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1.2 In the work reported here, the penetration of sound into the ground is
predicted for both spherical and plane acoustic waves incident upon two models
of the ground viz i) a rigid porous solid half-space and (ii) a poro-elastic
granular half-space. In addition the plane wave analysis is extended to
incidence on a rigidly-backed finite rigid-porous layer

1.3 In the frequency range of interest (1 - 1000 Hz) the rigid porous model of tile
ground is found to be sufficiently locally-reacting to predict identical
results for spherical and plane wave incidence. The predictions are found to
correspond to buried microphone measurements in sand and soils of above-ground
acoustic disturbances. Furthermore it is found possible to predict the results
of model measurements using continuous and pulsed acoustic sources and
microphone receivers above and below the surface of fibreglass blanket.

1.4 The plane-wave analysis for a poro-elastic half-space predicts the existence
in general, of three body waves i.e. two compressional waves which we call
"fast" and "slow" borrowing from the literature on propagation in water
saturated sediments and one shear wave. The solid particle motion, in general
is the result of the contributions from all three wave types. At normal
incidence the contribution is mainly from the fast-wave type travelling
predominantly in the solid grains. The pore-fluid particle motion has aprimary contribution from the slow wave type and for dry soils is practically
identical to that predicted by the rigid porous model of the ground.

1.5 The predictions of the poro-elastic models for normally-incident plane-wave
incidence are found to explain qualitative features of plots of intensity
ratios reported in the literature and calculated from simultaneous.
measurements with microphones and geophones collocated ie. vertically separated
above and below porous ground surfaces. i

1.6 The analysis for spherical wave incidence on a poro-elastic half-space
predicts that the surface motion potentially results from five wave 5
contributions viz. the incident wave and four coupled waves in the poro-
elastic medium. The coupled waves consist of two compressional waves,
a shear wave and a Rayleigh-type wave. I

1.7 Computations of the near- and far-field approximations of the surface motion,
resulting from an above-ground acoustic point source, for a horizontal source-

receiver separation of lOOm and using a set of typical soil parameters, show
that, for source heights of zero and IM (grazing-incidence) and low-frequencies
i.e. less than 100 Hz the Rayleigh-type wave is dominant. At higher frequencies
for grazing-Incidence or for all frequencies if the source is elevated to 50M,
computations reveal that the direct-coupled plane-wave contribution is dominant.All :ontributions are predicted to decrease with increasing frequency which isin accordance with the trend exhibited by maasured data.
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1 INTRODUCTION

1.1 Scientific interest in the phenomenon of acoustic-to-seismic coupling has

spanned at least the last thirty-two years [1.1]. The motivations have

included seismic exploration using sources in air, studies of sonic boom

effects, and studies of the ground-induced motion due to rocket launches.

Furthermore ground-air coupling is an important Phenomenon in any attempt

to monitor sub-surface conditions acoustically e.g. to detect buried objects

using sources in air.

1.2 Systematic experimental studies of the near surface seismic signals induced

by air-borne acoustic waves are relatively recent. Bass et al (1.2, 1.3]

have used continuous signals from a loudspeaker source and impulsive signals

directed along a line array of triaxial geophones and microphones and have

reported results in terms of the squared ratio of surface seismic particle

velocity to sound pressure immediately above the surface termed the intensity

ratio. Similar measurements have been carried out by Powell (1.11 and,

recently,by several delegates of NATO AC Panel III RSG II on mechanical Waves [1.4]. dj

1.3 Typical results show thatbuhaserl

(i) the intensity ratio decreases with frequency overall but has severalI

peaks some of which fall outside the "exciting" frequency band

(ii) the coupling is not very sensitive to,"incident" angle of excitation

(iii) the time of first arrival response at the seismic sensor to an abrve-ground

acoustic impulse corresponds to the speed of sound in air and is followed

by a dispersive Rayleigh wave train.

(iv) the amplitude of seimic disturbance is unaffected by depth up to 1.5 m. I
(v) the nature of the acoustically-induced seismic disturbance is strongly

affected by the presence of snow.

t 11
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1.4 Cress and Flohr (1.3) have attempted an analysis of the coupling using

* assumptions of

(i) perfectly flat, homogeneous and infinitely deep ground.

(ii) continuous vertical displacement across the boundary.

(iii) continuous vertical stress across the boundary.

(iv) zero horizontal stress components at the boundary, and

-1
(v) compressional wave velocity in soil - 344 ms- (i.e. and equal to

that in air).

The boundary conditions are used to obtain a set of equations relating the

reflected and transmitted displacement at the ground surface and hence the

vertical component of velocity. It is assumed further that the acoustic

pressure can be related to the particle velocity in air at the surface by

the usual plane wave relation.

The predicted intensity ratio is found to be independent of frequency and

very sensitive to angle of incidence. Both of these conclusions are at

variance with measured results.

1.5 This report is concerned with the development of a theory for the phenomenon

of acoustic-to-seismic coupling which is in accordance with observation. The

starting point is the well-developed theory for propagation of sound from a

point source above a locally-reacting boundary. Appendices 1 and 2 repeat

and confirm this analysis. In Chapter 2 the analysis is extended to predict

1 the field within the locally-reacting homogeneous medium. The prediction is

found to depend crucially upon the acoustical characteristics of the locally-

reacting medium. Chapter 3 describes "model" experiments carried out in a

anechoic chamber to provide data for detailed comparison with theoretical

predictions and Appendix 3 describes the basis for the models and the

Sinstrumentation. onsequently, in Chapter 4, a development of the Rayleigh

model (1.5) for such a medium is found, in combination with the propagation

(transmission) theory, to give predictions that aqree both with the data

IF *v' L7
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obtained in "model" measurements using fibreglass as the "ground"

medium and with microphone probe measurements made outdoors in sound I
and soils.

1.6 These predictions do not agree, however, with the geophone data reviewed

in 1.3. Thus, in Chapter 5 and Appendix 4, a semi-infinite, homogeneous iK
poro-elastic model of the ground is adopted (1.6) and used to give

predictions of the surface intensity ratio after a review of model

parameters appropriate to sands and surficial soils.

Predictions are obtained for the surface intensity ratio due to acoustic

plane waves normally incident an both a semi-infinite and a finite depth I
rigidly-backed poro-elastic layer and obliquely-incident on a semi-infinite

poro-elastic medium. Finally, since the plane wave analysis will not be

valid near grazing-incidence, the theory of spherical wave incidence on

an air/poro-elastic boundary is derived in Chapter 6 and Appendix 5 and shows

the possibility of five wave contributions at the interface. Near- and far-

field approximations are used in Appendix 5 to show the relative importance

of the various wave types in acoustic-to-seismic coupling. The predictions j
are qualitatively in agreement with features of the measured data that are

available in the literature.

TL
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2 TRANSKISSIOJ OF A SPHERICAL WAVE AT A RIGID POROUS INTERFACE

2.1 Introduction

The mound field due to a point source sbove a plane interface separating

two semi-infinite fluid media is a problem of great interest to those

concerned with the propagation ot sound over different types of ground

surface, vhere the &oil can be approximated by a rigid, porous absorbing

medium [2.1]. considerable efftort has been made to evaluate the field

in the upper medium (air) in the short-wave, asymptotic limit. A geometric

approximation is adequate for sufficiently large elevation of the source

and/or receiver, but this breaks down at grazing incidence where small

correcting terms play an increasingly dominant role. The grazing-

incidence case, of course, is precisely that which applies in long-range
propagation studies. One of these correcting terms has the form of a

surface wave and in Appendix 2 we show that it corresponds to a physically-

real surface wave.

The evaluation of the field in the lower medium has recieved comparatively)

little attention, but Paul ((2.21, 12.3]) and Srekhovskikh [2.41,1

discuss the problem in some detail. Our motivation for considering this

case arises from a desire to compare the magnitude of sound waves penetrating

into the ground with that of any accompanying seismic disturbance.

- We start in a similar manner to Paul and Brekhovskikh, that is by expressing

the solution as an inverse enkel transform. The resulting integral

is then evaluated asymptotically using two steepest descent contours which

pass around the two branch points of the integrand. The presence of a pole.

j which affects the solution at grazing incidence over ground having a

high impedance, is also taken into account. We only consider cases for which

the refractive index has a magnitude greater than unity.

Aft .
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In his first paper (2.21 Paul integrates around two vertical (in the

plane of complex wavenumber) paths originating at the branch points,

as opposed to the true saddle paths that we use. This initial simplification

still results in complicated algebraic espressions and furthermore no

ready physical interpretation is possible in terms of geometric rays.

He deals with the pole by subtraction, and while this method appears to

be essentially equivalant to ours, we feel that the final result is not

expressed so simply.

Paul later eonsideri alternative integration paths (2.31 which In

part resemble more closely those used here. He does not consider the

presence of the pole in this work.

Brekhovskikh [2.41 does not describe his derivation in detail, but

it would appear that he uses the true saddle paths as he is able to

identify geometrically the two wave types. It is not made clear,

however, how to deal with a complex refractive index (i.e. an absorbing

medium) except in an approximate form, and the problem of the pole is

only mentioned briefly.

In a more recent paper by Candel and Crance [2.51 the related problem of

a horizontal line source is discussed. Their stationary phase method

can only give a single term which is the same as that obtained using

geometrical acoustics, and is therefore not suitable at grazing incidence.

They do not acknowledge the presence of a lateral wave, nor is the pole

taken into account.

-I
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2.2 The integral representation for the field

Expressed as an inverse Ranks I transform the velocity potential in

the lower medium is given by [2.23

*-V(z 1,z, r) . f vz 2  +ix H0 (Kr)e icci

where z, are the depth of source and height of receiver and r is

their horizontal separation,

vj (1 - kl)* VI - (K - k,,) * Rev, RV 0

kit k-2aw the wavenmer (complex: in general) in the upper and lower

media, and

M 0 1? the ratio of densities (again complex)

Equation (2.1) can be used to obtain an expression for the field

in the upper sodium:

' 4 the-0ik~ - BOr (2.2)
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2.3 The steepest descent method with a txnle near a saddle point I

The rapid oscillation of the integrand in equation (2.1) for large I
source-receiver separations can be handled satisfactorily by using

the saddle-point method. 1

In general we need to evaluate integrals of the form

f(K)AKe d (2.3)

in which the behaviour of f(iK) causes the integrand to oscillate rapidly.

The saddle points occur where f' (K) a 0, and the steepest descent paths

emanate from these in a direction in the complex plane in which the I
exponential term decays most rapidly. The imaginary part of f(K) is

constant along a steepest descent path and can be taken outside the

integral, leaving a purely real exponential term which decays on either

side of the saddle point. If f' () = 0, then

f(K) - f(Ks) - S2 for real S gives the behaviour of the i
exponent along the steepest descent path. The integral along this path I
becomes

f (K) dK-S

i - e f  A(K) A e-S dS (2.4)

-- i 
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If A(M can be expanded in a power series in S with a large radius

of convergence we can inteqrate the successive terms. With

A(k)dK/dS - (a), this results in

=weDl=s7 1(0) + 1 +"(0) + (2.5)
SDP ....

If one or more (but not necessarily all) of the steepest descent paths

are added in such a way that the resulting contour can be deformed into

the real axis without crossing any branch points, then the resulting

integral, along with the contributions from any poles crossed, will be

equal to the integral in equation (2.3)

If the radius of convergence of the series for 4(S) is limited by the
presence of a pole equation (2.5) may be inapplicable. In this case

we write

0() - (S) / (S - S ) (2.6)

j l and use the series for 4(S;, which has no pole, instead. We now

obtain

= f(Ks) [ (0 1.o

+ '(0) (SRI. +, /)

+ 06,'"(0) (S 1. + Sp )i

pp+ t/6 1(0) p 3. + , ,w +

(2.7)

1F4i
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where ro =j d

Noting that 0(S0) = *(0) + '(O)Sp + w"(O)S p . ..... J

and making use of equation (2.6) gives

i f (F') I (j(/ +1 I +
sDp it e [*(Sp) (. + + ....

+ * (0) + 1j.* .(......

(2.8)

It can be seen that

SDp I *ef(K S ) [*'(0) + 1/12*"'(0) . ....... ]

The expression therefore remains finite as the pole approaches the saddle

point. I ]

We can write

- ii. (W(s) - 2 -SP - [-liACS M

where W(Sp) = e"S erfe (-iSp) and HI ) is the Heaviside step function.

This second term is cancelled by the contribution from the pole residue

if the pole lies between the SDP and the real axis, leaving the total I
contribution *I,

I* r-feKO) [*(SI) u 4 W(Sp) + .

"-(0 + (0) + (2.9)

L4'Li __ ________ _____-NowI
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I J
TO investigate the behaviour of this expression for large values

J of S we use the asymtotic expansion

*i/ w(sp) .. . 1 3 ..

p P p

* + 2H I-Im(S )]eS
p

Substituting into equation (2.9) using only those terms shown gives

I*= ; f(1 s [(0) + -4(0)

+ 20 [-(Sp)I e-8 P,* (SP)] (2.10)

p

As expected, this expression approaches the behaviour of equation (2.5)

along with the contribution from the pole when it lies between the SDP

I' and the real axis. In this application the latter term gives rise

to the famous 'surface wave'.

Thus the SDP integral may calculated using equation (2.5) and if

the pole is near the saddle point we simply add the extra terms shown

in equation (2.9). This straightforward procedure appears to be

such less cubersom than previous methods such as subtraction of the

1. pole.

The subsequent means used to evaluate the expression in equation

(2.5) are well-established and Brekhovskikh (2.41 gives a good

account of these, and the appropriate formla.

I
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For the extra term in equation (2.3.9) we use

#(SP) - Ui. (K - K)WK), (.1
K-OC p -

where K is the position of the pole in the complex K plane.
p

Returning to equation (2.1) we have

f(K) - -VIZI - V2 Z2 + itKr (2.12)

and A 18:(xr~ -iKrand A(K) [H: (Kz)e ] K/(V1 + MV2 ). (2.13)

For grazing incidence, with z, z 2 << r, there are two saddle points, one

near K - k I and another near X = k 2 . The steepest descent paths through

these points can be used to close the contour of integration without

enclosing the branch points. The pole, given by V] + V2 - 0. can I
closely approach the first of these saddle points at grazing incidence

if N << 1, k > k1, and will be dealt with accordingly using equation

(2.9) i

At sufficiently large source heights or receiver depths closure of the

path of integration can be effected by using only one of the two paths.

We will not pursue this matter further, but both Paul (2.3] and

Brekhovskikh .[2.4] consider such cases.

I

.4 I

I| -I | I
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2.4 The geometrical wave

The contribution from the saddle point near the K = k branch point

corresponds to the ray refracted accordinq to Snell's law in the

geometrical approximation.

We locate this saddle point using the interation

a 1 +1 = ZIO /(r - z 2Bi /yi) (2.14)

where vI = -ikla, V2 = -ikly, K - kLO with 6j = (1 -0)

Y . (a6. + n' - 1)t, n k/kj.

. For large angles of incidence (i.e. z, < r) al- 0 in a suitable
~starting value, and the calculations may be performed for complex

Wkf= 1= 6 1~z n r

R if. f.1? (2.15)

[1i

I
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where -i-i z
1+ 2

kl3

-30 r z21
2 5

f v -31(4 +1) [ , + +2

I
and

I

The first two terms of the asymptotic expansion

have been used. This is acceptable if Ik1 BrI >> 1, that is when 1

k r >> I and the angle of incidence is large.

