
AD-A138 663 DOCUMENTATION FOR SOFTWARE MAINTFRANCE U NAVAL /
PODTGRADATE SCRODL MONTEREY CA dF VAL DEC 63

hiL F I ED0 FIG 9/2 N

1111 L.0 MA~i

- R IT

N B f D

MICROCOPY RESOLUTION TEST CHART

NAT IA BUREAU Or STANDARDS 1963 A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

~DTIC

- ELECTE

THESIS
DOCUMENTATION FOR SOFTWARE MAINTENANCE

by

John F. Hall, II

December 1983

hesis Advisor: Gordon Bradley
A Approved for public release; distribution unlimited

84 03 08 046

ZLCUmATV CLASIICATION OF TIS PAGE (ft~e. Dlt ~e , __________________

REPOT OCMENTATIOt4 PAGE BEORECMLEIN OR14
V. RUIPORT NUMBER it 3FACCESSION NO: 3. Ascipicirls CATALOG NUMBER

141-4/ 9 E/? / 3 _ _ _ _ _ _ _ _ _ _ _

4. TITLE rf aambttl S. TYPE OF REPORT a PERIOD COVERED
Docuenttio forSofwar Maitennce Master's Thesis
Docuenttio forSofwar Maitennce December, 1983

S. PERFORMING ORG. REPORT NUMBER

7. AgTHOOV) a. CoNTRACT OR GRtAT NUMUEaf*)

John F. Hall, II

9P6116OVMING ORGANIZATION NAME AND A001REM IC1. PROGRAM ELEMENT. PROJECT, TASK

Naval Postgraduate School AREA & *OAK UNIT NUMBERS

Monterey, California 93943

It. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

Naval Postgraduate School December 1983
Monterey, California 93943 13. NUMBER OFPAGES

14L MONITORING AGENCY NAME & AOORESSQIf diflfteut fke Ceafrollind Offi ce) I5. SECURITY CLASS. (of thle report)

UNCLASSIFIED
158. OECLASSIFICATiom/ DOWNGIRADING

1. 0019 TOSUTIOON STATEMENT (01 ths. R epe)
S H D L

Approved for public release; distribution unlimited

17. DISTRaIBIO STATEMENT (of the sbograui adtn . in Block 20,J0lrt how Ri.. eRpeot)

Is. SUPPLRNENTARV NOTES

19. KEY 30301 (Camme s oevr smide it """My ON! tIuetlt' W~ Week ambor)

Software Documentation, software maintenance, documentation
hierarchy, minimal documentation, documentation categories

2LAITRACT (CAmt~n -en .odsl It meoemm aat adI"1 b lnmbeef

Documentation as an effective method of transferring information
between individuals in order to reduce software maintenance costs
is examined. Various categories of documentation are identified
and evaluated as to their effectiveness toward easing the mainten-
ance effort. The concept of minimal documentation is introduced as
thposolution to thedp aem of cd terminianathe c2 ect amount of,
in foio~in required or speci ~.ic mainac t.ask. Th . 4 eid.ea of
utilizing an explicit documentation hierarchy as the ideal method
for storing explicit documentation is proposed. With (Continued)

Do , FoSu 103ESYON or I Mov 611 is 611901.9T

S/N 0102- LP-O014- 6601 SECURITY CLASSIFICATION OP TNI5 S .? et. =6 .V140*0

ISCUMIT CLASOIICATION OW T"Iw PAGS (UW#" DWO SMO*"

ABSTRACT (Continued)

the proper implementation of the documentation hierarchy, the
minimal documentation concept can be realized, and the mainten-
ance effort reduced.

* v .. *'' -): '-*1

Distribution/

Availability Codes

jAvail and/or
Dist Special

.,N 0102- IF. ol-6601

2 59CUINr CLASUIPICATIG OP ?"IS p&@UgW- DOW

Approved for public release; distribution unlimite d.

Docu mentatiom
for

Software Maintenance

by

John F. Hall, II
Lieutenant, United States Navy

B.S.E.E., University of Wasaington, 1978

Submitted in partial fulfi2lmea of the

requirements for the degree of

MASTER OF SCIENCE IN CO3PUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1983

Author.

Approved by:_ -

Thesis Advisor

Second Reader

Chairman, Department of Computer Science

Dean of Inform_ Sciencs

3

& BSTRACT

Documentation as an effective method of transferring

information between individuals in order to =educe software

maintenance costs is examined. Various categories of docu-
mentation are identified and evaluated as to their effec-

tiveness toward easing the maintenaace 9ffort. The concept

of minimal documentation is introduced as the solution to

the problem of determining the correct amount of information

required for a specific maintenanze task. The idea of

utilizing an explicit documentatio hierarchy as -:he ideal
method for storing explicit documentation is proposed. With
the proper implemontation of the locumentation hierarchy,

the minimal documentation concept can be realized, and the
maintenance effort reduced.

4

I

TABLE OF CONTENTS

I. INTRODUCTION 8

A. THE PROBLEM 8
B. PURPOSE AND APPROACH 8

C. DEFINITIONS*. . 10

II. THE SOFTWARE MAINTENANCE PROBLEM 12

A. THE SOFTWARE LIFE CYCLE 12

B. THE SOFTWARE PROBLEM 16

1. Scenario 17

2. Understandability 18

3. Maintenance Effort 21

4. Types of Maintenance 22

5. Causes of Maintenance Problems 23

6. Soluticns 25

III. SOFTWARE DOCUMENTATION 28

A. DOCUMENTATION BACKGROUND 28

B. DOCUMENTATION CATEGORIES 29

1. Internal and External Documentation. . . . 29

2. Dynamic and Static Documentation 30

3. Implicit and Explicit Documentation . . . 32

C. DOCUMENTATION DEPENDENCIES 32

1. Skill Level 34

2. Position 35

D. ROLE OF DOCUMENTATION 38

IV. DOCUMENTATION HIERARCHY 40

A. SYSTEM DOCUMENTATION HIERARCHY 40

B. SYSTEM DOCUMENTATION 41
1. Level 1 4.. 3

5

4i

2. Level 2 44

C. PROGRAM DOCUMENT ATION 45

1. Level 3 '46

2. Level 4 47

D. DOCUMENTATION HIERARCHY UTILIZATION 47

V. EVALUATION OF FORMS OF DOCUMENTATION 49

A. EVALUATION EXPERIMENTS 49

1. Documentation for Sequential

Processing 50

2. Documentation for Concurrent

Processing 53

B. DISCUSSION 54

VI. CONCLUSIONS AND RECOMMENDATI3NS 57

LIST OF REFERENCES 60

INITIAL DISTRIBUTION LIST 62

6

L.

LIST OF FIGURS

2.1 Department of Defense Life Cycle godel 13

2.2 The Waterfall Model of the Software
Life-cycle 15

4.1 System Docuuentaticn Hierarchy 42

7

:. :N 22_uc.,.2

A. TRE PROBLEN

There is much discussion in the software engineering

literature concerning the overwhelming cost of software

maintenance. It has been indicatal that in some systems up

to eighty percent of the cost of a software system is

consumed in the maintenance phase of the software life cycle
[Ref. 1]. In order to properly maintain the software, it

must be properly documented. Often the same person does not

perform tasks in all phases of the life cycle, thus without

documentation, continuity between the phases can be lost.

Sometimes the only interface between each phase is a piece

of documentation. This points out the criticality of docu-
mentation in the software life cycle; if the documentation
between phases is not done well, much of the wcrk on the

project must be recreated for subsequent phases.

B. PURPOSE AID APPROACH

There is a lack cf cohesive diszussion in current liter-

ature concerning proper documentation for efficient software

maintenance. Because of the tremendous cost involved with
software maintenance, an attempt to ease the maintenance
effort needs to be made through the use of adequate

documentation.

The purpose of this thesis is to address documentation

as a method of information transfer throughout the life

cycle of a software project in the support of software main-

tenance. Various types of documentation are discussed and

evaluated as to their effectiveness toward easing the main-

tenance effort. An attempt is made to determine the proper

8

type and amount of information needed to effectively main-

tain the software prcject. An effort is made to catsgcriz%

and quantify different aspects of documentation based on

task and user needs. The concept of a documentation hier-

archy is put Eorth as a method for organizing these aspects.

The idea is to give the receive r of that information

precisely the amount of information required to complete the

maintenance task. Too much information can bog one down

with unnecessary details while to3 little information can

cause one to waste many hours in trying to understand :he

program. Thus a solution to the problem of accessing the

exact quantity of documentation is offered.

Chapter I gives an overview of the documentation prcblem

as it relates to software maintenanze. A description of the

approach for the thesis is given along with some general

defiriticns of terms used in the software maintenance envi-

ronment. Also, the idea of minimal documentation is intro-

duced in this chapter.

Chapter II discusses software maintenance in detail

with a look at the software life cyrle. A software project

scenario is described to set basic guidelines for the

thesis. The different types of maintanance as they relate

to the software modification task are described along with

the identification of some of the -uses and solutions for

the software maintenance problem.

