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for their assistance in translating German and French literature on white -light
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A Catalog of Solar White-Light Flares (1859-1982),

Including Their Statistical Properties
and Associated Emissions

1. DEFINITION

Historically, a white-light flare (WLF) has been defined to be any solar flare
that becomes visible in integrated light against the background disk of the sun. In
this report, we also designate as WLFs those events in which emission is observed
in the bandpass of a filter that isolates a portion of the spectrum, provided that the
filter excludes the strong chromospheric lines. For this latter type of observation,
we do not restrict the wavelength range to the visible (4000-7000 :\), but include
fiares that only show detectable emission at wavelengths below 4000 A (including
emission near the head of the Balmer continuumi.

2. BACKGROUND

Ever since Carrington and Hodgson's discovery in 1859 of the first solar white-
light flare—in fact, the first flare directly observed at any wavelength—white-light
flares have retained a status as one of the premier types of solar activity, Their
importance has long been recognized both in terms of the geophysical disturbances
they produce and in their relevance to the energy release processes that occur in

(Received for publication 20 September 1983)
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highly energetic flares. The 1859 flare was followed by a large geomagnetic storm1

and it is probably fair to claim that the inferred association between these two
phenomena contributed heavily to the foundation of modern solar-terrestrial re-
search. More recently (within the last two decades) it has been realized that WLF's

-

S A
SN

may represent an aspect of the flare phenomenon that cannot be easily reconciled
within the context of existing flare atmospheric and energy transport models.
Owing to their comparative rarity, WLFs have not, as a class of events, been

‘)

comprehensively studied, Among those aspects in need of further observational
descriptions are (1) morphology (a description of the various WLF forms in terms

- of magnetic field geometry and dynamics), (2) timing (with respect to other flare
emissions, both thermal and nonthermal, originating over a wide range of tempera-

: tures and heights in the solar atmosphere), and (3) optical and ultraviolet spectra

j (leading to a radiative transfer solution and a WLF model atmosphere).

- Historically, observations of WLLFs have been hampered by poor time resolution,
: lack of quantitative intensity measurements, poor (most often non-existent) spectral
coverage, and lack of simultaneous measurements in different regions of the electro-

magnetic spectrum (particularly hard X-rays and EUV). In response to these

) deficiencies, a patrol telescope, specifically designed to provide optical images,

; polarization, and broad-band spectral data, was put into operation at Sacramento

4 Peak Observatory in June 1880. 2 Called the Multiple- Band Polarimeter (MBP), the
telescope consists of a 4. 5-inch objective lens followed by a Wollaston prism and
filter system that allows a programmable selection of five wavelengths/bandpasses
at 3610/22, 4275/40, 4957/48, 5645/50 and 6203/48 ;\ Simultaneous with this pro-

gram, a parallel effort was initiated to obtain spectrographic data with the 40-cm

Pt
s e e e s

coronagraph and Universal Spectrograph (USG) at Sacramento Peak. During 2-1/2
years of operation (June 1980 - December 1982), at least 12 WLI's have been ob-
served, 6 of which were recorded by both the Multiple-Band Polarimeter and the

VYN

Universal Spectrograph. .

Preliminary studies of these flares led naturally to a search for information on
previously known WLI's. This work evolved into the compilation of a catalog of
WLFEs that included data on active region types, heliographic coordinates, and vari-
ous associated flare emissions. This report is intended to be that catalog, giving
background information for future studies of WLLI's, In Section 3 we present the
catalog and discuss the criteria for inclusion of an event in our list of WLFs., In

Section 4 we discuss various statistical characteristics of WL.I's and the active

1. Carrington, R, C. (1859) Description of a singular appearance seen in the sun

nn September 1, 1859, Monthly Notices Roy, Astron, Soc. 3\(’)\':13.

2. Neidig, D.F., and Beckers, .1, M. (1983) Observing white-light flares,
Skv & Telescope §\§5226.

LY. T 0% F‘ o) ".."fr.‘r"_v—. ‘;‘J'J) I‘J’:’ .

O .

AR ARG AT e T e et et et e T Mt e Y e e T Lo -~
YIRS S IS .f's.., ',-*,~\-’.~\ PR ..q\ s ,4_\) o .-.'\.‘\ 159 \..,(\’\__ - e _-\.‘.\1_. - S L
o - . '» . -

Q. -
c s o A _.-‘-‘.“_- - DR

NGO
v .n'\ '.‘.-" ‘s

h\.-.'-~-. h'. \" -.. -
K el e AR
R A YRR S R RSN




21

o )

N R P )
Yess G "'y Y

' Y 'i' "‘.‘ .

s

‘_._l.“ 4 5

[ o¥ S I AN ;_

LM W R ™

aTA L Yy

s a
D S

.

- AN | -

“

S SRR, R A A  E aas Lals

regions in which they occur. These include the magnetic field and sunspot classifi-
cations of WLF active regions, the epoch and heliographic location of WLFs, and
the associations of white-light emission with flare Ha, radio, X-ray, and particle
emissions. In Section 5 we summarize our main conclusions.

This report also contains three appendixes. In Appendix A we briefly discuss
the interesting topics of WLF morphology, spectra, and energetics. This is done
to summarize current knowledge and to suggest directions for future studies.
Appendixes B and C contain supplemental lists of possible WLFs that have not been
included in our main catalog. These excluded events will be discussed further

in Section 3.

3. A CATALOG OF WHITE-LIGHT FLARES, 1859-1982

Svestka distinguishes three types of continuous emission in the optical region

of flare spectra:

(1) Weak continuum in flares above the limb.
(2) Narrow emission threads in the spectra of disk flares.

(3) Short-lived continuous emission from disk flares.

For the purpose of this study we have considered only those events satisfying the third
definition, thus eliminating off-limb events, [thatis, low background intensity events
such as those on 09 June 1959 (Jefferies andOrrall4) and 07 September 1957 (Kiepenheuer
and Kuenzers)] and flares with small grains of continuous emission visible in the
flare spectrum as narrow ''threads' such as those on 07 December 1938 (Richardson
and Minkowski®) and 27 August 1956 (Severny’). In this latter type of event the
grains producing the thread-like continuous emission often do not coincide in posi-
tion with the flare elements that produce the line emission. This phenomenon is
relatively common and is not restricted to large flares; it may even occur in active
regions in the absence of a flare.

To obtain records of WL.Fs observed before 1970 we relied on the lists of events
published by DuMartheray, 8 Fritzova et al, 9 Becker, 10 Korchak, 1 Svestka, 12

MclIntosh and Donnelly, 13 and Slonim and Korobova. 14 For WLLFs occurring since

'We do not distinguish between WLFs observed near the center of the solar disk and
those observed near, but not off, the limb. Svestka3 (p. 92) notes that the larger
areas and longer durations of certain WLI's observed near the limb (for example,
Event Nos, 18 and 23 in Table 1) suggest that some additional emission process,
rendered visible by the improved contrast near the limb, might be involved.

(Due to the large number of references cited above, they will not be listed here.
See References, page 33.)
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1970, over half of which were observed at Sucramento Peuk, we compiled the list
ourselves, To the best of our knowledge the final list of events is comprehensive,
although we have recently reccived information from Z,ix'in15 that several additional
WILEF candidates occurred in 1979, 1980, and 1981; these latter events are not yvet
recorded in the literature and we have no details on them. We did not include
suspect events such as those of 11 August 1854 reported by l\liller16 and 30 August
1957 reported by hlcNan'l‘y” (see Appendix B). Because of the often incomplete

nature of the observations, our decisions to include or exclude events from the

catalog involved subjective judgments over which ther- vy be legitimate disagree-
ment. With this caveat, our final list of events is gi’ in Tuble 1.

