AD-A138 663

UNCLASSIFIED

DOCUMENTATION FOR SOF TWARE MAINTENANCE (U} NAVAL 171
POSTGRADUATE SCHOOL MONTEREY CA J F HALL DEC 83

F/G 9/2 NL

2
3
b

flloti = *
P !

o 251

= ;

s ot s

MICROCOPY RESOLUTION TEST CHART
NATIGNAL BUREAU OF STANDARDS-1963-A

S e e e

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC

THESIS 7o

DOCUMENTATION FOR SOFTWARE MAINTENANCE

ADA138663

by

John F. Hall, II

Decembeyr 1983

Thesis Advisor: Gordon Bradley

p- S
S
O
Ly .
= Approved for public release; distribution unlimited
Lo
£
(=)

84 03 08 046

S .

e

2ok o

~ Fr—— o e e
o

SEACUMTY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. [2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBSER
ID.A/3S é6
4. VITLE (and Subtitie)) $. TYPE OF REPOAT & PERIOD COVERED

Master's Thesis
December, 1983

6. PERFORMING ORG. REPOAT NUMBER

Documentation for Software Maintenance

2 w'“&l) 8. CONTRACY OR GRANT NUMBER(e)

John F. Hall, II

3. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGRAM ELEMENT, BROJECT, TASK |
Naval Postgraduate School AREA & WORK UMIT HuMBERS
Monterey, California 93943

1. CONTROLLING OFPPFICE NAME AND ADDRESS 12, REPORT DATE
Naval Postgraduate School December 1983
Monterey, California 93943 13. NUMBER OF PAGES

62
Y 200 TORING ASENCY NAME & ADORESKI! different from Controifing Office) | 18. SECURITY CLASS. (of this report)
UNCLASSIFIED

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

T6. DISTRIGUTION STATEMENT (of thia Repert)

Approved for public release; distribution unlimited

P ———————— .
19. KLY WOROS (Continwe en olde i ary and idontify by block number)

17. OISTRIBUTION STATEMENT (of the sbetract entered in Bleck 20, if diiterent ftem Report)

6. SUPPLEMENTARY NOTES

Software Documentation, software maintenance, documentation
hierarchy, minimal documentation, documentation categories

mnnﬂdﬁ“m“lmau»uutwj . . .
Documentation as an effective method of transferring information
between individuals in order to reduce software maintenance costs
is examined. Various categories of documentation are identified
and evaluated as to their effectiveness toward easing the mainten-
ance effort. The concept of minimal document:tion is tntroducedfas
i ining the correc ount o
Eggoggé Eggnrggugggdpfgglgmsggcggggrﬁégﬁggnance gasﬁ.. %Re lgea of
utilizing an explicit documentation hierarchy as the ideal method
gicit documentation is proposed. With (Continued)

for storing exp
A

DD ," o0 W73 soimon or 1 nov 6813 ossoLETE

3/N 0102- LK 014- 6401 SECUMTY CLASSIFICATION OF THis PAGE (When Dore Brrerew)
. §

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enteced)

ABSTRACT (Continued)

the proper implementation of the documentation hierarchy, the
minimal documentation concept can be realized, and the mainten-
ance effort reduced.

- Aceession Fer
o\ NTIT cvasT
. v_%. PTTY TS ™
-y ‘i Uann e d 7
dantiries s ton S
e
Ry
__Qgstribut;on/_g-“_a____
Avallability Codes
7 jAvatil and/or

Dist Special

M

S N 0102- LF- 014- 6601

2 SECURITY CLASBIPICATION OF TiiS PAGEWhen Date Bntered)

P e LTI S eme e S A

Approved for public release; distribu=ion unlimit=d.

Docnlgntatiou
or
Softvare Naintenance

by

. John P. Hall, II
Lieutenant, United States Navy
B.S.E.E., University of Wasaington, 1978

Subaitted in partial fulfillmeat of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1983

/ C

Approved by:____ .

Thesis Advisor

Second Reader

AO{!M)’?(L ﬂb‘élbﬂlf >

Chairsan, Department of Computer Science

\Q-T.“J.AL

Dean of Iaforma 4 Policy Sciences

s

. ABSTRACT
Vi

Documentation as an =2£ffective wmethed of transferring

information between individuals ir order to reduce sof:ware
maintenance costs is examined. Various catagories of docu-
mentation are identified and evaluated as to <*their effec-
+iveness toward 2asing +he maintenance 2ffort. The concep:
of minimal documentation is introducad as the solution to
the problem of determining the corract amount of information
rajuired for a specific maintenancs task. The idea of
utilizing an explicit documentation hierarchy as <he ideal
method for storing axplicit documentation is proposed. With
the proper implementation of <+the Iocumentation hierarchy,
the minimal documentation concept can be realizesd, and “he
maintenance effcrt reduced,

\ :

TABLE OFP CONTENTS

k . I. INTRODOCTION o o o « o o« o« o o o o @« a o o = o o o
A, THE PHBOBLEM . « o 2 o o o 2 o o o o s o o o «
B. PURPOSE AND APPROACH « o ¢ ¢ ¢ ¢ ¢ o o o o o &«
Co DEFINITIONS &« o < o o« o« o « o o o s o o« o« o « 10

II. THE SOFTWARE MAINTENANCE PROBLEM 2 o v o » 2 o » o 12
A, THE SOFTWARE LIPE CYCLE . + « ¢ ¢ o « o « o o 12

B. THE SOPTWARE PROBLEM . . ¢ « « o o ¢ ¢« o« « o« o 16

Te SCPNATIO o o o o o o o o o o o ¢ o o o o « 17

2. Understandability . ¢ ¢ ¢ « o ¢ ¢« o o o o 18

3. Maintemance EffOort « « o o o o o ¢ o o « o 21

4. Types Of Maintenanc?2 « o« o o« « « o « o o o« 22

5. Causes of Maintenarnca2 Problems 23
6. SOlutiCBS ® © @ ® o © e e ¢ e e o e o & o 25 hd

III. SOFPTHWARE DOCUMENTATION . « ¢ o o o o o o o« o o « » 28
A, TOCUMENTATION BACKGROUND . « o ¢ o o « o o« « « 28
B. DOCUMENTATION CATEGORIES « « o o o ¢ o« o o o« « 29
1. Internal and External Documentation. . . . 29
2. Dynaaic and Sta*ic Documentation 30
3. Implicit and Explicit Documenta*iosn . . . 32
C. DOCUMENTATION DEPENDENCIES . o« « o ¢ ¢« o« o o o« 32
1. Skill IeVe@l . o o o o o o o « o o o = o » 34
2. Position ¢« o 4 e ¢ o o e o o e o s o o e & 35
D. ROLE OF DOCUMENTATION . & ¢ o o ¢ o o« o« » » « 38 ;

Iv. DOCUMENTATION HIERARCHY « ¢« o« « o o o « o« s o o o U0
A. SYSTEM DOCUMENTATION HIBRARCHY . « « « « « « » 40

B. SYSTEM DOCUMENTATION « <« ¢ « « o o o « o« o o « 41

Te Level T . ¢ o o o o o o o o o o o o o o » W3

2. Level 2 < ¢ o ¢ o o o o & o o
C. FROGRAM DOCUMENTATION . ¢ o o « o

1. Level 3 o o ¢ ¢ o o o o o o @

2. Level 4 . . . i e e e 4 o o
D. DOCUMENTATION HI ERARCHY UTILIZATION

v. EVALUATION OF FORMS OF DOCUMENTATION .
A. EVALUATION EXPERIMENTS « . « « «
1. Documentation for Sequential
PIo2cesSsSing « « o« o o o » o o
2. Documentation for Concurrent
Processing « « o« ¢ o o « « » &
Be DISCOUSSION o« ¢ ¢ ¢ o ¢ o o o o o o

vI. CONCLUSIONS AND RECOMMENDATIONS . . .

LIST OF REPERE“CES L] L] - L] L] L] L] L] L] * L] - L]

INITIAL DISTRIBUTION LIST ¢ « o o o s o o o &

44
45

47

47

49
49

50

53

54

57

60

62

2.1
2.2

LIST OF FIGURES

Department of Defanse Lifz Cycle Model .
The Watarfall Model of the Sof*:ware

Life-cycle « ¢« o ¢« o o o a« o 2 o« o o o »
Systes Docunsentaticn Hierarchy « . « « .

. s o 13

« » o 15
L3 . . uz

A, THE PROBLENM

There is much discussion in the software ergineering
literature cdncerning the ovarwhelming cost 9f software
maintenance. It has been indicatel that in som2 systems up
to eighty percent of <the cost of a softwara system is
consumed in +the maintenanca phase of the softwarz life cycle
{Ref. 1]. In order to properly maintain the software, it
must be properly documented. Often the same person does no*
parform tasks in all thases of the life cycle, <thus without
documentation, continuity Dbetween ths phases can be lost.
Some*imes the only interface betwe2n zach phase is a2 piece
of documentation. This points out the criticali*y of docu-
menta+tion in the software life cyclz; if the documentation
between phases is not done well, much of +he werk on the
project must be recreated for subsequant phasss.

B. PURPOSE AND APPROACH

There is a2 lack cf cohasive discussion in current liter-
ature concerning proper documentation for efficient sof+twars
maintenance. Because of the +remznious cost involved with
software maintenance, an attempt to ease the maintenance
effort needs to be made through the use >f adequate
documentation.

The purpose of this thesis is to address documentation
as a method of information <*ransfer <throughout the 1life
cycle of a software project in the support of softvare nain-
tenance. Various types of documeantation are discussed and
evaluated as o their effectiveness toward easing the main-
tenance effort. An attempt is made to determine the proper

1
{
|

type and amount of information neesded to effectively main-
tain the softwvare prcject. An effort is madz t3> cat=gecrizaz
and quantify different aspeéts of documentation based o=
task and user needs. The concept of a documentation hier-
archy is put forth as a method for srganizing these aspec=«s.
The 3idea is to give +*he «r2ceiver of that information
precisely the amount of information required *“o complete the
maintenance task. Too much information <can b>g one down
with unnecessary details while tos li«tle <informaticn can
cause one to waste many hours in trying to wunderstand zhe
program. Thus a solution to the problem of accessing the
exac*t quantity of documentation is offsrad.

Chapter I gives an overvievw of the documentation prchlem
as it relates to software maintenanca. A descrip4icn of the
approach for the thesis is given aloag with some gensral
defiriticns of terms used in the software maintenanca envi-
ronaent. Als>, the idea of minimal documantation is intro-
duced in this chapter.