Chapter III introduces the ilea of the transfer of

knowledge between individuals as being the goal of effective

documentation. This knowledge transfer is accomplished by

utilizing various methods for recording information.
Documentation is then categorized according to the type of

information that is conveyed and also according to depen-

dencies tased on a person's skill and position on the main-
tenance team. Finally, the role of documentation for a

project is discussed.

9

i -i

Chapter IV introduces the concept of a documentatio.

hierarchy in support of minimal documentation. The levels

of the hierarchy are based on the level of d,tail containel

in the documentation. The various users of the dccumenta-

tion need only to access the proper level in the documenta-

tion hierarchy in order to have the minimal documentation

that is required for the completion of the task at hand.

Chapter V discusses the effectiveness of several

specific forms of documentation in relation to the perform-

ance of the maintenance task. The -va] tion is made that

there is not a "best" form of documenta cn for all mainte-

nance tasks. The most effective Iocum .. atioa form varies
with the maintenance task and the - r cf programming

processing (sequential or concurrent) be - used.

Chapter VI consists of the thesis conclusions and

recommendations.

C. DEFINITIONS

Certain basic definitions are aeeded in order tc prop-

erly address the issue of software documentation as it

relates to software maintenance. For the purposes of this
thesis, software maintenance will be considered to be the

process of updating and correcting a software system once

the project is delivered and made operational.

Software documentation is the recorded information that

can be used to transfer information and ideas from one

person to another. Unlike software maintenance, which has
been defined to begin after the project is delivered, soft-

ware documentation is produced throughout the entire soft-

ware life cycle from the conceptual phase to the suppor-

phase. Since documentation follows the evolution of a soft-

ware system, adequate and reliable documentation is inva-

luable when it comes to maintaining the system.

10

Minimal documentation is defined as the exact amcunt of

documentation on a project that is required by the receiver

to accomplish the receiver's task. When the minimal 1ccu-

meatation concept is used, only the precise amount of docu-

mentation that is needed is accessed, and the receiver is

not forced to wade through unnecessary informatior. Just

enough infcrmation is recorded so that the receiver is able

to proceed with the job at hand. This, then, is an idea of

documentation efficiency with no more and no less informa-

tion being exposed to the receiver than is actually needed.

Maintainability is a term that must be clarified.

Martin and McClure (Ref. 2) defin_ maintainability as the_

"ease with which a software systea can be corrected when

errors or deficiencies occur, and can be expanded or

contracted to satisfy new requirements." Maintainability of

a software system can be enhanced with the availability of

adequate minimal documentation.

Understandability is consideral to be one of the most

important concepts in the realm of maintainability. Martin

and McClure define understandability as "the ease with which

we can understand the program purpose and how the program

achieves its purpose". Since docum.ntation transfers infor-
mation conceraing software system evolution, the ainimal

documentation concept aids in the achievement of program

understandability.

,E

I]

... . . I I I I r I 11

A. THE SOFTUARE LIFE CYCLE

The development of a software project goes through

several phases from conception to actual system operation.

This development process is called the software life cycle.

There are several mcdels availabla to represent the soft-

ware life cycle. The one used by the Department of Defense

as indicated in Department of Defense Instruction 5000.1 is

presented in Figure 2.1. It gives a reasonable representa-

tion of most si-mple models. An alvantage of this model is

that each major phase is broken into its subsequent

subphases. rh"s model is general enough to be applied to

mcst softwa.e systems, with the datails being left to the

specific project.

Documentation must be carried throughout the life cycle
in order to promote understandability in subsequent phases.

Ultimately, the ideal documentation contains enoagh informa-

tior such that when the program is completed and is opera-

tional, it can be maintained effectively.

The major problem with the Department of Defense model

is the implicatioa that is given concerning the flcw of the

software life cycle. One is left with the idea that as one

phase abruptly halts, the next phase begins. In practice,
the phase boundaries are somewhat obscure. Quite often work

on one part of a phase begins before all work in a previous

phase is completed. Also one gets the impression that there

are no interdependencies between the phases. In reality,

decisions made in one phase often directly affect the work

of a subsequent phase. This makes each phase somewhat

dependent upon decisions made in a previous phase. Also

12

I
I

I "OEFENSE SOFTWARE LIFE

CYCLE MAJOR
PHASE

Requirements
Definition

Conceptual Requirements
Validation

I Validation Validation

Full-Scale Full-Scale
IDevelopment Development

Production Production

Debugging
Deployment

Fine Tuning I
I I

Maintenance I
Support

I(UDNtModification

II
I
I

Figure 2.1 Department of Defease Life Cycle Nodel.

13

there are times when a decision made in one phase is

determined to be unrealistic by restrictions or act_,ons

taken in a following phase. Tharef re., a feedback mechanism

is needed to carry information between phases in order to

keep the software project development moving.
Documentation is the method of recording information

that is to be transferred forward and backward to aid in

software modification. Figure 2.2 gives a more realistic
view of the software cycles indicating some of --he phase
interrelationships (Ref. 3].

Figure 2.2 shows validation and verification subphases

in the requirements and design phases of :he cycle. This is

important because each phase should be verified as being

possible and feasible as early in the cycle as possible in

order to avoid unnecessary work. For example, it would be
wasteful to work through to the implementation phase only to

find out that the project was never feasible in the first

place.

Studies indicate that the most economical time to catch
and correct a problem is as early in the development cycle
as possible. The cost of detecting and correcting an error
more than doubles for each phase through which it passes
undetected. This rate of cost increase holds true for each
subsequent phase through which the problem passes without
detection. [Ref. 3] and (Ref. 4].

while the simplistic view presented in Figure 2. 1 is
relatively easy to comprehend, it is extremely important to
remember the interrelationships between the various phases
as indicated by Figure 2.2. With those interrelationships
being kept in mind, the simplified life cycle model shown in

°* Figure 2.1 will be adequate for use in this thesis.

1

Is Sytm aI-a o

Software alidatton

Product ertftcattan

Detailed ertftcatton

Deig

Cod niTs
Integrat

Prdc Veiicto

Figure 2.2 The Waterfall model of the Software Life-cycle.

B. THE SOFTVARE PROBLEM

Bohem [Ref. 3] gives us some insights into the magnitude

of the economics involved with the software problem. The

annual cost of software for the United States in 1980 was

about 2 percent cf the Gross National Product. The cost is

expected to grow faster than the general rate of the economy

thus representing an even larger proportion of the Gross

National Product as time goes on. rhe portion of the effort
spent on software maintenance has increased faster than the

effort spent on software development. With the growth of

software maintenance taking such a large portion of the
total cost of a system, it would be wise to find ways to

enhance the efficiency of the maintanance effort.
Along with the eccnomic issues of software maintenance,

we must look at the social aspects of computers as they

relate to software. Things such as computerized billing and

banking have made a permanent impact upon the lives of most

Americans. An increasing number of workers in the United

States will be relying on computers to perform tasks

involved with their daily work. By 1985 it is predicted

that approximately 40 percent of tha working population will
fall into that category. With this kind of computer and
software proliferation, there will be continued growth in

the amount of software that is needed. This growth of soft-

ware translates into a significant amount of necessary

software maintenance as both the software system and the

state of technology change.

As the need for software maintenance increases, it

becomes imperative that maintenance efficiency be improved.
The idea of using minimal documentation in order to improve

understandability, which in turn aids maintainability, is

seen as a way to increase the efficiency of the software

maintenance effort.

16

--- A

I .. . I I n ,, . .. I I -i I -• ...-

1. sLALi1_

There are many types of programs that are levelope .

ranging from very small to very lirge, and the size of a

program can determine the software documentation issues

related to that particular program. In order to address
specific documentation issues we need to focus on a partic-

ular Scenario.

The program with which we will be concerned is one

of medium length invclviug thirty to forty thousand line~s of

code. It is a software program that is to be maintained, so

it is neccessary that software documentation ba generated.

(If a program were never to be modified, then documenta-
tion would not be necessary.) For the purpose of this

thesis, the program code is not considered to be a form of

documentation. The program is one that was developed by a

software development team (as opposed to being developed by

a solo prograimer) with documentation maintained throughout

the development. The development followed the basic guide-

lines as indicated in the Department of Defense life cycle

model (Figure 2. 1). The program developers are not the end

users of the system. The program is embedded in an environ-

ment that is subject to change.

when a modification to the system is required, a

change request protocol is followed in which a
requested change is considered and a determination is made

as to whether the change should be incorporated into

the existing system. If the chan;e is to be made, it is

acted upon by a designated maintenance team. The personnel

assigned to the maintenance team may or may not have other

collateral duties in the organization, and they may or may

not have had any connection with the original development of

the system. Emergency changes are implemented as quickly as

possible while routine modifications are implemented in an

annual system update.

17

The system is considered to have a life expectancy
of approximately twenty years, ani it Is fu:ther assumed
that the system has been in operation for several years with

maintenance being accomplished and documentation being

updated accorlingly.

