDIX 2

ON THE ACOUSTIC SURFACE WAVE NEAR A RIGID POROUS BOUNDARY

A spherical wave incident upon an interface of two media, in particular,
air and porous ground gives rise to reflected and refracted waves subjected
to Snell's law. Under certain circumstances, the interface can support

a wave which is exponentially damped in the normal direction and whose

amplitude decays as r—a. This wave is termed as a surface wave.

In this section, we clarify certain mathematical details which are necessary
for the existence of a surface wave. We also provide an alternative
interpretation for the acoustic surface wave in terms of discrete spectrum

of a suitable partial differential operator.

We consider an incident spherical sound wave

R

s
4 R1

with time dependence of the form exp (-iwt), incident upon a locally
reacting boundary. For the above case, surface waves are conveniently
analysed by expressing the reflected field as a Fourier integral.

The pole(s) of the reflection coefficient (in Fourier domain) are
closely related to surface wave(s)}. The computaiion of the reflected

field crucially depends upon the evaluation of the following integral

s s GEE EE R G o Eaw am B BN eI
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<
Dz e ViR
¢ (H,r) = 32 Ty Je(Kn) KK
21 12

where vl 2 - % - k? and p1 2 are densities of the media z > 0 and
’
z < O respectively and H = z + z_. The square root functions are defined

in such a way that /k* - kl T =4x as K—> 0.*

2 12
’

Due to the presence of branch point singularities in the integrand of (a2.1)
it is important to define the branch cuts before analysing the existence
of poles. The choice of branch cuts is arbitrary as long as Re vl >0

’

to ensure the convergence of the integral in (A2,1). Essentially two types

of branch cuts are used in the literature viz, vertical and hyperbolic (1}

(A2.1)

branch cuts. Here we consider the case of vertical branch cuts and the analysis

for hyperbolic branch cuts follows on similar lines.

The vertical branch cuts are defined by Re K = t Re k., Im K > 0 and

1

Re K = % kz, Im K > 0. Corresponding to each square root function, there

are two choices for the sign of Re v1 and these are shown in table A2.1.

TABLE A2.1
. Re v, Re vz
I + +
II - *
II1X + . -
v - -
*k are complex constants with non zero imaginary points
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We write v, = | vii exp (i arg(v.i)], for i = 1,2 and the sign of Re v
i . ‘

depends on the variations in arg (vj). We consider these variations by l )
considering a small neighbourhood around the branch points K; and k;

—_—
[ e ‘

TABLE A2.2 |

}

9 Arg v, (K) e Arg v, {K}) i
~3n/2 -3%/4 + x1/2 -3n/2 -3n/4 + X,

-K - xl -ﬂ/z -N =~ x2 -'/2 |

-+ X, -n/2 + x;_. -% + X -n/2 + x i

2 2 ‘

- ‘ |

Xl _ o ‘xz 0- ' {

X X ;

1 1 Xz X }‘ .

n/2 n/4 + xl n/2 n/4 + x ! }‘

2 ‘

i
where X1 1s arg k;.which is small as k; ts esaentially real and x is arq k . i y )»‘
2 '
Clearly on sheet I, “ L
-n/2 + < arg v (K) < 7/4 + : :
X, care v, Xy | ;
and :
-n/2 + < v (K) < ®/4 -+ ¥ . ‘ :
n/ x, < arg 2( ) / X, |
Now we consider the possible existence of poles on the upper Riemann sheet. "
It is easily seen that the poles of the integrand in (a2.1) are given by the ] ,
equation
v 4+ =0
02 1 Dz\) 2
i.e.
K=tk [((1-M0nd) /(- Hz)]* (A.2.2)

where M = pl/ "z and n = kz/kx' In order to locate these poles in the

first quadrant, we define the complex number

X, =k [(1 - Wn?) / (1~ wi?
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For most of the grounds of practical interest IHZI << 1 and we approximate

a - Hz)i = 1. BHence K, = kl (1 - Hznz)*
We also write the complex number nM = lnu| exp (y). It is readily shown that
1
K, =k [1+ Inn)4 - 2 [nm)? cos 2y1+ (A2.3)
and
2.2
arg(K ) = arq(kl) + darg (1 - n'M)
-1 InHIz in 2¥
= ¥ + {tan P sin
1 |nM{* cos2y - (A2.4)

Since x >0 and K, > Ikli, the pole lies to the right of the branch point
k1 as shown on Fig A2.l1. In order to verify that the equation for the pole
is really satisfied at K,, we compute v;(K) and vy (K) at K,.

v1({K,) = ¢ ixlnn and

arglvy(X,)}= t ®/2 + arg (kl) + arg (nM)

where the choice of sign is fixed depending on the Riemann gsheet. Now
arg (kl) is a small positive quantity and arg (nM) =2-v/4 for a porous
material at low frequencies and for K, situated as shown in Fig.A2.l.

x1 £ arg vi(K,) < 8/4 + x1
on the upper Riemann sheet and hence v;(K,) = + Lklnn.
Similarly,

Vy(Ky) = ¢ 1kln
where |n|2 is assumed large; and

arg va(K,) = £ x/2 + arg (kl) + arg (n)

Now, for K, lying to the left of the branch point k,, we have

2’
-n/2 + X, < arg va2(K,) <O

Since arg (kz) > arg (kl)' we have on sheet 1,
va(K,) = - ikln

Thus it is evident that on sheet I, the equation for the pole is satisfied

and hence X, is a al pole on sheet I.