For completeness, two additional lists of possibl .F's are given in Appen-
dixes B and (. The first of these includes all events t have been reported in the
literature as WI.Fs but do not meet our definition of ‘ or for which the ob-

servation is questionable. The second of these lists ¢ ..prises those events that

have been reported as having continuous emission in the Quarterly Bulletin of Solar

Activity (QBSA) or Solur Geophysical Data (SGD), but that have not been specifically

addressed in the literature. In our opinion, the majority of the events in Appen-
dix C that were observed before 1970 are legitimate WLI's. However, since we had
no additional information or description of these events, we chose not to include
them in the main catalog. During April and May 1972, 17 WLI's were reported in

Solar Geophysical Data. All but one of these was associated with an Ha subflare

(with seven classified as faint subflares). I'or each of these events continuous
emission was reported only by a single Air Weather Service observatory (Teheran,
Athens, Ramey, or Palehua). The 17 flares originated in 10 different active regions
with magnetic and sunspot classifications ranging from very simple (aP, AXX for
McMlath 11794 on 01 April 1972) to complex (6, EKO for Mchlath 11883 on 18 May
1972). Even if the reports of continuous emission in these flares are legitimate, it

seems doubtful that these events are of the same nature as those in Table 1.

15. Zirin, H. (1983) private communication.
16. Mliller, W.A. (1955) Intensity variation in sunspots, Nature 175:5507.

17. McNarry, 1.. R. (1960) The observation of a solar event in white light from
Resolute, N, W, T, on August 30, 1957, J. Roy. Astron. Soc. Cuanada
54:273.

Note: References 18 through 59 are noted in Table 1 and References 60 through 72
are noted in the "Explanation to Table 1", and are too numerous to list,
See References, page 33 for listing.)
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Column
1,2,3
4,5,6,7
,-I
N 8
PN
3
N
.
- 9,10, 11
o
.
12
~
5 13, 14, 15

Explanation of Table 1

Year, month, and day of event.

Time of H« flare maximum, Ha flare classification, latitude

and longitude of flare. Data sources are the Quarterly

Bulletin of Solar Activity (QBSA) and Solar Geophysical Data

(SGD) in addition to the listed reference. Ytor Event Nos. 1,

3, 5, and 8 the flare class is after Svestka. 12 For Event

No. 3, the flare coordinates are after Becker. 10 L)ul\lartheray8
locates Event Nos. 7 and 8 in "Groupe 170" and "Groupe 202,
respectively (these are presumably local observatory designa-
tions that we were unable to convert to standard coordinates).
For Event Nos. 45-57, the Ha class, timing and position data
are averaged values from SGD prompt reports, Boulder pre-
liminary reports, or pre-publication lists courtesv of World
Data Center A. N/A = No Observations; ? = Data Not Reported.
Soft-X-ray class. Before 1973 these data are from the SOL.LRAD

satellites; after 1973, from SMS/GOLS. Data sources are SGD,
Donnelly.60 and Donnelly and Bouwer. 61 Values in parentheses

are uncertain due to data gaps or saturation. The peak inten-

sities of the soft X-ray events observed by SOL.RAD have been
multiplied by a factor of two to make them compatible with the
SMS/GOES observations of Kreplin et al. 62 N/A = No Observations.

Start time, time of maximum, and duration of the continuum

emission. All times are UT except Event No. 2 for which the
source does not indicate whether the reported times are local
or universal, Event No. 6 (T. M. ¢. Belge), and Event Nos. 7
and 8 (T. M. Geneve). Dashes indicate data not reported while
question marks indicate uncertainties in reported values.
Duration is in minutes.

Wavelength of the white-light observations. WI. = integrated

light; MBP Multiple Band Polarimeter (see Section 2);

$ = spectrogram. Numbers indicate wavelength (:\) of broad-band
filtergram; numbers inparentheses indicate effective wavelength
tas for certain photographic emulsions).

Frequency (GHz) of microwave spectral muximum, largest peak
=22

flux densitv (10 z

W m.2 l[‘/._l\ at any {requency Z 8 Gliz, and

time of the reported cm-A burst peuk (All three parameters
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13,14, 15

16,17, 18

19

(Contd)

Explanation of Tuble 1 (Contd)

refer to the burst peak coincident with the WILEF), Data sources
are QBSA and SGD (Boulder preliminary reports for Event Nos.
52, 56 and 57), The "Z" sign preceding the spectral maximum
indicates that the peak burst flux density occurred at the highest
frequency at which observations were made. The peak flux
density values listed represent sverages when more than one
station was reporting in o given frequency range, as was gener-
ally the case near 9 Gz, Peak flux density values in miarked
disugreement with the consensus of values at the saume or nearby
frequencies were ignored. N/ = No Observations; dashes indi-
cute that a station was assumed to be on patrol, but did not
report an event.

Start and end times of metric Type 11I, II, and I\ bursts,

respectively. Data sources are QBSA and SGD. The possible
Tvpe 1l bursts for Lvent Nos. 43 and 48 are from R. Stewart
(private communication). If only decimetric (d) or decametric
(D) bursts were reported these are listed with the appropriate
frequency designator (d or D). A dash indicates that a station
was on patrol, but did not report an event;

N/A = No Observations.

The logarithm of the prompt > 10 MeV proton flux

(c:;2 S ster)-] according to the proton event classification
system of Smart and Shea. 63 Data sources are Svestka and
and Simon,64 SGD, 19 Dodson et al.65’66 and IMP data for
recent events as kindly supplied by R. E. McGuire.

(Listed values for the most recent (1982) events may change
slightly as more complete data become available,) Delayed
flux maxima associated with geomagnetic storm sudden
commencements were disregarded. PCA = polar cap absorption
event (that is, satellite observations not available). The
number in parentheses following PCA is the logarithm of the
-~ 10 MeV flux equivalent to the peak riometer absorption
(after Smart and SheaGS). " (A)" indicates that a particle

