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RAYLEIGH-TAYLOR INSTABILITY IN THE PRESENCE OF
A STRATIFIED SHEAR LAYER

I. Introduction

The Rayleigh-Taylor instability (Rayleigh, 1894; Taylor, 1950) arises in

a wide range of physical phenomena. This instability is primarily driven by a

gravitational force acting on an inverted density gradient (e.g., a heavy

fluid supported by a light fluid). In a magnetized plasma these modes can

exist in both the collisionless and collisional domains. For example,

theoretical models (Hudson and Kennel, 1975; Ossakow, 1979) and ntu -cal

simulations (Scannapieco and Ossakow, 1976; Ossakow et al., 1979; Zalesat. and

- Ossakow, 1980; Zalesak et al., 1982) of the collisional Rayleigh-Taylor

instability in the earth's ionosphere show that the mode evolves into plasma

bubbles that extend upward from the bottomside to the topside of the F-

layer. The collisionless interchange type instability (ballooning mode) can p

exist in the earth's plasmasphere (Vinas, 1980) as well as in laboratory

plasmas (Cppi and Rosenbluth, 1966; Coppi et al.. 1979). These collisionless

modes arise due to an unfavorable curvature in the magnetic field (simulating

an effective gravity) in the presence of a pressure gradient. This

instability may also arise in the acceleration of a heavy fluid by one of

lower density as in targets accelerated by laser ablation (Emery et al., 1982

and references therein) or the deceleration of barium clouds injected in the

ionosphere (Pillip, 1971; Rosenberg, 1971; Davis et al., 1974; Fedder, 1980).

In some of the above situations, the equilibrium flow velocity is

observed to be inhomogeneous. For example, in the ionosphere, the horizontal

. plasma velocity during equatorial spread F (ESF) reverses its direction as a

function of altitude (Kudeki et al., 1981; Tsunoda, 1981a; Tsunoda and White,

1981; Kelley et al., 1981). In the plasmasphere, steep shear in the flow

Manuscript approved November 1, 1983.
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-.- velocity can exist due to the dominating corotating electric field inside the

plasmasphere and a convective magnetospheric electric field penetrating across

the plasmapause. This can lead to a Kelvin-Helmholtz type erosion of the

, outer edge of the plasmasphere (Vinas, 1980; Vinas and Madden, 1983). In

targets accelerated by laser ablation, the Rayleigh-Taylor instability

(Bodner, 1974) nonlinearly evolves into a bubble and spike structure (as

during ESF) and developes a strong shear in the flow velocity (Harlow and

Welsh, 1966; Daly, 1967; Emery et al., 1982). In the absence of any other

driving mechanism, the velocity shear gives rise to a transverse Kelvin-

-. Helmholtz instability in fluids (Kelvin, 1910; Chandrasekhar, 1961) and in

magnetized plasmas (Mikhailovskii, 1974). All of the above examples suggest a

*".i need for a detailed study of configurations in which the two driving

mechanisms co-exist, namely, inhomogeneous velocity flows and gravity (or

similar forces).

The influence of velocity shear on interchange instabilities has been

studied by Drazin (1958) and Chandrasekhar (1961) in the context of fluid

models; by Hamieri (1979) in the context of laboratory plasmas; by Vinas

(1980) in the context of the plasmasphere; and by Guzdar et al. (1982; 1983)

- in the context of equatorial spread F. In this paper we report on our

detailed study of the influence of velocity shear on the collisionless and

collisional Rayleigh-Taylor instability and apply the results to a variety of

geophysical phenomena. We find that the velocity shear can have a dramatic

effect on the Rayleigh-Taylor instability (Guzdar et al., 1982; 1983). A

sufficiently strong velocity shear can stabilize the most unstable modes

(i.e., those for which Uc > 1 where L is the scale length of the inhomogeneity

and k is the perpendicular wave number), which leads to maximum growth in the

long wavelength regime (for which kL < 1). Thus velocity shear, in some

2



domains, preferentially excites a long wavelength mode, in sharp contrast to

the behavior of the mode in the absence of velocity shear.

This paper is divided into five sections. In the next section, we derive

the general mode structure equation describing an inhomogeneous collisional

plasma which contains a sheared velocity flow and which is under the action of

gravity. In the third section we discuss the stability of this plasma in two

limits, namely, the Rayleigh-Taylor limit (no velocity shear), and the Kelvin-

Helmholtz limit (no gravity). In the fourth section we present the results of

the analysis of the generalized Rayleigh-Taylor instability, i.e., when both

velocity shear and gravity are present. In the final section, we discuss the

results and apply them to geophysical phenomena.

',
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II. Theory

We consider an infinite slab of magnetized plasma. The coordinate system

is shown in Fig. 1. The magnetic field is uniform and is in

the z direction (B - B z), the acceleration due to gravity is in the x

direction (a - -g x), the ambient electric field is inhomogeneous and is in

the x direction (E0 = Eo(x) x), and the density is inhomogeneous in the x

direction (no = nO(x)). The inhomogeneity in the background electric field
9. 0

leads to a sheared equilibrium flow, Vo(x) - -c Eo(X)/B Y.