Chapter II dJiscusses software maintenancas in detail
vith a look at the software life cycle. A softwares project
scenario 1is described to set basic guidelines fecr the
thesis. The different types of maintsnancs as they relate
to the softvare wmodification “ask ar2 described along with
the identification of some of the zauses and solutions for
the sof<ware maintenance problen.

Chapter III introduces <the ilea of the transfer of
knowledge between individuals as baing the goal of 2ffective
documentation. This knowledge traasfer is accomplished by
utilizing various amethods for recording informa+tion.
Documentatiocn is then catagorized according to the <type of
information that is conveyed and also according <to depen-
dencies tased on a person's skill and position on the main-
tenance teasn. Pinally, the role of documentation for a
project is discussed.

Chapter IV introduces the concept of a documen<ta+tiorn
hisrarchy in suppart of wminimal documenta*ion, The levals
of ~he hierarchy are based on the lavel of dotail con*zirzi
in the documenta+ion. The various users cof the dccumenta-
+ion need only to access the proper lavel in the documenta-
tion hiararchy 1in order %o have the minimal dccumenta+ion
that is required for the completion of the task at hand.

Chapter V discusses the effectiveness of several
specific forms of documentation in reliation to tke perform—
ance of the maintenance task. Th2 =2val' tion is made that
tha-e is not a "best" form of documenta cr for &ll main<e-
nance tasks. The most effective Iocurs ..ation form varies
with the mainp*tenance task and the - & ¢f programming
processing (sequential or ccencurrent) be - used.

Chapter VI <consists of the thesis conclusions and
recommendations.

C. DEFINITIONS

Certain basic definitions are needed iz order tc¢ prop-
erly address the issue of softwarz documentation as 1i-=
Telates to software main“enance. Por the purposes of this
thesis, software maintenance will be considered to be the
process of updating and correcting a software system once
the project is dalivered and made opsrational.

software documentation is the recorded information thazc
can be used to transfer 4information and ideas from one
person to another, Unlike softwar2 maintenanrce, which has
been defined to begin after the projz2ct is delivered, soft-
ware documentation is produced throughout the entire soft-
ware life cycle from the conceptual phase to the suppor=
phase. Since documentation follows tha evolution of a soft-
vare systes, adequate and reliable documentation is inva-
luable vhen it comes to maintaining the systeam.

10

e o

Minimal documentation is defined as +he exact zmount of
documentation on a project that is required by the receiver
to accomplish *he receivert's task. Whan the mirimal 3ccu-
mentation coacept is used, only +he precise amount of docu-
mentation that is needed is access2d, and +*he recaiver is
not forced to wade through unnecessary informatior. Just
enough infcrmation is recorded so that the secsiver is able
to proceed with the job at hand. This, then, is an idea of
documentation efficiency with no more and no 1less informa-
tion being exposed to the receiver than is actually needed,

Maintainability dis a term that must be clarified.
Martin and McClure [Ref. 2] defin2 maintairability as the
"ease Wit which a software system c¢an be corrected when
errors or deficiencies occur, aad can be expanded cr
contracted to satisfy nev requirements." Maintainabili%y of
a software system can be enhanced with <+he availabhili+y of
adsquate minimal documentation.

Understandability is considersl <o be one of the mos:
important concepts in the realm of maintainabilit¢y. Martin
and McClure define understandability as "the ease with which
we can understand the program purpose and how the progran
achieves its purpose". Since documanzation transfers infor-
maticn conceraing software system s&volution, the ainimal

documentation concept aids in th2 achisvement of progran
undsrstandability.

IT. IHE SOPTWARE MAINTENANCE PROBLEH

A. THE SOFTWARE LIFE CYICLE

The development of a softwara project goes +*hrough
sevaral rhases from conception to actual syst2m operatiom.
This developmant process is called <ha software life cycle.
There are several mcdels availabls to represen:t <the soft-
ware life cycle. The one used by the Depar+<ment of Defernse
as ipdicated in Department of Defanse Instruction 5000.1 is
presented in Pigure 2.1. It gives a reascnabls representa-
+*ion of mos* simple models. An aivantage of this model is
that each major phase is brokan into 1its subsequen+
subphases. This model 1is general enough to bz appli=d %o
mes*t software systenms, vith the 13tails being 1left to %he
spacific projsct.

Documentation mus* be carried <throughout *h2 life cycle
in order to promote understandability in subsequent phases.
Ultima*ely, the ideal documentation contains ensugh informa-
tior such that when the program is complsted and is opera-
tional, it can be maintained effectively.

The major problem with the Department of Defense model
is the implication that is given concerning the flcw of the
software life cycle. Ona is left with the idea that as one
phase abruptly halts, the next phase begins. In practice,
the phase boundaries are somewhat obscure. Quite often work
on one part of a phase begins before all work in a previous
phase is completed. Alsc one gets the impression that there

are no interdependencies between the phases. In realizty,
decisions made in one phase often directly affect <the work
of a subsequent phase. This makes each phase somevhat

dependent upon Adecisions made in a previous phase. Also

12

DEFENSE SOF TWARE LIFE
SYSTEM LIFE |CYCLE SUBPHASE
CYCLE MAJOR

PHASE
Requ {rements
Deftnftton
Conceptual Requirements
validation

validation Valtdation

Full-Scale Full-Scale
Development Development

Production Production

Debugging
Deployment
nioy Fine Tunfng
Maintenance
Support
Modification

Pigure 2.1 Departaent of Defense Life Cycle Hodel.

13

there are times wvhen a decision made iz one phase is
determined to be uncealistic by rastrictions or ac=-oas
taken in a following phasa. Tharzfore, a feedback mechanisa
is needed <%o carry information bstween phases ir order ¢to
keep tha scftware project developmsnt moving.

Documentation is the method of racoriing informatiorn
that is to be transferrsd forward and backward to aid in
softvare modification. Pigure 2.2 gives a mor2 realistic
view ¢f the software cycles indicating some 0f <he phase
interrelationships [Ref. 3].

Figure 2.2 shows validation anl verification subphases
in +*he requirements and ds=sign phases of the cycle. This is
important because each phase should be verifisd as being
possible and feasible as sarly in the cycle as possibla in
crder to avoid unnecessary work. For exampla, i+ would be
wasteful to work through to the implamsntation phase only to
find ou* that the project was nevar feasible in the first
place. .

Studies indicate that the most ecornomical time to ca<*ch
and correct a problem is as early in <the development cycle
as possible. The cost of detvectiny aad cor-ecting an error
more than doubles for =2ach phase through which it passes
undstected. This rate of cost increase holds true for sach
subsequent phase thrcugh which th2 problem passes without
detection. ([Ref. 3] and [Ref. 64].

While the simplistic view presented in Figure 2.1 is
relatively easy *¢> comprehend, it is extremely important to
reassber the interrelationships between the various phases
as indicated by Figure 2.2. With those intarrslationships
being kept in aind, the simplified life cycle model shown in
Figure 2.1 will be adequate for use in this thesis.

14

Is System [*——Vvalloation

Software [*—Validatfon
Plans

l_ Product [*Veriflcatlion
Design

Detatled [*—Vverificatton
Design

Code *—untt Test

Integrate

Procduct Vertflcatfon“"—ﬂ

Implement

System Test—"|

Operate

Revalicate—" Mafntain —*Pnaseout

rigure 2.2 The Waterfall Bodel of the Software Life-cycle.

15

4 - e M

B. THE SOPTWARE PROBLEN

Bohem [Ref. 3] gives us some insights into the magnitude
of the economics inveclved with the software problen. The
annual cost of software for the Onited States in 1980 was
about 2 percent ¢f the Gross National Product. The cost is
expected to grovw faster than the ganperal rate of the z2conomy
thus representing an even larger proportion of the Gross
National Product as time goes on. Tha portion of the effort
spent on software maintenance has increased faster than the
effort spent osn softvare development. #ith the growth of
softvara maintenance taking suck a large portion of the
total cost of a system, it would be wise to find ways to
enharce the efficiency of the maintsnance effort.

Along with the eccnomic issues of softwar2 maintenance,
we must 1loock at the social aspects of comput2rs as they

relate to software. Things such as computerized billing and
banking have made a permanent impact upon the lives of most

Americans. An increasing number >f workers in the United
States will be relying o¢n computers ¢to pecrform tasks
involved with their daily work. By 1985 it is predicted
that approximately 40 percent of th3 working population will
fall into that category. With this kind of coaputer and
softvare proliferation, there will be continued growth in
+ha amount cf software that is need2d. This growth of soft-
wvare translates into a significant amount of necessary
softvare maintenance as both the software systea arnd the
state of techanology change.

As *he need for software aaintenance increases, it
becomes imperative that maintenance efficiency be improved.
The idea of using minimal documentation in order to improve
understandability, which in turn aids maintainability, is
seen as a vay 40 increase the afficliency of the software
maintenance effort.

16

e

1. Scanagio

There are many types of rproograms that are davelopel
ranging from very small to very 1larga, and the size of 2
program can determine the software documentation issues
related to <+that particular prograa. In order <o address
specific documentation issues we nead +o0 focus on a partic-
ular Scenario.

The program with which we will be ccncerned is one
of medium length invclvizng thirty %2 forty thousand lines of
code. It is a software progranm that is to be amzintained, so
it is neccessary that software documentation b2 generated.
(If a prograa w=a2re rnever +o be md>dified, <+hen documenta-
tion would not be necessary.) For the purpose of +this
thesis, the program code is not «considerad “o be a form of
documentation. The program is one that was developed by 2
sof+vare development team (as oppos2d +o being developed by
a solo prograamer) with documentation maintained throughout
+he development. The developmant followed *he basic guigde-
lines as indicated in +*h2 Departmant of Defense life cycie
model (Figure 2.1). The program da2velopers are no* the end
users of the sys+*em. The program is 2mbedded in an environ-
went that is subiject to change.

When 3 modification to thes system is required, a
change request prctocol is folloved in which 1
requested change is considered arnd a determination 1is made
as to whether the <c¢hange should be incorporated into
the existing systenm. If the chanje is ¢to be made, it is
acted upon by a desigrnated maintenance tean. The personnel
assigned to the maintenance team may or may not have other
collateral duties in the organization, and they may or may
not have had any connection with th2 original developaent of
+he system. Emergency changes are implesented as quickly as
possible whila routine modifications are iaplemesnted in an
annual system update.

17

The systam is considered t> have a 1lifs expac=arncy
cf approximately +wventy yaars, anil it is fucther assumed
that the systam has been in oparatiosn for several yeacs with
maintenance being accomplished and documentaticn being
updated accorliinqgly.