—

4
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Location of pole and branch cuts

Fiq. A2.2




- 141 ~

Now the evaluation of the integral is accomplished by first extending the
range of integration from 0 to ® to ~» ¢to +o , and deforming the contour into

upper half plane of cut K - plane which encloses the pole at K,. The branch

cut integrals are approximated using the saddle point method and the residue

term represents the surface wave
Alk, exp(~ik _BHA) /
1 140 ey V 1-a% )

residue at K, = 3
(1-M7) 4r

where

A=M[(n -1) /(- H’)l’

For the sake of completeness we quote the final expression for the reflection

field in z > .

24() + B cosB,) _ iN

eik2R;
R (6,)) + 5
k,RB + cosb ) X, R,

RN .
4x R,

$res 47R;

P B
+ O(R, ;

+ residue at the pole.

where
N = §(R" (6,) + R' (8,) cot O, )
R{0,) = (cose, ~ B) / (cos 6, + B )
' 8 = Mn
At this stage it is worth mentioning that the above solution is of limited

|
practical use. For a solution which is uniformly valid for all angles of

' incidence a modified solution is used as described in previous section (see

]
Eq. (A1.10) ), or by a similiar method (A1.1]. In this case, the surface wave

i term appears implicitly through error function complement, which can be seen

more clearly for large arguments of the function (see Bq. 52 in [Al1.1)).

e —-
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A simple interpretation for the surface wave can be given in terms of the
discrete spectrum of a suitable partial differential operator. In the present l

{
case it suffices to consider a two dimensional model for ease of illustration,

]
where x and z coordinates denote the horizontal seperation and vertical ‘

distance from the origin respectively.

We are required to find a function ¢$(x,z) such that I

¢+ (k* - L) -= &(x) 6(z - 2,)

(A2.5)
XX

where Lé = -¢_ _, over the half plane ~» < x < », 0 < z < =, such that
zz

Oz(x,O) + o (x,0) =0 (ar2.6)

H
where a is a paramenter related to impedance and Re a > 0, Also we

. require the field to be outgoing at infinity.

s

$(x,z) =20 Wh? -1 [x| ) 8§z - z,) (a2.7) i

2i/k* - L !

!

|

!

1

]

t ' J

The solution for A2,5 can be written symolically as i

i

. This operator espression can be evaluated, once we know the spectral
‘ representation for L under the above boundary condition . This can be
I
} obtained easily by the well known methods (A.4] and we have
J

§(z - 2,) = 20 exp(-a (2 + 2,.)) [1 - H (Rea))

i | exp tip(z -z + 4 /KT - p' | x|)
n

dp
s

. 4 | exp lip(z +2,) + 4K - o7 |x| ) p - ia o
! '
i = O’ p + ia (A2.8)

=

b

\ -~ d

-
»
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-¢ (x,z)

In Eq.

r the operator L.
! i
: easily seen to be contributing to the continuous spectrum.

integral in A2,9 waves.
singularities of Green's function give rise to space waves, while pole

-1 o exp (ivk’ + @ |x]] expl-a(z + z.)]

AT+ ot

”IiY exp (ip(z - z,) + kT - p?
-~00
«

—% exp lip(z + z,) + 1T < o7

b

{x{1 gp
> -
|x|) 2= 1e __do (A2.9)
p + da ¥k' - o

the first term arises from a pole of the Green's function and

singularities give rise to surface wave(s).

in the literature, is referred to as constituting the discrete spectrum of

The remaining two integrals, after some algebra, can be

In fact, they

can be shown to be direct (first integral in (A2.9)) and reflected (second
In other words we notice that the branch point

————
—————
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APPENDIX 3

THE ACCUSTIC MODELLING FACILITY

Introduction

This Appenaix irtroduces the basic rules of acoustic modelling
and discusses the essential requirements of the modelling
instrumentation. It concludes with a description of a series
of model experiments, conducted in a small anecroic chamber,
to measure the amplitude ratio of the direct and transmitted
sound fields above a porous half-space and the delay between

the arrival of the direct and transmitted sound waves.

Basic modelling rules

In order to model an acoustic sound path, two conditions must

be fulfilled. The first is that of geometric similarity and

the second kinematic similarity. Geometric similarity ensures
that the ratio of the wavelength of the sound source to the
dimensions of any bodies or reflecting surfaces remains constant

and hence diffraction effects will be replicated in the model.

Kinematic similarity is required due to the fact that air is
used as the propagation medium in both the full scale and model
environments and hence the velocity of sound is a constant. This
imposes a time scale factor, as can be shown by considering the
dimensionless quantity characterising reference times (the

Thomson Number) as follows:

Tm Vo . To.Vo
T, T,

s I

G
[
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where T,V and L are time, velocity and length respectively and
the subscripts m and o refer to the eriginal and model propagation

paths. Since Vm = Vo then
Tm - Ly
T G

and the time scale factor equals the length scale factor. Thus
maintaining a constant sound velocity requires that the model
frequencies be increased with respect to those of the original

and that all time periods by scaled downward.

In general the scale factor derived for the condition of geometric
similarity must also be applied to the acoustic properties of

the materials used to reconstruct the surfaces and obstructions

in the model; so that the impedance at the model frequencies

equals that at the full scale frequencies.

The prime objective of the model experiments conducted during

this study was to evaluate theoretical predictions of the

coupling between the airborne and seismic waves, rather than to
obtain quantitative data of a precise ground surface. In view

of this it was felt unnecessary to employ 'scaled' models and so no
attempt was made to scale the acoustic properties of the model

ground surface.
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A3.2 Requirements of a model receiver

The basic requirements of a model receiver are small size, high
sensitivity and wideband frequency response. Size is important
for two reasons (a) because directivity is related to the ratio
of diaphragm diameter to wavelength and hence a small microphone
better approximates an omni-directional receiver and (b) because
the reduction in diaphragmmass improves the high frequency response
of the microphone. The major disadvantage of a small diameter is
that the reduction in surface area reduces the microphone's

sensitivity.