2. U

Understandability is considered to be one of thq

most important concepts in the realm of maintainability. If
a piece of software that is to be maintained proves to be

both efficient and successful, yet is not unders-andabla to
the 2aintainers, it can be difficult and expensive (if not
impossible) to modify to meet changing needs.

In a good system, there is information available as
to the purpose of the system, the proper use of the system,

and the proper maintenance of the system [Ref. 2]. All
phases of the life cycle will have accompanying documenta-

tion concerning the development at each stage of the system,

and that documentation will carry the required informa-
tion that aids in the understandability of the program.

Familiarity is a factor that helps determine the
effectiveness and understandability of a program. A person
who is very familiar with the code and the functioning of
the system would probably not hive great difficulty in
understanding the system, even if the documentation were
somewhat lacking in quality and the system itself were very

complex. On the other hand, the inexperienced or -unfamiliar
maintainer would probably have difficulty in understanding
the program. We will see later how the factor of famil-
iarity determines for an individual the level of detail

needed in the documentation.
Martin and McClure state that understandable

programs generaUy have several common characteristics:
structuredness; consistency; completeness; conciseness; and

18

ii
- A-

documentation. Each of these characteristics will be
discussed in aore detail.

a. Structitredness

The effective structuring of a program increases

understanding by standardizing tha program format. Thq

standardization will set restrictions and guidelines on the
logical flow of the program. Program modules will be set up

in a hierarchical manner with the order of execution deter-
mined by the guidelines. Thq use of these guidelines for

program construction will provide a consistent logic -hat
will aid the understandability of the overall system.

b. Consistency

A program should be written in a consistent

style in accordance with establish.d programming standards.
The structurelness mentioned above zan be considered to be a

method of developing a consistent style. It is difficult to

understand a program in which the style of writing does not

follow a common methcd of construction. This is sometimes
difficult to accomplish when several members work together

as a team on a project unless close communication control is
maintained. Consistent types of comments must be main-

tained. When a module is describel, it should handle the

description of the piece of code the same way every other

module is handled in terms of the amount of detail discussed
and the order in which the information is provided.

Variable names should be selected with the same sort of

reasoning throughout the program, and the program should be

consistent with the design instructions. In-line comments
should be used to clarify coding statements, and this prac-

tice should be consistent throughout the program. There

should be no visible evidence that the program was not
written by one person with a consistent train of thought

throughout the development process.

19

c. Completeness

A complete program has all Qf its components

available to use and to be perused by the maintainer. The

maintenance person must be able to access all parts of the

program that are related to the maintenance function if

understandability is to be accomplished. Any variables or
modules should be included in a cross-reference scheme so

that the maintainer can trace a program component throughout

the system. Every unusual feature in the program should be

clearly explained, and error messages should be mads

unders:andable.

d. Conciseness

A concise program is one that uses only the

coding necessary to achieve the design requirements with no

extra (perhaps unused) pieces of cole. Every piece of code

must be reachable by some action of the program. Unused

variables and duplicate functions should be nonexistent and

comments should not be excessively verbose or cryptic in

meaning. Understandability decreases when complexity over-

takes simplicity. The system, though it in itself may be

complex, can be simplified through the proper use of

conciseness principles.

e. Documentation

Perhaps the concept that pulls all of the above

understandability methods together is the development (and
use) of good documentation techniques. The use of all of

the above ideas that promote understandability in a system

may not in themselves be successful.

The structuredness of a program must be docu-

meated in such a way that the structurization methods are

understood by the maintainers. The consistent program must

have the modules described and documented in a consistent

20

way. Comments should be arranged near each module to

describe the module in some detail. The molale comments
should include the purpose of the module, the variables used
or modified in the module, and a lescription of the output

of the module. The module description should indicate the

relative postion of the module with respect to other modules
in the program to give some idea as to how the mcdule was

reached and how it fits into the program hierarchy.
Documentation also aids understandability by

containing information as to the completeness of the
program. Information is recorded as to how a module of the

program is reached and how each module is related in the

overall system scheme. Proper documentation should also be
concise with only the necessary information being provided
to the maintainer so as to enhance understandability without

confusion.

Since the maintenance effort represents such a large

portion of the overall cost of a software system, a look at
the software maintenance effort and ways in which to make

this effort efficient by means of minimal documentation is
in order.

A survey of data processing maintenance activities

by Lientz and Swanscn (Ref. 5] shows that only half of
the people who are assigned to maintain programs actually

worked on their development. This fact is significant in
that a lack of continuity of the original thinking occurs.

To make matters worse, the number of development personnel
assigned to the maintenance effort diminishes even further
as the life of a software system is extended. Good docu-

mentation passes information about the program between those
personnel developing the program and those maintaining the

program, thus preserving the continuity of thought.

21

In order to gauge the magnitude of the maintenance

effort, Lientz and Swanson describe tha effort as the result

of the combination of four variables: system age; sys-em

size; relative amount of routine debugging; and the relative

development experience of the maintenance personnel. As the

system age extends, the system size tends to increase

leading to a greater maintenance effort. With an increase
in system size, the system tends to need more routine debug-

ging, again increasing the maintenance effort. When the
system age increases, there is also an increasing amount of

personnel turnover which leads to the declining relative

development experience of the maintainers, thus again

causing an increase in the maintenance effort. rhis mainte-

nance effort increase, of course, results in a rise of

overall maintenance costs.

Minimal documentation can be used as a means to

promote program understandability which will make the main-

tenance effort become more efficient, and in turn cause a

decrease in software maintenance costs.

4. Tyes of Maintenance

Generally software maintenance can be divided into

three categories: corrective; adaptive; and perfective

maintenance [Ref. 6]. Corrective maintenance is considered

to be purely the correction of saftware errors. Though

corrective maintenance is traditionally seen as the most

obvious type of maintenance task, it is interesting to note

that the time spent solely on the correction of errors

amounts to only seventeen to twenty-five percent of the

maintenance person's time [ef. 5] and (Ref. 7].
Adaptive maintenance is considered to be the process

of adapting or changing the software to meet the environ-

mental constraints of the system. In adaptive change would
be considered to take place if a new operating system is to

22

be installed on the computer that is used by the prog.rai

being maintained. This area of maintenance takes up about

eighteen to twenty-five percent of the time spent on mainte-
nance (Ref. 7].

Perfective maintenance concerns the "perfecting" of
the system by making user-requested changes to the software

to make the system perform "better". It is interesting to

note that while the perfective maintenance activity (some-

times called providing enhancementsi does not involve ths

act of correcting errors, it takes between fifty and sixty

percent of the maintenance person's time--by far the largest

single time chunk i.n the. software maintenance effort
[Ref. 7]. This is in contrast to what is generally consid-

ered to be "real" maintenance, that of the corrective type.

5. Case Of A.1BInteaS- R_-t1_

It is beneficial to look at some of the things

that create the need for software naintenance -ad ways that

the use of proper documentation can ease the maintenance

task.

Schneidewind (Ref. 8] indicates that several items

bring about maintenance problems. One is the fact that

maintenance is often viewed by both designers and users as a

task that is not very glamorous. This leads to a tendency

for personnel to want only to design systems while letting

the maintenance aspect of the system take a low priority.

This leads to many of the maintenance problems being ignored

during the development phase, incluling the proper documen-

tation of the project as it progresses. maintenance is

often not even considered during the software development

process.

In reality, documentation and maintenance ideas must

parallel system lovelopment through all of the software life

cycle phases, and actually become an integral part of the

23

design criteria. This is necessary if a program is to bq
easily understood and efficiently operated and maintained.

Glass and Nciseux [Ref. 9] show that a traditional

approach to the software problem has led to the practice of
simply tacking on maintenance aids as an afterthought. Th.

concept of software maintenance, particularly in scme-thing

other than that of a corrective nature, seems to be some-

thing that rsceives very little attention.

Now let's look at the software maintenance problem

as viewed by managers who plan the maintenance effort based
on how they perceive the maintenan:_ problem. Lier.tz and

Swanson (Ref. 5] report in a study that managers perceive
the lack of user kncwledge as by far the most dominant

problem in the maintenance effort. Following the use:
knowledge problem in crder of highest to lowest significance

wers: prograimer effectiveness; product quality; programmer

availabiltiy; machine requirements; and finally system reli-

ability. When the system-is properly documented, user

knowledge about the program development and maintenance

techniques can be increased. Increased knowledge can cause

more efficient use of the maintainer's time thus making the
maintainer available more often to perform other tasks.