There is little necessity in seeking further simplification of

equation (2.15) once the appropriate differentiations of A(k)

have been carried out, except to ensure that the correct value is I

given at a = 0. To do this we examine the limiting behaviour of the

various term as a - 0, and find that only the last two terms in the

square brackets contribute. I



- 15

2.5 The lateral wave

To find the second saddle point we take into account the

fact that at grazing incidence it is close to the K - kj

branch point, and consequently IV21is small, and vi is

predominantly real. We re-define a, Y, y and use the

iteration

Yji+ - z B/(r + iz 1 Bi/ai) (2.17)

where V, = kaC, V2  -ik2 y, K = kB

(I - '

ai = ( - - Y2)I, o = 0

This gives

f(K) - - + ika (yz' + Br).

From this we can see that the exponential term decays as z1 ,

the height of the source, increases. Further exponential decay

occurs if k2 has a significant imaginary part. 
4;

The steepest descent method may now be applied in the usual

way, and in this case it will not be necessary to take into

account the presence of the pole.

2.6 .recial cases

(I) The geometric approximation.

If n, the refractive index, is real, then equation

(2.14) is satisfied if

Cg -Cos

S-sin E i ,

" t "/ =-n Cos (r

I
'.
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~I

To calculate the further terms in equation (2.9) we need to

locate the position of the pole using v 1 + Ky2 = 0. At this

point

V, = -ika p, v2 - -ikyp, K = k1 B

where .1

M(n 2 _ 1 § ,

P (1 -. It

(I = - na14')
1

p (1 *)

II

y p= -a / M

giving .1

S = ik (a -a p z+ (y ,)z2 + (0 O rI (2.16)

I

t 71
.iI
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sin 0 IcinO n. (Snell 's Law)

and z, zj. r are as depicted&

Taking the first term in equation 2.3.15 and using the

first term of the expension for the Hankel function so

that
-Zn ) iN 2 /c1+N

-21 iiik 2

x expikL(c=1 , + YZ2 + Or) A

li2 V-- ------- exp ik, (a,/cosO £ + nX2/coOer)11* e~ + zz/csG~(2.18)

ir (z/coseGi + zZ/ cos',0)} 1 (n coe + cosj'I N
which is the geometric approximation given by Brekhovskikh

ii) Grazing incidence with a largeocomplex refractive index.

If n has an appreciable imaginary component then the

lateral wave will decay to negligible proportions at

large distances.

If z si sufficiently smll so that in equation (2.3.14)

zaO/I i< r (2.19)

Then OmZi

4" -
I.
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Since 8 < 1, a is small at grazing incidence

equation (2.3.29) becomes I
Z2

r(n2 -1)'  (2.20)

Under these circumstances a = cosO where tane

r/z1

If in addition cosO is sufficiently small so that the

terms containing Z2 are negligible in f
11 , fI1

1 , fv 

Then 1V(z, z,,r) .
eX Z2 v(zi, 0, r)

eiklz2(n' - sin 2o v(Z , 0, r)

whchigves a simple exponential relationship with the field

on the surface above the receiver. This expression is

derived somewhat less rigorously by Brekhovskikh.

I;

* -
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I
3. POINT TO POINT PROPAGATION MEASURMENTS USING ACOUSTIC MODELLING i

3.0 Introduction

In order to validate the foregoing theory for both reflection and I
transmission of spherical waves, measurements of point propagation I
over olane absorbing and rigid boundaries were made in the small

anechoic chamber. Twu cases have been examined in detail:

(i) attenuation over a rigid boundary;

(ii) attenuation over and within a porous boundary.

The two materials selected to model these surfaces were varnished 1
blockboard and Crown 150 fibreglass quilt. The basis and facilities used for

these measurements are outlined in Appendix 3. j

3.1 Rigid surface measurements I
The rigid boundary measurements were made in order to examine the

effects of:

(i) source height uncertainty; 61
(ii) spectral smoothing; ij

(iii) near surface turbulence; and

(iv) source and receiver size.

Ii i
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The source and receiver were placed 100 cm apart above the

varnished bl ockboard surface as shown in Figure (3. 1). The source

and receiver heights could be varied independently.

An air jet was used as the sound source and a 1/4" microphone as

the receiver. A block diagram of the measurement system is shown

in Figure (3.2)

3..1. Source height errors

For a rigid boundary the excess attenuation minima result from the

destructive interference of the direct and reflected waves. The

frequencies at which these minima occur are therefore very sensitive

to source-receiver geometry.

Figure (3.3) shows a comparison of OP~ measured and predicted excess

attenuation for propagation over a rigid boundary. The prediction

is based upon a source and receiver height of 5 cm. It can be

seen that the location of the predicted attenuation minima do not

j coincide with the measured.

The source height estimate was based upon a measurement of the

distance between the rigid surface and the top of the air jet

nozzle. However, in view of the large mass of air flowing through

the jet, the acoustic centre of the source is unlikely to coincide

with the top of the nozzle.



-22-

rI

r 2i

r. t
Figure 3.1 Source Receiver Geometry for Model Experiments.
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Figure 3.2 Block Diagram of Model Experiment Instrumentation.
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Figure 3.3 Comparison of Measured andPredicted Excess Attenuation
for Propagation over a Rigid Surface.
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A better estimate of the source height can be obtained by

varying the height used in the pure-tone predictive algorithm

until the locations of the measured and predicted minima

coincide. The variation in the minima location and source height

can be seen in Figure (3.4) increasing the source height increases

the path length difference and hence moves the minima to lower

frequencies.

The results of this procedure indicated that the source height

is actually 5.3 cm above the rigid surface. A comparison of

the measured and predicted excess attenuation curves, based

upon a source height of 5.3 cm is shown in Figure(3.5)

3.1.2. Spectral smoothing

The predicted excess attenuation curves shown in Figure (3.3)

and (3.5) exhibit much deeperminima than the measured results.K
Part of this discrepancy arises from the fact that the predictions

are based upon pure tone interference, whereas the measured values

are based upon the average energy in a 250 Hz wide filter. The j
effect of increasing the analysis bandwidth is to increase the

sound pressure at the minima and so smooth the excess attenuationI

spectrum.

Correction procedures for the pure-tone calculations have been

derived [3.1] but they cannot account for the observed differences.
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of Source Height.
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Figure 3. 5 Comparison of Measured nd Predicted Excess Attenuation
After Correcting for Source Height.
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3.1.3. Near surface turbulence1

Another factor to consider when trying to account for the observedI

difference between the measured and predicted excess attenuation

curves is the effect of near surface turbulence.

Daigle [3.2) has proposed modelling turbulent air motion as an

additional propagation path length, with random direction andI

attenuation. The extra path length disturbs the strong interference

pattern due to the surface. A correction procedure based upon

the measurement of four meterological parameters shows good

agreement with experimental results. These parameters are:

- variance of sound velocity deviations

L-sound velocity correlation length

L- temperature correlation length

Land Lt are measures of the autocorrelation function of the windJ

and temperature variations. The time delay corresponding to maximum

correlation~ is converted to an equivalent path length difference

by multiplying the velocity of sound by the time delay.j

Whilst it has not been possible to measure the parameters required

to correct for turbulence effects, an examination of Daigle's

results indicate that they could account for the observed

discrepancies between the measured and predicted excess attenuation
curves. L
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3.2. Fibreglass Measurements

Two sets of measurements were made using a fibreglass quilt material to

model a porous half-space, the first to measure the amplitude ratio of

the direct and transmitted sound fields and the second to measure the

phase difference between the arrivals of those fields

3.2.1. Amplitude Ratio Measurements

The source receiver geometry for these measurements is shown in Figure (3.1)

The surface receiver was a standard 1/4" microphone with a normal protection

grid, whilst for the sub-surface receiver the 1/4" microphone was fitted with

a nose-cone. The nose-cone serves two purposes, first its shape enables one

to ease the microphone through the fibreglass quilt and second it improves

the directivity response of the microphone.

The sound source used for these measurements was a mid-range loudspeaker,

with the cross-over network removed, and the source signal was derived from

a swept frequency oscillator covering the range 100Hz to 15kHz.

In order to minimise the effects of phase distortion that can arise from

I incoherent averaging of swept frequency signals, a time gating system was

* 1~ employed to synchronise the source signal sweep and the digital sampling of

the received signals.

* The narrow band spectrum at each of the receiving microphones was measured

with the Nicolet 6608 spectrum analyser, and the amplitudes ratio obtained

from the modulus of the 'transfer function'. Three sets of results are

reproduced here as Figure (3.6) Part (a) shows the amplitude ratio and

phase difference for a source height of 5cm and a receiver depth of 3cm.

Aft .
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The ripple in the transfer function at 8kHz, arises from resonance of

the loudspeaker diaphragm. Parts (b) and (c) show the results for

receiver depths of 7cm and 10cm respectively.

A test of the reliability of these measurements was performed by calculating

the coherence function. The results for the three receiver depths, shown in

Figure (3.7),indicate that only the estimates of the amplitude ratio at a

depth of 10cm for frequencies above 8kHz may be erroneous; since the value

of the coherence function drops below 0.8. The reduction in coherence arises

from the high level of attenuation at this receiver depth.

All these results show that there is little attenuation of the transmitted

sound at low frequencies. At high frequencies the attenuation is dependent

upon the depth of the buried receiver, At 10kHz, the upper limit of the

measurements, the attenuation increases from 16dB at a depth of 3cm, to A
approximately 50dB at a depth of 10cm.

3.2.2. Pulse measurements

The time delay measurements were made using the same source receiver

geometry described in section (3.2.1), but with the loudspeaker replaced

[ by an electrical spark discharge source. This device produces a low

intensity sound pulse of approximately 200 microseconds duration.I-

I

Ii
r-
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(a) Receiver Depth 3cm 8

* (b) Receiver Depth 7cm

I 60C

(c) Receiver Depth 10cm

Figure 3.7 Coherence Function of Surface and Sub-surface Spectra
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The trigger transformer circuit used to generate the high voltage spark

can cause significant errors due to electro-magnetic radiation, which

swamps the response of the condenser microphone capsules. In view of

this the spark was operated at its minimum energy level of 4mJ, and time

averaging used to improve the signal to noise ratio,

Examples of the direct (surface microphone) and transmitted pulses are

shown in Figure (3.8) for a source height of Scm and a receiver depth

of 3cm. The total duration of the signal samples is 4 milliseconds.

The direct microphone signal shows a distinct pulse at 1 millisecond,

corresponding to the spark discharge. The other fluctuations at 2.5

and 3.5 milliseconds correspond to the arrival of reflections from

metallic fittings within the anechoic chamber. The transmitted pulse
occurs at the same time, but the trace shows no subsequent arrivals due

to extraneous reflections within the chamber.

The spectrum of the direct and transmitted pulses are shown in Figure

(3.9) for the range 125Hz - 50kHz. The upper trace corresponds to the

direct pulse and the lower trace the transmitted pulse. The raggedness

of these curves is due partly to the presence of reflection and partly

to the electrical noise in the microphone pre-amplifiers.
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* The amplitude ratio and phase difference for the direct and transmitted

sound fields are shown plotted in Figure (3.t0). Both curves show

considerable fluctuations below 5kHz, due primarily to the poor resolution

* of the spectrum analyser at low frequencies. However, the underlying

shape of the amplitude ratio curve is similar to that obtained from the

* loudspeaker source measurements.

Measurements of the direct and transmitted pulses were made

for receiver depths of 3.,7 and 10 cm and the results are shown I~
in Figure (3.11). The pulse at a depth of 10 c. shows considerable

* attenuation and is only just discernable above the background I
noise level.
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4 GROUND AS A RIGID POROUS MEDIUM

4.1 Introduction

The theories of spherical wave transmission and reflection at porous

boundaries that have been advanced in the previous chapters rely upon

the assumption that the ground can be regarded, effectively, either

as a locally reacting fluid or as a homogeneous isotropic fluid

sustaining a single (compressional) wave type. If the ground is

locally-reacting then for computation of the reflected field it may

be characterised acoustically by its normal (complex) surface

impedance, and for computation of the transmitted field the required

additional acoustical parameter is the propagation constant within the

effective fluid. For a model of external reaction then computation

of the reflected field requires knowledge of both surface impedance

and propagation constant.

A model of the ground as supporting a single compressional wave type

is consistent with propagation in a rigid porous medium in which the

acoustic disturbance is transmitted only through the pore fluid and is

attenuated by viscous and thermal effects. This model has been found

adequate to represent the behaviour of porous boundaries in room and

duct acoustics (4.1, 4.2] and in studies of outdoor sound propagation
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Indirect estimation of the surface impedance of any ground, that can

be modelled as locally reacting, is possible from a propagationi

measurement with a fixed source-receiver geometry [4.3,4.4]. The

impedance values result from fitting the data on excess attenuationI

between source and receiver after allowing for spherical divergence

air absorption. Since the surface impedance is complex, the fitting j~
procedure requires simultaneous variation of real and imaginary parts.

The questions arise (a) of a suitable initial guess and (b) ofI

suitable ranges and the type of relationship between real and

imaginary parts. Empirical formulae for impedance and propagation

constant in terms of a single parameter, the specific flow resistivity1

* of the porous medium [4.5], originally developed from acoustical

* measurements on glass fiber materialsfix the frequency dependence ofI

the real and imaginary parts of the complex variables and the1

relationship between them. They have been used to derive the

characteristics of ground surfaces needed for predictions of

propagation near to outdoor ground surfaces [4.4, 4.6, 4.7] in terms

of a best-fit flow resistivity. Although successful in some instances,

the empirical formulae have been shown to have shortcomingslin this4

application. These are evident particularly where measured values of

flow resistivity are available. In these circumstances the best-fit

value of flow resistivity has been found to be approximately half of the 1
mean measured value [4.4]. The large scatter in the deduced

impedance values with frequency, also obscures whether or not the

empirical forimula* predict the correct frequency dependence. The

At -A
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transmitted field, which is of particular interest in this report,

depends upon the propagation constant. Although the empirical

formulae include a set for real and imaginary parts of propagation

constant, these have not been tested for soils and sands, to the same

extent as those for surface impedance. For these reasons the

remainder of this chapter is devoted to the development of

theoretically-based alternatives to the empirical formulae for the

acoustical characteristics of rigid air-filled granular media and to

a consequent examination of the limits of applicability of the

empirical formulae. Comparison of the theoretical predictions and

measured data are made for glass fibre materials, sands and soils.

4.2 The Modified - Raleigh Model

4.2.1. Introduction.

A comprehensive review of the available theories for propagation in

porous media is given elsewhere [4.8). In granular media the micro-

structure is best described in termnsof grain shape size and packing

density, all of which may be determined accurately by non-acoustic

- ) means. However theoretical approaches which specify the form of the

rigid solid constituent while attempting to describe the acoustic

J field in the fluid-filled interstices have been constrained in each case

to particular grain shapes and find particular difficulties in

describing the field near points of grain contact. There is a further

- K: fundamental problem with such approaches, of course, where the rigid

porous medium is consolidated such that individual solid elements

cannot be identified. A conceptual model first suggested by Rayleigh,

of a rigid solid matrix through which run parallel identical circular
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cylindrical pores normal to the surface, has been shown capable of

generalisation to many types of porous media [4.8). The eneralisation

is achieved at the cost of introducing an adjustable parameter, the

oscillatory-flow pore shape factor, which, strictly, is determinable

only from best-fit to acoustical measurements. On the other hand,

a suggested semi-empirical relationship between this parameter and

another, the steady-flow pore shape factor, which is calculable for

certain known pore geometries, means that, in princiole, the acoustic

properties of a rigid fluid-saturated granular medium can be deduced

from four non-acoustic measurements. These are of flow resistivity,

volume porosity, grain shape and mean grain diameter.