The receivers used for the model experiments were commercial
1/4 inch diameter condenser microphones manufactured by Bruel
and Kjaer (B & K) of Denmark. The sensitivity and bandwidth

of typical microphones are shown in Table A3.1

Table A3.1 Microphone sensitivity and bandwidth

Microphone Nominal Sensensitivity Bandwidth
type diameter mV/Pa kHz

B & K 4136 1/4¢ 4 70

B & K 4138 1/8" 1 140

Figures A3.1 - A3.4 show the directivity of these micronhcnes at
various frequencies, measured both with and without a protection

grid [A3.1]. Although the 1/8" displays a wider bandwidth and
superior directivity, its low sensitivity limited the maximum

Tength of the model propagation path to less than 1 metre.
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In view of this the 1/4" microphone was adopted as the standard
receiver and the 1/8" microphone was used primarily to test
the performance of the 1/4" at short separation distances. The

1/8" microphone was alsc used to measure the directivity of the

sound sources.
Requirements of a model sound source

The sound source should be omni-directional, have a wideband frequency

response and generate adequate signal power.

Model sound sources fall into two categories, continuous and
impuisive. The impulsive source, such as an electrical spark,
generates a short energy pulse of high acoustic intensity and

wide bandwidth which propagates along an infinite number of paths.
tEach path can be identified by the time delay between the energy
discharge and the arrival of the puise at the receiver, hence there

is no need for special anechoic measurement environments.

The major limitation of the impulsive source is the possibility
of non-linear acoustic propagation near the vicinity of the
source, which imposes a minimum length of propagation path,
Furthermore, they require sophisticated measurement and analysis

systems to cope with the problems of direct and reflected pulse

overlap [A3.2].

Continuous sources can be handled with relatively simple measurement
systems, but since the energy is radiated continuously, it is not
possible to identify individual propagation paths. This means that
all measurements must be conducted within an anechoic environment.
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Model sound sources

Two sources were selected for the model experiments. The first
was the air jet described by Delany et al [A3,3] and shown in
Figure A3.5. Measurements of the directivity in both the vertical
and horizontal planes indicate that this design is a good
approximation to an omni-directional source at frequencies up to
100 kHz. One particularly important feature of this design is its

excellent long term stability, so that over a period of six

months the one third octave spectrum varied by less than 0.5 dB.

The useful bandwidth of this source is 1-100 kHz, as dictated
by the signal to noise ratio of the measurement system and the
low frequency performance of the anechoic chamber. Figure-A3.6

shows the free-field spectrum measured at a distance of 100 cm.

The second model sound source was a spark discharge device designed
at the Open University. (A complete description of the design

and operating characteristics is given in reference A3.2)

The spark operates at very low energy levels and so non-linear
propagation effects are virtually eliminated. A further
advantage of the low energy is the fact that electromagnetic
radiation is kept below levels that can be detected by the

condenser microphones. A typical spark source spectrum is

shown in Figure A3.7.
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Modelling instrumentation

Dynamic range

Acoustic modelling is very demanding of instrumentation systems.
The low sensitivity of small microphones requires that pre-amplifiers

and main amplifiers have very low electrical noise floors over a very

wide frequency range.

A typical microphone amplifier chain consists of a pre-amplifier,
to convert the high output impedance of the microphone to a
Tow impedance suitable for driving Tong cables, and a measuiring

amplifier to provide the polarization voltage and the gain.

An estimate of the dynamic range of the instrumentation system can
be obtained by calculating the noise floor of the amplifiers
and subtracting this value from the input signal level. The
following figures are taken from the relevant manufacturers'

specifications.

(a) Pre-amplifier noise
The inherent noise of the pre-amplifier is determined by the
capacitance of the microphone cartridge. For a 1/4"
microphone the total noise over the range 20-20 000 Hz

is quoted as less than 120 microvolts.
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(b) Main amplifier noise
The noise floor of the main amplifier is determined by the

thermal noise of the electronic components. The signal to

RS, [ ] [re—

noise ratio for a 100 mV input is stated to be better than
100 dB, which implies a noise floor of 1 microvolt over the

range 20-20 000 Hz. !

Assuming that the main amplifier noise can be neglected,

compared to the pre-amplifier noise, then the equivalent

——

sound pressure level of the noise floor is 63.5 dB.

If non-linear propagation effects are to be avoided, then
the maximum source sound pressure Tevel must be kept below
140 dB. Subtracting the noise level from the signal level

gives a dynamic measurement range of approximately 75 dB.

A3.5.2 Atmospheric absorption

The source-receiver dynamic range is further degraded by atmospheric
absorption. It is well known that high frequency sound is
attenuvated as it propagates through the air due to a combination

of thermal, viscous and molecular relaxation effects. Delany [A3.4]
has made an extensive study of the attenuation mechanisms and
derived a set of equations that enable corrections to be made

based upon measurements of the ambient temperature, air pressure

and relative humidity.
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The results of calculations for typical indoor values of these
parameters shows that the attenuation can exceed 5 dB/metre

at 100 kHz.
Digital processing equipment

The majority of the signal processing tasks undertaken during this
study were executed on a commercial digital spectrum analyser,

a Nicolet 660B., This is a dual channel analyser performing

a Fourier Transform on 1024 data points to produce a 400 line
spectrum over a pre-determined measurement bandwidth. Alternatively,
the instrument can produce a one third-octave band analysis over its

full measurement bandwidth of 100 kHz.