2. Understandability

Unders<tandability is considez3ad to be one of <+he
mos+ important concep<s in the realm of maintainability. 1If
a piece of software that is +¢o b2 maintained proves <o bde
both efficient and successful, yet is not underscandablsz to
the maintainers, i+ can be Jdifficult and expensive (if not
impossible) to modify to meet changing needs.

In a good system, <there is information available as
to the purpose of the system, the proper use of the system,
and the proper maintenance of ¢he system [Ref. 2]. all
phases of the 1life cycle will hava accompanying documenta-
tion concerring the develoﬁment at 2ach stage of +he systen,
and that Jdccumentation will carry +the required inforuma-
tion that aids in the understandability of the progranm.

Pamiliarity is a factor that helps determine <the
effactiveness and understandability of a program. A persor
who is very familiar with the cod2 and the functioning of
the system would probably not have grzat difficulty 4in
undarstanding the system, even if the documentation were
somevhat lacking in quality and thz system itself were very
complex. On the other hand, the insxperienced or -unfaailiar
maintainer would prcbably have difficulty in understanding
the prograna. We will see later how the factor of famil-
iarity determines fecr an individual the 1level of detail
needed in the documentation.

Mar+in and McClure stat?2 that unlerstandable
programs generally have several common characteristics:
structuredness; consistency; complataness; conciseness; and

18

documen-ation, Bach of +these <characteristics will b2
discussed ir aore detail.

a. S*tructnredness

The effective structuring of a program increases
understanding by standardizing +h2 program format. The
standardization will set restrictions and gquidszlines on the
logical flow of the program. Progrim modules will be set up
in a hierarchical manner with <+he order of execu*tion deter-
min2d by the guidelines. Th2 us2 of these guidelines for
program construction will provide a consistent logic <tha%
will aid the understandability of the overall systen.

b. Consistency

A program should be written in a consistent
style in accordance with establish2d programmingy standards.
Tha s*tructureldness mentioned above zan be considzared %o be a
method of developing a consistent style. It is difficult to
understand a program in which the style of writing does not
follcw a common methcd of construction. This Is scaetines
difficult to accomplish when several meabers work together
as a team on 1 project unlass close communication control is
maintained. Consistent types of comments must be main-
tained. When a module is describel, it should handle the
description of the piece of code thes same way every other
module is handled in terms of the amount of detail discussed
and the order in which the information is provided.
Variable names should be selected with the same sort of
reasoning throughout the program, and the program should be
consistent with the design instructions. In-line comments
should be used to clarify coding statements, and this prac-
tice sbould be consistent throughout the prograam. There
should be no visible evidence that the prograa was not
written by one person with a consistent train of thought
throughout the develcpment process.

19

C. Completeness

A complete program has all af i“*s ccmpornznts
available to use and to be perused by the maintainer. The
maintenance person must ba abla to access all parts of tie
program that are related to the mainternance function if
undarstandability is to be accomplished. Ary variables or
modules should be included in a cross-reference scheme sc
tha*t th2 maintainer can trace a projram component throughout
the systen. Every unusual featur2 in the program should be
clearly explained, and error messages should be mad2
understandable.

d. Conciseness

A concise program is sn2 that us2s only the
coding necessary to achieve th2 design requirements wi+th nc
extra (perhaps unused) pieces of coia. Every piece of code
must be reachabl2 by som2 action 5f the progranm. Unused
variables and duplicate functions should be ronexisten% and
comments should not be cexces3ively varbose or cryptic in
meaning. Understandability decreases when complexity cver-
takes simplicity. The systam, though it in itself may be
complex, can be simplified through <+ke ©proper use of
conciseness principles.

€. Ddcumentation

Perhaps the concept that pulls all 2f the above
understandability methods ¢together is the development (and
usa) ©of good documentation technijuss. The use of all of
the above ideas that promote understandability in a system
say not in +hemselves be successful.

The structuredness of a3 program must be docu-
mented in such a way that the structurization methods are
understoed by the main*ainers. Tha2 consistent program aust:
have the modules described aad documented in a consistent

20

way. Comments should ba arrangsd near each module <o
describe the wmodule in some datail. The module comaments
should include the purposs of the module, the variables used
or modified in the module, and a descriptioa of +the outpu*
of the module. The module description should indicate the
relative postion of the module with raspect to other modules
in the program to give some idea as to how the mcdale was
reached and how it fits into the program hierarchy.

Documentation also aids unders%andability by
con*aining information as to “he comple+zness of <the
program. Information is recorded as to how a asdule cf the
program is reached and hov each md>dule is related in +he
overall system scheme. Proper documsntation should also be
concise with only the necessary information 2ing provided
to the maintainer so as to enhance understandabilicy without
ccnfusion.

3. Meiptepance Effort

Since the maintenance effort reprasents such a large
portior of th2 overall cost of a softvare system, a look a:
the software wnmaintenance =2ffort anl ways in which to make
this effort ef£€icient by means of minimal documenta*ion is
in order.

A survey of data processing maintenance activities
by Lientz and Swanscn (Ref. 5] shows that only half of
+he people who are assigned to main:ain programs actually
vorked on their development. This fact is significant ir
that a lack of contipuity of the o>riginal thinking occurs.
To make matters worse, the number of development personnel
assigned to the maintenance effort diminishes even further
as the life of a software system is extended. Good docu-
mentation passes information about the prograam between *those
personnel developing <the program and those maintaining the
program, thus preserving the continuity of thought.

21

A

In crder to gauge the magnitude of <he mainterarnca
effort, Lientz and Svanson describe the effor+ as the resul:
¢f *he combination of four wvariablas: System age; systonm
size; relative amount of rou“ine dsbugging; and the relative
development experience of the maint2nance personcel. As the
sys-em age extends, the2 systen size tends to increase
leading to a greater maintenance 23ffort. Witk an increase
in system size, the sys*tem tends to n2ed mor=s routine debug-
ging, again increasing the maintenance z2ffors. When the
system age increases, there is als> an incre2asiang amount of
personnel turnover which 1leads to +he declining =relative
development 3xperiance of the maintainers, thus agair
causing an increase in ths main%tenance effert. This mainte-
nance effort 3increase, >f course, results 1ia a rTise of
overall maintenance ccsts.

Minimal documentation can be used as a means to
promcte program understandability which will make the main-
tenance effort become more efficient, and in turn causes 2
decrease in software mainta2nance costs.

4. TIypes of Maintenance

Generally sof+twares maintenance caa be divided into
three categories: corrective; aiaptive: and perfective
maintenance [Ref. 6). Corrective maintenance is considered
to be purely the correction of s>ftware errors. Though
corrective maintenance is <+raditionally seen 2as the most
obvious type 5f maintenance task, it is interesting *o note
that the time spent solaly on the correction of errors
amounts to only seventeen to <twenty-five percent of <the
maintenance person's time [Ref. 5] and [Ref. 7].

Adaptive maintenance is considered to be the process
of adapting or changing the software to meet the environ-
mental constraints of the systea. An adaptive change would
be considered to take place if a nav operating system is to

22

i

be installed on the computer that is used by <the progran
beiag maintained. This area of maintenance takes up abou*
eighteen to twency-five percent of the time spent on mainte-
nance [Ref. 7].

Perfective maintenance concarns the f"perfecting® of
the system by making user-requested changes to the sofiwvare
to make the systea perform "better". It is interesting to
note that while the perfective maintenance activity (some-
times called providing enhancements) does rot involve the
act of correcting errors, it +akes between fifty and six%y
percent of tha main<enanca person's ¢ime--by far <the largast
single time chunk in tha software maintenance effor:
(Ref. 7]. This is in contras:t %o what is gererally consid-
ered to be "real" maintenance, that of the corr=ctive typse.

5. Causes of Maintenance Broblams

It is Dbeneficial to 1look at some of <the things
that create the need fcr software raintenance 2nd ways that
tha use of proper documentation ¢an ease the maintenance
task.

Schneidewind [Ref. 8] indicates that several itenms
bring about maintenance problams. Orna is +he fact that
main%tenance is often viewed by both desigrers and users as a

task that is not very glamorous. This leads to a tendency
for personnel to want only to design systems while leiting
the maintenance aspect of the system take a low priority.
This leads ¢o many of “he maintenance problems being ignored
during <he develocpment phase, including the proper docuamen-
tation of the project as it progresses. Maintenance is
often not even considered during the software development
process,

In reality, documentation and maintenanca2 ideas aust
parallel system davelopment through all of the software life
cycle phases, and actually becoma an integral part of the

L o e a———liy T O e

23

S e e —

design criteria. This <is necessary if a pragram is %9 be
easily understood and efficierntly operated and main+ained.
Glases and Nciseux [Ref. 9] shov that a1 traditiozal
approach to the sof~wvare problem has 1l2d4 <o the practice of
simply tacking on maintenance aids as an after-hought. The

concept of software maintenance, particularly in scme<hing
cther *har that of & corrective nature, seems to be some-
thing <that raceives very lit+le atteantion.

Now let's look a< the software maintenance problem
as viewzd by managers who plan +he mairn*enance effor* based
on how they perceive the maintenanc2 problenm. Liern+tz and
Swanson [Bef. S] repert in a study that managars perceive
the lack of user kncwledge as by far ¢the most domirant
problem in the maintenance effort. Following the user
knowledge problem in crder of highast to lowest significance
wera: prograamer effectiveness; product quality; programnmer
availabiltiy; machine requirements; and finally system reli-
ability. When the system.is properly documented, user
knovledge about the program development and mainterance
techniques can be increassd. Incrsasad knowledge can cause
more efficient use of the mainiainer's time thus making the
maintainer available mor2 often to perform other tasks.
Documentation can also be used to racord machine require-
ments in such a way that they are mads available for comnsid-
eration in maintenance decisions. dhen documenta%+ion is
used prcecperly, i+ can reduce these problsm areas as
mentioned and result ir an overall increase in systenm
reliability.

The study further revealed a misconception coamsmonly

held by managers. Problems wera parceived by managers %o be
greater if a lot >f corrective maintenance time was spent on
*+he systea. As menticned earlier, corrective maintenance is
not ¢he big time consumer whereas perfective maintenance
does in fac*t consume the bulk of thz maintainar's time. It

24

is interes*ing to note that there wer2 no significant £ind-
ings to indicate that there was any *ime at all allo%tted *o
the maintenance personnel for the ict of perforaing pucely
perfective maintenance. When it is understood that mcs*t of
the ac*ual maintenance time is spent in making program
enhancements (that is, the perfactive maintenance), i=-
becomes clear that managers need to re-evaluate the way <hey
allot time for maintenance.