4.3. Propagation in a single pore

In this development, viscous and thermal effects are treated separately. Il

Zwikker and Kosten [4.2] have shown that, at least in the

limiting cases of low and high frequencies, such independent

treatments give the correct result for the field within a

cylindrical tube with rigid but heat-conducting walls containing a

viscons, heat conducting fluid. Viscous effects may be imcorporated

into a complex (i.e. frequency-dependent) density of fluid in the

pore (pc ( " ) ) subjected to an oscillatory disturbance with time-

dependence exp(-iwt), w being the angular frequency. The result of

analysis may be written [4.2] as

P Pc ) [ 1 - 2 (KCc V )'1 T (Kc )]"1  (4.1)

where T(Ic/T)" J(i (c/T / J (cT) (4.2)
Jo( ) and JI1 () being cylindrical Bessel functions of zeroth and first

, !
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J

order, respectively, and

1C = a( (4.3)

where a is the pore radius and v is the Kinematic viscosity of the

fluid and p0 is its equilibrium density.

In the context of developing a general theory for acoustic propagation in

fluid-saturated granular poro elastic media, Biot [4.10] considered

propagation in a paralled-sided infinite slit of semi-width b.

The expression for the complex fluid density in such a slit

corresponding to equation (4.1) may be deduced to be

Ps( N) = -0 S (-i) f I tanh [Ks(-i)|} 1  (4.4)

where Ks = b(w/v)i (4.5)

* Analysis of the net flow of heat per unit mass within a circular

* icylindrical tube containing a non viscous conducting fluid, supposing

(i) that heat is transported in transverse (radial) direction only and

- 1(ii) that pressure is uniform over the pore cross section, produces

* •a relationship for the complex (frequency-dependent) compressibility

of the fluid within the pore, as follows [4.2);ilIC(0) = (-fp° i [I + 2(y- i)T(N1r KcVi)] (4.6)

c 0 fir

where Nor is the Prandtl number and

CM = I dp (4.7)

I p and P being the time-dependent density and pressure respectively. A

similar analysis for net flow within a parallel-sides infinite slit of

thickness 2b produces [4.11]
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I1

Cs(w) = (yP) 1 (1 + _ _ _ tanh [N' k-(-1)1])S ('pr S (4.8) :1
The functions for complex density for the fluid in the circular

cylindrical tube and the parallel-sided slit have similar frequency A
dependence. The frequency dependence of the functions for complex

compressibility are similar also. The real part of P(w) and the

imaginary part of C(w) show very little frequency dependence for a

wide range of K. However the variations of imaginary part ofp ( )

and the real part of C(Qw) with K show that I
(i)Imps(w) for a slit of semi-width b a Imp(w) for a circular

cylindrical tube of radius b/n

and (ii) ReCs( ) for a slit of semi-width 0 a ReCc() for a circular

cylindrical tube of radius b/n.

The value of n for which these approximations hold is roughly constant

and equal to 0. for 1.8% Kc 5 10.66 (see Table 4.1). This suggests

- that for a pore of a general shape but with a constant characteristic

* dimension x along its length, it is possible to choose an equivalent

radius a - t/n and to evaluate P((K) and C(c. ) where K 2 (t/n)(W/v)1 (4.9).

n represents an oscillatory-flow pore-shape factor.

; 4.2.3 Extension to bulk medium

If the pores in the bulk medium may be assumed identical and to run I
parallel to the surface then extension to the bulk medium from the

expression for a single pore is straight forward and introduces the volume I
porosity and flow resistivity in addition to the single pore parameters

il m
rN
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i and n. In a real medium, for various reasons, including changing pore

orientation and cross section, the particle path lines will deviate from

the surface normal. The changing pore orientation is referred to as the

sinuosity or tortuosity, q, of the pore [4.2, 4.12, 4.13]. The tortuosity

factor q has the particular value 1/cos e for a medium containing parallel-

cylindrical pores inclined at angle a to the surface normal. It is

possible to incorporate a further factor (>.1) when the pores have

cross-section which vary along their lengths. However this possibility

is not pursued further in the present analysis.

On the assumption that all of the pores are identical, the fluid velocity

averaged over a single pore's cross section, <v >, can be related to

the velocity u, averaged over unit cross-section of the porous medium by

< v >= qu /a

1*where a is the volume porosity.

Consideration of the pressure gradient along a streamline in a

single pore during laminar flow gives [4.1

q2
-~ ~ p q(.1
dx

1 *, the flow resistance per unit length in a single pore, is given by

2
4p = ps/i(4.12)

where P is the dunamic viscosity of the fluid, and s is a steady-flow

pore-shape factor. s may be calculated from a standard fluid-dynamical

analysis for a pore of any regular cross-section. For a circular-

I: cylindrical pore s has the value 1 and for a parallel sided slit
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s =1.5. A more extensive list of values of s corresponding to pores1

of various regular cross sections is given in ref [4.13].

From equations (4.11) and (4.12) the flow resistance per unit length, or

flow resistivity of the porous medium, which is a measurable quantity, can

be calculated from

f = 8pq s/tao (4.13)

By eliminating the characteristic dimension z between equations (4.9)

and (4.13) it is possible to deduce that

K= (S I/n) (8P0q 2 WO)' (4.14)

for pores of arbitrary cross-section.

The one-dimensional equations of continuity and motion in the rigid

*porous medium which are sufficiently general if the meimis isotropic

may be written [4.2) as

~'~~d0 (O (4.15)

21
and z (q /0) p (W) ku (4.16)

ax *
Combining these equations with use of (4.7) enables production

of the compressional wave equation inside the rigid porous medium.

P__ q 2P (W) CMa2 (4.17)

3.I
Iat
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Finally from equations (4.1). (4.6) and (4.17) the propagationi

constant k within the medium is given by
k 2  q q(W/Co0)2 (1- 2 (k /D"" T (kvi) ]-

[ )(N (/r "1 T(Ni Or) (4.18)
x [I 2 v- r

and the relative surface impedance Z/oc = 1/0 which is the

characteristic impedance of a semi-infinite medium is given by

Z =wp (M)/k (4.19).

It is of particular interest to note that for low frequencies and

small values of the characteristic dimension, i.e. small pores or high

flow resistivity, equations (4.18) and (4.19) reduce to relatively

simple expressions by virtue of the small argument approximations of

the Bessel Functions. Hence, at low frequencies and for high flow

resistivities

Z/poc. z k - (I + i) (n2 nO#CY(2po sc!) )i (4.20)

4.2.4 Calculations of tortuosity

Tortuosity has an influence not only upon fluid-flow in porous media

but also upon their electrical conductivity when the pore space is

filled with an electrically conducting liquid and upon diffusion of water

vapour through the pore space. It has been related also to the index

- of refraction of fourth sound when the porous medium is fixed with

liquid helium [4.14J. In the context of difuslon of gases through

porous granular materials, the following relationship, known as

Bruggeman's relationship, has been found to hold [4.15],

2 nn (4.21)
q =
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j

where n' is a grain shape factor taking the value 0.5 for I
spherical grains. This and other values of n' are listed in Table I
4.2. Hence knowledge of porosity and grain shape should be sufficient,

in principle, to calculate the appropriate tortuosity value. It should I
be noted that for porosities near unity, the tortuosity will also be

near unity irrespective of particle shape.

4.2.5 Calculations of shape factors

For packings of spheres, of porosities in the range 0.34 a < 0.45

CARMAN (4.13] gives a range of values of 2q2s,

4.5 < 2q s < 5.1 i
Using the Bruggeman relationship (4.21) for spheres, the stated range

of porosities implies a range of tortuositles given by I
1.49 < q2 2 1.715.

Hence from the range for 2q 2s, it is possible to deduce s 1.5 which 4

is the value for parallel-sided slit pores. '1

In principle it should be possible to deduce values of s for any j
regular microstructure from an analysis of steady flow through the

known pore cross-section. n, the oscillatory-flow shape factor would

require computation from a separate analysis of the microvelocity field

for each pore cross-section. Nevertheless the values of n and s for

the supposed extremes of circular cylindrical tube and parallel-sided I
slit suggest the possibility of the relationship

n- 2- s (4.22)

K -U

! X |

S .. !



Consequently for a packing of spheres, with s=1.5, it is possible

to expect that n = 0.5.

For non-spherical and non-uniform particles appropriate values of n

and s are more difficult to specify. Indirectly if the flow

resistivity, porosity and mean grain shape are known then it may be

possible to deduce a value for s, and hence n through equation (4.22),

by utilising the concept of hydraulic radius.

Hydraulic radius, m is given by

• = n/S (4.23)

Where S is the exposed particle surface area per unit volume of

material. A more usual concept than flow resistivity in describing

flow through porous media is permeability. As long as the pores

have fairly smooth perimeters, the permeability B is related to m by

B = nm2 / (2q2s) (4.24)

Flow resistivity and permability are related through

B = 02/1 (4.25)

Since m is calculated from geometrical considerations then knowledge of

n and n' should enable calculation of s.

!11 -
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4. 3 Comparison of rigid porous model with reflection measurementsI

Although there are many measurements available in the literature

on the acoustical characteristics of materials of interest in room

acoustics and duct acoustics, there is a paucity of data for the acoustical

characteristics of soils and sands. An exhaustive set of data, on

various types of sand and artificial porous granular mediaI

consisting of spherical lead shot, were obtained by Ferrero and

Sacerdote (4.15]. Their measurement technique involved measurement

of the pressure standing wave (plane wave fronts) formed in a

cylindrical tube with the sample forming one termination and the

loudspeaker source of pure tones forming the other. The propagation j
constant and characteristic impedance were calculated from

measurements of surface impedance for-two different thickness of

sample; one thickness being twice the other. This method was first

j advocated by Pyett (4.16]. Ferrero and Sacerdote also measured the

porosities and flow resistivities of their samples. Thus for the

spherical lead shot and sand samples (n'=0.5) of all the parameters

are known, with the exception of the pore-shape factors for t
application of the theory developed in earlier sections of this

chapter. The appropriate value of q2 for all samples is approximately

1.6, since all a a 0.4. Best agreement is obtained with the

Lo, shape factor ratio n1Vsi. 0.5 rather than 0.75 or 1. This valueI

corresponds approximately to n u 0.5, s - 1.5 i.e. the values for

parallel-sided slit pores as expected for packings of spheres (see

section 4.6). The measured data and theoretical predictions areI &

shown in Figures 4.1 to 4.5.



-__ _ ____m_.. . .
---------_-.. ..

_ 49-

I 

-
90 data /AKS Q

+ 61,200 0.41
85 o 110,160 0.40

LJ 306,000 0.37
so --- Empirical formulae a

using o-,Ur

70

65 b- '

60 "/

E 50..
45a

400 o

1 0k

35

"IN- 30

2 0"

• Frequency H zFigure 4. 2 Co rison of measured data ( 00O) of Propagaton constants (a + ibJ~the key, with predictions based on these value. and assumed values15 of ae-r0. and n/ra-eoage

. ..... 
+.

5A



50-

10
9

.9 1. 11

x ........

2 0 A

3

PC 5w- 00--a..

6

9 ,1. 11

100 200 S00 tk 2k
Figue 42 Cqiaimo ofFroqumy Hiz

Figure4.2 Copariso of mesureddata an characteristic independence,(+ X
of sand with predictions of rigid porous model: ef-au in Figure 4.*1.



IS0 data aa

170 + 958,800 0.47 a
1% 612,000 0.40

160 --- empirical using a0

140

130

120 .

110

~-100.

-90

500005012

bib
40 &



52

36

32

28.

R 1

A A I

12I

C is

202



ii -53-

4.8 Comparison with transmission measurements

4.8.1 Soils and sands

The difference in sound pressure levels between a microphone at the

surface and a probe microphone I(Figure 4.5r at various depths in several

soils and sands has be~- measured [4.17]. Assumine, that tho ground medium

is locally reactina then this difference should be niven by

attenuation in dB = 20 Im(k) 0/loge10

Im(k) refers to the imaginary part of k, i.e. the attenuation constant,

and D is the depth of the probe. Figures 4.6 to 4.9 show the

comparison between the measured data and the predictions obtained

through (i) equation (4.19) (ii) measured values of flow resistivity,

using an apparatus described elsewhere [4.183. and (iii) measured

values of porosity, deduced by weighing samples of known volume.

4.8.2 Fibreglass I
Using the apparatus described in Chapter 3, measurements have been

- made of the penetration of sound from an air-jet source into fibreglass

, i 50 cm. thick. The probe receiver Microphone was at 1,4 and 7 cm.

beneath the surface. The comparison between measured one-third octave

averaged data and predictions based upon measured flow resistivity

(using apparatus conforming to ASTM) and the assumptions that

n - q = n/s-z 1.

are shown in Figures 4.10 and 4.11. Note that the results on pulse

penetration (Figure 3.17) are consistent with the air-jet results andI,
with prediction. In the case of the loudspeaker generated narrow-band pulses

predictions of both the real and Imaginary part of the transfer function

between surface and buried receivers (see sections 2.3 and chapter 3) are in

U qood agreement with measurement (Figures 4.12 to 4.14).

J_,

.--- -- _ _ _ _ _ _
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I
5. GROUND AS A PONO-ELASTIC EDUN- RESPONSE TO PLANE WAV S

5.1 Blot theory and modification thereto

For a more complete description of ground response to an external

acoustic disturbance it is necessary to model the ground as a if
poro-elastic sodium. j

We are concerned with the acoustic wave motion in ground, consisting

of solid particles and air in the interconnected voids. The solid

particles are assumed to be in firm contact with each other and

thus constitute a homogeneous elastic frame. The theory of wave

motion in such composite media, as derived by Bhot (5.11, is widely

applicable, and predicts two types of compressional waves and one j
shear wave.

In this section, we are interested in computing propagation constants

for the above three types of body waves, suitable for numerical

calculations and for parametric studies. For this purpose, it I
* is convenient to express the equations of motion in terms of two I

scalar potentials #1 and #g and two vector potentials #1 and *2-I
Let u and U describe the displacement of the skeletal frame and

fluid respectively. Then displacement of the fluid relative to

the frame is

v Q(u - U)

Then we can express the two vectors as

u-V41 + curl

_ #2 +Y curl I I

U
K _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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JThe coupled equations of motion for' tfte scalar potentials 41 and 42

are

HV 2%- CV242 - P% - Pf;2

-V 41 MV24 - f - .42 t4* (5. la)

and another pair of coupled equations of motion for the vector

potentials 1 and 32

k

where BC and 4 are elastic constants expressed in terms of elastic

moduli of the grain-solid, fluid and frame.

H 1 (K - K,)' / (D-%) + Kb 4%/ 3

C = Kr (Kr  K b ) / (D - Kb)

and

D = K (I + O(K /Kf - 1)] (5.2)

Kr is the bulk modulus of the individual grains, Kf is the bulk

modulus of the pore fluid,% is the shear modulus and K is the

•. bulk modulus of the assemblage of particles. In Eq. (5.1), p

is the average mass density, Pf is the fluid density, n is the

dynamic viscosity coefficient and k is the nermeabilitv of the porous

frame with dimensions (L'.

•LI
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i

1
The parameter m, related to the fluid motion, is sometimes called

effective fluid density and is given by I
M - qpf/Al

where Q is porosity and q is tortuosity. The parameter q (> 1) accounts

for the fact that the fluid flow is not in the direction of macroscopic

pressure gradient. Experimentally measured values of q for soils and

sand have been reported in literature [5.21. However in the present

study, we use q as a model parameter through the relation

q -

where n'is a grain shape factor obtained from studies of gas and solute

diffusion.