event following the listed flare may have, in fact, been due

to another candidate parent flare; thus, "A" implies ambiguity.
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{ Explanation of Table 1  (Contd)
‘\~
o
‘i, 19 (Contd) A question mark followed by a number in parentheses indicates
-: that the flare occurred when the - 10 Me\ buckground was
o . -2 -1 -
el enhanced (> 0. 01 particles cm ~ s ° ster ]) due to an earlier
event, where the number 1s the logarithm of the background
"o flux (musking level). For these cases, no convincing increase
¥: of the - 10 MeV proton flux was observed following the listed
L flure.  Question marks following listed values indicute
o uncertainty. N/A = No Observations; dashes indicate that
no event was reported.
o) 20 Percentage increase in the cosmic rayv counting ratc due to a
X Ground l.evel Event (GL.LE)., Data source is Chiver et al,
X After 1978, a dash indicating the ubsence of a G111 is to
‘;-: be treated with caution, since the reporting of GI.II events
. is often delayed. Otherwise, dashes indicate that no event
e was reported. N/A = No Observations.
~ 21 References. Numbers refer to entries in list of References;
) —_—
s SP - Sacramento Peak Observatory.
_‘ 22 I xplanatoryv notes,
Y
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-‘ Explanatory Notes to Table 1
> 10 e
_:] (n Becker " gives the ;éare coordinates as N10WQ0, but the
Ny drawings in Rudaux™~ clearly depict a disk event. We
':‘ derive approximate coordinates from descriptions by A
- Hale68’ 69 who gives dates of limb passages and general o
location on the disk; HaleTO further gives the latitude 3'.
') (532) of the active region when it first appeared on the :.;:
i' rotation previous to that of the flare. ;';_'
b7 (2)  D'Azambuja, ' citing Du Martheray, 20 gives "
X 21 September as the dute of the flare. I[{owever, in
[ Du I\lar‘thez‘tgv8 the date is listed as 22 September. We
- were unable to obtain a copy of DulMlartherav's 1946 report.
i; (3) In his brief report on this event, I’(n"ret:“ comments,
e "A 15 heures (T.L.) elle ¢tait encore observable, -
. quoique de moindre intensité,”’ No Ha activity is reported
. near 1500 UT, while reported maxima for the earlier
‘:' {1300 UT) event are grouped closer to 1100 UT.
:: (4) The Nagoya 3750 Mlz radiometer was the highest frequency
: instrument on patrol during the time of this flare.
L (3) In Becker'slo table of WLI's he lists 1424-1443 UT as
, the time of the continuum emission. This does not augree
: with the text of the paper, which supports the times listed
::‘ here. The Sp@ 6 GlHz) value listed is actually the burst
K mean flux density. Only mean flux density values were
) reported at the higher frequencies for this event und thus
o~ the spectral maximum could not be determined. Continuum
) sweep frequency emission was reported from 1455 - 1456 UT;
: svestka and Simon64 list this as Type \ (7). .,
_:E (6) \\'aldmuier&:’ reports that at l.ocarno, the flare waTO\'isible E:
in integrated light from 1005 - 1055 UT. Becker's =~ shorter -
duration is listed (instead of that reporied by Slonim and .:
:_/ Korobova, 4 p. 400). Intense (2 1000 sfu) bursts were ::'
,& reported at 3 GlHz. ::'
.4 (7 This flare occurred during the nominal patrol hours for .-.
Gorky and Heinrich Hertz, both of which have patrols at ‘:’-'
A ~ &4 Gliz, but neither station reported an event at this time.
. (8) Nederhorst reported the only em=-A burst at this time
;' (SP(ZUHO MHzY - 385 sfu nt 0844 - 0845 UD).
e 1T
2
;
4
o
v
’,
“l
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, “ Explanatory Notes to Table 1 (Contd)

p Y
.:' (9 Heinrich Hertz and Ottawa report moderate intensity
< (S,(1.5 GHz) = 109 sfu; S (2.8 GHz) = 48 sfu) bursts at

, 1439 UT. A weak Type I metric event was reported by

Harvard from 1307 - 1954 UT.
2% (10) Type 11l bursts were reported from 0319-0321 and

. from 0334-0336 UT (Type V also).

: (1 The listed flare is a good candidate to have produced
:;{ the factor of two increase in the >75 MeV proton flux
- observed by Explorer 6 beginning at 0445 UT with maximum

. at 0520 UT (Svestka and Simon®%).

':: (12) Harvard sweep frequency observations ended at 0110 UT;
:' Sydney did not observe on this day.

f: (13) The peak 9.4 GHz emission near the time of the WL} is
W from Kodama et-al. 72 No Type III events are listed for
.' the entire day in QBSA.

:'.' (14) The proton flux estimate is based on observations at
o Pioneer 7 which was more favorably located (1. 06 AU, ES angle
Ej = =36.5°) than earth-orbiting satellites for viewing this
' event, At lower energies, the event was observed by VELA 4.

. ’ (15) Gorky reports several peaks at 9.1 GHz (~0735 UT, 270(?) sfu;

. 0737.2 UT, 1460 sfu; 0744.8 UT, 1165 sfu; and 0748.9 UT, 600 sfu).
:: The last peak, occurring closest to the time of the WL observation,
:‘ is listed. Weissenau reports Type Is, cont (metric, intensity 2)

from 0705-1506 UT.

- (16)  Svestka, 3 p. 86 comments, ''"The passband... contained the
:; H9 line of the Balmer series of hydrogen; thus, it is not clear
L whether Zirin and Tanaka recorded white light flashes or tiny
::. impulsive H9 kernels.' See, however, Zirin. 51 Lor the event
- at ~ 1840 UT, the 900 sfu value in column 14 was recorded at 5 Gliz.
p (17)  Machado and Rust*® obtained a spectrogram of a fainter WL} "wave"
:: at 1528:50 UT, showing continuum from the instrumental limit at
:: 3580 A to ~4300 A. However, spectral data were not obtained for
:; the brightest four knots of the flare.
px (18) The estimated time of H @ maximum is the average of the times
, reported by Palehua (2137 UT) and Boulder (2155 UT).

_.' (19) Culgoora reports DCIM (fast drift decimetric) emission from
o 2259-2302 UT.
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Explanatory Notes to Table 1  (Contd)

. An intensity 2, Type I metric event was reported by
~, Harvard from 1416-2345 UT (their entire observing day).

Also, several Type Il events, although none at this time,

were reported throughout the day.

4. ANALYSIS

4.1 Characteristics of Active Regions That Produce WLFs

WLFs, like powerful flares in general, originate in large, complex active re-

{ gions. Table 2 lists all known WLFs since 1972, along with their magnetic classifi- '
:" cation, spot group classification, and group area, according to Solar Geophysical -
:._~. Dita_* (detailed descriptions of these classification schemes are published annually 5
' in the Solar Geophysical Data, Descriptive Text),
" . In Table 2 it can be seen that nearly all (20/24) of the recent WLFs occurred in
\;‘f active regions containing a "'delta’’ magnetic configuration. This configuration is ;
:-\,':: defined to exist whenever spots of opposite polarity are located within 2 heliographic (:
:;'::' degrees of one another and within the same penumbra., Among the magnetic classifi- ’
s cations encountered for solar active regions in general, the delta configurations are
‘,_ : rare in comparison to the more common unipolar, simple bipolar, or even the .
::_: mixed polarity (gamma type) regions. :
::-.;' The classification of active regions, based on sunspot morphology, is given in ¥
.-,_-' Solar Geophysical Data by a three-letter code. The first letter defines the spatial -
“ v extent and stage of development of the sunspot group, the second describes the size s
and shape of the largest spot in the group, while the third describes the distribution ,
‘.:: of individual spots within the active region. WLF-producing regions are, with re- .
-:): gard to the first letter classification, characterized by well developed sunspot groups M
:—:‘:;: with penumbras on spots of both polarities (classes 1), E, or F); the distinction be- '
‘

tween classes D, E, and F is set by the spatial extent of the region in heliographic

longitude, namely, less than 10°, 10° - 15°, and greater than 15°, respectively, **

x
These data have been published in Solar Geophvsical Data beginning in 1969, but
only since December 1971 has the McIntosh sunspot group classification been used.