Arother reascn for maintznance problams can be
considered *o be both a cause and a resulzc of <he abovsz
mentioned problems. This reascn for maintenancs problems is
the lack of jJood documentation. Schneidewind points out
that one of the problems involved with software maintazance
is that no tracebility is built into the sof+ware. This
problea could be resclved with the appropriate doscumentation
technique. 1In ordec +oc convey ideas £zom o0ld maintainers %o
nevw maintainers, good documentaion is needed. Fcr example,
formal specifications of the problea for which the system is
designed must be presen+2d4 and documented sc that a later
change “c¢ <*he program cz2n be evaluated against the docu-
mented reason for a particular desiga systenm. This thesis
will explore th2 documentation problem in wmors detail 1in
later chapters.

6. Solutions

As implied from the above jiscussion 5f the causes
of the software maintenance problem, the use of proper docu-
men+-aticn is the key tc many maintznance problem solutioms.

The so>lutions regquire the cooperation of managers,
users, and wmaintainers. Good maintanance techniques are
also necessary and sust begin at ¢the desigan and require-
ments phases 5f tha life cycle. Saveral ideas are presented
by Schneidewind to ensurea good maintenance practices and
good documentation.

25

p———— ———

To start, good maintenance <technigues wmus“ be
lanned from the beginring of a software project. This
means *hat the project nust be dassigned with main“enance
integral to the entire life cycle, not added later whan <he
project is completed. Since enhancements take up mos: 0f
the maintenance effort, it is nscessary that the Jdesign
ideas incorporate <+he undarstandiny tha+ erhancements will
tak2 fplace ani that managers plan mainta2rance time
accordingly.

One way ¢o enhance wmaintznance personnel wundsar-
standing is to use modularity technigu=s in the design of
the software project. This means that coamon ideas or
concepts should be kept together ir a lngical sense “ha+
would be easy for the wmaintainer <> follow utilizing proper
documentation. The documentation should be ablza to convey
the module concepts used in the da2siga of +the software ¢o
the person wh> c2eds to make software modificatisns.

Alorng with *he modularity techniques, the idea of
independence among code, data, ani data base is in order.
This independance allows certain amduats of code, functions,
subzoutines, etc. to be changed without devastating effects
taking place in other portions of tha progranm. Informa+ion
hiding technigues are valuable when designing a program
vith modular independence for ease >f maintenance.

Schreidewind also gives sevaral ideas concerning the
proper development of documentation along with the project
in order: *o ensure the ease of maintenancse. On2 idea is tc
design the documentation first. Many a programmer knows how
tothersome +this %ask can be. Just <think of how many times
the flow charts or refinement procedures were written after
the program itself was actually written. The problea with
writing the documentation after the program is completed is
tha+ the documentaticn that is supposed to aid in the devel-
opaent and dacision making processes cannot possibly be

26

o4
=
"
[{]
.

used. Also the documenta+ion becomes sta+ic 1 a
e ded in

the process of documentation and all we se2 is *Le final

That is, all <the dynamic creativity cannot b

resulting document, This is wvery much like a c¢ollege
professor recaiving 2 math or physics exam with only the
answers and no actual work shown.

Another idea for good documentation is +that the
specificaticns and standards should Tequire aids +tha+
promote +the understandability of the progranm. This
includes the concept of providing comments in +the progranm
listing, references in the source listings €or c2r+ain sof«-
ware spscificat<ions, and any other raferences necessary to
*race through other rela<ed docum2nts.

Systea specificatisns should be designated as %0 the
kind of infcrmation that is to be conveyed to the maintainer
via documentation. This idea implies that certain types of
documentaticn convey certain kinds aof informa+ion, and +hat
only certain bits of information are required for certain
maintenance functions, The idea of different kinds of dccu-
meatation delivering various kinds of ianformation, and the
etfectiveness of *he forms of documentation will be
discussed below.

27

ITI. SOPTWARE DOCUMENTATION

This chapter covers many aspects of software documenta-
tior. Some background is given on documar<ation in general,
including a discussion about the purpsse of documentation.
Tha various categories of documentation are explained based
on the characteristics of the documsn<a+<ion and the needs of
the user. Control and developma2at documsn*ation is
discussed, as is static and dynamic documentation. Alsc the
categories of implicit and explicit documen*ation as they
pertain tc the maint enance role are explaired.
Documen+aticn dependencies with rejard to skill 1levels and
position level of personnel or tha2 documertation team ars
discussad.

A. DOCUNENTATION BACKGROUND

The primary purpcse of documertation is to impar* knowl-
edje about the system to periinent personnel by trans-
ferring reccrded infcrmation. Oth2ar thar the ccde itself,
tha only source of written information about the program is
the documentation. Misunderstandings can occur wher our
inforaal, abstract ideas are translated into formal,
concrete pieces of information. This information <“ransfer
is accomplished by recording on various forams of infor-
mation storing media. This iacludas such methods as manu-
ally recording facts on paper, or elactronically placing
them in a computer menory. Thasa various information
recordings become foras of documentation. The documentation
challenge, then, is to find a way to ensure the unmolested
raceipt of intended concepts by the documentation users.
When this challenge is amet offectively, documentation is

considered t> have accomplished its goal of successfully
conveying relevant irformaticn £roa one person +o another.
Chapter V discusses in more de%ail thz2 particular docuaenta-~
tion formats and their relative effectiveness.

One cannot hope to effactively transfer knocwledge abous
the system by simply floocding th2 maintainer with all the
information that can possibly be asseambled. It is necessary
to distinguish batveen types of documentation, and discern
the type of informa*icn that each conveys. Not all types of
documentation are adegquate for all types of infeorma<ion
transfer, and consequently, not good for all types of main-
tenance chores.

B DOCUBEETATION CATEGORIES

While the idea of transferring information is clear, *h2
idea of what kind and how wmuch information +o +transfer is
nct so clear. The amount of information to transfer is both
task dependent and prcgrammer depeandant, Both the mainte-
nance task *o be accomplished and <he level of expertise of
the maintenance perscn should be considered when deciding
upon the category of documenta*ion to be used. For exanple,
if the documentation is to be wus2]1 by someone who is very
familiar with the system and the type of changes to be
applied to the program, the docuzentation needed would be
of a level that is far less detailed than that of someone
who had never worked on the systes before. I+ would be
bhelpful to find ways to categorize documentation in corder to
gain ar understanding of the values of each.

1. JInternal and Extergal Documaptation

One way of categorizing documentation is based on
how the documentation itself is transported (internmally or
externally). Internal documentation is the documentation

that is carried along with the coda2 (pechaps 3in a separat2
file. I+ 4is usually embedded in the form of ccmments ¢r
cross reference listings, and is as>t axecutabla. I+ is an
integral pact of the érogram, so it is always available. I+
is easy to maintain because it is 1s 2asy to upda*e as “he
code itself, When a software modification is made, it is 3
simple matter +o modify the internal documentation. Because
of *he ease of update, internal docum2ntation is considerad
by programmers to be very reliable, and the programmers
have a high level of confidence in th2 currency and accuracy
of the irternal documenta*ion.

External documentation is the documsntation <tha+
exists outside the source <code of the p-ogranm. This
includes such things as data £low jiagrams, f£low charts, and
any other mode of <recording program information tha%t is
not an integral parct of the progran. This type of documen-
ta*ion is mecre difficult to maintaia than the internal docu-
mentation because it usually exists in hard copy only, thus
pen and ink charges are required for wmaking documentation
modifications. Because of the 4ifficulty encountered irn the
updating of external documantation, often it is not updated
when the system is modifiad. This 1leads to a low level of
trust amcang programmers with regard to the r2liablility of
extarnal documentatiocn. This low lavel of confidence in the
currency of external documentation is often perpetuated by
the feeling that there is no reason to update it since i+ is
not current anyvay, and even if it is updated, it won't be
trusted.

2. Dypamic and Static Documenptation

Documentation can also be considered t> be either
static or dynamic in nature. Dynamic documentation involves
*the conveyence of ideas about the actual developmantal
thought processes. This would include <the recording of
jdeas that begin with the first thoughts in the conceptual

30

e — T7—"—'FF"'"'“"""""""'"'!1‘

phase of the life cycle. It also Zancludes the mistekes mnziz
and the ideas considered and rejectad for any reason. Pric:s
mistakes and the reasons 23 to why th2y were wmistakes can
provide vital insights to the maiatainers when new changes
are being considered.

The dynamic npatur2 of the documentation comes from
tha fact that the entire decision-making process can be
actively recorded and transmitted to the «receiver of the
documentatiocn. The significance of tiis type of documenta-
tion, then, is *he fact that 1later enhancsmerts <+o the
program (remeaber, it is the enhancements that make up the
biggest part of the maintznance workload) can bz cornsidered
in light of original design decisions. Much redundancy in ;
the consideration of enhancements stands %2 be saved when
proper dynamic documentation is usszi.

Static documentation can be considered <tc be +he
"final ¢product" of +he documentation process. It is a
racording of the current static state of the program at some
point in time, and it does not provid: any indication of +he
dynamics involved in the 2volution of the program reaching
that state. This t+ype of documantation includes thirgs
such as a system or program £lovw chart or a rescurce
diagraa. It is this type of documzntation that conveys the
ijeas of the program or system itself, and how it functions.

I+ nmust be realized that both of +these types of
documentation are necessary for the proper trarsfer of
knowledge from <the designer to the maintenance parson.
Without both types, either the original thought "£flaver" of
the designer’'s intent is lost with the passage 2f *+ime, or
the understanding of the processing of +the prog-am is
lost.

31

3. Implicit and Explicit Documsntation

Anothar categorization of documentation <is <hs
notion of implicit and =2xplicit documentationmn. Explici+
documen+ation can be thought of as the documentatior that is
physically available, in whatsver form (dynamic cr sta<ic),

t varying levels of detail. Explicit documentaticn cculd,
tharefore, include dccumentation such as comments, manuals,
and flow diagranms.

Implicit documentation is a more subtle ard abstract
type of documertation. This +type 2f documen+«a“ion conesists
of the M"essence" of a program tha*t is made available by
consolidating information from on2 or more forms of either
the dyramic or static documentation. This «concept 0of
implici* documentation, then, 3involves a synergistic effec:
that provides a high 1lesvel understanding of the systen
vithout 1la>gs amounts - of explicit physical infermatio:n
necessarily being accessed. Implicit documentation provides
tha "Big Picture" for the receiver of +the information when
various amounts of physical documantation acTe assimilated.
Thus implicit documentation capturas the coacept ¢f +tr-ans-
ferripg tetwean individuals knowledge that would be diffi-
cult to impart *hrough language or a2xplicit documentation.