In the high frequency range, where the visosity effects begin to be

of important, we replace the ratio by n F(A)/k where F() is a

complex viscosity correction factor, given by I
F(A) ~ ~ ~ V = -1/) A r )

F(X) -1/4) [1 - 2.0 T(A1i)/(AVi)

-- and

(5.3)1

I~

!I .
* s,
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where U is kinematic viscosity (n/vs) is identified as a single model

parameter, i.e. shape factor ratio. Note that , from equation (4.1),

the complex density of fluid in the pores of a rigid fluid-saturated porous

medium may be written

-4(P(A) ~ iQ~i)

We seek solutions of the form

= A exp(i(tx - wt)]1 1

I
t and

= A exp[i (tx - wt)]

and Eqs. (5.1) provide a pair of simultaneous equations for Al and A2.

- tFor a non-zero solution, we require that the determinant should vanish

and hence we obtain

P0 e2  CV- P f Wa

*0

W C- a - mwa + iwF(A)n/k

The above equation is quadratic in V and has two distinct roots

I!

8= t-B* v -4T/2A -. 

as long as B2 4AC O.

II  ,

•
- -~~ -- --•~
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where I

A =C' - B

B = 2 {m - 2Cp + P 1} - iOF (X)nH/k

C = Wf _P mp} + 0){ ipuF( )n/k) (5.6)

The two roots of t2 as given by (5.6) correspond to "fast" and

"slow" types of compressional waves. The corresponding propagation

constant for shear wave motion can be obtained by assuming

40 = B exp[i(tx - Wt)], *z = B2exp[i(tx - wt)] (5.7)

Then it follows from the equations of motion (5.1b)

P2 GbV PfW

= 0 (5.8) '1
pf12 MW2 + iwF(X)n/k

The phase velocityw'Re t and attenuation, Im t of three types of I
waves can be easily computed from (5.6) and (5.8). A FORTRAN program

has been written to compute propagation constants for two dilatational ii
waves and one shear wave. The complex frequency correction factor 11
F(A) has been computed using Bessel functions of complex arguments

where the calculations are performed in single precision.

I
_I

I I I I I I , -U



- 73 -

The pore parameter X as given in Sq.(5.3) enables us to consider the

influence of various parameter on phase velocity and attenuation of

fast and slow compressional wave modes. For the present, we restrict

the sensitivity analysis only to the parameters relating to the micro

structure and assume base values for the elastic constants of the

frame which are typical of sand.

A few remarks concerning the microstructural parameters are in order.

We have already note that the tortuosity is dependent on porosity

and this gives us two independent parameters n' and n . Although

permeability k and shape factor ratio are related, in the present

study we treat them as another pair of independent parameters. Thus

we choose the four parameters A, n', k andn//s to describe the

microstructure of the ground. (For a more detailed discussions on
ti this see references [5.31).

---

- __ __ __ __
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5.2 Predictions of wave speeds and dispersion in air and water saturated sand.

I
The program described in previous section has been utilized to compute

phase velocity and attenuation in water filled saturated sediments (5.3 1

where the values assumed for the various parameters used in the

computation are listed in Table 1. Here we present, in Figures 5.1 to

5.4 a sensitivity analysis of dispersion and frequency -dependent viscous

attenuation (fast wave) to porosity (0.3), grain shape factor (n' = 1.25)

permeability (10 cm ) and shape factor ratio (0.6). The values given

in the bracket% refer to base values.

The sensitivity of attenuation to permeability, shape factor ratio I
and grain shape factor are similar to those obtained for variations

in permeability and pore eis parameter and for structure factor j )
respectively by Stoll and Bryan f5.41. Viscous attenuation appears to

be more sensitive to porosity as it affects tortuosity (structure factor). 1
i'I

PARAMETER VALUE UNITS LI
Pr 2.65 g/cm'

Kr  3.6x 1011 dyn/cie

1.0 g/cm?

Tn 0.01 dyn - sec/cma

8.27 x 109 dyn/c 3  I
1.38 x 1010 dyn/€cm

I

! _ _ _ .--
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In Fig 5.5(a), the prediction for the frequency-dependent phase velocity

and in Fig 5.5(b) the effect of variation in frame elasticity for the

fast-wave in air-filled sand are shown. The predicted attenuation is less

than Q,.dB/m in all cases. In Fig 5.6, we present real and

imaginary parts of propagation constants for slow wave for the sake

of comparison with those obtained using rigid-porous theory. This

shows that the slow wave corresponds to that predicted in the modified

fluid model of a rigid porous medium.

The range of values of oscillatory-flow pore-shape factor (see section

4.3) used in these calculations (equation (5.3)) differs from that

quoted in Chapter 4 since it is derived from comparison the forms of

FM') for oscillatory flow in a cylindrical pore and parallel-sided

slit rather than those of p (m). The relevant parameter may be labelled

n(viscous) where

0.75 4 n(viscous) 4 I

The bulk modulus of air, xf, must be complex to account for thermal

effects in air-filled porous media. The required complex value

may be obtained from equation (4.6) where Kf a 1/C(w) and the required

value for oscillatory-flow pore shape-factor, n(thermal) is such

that

0.5 4 n(thermal) < 1

* JRelationships equivalent to (4.22) may be invoked between the various
shape factors viz.

2n (viscous) - n (thermal) + I

2n(viscous) - 3 - s

and

14a~1.5

K'.I

;I,, , ,
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where a is the steady flow shape factor defined in section 4.4.

For the computations in FiguresS.5 and 5.5, w have used the base values

n(thermal) - 0.5 and n(viscous) = 0.75. The remaining par meter

values are given in Table II,

Note tat a single value of oscillatory-flow pire-shape factor i

n(viscous) may be used if C(w) is calculated from. .1

4-(YP.) 12 - y + 2 (y (N )(I 1 16Y) T( * x T) /rw >I T

where y is the ratio of specific heats, Npr Ls the Prandtl NIfber and

P. is atmospheric pressure.

7
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TABLE I I

Parameters Required By Biot Theory

(As Modified By Attenborough/Rayleiqh)

Parameter "Sand" Value

Grain Bulk Modulus 3.6 x 10 dyn/cm2

Grain Mass Density 2.68 g cm- 3

Frame Bulk Modulus 8.27 x AO9 dyn/cm2

Frame Rigidity Modulus 8.27 x 10 dyn/cm2

Fluid Bulk Modulus (isothermal)

Dynamic Viscosity of Fluid .00184 dyn-sec/cm2

Porosity 0.4

Permeability 3.76 x I06 2
Grain shape factor 0.5

Shape factor ratio (n/s) 0.6

*0.5

+Ii
ii

- id
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Figure 5.5(a) Predicted fast-wave phase velocity for air-filled
sand with characteristics given by Table II.
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Figure 5.5(b) Variation of fast-wave speed characteristic in
air-filled sand* with labelled values of frame
elastic constants t
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As has been shown, the values predicted for the fast wave propagation

constant in air-saturated sand are very sensitive to the value taken by

the frame rigidly (shear) modulus (assumed equal to the bulk modulus). I
The shear modulus for soils is affected by various soil parameters and the

state of stress. The important parameters include (5.71 effective

octahedral normal stress, void ratio, grain characteristics, shape, size,

grading, mineralogy, amplitude strain, ambient stress history, secondary

time-dependent effects, degree of water saturation, octahedral shear stress,

frequency of vibration, soil structure and temper.ture. This complexity

implies difficulty with selecting values typical of any given soil type.

Consequently three values have been chosen which indicate a typical range

and enable a study of the sensitivity of propagation characteristics to

shear modulus in air-filled soils. The values chosen (5.81 are set out below:- .1
Soil type Shear modulus (G) dyn cm 

-2

Santa Barbara clay 1.38 x 108 .1

AGSCO No.2 5.17 x 108

Ottawa sand 1.86 x109 I

Figures 5.7 to 5.10 show the relative speeds and attenuations of the three

possible wave types predicted by assuming equal shear and bulk moduli and

using the base values of other parameters given in Table II with the -

exceptiouas n' - I and s4ape factor ratio - 0.75. Fiqure 5.7

shows that, for a relatively high value of rigidity modulus, the 'slow'

wave is clearly the slowest up to kz, the fast wave having a frequency

independent value somewhat greater than the velocity of sound in air

and similar to the value predicted for dry sand. From Figures 5.7 and .
5.8 it is clear that a small decrease in rigidity modulus causes the shear

wave to become faster than the slow wave near 1kHz. Note that both of I|
the rigidity modulus values assumed in generating Figures 5.7 and 5.8 produce

fast wave speeds somewhat less than the speed of sound in air.

.. ....



j Further decrease in the rigidity modulus to the value assumed in Figure 5.10

produces the interesting situation vhere the 'slow' and 'fast' waves are

1 predicted to exchange roles above 100 Hz. It should be noted that still

lower values of rigidity modulus are possible for soils and these will

produce 'slow' and 'fast' wave exchange at still lower frequencies. Finally

addition of a complex component of the shear modulus is shown,in Figure 5.11,

to produce, as expected, much higher attenuations for the 'fast' and shear

waves.
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5.3 Predictions of surface solIA particle velocity resulting from plane
wave incidence

The ratio of solid particle velocity to the pressure on the surface

has been used to describe the ground response. To facilitate

computations of this, we make use of a different but equivalent

formulation to that presented in section 1. The present formulation

enables us to express both solid and fluid displacement in terms of

two scalar potentials # and #2 and two vector potentials * and 4'
1 2

We write

grad $1 + curl #1

U -qrad4 + curl (5.9)
- 2 2

and they obey the following coupled differential equations

Vz (Ps + Q a) • -rl + b1(A) -4' )

and 2 (Q x * R )  2 ( - bF(A) (0 -, ) (5.10)

and

= ): (z .j)+ br(M, (0 t b
MV' -6at' WE4) FA)*~ ~ ~

a'0 r (5.11)

vhtere b it/k, p snd p are densities of solid and fluid respectively.

The elastic permeters P, Q, I can be related to K (5.51.

bulk mo*-lus of graism K f[ (bulk modulus of fluid), Kb (bulk sodulus

of aqv.-qets)

o4
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I

N is the shear modulus of the solid and composite

(1-f) ((1- 9) - K b Kr + a Kb I

1 - Kb + K3

Kr f

(1-Al- Kb ) Kr-

Kr

r =(5.12)
(1 - 0 - Kb + 0 K I

Xr

K K
r f

From the computational point of view, the present formulation does I
not pose any additional problem as the previous program can be

still used and Eqs. (5.12) provide for the translation between

the two notations. I

t1

I

I
I

ij L
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For comparison with measurements it is convenient to calculate

the square of the ratio of surface particle velocity to pressure

henceforth called the intensity ratio. These calculations are

described for obliquely-incident plane waves on a semi-infinite

poro-elastic medium and normal-incidence on a rigidly-backed

poro-elastic layer in Appendix 4.

Figures S.12 and 5.13 show plots of normal-incidence intensity ratio

against frequency for the parameter values given in Table I.

These are expected to be representative of sand. It should

be noted that the nufber of layer resonances increases with

increasing depth.

The variation of intensity ratio with angle of incidence, on a

I semi-infinite layer of dry sand, measured away from the normal

and with frequency is shown in Figure 5.14. The ratio decreases

with increasing angle of incidence and, for any given angle, the

ratio decreases with increasing frequency.

WI

I

*1~ -

,, 1"

-1fl

U
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Figure 5.13 Predicted semi-infinite- sand lrsurface intensity ratio forI
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I
I

6. THE SURFACE NOTION OF A PORO-ELASTIC HALF-SPACE DUE TO AN INCIDENT

SPHERICAL SOUND WAVE. I

6.1 Introduction

While the treatment of the ground surface as a rigid porous medium

gives an adequate description of the reflected sound wave and the

transmitted slow wave (consisting of air motion within the pores),

any attempt to determine the seismic response must take into account

the finite rigidity and density of the solid medium.

Here we take account of frame elasticity by using the theory of

propagation in poroelastic media outlined in the previous chapter.

This has been developed extensively by Biot in a number of publications.

In these he does not always use the same scheme of notation, and we opt

for the system given by him in 1961 [6.11. This gives the most

compact expressions in subsequent derivations, and many of the material

parameters are defined in such a way as to be identical to those of the

corresponding rigid porous material.

The problem of spherical wave incidence on a poro-elastic half space

is approached in the same manner as that for the more well-known

cases of fluid-fluid, fluid-solid and solid-solid interfaces, which

which are described by, for exaMple, Ewing et al [6.2]. The

axisymmetric displacement potentials are expressed in terms of

-Po --
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inverse Hankel transforms,* the transformed potentials being determined by

the boundary conditions at the interface. In this case there are four potentials,

corresponding to the reflected compressional wave in the upper medium, the

transmitted slow and fast compressional waves, and the transmitted shear wave.

The complexity of the resulting integral& prohibits a thorough analysis using

the saddle point method as in the fluid-fluid case used to model a rigid porous

ground surface. However, a simpler, loes rigorous approach enables us to

obtain asymptotic expressions for the various wave types at grazing incidence,

and it Is also straight forward to Identify the propagation paths and evaluate

time of arrival for transient sources.

Some simplification is possible by considering the limiting case when the

bulk modulus and density of the saturating fluid are much smaller than the

fast and shear wave are unaffected by the presence of the fluid, while that

of the slow wave is the esem as for the rigid porous case. Ibis 'light

fluid' limit should be applicable for air-filled ground surfaces.

.4 - Fong and Johnson (6.3, 6.4) have recently considered the problem of a

* - fluid/porous solid interface. Their treatment, otherwise comprehensive,

gives results for the high frequency limit when the propagation constants

for the various wave types are all real and non-dispersive. This allows

then to define 'true' surface waves with a velocity less than any of the

I; body waves, and to implement the Cagniard method when evaluating the
response to a pulsed source. B owever, the simplest possible treatment

of ground surfaces muast admit a complex slow wave propagation constant, and

as a result we are forced to give a more general analysis of surface wave

contributions.

* -A
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6.2. Displacement potential in the upper medium j
i I

The vector of fluid displacement in the upper medium is defined in terms

of the potential 4: 1
v - V' (6.1)

The acoustic pressure is given by

P - -Ky - -KaV 2  (6.2)

where Ka is the bulk modulus

,j obeys the wave equation

V2* . (6.3)
at

everywhere in the upper medium except at the source.

Ii

I

. !.
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6.3 Displacement potentials in the lower medium

If the displacemnt vector of the solid matrix is u, then following

Blot (6.11 we represent the displacement of fluid in the pores relative

to the solid by the vector

a - 0(U - u) (6.4)

where 0 is the porosity and U is the actual average fluid displacement.

Hence y is the relative volume displacement of the fluid over unit

area of the bulk medium.

Because the solid can support shear stress the displacmnt are not

in general irrotational. They can be detained in terms of scalar and

vector potentials as follows:

vT xY (6.5)
~2X2

m. _ _(6.6)

The coupled equations of propagation for dilatational waves are

a'2 a + -t - (PO + 1  (6.7a)

Vie, M  Sti hat=9 21I s + (4* (PI~ + 04 t +  
('"-- 6.7b)

and for shear waves

!i



-- _m (6.. 6b).

where H, U are elastic moduli of the sdium with sealed pres,

M is the effective bulk modulus of the fluid in the pores,
PI is the density of the fluid,

0 is the average density of the porous medium (including

fluid and solid),

2 is the effective inertial density of the fluid in the pores,

.. n is the fluitd viscosity, .

k is the permability of the porous medium,

F is a complex frequency depedent function which orrects for

departure from Poiseuille flow,

and a is a parameter which relates changes in poe volue to overall

, changes in volume.