The analyser has five basic operating modes, but the only one
used for this study, was the dual channel mode. If the two input
signals are represented by A and B respectively, then the analyser

will calculate the cross-spectrum from the expression
G(f)pg = A(f) . B(f)

and the transfer function from the expression
H(f) = G(F) pg/A(f)

The Nicolet is also capableof calculating the coherence function,
which for linear systems can be interpreted as the fractional

proportion of the mean square value of the output signal B(f) which

is contributed by the input signal A(f). The coherence function, gz(f)

can be defined in terms of the cross-spectrum as

T
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1 2
2 lG(f)ABI
§u(f)pp = ~—————e
A8 IA(F)].1B()]

Measurement of the coherence function proved a useful means of
estimating the influence of near surface turbulence upon grazing

incidence propagation.
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APPENDIX 4

CALCULATION OF SURFACE INTENSITY RATIOS

Semi-infinite medium

In this section we are interested in obtaining an expression for the
square of the ratio, solid particle velocity to pressure at the surface,
where the ground is considered to be of infinite depth. We consider

a plane wave incident upon the interface at an angle 6 away from the

normal.

We note that in a poro-elastic half space, there will in general be
six types of waves. These consists of two dilatational and one shear
wave in both the solid and fluid phases. In terms of scalar potentials,

we write, for the solid phase

¢$' = a' exp [-iwt - k'y 8in8' - K'x cosb')]
1 8 ~

¢ = a7 exp [-iut - k"y sin@” - k"x cos6")]

v o= a: exp [-iwt - ¥y sin® - K¥'x cosd )]}

(A4.1)
1
and for the fluid phase,
v = F Y
¢z T 01
” = LF %)
‘z T.z
¢ = &y (Ad.2)
3 r

where k', k" and K are propogation constant as obtained in section

5.1 ', 1" and * are the following ratios of amplitudes

-t
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™ = aé / a!

™ = a* / a"

and they can be obtained from the relation

A _-k?p + pjw? + 1ukF (w)}

——

s { k?Q + iwbF (w)}

where k assumes the values k', k" and kr respectively.

The solid and fluid displacements can be expressed in terms of the

above potentials as

w <3 3 3
x x Ix y

Yy y 9y
[ ] L]

U =.a.92_+_a_’_2_+ﬂ£
x ax ax dy
L] »

v =242 L3 _ 3y
y ¥y ¥y ax

(a4.3)

(Ad.4)

Ponrale 3
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and the relevant components of solid strain are

Ju 3u
e =3ux,e =3y, e = 1.(__5.' __x) (A4.5)
xx x Yy Iy X 7\ 9x
and finally the fluid dilatation
Jdu u
€= _x +_x (A4.6)
ax oy

We also have the stress-strain relations for an isotropic medium

aij = (P - 2N)ukk<'5ij + 2N'!ij + Qukkdij

061j = - pf 6ij = (Qukk + R Ukk’ Gij (Ad.7)

{ and implicit summation over repeated indices is assumed.
)
l | : The normal solid particle velocity, V is given by
f ‘ N
: Ty u
L : " v = X (A4.8)
i i ot
- ‘ and from Eq (5.16), we have for V at the surface x = 0,
N | vV = - iu [a'(.ik'cosB'+a"(1k"cosO")
s s ]
" -ras"'(:l.kr sin 6 1))
v
! x exp (1 k 8in 8 y - i uwtl (Ad.9)
: t Wherein, we have made use of the relation,
1
| s k_ sin 6 = k' sin 0' = k” sin 0° = k" sin 8" (A4.10)
| i
|
SRS | |
| | \
; ro ¥ l
| Nl
' o s
* v
L ~a ‘
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Also at the surface the normal stress in the frame must equal
stress in the fluid as both are acted upon by the outer air

presure p. Thus

= -p

ola

(1 -

From the stress-strain relations (Ad.?7) we can express

p = -K ~n}+e]
’Qn

and using (A4.5) and (A4.6), we get for the pressure of the surface

. : e
p=-K -{1-Q -a‘k'z-a"k"z ¢{'as'rk
£ T 8 s 2
- asw k" T"}]

X exp ukoy sin 00 - iwt)

From (A4.9) and (A4.11) we obtain the ratio of solid particle velocity

to the pressure at the surface i.e.

V. = {1 - Dwlcos 8' + I'_ k' cos 8' + I, k' sin 4 _J
S 1 — —_ X
—_ k r
P , k
ltfk' 1-0-+1')+I‘1 1-a,r')'
1] 2
where
2
- " L]
I‘l a- k
2
’ L]
a, k
and
2
r .r
I'2 = a . k
vped
a.

(A4.11)

(A1)
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The constants I'l and I‘2 are as yet unknown and can be expressed in
terms of known quantites with the help of the following ,cond,ttio_ns

at the surface x = 0. These are:

i) vanishing of tangential stress at x = 0 i.e. exy =0

ii) stress in the frame equals stress in the fluid i.e.

These two conditions provide two equations for I‘1 and I'2 and after

some algebra we have from (A4.5) and (A4.7),;

sin29"l‘1~c0326rl‘2--sin29'
and
{2 NQ cos®e" + (A @ - (1 - WQI) r, + M sin 267 T,

= 2 NQ cos’ 6F - (A - (1 - MQ} (a4.13)

which are solved to give

I, = ~[ND tan 2 6% ain 2 0' + 2N cos> ' + (A - (1 = R)Q })

1
(NQ tan 2 6% sin 2 6" + 2NQ cos® 6= + {Af - (1 - MQ }]

and

I‘z = l"l sin 2 6" + sin 2 8°' (Ad4.14)

cos 2 0F

Now with the help of A4.14 and A4.12, the square of the ratio,
solid particles velocity to the pressure at the surface can be
readily computed once we know the propagation constants k', k"

ana k©.
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In the case of normally incident (Oo = 0) plane wave, the ratio

can be expressed in a compact form

2
I .
AN u—ﬂ)’w’[l_-z_}’
* s O
? k2 'l"-'r"]2
e (
as I‘1=-l and l'2=0

This result differs substantially from that obtained by Flohr and
Cress [Ad.llwherein the ground has been considered as an elastic

continuum. The present result is frequency dependent which is

|

!