It is sometimes vory difficult to convey abstract
id2as through <*he use of explicit informational documenta-
tion, yet endugh documentaticn (but not so much as to over-
wvhelm) must be explicitly available to successfully ganerate
the implicit documentation no*ioa. This supports the
concept ¢f miniamal documentation.

C. DOCUBEENTATION DEPENDENCIES

Yet another way to categorize documentation is to

consider audience-dependent and life cycle phase-dependen*
documentation divisions. It is necessary to understand <hs

32

Attt . - ettt e v

needs c¢f the audience for wkich the documentation is
intended and also the lifs~-cycle phas2 to which the dozuman-
tation is rTelatad. These determinations are necessary so
that the documen+aticrn user who is knowledgeable about %hs
systea is not completely bogged down by <*“he effor+t of
trying %c sort through a myriad of ietails that have nothiag
to do with that particular wmaintenance task, or are super-
fluous in the sense that the user already knows the neces-
sary details. By the same token, it is inefficien*t for a
person who is not well varsad in certain aspects of the
project to spend many hours searching through lots c¢f docu-
mentation Jjust to £find out something specific about <the
program on which maintenance is to be conducted. Thare
mus+t indeed be a bajance between vary detailed and high
level documentation. The idea is that unnecessary work tha*
adds to the overhead of the maintanance task should net be
given to the maintenance person. (More 1is discussed in
Chapter V about how to access the proper level of detail of
documentation.)

When considering audience-dependent dccumen+a*ion,
several factors nmust be taken 1into account. These
factors include the reader's skill 1lev2l (or familiarisy
vith the project), the readerts position relative to the
maintenance job, and the particular +ype of maintenance to
be accomplishad. A skilled person can be defined as one who
understands basic organization programming policies or “ech-
nigues. The skilled person often possesses the quality of
familiarity discussed earlier.

Different kinds of documentation are appropriate for the
different factors amentioned above, and in order %o run the
maintenance job effectively, thesa kinds of documentation
are critical.

33

ﬂwd e_A__._;._a_;‘

1. skill Level

In considering the idea of skill level for the docu-
mentation user, the level of documantation detail should be
of concern. The documentation should be of sufficiert level
so as to give the user the preciss amount of de¢ail neces-
sary to carry out the rejuired maintenance function. This
peans that, if the user is skill=2l, the providz2d documen+
should not co>ntain minutaly detailed explanations of <the
program if the ideas are commonly undarstood. On the other
hand, +he documentation must be an adequate level of detail
so as to provide the unskilled pers>n with the needed amount
of systeam specifics.

The ideas of explicit and implici+ documentatiorn
coma into play hers. For the highly skilled user, the
amount of physically explici* docum2nta*tion can be small and
condensed in nature. Tha amount of 1implicit informa+ion
would be large because the skill2d user can 2ccept high
level concepts that dc not have to b2 explicitly described.
That is, a highly skillad user caa make use ¢f implied
notions, such as the notion that the data in a cer+ain
program goes through a "scr+ and eliminate"™ routine. Here
the explicit documentation would <consist of the information
that the data is sent to the routina, while the implicit
information would be made up of commonly understcod details
of the routine itself.

As for the unskilled user >f tne documentation, <the
nature of the explicit and the implicit idea conveyence
would be quite Adifferent. The unskilled user would need
auch more explicit information to absorb the saze amount of
knowledge of the portion of the program to be maintained.
The necessary oxplicit information would likely include many
of the specific details of <the "sort"®™ and "“eliminate”
routines separately. If the criceria for elimination of

34

certain data were understood by th2 uaskilled user at this
level of de*ail, ther those details would be considered %o
be implicit informaticn. If those criteria wer2 unknown +%o
th2 unskilled user, then the 2xplicit documentation concep:
nust move dcwn another lsvel of detail to incorpcrcz+e *thess
details explicitly. The levels of detail are *ranslated
continually from the implicit to the axplicit reala as thz
nesd for information detail (determined by the skill level)
moves down <c lower levels.

Conversely, as “he skill 1lavel of the user
increases, informa*tion and detz2ils required by the user movs
from the explicit tc th2 implicit rezlm, thus allowing
broader c¢cncepts “c be absorbed by *he user. As more
implic¢it information is requirad by +the user, a ccrre-
sponding lesser amount of explicit informaticn (or documen-
tation) is reguired.

The corsequences of having less explicit information
being required means +*hat lass dscumentation (and ccase-
quently less cverhead) needs tc bz sorted through in order
to complete the maintenanca *ask. The end result is tha+t as
skill level increases, less tim2 is required for the
specific maintenance task, and a corresponding maictenarnc:
efficiency results.

2. Position

A look at the 1idea of a1 parson's position with
regard to the maintenacce effort is useful. In order to
better understand howv the relative position 52f <the person
utilizing the documentation affacts documentation needs,
first ve must know whether the person is considered to be a
maintainer, a aanager, or a user.

35

a. Maintainer

The maintainer is derfined *o be the persc:r wao
is actively icvolved in the actual act 2f maiantaining the
progran. The maintainer requires the 1lowest level of
abs+traction of documentation, or the most de*ailed level of
information because of the actual physical main:enance tha=<

is accomplished. The type of docuazntation required by <he
maintainer ¢t¢> successfully conplete +he maintenarce task
then will be on a level that is faicly detailad. The Jdep+h
of detail reguired will of courss be dependent upon cthe
maintainer's skill leval c¢r faailiarity as discusseid
earlier. The documentation type will be of the kind that
will promo*e the detail n2cessary %> completz tha job. The
amount cf explicic documentation will also be determined by
skill level and familiari<y.

As far as dynamic docum2sntation is concerned,
th2 maintainer relies less he2avily 20 this level of documen-

tation than on the static documentation. Th2 maintainer is
very concernad about the present state of +the ©prcogran
because the present state is what is to be modified. The
decision as to whether or not +tc make the modification is
usually made a+ a higher level, and thus the dynamic docu-
mentation will be better used at that higher level (probably
the manager level).

b. Manager

The manager category can be defined so as to
include anyone who is directly connected with <the mainte-
nance of the systesm, but not actively involved with the
actual physical maintenance of the project. This could
include the maintsnance team leader in the supsrvisory role,
tha department head, or higher level decision makers. The
type of documantatior that the manager needs should be of a

36

—_— —— s Smm— . —————

much higher level of abstiraction =c2quiring lass detail <ha=
tha+ required by the maintainer. This means that zuck more
documentation of an implicizt naturs is acceptable ia ordec
to meet the needs of the manager 1lavel personnel. The
greater the amount ¢of implicit documentation nceeded, <he
lass *he amount of expliciz documentation =mnscessa
Likewise, the less the d=2tail level of the explicit documen-

tation, +the 1less the amount of dstails through which th2
manager must sort. The smallar amdoun+t of éetail requirad
l12ad4s <o the saving of time and money.

The managar could very well bpe the biggest user
of dynamic documentation. The managsr at <“he mainterarcs
group supervisor lavel is likely o be thz one who mus% look
at the wdy pricr decisions were malds in order %c verify *hs
practicalis of requested paintenince enhancemanis. The
manager might want to avoid re-deczidirg something tha= is
already a given and has been recorded in the dyranmic
dccumentaticn.

The manager c3uld also be a very heavy user of
static documentation in the sense tha*t it might be necessary
to reference the present status of “h2 maintenance effort in
crdar *o properly set up the maint2nance *eam. Thus the
manager must rely heavily on <the static documentation +<to
understanrd the program status aftsr design and also *o
modify -~he existing documantation as the program is modi-
£ied. This also implies that dynamic documentation by the
maintenance team is cccurring alonjy with program modifica-
tions, and the manager is responsible for updating or
creating the appropriate dynamic dozumantation.

Ce User

The user is anyone who actually uses the systen
(the pilot using an avionics system, 2 fire control techni-
cian on board ship, e*c.) The user might be someone who is

37

ccnsidering purchasing sarvices or products from the compaay
and is interested in the vability of *he <company as 2
vhole. The systea is 2 vital part of the company, anéd
consequently the user might be intsrested in the prcgram or
systea frcm a very abstract point of view. Other <+than
specific user's manuals and system operational guides, the
usar needs little or ao> detailad information and can
tolerate a large amcunt of implicit docum=anta<ion. The
anount of explicit documentation raguized €for the user will
be very small indeed, perhaps even a simple listing of the
Systems cr programs available <o the company. The user
simply wants <o know what capabilitias are presen*t and if
+hey meet the user's naeds. Any further detail 1is
superfluous.

The user is probably not interested in any
dynamic documentation and has vary 1li+<tle diateres+t in
static documentation. He does not «really cars about %he
design decisisns <hat occurred duriang the devzalopmernt of ths
systen, but merely about the faict that +*here 23xists a
system sufficient for his neels.

D. ROLE OF DOCUMENTATION

The id2a of implicit and explicitr dinformation c¢an be
u-ilized here. Returning for a mom2nt to the 2xample in the
last chapter concerning the likening of the receipt of one
final piece of documentation o that of a college pzofessoc
seceiving only the answers on a physics or math tes* without
explana+ion as to how the answaers came abou+, nore
discussion is in order. The dynamic nature of showing the
work, whether the work was on an exam or on a program, helps
both the programmer and the wmaintenance person (or the
student and the professor) follov the design and development
of ideas. Since documentation, as described earlier,

38

ipvolvaes the <ztramsfer of ideas, it is crucial <t
ideas be transferred dyramically in <the2 form of pro
documentation. It is difficult «o0 understand *hs tho
development process +tha*t 3Joes into a problem when 2
is seen by the receiver of +the information is <he £imal
solution.

We need ndt worry that the fizal documentation prcduc*
might contain some recording o¢f our initial <erroneous
efforts, In fact it might be helpful to the maintainer if
the inictial <4rial and error afforts were ade available.
I+ could save the maintenance persoa =<he ra2dundan%t =2ffor* of
trying tc rethick the designe-'s ilszas in ordsr to possibly
change a previsus logical decision.