A/4

, , , 4
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6.4 Boundary conditions at the interface.

The definitions of fluid and solid displacement used here lead to

particularly simple expressions for theboundary conditions.

Assuming open pores at the interface, the boundary condition for

continuity of fluid displacement is

n. (u w) a n.V

where n is a unit vector in the vertical direction. In tern of the

displacement potentials this becoms

*._. . ,) + .V x .v (6.9)

Biot's notion of 'effective stress' is particularly appropriate for

the application of stress bomiday conditions. The effective stress,

i j, is that part of the total stress within the porous medium (acting

on both fluid and solid) in excess of the local fluid pressure. The

components of effective stress acting In the plane of the interface

[ must therefore be equal to xero. Follwoing Riot's definitions and

using Cartesian coordinates xsys with the z axis in the vertical

normal direction, we have

t *z 2ve 5 + (H - 2Pa - +)e + N(I -

-0 (6.10)

.4,- -
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+± 0

xz a + 3 0 (6.12)

z I

where e = z

=-V w "

Finally, the pressure in the pores muet be equated to that in the upper

medium, giving j
p + C-Me 0 (6.13) j

We later express the stress boundary conditions in terms of the potentials

when transforming to ax1rimtric coordinates.

li

III

II

V L
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6.5 Time dependence

We subsequently assume that all displacements and potentials vary as

e , sothat

U W u e-5 
t  etc.

+• " wt  etc

In the wave equations we also have

a
at

equation (6.3) becomes
4

V# + k#- 0 (6.14)

where k --

Dquations (6.7a), (6.7b)

I V2 (# + o4) * 24P4 + ( P4 ) = 0 (6.1Sa)
1 ~2

V2 (a," 22

3i += H + , ' 4 + 0,€ - o (6.15b)

where p M U + _
W

iii

dl'
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4

The complex density 02  in identical to that for the equivalent rigid I
porous material. The reduction to-this case can be achieved simply by

setting the solid displacement potential # equal to zero in equation

(6.15b). This gives

02+ ZLM-,-#z . 0
2

From equation (4.16) we can deduce the complex density for a rigid porous

material and we have

2 = (q/f) ( M), = (ql/ p

From the associated wave equation (4.17) we can now also deduce that I

QC

j For the shear wave motion, equations (6.8a), (6.8b) become

UV2X 3 + W x(  ) - 0 (6.16a)

P X + 1 X 0 (6.16b)

I
~I

I
Li; I

II
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6.6. The axisrmmetric case

In cylindrical coordinates we have, typically,

v (x,y,z) - v r, , z)

and in the axisy smetric case

u e  -0

v =0
I) 0
e

and 3 38 0

Iquations (6.5) and (6.6) can now be written

r ar 3 ;raz

) (6.17)

w)

2 
*

a. z 2  ) r a

r ar araz )

) (6.18)

z 3z r - (r ar

The scalar potentials , *depend on r and z only, and x 2 . X3

are now defined in term of the single axisymstric scalar, with

I
x (0) a
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and by noting that from equation (6.16b) I

x 2  . -PI X3]

The shear wave motion governed by the vector equations (6.16a),(6.16b) I
may now be described by a single scalar equation:

v2 4 + k2  =0 (6.19)

2 2 (I P2

where k2 = -(U P 2) (6.20)

I
I

U [
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6.7 Axisvumetric boundary conditions

Using the definitions of the axisystric potentials already given and

the usual vector differential operators appropriate for cylindrical

coordinates, equation (6.9) b acams

T3 + +0 3-21i 3T'+ *,) (I " ) i'(""r --- 0

1a arr 3 z

132 32

or, since - ) - ) for axisymietric cases

3 P1 32, 3

( -- 2) (V2# -F--.)- (6.21)

F4 Equation (6.10) becoms

2 + - + (H -2V -N)V 2  - N( - a)V 2 2 0 (6.22)

Equations (6.11) and (6.12) are satisfied in the axisymatric case if

or, in term of potentials,

- ]m- 1 " - ' - -o I 11,
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I
Since the bracketted term must approach zero as r * m, this boundary

condition means that it must be zero everywhere, that is

2
- M V20

z-," _ + * =0 (6.23)

After substituting the appropriate potentials, equation (6.13) becomes

MV 2* +aV 2
# 0 (6.24)2 3

We shall ultimately use the four boundary conditions (6.21) - (6.24)

to determine the four potentials, * * , "2

if

II I

III __________________
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6.8 General solutions

Assuming a point source of sound at a height z. above the interface, the

solution to (6.14' may be written

ik R

R + (rz)

where RI = r' + (z - z.)', and * represents the wave reflected from the1

interface.

The general solution in axisymmetric coordinates may be written as an inverse

Hankel transform-

*1 (r.z) J;(Ke- 'Z J.(Kr)dK (6.25)

where v - (K' - kj) Re v > 0, z >0, I"(k) :O. and i is the

transformed potential for z = 0.

The total field above the interface, using the integral representation

for the point source, is

V1-vla-Zo + le
-

Z J1 (Kr).rMK (6.26)

IS

Ii

=1 __ - _ -_ -

.UE
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For the field below the surface, in equations (6.15a), (6.15b) we

try solutions of the form

= *(K)ea z J0 (Kr)KdK (6.27)2

43 = i(K)eZ J°(Kr)Kd (6.28)

0i

where z < 0 and a is as yet unspecified. Substitution of these leads

to two linear equations for the transformed potentials:

a' (H' + aM$2 ) -
2 (Pi + p4 ) = 0 (6.29)

a' (cil$ + M21 - w"2 (pI + p 0 ) = 0 (6.30)
3 2 3 2 2

A

where a' = K' - y2 . Equating the determinant of these equations to zero

gives the non-zero solutions, and we obtain
2 "2

- (a'H - w 2 p) (aM w 2P

S-(aaM - w2 p )' ) 0 (6.311

This quadratic gives two allowed values of a', and we can rewrite it as

(a' - k') (a' - k*) - (a'0q - w2p1)' = 0 (6.32)

HM

II

A.
°lU

-4



- 113-

W20
where kK (6.33)

2 P

and ki = H (6.34)

k' is the propagation constant for the equivalent rigid porous material,

and k', is the propagation constant for compressional waves in the bulk

medium assuming that relative motion between fluid and solid is constrained

in some way.

Equation (6.32) is a quadratic which may be solved in the usual way

to give two possible values of a.

If the second term in (6.32) is negligible then we must have

a ,a ,z ,2

az - ;k + k ) ± (4 , - k
2 2

- or k! (6.3S)

~i

For our application we do in fact expect that (6.32) will give two

wavenumbers corresponding to distinct wave types, and also that k' < k,

Accordingly, we will call one solution k,, and this is approximately

equal to k: and associated primarily with notion of air in the pores

known as the 'slow wave'. The second solution we call k,, and this is

the wavenumber of the compressional 'fast wave' determined chiefly by

the properties of the solid part of the medium.

L

' I

ii

- -- -- - * -I-
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In equations (6.29) and (6.301 the two potentials must be in a fixed

proportion for each allowed wavenumber. When a - k. we use (6.29) 1
to obtain

2a3 , =- = ffi t - k,°fM (6.36)

$, .(k:

and when a = k, substitution into (6.30) gives 1

!a,, = m - Wp (6.37)
i, M(k," - ka)

Equations (6"15k), (6.15b) therefore have two independent solutions.

For the slow wave

"N $2 = f'lkle 2 EJ.(Kr) Kd K  )

$ (6.38)

- I '
and for the fast wave

, , (K) e-V J. (Kr)KdK

$3 (6.39)

$32 a..* f
where l:1 -i (KI - 14)

and V3 -(K - 1))

'C1
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** is that part of the transformed potential 42 associated purely
2

with the slow wave. Similarly 4'1 is the part of ' associated

with the fast wave.

In general we may write

' z + a3 34j, a,i'eV z ) Ool l (6.40)

Sj( ;eV' + az,,'evaz) J. (K(rl)dk (6.41)

Finally, the general axisymnetric solution for the shear wave

motion described by equations (6.19) in

; {(Kev %' J.(kr)KdK (6.42)

where z<O, v . (K3 - kO)

IA

K I
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6.9 Simultanpous equations for the transformed potentials l

The general solution given by equations (6.26), (6.40) - (6.42)

for Z = 0 are now substituted into the boundary conditions

(6.21) - (6.24). This leads to four linear equations in the

transformed potentials which, when satisfied, also satisfy the

boundary conditions.

Equation (6.21) is satisfied if I

v + V (I + a,, + v ( + a,;) -K'-1 (I *

11 -V P2 (6.43)

Equation (6.22) is satisfied if

{21ia2 ,v - k: [as 2 (H - 21i - aM) - M(I -a)]}

+ {2i.v: - k' [H - 211 - am - a,,M(1 - a)]) I

- 2uv KZ. = 0 (6.44)
4 4

Equation (6.23) is satisfied if

2a,,v,1 + 2v,$ - (2K' - k,)* - (6.45) jI

-l

• I
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Equation (6.24) is satisfied if

-01 2i, + k(I(l + aaV + kM(m + a2 3)

e-VZ (6.46)

where we have used k
2X wpia

With some rearrangement we now write equations (6.43) - (6.46)

in matrix form:

e-vlzO(A] (i) -S

This is shown in full in equation (6.47)

Using Cramer's rule the transformed potentials are

l = 41e v z  (6.48) 1

4 o V2

Vi
"  z (6.49)

A0 VI I 1

A. = eV!z (6.501)

AD V
A 4 a VIZ

where A0 is the determinant of the matrix [A), and Al, A2 , etc are the

determinants formed by replacing the appropriate column with the

vector S .r

! 4
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6.10 Solutions in inteqral form

Substitution of the transformed potentials into the general solutions

(6.25), (6.40) - (6.42) gives

* * -V1 (Z + Lo) 
(.2

*21A. V V2Zjo(Kr)KdK (.2
-Vzo + V2zL0 "i

o  Kr)X d6.54) K

h ao VI
1

SV1  VO + (Kr)Kd (6.53)

*0

I
-VlZO + V|z

e-k z Jo (Kr) KdK (6.55)

where z > 0 for *1 and z < 0 for the other potentials.

4 I
These integrals are typical of those found in other two-media problems,

and we may consider them qualitatively in terms of saddle - point

integrals, branch cut integrals and poles in the complex k plane.

- The saddle points occur at the stationary points of the oscillating

inteqrand, and for large Kr some of these correspond to the ray paths

2 I
* K f
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.1
I

governed by the laws of reflection and refraction. The remainder

consist of inhomogeneous waves (see Brekhovskikh [6.5]) for which .1
there is no definite path, but which can be interpreted in terms of

Snell's law by considering complex angles of incidence and refraction.

The branch cut integrals correspond to rays which are in part tied to

the interface. Some of the remaining parts of these paths are indefinite

since they consist of inhomogeneous waves, but again interpretation

is possible by allowing complex, as well as real, critical angles.

When a pole of the integrand lies between the contour of integration and

the real axis there will be a surface wave contribution. Nearby poles may I!
also affect the saddle-point integrals as in the rigid porous case.

The eventual contour of integration may not always consist of all

possible saddle-point and branch cut integrals. If the source and/or

receiver are sufficiently distant from the interface, a single saddle

path may enclose more than one branch point, thereby excluding any

separate contributions from the associated branch cut integrals.

Physically, this appears to eliminate any path which consists partly of

inhomoqeneous waves and whose time of travel is less than the

corresponding wholly homogeneous path. At grazing angles, however,

each saddle path encloses a single branch point, and all possible

arrivals have to be considered. I

MIi I
! ! I
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These considerations are sumarised diagramtically in Fig. (6.1)

in a manner closely following that given by Ewing et al [6.2) for

a solid-solid interface. For this example we assume k > k4 > k > k

The wavy lines denote inhomogeneous waves, and in general two-part paths

from branch cut integrals. The potential *i is associated purely I
with the slow wave and the potential #* with the fast wave, so that

in equations (6.53),(6.54) we could write

In addition to these arrivals, of course, there may be surface wave

contributions. I

It can be seen from the diagram that when the receiver is on the . L
interface, the four paths for each branch point associated with the

four different wave potentials coalesce into a single path. This

reduces the total number of paths, excluding surface waves, from 1
sixteen to four, and this is a useful simplification when we consider

motion of the ground surface. Expressions for this are derived in "

Appendix 5. !I

II
i Y. I
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CHAPTER 7 12

CONCLUDING REMARKS

7. 1 Although we have been able to predict qualitative features of

some existing data on acoustic-to-seismic coupling, in particular,

that used to compute intensity ratios (Chapter 5), the requirement I
for design of unattended seismic and acoustic sensor logic remains

that good quantitative agreement with these ratios should be obtained

and that there should be theoretical agreement with other data on

acoustic-to-seismic coupling [7.1]. These data include the results

of tests using impulsive acoustic sources above and below the surface

and sensors at depths of up to 1.5 m.

7.2 The main obstacles to such requirements at this stage are lack of

information on the frame elastic constants required to characterise I
poro-elastic soils (Chapter 5) and the complex-layered and possibly

anistropic structure of real grounds.

7.3 The analysis has shown that surface particle velocity prediction . 4/

is particularly sensitive to the value chosen for the frame rigidity

modulus.

7.4 The model developed in this work has been brought to the stage where

numerical predictions of coupling from above-ground point acoustic 1
sources to sub-surface geophones are possible in certain well-defined n

situations viz. near-surface sources and air-saturated, isotropic,

porous ground of infinite depth. Altern zively, if the acoustic

source is sufficiently far removed from the ground surface for the

incident sound waves to be treated as plane, then not only can

predictions be made of the coupling to the surface of semi-infinite

ground but also to ground in the form of a hard-backed porous layer.

I U
I
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7.5 Extension of this model to allow for anistropy and for more

complicated ground structures and continuous sources will be

straight forward albeit sufficiently algebraically cumbersome to

warrant a semi-numerical approach, such as that adopted by the

Fast Field Program and its successors in Underwater Acoustics.

7.6 Further extension of the model to allow for impulsive rather

than continuous sources, should also be possible using a numerical

approach as suggested recently by Feng and Johnson (7.21.

7.7 The model may also be extended to include the effects of partial

water-saturation of poro-elastic soils along the lines suggested

by Brutsaert [7.3].

7.8 Finally, it should be noted that the theories developed in this

report are applicable to seismic disturbance of poro-elastic ground I'

by direct mechanical contact. Consequently it is possible to envisage

prediction and analysis of seismic refraction results in a way that

differs from established methods. Furthermore the possibility arises

of the prediction of ground vibration due to road and rail vehicles

in terms of basic fundamental attributes of intervening terrain.

Ii
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PPENIX -

WEYL - VAN DER POL FORNA -- OiRIATION

The method of steepest descents has been employed extensively to obtain

a computationally feasible solution for the field from a point source

of sound in air above a locally reacting ground plane. Various

mathematical approaches which arrive at the above solution under various

approximations are listed in reference 111.

The important case of near grazing incidence requires additional care while

handling the steepest descent integrals and this is chiefly achieved by a

method known in the literature [2) as subtraction of the pole. This method

often leads to laborious calculations. A simple alternative solution can

be obtained by an appropriate application of the method of Stationery phase. In

qeneral,the method of stationary phase yields useful approximation as long

as the integrand is a slowly varying function of Irteqration variables in the

neighbourhood of the stationary point. After a suitable choice of integration

variables, the integrals are approximated in the usual way and the final results )
for the reflected field confirm those obtained previously.