* % . . .
The only WLF active region on our list that did not have ), E, or F description
was Hale region 17491 on 26 February 1981, The modified Zurich sunspot class -
for this event was listed 1" on the 25th, "C'" on the 26th, and "D' on the 27th. -
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; Table 2. White-Light Flares Since 1972, and Their Associated Active Region

Characteristics

e B aea_a v

FEvent No. Date uT Mag. Class® d Spot Classb' d Area®’ d 1
34. 1972 Aug 2 1844 D EKC 1050 j
35. 1972 Aug 2 2058 D EKC 1050 I
36. 1972 Aug 7 1534 D EKC 910
- 37. 1974 Jul 4 1357 D FKC 1020 :
3_- 38. 1974 Sep 10 2146 D DKC 750 §
: 30. 1978 Jul & 1822 D DKO 760 ;
¥y 40. 1978 Jul 10 1734 D EKC 1080 }
41. 1978 Jul 11 1057 D EKC 1330
) 12, 1980 Jun 3 2132 n DKO™* 310*
oy 43, 1980 .fun 4 2301 D EKI 990
~ %
S 4, 1980 Jul 1 1629 B, EKI* 400* f
AN 45, 1981 Jan 27 1547 BG DKI¥ 520% y
SRR 46. 1981 I'eb 26 1953 GD* CKI 520
iy 47. 1981 Apr 24 1356 D DKC 1170
48, 1981 May 13 0353 D FKC 1510
49, 1981 Jul 26 1354 B FKI 2140 )
50. 1982 Jun 4 1330 D EKC 930 )
51, 1982 Jun 4 1423 D EKC 930
52. 1982 Jun 5 1529 D FKC 1160 ]
53, 1982 Jun 6 1634 D EKI 1180
54, 1982 Jun 25 2141 D EKI 940
55. 1982 Jun 26 1917 B EKI 560
56. 1982 Dec 15 0159 BGD* DKI* 270%
57. 1982 Dec 17 1858 BGD* DKI* 500* :

al\/]agnetic Class: B (Bipolar), G (Gamma), and D (Delta); (see text and
Solar Geophysical Data, Descriptive Text).

bSpot Group Class (see text and Solar Geophysical Data, Descriptive Text),

L
1
CSunspot Group Area, in millionths of the solar hemisphere. :
-
dEntries followed by asterisks have been taken from the Boulder {
preliminary reports.
B o
o
~
.'-:::-: All of the WLF's in Table 2 occurred in active regions containing a large, 1
:-'.": asymmetri: penumbra, as designated by second-letter class K. Class K requires )
I
that the largest sunspot in the group have an area exceeding 240 millionths of the
solar hemisphere (diameter greater than 2.5 heliographic degrees), Nearly all
1
- ) 1
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(21/24) of the listed regions had sunspot group areas I 500 millionths and the

* .
majority (15/24) had areas I 1000 millionths,  In many cases the major portion
of this total area was contained in one large penumbral complex (see Appendix A)

As an aside it mav be noted, according to Solar Geophvsical Data, Descriptive Text

that when the sunspot group area exceeds approximately 950 millionths it is almost
certain that both magnetic polarities will be present within a common penumbra and
that the first-letter classification will become D, E, or b,

The third-letter classifications show that WLEFs tavor regions in which the zone
between the leading and following ends of the sunspot group are populated by spots
as well, The class of highest population of intermediate spots is designated C; this
class is followed, in order of decreasing intermediate population, bv classes |
and O. Most (22/24) of the WLF active regions bear classifications C and I.

In generalizing the characteristics of WLF -producing regions we may safelv
claim that thev tend to be large in sunspot group area, with complex magnetic
structures in which opposite magnetic poles are located in close proximity to one
another. The latter condition implies a steep magnetic field gradient across the
line of polarity reversal—a well known characteristic of active regions that pro-
duce large and many flares. In arriving at these conclusions it is necessary to
point out that the use of instruments such as the MBP, which view individual active
regions rather than the full sun, introduces the possibility of a selection effect, due
to the tendency to focus on regions with large sunspots and complex magnetic fields.
We note, however, that the picture of WLI active regions we have drawn is not

inconsistent with that inferred from WLF observations made prior to solar cycle 21,

4.2 Statistics Involving Epoch and Location

The data in Table 1 can be used to establish the occurrence of each WLF rela-
tive to cvele epoch, that is, the year of the flare's occurrence in relation to the
vear in which the maximum of the particular solar cycle is reached (Figure 1), We
have used the vear of largest sunspot (Wolf) number as defining solar maximum.

In Figure 1 we have denoted by an asterisk those WLFs occurring in active regions
that had previously produced one or more WLFs during the transit of the region

across the solar disk., The events without asterisks therefore represent the epoch

*
In contradistinction to the WI.F's listed in Table 2, four of the five events observed
from 1969-1971 (Event Nos. 29-32) had sunspot group areas < 500 millionths.
Group area data are not available on a daily basis in Solar Geophysical Data prior
to 1969, Limited data for pre-1969 events, however, indicate a distribution of
spot group areas similar to the distribution for the events in Table 2; the

Greenwich Photo-Helinographic Results73 were particularly useful in this regard,

73. Greenwich Photn-Heliographic Results, Her Majestv's Stationery Office,
T.ondon. '
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distribution of WLF -producing active regions. Three WLF regions (corresponding
to Event Nos. 45, 47, and 54) discovered at Sacramento Peak Observatory were

not independently observed as WLF -producers by any other observatory. Noting
this, and the fact that their discovery was a direct result of the intensive patrol
program that began in June 1980, after the maximum of cycle 21, we conclude that
the inclusion of these regions in Figure 1 would bias the distributions toward higher
epoch values. By excluding the latter three regions as well as the asterisked

events we obtain the unbiased distribution of WLF regions (shaded areas in Figure 1);

the mean epoch of this distribution is +1.24 + 0.30 vyr.

Figure 1. Histograms Showing
Frequency of White-Light Flares vs
Year From Solar Cycle Maximum,
Plotted for Combined Northern and
Southern Hemispheres (top), Northern
Hemisphere (middle), and Southern
Hemisphere (bottom). The total number
B / of events in each panel is indicated. The
% .- shaded areas represent the (unbiased)

/ distribution of WLF -producing active
7 / regions (only the first flare in the region
/ //////////// is counted to produce the distribution).

’ The mean of this distribution in the top
panels is +1,24 yr (O/VN— = 0.30); the
B mean of the combined distribution of
shaded and asterisked events is
+1,30 yr (0/YN = 0.27). Unshaded
and unasterisked areas represent WLFs
reported only by Sacramento Peak
Observatory during the period June 1980-
December 1982 (in which a concerted
effort was made to detect WLFs). Be-
cause they would have biased the distribu-
tion, they are not included in the shaded
areas. Events indicated by an area with
an asterisk in it are WLFs that occurred
YEARS FROM SOLAR MAX in an active region where another WLF
had already occurred during a single
passage of the region across the solar
disk

The total distribution of northern hemisphere WLIFs (Figure 1) is, at first
glance, suggestive of a bimodal cycle of activity. However, when we consider only
the unbiased (shaded) distribution of northern WL F -producing regions it appears
that the activity is better characterized by a rather abrupt commencement one or

two years prior to solar maximum, with a slow decline thereafter, A similar rapid

commencement and slow decline may also apply to the southern hemisphere, although

in contrast to the northern hemisphere, the major portion of the southern activity
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begins about one year after solar maximum. We note, however, one southern WLF
(Event No. 4) that occurred one year before solar maximum.

Five active regions are known to have produced two or more WLFs, with one
region (Hale 18405, June 1982) producing four in a three-day period. The time
between successive WLFs in a given active region has ranged from less than 1 hour
(04 June 1982) to 5 days (02-07 August 1972),

Figure 1 shows that the northern hemisphere has been 70 percent more productive
in WLFs than the southern; this tendency, however, does not apply to cycle 21, Roy74
also found a northern hemisphere dominance for WLFs, large non-WLFs, and
complex active regions, while north-south asymmetries in non-complex regions and
total hemispheric sunspot areas were much less noticeable.