Documentation can also be used to record machine require-

ments in such a way that they are made available for consid-

eration in maintenance decisions. when documentation is

used properly, it can reduce these problem areas as

mentioned and result in an overall increase in system

reliability.
The study further revealed a misconception commonly

held by managers. Problems were perceived by managers to be

greater if a lot of corrective maintenance time was spent on
the system. hs mentioned earlier, corrective maintenance is
not the big time consumer whereas perfective maintenance

does in fact consume the bulk of the maintainer's time. It

24

is interesting to note that there were no significan- find-

ings to indicate that there was any time at all allotted to

the maintenance personnel for the act of pezforming pu-ely

perfective maintenance. When it is understood that mcst of

the actual maintenance time is spent in making program

enhancemqnts (that is, the perfective maintenance) , it

becomes clear that managers need to re-evaluate the way they

allot time for maintenance.
Another reascn for mainte nance problems can bp

considered to be both a cause and a result of the aboy

mentioned problems. This reason for maintenance problems is
the lack of good documentation. Schneidewind points out

that one of the problems involved with software maintenance

is that no tracebility is built into the software. This

problem could be resclved with the ipprop:iate documentation

technique. In order to convey ideas from old maintainers to

new maintainers, good documentaion is needed. For example,
formal specifications of the problea for which the system is

designed must be presented and dozumented sc that a later

change tc the program can be evaluated against the docu-

mented reason for a particular design system. This thesis
will explore the documentation problem in more detail in

later chapters.

6. SOluti2Rn§

As implied from the above liscussion of the causes

of the software maintenance problem, the use of proper docu-
mentation is the key tc many maintenance problem solutions.

The solutions require the cooperation of managers,
users, and maintainers. Good maintenance technigues are

also necessary and must begin at the design and require-

ents phases of the life cycle. Several ideas are presented

by Schneidewind to ensure good maintenance practices and
good documentation.

25

To start, good maintenance techniques must be

planned from the beginning of a software project. This
means that tha project must be designed with maintenance

integral to the entire life cycle, not added later when -he

project is completed. Since enhancements take up most of

the maintenance effort, it is nazessary that the design

ideas incorporate the undarstanding that enhancements will

take place and that managers plan maintenance time

accordingly.

One way to enhance saint-nance personnel undar-

standing is to use modularity techniques in the design of

the software project. This means that common ideas or

concepts should be kept together in a jlogical sense that

would be easy for the maintainer to follow utilizing proper

documentation. The documentation should be able to convey

the module concepts used in the design of the software to

the person wh needs to make software modifications.

Along with the modularity techniques, the idea of

independence among code, data, aai data base is in order.

This independence allows certain amounts of code, functions,

subroutines, etc. to be changed without devastating effects

taking place in other portions of the program. Information

hiding techniques are valuable when designing a program

with modular independence for ease of maintenance.

Schneidevind also gives several ideas concerning the

proper development of documentation along with the project

in order to ensure the ease of maintenance. On.s idea is to

design the documentation first. Many a programmer knows how

bothersome this task can be. Just think of how many times

the flow charts or refinement procedures were written after

the program itself was actually written. The problem with

writing the documentation after the program is completed is

that the documentaticn that is supposed to aid in the devel-

opment and decision making processes cannot possibly be

26

used. Also the documentation becomes static in nature.

That is, all the dynamic creativity cannot be included in

the process of documentation and all we see Is the final

resulting document. This is very much like a college

professor receiving a math or physics exam with only the

answers and no actual work shown.

Another idea for good documentation is that the

specifications and standards should regui_ aids that

promote the understandability of the program. This

includes the concept of providing comments in the program

listing, references in the source listings for certain soft-

ware specifications, and any other references necessary to

trace through other related docum.nts.

Systen specifications should be designated as to the

kind of infcrmation that is to be conveyed to the maintainer

via documentation. This idea implies that certain types of

documentation convey certain kinds of information, and that

only certain bits of information are required for certain

maintenance functions. The idea of different kinds of dccu-

mentation delivering various kinds of information, and the

effectiveness of the forms of documentation will be

discussed below.

i2

27

III- §OET__ftE.]_DOHREATTON

This chapter covers many aspects of software documenta-

tion. Some background is given on documentation in general,

including a discussion about the purpose of documentation.

The various categories of documentation are explained based
on the characteristics of the documentation and the needs of

the user. Control and development documentation is

discussed, as is static and dynamic documentation. Also ths

categories of implicit and explicit documentation as they

pertain tc the maintenance role are explained.
Documentation dependencies with regard to skill levels and
position level of personnel on the documentation team are

discussed.

h. DOCUMENTI OU BACKGROGID

The primary purpcse of documentition is to i2part knowl-
edge about the system to pertinent personnel by trans-

ferring recorded information. Other than the code itself,
the only source of written information about the program is
the documentation. Misunderstandings can occur when our

informal, abstract ideas are translated into formal,
concrete pieces of information. This information transfer

is accomplished by recording on various forms of infor-
mation storing media. This includes such methods as manu-

ally recording facts on paper, or electronically placing

then in a computer memory. Those various information
recordings become forms of documentation. The documentation

challenge, then, is to find a way to ensure the unmolested
receipt of intended concepts by the documentation users.
When this challenge is met effectively, documentation is

28

considered to have accomplished its goal of successfully

conveying relevant irformaticn from one person to another.
Chapter V discusses in more detail the particular documenta-

tion formats and their relative effectiveness.
One cannot hope to effectively transfer knowledge about

the system by simply flooding the maintainer with all the

information that can possibly be assembled. It is necessary

to distinguish between types of documentation, and discern

the type of informaticn that each conveys. Not all types of

documentation are adequate for all types of information

transfer, and consequently, not goad for all types of main-

tenance chores.

B. DOCOEETAIION CATEGORIES

While the idea of transferring information is clear, the

idea of what kind and how much information to transfer i-
nct so clear. The amount of information to transfer is both
task dependent and programmer dependent. Both the mainte-

nance task to be accomplished and the level of expertise of
the maintenance perscn should be zonsidered when deciding

upon the category of documentation to be used. For example,

if the documentation is to be usal by someone who is very
familiar with the system and the type of changes to be
applied to the program, the docuzentation needed would be
of a level that is far less detailed than that of someone
who had never worked on the systes before. It would be
helpful to find ways to categorize documentation in order to
gain an understanding of the values of each.

1- Intrnjal ja Exterul Doue~aIL j21

one way of categorizing documentation is based on

how the documentation itself is transported (internally or
externally). Internal documentation is the documentation

29

that is carried along with the cod.a (perhaps i a separate

file. It is usually embedded in the form of comments or
cross reference listings, and is a t -executable. It, is an

integral part of the program, so it is always available. It

is easy to maintain because it is is easy to update as the

code itself. When a software modification is made, it is a
simple matter to modify the internal documentation. Because

of the ease of update, internal do-umentation is considered
by programmers to be very reliable, and the programmers
have a high level of confidence in the currency and accuracy

of the internal documentation.

External documentation is the documentation that
exists outside the source code of the program. This
includes such things as data flow diagrams, flow charts, and

any other mode of recording program information that is

not an integral part of the program. This type of documen-

tation is more difficult to maintaia than the internal docu-

mentation because it usually exists in hard copy only, thus

pen and ink charges are required for making documentation
modifications. Because of the difficulty encountered in the
updating of external documentation, often it is not updated
when the system is modified. This leads to a low level of

trust amcng programmers with regard to the reliablility of
external documentation. this low level of confidence in the

currency of external documentation is often perpetuated by
the feeling that there is no reason to update it since it is
not current anyway, and even if it is updated, it won't be

trusted.

Documentation can also be considered t3 be either
static or dynamic in nature. Dynamic documentation involves

the conveyence of ideas about the actual developmental

thought processes. This would include the recording of

ideas that begin with the first thoughts in the conceptual

30
oI 7

phase of the life cycle. It also includes the mistakes made

and the ideas considered and rejectad for any reason. P_-ic-

mistakes and the reasons as to why they were mistakes can

provide vital insights to the maintainers when new changes

are being considered.

The dynamic nature of the documentation comes from

the fact that the entire decision-making process can be

actively recorded and transmitted to the receiver of the

documentation. The significance of this type of documenta-

tion, then, is the fart that later enhancements to the

program (remember, it is the enhancements that make up the

biggest part of the maint-nance workload) can be considered

in 1igh: of original design decisions. Much redundancy in

the consideration of enhancements stands to be saved when

proper dynamic documentation is used.

Static documentation can be considered tc be the

"final product" of the documentation process. It is a
recording of the current static state of the program at some

point in time, and it does not provide any indication of the
dynamics involved in the evolution of the program reaching

that state. This type of documentation includes things
such as a system or program flaw chart or a rescurce

diagram. It is this type of documentation that conveys the
ideas of the program or system itself, and how it functions.

It must be realized that both of these types of

documentation are necessary for the proper transfer of

knowledge from the designer to the maintenance parson.
Without both types, either the original thought "flavor" of
the designer's intent is lost with the passage of time, or
the understanding of the processing of the program is

lost.