* The physical problem under consideration can be formulated in terms of the following

boundary value problem. For convenience, we choose a cartesian coordinate system

The acoustic velocity potential satisfies Helmholtz wave equation in both the

media (z < 0 and < 0) which are characterised by their densities p, and P2

and propagation constants s1 and K2, respectively. Thus we have,

IW dig

Ii
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I
(V

2 + Cx12)q, = 6(X) 6(y) 6(Z-Zo) Z>O (Al. 1)

IV + 'C2) = 0 , z<0

where KI - k + is1 and K2 
= 

k2 + is2 and the source term is

symbolically represented by Dirac delta function. The time

dependence of exp (-iwt ) is suppressed throughout The boundary

conditions under consideration are continuity of pressure and normal

velocity across the interface z = 0 i.e.

Pz ,(x,y,O-) =- 02*(X,y,O+) (AI.2)

and

a (x,y,O-) 3 _*(x,y.O+)
a)z az

By making use of two dimensional Fourier transform in space variables

x and y we obtain the following for the reflected field z > 0.

4 + -l da  2 X + p
1 2 1 1Z2

*x e-X,(z + z.) +y d

where a and 8 are transform variables and X 
2  

2 (Al.3)

The square root functions are defined in such a way that

" /2 2  when " 0 and ' when a - 0. Thw inteqral
1 2 1,2 1,2

in (2.3) can be approximately evaluated for large source - receiver

I./
'4 1

4 U
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distances by the method of stationary phase and we obtain

R(O) e-ikR 2

4w R2

where R2  x2 + y 2 + (z + z )2
2

R(e) - Sose-M mn -sin 2

Cos 0 + N 77 - .2 9

and M p /2 and n - K2/Ki. The above asymptotic approximation

is of limited use and breaks down when 8 is near w/2 and this is

due to the fact that the integrand in (A1.3) no longer remains a

slowly varying function, but will oscillate rapidly between -1 to +1

In this case, (e z w-/21, the contribution from the stationary point

has to be considered more carefully. Zn order to facilitate this

computation, we rewrite the integral in (AI.3) as

ik-LR2  1)
, -4 R 2  

i

(1) [o C 1I2 -X(-o+B
where 1 - 2 a dd$I e

"I0

(A1.4)

The integration is performed successively, first with respect to

-. (from now on abreviated as w.r.t.) 0 and then w.r.t.a. The integral

w.r.t. B is evaluated after deforming the contour into the complex B

plane and then approximating the resulting integral by the method of

stationary phase.

1'
.lI

K '



-130-

{a

This is accomplished by first observLnq the branch point and pole

singularities of the integr nd in the complex 0 plane. In the

present case the integrand has branch points at

Y(1- - n 2  2 2
± 2 7.2 and simple poles at B - K a

2 (l-1

The integrand is made single valued by introducing the branch cuts

as shown in Fig. A1.1.

(k',

F AI
-II

-t-



J - 131

The deformed contour consists pf two circular arcs of large

radius going round the branch cuts. The contribution from the

circular arcs is zero. The contribution from the branch point

(B 2 - d2)% can be shown to be
2

0 [eX p(-i(K1 2 -_ '1 ( zZ - (K 2 2 2 | I y 1]

and will be neglected. Thus we are left with the following integral

PIX2 -iX v cose +i Rv sinO

2 1 1 2 d

(A1.5)

where we have let y r sin el, z + z ° r cos 01 in A1.5 and

kh r h v l t~ r s n 1  z-1  1

C is the contour round the. branch point - (c 2 _ 42). This
1

integral is approximately evaluated by the method of stationary

phase. The exponent in AI.5 has a stationary point at

13 - sinS. 9 Wen O N w]2, the situation we are

interested in, we observe that the stationary point is in close

proximity of the branch point - 1 .

Now the main contribution to the integral arises from the neighbourhood

of stationary point, in that part of the integrand which is slowly

varying. The case where the integrand is not slowly varying has to

be considered separately. In order to do this, we first rewrite (Al.5)as

A v(6 .17 12co1

I
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x e -i1 ( )+i~y (A1.6)

x(1 ( xI+K.,A )

where A = M and

1R (C, e 21 - 1X 2  at = - sin

2 x + PIX 2

Now we write

/1 2 1 (1 .

In the neighbourhood of the stationary point, the second factor is slowly

varying and we put B- - *2 (as 9 - w/2).

on the remaining inteqrand, we put

- 142 ,qi/4 T

where T is a real pareter and varies from to + " on C.

After sme algebra, we have from A.6)

f aI

I
I
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x exp y 2 .2z (1 + ,,i rsn

(t 2
where 1(u) t dt

and
iw42] o KA 2 _Q]%

b - 1
i/4 e(K I  el 1 2+ KA (1 a (A1.8)

The integral defined by I (u) can be expressed In closed form Involvlnq

error function complement and we can write it as

I(u)= -/i exp (-iw/4) ,F(b exp (i w/4)

Thus we have from (A1.4) and (A1.7).

(1) 11f *icx-i 
T2 _ 1+h cot 2 

06i

1 IA 121

4w2w



-I
- -

-134-

.1

2In the present case of interest y(1 + ' cot 2 01 y -r 1 since cos e 1
is small. The final evaluation of * ( is carried out by a further
application of method of stationery phase. Now the integral I(2r I sin8

does not contribute to the exponential and the stationary point of
12 a 2 

IK/( 2  121
CM - r - occurs At 0 1 - I jCiO+ 2 The relevant terms at

this point are given by

2 - .2 K cos e K y
1= I I C0 6  = 'C

R coso e R sin 01

since sin e1 1

b - 0.5 exp (-iw/4) A + cos 81 rI

From (A1.3), (A1.4) and (AI.9), we finally obtain for the reflected field Ih

)'
in z b0as

-iC R -iK R
+ - 1 + 2iy (RCO) -1) F(y) } (Al.10)

where Y - I'R (A+ cos e)

12-. B s .nt l - and IxI2 "1

and F(a) - exp (2) fxP (-it2 t

After some simple algebra the thove solution for the reflected field in

easily show to be equivalent to those previously Obtained.
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APPENDIX 2 1
ON THE ACOUSTIC SURFACE WAVE NEAR A RIGID POROUS BOUNDARY I

A spherical wave incident upon an interface of two media, in particular, I
air and porous ground gives rise to reflected and refracted waves subjected

to Snell's law. Under certain circumstances, the interface can support I
a wave which is exponentially damped in the: normal direction and whose-a,
amplitude decays as r This wave is termed as a surface wave.

I
In this section, we clarity certain mathematical details which are necessary

for the existence of a surface wave. We also provide an alternative I
interpretation for the acoustic surface wave in terms of discrete spectrum

of a suitable partial differential operator. I

We consider an incident spherical sound wave

with time dependence of the form exp (-iwt), incident upon a locally

reacting boundary. For the above case, surface waves are conveniently

analysed by expressing the reflected field as a Fourier integral.

The pole(s) of the reflection coefficient (in Fourier domain) are

closely related to surface wave(s). The computaLion of the reflected

field crucially depends upon the evaluation of the following integral

OA

I
I
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(H,r) 2 J. (Kr)KdK W.1)
P- 2 V I + P Iv22 1 1 2

where v 63 -k and p are densities of the media z > 0 and
1,2 1 2

z < 0 respectively and H - z + z.. The square root functions are defined

in such a way that IX - k = i k 2 as K -- 0.*
1 2

Due to the presence of branch point singularities in the integrand of (A2.1)

it is important to define the branch cuts before analysing the existence

of poles. The choice of branch cuts is arbitrary as long as Re v > 0
1,2

to ensure the convergence of the integral in (A2,I). Essentially two types

of branch cuts are used in the literature viz, vertical and hyperbolic (1

branch cuts. Here we consider the case of vertical branch cuts and the analysis

for hyperbolic branch cuts follows on similar lines.

The vertical branch cuts are defined by Re K = t Re ki , Im K > 0 and

Re K = ± k2 F Im K > 0. Corresponding to each square root function, there

are two choices for the sign of Re vi and these are shown in table A2.1.

TULE A2.1

Rev Re v

'"I . ..

.1 II - +

III 4 -

IV

*k are complex constants with non zero imaginary points
1#2

'r

• h __
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We write v. V I exp li arg(vi), for i = 1,2 and the sign of Re v

depends on the variations in arg (vi ) . We consider these variations by

considering a small neighbourhood around the branch points k, and k2

ThBLE A2.2

e Arg v (K) Arg v (K)
1 2

-3/2 -3w/4 + X /2 -3w/2 -3w/4 + X2

-f - X -w/2 -w - X2 -w/2
- 1 X, -w/2 + Xj -W + X -v/2 + X

2 2

-Xl 0 -X 0-

1 1 2XI  X X2
12W/2 /4 + Xl /2 w/4 + x2

where Xi is arg k1 .which is small as kI is essentially real and X is arq k .i

Clearly on sheet I,

-w/2 + < arg v (K) < w/4 +

and

-7r/2+X < arg v (K) < T/4+ X.
N/ 2w 2 2

Now we consider the possible existence of poles on the upper Riemann sheet.

It is easily seen that the poles of the integrand in (A2.1) are given by the

equation V 0

2 1 2

i.e.

K = kc ((1 - 2 n2) / (1 - M)2  (A.2.2)

where M- /p and n = k /k. In order to locate these poles in the
2 2 1

first quadrant, we define the complex number

x = k M -2n 
2 ) / (1 - M2)

---
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For most of the grounds of practical interest IM2 << 1 and we approximate

2 1 .K 2k 2
l - M2) 1. Hence K = k (- Mn)

We also write the complex number nM= InKI exp (:. ). It is readily shown that

X. = k 1 ln 4 
- 2 jn j2cos 20]" (A2.3)

and

22

arg(K*) = arg(k1) + larg (1 - n2 2

II n12 sin 2Yx I+tan - 2
in r2cos2* - I (A2.4)

Since X1 >0 and K. > Ik 1 1, the pole lies to the right of the branch point

k as shown on Fig A2.1. In order to verify that the equation for the pole

is really satisfied at K., we compute vl(K) and V2 (K) at K.

V,(K.) ,= + ix nN and

argfvl(Ko)}= + w/2 + arg (k1 ) + arg (nM)

where the choice of sign is fixed depending on the Riemann sheet. Now

arg (k1 ) is a small positive quantity and arg (riM) _..-w/4 for a porous

material at low frequencies and for K. situated as shown in Fig. A2.1.

x arg v,(K.) S w/4 +

on the upper Riemann sheet and hence v 1 (K.) = + ik WCE

Similarly,

" 2 (K.) = ± ik n

* where Inl2 is assumed large; and

arg v2(K.) - t w/2 + arg (k1) + arg (n)

Now, for K. lying to the left of the branch point k2 , we have

-/2 + X2 < arg v2(K.) < 0

Since arg (k2) > arg (k1) , we have on sheet I,

v2 (K.) - - ikln

Thus it is evident that on sheet I, the equation for the pole is satisfied

and hence K. is a 4 pole on sheet 1.

Ii i
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Im K VC2

C,

2

Re K

-K
2

°- t I

Fig A2. 1.

Fig. A2.2 Location of pole and branch cuts I

I
I
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I
Now the evaluation of the integral is accomplished by first extending the

range of integration from 0 to to -f to +D , and deforming the contour into

upper half plane of cut K - plane which encloses the pole at K. The branch

cut integrals are approximated using the saddle point method and the residue

term represents the surface wave
Aik I exp(-ik RA) 1 (klr V/1-A 2

residue at K. - (112 I

(1-N ) 41

where

A= M[n - 1) / (1 -

For the sake of completeness we quote the final expression for the reflection

field in z > 0.

e i k I eik2 R2 21(l + $ coSO  iN
ref 4j4 .R R., k1IY + cos.,), k1 R2 j

+ residue at the pole.

where 6j

N = 1(R" (O) + R' (0.) cot 0.

- I R(eo) (cose - 8) / (cos 0. + )

* Nn

At this stage it is worth mentioning that the above solution is of limited

practical use. For a solution which is uniformly valid for all angles of

incidence a modified solution is used as described in previous section (see

Eq. (AI.10) ), or by a similiar method EAt.1]. In this case* the urface wave

term appears implicitly through error function complement, which can be seen

more clearly for large arguments of the function (see Eq. 52 in [A.1]).

- -------.-----.--- ---------.
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A simple interpretation for the surface wave can be given in terms of the

discrete spectrum of a suitable partial differential operator. In the present

case it suffices to consider a two dimensional model for ease df illustration,

where x and z coordinates denote the horizontal seperation and vertical

distance from the origin respectively.

We are required to find a function *(x,z) such that

OXX + (k a - L)j - C(x) 8(Z - Z.) (A2.5)

where LO = -,zz'over the half plane -m < x < -, 0 < z < m, such that

*z (x,0) + ac (x,0) = 0 (A2.6)

where a is a paramenter related to impedance and Re a > 0. Also we

require the field to be outgoing at infinity.

The solution for A2.5 can be written symolically as

*( eM ~ (i kT L xi A27i(Xi T d(z - Z.

This operator espression can be evaluated, once we know the spectral

- representation for L under the above boundary condition This can be

S1 obtained easily by the well known methods [A.4] and we have

6(z -Z) - 2a exp(-a (z + Z)) 11 - H (Rea))

i exp tip(z -- Z) + i d
Tr- I

i> exp [ip(z + Z ) + i1r7I lx P ic , do.8TE- A
<1 :

I4I
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plow from A2.7 and A2.8

-, x,Z) -i~exp (i'c i xi) exp[-*(z + X.))

exp (ip(z - Z.) + LAI i (ka p2

i i i0 - ia dp ( 9

- exp lip(z + z.) + i2--r lxi] -

In Eq. the first term arises from a pole of the Green's function and

in the literature, is referred to as constituting the discrete spectrum of

the operator L. The remaining two integrals, after some algebra, can be

easily seen to be contributing to the continuous spectrum. In fact, they

can be shown to be direct (first integral in (A2.9)land reflected (second

integral in A2.9 waves. In other words we notice that the branch point

singularities of Green's function give rise to space waves, while pole

singularities give rise to surface wave(s).

.1 ...
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THE ACOUSTIC MODELLING FACILITY

Introduction

This APpenaix lrtroduces the basic rules of acoustic modelling

and discusses the essential requirements of the modelling

instrumentation. It concludes with a description of a series

of model experiments, conducted in a small anectoic chamber,

to measure the amplitude ratio of the direct and transmitted

sound fields above a porous half-space and the delay between

the arrival of the direct and transmitted sound waves.

A3.1 Basic modelling rules

In order to model an acoustic sound path, two conditions must

be fulfilled. The first is that of geometric similarity and

the second kinematic similarity. Geometric similarity ensures

that the ratio of the wavelength of the sound source to the

dimensions of any bodies or reflecting surfaces remains constant

and hence diffraction effects will be replicated in the model.

Kinematic similarity is required due to the fact that air is

used as the propagation medium in both the full scale and model

environments and hence the velocity of sound is a constant. This

imposes a time scale factor, as can be shown by considering the

dimensionless quantity characterising reference times (the

Thomson Number) as follows: j
Tm.V To.V
mm 00
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where T,V and L are time, velocity and length respectively and

the subscripts mi ando refer to the original and model propagation

paths. Since Vm = V 0 then

Tm Lm

and the time scale factor equals the length scale factor. Thus

maintaining a constant sound velocity requires that the model

frequencies be increased with respect to those of the original

and that all time periods bt scaled downward.

In general the scale factor derived for the condition of geometric

similarity must also be applied to the acoustic properties of

the materials used to reconstruct the surfaces and obstructions

in the model; so that the impedance at the model frequencies

equals that at the full scale frequencies.