With regard to the delay in the onset of the major portion of WLF activity in
the southern hemisphere, it is interesting to note that the southern WLFs differ in
another, independently observable way, namely, their latitude distribution (Figure 2).
Here we see that the southern WLF -producing regions have a mean latitude of

13 + 2°, compared with 18 + 1° for the north. Together, the temporal and helio-

graphic differences suggested in Figures 1 and 2 are in agreement with earlier
observations, for example, Kiepenheuer,75 which indicated both a delay and an
equatorward displacement in southern hemisphere sunspot activity in general. Thus,
the WLF data, despite the small sample size, may reflect subtle asymmetries in the
global activity characteristics of the sun.

The question of the existence of active longitudes on the sun has been discussed

T VSRR

at length and remains controversial (see for example, Warwick.76 Sakurai, "

Wilcox and Schatten, 8 Haurwitz, 79 Svestka, 80 Vitinskij, 81 Dodson and Hedeman, 82

and Speich et 3183). Observationally, the approach usually consists of plotting some

)

Y

index of activity as a function of heliographic longitude. Since the sun is a rotating
fluid body, however, the assignment of a longitude to a particular point on the sun
does not form a permanently reliable reference frame. Ordinarily, the Carrington
rotation rate (13. 19890 deg/day) is assumed in defining the heliographic longitude.

It can be argued, of course, that a failure to detect recurring activity at a particular
longitude is merely a result of choosing the wrong solar rotation rate. Even small
errors in the assumed rotation rate would, in time, accumulate large displacements
in the longitudes of recurring features of activity if they existed, For this reason,
various rates have been applied in the search for localites of persistent activity (for
example, Wilcox and Schatten,78 and Haurwitz79). The problem with WLFs is that,

in order to obtain a sufficiently large sample »f events, data over at least one solar

(Due to the large number »f references cited above, thev will not be listed here.
See References, page 33.)
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cycle (and preferably several cycles) should be used. Such long spans of time
greatly increase the likelihood that any location of recurring WLF activity might

become lost or confused.

z

0 % ///////////////// 7 ‘%‘E_LM
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LATITUDE

Figure 2. Distribution in Heliographic Latitude

(degrees) of WLFs in Northern (top) and Southern

(bottom) Hemispheres. Representation of

shaded and asterisked events is identical to

Figure 1. The means of the shaded (unbiased)

distributions of WLF - producing active regicus

are 18.4 deg (0/YN = 1.4) in the norther‘n

hemisphere and 13.1 deg (0/yN = 1.6) in the

southern

In this report we consider on'y the Carrington reference frame, and plot the

longitudes of WLFs in solar cycles 19, 20, and 21 (Figure 3). Figure 3 displays
the northern and southern hemispheres separately, using 30-degree longitude bins;
the total for all three cycles is also plotted, Clearly, there is no evidence for pre-
ferred longitudes persisting from one cycle to another; neither is there persuasive
evidence for any longitude of recurring activity within a single cycle, except possibly
in the southern hemisphere during cycle 21, Here we find 10 of the 12 southern
hemisphere WLFs occurring within a 60-degree span of longitude (these 10 flares,
however, originated in only seven different active regions, where the total number
of southern WLF -producing regions was nine), The (binomial) probability of ran-
domly finding at least seven out of nine regions in onlv 1/6 the available longitude
on the sun is 0.0001, which is unlikely enough to warrant suspicion for the existence
of an active longitude. The seven regions in this zone appeared during June and
July 1980 (two successive rotations), January and February 1981 (two successive

rotations), and June and December 1932,
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In Figure 4 we plot the heliocentric angular distances ol all WLFs with known ".

coordinates, in 30° bins. We also plot the inverse of the solar limb darkening -

__. function at 5000 :X, normalized to the number of WLFs occurring in the 0°-30° bin, _.
.: It might be expected, if WLLF's were elevated structures located high in the solar ":
:' atmosphere, that their discovery rates would increase toward the limb, owing to '-:
:" the increase in contrast offered by the darkening of the solar background. The
y . sample size in Figure 4 is probably too small to draw any definite conclusion, .
'~ although it does appear that WLF occurrences at 60-90 heliocentric degrees do not .‘
": exceed the number occurring at 30-59 degrees. This is in contrast to an expected .

:::: increase by a factor of two based on simple limb darkening. Without additional :‘

:-\ information it is possible only to speculate on this result. Certainly, foreshortening ':.
- and radiative transfer effects within the flare could play a role; or, if WLFs were -

. located sufficiently deep in the atmosphere, a significant amount of photospheric =

___ absorption would be expected at large heliocentric distances. :_
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4.3 Association of WLFs With Other Flare Emissions
L
4.3.1 Ha, 1-8A X-RAYS, AND MICROWAVES

In Figures 5, 6, and 7 we present histograms of the He flare class, soft X-ray
class, and peak z 8 GHz emission, respectively, for all WLFs in Table 1 for which
these data were available, From each of these histograms it is evident that con-
tinuous emission in the optical range is a phenomenon associated with "'big flares, "
as measured at any wavelength. To date, no definite case of a WL F has been
associated with an Ha subflare; and, with only a few exceptions, the associated Ha
flares have been classified as bright (B). Only one WLF was associated with a soft
X-ray event smaller than M5 (M4. 6 for the WLF on 27 January 1981). We note that
three of the four microwave bursts in Table 1 with S (2 8 GHz) < 100 sfu
(1 sfu - 10-22 W m_2 Hz_l) occurred in 1958, when tphe worldwide solar radio patrol
lacked much of the overlapping coverage that is available today. The ~9 GHz burst
associated with the 27 September 1969 WLF had a flux density peak of only 10 sfu at
the time of the continuum emission with § (2 GHz) = 107 sfu; Sp(~9 GHz) for the
entire event was ~64 sfu at ~0435 UT. Until other WLFs with similar radio spectra
are observed, the latter event must remain suspect [possibly a type (2) event; see
Section 3]. [We note, from Table 2, that the sunspot area of the active region in
which this flare occurred (McMath 10333) was anomalously small (< 100 millionths)
in comparison to other WL active regions.| The next smallest 2 8 GHz burst
associated with a WLLF was the 120 sfu burst at ~ 1530 UT on 05 June 1982. [I'rom
the three histograms it can be seen that the ''typical” (median) WLF is associated
with a 2B He flare, an ~ X3 soft X-ray event, and a 2 8 GHz burst with peak flux

density ~4000 sfu,
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°
Figure 6. Peak 1-8 A X-ray
Flux at 1 AU (10-1 erg s_1 cm_z)
for WLFs Where Soft X-ray

Data are Available. Bin size

is 0.05 erg sV em™. The flux
range corresponding to class M,
and the lower limit of class X,
are indicated. Hatched and
double-hatched areas represent
WI1.FF's observed at