\ qualitatively consistent with their measurements.
{

(A4.15)
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A4.2 Rigidly-backed layer

The effect of inhomogeneity in the ground on the wave propagation
can be described by considering it as consisting of several layers
of differing properties. One such simple model is to consider
a finite depth of poro-~elastic layer supported by a rigid semi-

infinite medium.

In this section, we derive an analogous expression to that of

Eq A4.15 for normally~incident plane waves. When such a plane

wave is incident upon the layered medium, inside the poro elastic
layer of depth say, 4, there will in general be twelve possible

waves., As before, they can be represented as follows:

In the solid phase

01' =a ' exp (- iut) (e th'n  pe” ik'x
. - ",
$," =a " exp (- iut) fef ™ | pne ”‘,x }
+ 1k%x +pTe” 1P } (A4.16)

r
¥, =a exp (- iwt) {e

In the fluid phase
o2! = 1! plv

L] = L] L]

2 P,

= 1’ P

L 2] 1

The unknown quantities T, T" and 7 denote the relative amplitudes

of backward travelling waves to the waves generated at the surface.

Now at the rigid backing (at x = d) the tangential stress (oﬂ) will be

zero, which in turn from stress-strain relations A4.7 implies that
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exy = 0. Furthermore as the backing is hard the normal particle

velocity is zero at the backing i.e.,
v8 =y_=0 at x = @&
Also at the surface n =0, the tangential stress, exy = 0,

Using the above conditions, after lengthy algebra, we obtain the

following for the square of the ratio of solid particle velocity

to pressure at the surface

where

a = ik'd and § = ik"a

(n4.17)

e AR T P o 2 =

]
]
5
I
I
i
I
i
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APPENDIX S
MOTION OF THE INTERFACE. THE GEOMETRIC APPROXIMATION
Using equations (6.18) and the integral expressions for the potentials,

and after performing the appropriate differentiations with respect

to z, we obtain the components of displacement at the interface where

z = 0:
|1 e V1%0
u = 37 -A—; [Ag* a,,4; - VsAu] —\;—an (Kr)KdK
b
»
1 e V120
uz = -A—o- [\HA; + a,, V2l ¢ K‘A.] —\T!.—Jo (Kr)K4AK

These integrals are now in a form familjar in many analyses of reflected
spherical waves in which the reflected field is expressed as a
superposition of plane waves multiplied by the appropriate reflection
coefficient (Brekhovskikh [6.5]). In these the contribution from

the saddle point (at K = k, sin®, where 0 is the angle of incidence)

1
is obtained as an asymptotic expansion, the first term of which gives
the geometric approximation. Ignoring the contributions from the

branch cuts and poles, we have

ikiR )
u_ - :——[ -’-; (8, + 8,38, - (iainte - k1A )S— (1 + O 1)):[
ikiR _
or u =~ ikasing [A, + 8,,82 - (kisin'® - m’a.] L sor)
r .Y R
o .

-

—— Mmamt peewed Gumem WM P

(A5.1)

|
ws.2 | ;

|

|

e S =

(A5.3)
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and

} ¥

u, . %—o- {txisin?e - k2)*As + a,, (x}sin*® - ki) 4,

ikiR _
+ kisin’® Au] 5—§—— (1 + O(R 1))

where R = r? + z}, sin® = %, and the determinants are evaluated

for K = k31sin@.

We do not expect the geometric approximation to be valid at grazing

incidence because the determinants A,' A,’Au all contain a factor

vy, and thus approach zeroc as b —>n.2. To see this we recall that

\ they were formed by replacing columns 2, 3, or 4 of the matrix

in equation (6.47) by the vector on the right-hand side. This new

| column may then be added to column 1 without affecting the value of
; the determinant, and this results in a single non-zero element

' 2v; in the first column, which must be a factor of the determinant.

The evaluation of the higher order correction terms in the saddle -

point approximation would be over complicated because of the need

‘ for 1st and 2nd derivatives of the various determinants. However,
we later use a simplified method which enables us to obtain the

correction term at grazing incidence.

(A5.4)
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The branch cut integrals 3

[

If we treat each branch cut integral separately, then our

problem in general is to evaluate an integral of the form ‘

I=| PRI, (K)KAK {

where F(K) has a single branch point at, say, K = kj. If we 1
write 3
oo V . g
-Vy2
1 L1 F(K)e 3 a, (Kr)KdK

z'*o

o

where \)3'z = Kz-k,’, Rev >0, then the integration around the

branch cut becomes implicit.