The prime objective of the model experiments conducted during

this study was to evaluate theoretical predictions of the

- coupling between the airborne and seismic waves, rather than to

* obtain quantitative data of a precise ground surface. In view

of this it was felt unnecessary to employ 'scaled' models and so no

attempt was made to scale the acoustic properties of the model

ground surface.

.IAIA
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A3.2 Requirements of a model receiver

The basic requirements of a model receiver are small size, high

sensitivity and wideband frequency response. Size is important

for two reasons (a) because directivity is related to the ratio

of diaphragm diameter to wavelength and hence a small microphone

better approximates an omni-directional receiver and (b) because

the reduction in diaphragmmass improves the high frequency response

of the microphone. The major disadvantage of a small diameter is

that the reduction in surface area reduces the microphone's

sensitivity.

The receivers used for the model experiments were commercial

1/4 inch diameter condenser microphones manufactured by Bruel

and Kjaer (B & K) of Denmark. The sensitivity and bandwidth
of typical microphones are shown in Table A3.1

Table A3.1 Microphone sensitivity and bandwidth

Microphone Nominal Sensensitivity Bandwidth
type diameter mV/Pa kHz

B K4136 1/4" 4 70
B& K 4138 1/8" 1 140

Figures .A3.1 - A3.4 40nw the .irectivity of thes icrnnhones at

various frequencies, measured both with and without a protection

grid [A3.1]. Although the 1/8" displays a wider bandwidth and m

superior directivity, its low sensitivity limited the maxium

length of the model propagation path to less than 1 metre.

m21 I
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* I In view of this the 1/4N microphone was adopted as the standard

receiver and the 1/8" microphone was used primarily to test

the performance of the 1/4" at short separation distances. The

1/80 microphone was also used to measure the directivity of the

sound sources.

A3.3 Requirements of a model sound source

The sound source should be omni-directional, have awideband frequency

response and generate adequate signal power.

Model sound sources fall into two categories, continuous and

impulsive. The impulsive source, such as an electrical spark,

generates a short energy pulse of high acoustic intensity and

wide bandwidth which propagates along an infinite numb~er of paths.

Each path can be identified by the time delay between the energy

discharge and the arrival of the pulse at the receiver, hence there
is no need for special anechoic measurement environments. '

The major limitation of the impulsive source is the possibility

of non-linear acoustic propagation near the vicinity of the

source, which imposes a minimum length of propagation path.
Furthermore, they require sophisticated measurement and analysis

systems to cope with the problems of direct and reflected pulse

overlap EA3.2).

Continuous sources can be handled with relatively simple measurement

systems, but since the energy is radiated continuously, it is not

possible to identify individual propagation paths. This means that

all measurements must be conducted within an anechoic environment.
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A3.4 Model sound sources

Two sources were selected for the model experiments. The first

was the air jet described by Delany et al CA3.3] and shown in

Figure A3.5. Measurements of the directivity in both the vertical

and horizontal planes indicate that this design is a good

approximation to an omni-directional source at frequencies up to

100 kHz. One particularly important feature of this design is its

excellent long term stability, so that over a period of six

months the one third octave spectrum varied by less than 0.5 dB.

The useful bandwidth of this source is 1-100 kHz, as dictated

by the signal to noise ratio of the measurement system and the

low frequency performance of the anechoic chamber. Figure.-.A3.6

shows the free-field spectrum measured at a distance of 100 cm.

The second model sound source was a spark discharge device designed

at the Open University. (A complete description of the design

and operating characteristics is given in reference A3.Z)

The spark operates at very low energy levels and so non-linear

propagation effects are virtually eliminated. A further

advantage of the low energy is the fact that electromagnetic

radiation iskeptbelow levels that can be detected by the

condenser microphones. A typical spark source spectrum is '1
shown in Figure A3.7.

I
.1 I

_



149-1

A3.5 Modelling instrumentation

A3.5.1 Dynamic range

Acoustic modelling is very demanding of instrumentation systems.

The low sensitivity of small microphones requires that pre-amplifiers

and main amplifiers have very low electrical noise floors over a very

wide frequency range.

A typical microphone amplifier chain consists of a pre-amplifier,

to convert the high output impedance of the microphone to a

low impedance suitable for driving long cables, and a measuring

amplifier to provide the polarization voltage and the gain.

An estimate of the dynamic range of the instrumentation system can

be obtained by calculating the noise floor of the amplifiers

and subtracting this value from the input signal level. The i
following figures are taken from the relevant manufacturers'

specifications.

(a) Pre-amplifier noise

The inherent noise of the pre-amplifier is determined by the

capacitance of the microphone cartridge. For a 1/4"

microphone the total noise over the range 20-20 000 Hz

is quoted as less than 120 microvolts.
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(b) Main amplifier noise

The noise floor of the main amplifier is determined by theI

thermal noise of the electronic components. The signal to

noise ratio for a 100 my input is stated to be better than

100 dB, which implies a noise floor of 1 microvolt over the

range 20-20 000 Hz.

Assuming that the main amplifier noise can be neglected,

compared to the pre-amplifier noise, then the equivalent

sound pressure level of the noise floor is 63.5 dB.

If non-linear propagation effects are to be avoided, then

the maximum source sound pressure level must be kept below

140 dB. Subtracting the noise level from the signal level1

gives a dynamic measurement range of approximately 75 dB.

A3.5.2 Atmospheric absorption

The source-receiver dynamic range is further degraded by atmospheric

absorption. It is well known that high frequency sound is

attenuated as it propagates through the air due to a combination

of thermal, viscous and molecular relaxation effects. Delany (A3.4]

* has made an extensive study of the attenuation mechanisms and

* 4 derived a set of equations that enable corrections to be made

based upon measurements of the ambient temperature, air pressure

and relative humidity.
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The results of calculations for typical indoor values of these

parameters shows that the attenuation can exceed 5 dB/metre

at 100 kHz.

A3.5.3 Digital processing equipment

The majority of the signal processing tasks undertaken during this

study were executed on a commercial digital spectrum analyser,

a Nicolet 660B. This is a dual channel analyser performing

a Fourier Transform on 1024 data points to produce a 400 line

spectrum over a pre-determined measurement bandwidth. Alternatively,

the instrument can produce a one third-octave band analysis over its

full measurement bandwidth of 100 kHz.

The analyser has five basic operating modes, but the only one

used for this study, was the dual channel mode. If the two input

signals are represented by A and B respectively, then the analyser

will calculate the cross-spectrum from the expression

- G(f)AB = A(f) . B(f)

and the transfer function from the expression

H(f) = G(f)/A(f)

The Nicolet is also capable of calculating the coherence function,

which for linear systems can be interpreted as the fractional

proportion of the mean square value of the output signal B(f) which

is contributed by the input signal A(f). The coherence function, g2(f)

can be defined in terms of the cross-spectrum as

1.

L aJ
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I
.I

g 2 (f)AB G(f) AB12

IA(f)I.IB(f)l

Measurement of the coherence function proved a useful means of

estimating the influence of near surface turbulence upon grazing

incidence propagation.

iS

1

11
m0
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APPENDIX 4

CALCULATION OF SURFACE INTENSITY RATIOS

A4.1 Semi-infinite medium

In this section we are interested in obtaining an expression for the

square of the ratio, solid particle velocity to pressure at the surface,

where the ground is considered to be of infinite depth. We consider

a plane wave incident upon the interface at an angle 6.away from the

normal.

We note that in a poro-elastic half space, there will in general be

six types of waves. These consists of two dilatational and one shear

wave in both the solid and fluid phases. In terms of scalar potentials,

we write, for the solid phase

* *' = a' exp [-iwt - ky sin6' - ke'x cose')]

= a" exp [-iwt - k"y sine" - k"x cosO")]1 s

= ay exp [-iwt - kry sinf - krx cose )A4.1)S s1 5
and for the fluid phase,

rr= (I 1A4.2)
! .r

where k', k" and kr are propogation constant as obtained in section

5.1 T', T" and i are the following ratios of amplitudes

, !4
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f 8

=Y a/a"
f 8

and they can be obtained from the relation

af (-k2P + pl,2 + i±wF M,)}

as { k2Q + iwbF Mu)) (A4.3) 1
where k assumes the values k', k" and k respectively.

The solid and fluid displacements can be expressed in terms of the 1
above potentials as

a x ax a"

y ay a y ax

U 342 + 
3
42 432

x ax ax 3y

U -- +2 34  -2 (A4.4)

y 3y ay 3x

.V I!,

I
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and the relevant components of solid strain are

e 3xe au au
aux, e =uy, e X X .- (A4.5)

XX ax ay ' 3y !-

and finally the fluid dilatation

C = X + au (A4.6)

We also have the stress-strain relations for an isotropic medium

aij = (P - 2N)u kk6ij + 21fjt + QUkkS ij

06ij = - f 6ij = (Qukk + R U)k) 6 ij (A4.7)

and implicit sumation over repeated indices is assumed.

The normal solid particle velocity, V is given by

i _x (A4.8)
at

and from E.q (5.16), we have for V at the surface x = 0,

vs -- iw [a .i k' cos 0' + a." (i k" cos e")

+8 r ( i kr sin 6 r)]

x exp [i k0 sin 0 Y - i wtj (A4.9)

-I

aEerein, we have made use of the relation,

k° sin ° - k' sin 6' k k" sin 69- k r sin *r (A4.10)
0 0

I$
'! t
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Also at the surface the normal stress in the frame must equal j
stress in the fluid as both are acted upon by the outer air

presure p. Thus I

(0xx =0o- -p

From the stress-strain relations (A4.?) we can express I
and using (A4.5) and(A4.6), we get for the pressure of the surface

-~f [-( - t ""a' " - .a-- B" k 2 T=

x exp likoy sin 0- iwt] (A4.11)

From (A4.9) and (A4.11) we obtain the ratio of solid particle velocity

to the pressure at the surface i.e.

V = (1 - W)Wucos 0' + 1' k' coo 0' + Y2 k' sin l Al. I,')

P k,.(, o ,.r ;,,. ,;

where I

1 as" k"2

.[asa' k' 2 I

and

F =a r k: r
a 'k '2

2I k-I
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The constants r and r' are as yet unknown and can be expressed in

terms of known quantites with the help of the following conditions

at the surface x - 0. These are:

i) vanishing of tangential stress at x = 0 i.e. e . 0XY

ii) stress in the frame equals stress in the fluid i.e.

0 =

I -fl

These two conditions provide two equations for F and F and after

some algebra we have from (A4.5) and (A4.7),

sin 2 "F cos 2 er F =-sin 2 0'1 2

and

(2 NOc 2 0" + I A - (i - n)QJ) r + NO sin er 2

- 2 Nfl cos 2 er - An (1 - fl)Q (.13)

which are solved to give

-[Nn tan r  2' 2Nl cos 2 e' + {AD - - fl)Q ]

[NAl tan 2 8r sin 2 e" + 2NA coo2 0- + {AA - (1 - fl)Q 11

and

F =r sin 2 6" + sin 2 e' (A4.14)

Now with the help of A4.14 and A4.12, the square of the ratio,

solid particles velocity to the pressure at the surface can be

readily computed once we know the propagation constants k', k"

r
and k.

!ON,

A

L



-'

-162-

In the case of normally incident (00 - 0) plane wave, the ratio 1
can be expressed in a coapact form

p 2 (-l 2 2  1- 2

kf ( T' - T"] (A4.15)

as ri = -1 and r2 = 0

This result differs substantially from that obtained by Flohr and

Cress (A4 .lwherein the qround has been considered as an elastic

continuum. The present result is frequency dependent which is j
qualitatively consistent with thbir measurements.

[I
I I°

-I <

'! I
IV 1!

____________ -
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I A4.2 Rigidly-backed layer

The effect of inhomogeneity in the ground on the wave propagation

can be described by considering it as consisting of several layers

of differing properties. One such simple model is to consider

a finite depth of poro-elastic layer supported by a rigid semi-

infinite medium.

In this section, we derive an analogous expression to that of

Eq A4.15 for normally-incident plane waves. When such a plane

wave is incident upon the lkyered medium, inside the poro elastic

layer of depth say, d, there will in general be twelve possible

waves. As before, they can be represented as follows:

In the solid phase

a exp (- iwt) {e + + T'e ik'x

" a exp 1-it)" We+ ik"x + T~e- ik"x }
1 5 r
r - A i x +T e (A4.16)

-- . In the fluid phase

ipi
* I2" =. "  P2.

*2 p T

The unknown quantities T, T" and Tr denote the relative amplitudes

of backward travelling waves to the waves generated at the surface.

II
Now at the rigid backing (at x - d) the tangential stress (a ) will be

zero, which in turn from stress-strain relations A4.7 implies that

I

II
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e = 0. Furthermore as the backing is hard the normal particle I

xy

velocity is zero at the backing i.e.,

v 5 = Vf = 0 at x - d

Also at the surface n =0, the tangential stress, exy 0. 0

Using the above conditions, after lengthy algebra, we obtain the I
following for the square of the ratio of solid particle velocity

to pressure at the surface

22
2 (2a 1 e 2 (A4,17) 

2as k" 2

where ik'd and 6 - ik"d j I

iI

I
I

I
I
I
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APPENDIX 5 1

MO0TION OF THE INTERFAC. THE GEROgTRIC APPROXIMATION I
Using equations (6.18) and the integral expressions for the potentials,

and after performing the appropriate differentiations with respect

to z, we obtain the components of displacement at the interface where
z 0: I

ur r [,. a,,a 2 - V444 --ilo(r)mx (A5.1)

-

u ! [v, A + a')A + KA.J !- J(Kr)KdK(
z AG V1

These integrals are now in a form familiar in many analyses of reflected

spherical waves in which the reflected field is expressed as a

superposition of plane waves multiplied by the appropriate reflection

coefficient (Brekhovskikh (6.51). In these the contribution from I
the saddle point (at K - kI sine, where 0 is the angle of incidence)

is obtained as an asyuptotic expansion, the first term of which gives J
the geometric approximation. Ignoring the contributions from the I
branch cuts and poles, we have

u + a. A - s in'- - k IU+
r 

0

or u g j + a,A2 (ksin'O - kt) A4] (1 + OCR-)) (A5.3)r ho

~I

t I
.. . V . . . . . . . . . ' I
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and

IUz (kisin'_ k2)A3 + a,, (:.isinae - k2) A2

+ kasin'e 64 R (I + 0(R-)) (A5.4)

where RI =r + z, sine = R' and the determinants are evaluated

for K = kisine.

We do not expect the geometric approximation to be valid at grazing

incidence because the determinants A. 63 A4 all contain a factor

v1 , and thus approach zero as 6 ->w,'2. To see this we recall that

they were formed by replacing columns 2, 3, or 4 of the matrix

in equation (6.47) by the vector on the right-hand side. This new

column may then be added to column 1 without affecting the value of

the determinant, and this results in a single non-zero element

2v, in the first column, which must be a factor of the determinant.

The evaluation of the higher order correction terms in the saddle -

point approximation would be over complicated because of the need

* Ifor Ist and 2nd derivatives of the various determinants. However,

we later use a simplified method which enables us to obtain the

correction term at grazing incidence.

*11I
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A5. I The branch cut integrals I

If we treat each branch cut integral separately, then our I

problem in general is to evaluate an integral of the form

I fF(K)J.(Kr)KdK

where F(K) has a single branch point at, say, K= kj. If we I
write

li r  F(K)e-vJz*j ° (Kr)KdKzI o 0

where =t - K-k 1
2 , ReV >0, then the integration around the

branch cut becomes implicit.