Sacramento Peak Observatory
during the period June 1980 -
December 1982; double~hatched
area indicates the subset of
Sacramento Peak events visible
only below 4000 A
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Figure 7, Peak Microwave Burst Flux at any Fre- d
quency = 8 GHz for WL.¥'s Where Data are Available ,;.1
7 (flux in 10° sfu, where 1 sfu= 10722 w m™? Hz™h), -
S Hatched and double-hatched areas are as described "y
"y in Figure 6. Peak flux densities used for Event L
. Nos. 35 and 44 were 8101 and 2700 sfu, respective- :-:\
~ ly. One event (No. 28), in which the peak flux was > .1
reported to be 180, 000 sfu, is not included here
- e
.-:. T e
) Notwithstanding the apparent association of WLI's with "big flares™, IR ¥ig=——————____
.-::. ure 5 we can see a trend toward the detection of WI.Fs associated with increasingly
smaller Ho flares, as patrol observations have become both more systematic and
- sophisticated. A similar decline in the average size of the flash phase emissions
.’ associated with WLF's is illustrated in IYigures 6 and 7, where we have indicated
" those events observed at Sacramento Peak Observatory since June 1980 when the
- Multiple Band Polarimeter patrol was established. We have further identified the
= subset of Sacramento Peak Observatory events that were observed only below 4000 A
. by the Multiple Band Polarimeter (Event Nos. 45, 49, 51, 52, and 54 in Table 1;
Ny although continuum was marginally detectable at A > 4000 A for livent Nos. 49
::- and 52, it would probably not have been noted had it not been for its observation at
:}‘ shorter wavelengths). The median S _ (2 8GHz)value for all events in Figure 7 is
2700 sfu. If we ignore the three cvents in the lowest cnergy bin (Sp < 100 sfu) that
occurred in 1958 when the worldwide radio patrol of the sun was in its infancy, the
:.: median becomes 3813 sfu. In comparison, the median peak flux density for the
:::- Sacramento Peak Observatory events is 2050 sfu, nearly a factor of two simaller.
.‘:\. As is evident from ligure 7, it is primarily the events detectable only below 1000 A
“a that are responsible for the lower Sacramento Peak Observatory median value
- (compare with the results of Neidig and (,‘liver‘84). In fact, if we omit these events,
0y
'.'- 84, Neidig, D.}., and Cliver, 1. W. (1983) The occurrence frequency of white-
~ light flares, Solar Phys. 88:275.
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the median value of the Sacramento Peak Observatory events is also 4000 sfu. We -

note that the WLFs observed only below 4000 A by the Multiple Band Polarimeter .'!

also tend to have smaller associated Ha flares and weaker soft X-ray bursts.

It is interesting to note that the maxima of the microwave peak flux density

spectra of the five WLFs observed only below 4000 ;\ occurred at frequencies

2 9 GHz, consistent with that observed for the bulk of the other events in Table 1
(Figure 8). This is significant, since it indicates that relatively strong and, hence,
low-lying magnetic fields characterize the burst emission source.85 We point out

that three of the events with spectral maximum < 9 GHz occurred in 1958,
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Figure 6

s g 4,3.2 PROTON EMISSION AND TYPE II/1V BURSTS

McCracken86 and Svestka12 called attention to a high degree of association
between continuous emission in flares and solar proton events, Prior to satellite
observations, these proton events were detected by neutron monitors (Ground l.evel
Events, since 1942) or riometers (Polar Cap Absorption Events, since 1955). [lor
the WLF events in Table 1 that occurred after 1955, the association with > 10 AleV
proton events ranges from at least 32 percent (22/42) to as high as 81 percent
(34/42) if one assumes that protons were produced in all WLFs for which the associa-

tion is questionable (masked proton events or ambiguous flave associations; see

85. Guidice, D. A., and Castelli, J. P. (1975} Spectral distribution of microwave
bursts, Solar Phys. 3&155.

868. McCracken, K.G. (1959) A correlation between the emission »f wnite light and
cosmic radiation by a solar flare, Nuovo Cimento 13:1081,
A~

\.I.‘|l'....‘.
)

"
RO L N

>
»

T e A
e Ly e AN A A A S
L) £l .l » »




&>
-

[/
‘.' {'}

R -
i T A

28

Explanation of Table 1). If we consider only western hemisphere events in an
attempt to remove propagation effects, the percent association improves somewhat,

to a range of 74 percent (14/19) to 84 percent (16/19).

87,88

Svestka accounted for the observed high degree of association between

N Y

WLFs and proton events by proposing a single acceleration process for energetic

B

flare particles, in which some of the impulsive phase protons bombarded the lower

chromosphere and upper photosphere to produce the white-light emission, while

s

Sh4

others escaped into the interplanetary medium to produce the proton event, Other

lines of evidence, however, do not favor a direct connection between continuous

emission in flares and proton events., First of all, the reverse association connect-
9

B N ';

ing everv proton event to a WLI" has not been demonstrated. In fact, Cliver et al8
have recently reported a class of relatively large proton events associated with

flares that do not have prominent flash phase emissions and that can originate in

"N,

relativelv simple magnetic configurations, This type of event is in marked contrast

to the flares in Table 1, which generally show strong flash phase emissions and

£y

complex magnetic fields. Moreover, current ideas on flare acceleration of the

s g

‘o
¢

protons detected at Earth emphasize second-stage, that is, shock-related processes

X2

Q
(Svestka and Fritzova-Svestkova, 90 and Kahler et a191) over flash phase accelera-

’ .
CALPTAL

.—-

tion processes to which the white-light emission appears to be more closely related

o. '. l. "I'

(Svestka and Simon, 64 p. 868). Thus, we suspect that the observed association is

l‘l—-

an example of the '""Big Ilare Syr‘.dr‘ome"g2 which states, in effect, that big flares

—

4

. 1 T

tend to be outstanding in all wavelengths and energy ranges, and cautions about

averimerpreting correlations observed in samples of big flares.

LN
v
»

v
vt

If the association between WLFs and proton emission is in fact due to the Big

Flare Syndrome, then one might expect the degree of association to degrade as

,lk

continuum emission is detected in smaller flares. Unfortunately, the five "smaller"

'y,

WLFs that were observed only below 4000 A at Sacramento Peak Observatory were

e

all either eastern hemisphere flares and/or occurred when a proton event was alreadyv

BN ¥
. s w

]

in progress. We donote, however, that none of these five events was associated

g
ain .
£ 4

with a reported Type II burst, generally regarded as a characteristic of proton

flares (L.in, 93 and Svestka and Fm’tzova—Svestkovago).

[y
I

Py
A IR J

uw .

Overall, the association between WLFs and Type II bursts is 59 percent (22/37).

R
L

LS

IFor the reverse association, Type IIs occur much more frequently (> 60/yr during

. . ¢ a9
the solar maximum, after Maxwell and Thompson, )4 and Dodge 5) than WLFs

¥
a e, 4

s

. . 84
(~15/yr during solar maximum ). WLFs also show a strong association with

Type IV bursts (71 percent; 27/38) and Type III bursts (79 percent; 30/38).

N ) a_f 2
./r,u/:v,t{z"

(Due to the large number of referen«es cited above, they will not be listed here.
Sce References, page 33.)
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5. CONCLUSIONS

From this study of WLF's, the active regions in which they occur, and

their association with other flare emissions, we draw the following conclusions:

(1) The active regions that produce WLFs tend to have large
sunspot group areas (> 500 millionths), with complex delta
magnetic structures in which opposite magnetic poles are
located in close proximity to one another (typically EKC in

the Solar Geophysical Data classification scheme),

In regard to the time of their occurrence within the solar
cyeles

(a) Northern hemisphere WLF activity is characterized

bv a rather abrupt commencement one or two yvears

o,

prior to solar maximum, with a slow decline thereafter;

P4

Southern hemisphere WLF activity follows the same
pattern, but, with the exception of one event, begins
approximately one year after solar maximum,

(¢} The combined WLF activity in both hemispheres peaks
approximately one year after solar maximum.