We now expand F(K)} as a Taylor series in v, , so that

3
ar 1 ar
F(K) = F(ky) + v vy + 3 Ecj vy o+
We now require the integrals
- ik4R'
lim -vyz' lim | 3
sivo | & 3 I xmIKaR = O [Bz' (-‘-—,;-.—)]
©
=0

® -y, z' T |
lim 2 ikiR
z +o [ Vje Jo (KX)KAK = 1’.’:0 [g—z-, G—R?——)J ,

ik, r
3

el R I

e ——
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where we have used the integral representation for a source of

spherical waves, as in section 6.8. These are sufficient to

enable us to evaluate the integral to terms in 1 , and we now have
2

b 4

iky® s

: J -
(&) HKie Lo
kek 4 x

Inspection of the matrix in equation (6.47) shows that for all

terms in equations (A5.1), (A5.2) we can write in general form

F(K) = g (K) + Wwh (K)

9: (K) + Vyh, (K)

giving

aF = h (k,)g, (ky)-h, (ky)g (ky)
=) - B Gk )g, Gey)ohy Ueg)g (k)

b K"kj ig, (kj ) ].2

The analysis given here has not been rigorous, and certainly one

(A5.5)

(A5.6)

(A5.7)

questionable item is the convergence of the Taylor series for F(K).

Without giving a detailed discussion, this will be in doubt when

9, (kj

an upper limit for the branch cut integral we ignore g,, leaving

F{K) = g (K) h (K)
— J

+

vih, (K) b, (K)

The second term gives no contribution, and we now have

]
I=1lim

e
z'+o 9;(K’ ¢

Jo (Kr)KdK
h, (K) v}

Using the methods of section 6.11, this gives

ik,.r
T~g6y) e 3 o,

) is small, implying a pole near the branch point. To find

(A5.8)
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We therefore expect equation AS5.5 to be valid only if

ik ,.c . ik,.xr
k X,) = k
g (k!) e 3 s lkj (hL( J)Q'(H: h,(kj)gJ( i” e 3
h, (kj) r (9, (*j) ] r

or

r g, (kj) (g, (ky)]1*

kjh,(k }Ih, (x )gi(k

3 3 j) - hg(kj)ql(kj”

This quantity may be regarded as related to the numerical distance

established more precisely for the rigid porous medium.

A5.2 Grazing incidence

Although the evaluation of the correction term in the saddle-point
integral is impractical for an elevated source, when zo = 0 the

integral may be handled in exactly the same way as any other branch cut

integral. This gives us the correction term for grazing incidence, and

this may be a useful approximation for all cases where the geometric

term is not dominant.

As a demonstration, we again consider the field at the surface of a

rigid porous half-space at grazing incidence. This is given by

2i Ky

M (n*-1) r?

¢ ~ +0 (x )

The upper limit is

¢ - 2°ikr

r

and (6.64) becomes

>4 (r5.9)

e _-.1,

\

———

-y




e

e e ane -
-

‘ ke (n’ - 1) | >> 1

: These results are the limiting case of the more elaborate saddle-point
i

integration.

A5.3 The k.; branch cut integrals
To keep the expressions for the integrals as compact as possible, we
define &i 3% as the cofactor of the matrix element in row j and column k
in the expansion of the determinant A:L' We then find expressions for

91, cl etc. in the general equation (A5.6)

When dealing with the k; branch cut integral, we must have z, = 0. 1In
equation (A5.1) we obtain
g1(k1) = 2(S(k1)+ a32 61 (ky) - (k1’-k~’)§5hn)
hi(k;) =0
| ga(ky) = 4 (k1) hy(ky) = &,,(k1)
L
‘. and in equation (A5.2)
2 3 ’ 3 2 ‘! 2
‘ gi{ky) = 2 ((ky*=k ?) %8331 + a go(k1?-K.?) "§211+ K1?8411)
hi(k3) = 0, g, (ky} 'Ao(kx). h, (kj) 'Goll(kz.‘
: Using equation (A5.5), and noting that
) l 2 eik:,r 11;13““lr 3
. ) 3; ( r? ) = 2 + o(r )
|
we obtain the displacements in the far-field
| i
u_ o= 2"1‘5011[5311* a126313- (k1* - ka?) *8uy1) e XF {A5.10)
| g

¥ .

,.*.
)
!
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u, = -2ik18013 [xy - k:)’Glxz + a,, (k} - k3)6211 + kidu1y] ethar
AS r?

Using (A5.9), these expressions will be valid if

ra?

—_—— 3> 1

2
kibo1y

(AS5.11)

(A5.12)
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The k, branch cut integrals
For this and the remaining branch cut integrals we are not limited

to z, = 0, but otherwise we proceed as before. For u, we have

e-v;zo
gl = Vi (8, + a,;4; - vid,]
-V129
hy = [8g22 + asafsaz ~ Vu(Su1, + a3,8442)]
g, = AO

h, = 8012 + a,;80u2

and for u
z
e-v;zn
q1 = (v, 4, + k3 Ayl
-V129
hy = v [a,,4;, + Vg(5.1t + 33!53.2) + k:(631a + ailﬁnuz)]

1

g: =80 , h = 8032 + azzb04,

where it is assumed that all expressions are evaluated for K = k, .

We shall not carry out here the straightforward substitution into

equations (A5.7) and (A5.5).

(a5.19), (A5.20)

(A5.13)

(A5.14)

(AS5.15)

(A5.16)

(A5.17)

(A5.18)

"_,,-,~qk

e AN
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A5.5 The K, branch cut integrals

For u
r
e ViZeo
; gl = v1 (8, + a,,4, = V4sl {A5.21) ‘
-ViZp ' P
by = =5 [a1282a3 + 2238213) - ValSuus + agebana)] (a5.22)

" 9 = Bo (a5.23) l

i 5 h, = 8gu3 + 32’6013 (a5.24) ]
f
r} N 1 ‘
| and for u il _
) z N
; U -ViZp . &
‘| 9 = —47 (a,,v,8, + K3A4) (a5.25) :l i
1y
! i .
) . e-Vtzo }l 1
| . h = i [Ay + a,,V2 (8248 + a,,8218) + ki (Suns + a,,8u13)) (A5.26) e
. 1 :
SN g2 = B (5.27) 1} i
L 3 “ '
r hy = 8ous + 8,,8013 (A5.28) %
- - L 4 where all evaluations are carried for K = k,.