The coomplate documentation could also keep the main-
+ainer from overlooking some critical piece of infcrmation
that would make the newly proposed 2nhancemen*t an obviously
bad move. Another advantage of 3docunenting the creative
process is +<hi* ideas that were rnot feasible (tecknolcgic-
ally or enviroamentally) at the time of design, and ccnse-
quantly reject2d4, could be used during the maint2nance phase
as a result 2% sys*tem rejui-ement changes or technological
advances,

Ideally, then, the maintainer will not recsive as docu-
aentation something as siaple as tae statems3nt that a
system will use red ribbons for printad outpu+. This gives
no indication as to hcw much thought, if any, went into the
decision. When the suggestion for an snhancement *o allow a
different color for printad output, +he maintenance person
aust try to 3second guess the design2r's decision as =0 why
red wvwas selected, and if another color is possible. TIf tiis
knovwledge wvera made readily available, the maintainer could
possibly head off an expensive analysis of colored printed
outputs tha+ would discover that the designer already knew
that rad printouts were the only ones that could be read
undar the special lighting needed f>r a security projecst.

39

IV. DOCUMENTATION HIERARCHY

The idea of a documentation hierarchy is introduced
along with an 2xplanation of the proper use of the hierarch-
ical organization and how it promotes the concapt of
minimal documentation. System and program documentation are
discussed in detail as they relate to both the system hier-
archy and the maint2nance task.

A. SYSTEN DOCUBENTATION HI BRABRCHY

One precblem that faces <the wmanager is how t5 wada
through all available documentation in order to> glean out
the pertinent informaticn for tha present task withou*
getting togged down with a massive volume of material. Tha
same problem is faced by *he pairntainer who may not need to
knovw all the systeam design information when the task a+ hand
(as determined already by the managerial descision-making
process) is simply to modify a small section of code. It is
clearly wasteful in this case to force the maintainer to
sort through huge amcunts of irrelavant material c¢oncerning
high level system information just to lccate information
pertaining to the immediate code molification task.

The user requires information about the system on a high
conceptual level, but the deluge >f unorganized docuaenta-
tion with all levels of detail would regquire time ccnsuming
searching, and most of the detailed information would be
utterly useless.

A soclation to the problem of unorganized 1levels of
detail in documentation is to construct an organized hier-
archical structure for the various forms of documentation
based on the level of detail. This documentation hierarchy

40

can provide precisely the appropriate leavel of de%ail in <hs
available documentaticn for the rc2c2iver, reqgardlzss of
whether +he receiver is the user, manager, or main<ainesr.
Pigure 4.1 provides an =2=xample of a system documentation
hierarchy organization that indicatss the variocus levels of
detail involved in the documentation of a system.

All of *ha documentation is available to the proper
receiver in a concise format that gives the rz2ceiver the
least amcun% 9f detail necessary (thus promoting the concept
of minimal documentation as wmentis>nad earlier). As more
detail is needed, more explicit docamantation is accessibla.
This promotes unders+andabili+*y and <cont-ibutes %0 an effi-
cient maintenance effor:.

The sys+tem documentation hierarchy of Figursz 4.1 shows
arrows that indicate a downward and upward flow of docuazsn-
tatior accass. As progra2ss is mada down to lower levels on
Figure 4.1, more detail is attainzd in +he documenta+ion.
Converssly, as movemernt is made up the levels, less de+ailed
descriptions and lacger concepts ara accessed.

B. SYSTEM DOCUMENTATION

To understand more about <the systam documentation hier-
archy, it mus* b2 understood what 1is meant by system docu-
meatation. A syst2m can be definzl as one or more programs
that work in conjunction to perform a particular function.
The system <c¢an be very simplistic, such as a simple vote
counting systan, or it can be very complicated as in the
case of a sophisticated weapons systea. Since a systen has

been defined as the coabination of o5ne or aore programs that
perform a function, system documenctation is defined as the
documentation of the overall systam life cycle from the
project conception phase through the support phase.

R

e s it

SYSTEM
DESCRIPTION
AND ENVIRONMENT

SYSTEM FLOW

PROGRAM
DESCRIPTION

MODULE FLOW

PROGRAM 1/0

SYSTEM 1/0
DESCRIPTION

Pigure 4.1 Systes Documentation Hierarchy.

42

y

System documenta+ion con+ains —reacorded inforaz+ion

i

pertaining to the completz description of the evolution of 2
system throughout its 1lifs cycle. I+t includes a cecord of
the develorment prccess and +he maintenance history ia
either implicit or explicit €£form. System documen“atior
contains both dynamic and static information and can be
used by maintainer, manager, and user personnel. The
specific ferm of docum2ntation is deperdent upon the
requirements of *the task ¢o be accoaplished and the needs of
*he receiver,

Since a system is made up of one or more pPrograzs,
program documentation is considered to be included 2s a part
of zhe system documentation. In Figurs 4.1 program documen-
tation consists of levels 3 and 4. Botk sys<e2m and progranm
documentaticn are discusszsd in greater detail later in this
chapter.

1. Level 1

The overall sys+tem documzrtation follows a hisrarch-
ical st-uctura wi+h varying 1la2vels of detail as shown in
Pigure 4.1. The highest level of abstraction for the
system, level 1, includ2s « narrative description of the
system itself and a description of the system environment
along with any assumpticns about th2 systenm. The enviroa-
mental description would include information pertaining <o
the system hardware and software environments. This
includes system restrictions and 1limitations tha+ night
result from certain hardware or software censtraints under
vhich the system must operate. Military applications such
as an avionics system or a submarine weapons systea would
dictate specific environmental restrictions because c¢f the
very nature of the system activities.

I+ is in this leval that the documentation
contains <the most abstract information abeut the proiject.

43

This level of dstail would probably be most often wused by
the user personnel, but %his non-i2%ailed narrative level
could also be o2f use to the manager and mairtezarce
perscnnel who require an overall understarding c¢f *ha
systen.

2. Level 2

Level 2 is the next level of abstraction inr the
hierarchical s+tructure and con*tains slightly more detail
than level 1. This level iancludes any system flcw informa-
tion, suck as perhaps system flov diagrams, 22d system inpuc
and output descripticas. The inter-~progran module gdescrip-
tions are included ir %+his level:; ¢this level gives informa-
tion abcut how individual programs are inter-related in the
sys:tem. This type of information caa be conveyed with the
use of narrative remarks.

Since level 2 systam docum@2ntation includes informa-
tion such as systenr input and oJutput specifications ard
requirements, maintainers and managers find <+this input/
output informat*ion tc be valuable beciuse they aust ensure
that tae maintenance of the pregram is accomplished in such
a way *“hat the output requirements are correctly attained
wvhen the appropriate system inputs ara given.

Managers need to know the system input arcd output
specifications that fit user needs 4in order to ensure main-
tainers have the prcper information as translated from the
user (who very likely is not as tachnically oriented as the
manager or tha maintainer) requiremants. Thus the managers
can take the user input and output requirements as requested
by the users and translate <them into an nunderstanding
between the maintainers and the usars in order that effec-
tive saintenance can be azcomplishai.

Users obviously play an imps>rtan* role in the gener-
a*ion of the general input and output specificaticne, and

au

these specifications must make sens2 <0 the managers befooz
the maintairers can te expected t> understand ard perform
maintenance *“asks. Ar understaniing between usecs and
managers must thera2fore be reached as to what th2 users wan<
(or think they wvant). Tha prudent usar will heed management
advice vhen considering rsasonable input and output formatis.

System logic information is also a pact of level 2
of “he system documentation hierarchy, and i+« conveys the
logical flcw of *he project. This logical informaczicn cculd
include a narrative section <that isscribes the purpose of
the system and how it is logically constructad. The hier-
archy of preograms, functions, and modules can be described
in +he narrative, The system flow documentation concerning
tha relationship of the indiv'dual modules can take th2
form of system flow charts or flow diagrams with accompa-
Ryirg comments.

The inter-prograam module descriptions provide infer-
mation about the relationship of the programs to the systea
and to each o<ther. Any restrictive characteristiecs or
program environmental considerations are included in the
inter-module narrative.

The rest of the lower 1levals of abstrac+iorn maks up
the program documentation pecrtion of +the documentation hier-
arcanye. It is in these levels that the degree of de*ail is
such that the system is no longer the focal point of the
documentation, and <the program spacifics are brought into
view.

C. PROGRAB DOCUMENTATION

Program documentation, as indicatad above, consists of
the recorded information about the program itself. It is of
a nore detailed nature than the system documentation and is
most useful for the manager and maiatainer. It contains

45

information p2-taining to program module construc+ion and
logic flew. Da%*a structure, data flow, and con=rwol Fflow
spacifics are recorded so that tha2 Jocumen*ation resceiver
has relevant program information available. Programming
methodology techniques aand maintenance history become pars
of the p-ogram documentation as well. Dynamic documentation
describing inter-module concepts and structurses is included,
but static documentation makes up tha bulkx of the progran
documentation. Specific axplicit foras of program documen-
tation include <£low charts, English narrative sta‘tzments,
resource diagrams, and Petri nets.

While all of the levsls in Pigurs 4.1 repr2sent systen
documentaticn, levels 3 and 4 can b2 combinad to make up zhe
program docum2ntation portion of the system documentation
hierarchy.

1. level 3

Level 3 of Figqure 4.1 is <the first 1level of the
progfam documentaticn and conveys a particular programn
descrip=ion. Particular program constraints <hat deal with
specific programs azre described in L2vel 3 along with any
high level narrative about the program itself. Level 3 does
not contain any dinter-program relationships with other
programs. I% is the level that deals with strictly a single
prograa.

This 1level of abstraction is more detailed ¢than
levels 1 and 2, and is very useful to both “he marager and
the maintainer. The w@manager needs to keep the high level
progras concapt so that “he maintainers can be properly
sanaged without forcing the maintainers ¢o be concerned with
any unneccessary abstract information. The manager must
keep the prcgram concept in mind and r3late it +to the rest
of the systea (level 2 and higher).

46

- ——— —— .
M—__ L mamtmaman

The wmaintainer can, however, use this leval of
detail to aid in the undsrstanding >f how a particular main-
tenance task is constrainsd. The ainager is responsibdle for
the overseeiny of “he inter~-program module rela“*icnshigs,
but a knovledgeable maintenanca person car be cf
immeasurable 2id to the wise manager in this area.

2. Level &

The next 1lcwer level of abstraction, level 4,
provides the greatest level of dezail. This lavel is used
very heavily by maintenarce personn2l, and oftenr by manage-
rial ©personnel. This 1level consists of very detailed
descriptions such as program flow informatien and inpuz/
catput formats. Much of this docum2n+tation is vary explicit
in nature. It can be s<%atic or dynamic. Flowchar*s,
inter-code comments, logic, and data flow diagrams are
included in this level of dJdocumentation. I+t is this level
of detail ¢that describes program modules in enough detail so
as to promote understandability among maintainers.