31

6-

.3- .Tml gj IL_4 Exl....t Rocaaaatatioan

Another categorization of documentation is -hq

notion of implicit and explicit documentation. Explicit

documentation can be thought of as the documentation that is
physically available, in whatever form (dynamic or static),

at varying levels of detail. Explicit documentation cculd,
therefore, include documentation such as comments, manuals,

and flow diagrams.
Implicit documentation is a more subtle and abstract

type of documentation. This type of documentation consists
of the "essence" of a program that is made available by
consolidating iaformation from one or more forms of either

the dynamic or static documentation. This concept of

implicit documentation, then, involves a synergistic effect

that provides a high level understanding of the system
without large amounts of explicit physical information

necessarily being accessed. Implicit documentation provides
the "Big Picture" for the receiver of the information when
various amounts of physical documentation are assimilated.

Thus implicit documentation captures the concept of trans-

ferring between individuals knowledge that would be diffi-
cult to impart through language or explicit documentation.

It is sometimes very difficult to convey abstract

ideas through the use of explicit informational documenta-

tion, yet enough documentation (but not so much as to over-
whelm) must be explicitly available to successfully generate
the implicit documentation notioa. This supports the

concept of minimal documentation.

C. DOCSENTITION DEPENDEICIES

Yet another way to categorize documentation is to

consider audience-dependent and life cycle phase-dependent

documentation divisions. It is necessary to understand the

32

needs cf the audience for which the documentation 4s

intended and also the lif1e-cycle phase to which the dozumaen-
tation is related. These determinations are necessary so

that the documentation user who is knowledgeable about the

system is not completely bogged down by the effort of
trying tc sort through a myriad of letails that have nothing
to do with that particular maintenance task, or are super-
fluous in the sense that the user already knows the neces-
sary details. By the same token, it is inefficient for a
person who is not well versed in certain aspects of the

project to spend many hours searching through lots cf docu-
mentation just to find out something specific about the
program on which maintenance is co be conducted. There
must indeed be a balance between very detailed and high

level documentation. The idea is that unnecessary work that
adds to the overhead of the maintenance task should not be
given to the maintenance person. (More is discussed in
Chapter V about how to access the proper level of detail of
documentation.)

When considering au dience-dependent dccumentation,
several factors must be taken into account. These
factors include the reader's skill level (or familiarity
with the project), the reader's position relative to the
maintenance job, and the particular type of maintenance to
be accomplished. A skilled person can be defined as one who

understands basic organization programming policies or tech-
niques. The skilled person often possesses the quality of

familiarity discussed earlier.
Different kinds of documentation are appropriate for the

different factors mentioned above, and in order to run the
maintenance job effectively, these kinds of documentation

are critical.

33

33

In considering the idea of skill level for the. docu-

mentation user, the level of documentation detail should be

of concern. rhe documentation should be of sufficiert level

so as to give the user the precise amount of detail neces-

sary to carry out the reguired maintenance function. This
means that, if the user is skillal, the provided document

should not contain minutely detailed explanations of the

program if the ideas are commonly understood. On the other
hand, the documentation must be an adequate level of dtail

so as to provide the unskilled person with the needed amount
of system specifics.

The ideas of explicit and implicit documentation

come into play here. For the highly skilled user, the
amount of physically explicit documntation can be small and
condensed in nature. The amount of implicit information
would be large because the skilled user can accept high
level concepts that dc not have to be explicitly described.
That is, a highly skilled user can make use of implied
notions, such as the notion that the data in a certain
program goes through a "sort and eliminate" routine. Here
the explicit documentation would consist of the information

that the data is sent to the routine, while the implicit
information would be made up of commonly understood details

of the routine itself.
As for the unskilled user of the documentation, the

nature of the explicit and the implicit idea conveyence
would be quite different. The unskilled user would need
much more explicit information to ibsorb the saxe amount of

knowledge of the portion of the program to be maintained.

The necessary explicit information would likely include many
of the specific details of the "sort" and "eliminate"

routines separately. If the criteria for elimination of

34

certain data were understood by the unskilled user at zhis
level of detail, then those details would be considered to

be implicit informaticn. If those criteria were unknown to

the unskilled user, then the explicit documentation concspt

must move dcwn another level of detail to incorpcrate thess

details explicitly. The levels of detail are translated

continually from the implicit to the explicit realm as the

need fcr information detail (determined by the skill level)
moves down t-c lower levels.

Conversely, as the skill level of the user

increases, information and details required by the user move

from the explicit to the implicit realm, thus allowing

broader concepts to be absorbed by the user. As more

implicit information is required oy the user, a ccrre-

sponding lesser amount of explicit informaticn (or documen-

tation) is required.

The consequences of having less explicit information

being required means that less documentation (and ccnse-
quently less overhead) needs to be sorted through in order

to complete the maintenance task. rhe end result is that as

skill level increases, less time is required for the

specific maintenance task, and a zorresponding maintenance

efficiency results.

2. Position

A look at the idea of a person's position with

regard to the maintenance effort is useful. In order to

better understand how the relative position of the person

utilizing the documentation affects documentation needs,

first we must know whether the person is considered to be a

maintainer, a manager, or a user.

35

a. Maintainer

The maintainer is defined to be the persoz who

is actively itvolved in the actual act of maintaining the
program. The maintainer requires the lowest level of
abstraction of documentation, or the most detailed level of
information because of the actual physical maintenance that

is accomplished. The type of docuzentation required by the
maintainer to successfully complete the maintenance task
then will be on a level that is fairly detailed. The depth

of detail required will of course be dependent upon the
maintainer' s skill level or ftziliarity as discussei

earlier. The documentation type will be of the kind that
will promote the detail nacessary to complete the job. The
amount of explicit documentation will also be determined by
skill level and familiarity.

As far as dynamic documentation is concerned,

the maintainer relies less heavily on this level of documen-
tation than on the static documentation. The maintainer is
very concerned about the present state of the pr cgram
because the present state is what is to be modified. The
decision as to whether or not to make the modification is
usually made at a higher level, and thus the dynamic docu-
mentation will be better used at that higher level (probably

the manager level).

b. Manager

The manager category can be defined so as to

include anyone who is directly connected with the mainte-
nance of the system, but not actively involved with the

actual physical maintenance of the project. This could

include the maintenance team leader in the supervisory role,
the department head, or higher level decision makers. The
type of documentation that the manager needs should be of a

36

vi

much higher level of abstraction requiring lass detail than

that required by the maintainer. rhis means that much mors

documentation of an impliciz nature is acceptable in order
to meet the needs of the manager level personnel. The

greater the amount of implicit documentation needed, the

less the amount of explicit documentation necessary.

Likewise, the less the detail level of the explicit documen-
tation, the less the amount of details through which th?

manager must sort. The smaller amount of detail required
lea-s to the saving of time and money.

The manager could very well be the biggest user
of dynamic documentation. The maager at the maintenance
group supervisor level is likely to be the one who must look

at the way prior decisions were made in order tc verify the

practicality of requested maintenance enhancements. Ths

manager might want to avoid re-daziding something that is
already a given and has been recorded in the dynamic
dccumentaticn.

The manager culd also be a very heavy user of
static documentation in the sense that It might be necessary
to reference the present status of the maintenance effort in
crder to properly set up the maintenance team. Thus the
manager must rely heavily on the static documentation to

understand the program status after design and also to

modify the existing documentation is the program is modi-

fiad. This also implies that dynamic documentation by the
maintenance team is cccurring along with program modifica-

tions, and the manager is responsible for updating or
creating the appropriate dynamic do.umantation.

c. User

The user is anyone who actually uses the system

(the pilot using an avionics system, a fire control techni-

cian on board ship, etc.) The user might be someone who is

37

U= --| | I I a ! n

considering purchasing services or products from the company

and is interested in the stability of the company as a

whole. The system is a vital part of the company, and

consequently the user might be int-rested in the program or

system frcm a very abstract point of view. Other than

specific user's manuals and system operational guides, the

user needs little or ao detailed information and can

tolerate a large amcunt of implicit documentation. The

amount of explicit documentation rquired for the user will

be very small indeed, perhaps even a simple listing of the

systems cr programs available to the company. The user

simply wants to know what capabilities are present and if

they meet the user's needs. Any further detail is

superfluous.

The user is probably not interested in any

dynamic documentation and has vary little interest in

static documentation. He does not really care about the

design decisions that occurred during the development of th-

system, but merely about the fact that there exists a

system sufficient for his neeas.

D. ROLE OF DOCUMENTATION

The idea of implicit and explicit information can be

utilized here. Returning for a momant to the example in the

last chapter concerning the likening of the receipt of one

final piece of documentation to that of a college puofessor

receiving only the answers on a physics or math test without

explanation as to how the answers came about, more

discussion is in order. The dynamic nature of showing the

work, whether the work was on an exam or on a program, helps
both the programmer and the maintenance person (or the

student and the professor) follow the design and development

of ideas. Since documentation, as described earlier,

38
38

involves the transfer of ideas, it -.s crucial that -.hes.

ideas be transferred dynamically in the form of progressiv=

documentation. It is difficult to understand the thought and

development process that goes into a problem when all tha-

is seen by the receiver of the information is the fina

solution.

Ve need not worry that the final documentation product

might contain some recording of our initial erroneous

efforts. In fact it might be helpful to the maintainer if

the initial trial and error efforts were iade available.