We now expand F(K) as a Taylor series in V , so that

F(K) - P(kj) ++ .A2

We now require the integrals ]

lie lie r ik jR

2 :1

z io I
where 2 -R 2 +

lia e li 
2  k

z -0 j o(Kr)KdK -z ..

ik r II

I
II

j
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where we have used the integral representation for a source of

spherical waves, as in section 6.8. These are sufficient to

enable us to evaluate the integral to terms in 1 , and we now have

r2 a

-~ ijei 'r + 0(r- ) (A5.5)

k-kj

Inspection of the matrix in equation (6.47) shows that for all

terms in equations (A5.1), (A5.2) we can write in general form

F(K) = g (K) + 'h (K)

g2 (K) + Vj N (K) (A5.6)

giving

(dF' h (k__ ____ h ( ~ri (A5.7)
K~kj (g, (kj) J2

qi

The analysis given here has not been rigorous, and certainly one

questionable item is the convergence of the Taylor series for F(K).

* % Without giving a detailed discussion, this will be in doubt when

g 2 (kj) is small, implying a pole near the branch point. To find

an upper limit for the branch cut integral we ignore g, leaving

F(K) - g (K) h (K)
+

I vjh, (K) h2 (K)

The second term gives no contribution, and we now have

I= ali. -V z
Z'140 g I (K ) e - jo(Kr)KdK

h, (K) V

Using the methods of section 6.11, this gives

J + 0(r (A5.8)

, I h !h ) r

* .I
I
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We therefore expect equation A5.5 to be valid only if
ik (hic)g A r~~

g, (k()h e i >  g, kh (-g h (kJ) g (kj)

h2 (ks r (,ra

or

r gI(kj) [g2 (kj)]' >> (A5.9)

k h, (k) [h(k )g-(k - h (k )q (k )I

This quantity may be regarded as related to the numerical distance

established more precisely for the rigid porous medium.

A5.2 Grazing incidence

Although the evaluation of the correction term in the saddle-point

integral is impractical for an elevated source, when z - 0 thej

integral may be handled in exactly the same way as any other branch cut

integral. This gives us the correction term for grazing incidence, and

this may be a useful approximation for all cases where the geometric

term is not dominant.

- *1
As a demonstration, we again consider the field at the surface of a

rigid porous half-space at grazing incidence. This is given by

21 ~ + 0 (r_

k1 W(n-I) r"

The upper limit is

ikrS-2 a__L

and (6.64) becomes I

', - R
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Ik ra(n2 1) j>> I

These results are the limiting case of the more elaborate saddle-point

integration.

A5.3 The k.1 branch cut integrals

To keep the expressions for the integrals as compact as possible, we

define &-ijk as the cofactor of the matrix element in row j and column k

in the expansion of the determinant Ai. We then find expressions for

g1, C etc. in the general equation (A5.6)
I

When dealing with the kj branch cut integral, we must have z O  0. In

equation (A5.1) we obtain

qj(k1 ) = 2(6i 1 (kl)+ a32611 (kj) - (k1)k)l i

hl(k1 ) =0

g.(kl) o(k1 ) h2 (k1 ) = 4 11(ki)0i

and in equation (A5.2)

gi(k1 ) = 2 ((k 1
2 -k ) f611 + awlki(-K 6a23L,+ k1,111

hil(k) - 0, q,(kj) -Aoi (ki), N(ki) -5o (k1 1Io

Using equation (A5.5), and noting that

a ikjr ikLeixlr~~ ~ 0 -- 0(r-')

I 2ra

we obtain the displacements in the far-field

u 2k 16Oil[ 6
, + a326 1 1 1- (ki a 

- k4) 61.11 ek r  (AS.10)

r1 2

Ii'r
,i 0
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u -21kI66 11 [(kj k- )8l + a32 (Jj -k,)6 2 1 1 + kJS4.11 e~1 (A5.1

Using (A5.9) , these expressions will be valid if

>>~ 
(A5.12)

k1 6011
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A5.4 The k, branch cut intearals

For this and the remaining branch cut integrals we are not limited

to z. = 0, but otherwise we proceed as before. For u we have
r

e-v1zo.

g=e [A3 + a, ,A, - v44.] (A5.13)
$ V1

hl =- --- (6112 + aSS6a42 V4(641 2 + a328ha2)] (A5.14)

g, - AO (A5.15)

h, - 6o12 + a, ;o,,2 (A5.16)

and for u

m ~e-Vl
g9 - (v,A, + k,A4 (A5.17)

hl= [a,,A, + Vs(6 1 .+a 3
5 . 2 ) + k (641a + ai.6,,,,2)) (A5.18)

A0 ,hj * 8012 + &326042 (A5.19),(A5.20)

j where it is assumed that all expressions are evaluated for K = k,.

We shall not carry out here the straightforward substitution into

equations (A5.7) and (A5.5).

I
I
! ,

!i , .  ' I

T.J ,,J ..
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A5.5S The k3 branch cut integrals

For u

-VIZ o
e e [&,, + a,,&, - v4]%a, (A5.21)
-VI 0

h, e.v1z [a 3j1 62#1  + a2368L3) - V#(6%43 + aR6hia)] (A5.22)

g, A0 IA5.23)

h, 4 + a 6 (A5.24) "

and for uZ

e-VIzo

e [a,.VA , + IkAo} (A5.25) :1

hi [A. + a,.v 2 (61.s + a.,, 1 j) + k3(64%9 + a,,413)) (A5.26)VI

9 = AO (A5.27) I

h2= O604+ a+,601  (A5.28)

I1where all evaluations are carried for K - ks ,

" I

} -~
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A5.6 The k% branch cut inteqrals

For ur

S&[A, + aaA, (A5.29)

hi= - (Ak. + 2,k (6s31 + a,6 2 34 )] (A5.30)

g2 = A0  (A5.31)

h2 = -2ljka'60 3  (A5.32)

and for u

" -V I Z 0

S - [V3A + &,,V2A2 + k2 A 11 (A5.33)

h =[2jk
2 (v$6gia + a,,V262 3 )I (A5.34)

9 2 A0  (A5.35)

ha2 -202k5@a (A5.36)

where the evaluations are carried out for K k4.

r '
/ ; I - - --: - - ~ - - - - - - - - - - - -

.' .i _ . . . . .
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A5.7 Surface waves

Surface wave contributions will occur when poles of the various integrands lie

between the real axis and the contour of integration. For this to happen

we must have Ao = 0.

When the wavenumbers of the different wave types are real, a true surface

wave must have a real wavenumber greater than these ([6.3], [6.4]).

When at least one wavenumber in complex, as in our application, the

situation is less clear. In general it will be necessary to search

for zeros of A. by some numerical means, and also to establish criteria 1
as to whether they lie within the closed integration contour.

The general form of the required integral is 6

I F (K) J. (r)Jd iiM
which may be rewritten as

I F(K)H! (Kr) KdK (A5.37) II

In the simplifying case of grazing incidence the required integration

contours are those which pass around the vertical branch cuts emanating

from the branch points at k,, k2, k3 , k4 .

)I

~Ik# 3 4'

M9
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ImlK)

-

k 2
II Il IV V

k 3  k I  k4  Re (X)

A typical situation is shown in the diagram, where poles in any of the

regions I - V will contribute to the integral. The signs of the

square roots v , v etc. depend on the region, and in region I

R e v > 0 Im v < 0

'S SRev >0 Imv <02 2

Rev >0 Imv <0
3

Rev >0 IMv <0

• In region 11

Rev <0 Inv <0

Re v > 0 In v < 0

Re ve < 0 rav < 0
3 3ft Iev < 0 In v < 0

?%Io- 7 - ,
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In region III

ReV <0 Imw <0

Re v > 0 Im v < 0
2 2

Re v > 0 Im v > 0

Rev <0 Imv <0
! 4

In region IV

ReV >0 Imv >0
1 1

Rev >0 IMv < 02 2

Rev >0 IMV >0

Re v < 0 Im v <0 1
In region V

Rev >0 Isv >0
Re v > 0 Imv < 0

2 2

ReV > 0 I > 0 1
Rev >0 Iv >0

: 4

ere we have assumed that the pole lies below the lashed line which

consists of the contours Re v - 0 and Im v - 0.2 2

We now write the integrals as

1 + 12 + 13+ 14+ 2wi res (K)

where 1,.I2 etc. are the branch cut interals, and res(K ) represents

the residues of any poles lying within the prescrlbed reqions.

V ,
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In equation 6.92 we have in general

F(K) - G(k)/Ao

giving

K G(K)

p
p

,dA.
where A0 (K ) ,K = Kp dKp

Using the asymptotic representation for the Hankel function, we obtain

G (K) P 2 (r312)

2.i res(K ) + 0 (r (A5.38)
p (K \ r)/2

kp

Making use of equations A5.1 and A5.2 the surface wave contributions to

the ground motion are

r u + a32 A2  V e1 p + 0(r -3 2 ) (A5.39) 'I

, I S a3S + A2  - v z. p r

+ Q(r -3/2 (5.4 )

I If
*1 iiin [:
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where vi,,v2,1V,v 4, A o' A2# AV A4 are evaluated for K Kp.

The major difficulties are the determination of K, and the evaluation

of A o(K). In the next section we use a light fluid approximation

which simplifies the problem considerably.

/

A5.8 The light fluid limit.

* i A limiting case of some interest occurs when the density of the fluid

is much less than that of the solid in the lower medium, and we expect

this to be applicable when modelling ground surfaces. In this case

we have p O, 02 << p, and also recall from the theory of rigid1$ 2
porous media that 1<< 0 2 at low frequencies. Since we expect the

propagation constants of the various wave types to be roughly comparable,
then the compressibility of the fluid must also be much greater than

that of the solid. I
I
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If we examine the effect of this on the fast and slow waves, then the

approximations

k 2  k 2' k 3 - 3

are valid if

2M Pl
<< 1, << 1

PP

It should be remarked here that a is always less than unit y in Biot's

theory.

For the shear wave

2 p
2

k4 2 - P if << 1
PP2

From equation 6.36 I

2 p~ k2
a 2  - 1 - ) - ) (A5.41)

32 P 0

H (- p2 32 (A5.42)
.2 k2

32 < << 1 implies a 1.

" From equation 6.37

ii I 2  k 3
a23 - - (A5.43)

k ' 2  2 k'2
2 2

~II
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2 ' 2
These expressions simplify further if p /2 a. and k3  <k .

Since the fast wave will invariably have the highest velocity of all

wave types, this latter condition is effectively one of local

reaction. Under these circmta txces we have ]

32 (A5.44)

a l a P (A5.45) I
a 2 3  F ---p

2 k;2

-Iin the light fluid limit we can also show that

0o AbA (A5.46) i

where .
A a a W(P 2 v 1 

+ 
1 V 2 ) LA5.47) 40

Aba (202- k' 28) (IOE2  K2 ) i
b 3 4

- - 2pv 3v4K
2  

(A5.48)

It can be seen that equatoM(AS. 4 7) In the denominator found for the

rigid porous case, and(A5.48) Is the Rayleigh denoinator for a smi-

infinite elastic half-space. This is intuitively appealing since it

means that in the light fluid limit vwve propagation in the upper

medium is identical to that for the rigid porous half-spac, while the

Rayleigh surface wave is virtually matffiected by the presence of I
the fluid. 3

Air-couled surface waves of the Rayleigh type bave been fom 3

.7-
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e xcperimentally r.2, so we suspect that poles corresponding to the

zeros of(.48) will be of importance. In the surface wave expressions

given in section(A5. 7) we now have

h(KCA (Kl) (A5.49)

o p a p b uP

where

&bC~ -o (A5.50)

P

I.

<I

:1
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A5.9 Practical Calculations. 1

The calculation of the plane wave and branch cut contributions present

no difficulty, but to obtain any surface wave contribution we need to

find a zero of A and its derivative at this point (see section A5.7).

To do this in practice we have used a numerical technique known as

Muller's method (described in reference A5.5) which finds a root of an

analytic complex function by using quadratic interpolation. Three

initial guesses are used to obtain the first quadratic, and the nearest -

zero of this provides the next approximation to the unknown root, and

the iteration is continued until the required accuracy is achieved.

This root gives us the surface wave number K. Consequently it is a

simple matter to find the derivative A' (K ) by calculating the gradiento p
of the last fitted quadratic.

From the considerations of the previous section we expect a surface

wave of the Rayleigh type which will have a wave number approximately

* 1.2 time that of the sheat wave, k4  Using three initial guesses

1.15k 1.2k and 1.25k4 resulted in rapid convergence for all the

examples tried, and there was no indication of any problem arising from

the non-analytic natur% of A (due to the branch cuts)

i0

A5.10 material parmeters for soil.

Sound velocity (wik 1 ) 3.4 x le0 cm a"1

Density of air (P ) 1.2 x 10
- 3 gcm

3

P - wave velocity (*/*@ek)) 5.0 x 104 cu *-I

AI
. i, - '
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Im (kS)/ Re(kS) 1.25 x 1O
- 2

-3

Density of porous medium (p) 1.3 g cm

Tortuosity 2.5

Shape factor 0.75

Flow resistivity 250 cqs rayls

Porosity 0.4

a 0.5

The imaginary parts of the compressional and shear wave numbers are

consistent with the results found by Pranqe A5.61 for attenuation in

soils.

The tortuosity, shape factor, flow resistivity, and porosity are used

to determine the equivalent rigid-porous wave number k and complex

density 02 (see chapter 5). The value chosen for the parameter a is

arbitrary, apart from the constraint in Biot's theory that it must lie

t between the porosity and unity. however, we did repeat some of the

calculations for a - 0.9, and found that the changes to the computed

surface velocity were not more than 2dM, and in most cases considerably

less.

A5.21 Results

Figures A5.1 - AS.5 show the contributions of the various wave types to

the vertical compomet of surface velocity for a source height of I a

and a horisontal sqparation of 100 . These are the plane wave

AZ $ p
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approximation, the near and far-field approximations to the kl, k 3 and

k4 branch cut integrals, and the Rayleigh-Ltpe surface wave. The k2

branch cut integral was always negligible because of rapid attenuation .

of the slow wave.

Figures A5.6 - A5.8 show the dominant contributions for source heights

of zero, 1 m and 50 m.

i .1
In all these cases a point source of spherical waves is used, such that

the pressure amplitude of the incident wave is

R

The results show that with the source on the surface the main

contributions are those of the Rayleigh-type wave and the k branch

cut integral. The Rayleigh wave dominates below 200 ft, but is

attenuated at higher frequencies. Elevation of the source to I a

gives a significant plane wave contribution, which becomes increasingly I]

dominant at high frequencies. The plane wave term dominates at all ]
frequencies when the source height is increased to 50 a. There are

contributions from the k3 and k4 branch cuts, but these are always 1
a small part of the total motion.

jII

~I

!U
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Figre AS.1 Plane Wave Contribution for a Source Height of lm
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S Figure A5.3 Near-fieldbutns from k anch Cut for a Source sight of In j
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Figure A5.4 Contribution from k4 Branch Cut for a Source Height of I m
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Figure A,1.5 Contribution from Rayleigh-type Wave for a Source Height of lm
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I eigure A5.6 Contributions from k Cut (Near- and Far-Field) and Rayleigh-Type Wave for

Source and Receiver Both on Surface
-7 .0 0 7 . . . . . . . . . . . . . . . . .

11.0

I O ..

IIL - \. -+.---. ..

50.00 FreqjenyiHz 50000

,IT
U

111



Figure A5.7 Contributions from Plane , k Branch Cut (Near- and ar-rield) and
Rayleigh-type Wave for Source Height of 1 m
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