While maintainers are the heaviest users of program
documen<ation, and users are the primary users of thke higher
lavel system documentation, managers wmus+ bridge the gap
tetveen the two 1levels of documantation. Managers are
involved with high 1level decisions that require an overall
system understanding, yet they must also be 3involved with
some of the 1lower levels of program documentaticn in order
to properly manage the maintenance functions.

D. DOCUBERTATIOR HIERARCHY UTILIZATION

The documentation hierarchy is set up so that anyone can
access the hierarchy at any of th2 indicated 1levels, and
thus te exposed to the leavel of Istail characteristic of
that pac-ticular level. If pore detail is needed for a given

:‘%__-

task, then a simple move down to the anext level for grez<er
detail is permitted. By the same “oken if i+ {s datermired
that the level accessed is too detailed for the par“icular
needs of the person using the Jdocumantation, *thern the arrow
is simply followed up to a higher level of abstrac<ion tha+
mee=s the desired needs.

BEach form of documepntation, than, is catalcqued as to
its detail level, and a menu format (either paper or elec-
tronic) can b2 u+ilized *9o diractly access the level needed.

With the capability of moving either directiorn ir the
hierarchy structure, great f£laxability 4is built inte the
system, and only the exact amount of documentation r=2eded is
accessed. This promctes the ®»inizal documentation concept
ard, therefore, keeps the documeatation overhead dcwn tc 2
minimunm. The amount of useless information that must be
waded through in order to f£ind the proper documentation is
kept lcw as a result cf proper utilization of the documenta-
tion kierarchy concept.

48

V. BYALOUAIJON OF PORHS OF DOCUMENTATION

Chapter IIIl discusses the various types of documentation
and hov they relate to the maintenances sfforz. It is impor-
tant to carry the documentaticn discussion further and talk
about not only the types of docum2ntation tha: are useful,
but also some specifics as far as physical arcangements ars
concerned. The discussion will focus on explicit typses of
progran documentation, and how som2 of the physical charac-
teristics o¢f tha Jdocumentaticn affect tha efficiency of
saintenance performance,

A. EVALUATION EXPERINENTS

When dealing specifically with programming documentation
(levels 3 and 4 of Pigure 4.1) which is most sften used by
maintainers, it would be helpful to understand which
different foras of documentation are most effective.,
Chapter III discusses <+the differeat <ypes of information
utilized by users, managers, and maintainers, depending on
the maintenance task and the docum2ntation receiver. This
chapter discusses some specific forms of documentation and
hov effective they can be in promoting understandability for
efficient program maintenance.

It has been deteramined by Gznaral Electric studies
(Ref. 10)] that the best form of documentation to be used for
maintenance is heavily dependent on the type of program
processing that takes place, in particular whether it is
sequential or concurrent processing.

49

< m— e e

1. Dogumeptation f£or Seguential Processing

In determining the most effzctive type 2f documenta-
tion format for s2quential processing, a primary concern
must involve the type of symbology used +*o present the
information. It would be bereficial <to ascertain the bes:
form of symbology as seen by the aainterance personnel in
terms of maiantenaace efficiency.

The three symbology types used in the General
Electric Studies consist of narrative Englist texe, an
abbreviated program-like language called ©Program Design
language (PDL), and ideosgraums. The narrative text is
frequently embedded in <he source z2d2 2s <either global or
in-line commeats, The PDL is succinct and uses s*ric+ly
defired keywords to describe arguments or predicatss.
Ideograms are often found in flow charts and HIPO charts.
Sets of ideograms represent processes in a progran
[Ref. 11].

Ancther primary concern which must be dealt with
vhen wveighing effective documentation is the issue of
spatial arrangem=ant. Spatial arrangements can aid main-
taizers in understarding the flow of control in a sequential
program, and it would be helpful if the best spatial fcrmat
could be determined. The spatial arrangements provide
different ways of <representing control flow and nesting
levels. The spatial arrangements used in <he experiments
ace sequential, branching, and hierarchical reprasentations.

The sequential acrangement represents both the
control flov and the levels of nesting in a vertical manner.
The branching arrangement presents the flow of control iz a
vertical manner while the nesting lavels are presented hori-
zontally. Pinally, 4in the hierarchical arrangemen%, the
control flowv is represented horizontally and the nesting
levels are presented vertically.

The sequential processing 2xpariments were designesl

to run the ganut of many of the maintenance tasks perfeormsd
{ by programmers. The tasks included answering gquestions
about pregram coding, program debugging, program modifica-
] tion, and program operation. The maintenance tasks wers to
be completed using the various foras of documentation being

tasted. The studies were conducted with professional
programmers who were asked to answer gquestions about
programs. The programmers vere allowed to referernce only
the varicus forms of documentation haviang th2 spatial and
sysbology characteristics mentioned above tc get information
about the programs.

Nine specification formats were pressented 2o the
programmers for their use in the 2xperimants. Pach of the
three types of symbolegy was presentad in each of the *hres
spatial arrangsments.

The participants vere also> asked *to choose which
format of documentaticn they found to be the easiest t0 use.
This choice was then weighed against *he type of documenta-
*ion that produced the best results in “erms of maintenance
effectiveness.

In the first experiment, the programmers were asked
to answer backward and forward-tracing gquestions and input/
output questions about the program using the test documenta-
tion provided.

~ The results showed +that the segquential PDL, the
branching PDL, and the branching iisogram versisans of docu-
mentation were the most effective for answering the tracing
questions.

Por the input/output questions, no significant
differences vere found betveen the forms of documentation.
The most preferred combinations of documentation forsats
were the PDL symbology and the branchirg spatial arrange-
ments {Ref. 11].

}

-

51

In ano*her experiment prograamers w2r2 asked 9o
complete the codiag of portions of programs referencing orly
the documentation under test. In <this =2xperimen+t <he
English narrative format took significantly 1longer tz
produce code than did the PDL format. Trhe English version
also produced tha largest number of errcors, while the PDL
produced the smallest.

The spatial arrangenent effects were no+t signifi-
cant, tut +the formats of the sequerntial PDL and <he
branching PDL arrangements produc=2d +“he best experimental
results. The sequential English version prcduced the
poorest performance.

The programRers also chose <the PDL branching
arrangements as the preferred format c¢ombination.

Irn vyet another experiment the programmers had +o
correct error-seeded progranms, ajaia utilizing only the
documen+ation under test as a sourc2 of prcgram infermation.

The best results in performance occurred with the
PDL and ideogram symbologies <for this experimen+. The
spatial effects were again not significant. The sequential
and branching PDL formats proved to be high performers, as
did *he branching and hierarchical ideograams.

The programmers had no pref2rence for the <ype of
symbology 3in this experiment, but <¢hey did prefer the
branching spatial arrangement [Ref. 13].

Though slightly different ra2sults were produced in
this experiment depending on the maintenance task, overall
the indication is that performance is dimproved when <the
syabology is of a succinct naturs, such as in the PDL
format. The BEnglish narrative proved to be ¢tdc wordy and
avkvard to provide efficiency when tteapting software
maintenance.

As for the spatial arranjement issue, <*“he best
overall performance resulted €from the use of a branching
arrangeaent in providing ¢the clearest display of control

52

flow. The PDL braanchirng forma+, then, seemed to promocts
‘understandability for the maintainer, and *he PUL brancihing
format was selected by the prograamers as the zasies*
overall format to use.

2. Documentation for Coacuczreant 2tocessing

——— iy St

Since much of today's program processing is concur~
rent, it is wise to investigate documentation 2ffec<iveness
for +he concurrent realm of processing. Concurren*
processing of programs entails two or more pecrtions of the
program executing sisultaneously. B=cause of %he complexity
involved with <concurr-ent processes, programs =ha< contain
concurrent precessiag must be carazfully documen<ed. It i

n

th

important to convey informazion absut <he control flcw o
*he program and *ha sharing c¢f rescucces,

The formats of documenta<tion us=sd for +he Genaral
Electric studies of concurran%t processing dacumentazion
{Ref. 18] consist of three +ypes: PDL; resource diagranms;

3

and Pe%ri nets. The first form of 3ocumenta=ion is the sane

[

PDL as wused in the sequential processing tas%s. The PDL
emphasizes <ha contrecl-flow charactaris<ics of the progranm.
The secoad form of docum2ntazica, the resource
diagram, places emphasis on tha concept c¢f providing
resource sharing dinformation +to the programmer. The
resource diagram usaes commuanicatzion circles containing
abbreviated BEnglish statements to czonvey inforaation about
the relationships bhetween processes. Natural English sta<e-
sents provide narrative information contained in process
boxes to describe the process itself. Resource diagrams are
arranged spatially in a branching format similar to the
branching organization used in the seJuential experiments.
The thizd form cof documentation is that of a Petri
net. Petri nets have nodes that -ontain information that

indicates resource usage for required tasks, while

53

control-flow informa*ion is conveyed with a cons=zrained
language description. Th2 Petri na2t format of d>cumernza+ticn
places zqual emphasis or conzrol-flow and <Tesource shasing
information. The spatial arrangz2ment ¢f the Petri 1mnet is
alsc similar to that of a branching organizatiorn.

In the concurrent processiig 2xperimsn: prcgrammars
were asked t5> anake either dJdata~structure or control-flow
modifications to each of three prograas. For both %<ypes of
modificatiors, the resource diagraas proved <o be the bes:
performers. The Pe+tri net gave the poorest performance.

Since the resource diagrams emphasize information
about the resource-sharing aspect 2f the processing of <+hs
program, i* is interesting 40 2ao0t2 that <ths con*rol-flow
informazion that was so importan% <zfor +he sequential
processing of a program is not as vital for *he maintenance
of concurrent processes.

Rhen asked to select the documantation format %hat
was easiest t> use, the PDL fqormat was selactad. It turzed
out, however, +*hat the most e€fficiant form of d>cumentation
for +*he concurrent orocessing was the resource diagranm.

B. DISCUSSION

The zesults of the experiaments yie=ld some Ideas tha* can
be incorporated in%*c explicit documantatica types for
program documantation. #ith propar incorporation of th2
jdeas, understandability can be 2nhanced for wmairtainers
resulting in a positive influence on mainterance
efficiency.

When detaraining +the type >f docuamsntation to be
acceossed in the documentation hiararchy of Pigure 4.1 in
Chapter IIXI, 1%t is important to realize that there is not
one "best" form of dccumentation f£for all maintanance tasks.
Tha type of procassing (sequential or concurrent) maust be

'S4

taken into accouct when identifyiny the Dbest documen+a+ion
format t¢ include in the hieraczchy. This processing infor-
mation is providad in a narrative sans2 in level 3. Level 4
will provide the actual flow inforamation, be it resource-
flow or contrsl~-flow information.