In regard to their location on the sun:

(a) WLFs exhibit a north-south asymmetry with 70 percent
more events having been observed in the northern
hemisphere; during the 21st solar cycle, however,
southern hemisphere events have dominated (12 of
19 cases);

WLFs in the southern hemisphere have a mean latitude
of 13 ¢+ 2°, compared with 18 + 1° for the northern
hemisphere WLFs (compare with conclusion (2) above);
W LFs do not show evidence for favoring certain
preferred longitudes, even within a given solar cycle

(a possible exception is the southern hemisphere in the
21st solar cycle, where seven of the nine active regions
that produced W LFs occurred within a 60° span of

longitude).




(4) White light emission in solar flares is characteristically
accompanied by intense Ha, soft X~ray, and microwave
emission, The smallest (high confidence) He class,
soft X-ray class, and 2 8 GHz peak radio emission of
WLFs observed to date are 1B (several cases), *

M4, 6 (27 January 1981), and 120 sfu (05 June 1982).
Median values for these associated parameters are
2B, ~X3, and ~4000 sfu.

(5) WLFs exhibit a high degree of association with solar

proton events (2 75 percent for western hemisphere WLFs),

Type 1I bursts (- 60 percent), and Type IV bursts (~70 percent).

We argue, however, that their strong association with

interplanetary proton events may be a consequence of the

Big Flare Syndrome rather than evidence for a close physical

link between the two phenomena,

“The 06 July 1968 WLF (IN) was located nearly at the limb, making its
classification doubtful.
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Appendix A
Morphology, Spectra, and Energetics of WLFs

The scope of this report does not encompass physical interpretations of White
Light Flares (WLFs). Therefore, detailed descriptions of WLF morphology, spectra
and energetics are not included in the main body of the discussions. For the sake
of completeness, however, the known salient features of WLFs will be briefly
summarized in this appendix to offer the reader some perspective on the observa-
tions relating to the physical processes occurring in these flares.

WLFs appear as small bright patches, arches, or ribbons of emission, usually
located within the penumbras of large, complex sunspot groups (see Figure Al and
references cited in catalog). Occasionally the emission may appear diffuse; or it
may assume the form of a moving wave-like transient. In general, it car probably
be stated that WLFs have the same diversity of structure that is known to occur in
Ha flares, although the WLF's are much smaller than their Ha counterparts. The
total area of WLF emission averages 6 X 1017 cm2 (Table A1), with a duration
ordinarily less than 10 min; this represents only a few percent of the flare's total
area in Ha, and Hnly 10-20 percent of the Ha flare duration. Nevertheless, WLF
emissions are so intense that within their small areas and durations they may

0

radiate as much energy as the entire Ha event (~ 103 erg). Their peak power

output approaches 1028 erg/sec (Table Al).
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Figure Al. Photographs of Several White-Light IFlares,
Illustrating Their Enhanced Emission at Short Wavelengths
and Their Various Structural Forms; North is at the Top,
tlast to the Teft, in All Frames., (a) 24 April 1981,

1357 UT, photographed at 3610 A, Note strands of emission
in the large, bright patch, as well as two small kernels
(lower) connected by a loop-like teature. The N-S
dimensinn »f the sunspot group is 133 aresec
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Figure Al., Photographs of Several White-Light Flarves,
Illustrating Their Enhanced Emission at Short Wavelengths
and Their Various Structural Forms; North is at the Top,
Fast to the [eft, in All Frames. (b) 24 April 1981,

1357 U1, photographedat 4275 A, Note the decreasc in the
flare contrast at this wavelength, compared with 3610 A
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Figure Al. Photographs of Several White-Light Flares,
Illustrating Their Enhanced Emission at Short Wavelengths
and Their Various Structural Forms; North is at the Top,
East to the Left, in All Frames. (c) 04 June 1982,

1332 UT, 3610 A. Note several small kernels; the N-5
dimension of the sunspot group is 117 arcsec

.’ " --. “e” . .-. - o - L . e ™ < e PR . . -
. --.“.' - _'-._ AR -h"s ".. ORISR .--'.q.' -
Pt a s et aleote: aca e ot e adandd

o S

ol e
I L A
A PR AP P T VY

DECIAE TR .
PRI R YRR
Satataleas




ey R RS i ar e om
A S AR A E N G g It £ S gl I A St i an A el par e aiare il o Fadie n
O Y _t . N At A AR A S A e i Jae Aon e TS SE RS

VI LS Sy

nalal, W

I{' e T L. |

(d) ;

Figure Al. Photographs of Several White-Light Flares,
Illustrating Their Enhanced Emission at Short Wavelengths
and Their Various Structural FForms; North 1s at the Top,
East to the left, ir ° Frames. (d) 04 June 1982,

1421 UT, 3610 A. note white-light flare ribbons
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The occurrence of a WLF over the dark background of a penumbra improves ___:
.‘ the contrast of the flare emission. Yet the brightest WLF patches ever seen have _.".:1
‘ occurred just outside the penumbra, against the undisturbed solar photosphere. In "-,"“:.
‘. terms of wavelength-integrated intensity the WLF, in some cases, exceeds the 4
N surface brightness of the surrounding photosphere by more than 50 percent. ':';::
o In three of the WLFs observed with the Multiple-Band Polarimeter (MBP) the ____]
. data were recorded through the polarization analyzer in five wavelengths (Event ._.'.._l
.:f Nos. 44, 46, and 47). No detectable level of polarization was found at any wave- - *
4: length in any of these flares, that is, linearly polarized emission, if present at all, '\j
: was less than approximately 3 percent of the solar background intensity. ‘:
o The optical spectra of WLFs show, in addition to continuum, many bright l:_d
'. emission lines, including narrow (< 0.1 A) lines of neutral and singly ionized metals, ﬁq
:: broad lines of neutral and ionized helium, and the usual hydrogen Balmer line series, :::;::1
<. ‘The latter are extremely broad, with full widths in Ha (width measured at the 5 :—',.:-f
::; percent enhancement level) exceeding 30 10\ in some cases. Apparently, large ;t::.‘-.'
' Balmer line w1dths are a characteristic of WLFs in general (Slonim and Korobova, .
- Neidig” 1), Neidig Al suggested that an Ha full width 2 20 A could be taken as a
spectral line criterion for continuum emission in flares. The extreme broadening
'f_: of the Balmer series in many WLFs results in a merging of the lines near H15 or
‘:' H16 (as in Event Nos. 47, 50, 51, 53, 55 and 57). Thus, in these particular cases,
> the "Balmer limit" (3646 A in the zero density limit) is advanced at least to approxi-
N mately 3700 A.
o The Balmer continuum has now been positively identified in several WLI's dis-
:: cussed in the literature (Nos. 38, 47 and 48), although at least two cases are kncwn
'_': (Nos. 32 and 36) in which a short-wavelength continuum was present without a
< measurable Balmer jump. In all cases where Balmer continuum has been identified,
. a continuum extending toward longer wavelengths has also been seen. Hiei50
:, (Event No. 38) and Neidig57 (Event No, 47) attributed the latter continuum to emis~-
,' sion by the negative hydrogen ion. This interpretation for Event No., 47, however,
:: is now placed in serious doubt by the detection of a Paschen jump at ~ 8500 A in the
o spectrum of the same flare. 2
A A1l. Neidig, D.F. (1978) Ha , Hard-X-ray, and microwave emissions in the
o impulsive phase of solar flares, Solar Phys. \/5\1:385'
3 A2, Neidig, D.F,, and Wiborg, P.H, (1983) Hydrogen recombination spectra
¢ in white -light flares, {(submitted to Solar Physics).
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Present estimates for the electron densities in the Balmer-emitting layers of