It could save the maintenance person -he redundant effort of

trying tc rethink the designer's ileas in order to possibly

change a previous logical decision.

The complete documentation could also keep the main-

tainer from overlooking some critical piece of infcrmation

that would make ta newly proposed enhancement an obviously

bad move. Another advantage of documenting the creative

process is that ideas that were not feasible (technologic-

ally or environmentally) at the time of design, and ccnse-
quently rejected, could be used during the maint-nance phase

as a result of system reguirement changes or technological

adva nces.

Ideally, then, the aintainer will not receive as docu-

entation something as simple as the statement that a

system will use red ribbons for printed output, This gives

no indication as to how much thought, if any, went into the
deision. When the suggestion for an enhancement to allow a

different color for printed output, the maintenance person

must try to second guess the designeres decision as -o why

red was selected, and if another color is possible. If this

knowledge wers made readily available, the maintainer could

possibly head off an expensive analysis of colored printed
outputs that would discover that the designer already knew

that red printouts were the only ones that could be read

under the special lighting needed for a security project.

39

IV. MO2_U_ MO f~A_ AllUcH!Y

The idea of a documentation hierarchy is introduced

along with an explanation of the proper use of the hierarch-
ical organization and how it promotes the concapt of
minimal documentation. System and program documentation are

discussed in detail as they relate to both the system hier-
archy and the maintenance task.

A. SYST28 DOCUHENTATION HIERARCHT

One prcblem that faces the manage:- is how to wade

through all available documentation in order to glean out

the pertinent information for the present task without

getting togged down with a massive volume of material. The

same problem is faced by the maintainer who may not need to

know all the system design information when the task at hand

(as determined already by the managerial decision-making
process) is simply to modify a small section of code. It is

clearly wasteful in this case to force the maintainer to

sort through huge amcunts of irrelavant material concerning
high level system information just to locate information

pertaining to the immediate code molification task.

The user cequires information about the system on a high

conceptual level, but the deluge of unorganized documenta-
tion with all levels of detail would require time consuming

searching, and most of the detailed information would be
utterly useless.

A solution to the problem of unorganized levels of

detail in documentation is to construct an organized hier-

archical structure for the various forms of documentation
based on the level of detail. This documentation hierarchy

'40

can provide precisely the appropriate level of detail in the

available dozumentaticn for the rec.iver, regardl-ss of

whether the receiver is the user, manager, or main-.ainer.

Figure 4.1 provides an example of a system documentation
hierarchy organization that indicates the various levels of

detail involved in the documentation of a system.
All of the documentation is available to the proper

receiver in a coacise format that gives the receiver the

least amcunt of detail necessary (thus promoting the concept

of minimal documentation as mention.d earlier). As more

detail is needed, more explicit docamentation is accessible.

This promotes understandability and coatributes to an effi-
cient maintenance effort.

The system documentation hierarchy of Figure 4.1 shows

arrows that indicate a downward and upward flow of documen-

tatior access. As progress is made down to lower levels on

Figure 4.1, more detail is attained in the documentation.

Conversely, as movement is made up the levels, less detailed

descriptions and larger concepts ara accessed.

B. SYSTEM DOCUMENTATION

To understand more about the system documentation hier-

archy, it must be understood what is meant by system docu-
mentation. A system can be definal as one or more programs(that work in conjunction to perform a particular function.
The system can be very simplistic, such as a simple vote

counting system, or it can be very complicated as in the

case of a sophisticated weapons system. Since a system has

been defined as the combination of one or more programs that

perform a function, system documentation is defined as the

documentation of the overall system life cycle from the
project conception phase through the support phase.

41

SYSTEM
DESCRIPTION I

AND ENVIRONMENT

I , I
SYSTEM FLOW SYSTEM I/O

DESCRIPTION

PROGRAM
DESCRIPT ION

S MODULE FLOW PROGRAM 1/0

.O

--I • I

Figure 4.1 System Documentation Hierarchy.

42

r!

System document ation contains recorded inforMation

perzaining to the complete description of the evolution of a

system throughout its life cycle. It includes a record of

the develorment process and the maintenance history in

either implicit or explicit form. System documentatior.

contains both dynamic and static information and can be
used by maintainer, manager, and user personnel. The

specific form of documentation is dependent upon the

requirements of the task to be accomplished and the needs of

the receiver.

Since a system is made up of one or more programs,
program documentation is considered to be included as a part
of the system documentation. In Figure 4. 1 program documen-
tation consists of levels 3 and 4. Both sys-em and program

documentation are discussed in greater detail later in this
chapter.

1. Level 1

The overall system documo.ntarion follows a hierarch-

ical structure with varying levels of detail as shown in
Figure 4.1. The highest level of abstraction for the

system, level 1, includes - narrative description of the
system itself and a description of the system environment

along with any assumptions about the system. The environ-
mental description would include information pertaining to
the system hardware and software environments. This
includes system restrictions and limitations that might
result from certain hardware or software constraints under
which the system must operate. Military applications such

as an avionics system or a submarine weapons system would
dictate specific environmental restrictions because of the
very nature of the system activities.

It is in this level that the documentation
contains the most abstract information about the project.

I

/ - ! I | H _ 43

This level of detail would probably be most often used by

the user personnel, but this non-latailed narrative level
could also be 3f use to the manager and maintenance

perscnnel who require an overall understanding of th
system.

2. Level 2

Level 2 is the next level of abstraction in the

hierarchical structure and contains slightly more detail

than level 1. This level includes any system flow informa-

tion, such as perhaps system flow liagrams, and system inpu--

and output descripticns. The inter-program module descrip-
tions are included in this level; this lavel gives informa-

tion about how individual programs are inter-related in the

system. Thi3 type of information can be conveyed with the

use of narrative remarks.

Since level 2 system documentation includes informa-
tion such as system input and output specifications and

requirements, maintainers and managers find this input/

output info:mation to be valuable oecause they must ensure

that the maintenance of the program is accomplished in such

a way that the output requirements are correctly attained
when the appropriate system inputs are given.

Managers need to know the system input and output

specifications that fit user needs in order to ensure main-
tainers have the proper information as translated from the

user (who very likely is not as technically oriented as the
manager or the maintainer) requirements. Thus the managers

can take the user input and output requirements as requested

by the users and translate then into an ,nderstanding
between the maintainers and the users in order that effec-

tive maintenance can be a.complishel.

Users obviously play an important role in the gener-

ation of the general input and output specifications, and

.4'4

these specifications must make sense to the managers befc .=?

the maintainers can be expected to understand and perform

maintenance tasks. An understanding between us.rs and

managers must therefore be reached as to what the users want

(or think they want). The prudent user will heed management

advice when considering reasonable input and output formats.
System logic information is also a part of level 2

of the system documentation hierarchy, and it conveys the

logical flow of the project. This logical information could

include a narrative section that describes the purpose of
the system and how it is logically constructed. The hier-

archy of programs, functions, and modules can be described

in the narrative. The system flow documentation concerning
the relationship of the indiv'dual modules can take the

form of system flow charts or flow diagrams with accompa-

nying comments.

The inter-program module descriptions provide infor-
mation about the relationship of the programs to the system

and to each other. Any restriztive characteristics or

program environmental considerations are included in the

intgr-module narrative.
The rest of the lower levels of abstraction make up

the program documentation portion of the documentation hier-

archy. It is in these levels that the degree of detail is
such that the system is no longer the focal point of the

documentation, and the program specifics are brought into
view.

C. PROGRAM DOCONENTITIOI

Program documentation, as indicated above, consists of

the recorded information about the program itself. It is of

a more detailed nature than the system documentation and is
most useful for the manager and maintainer. It contains

45

4 I I I I - :

information pertaining to program module construction and

logic flow. Data structure, data flow, and control flow
specifics are recorded so that the documentation rec.iver
has relevant program information available. Programming
methodology techniques and maintenance history become part
of the program documentation as well. Dynamic documentation
describing inter-module concepts and structures is included,

but static documentation makes up the bulk of the program
documentation. Specific explicit forms of program documen-
tation include flow charts, English narrative? statements,

resource diagrams, and Petri nets.
While all of the levels in Figure 4. 1 repre3sent system

documentation, levels 3 and 4 can be combined to make up -hs

program documentation portion of the system documentation
hierarchy.

1. . e _. 3

Level 3 of Figure 4. 1 is the first level of the

program documentation and conveys a particular program
description. Particular program constraints that deal with

specific programs are described in Level 3 along with any
high level narrative about the program itself. Level 3 does

not contain any inter-program relationships with other
programs. It is the level that deals with strictly a single

program.
This level of abstraction is more detailed than

levels 1 and 2, and is very useful to both the manager and
the maintainer. The manager needs to keep the high level
program concept so that the maintainers can be properly
managed without forcing the maintaiaers to be concerned with

any unneccessary abstract information. The manager must
keep the program concept in mind &ad rlate it to the rest
of the system (level 2 and higher).