The Gerneral Trlectric studies show support for the
concept ¢f wminimal documentation iatroduced in chapter II.
The English narratives were found %> ba too long ané awkward

for the test performance of mainteniance. When <he method of
transferring information %tcok on the more abbreviated fora
of the PDL, @®maintainers showed a prafarence for *his forma:
of symbology presentaticn. This preference held <+zue for
bota th2 sequan<tial and the coacurrent progr-amming tschri-
ques. The implication is <hat, even thcugh the ideas
conveyed in both +he formal English narrativs and the PDL
were the same, the programmers chose the succinct method of
symbology as being easier ¢o0 glsian the necassary informa-
tion for the maintenance task. A significan* poin% is tha+
the programmers chose not tc wade through all ¢he super-
fluous language provided by the English narrative, thus
indicating 2 preference for mwminimal documentation. As far
as sequential processing 1is concarnad, the PDL proved to
be not only ¢the programmer's choic2 for symbology represen-~
tation, it also proved to be the aost efficient. In the
case of the concurrent prdcessing, the PDL was the preferred
method of symbology representation, but the resource diagranm
proved to be aore efficient.

The concept of minisal documentation is not contradicted
by the fact that the PDL form of symbology vas preferred by
programaers, but resource diagrams proved %5 be the most
efficient for maintenance purposes in concurrent prograa-
ming. The fact is that the information rsquired for concur-
zent precessing maintenance is simply different than the
information that is provided by the PDL. Concurrent

55

L e S 3 : T A« . n——— ..o

S,

W

processing requires information wit<h emphasis on +h
resource~-sharing aspect 5f <the pregrasn, vhile +the PDL
provides information primarily concerning the aspec~ 0%
ccntrol~-flow (which is of primary concern in thz ssquerntial
processing program). In this experimant it turned cu+% that
th2 actual minimal documentation was the resource diagran,
and not the PDL the maintainers praferred.

When determining which format of documentatisn +to access
for the performance of maintenanca, the format which bhest
suits the task a* hand should be ¢oasidered in the selection
process with amphasis or maintenance sfficisncy. When +h2
proper level (or levels) of documsntatior are selected from
+he documentation hierarchy, alon3y with th2 best physical
representation of the documentatrion, <hen mirimal documeata-
tion is aczessed and effectiva understandabilisy is
achieved. Th2 end result 3is an effective and efficient
perfcrmance of the mairnterance task.

56

VI. CONCLOUSIONS AND BECOMMENDATIONS

Since maintenance costs make up tha largast par< of mos*
software projects, i* is wvital to £find effective ways *o
reduce cr make more efficient <the software maintenance
effort., When good documenta*ion techniques are inccerporated
into the prciect evolution, *hen davelopmant ideas and other
relevart informa“ion about the system can b2 successfully
recorded and transferred %o other individuals.

Since i+ is critical that good documentation <¢echnigues
be smphasized, accurately detarmining <+he precise type and
amount of documentation for software maintenance is vital.
Minimal documentation is the result of that determination
and should, therefore, be incorporated into softwars
projects whers appropriate. (Som2 prog-ams are simply no+
maintained and therefore do not nsed maintenance oriented
documen+tation.)

Managers of <the maintenance %team oftan have misccncep-
tions about how the +*ima spent >n software maintenance
should be allocated. Because of thase misconcep+tions, a
closer look at how mainptanance timse is spen* is in order.
Perhaps anrn 2analysis of +he wmaintznance effort on each
psoject should be conducted so as t> determine how the main-
tenance time is actually spent. I'he manager can then have
an affective ¢tool vwith which to schadule the maintenance
effort without having to resort axclusively %5 the use of
intuition.

Programeers should be trained not only to 3ocument the
systea as it develops, but to do s> keeping the mainterance
aspect in mind. Maintenance enhanzing documentation should
be developed simultaneously with the project as an integral
part c¢f the system.

57

Programmers aust becoma aware of tha fact that there iz
not one “best" format of documenta+icon for 2all types of
maintenance. More oresszarch 1likz <+the General ©Elec=zwric
studies should be ccnducted in ordsr %o detarmin2 tha best
documentation fecrmat for <the particular maintenance task
being perform2d. A particular <format, *then, should not be
taught as +*he only prcper way to document a program,

Well trained programmers will also raise the skill level
of the mair“enance team, and as skill level increases, the
need for detailed explicit documentation decrzases. Th=2
skilled programmer can than accept larger conceptual ideas
about the program, <“hus avoiding %“n2 need to search through
a large volume c¢f information in order to pecform the task
a~ hand. Maintanance and cost &fficierncies are therefore
enhanced.

Since programmers have more confidence in interrnal docu-
mentation, it is recommended that, to the =2xtent feasible,
information be carried internally along with the source
code. As "hard" copiss are needed, <hey could simply be
printed cut for a specific use. Parhaps a physical copy of
the documen+atioxz should ba filad £5r back up purposes, bu*
+he amount of ext2rnal copies shoull be kept +o0 a2 minimum in
orier +to awvoid ¢*he reluctance t> keep the hard copies
ypdated. - In all cases, however, all forms of documentation
should be updated as modifications to the software are made
in order to ensure that the documsata<zion is an accurate
reflection of the project.

In support of achieving aminiazal Jocumentation, the
internally stored dJdocumentation should be organized in the
format of a2 3locuaentation hierarchy. Ther2 shsuld be one
hisrarchy structure that will contain all types of explici:
docusentation, and each physical format will be classified
and filed according to the level of detail contained in the
document. This "lavel of Jetail" type of categorization will

58

rrw~———-—_=:-----...._______*___v~.

nacessarily cause the documentatisn to becom2 a pa2c< of
either the system or +h2 program documen<ation.

Users, managers, and wmaintainers should be able <+«o
access +he appropriate piace of documentation based on <he
amount of detail needed for the particular task at hand.
The system should be set up irn such a way tha+t cach lavel is
easily accessed, 204 a mezhod of moviang up or down *he hier~
archical organizatiorn should be mads available.

It is recommended +hat furthar research bz c¢onduct2l
into the implsmentaticn c¢f +he hierarchical schsae in 2 menu
driven wvwindovw format that can display “he Zndicated pisce of
documentatisn on 2 display scre2a for perusal. A poin%er
device can poizn: o a place on *the menu *o request a par<ic-
ular level in the hierarchy. The capability *o transcerd ¢o
different levels will be buil® izto the menu operation of
th2 windows. This documentation hierarchy implementation
vill providz 2 powerful documentatiosn tool that prcmotes }he
miaimal docum2ntation concept, and should resul« in an effi-
ciant maintenmance effor:.

59

r'vf) R ————————

LIST OF REPERENCES

{ 1. Boehm, B.W. gogtwa'e Ezginsaci IEEE Transac+ioas
COlpuﬁets, Decé&abatr V975, 95‘72€§352u1 '

2. Martir, J., and McClure, C. 3Software Maintenance, zhe

% g %_ﬁ ar izs §g;_;;oﬁ§, pr3ctice-Rall,Tic., 1333, PP

3. Boehnm, B. W,]
Pren‘1c=~ﬂall. Inc.,

. e SR a—

4. Fleckens+ein, W.0. ¢ nges ia £ Develovment
Bell Labcratories, CompuZer, YatcZh, 1983, pp o0-60

5. Lientz, B.P 1 and SWanson, Z.3. Safiwarce ;ainteaé_gg
Mzpagemsnt, Addison-Wesley PublishiIng Compz2ny, 19

6. Svanson, . E.B. The Dimensisns of Mazintanarce, 2nd
Interraticnal ConI3Telcs ~C3 Software caginhserinag,
Proceedings, Octobar 13-15, 1376, pp 496-497 1

7. Lientz, B.P., Swansorn, E.B., and Tompkins, G.
Chazactezistics of &E§%1022£V2 Sofrwazs Maintenancs,
%ggmg??caftans oF th3 . ¥ol. 271, ~Juie, ~1973,Pbp

8. Schne-davlnd. N.F. Softwars Maiatspancs: lIaprovement
%hé— g_ Batter Development ~ 5:andards and
gcumaptatidil, Naval Po3Stgraidate SER3CI, Februaty,

9. Glass, R.L., and Noisaux B.d. Sofiware Maipntepance
Guid gB ok, §rentice-aall: Iac., 1981§‘§§’T-9' = ace

10. Bohen—Davzs, D.A. Repre

twara upentati on
FSE5055 1 n 2B SR RRER0 SR uu
1. Sh eppard. S. B. Kruesz ang Cartis, 2
§§i§¥ ia % e@enx gL :h2
e ;%’ E%npany. é EU 33 -2, Octcber,

12. She pard, S. B., ard Kruesi, E. ae egt ; the
il el f@@ﬁﬁs@ﬁ:g?&:%%?ﬁ%

60

Hﬂm
< Ml
~ DI
wier
- i
Oefet
@4
w (o
=]

o]

-

(1

ol

(24

13. §§epgardi§s.2§. Sggiéi§§¥ Jaga.sba%aa§b gzi, E.e Th2
[hol T -3 . ra 23 nn o=
fSS38. 280,82 F: 32T 02 3 gparear FEERMISSIFECET
%ﬂgﬁu%’ﬁ %gﬁgir“:m:/ﬁrsna‘m‘ $5900%35° Rugust,

ti-
Js]
1]

‘H
8
>]
310

a W

1. Bohem-Davls D.A. Fregl A. 4. Documentati
¢ ’ q Y 14 -c—ﬁiaé - ro)

SEEat G o SR

61

.~
e gt 00 -+

- —

INITIAL DISTRIBUTION LIST

Nc. Copies

1. Defgnse recpnical Information Cen=tac 2
Caaden Sta<tion
Alexandria, Virginia 22314

2. Librar;, Code 0142 2
Naval Postgraduate Scho

Monterey, California 93

o

3

3. Departmen* Ck‘;airnar.£ ¢
Degartnent of Computsg
Mohterey, Califcraia 9

4. Lg John P. Hall, II 2
401 South H-gb, ‘ree:
Mount Orab, Ohio 45154

S Dr. Gordon Bradley C(Code $2B2 2
Departmen= of Ccmpu“er Sciencs2
Naval Postgraduate School
Nonterey, California 93943

6. LCDR Paul W. Callahan Code 52CS 1
Capartment Of Computer Scilence
Naval Postgradua<e Schooi
Monterey, Califcrnia 93943

7. gatricia E. RO@Ssher 1
31 via 3avyuba
Bonterey, (Califernea 939490

2
erce

W