-~ .
v

flares assume that the Stark effect is the dominant broadening mechanism for the
hydrogen lines (for example, Svestka3). If correct, electrondensities ~5 X 1013 cm-3

)
.
v
[

::.: are implied for flares in which the Balmer lines merge near H16.
‘.: Generally, the optical continua of flares are brightest at short wavelengths,
Py especially below 4000 1‘)& (compare photographs in Figure Al). This phenomenon
may be related to the bluish color noted in a number of visual observations of WLFs
;'_-:: (see references to Tuble 1, or Neidig57) although the cause for it is not completely
::::: understood. An increase in the flare contrast could be expected simply as a result
'::" of the decline in intensity of the solar background spectrum at short wavelengths.
.:‘::‘ On the other hand, intense brightenings (~ 100 percent) have been observed in filter-
grams at 3835 or 3862 Z& when the corresponding emission at longer wavelengths
.‘.; was weak or absent (Event Nos. 39, 40, 41, and 44). The latter observations indi-
.:-‘:' cate differences in contrast too large to be attributed entirely to differences in the
':‘ intensity of the solar background. DMultiple Band Polarimeter observations of
':: Event No. 47 indicated enhancements exceeding 300 percent at 3610 10\, with only
:J 65 percent enhancement at 4275 2\ In this case, however, the contrast difference
A may not be so difficult to understand because the 3610 ;\ measurement includes a
::: contribution from the Boalmer continuum. The resolution of the problem of anomalous
b brightness below 4000 A (but above the Balmer limit) awaits the analysis of spectro-
"\_-.'. grams showing large intensity enhancements in this wavelength range; to date, no
L spectrographic data showing enhancements several times the photospheric back-
A ground have been obtained.
:-: White-light emission in flares is usually confined to a short period of time near
_::'; the flare maximum as measured in other wavelengths. Only inafew cases have detailed
':-:" comparisons been achieved between total white-light power and other emissions [Rust
and Hegwerd'7 (Event No. 36), Ryan etalA3 (No. 44), and Kane et aIA4 (No. 47)].
:: In Event Nos, 36 and 47 the white-light power tracked the hard X-ray and microwave
f emissions in considerable detail, suggesting that high energy electrons might be the
':.'.. WLF energy source, On the other hand, the same types of correlations were rather
:::.: poor for Lvent No, 44, Z.irinl5 believes that the white-light event is associated with .
_: the thermal phase of the flare, although the appearance of white-light kernels prior q
‘e to thermally-produced soft X-rays in several flares makes this idea difficult to K%
-:;, accept in general, f‘}
~ N
::: A3, Rvan, .J..I\l.. Chupp, E.L., Forrest, [).J., Matz, S.M., Reiger, E., :‘.1
== Reppin, C., Kanbach, (., and Share, G. (1983) Gamma-ray observational i
ds constraints on the optical continuum emission from the white-light flare .ﬂ
R of 1980 July 1, Astrophys. J. 272:L61. "
":' A4, Kane, S.R., love, .J., Neidig, D, IF,, and Cliver, I, W, (1983) Characteristics T
".-': of the white-light source in the 24 April 1981 solar flare, Astrophvs. .J. 1
:,".. [.etters (manuscript in preparation). - ';‘
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{' Although the interpretation of the observations discussed herein is far from ®
e complete, it is commonly believed that the WLF phenomenon originates from heating -
the relatively deep layers of the solar atmosphere, presumably the low chromo- ‘.
A .
L sphere or upper photosphere. Presently accepted flare models, on the other hand, o
. place the actual energy release much higher—in the low corona—with subsequent 7
ke transport of energy to the lower atmosphere by heat conduction or high energy par- '@
288 ticles. The efficiency of these transport processes decreases rapidly with depth -
-:,,: in the atmosphere; yet the radiative losses in WLIs are enormous (Table Al).
s - _ T
;:.k, Peuk fluxes of approximately 3 X 1010 erg sec 1cm 2 are observed in the brighter .
-}i events; this is ~ 100 tines greater than the He line emission at the same location in .
-". .
the flare (Slonim and Korobova, 14 Neidig57). If the thickness of the emitting layer
SN is ussumed to be 100 km, then the energy deposition rate must exceed o
":: 10° erg sec b em™. The problem of how to transport such a large amount of energy :
'}-‘ from the corona to the deep atmosphere remains a fundamental question in flare ;
DA physics. 4
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Appendix B

White-Light Flares Referenced in the Literature
but Not Included in Table 1
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Table Bl. White-Light Flares Referenced in the Literature but not Included
in Table 1

No. Date Reference Reason for Exclusion
1 07 Dec 1938 Richardson and Minkowski;6 Type (2) event (see Section 3)
Svestka12
2 11 Aug 1954  Miller'® Lack of associated
phenomena; short duration
3. 27 Aug 1956 Severny;7 Svestka12 Type (2) event (see Section 3)
4. 30 Aug 1957 McNar'r-y17 Lack of associated phenomena
5. 07 Sep 1957 Kiepenheuer and Kuenzer5 Limb or Type (1) event
(see Section 3)
6. 07 Mar 18592 Dunn et al;B1 Jefferies Limb event
and Or‘r‘alle
Te 09 Jun 1959 Dunn et al, Bl Jefferies Limb event
and ()rall4
8. 14 Jul 1959 Kvicala et alB3 Refgrgnce is only a lilsting
1531;?11;?1; tc>of S(%‘;:ijt?%%vity
9. 23 May 1967 Mclintosh and Donnelly13 At the limit of detection
(1937 UT)
10. 16 Jul 1970 Zhang and SmarttB4 Limb event
11 04 Jul 1974 Feibelman®® At the limit of detection
(1843 UT)
12 05 Sep 1981 Wang and ChenBS Exceptionally small

associated Hoand X-ray
flare. (Type (2) event?
See Section 3)

B1.

Note: MichardB6 discusses a number of flares which show continuum on
spectrograms; these events, however, were not listed according to
dates and times.

emission observed in two limb flares, Observatory 80:31.

B2. Jefferies, J. T., and Orrall, F.Q. (1961) On the interpretation of prominence

spectra. II. The line and continuous spectrum of the spray-type limb event
of March 7, 1959, Astrophys. J. [133:946.

B3. Kvicala, J., Hrebik, F., Olmr, J., Svestka, Z., and Drivsky, L. (1961)

Observations of flares at the Ondrejov Observatory in the vear 1959,
Bull., Astron. Inst. Czech. 12:47.

B4. Zhang, Z., and Smartt, R.N. (1983) Electric field measurements in solar

flares, Solar Phys. (submitted).

B5. Wang, Z., and Chen, X. (1981) Spectrum of the white-light solar flare of

September 5, 1981, Chinese Astronomical Society, Astronomical Circular
No. 11, p. 1.

B6. Michard, R. (1959) Spectroscopie des eruptions solaires dans le programme

Francais de ' A.G.1., Ann. Astrophys. 22:887.
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Appendix C

White-Light Flares Whose Only Reference is
QBSA (1934-1976) or SGD (Aug 1964-1979)
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