46

The maintainer can, however, use this leveil of

detail to aid in the understanding :f how a particular main-

tenance task is constrained. The manager is responsiblA for

the overseeing of the inter-program module relaticnships,

but a knowledgeable maintenance person can be of

immeasurable aid to the wise manager in this area.

2. Jevel '4

The next lcwer level of abstraction, level 4,

provides the greatest level of derail. This level is used
very heavily by maintenance personnel, and often by manage-

rial personnel. This level consists of very detailed

descriptions such as program flow information and input/

output formats. Much of this documentation is very explicit
in nature. It can be static or dynamic. Flowcharts,

inter-code comments, logic, and data flow diagrams are

included in this level of documentation. It is this level
of detail that describes program modules in enough detail so

as to promote understandability among maintainers.

While maintainers are the heaviest users of program

documentation, and users are the primary users of the higher

level system documentation, managers must bridge the gap

between the two levels of documentation. Managers are

involved with high level decisions that require an overall

system understanding, yet they must also be involved with

some of the lower levels of program documentaticn in order

to properly manage the maintenance functions.

D. DOCUREETarIOn HIERARCHY UTILIZAZION

The documentation hierarchy is set up so that anyone can

access the hierarchy at any of thas indicated levels, and

thus te exposed to the level of letail characteristic of

that particular level. If more detail is needed for a given

it7

task, then a simple move down to the next level for greater

detail is permitted. By the same token if it is determired

that the level accessed is too detailed for the particular

needs of the person using the documentation, then the arrow

is simply followed up to a higher level of abstrac-tion that

meets the desired needs.

Each form of documentation, then, is catalcgued as to

its detail level, and a menu format (either paper or elec-
tronic) can be utilized to directly access the level needed.

With the capability of moving either direction ir the

hierarchy structure, great flexability is built into the

system, and only the exact amount of documentation needed is

accessed. This promctes the minima)l documentation concept

and, therefore, keeps the documentation overhead down tc a

minimum. The amount of useless information that must be

waded through in order to find the proper documentation is

kept lw as a result cf proper utilization of the documenta-

tion hierarchy concept.

48

--.-

-_ liMNIO Qf ZI NN QjL --~MT

Chapter III discusses the various types of documentation

and how they relate to the maintenaace effort. It is impor-

tant to carry the documentaticn discussion further and talk

about not only the types of documentation that are ussful,
but also some specifics as far as physical arrangements ar_

concerned. The discussion will focus on explicit types of

program documentation, and how some of the physical charac-
teristics of the documentation affect the efficiency of
maintenance performance.

A. EVALUATION EXPERIBENTS

When dealing specifically with programming documentation

(levels 3 and 4 of Figure 4.1) which is most often used by

maintainers, it would be helpful to understand which

different forms of documentation are most effective.

Chapter III discusses the different types of information
utilizad by users, managers, and maintainers, depending on

the maintenance task and the documentation receiver. This

chapter discusses some specific forms of documentation and

how effective they can be in promoting understandability for

efficient program maintenance.
It has been determined by G.nezal Electric studies

[Ref. 10] that the best form of documentation to be used for
maintenance is heavily dependent on the type of program

processing that takes place, in particular whether it is
sequential or concurrent processing.

49

- -q

In determining the most effective type of documenta-

tion format for sequential processing, a primary concern
must involve the type of symbology used to present thp

information. It would be beneficial to ascertain the best
form of symbology as seen by the saintenance personnel in
terms of maintenance efficiency.

The three symbology types used in the General
Electric Studies consist of narrative Englist text, an
abbreviated program-like language called Program Design
Language (PDL), and ideograms. The narrative text is
frequently embedded in the source -3.o.e as either global or

in-line comments. The PDL is succinct and uses strictly
defined keywords to describe arguments or predicates.

Ideograms are often found in flow charts and HIPO charts.
Sets of ideograms represent processes in a program

(Ref. 113.
Ancther primary concern which must be dealt with

when weighing effective documentation is the issue of
spatial arrangement. Spatial arrangements can aid main-
taisers in understanding the flow of control in a sequential

program, and it would be helpful if the best spatial format
could be determined. The spatial arrangements provide
different ways of representing control flow and nesting
levels. The spatial arrangements used in the experiments

are sequential, branching, and hierarchical representations.
The sequential arrangement represents both the

control flow and the levels of nesting in a vertical manner.
The branching arrangement presents the flow of control in a
vertical manner while the nesting levels are presented hori-
zontally. Finally, in the hierarchical arrangement, the

control flow is represented horizontally and the nesting
levels are presented vertically.

5o

The sequential processing experiments were designe!
to run the gamut of many of the maintenance tasks perfcrmed

by programmers. the tasks incladed answering questions

about program coding, program debugging, program modifica-

tion, and program operation. The maintenance tasks were to

be completed using the various foris of documentatLon being

tested. The studies were condcted with professional

programmers who were asked to answer questions about

programs. The programmers w9re allowed to reference only

the various forms of documentation having the spatial and

symbology characteristics mentioned above to get information

about the programs.

Nine specification formats were presented to the

programmers for their use in the experiments. Each of the

three types of symbology was presented in each of the three

spatial arrangements.

The participants were also asked to choose which

format of documentation they found to be the easiest to use.

This choice wis then weighed against the type of documenta-

tion that produced the best results in terms of maintenance

effectiveness.

In the first experiment, the programmers were asked
to answer backward and forward-tracing questions and input/

output questions about the program using the test documenta-

tion provided.

The results showed that the sequential PDL, the
branching PDL, and the branching iiaogram versions of docu-
mentation were the most effective for answering the tracing

questions.

For the input/output questions, no significant

differences were found between the forms of documentation.
The most preferred combinations of documentation formats
were the PDL symbology anI the branching spatial arrange-

ments Clef. 11].

51

In another experiment programmers ware asked to

complete the coding of portions of programs referencing only

the documentation under test. In this experiment the

English narrative format took significantly longer to

produce code than did the PDL format. The English version

also produced the largest number of errors, while the PDL

produced the smallest.

The spatial arrangement effects were not signifi-

cant, hut the formats of the sequential PDL and the

branching PDL arrangements produced the best experimental

results. The sequential English version produced the

poorest performance.

The programmers also chose the PDL branching

arrangements as the preferred format combination.

In yet another experiment the programmers had to

correct error-seeded programs, again utilizing only the

documentation under test as a source of program information.

The best results in performance occurred with the

PDL and ideogram symbologies for this experiment. The

spatial effects were again not significant. The sequential

and branching PDL formats proved to be high performers, as

did the branching and hierarchical ideograms.

The programmers had no preference for the type of

symbology in this experiment* bat they did prefer the

branching spatial arrangement CRef. 13].

Though slightly different results were produced in

this experiment depending on the maintenance task, overall

the indication is that performance is improved when the

symbology is of a succinct nature, such as in the PDL

format. The English narrative proved to be too wordy and

awkward to provide efficiency when attempting software

naintenance.
As for the spatial arrangement issue, the best

overall performance resulted from the use of a branching

arrangement in providing the clearest display of control

52

flow. The POL branching format, then, seemed to promot_

understandability for the maintainer, and the PUL branchlng

format was selected by the programmers as the easiest

overall format to use.

2. Documentia fo on.acutrren.t ZZoessin

Since much of today's program processing is concur-

rent, it is wise to investigate do:umentation effectiveness

for the concurrent realm of processing. Concurrent

processing of programs entails two or more portions of the

program executing simultaneously. Because of the complexity

involved with concurrent processes, programs that contain

concurrent processing must be carefully documented. It is

important to convey information about the control flow of

the program and the sharing of resources.

The formats of documentation used for the General

Electric studies of concurrent processing documentation

(Ref. 11] consist of three types: PDL; resource diagrams;

and Petri nets. The first form of locumentation is the same

PDL as used in the sequential processing tests. The PDL

emphasizes the contrcl-flow characteristics of the program.

The second form of documnt-ion, the resource

diagram, places emphasis on the concept of providing

resource sharing information to the programmer. The

resource diagram uses communication circles containing

abbreviated English statements to -onvey information about

the relationships between processes. Natural English state-

ments provide narrative information contained in process

boxes to describe the process itself. Resource diagrams are

arranged spatially in a branching format similar to the

branching organization used in the sequential experiments.

The third form cf documentition is that of a Petri

net. Petri nets have nodes that contain information that

indicates resource usage for required tasks, while

53

control-flow information is conveyed with a constrained

language description. The Petri net format of documen.taticn
places equal emphasis on con-rol-flow and resource shar=ng
information. The spatial arrangement of the Petri net is
also similar to that of a branching organization.

In the concurrent processiag experiment prcgrammers
were asked to make either data-structure or control-flow
modifications to each of three programs. For both types of
modifications, the resource diagrams proved to be the bes-

performers. The Petri net gave the poorest performance.
Since the resource diagrams emphasize information

about the resource-sharing aspect of the processing of th
program, it is interesting to no-e tnat. the control-flow

information that was so important for the sequential
processing of a program is not as vital for the maintenance

of concurrent processes.