AS5.6

The ky branch cut inteqrals

For u
r
~ViZo
g = (3, + a,,4,]
v
1
e V1%0 2
hy = e (A + 2uk4 (8330 + a,,8234))
9, = .1
hy = -2uk’Soas

and for u
z

e'“xzo
q = [V3dy + a,,vahz + k2By)
1 v 4
_e-v1z°
hy = S5 (2UK (Vsbase ¢+ 2, Vab230))
g2 = 4y

hy = -2MR§603~

where the evaluations are carried out for K = k,.

(A5.29)

(A5.30)

(n5.31)

(A5.32)

(A5.33)

(A5.34)

(A5, 35)

(A5.36)

R e T
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AS5.7 Surxface waves

Surface wave contributions will occur when poles of the various integrands lie

between the real axis and the contour of integration. For this to happen

we must have A, = 0.

When the wavenumbers of the different wave types are real, a true surface
wave must have a real wavenumber greater than these ([56.3], {6.4]).

wWhen at least one wavenumber is complex, as in our application, the
situation is less clear. 1In general it will be necessary to search

for zeros of A, by some numerical means, and also to establish criteria

as to whether they lie within the closed integration contour.

The general form of the required integral is

I = | F)J, (Kr)KAK

which may be rewritten as

1= 3 POB(KrKax (a5.37)
-
In the simplifying case of grazing incidence the required integration

contours are those which pass around the vertical branch cuts emanating

from the branch points at kl' kz, k3. k4.

»
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Im(K) \
¢ N
N\
N
T
~
~
~
o
k2 ™~ -~
I I II1I v v
k3 k1 k4 Re (K)

A typical situation is shown in the diagram, where poles in any of the
regions I - V will contribute to the integral. The signs of the

square roots vl, vz etc. depend on the region, and in region I

Rev >0 Imv <O
1 1

Re v >0 Imv <0
2 2

Rev >0 Imv <0
s 3

Re v. >0 Imv <O

In region 11

Rev <0 Inv <O
1 1

Rev >0 Imv <0
2 2

Re v' <0 Imv <O

Rev <O Imv <0

-~
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1 '
o |
. |
! |
' i In region IXI ! |
: !
' Re v <0 Im¥ <0
b} 1 l
; Re v >0 Imv <0
2 2 !
) !
: Re\o3>0 Imv >0 :
|
Rev <0 Imv <0 l
b L) L)

In region IV

1

| Rev2>0 Imv <0 !

Re v >0 Imv >0 ;
s 3
; . Re v <O Imv <0 '
| l L) 1Y
N

i In region V J
| Rev >0 Imv >0 |
! I‘-s. 1 l &
| ? Rcvz>0 Inv <0 i
f Re v >0 Imv >0 -
[ 3 3 {l
l Rev~>0 Imv >0 o
i .y}
, o
. ; 1y 1
Lo } Here we have assumed that the pole lies below the iashed line which %

J i

- consists of the contours Re vz = 0 and Inuz = (.

We now write the integrals as

1-11012013014+2!1rol (Kp)

where 11'12 etc. are the branch cut integrals, an¢ res (xp) represents

the residues of any poles lying within the prescribed regions.
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In equation 6.92 we have in general

F(K) = G(k) /4,

giving
KP G(K ) 1
res(xp) =3 BT H, (Kpr)
P
1] dAO
where A, (xp) = ! K = Kp

Using the asysptotic representation for the Hankel function, we obtain

G(KP) 2inK \ & -3/2
2ni res(l(p) - W -——-2! + 0 (r ) (A5.38)

Making use of equations a5.1 and AS5.2 the surface wave contributions to

the ground motion are

3
ik 2inK
u_ R ’.As + a3pl; - Vb, } (——t—ﬂ e V1%, * il(pr + 0(:"3/2) (A5.39)

| 4 le; v

: }
2inK
1 2 P -viz_ + ik r
Uy~ SIAT l:v:As + a3zvaldy + KPM} ( T ) o 1T P

N 0(t~3/2)

(A5.40)

-1

———-
P—
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where vl'“?,’\’l'vd' A o A2, A.;, A,‘ are evaluated for K = Kp.

The major difficulties are the determination of l&,, and the evaluation

of Ao (l%).

which simplifies the problem considerably.

In the next section we use a light fluid approximation

A5.8 The light fluid limit.

A limiting case of some interest occurs when the density of the fluid
is much less than that of the solid in the lower medium, and we expect
this to be applicable when modelling ground surfaces. In this case

we have Py<< P. B, << p, and also recall from the theory of rigid

porous media that ol« oy at low frequencies. Since we expect the
propagation constants of the various wave types to be roughly comparable,

then the compressibility of the fluid must also be much greater than

that of the solid.

-

——

— i
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If we examine the effect of this on the fast and slow

approximations

~-<< ], —- << 1

waves,

then the

It should be remarked here that a is always less than unit y in Biot's

theory.