When asked to select the documantation format that

was easiest to use, the PDL format was selected. It turnel

out, however, that the most efficient form of documentation
for the concucrent processing was the resource diagram.

B. DISCUSSION

The results of the experiments yield some ideas that can

be incorporated into explicit Jocumentatic types for

program documentation. With proper incorporation of the

ideas, understandability can be enhanced for maintainers
resultiag in a positive influence on maintenance

efficiency.
When determining the type of documentation to be

accessed in the documentation hierarchy of Figure 4.1 in

Chapter III, it is important to realize that there is not

one "best" form of documentation for all maintenance tasks.

The type of processing (sequential or concurrent) must be

54

....-

taken into accoutt when identifying the bes-t documenta*ion
format tc include in the hierarchy. This processing infor-
mation is provided in a narrative sense in level 3. Level 4

will provide the actual flow inforlation, be it resource-

flow or control-flow information.
The General Flectric studies show support for the

concept of minimal documentation iatroduced in chapter II.
The English narratives were found to be too long and awkward
for the best performance of maintenance. When the method of
transferring information took on the more abbreviated -form
of the PDL, maintainers showed a preference for this format
of symbology presentation. This preference held true for
both thq sequential and the concurrent programming techni-

ques. The implication is that, even though the ideas

conveyed in both the formal English narrativa and the PDL
were the same, the programmers chose the succinct method of
symbology as being easier to glean the necessary informa-
tion for the maintenance task. A significant point is that
the programmers chose not to wade through all the super-

fluous language provided by the English narrative, thus

indicating a preference for minimal locumentation. As far
as sequential processing is concerned, the PDL proved to
be not only the programmer's choice for symbology represen-

tation, it also proved to be the most efficient. In the
case of the concurrent processing, the PDL was the preferred

method of symbology representation, but the resource diagram
proved to be more efficient.

The concept of minimal documentation is not contradicted
by the fact that the PDL form of symbology was preferred by
programmers, but resource diagrams proved to be the most

efficient for maintenance purposes in concurrent program-
ming. The fact is that the information required for concur-
rent processing maintenance is simply different than the
information that is provided by the PDL. Concurrent

55

processing requires information vith emphasis ^n th

resource-sharing aspect of the prcogram, while the PDL

provides information primarily concerning the aspec . of
coatrol-flow (which is of primary concern in the szquential
processing program). In this experiment it turned out that
the actual minimal documentation was the resource diagram,

and not the PDL the maintainers preferred.

When determining which format of documentation to access
for the performance of maintenance, the format which best

suits the task at hand should be coasiderel in the selection
process with emphasis on maintenance efficiancy. When the
proper level (or levels) of documantation are selected from

the documentation hierarchy, along with the best physical

representation of the documentation, -hen minimal documenta-
tion is accessed and effective understandability is

achieved. The end result is an effective and efficient

perfcrmance of the maintenance task.

5(

56

V. c0c_,O o. .ME . E CIZNDI2!

Since maintenance costs make up the largest part of most

software projects, it is vital to find effective ways to

reduce cr make more efficient the software maintenance

effort. When good documentation techniques are incorporated

into the prcect evolution, then development ideas and other

relevart information about the system can be successfully

recorded and transferred to other individuals.

Since it is critical that good documentation techniques

be emphasized, accurately determining the precise type and

amount of documentation for software maintenance is vital.

Minimal documentation is the result of that determination

and should, therefore, be incorporated into software

projects wher appropriate. (Some programs are simply not

maintained and therefore do not naed maintenance oriented

documentation.)

managers of the maintenance team often have mlsccncep-

tions about how the time spent on software maintenance

should be allocated. Because of these misconceptions, a

closer look at how maintenance time is spent is in order.

Perhaps an analysis of the maintenance effort on each

project should be conducted so as to determine how the main-

tenance time is actually spent. rhe manager can then have

an effective tool with which to schedule the maintenance

effort without having to resort eiclusively to the use of

intuition.

Programmers should be trained not only to document the

system as it develops, but to do so keeping the maintenance

aspect in mind. daintenance enhancing documentation should

bg developed simultaneously with the project as an integral

part ef the system.

57

... --,, ,,

Programmers must become aware of the fact that there i4s

not one "best" format of documentation for all -ypes of

maintenance. More research lik. the General Electric

studies should be ccnducted in order to determine the best

documentation format for the particular maintenance task

being performed. A particular format, then, should not be

taught as the only prcper way to dozument a program.

Well trained programmers will also raise the skill level

of the maintenance team, and as skill level increases, the

need for detailed explicit documentat_..on decreases. The

skilled programmer can then accept larger conceptual ideas

about the program, thus avoiding t~a need to search through

a large volume of information in order to perform the task

at hand. Maintenance and cost efficiencies ars therefore

enhanced.

Since programmers have more confidence in iz.tetnal docu-

mentation, it is recommended that, to the extent feasible,

information be carried internally along with the source

oode. As "hard" copies are needed, they could simply be

printed cut for a specific use. Parhaps a physical copy of

the documentation should be filed for back up purposes, but

the amount of external copies shoull be kept to a minimum in

order to avoid the reluctance to keep the hard copies

updated. In all cases, however, all forms of documentation

should be updated as modifications to the software are made

in order to ensure that the docuieata-ion is an accurate

reflection of the project.

In support of achieving minimal documentation, the

internally stored documentation should be organized in the
format of a locuentation hierarchy. There should be one
hierarchy structure that will contain all types of explicit

documentation, and each physical format will be classified
and filed according to the level of detail contained in the
document. This "level of detail" type of categorization will

58

necessarily cause the documentation to become a Fart of

either the system or the program documentation.

Users, managers, and maintainers should be abls to

access the appropriate piece of documentation based on the

amount of detail needed for the particular task at hand.

The system should be set up in such a way that each level is
easily accessed, and a method of movi.g up or down the hier-
archical organization should be made available.

It is recommended that further research be conducted

into the implementaticn of the hierarchical schame in a menu
driven window format that can display the indicated piece of

documentation on a display screen for perusal. A pointer
device can poi-. to a place on the menu to request a partic-
ula: level in the hierarchy. The capability to transcend to

different levels will be built into the menu aperation of
the windows. This documentation hierarchy implementation

will provide a powerful documentation tool that prcmotes the

minimal documentation concept, and should result in an effi-

cient maintenance effort.

59

LIST OF REFERENCES

1. Boehm~ B.II.wa Eanszri . !ESE B iransactiozs,
Copu rs De1i75 pp 5-1241

2. fartir, J. and McClure, C. Sof+tvare K!aintenance -he

3. Boehm, B.. o ftw1=2 ne en -- na Economics,
Prenti.cs-Hall, inc.7TM~

4.Pleckenstein, ?;0; Challenges in Software Develozment
Bell Labo rator es, nu ~! 37TW7

5. Lzentz, B.P., and Swanson S S.B Siftwas !aintenrce
M-ngeat idd2.son-Weslei Pjbihrq~TFY-Tq -

6. Swanson, 2.B. 1h Dimensions of Mailtnance, .2nd~
Internationl Conzerence c'Sgtae ~niering,
Proceedings, October 13-15, 1976, pp 496- &97j

7. Lientz, B.?., Swanson, 1+ .B., and Tompkins, G.
chaiacts-zstics of A ojl.cat-ve Software Maintenancs,
466-471

8. Schnedavind, N.F. Softwars Maa.ztnanca: aprvement

ou in nt a S

9. Glass R.L., and tNoiseux, R.A. Software Man~pa
quie~ok, Prentice-gall, Inc., 1 7 '-

10. Bohe2-Davis, D.A. RePresjaatjtj2n of'-" t tcn in
jitare Documen tation -Cgrl -- tr... tCoipa Y7

cDT37TE B33M ='- July, 1983

jC jadjs~6ei 98ar

1960

12. hepprd, .B. adKres--. e

14. BoheUI-DaviSe o.. regly . kts. Doausftati~on 2::

~t?~T83-Uu Ju1, ly. 1983

6 1

INITIAL DESTRIBUT13N LIST

Nc. copies
1. Def .ise Zechnical Information -enter 2

Alexandria, Virginia 223114

2. Library Code 0142 2
Naval aos -braduate School
Monterey,t California 9394i3

3. De artment C9a irzan Code 52 I
De par'tmeat of Computer Scierce
Monterey, Califcrhia 9394s3

4. LT Joh F. Hall II 2
41South H- h Atreet

Mount Orab, O hio 4515
5. Dr. Gordan Bradley Code 52BZ 2

Department of Ccmputer Scienca
Naval Post qradUate School
flonterey, Calif ornia 939143

6. LCDR Paul W. Callahan Codq 52CS 1
Department of Computer Science
Naval Postgraduate School
Monterey, C alifcrnia 93943

7. Patrici;a E. Roesner 1
231 Via 3a yuba
Monterey, Califcrnea 939140

62

LMED

two",