For the shear wave

2 ) 2
k2= 90 4 1 o
4 u ppZ
2
From equation 6.36
2 o k.2
N S 2
a3 = o a) /¢ 1)
2 x'2
3
p '2
=2 tea/a- 5 )
0y 2
k
2
'2 '2 M
and if k3 < k2 ¢ J << 1 implies a32 << 1.
From equation 6.37
12 2
k o k
ay, = F=a- by -2y
x.? 2 x.?

iy o S S
————— ’

(AS5.41)

(A5.42)

(AS5.43)

-
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'2 . .
These expressions simplify further if pl/pz << a, and "j << k.zz. ] I

Since the fast wave will invariably have the highest velocity of all
wave types, this latter condition is effectively one of local

reaction. Under these circumstances we have ]

=3

(A5.44)

f . =0M P _ .3 (AS.45)
F

In the light fluid limit we can also show that

'

.
‘ -
——— —

} ! | B, = A (AS.46)
where : o

2
Aa = W (pzvl + 0V 2) (AS.47)

HARY APGG T v I s
’
——

24
PN

3

=3
L]

2 . 2
(2ux° - kﬁ) (kg - K

2
- 2uv3\)‘l (A5.48)

) _ It can be seen that equation(AS.47) is the denominator found for the
' ' rigid porous case, and(AS5.48) is the Ravleigh dencminator for a semi-
- P infinite elastic half-space. This is intuitively appealing since it

| means that in the light fluid limit wave propagation in the upper

medium is identical to that for the rigid porous half-space, while the

Rayleigh surface wave is virtually unaffected by the presence of

the fluid.

Air-coupled surface waves of the Rayleigh type have been found

i
I
]
!
i
!
i
I
i
'
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e i e b g,

+
\‘ l experimentally tB.‘Z], so we suspect that poles corresponding to the
l zeros of (a5.48) will be of importance. In the surface wave expressions

{ given in section(A5.7) we now have

l; { Ao'(Kp) =Aa(Kb)Ab'(l&,’ (A5.49)
]
; ; where

‘ ) = (a5.50)
il | 8,(K) =0
|

N EeN Nyl . w

. \ <Ly P 4 . - - - * . AN - 4 - vkn e bl
par MR, U AN R RPN Junpape- . 2.
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. A5.9 Practical Calculations.

The calculation of the plane wave and branch cut contributions present

no difficulty, but to obtain any surface wave contribution we need to

find a zero of Ao and its derivative at this point (see section A5.7).

——

i To do this in practice we have used a numerical technique known as

Muller's method (described in reference A5.5) which finds a root of an l )
i i analytic complex function by using quadratic interpolation. Three
} initial guesses are used to obtain the first quadratic, and the nearest }
! : zero of this provides the next approximation to the unknown root, and ‘
L . ) the iteration is continued until the required accuracy is achieved.
? { This root gives us the surface wave number Kp. Consequently it is a l

simple matter to find the derivative A; (Kp) by calculating the gradient '

of the last fitted quadratic.

. :
St

From the considerations of the previous section we expect a surface

wave of the Rayleigh type which will have a wave number approximately

poa s
-

1.2 times that of the shear wave, k

»
L RTINS E

4 Using three initial guesses ¢

. 1.15k,., 1.2k, and 1.25k, resulied in rapid convergence for all the

o

r ! 1 examples tried, and there was no indication of any problem arising from

the non-analytic nature of Ao (due to the branch cuts)

AS5.10 Material parameters for soil.
Sound velocity (w/k,) 3.4 x 104 e 87!

o Density of air (p,) 1.2 x 1073

4

-3
g cm

1

' P - wave velocity (u/u(k;)) 5.0x 10 cm's
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o ’ In (k;)/ Re(k}) 1.25 x 1072
! ; S - wave velocity (u/Re(k,)) 3.2x10 e s7?
! | | In(k,) /Re (k) 1.25 x 1072
| Density of porous medium (p) 1.3 g cm-3
r !\ } Tortuosity 2.5
2 ‘ Shape factor 0.75
k A . : Flow resistivity 250 cqs rayls _
Porosity 0.4 ’
| ) a 0.5

! The imaginary parts of the compressional and shear wave numbers are
» | ) consistent with the results found by Prange [AS.6] for attenuation in

{ soils.

The tortuosity, shape factor, flow resistivity, and porosity are used

i 1\-“ “ to determine the equivalent rigid-porous wave number k,", and complex

, density 92 (see chapter 5). The value chosen for the parameter a is
,. arbitrary, apart from the constraint in Biot's theory that it must lie

| between the porosity and unity. However, we did repeat some of the

calculations for a = 0.9, and found that the changes to the computed

surface velocity were not more than 248, and in most cases considerably

less,

AS5.11 Results

Pigures A5.1 - A5.5 show the contributions of the various wave types to

the vertical component of surface velocity for a source height of 1 m

20 AT

and a horisontal separation of 100 m. These are the plane wave
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approximation, the near and far-field approximations to the kl.' k

k

3 and
4 branch cut integrals, and the Rayleigh-type surface wave.

The k

2
branch cut integral was always negligible because of rapid attenuation

of the slow wave.

Figures AS5.6 - A5.8 show the dominant contributions for source heights

of zero, 1 m and S50 m.

In all these cases a point source of spherical waves is used, such that
the pressure amplitude of the incident wave is
ikgy R

P- R

The results show that with the source on the surface the main

contributions are those of the Rayleigh-type wave and the k

1
cut integral. The Rayleigh wave dominates below 200 Hg, but is ~

branch

attenuated at higher frequenciaes. Elevation of the source to 1 m

gives a significant plane wave contribution, which becomes increasingly

dominant at high frequencies. The plane wave term dominates at all

frequencies when the source height is increased to 50 m. There are

contributions from the ks and k‘ branch cuts, but these are always
a small part of the total motion.
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. Figure A5.5 Contribution from Rayleigh-type Wave for a Source Height of 1m
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Figure AS.7 Contributions from Plane Wave, k. Branch Cut
Rayleigh-type Wave for Source Holqht of 1 m
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Figure A5.8 Dominant Plane-Wave Contribution for a Source Height of 50m
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