The basic assumptions used in the analysis are as follows: (1) the

perturbed quantities vary as Sp - Sp(x) exp [i(kyy -w t)], where ky is the

wave number along y direction and w w Wr + iy, implying growth for y > 0;

(2) the ordering in the frequencies is such that w, vin « 9,, where in is

the ion-neutral collision frequency and 9i is the ion-gyro-frequency; (3) we

ignore finite-gyroradius effects by limiting the wavelength domain to

ki <<1, where pi is the mean ion-Larmor radius; (4) we neglect perturbations

along the magnetic field (k, = 0) so that only two dimensional mode structure

in the x-y plane is obtained; (5) we retain ion inertia effects, thereby

including the ion polarization drift, but ignore electron inertia; and (6) we

neglect ion and electron pressure.

A key feature of our analysis is that a nonlocal theory is developed.

That is, the mode structure of the potential in the x direction, the direction

in which den*ity and the flow velocity are assumed to vary, is determined by a

2. differential equation rather than an algebraic equation obtained by Fourier

analysis. This technique allows one to study modes which have wavelengths

comparable to the scale size of the inhomogeneities (i.e., kyL < 1, where L

represents scale lengths of the boundary layer). In fact, nonlocal theory is

4
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crucial to describe the Kelvin-Helmholtz instability driven by transverse

velocity shear (Mikhailovskii, 1974).

Based upon the assumptions discussed above, the fundamental fluid

equations used in the analysis are continuity and momentum transfer in the

neuttal frame of reference:

an
t (n V) + , (1)

0 E_+-V xB , (2)
- c -e -

+ V -  ) V- eE+ I (V x m - V + m (3)

where a denotes species (e for electrons; i for ions).

The equilibrium velocities are, for electrons

Vo(x) V (x) = (c/B) E(X) x z, (4)

and for ions (to order v in )

VioCX) = (c/B) { [E +(mi/e)j] x + (V in' Ri [E+(mi/e).&]

+ (1/11) (.4o9 7) o}

where m eB/mic. The electrons simply E x B drift, while the ions drift

with Vio , which incorporates the E x B drift, and the effects of gravity and

the polarization electric field.

We substitue E 0 - V = - V W x) + ) , V = v(x) + 6V

n - nO(x) + 6n into Eqs.. (I) - (3). To obtain the perturbed velocities we do

not Fourier analyze the perturbed quantities in the x direction since the

6 .i
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equilibrium quantities vary in that direction; we Fourier analyze only in the

y direction. Linearizing Eqs. (2) and (3) and making use of Eqs. (4) and (5),

we find the perturbed velocities to be

6V -(c/B) [ik c x + -S ], (6)
-4 y ax

- (c/B) ! U V in 9
-i= (1 + V;/gi) iky 0 ax -

S +iVinax (Qs , k y 601], (7)

y

where w - - kyV0 (x) and VO - roy - -(c/B) EOx.

We substitute Eqs. (6) and (7) into Eq. (1), to obtain

.4,L

Sa n + i kyV0 6ne  i ky 6 n; 0 (8) '

and

S" C ni +k2-k 2 sor ni  - 0o[- i + vin +kyV O) ( 2
nA x y

+ i k V-- 60
*y 0inlx

B y ( - V I/n ] n' 60

- j (- i W + V + i kyV O) n; a 6  (9)B 11 Vin Y0 a

(g/nl - Vo) kyni + (Vin/al (g/Qi Vo S ni

6n i  ,+

+ -gi [(l1 0 o) +in Vi i 0 o -.

-,-7
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,r.

where we have ignored terms of order O(w/Qi) but have retained terms

proportional to w/v in and the derivatives of the equilibrium quantities with

respect to x (indicated by the primes). We now subtract the electron

continuity equation, Eq. (8), from the ion continuity equation, Eq. (9), and

impose quasineutrality (Sne = 6n). We use Eq. (8) to eliminate 6nI and

obtain the mode structure equation

2€ + p - + q S€ 0, (00)
axa

where

n i v + i(i ) Vi n
oin in 0 )0  (1)

0 (W+ iv ) in
in

y( (n/n o) + V;-) k2  g (n'/n
q -k 2+ + Y

(W +iVi) w (w + ivi)

iin kyVo [- - (n/no)(VIVo) + (n;/n o) + (vn/vin)(n/no)] (12)

(2+ iv in) W 00 00 0 ni

Note that the solution of Eq. (10) allows for wavepacket formation

instead of plane waves. The properties of the wavepacket are governed by the

coefficients p and q. From the expression for q we see that the second term

involves the free energy associated with the inhomogeneous plasma flow giving

rise to Kelvin-Helmholtz instability. The third term has the gravity and the

inverted density gradient leading to Rayleigh-Taylor instability. The last

term becomes important in the moderately collisional domain.

I.-



.._ Now we define the following dimensionless parameters in order to cast Eq.

' (10) into a dimensionless form

A1/2 . 1/2, A 1/2
. e/(g/L)I/2 V " Vin/(g/L)' V0 - V0/(gL)2, and k - k L (13)

y

where L is the characteristic inhomogeneity scale length. We also normalize x

with L and define a new independent variable X x/L. With these definitions,

*-- Eqs. (10)-(12) become

. . a2 aa * + -- T- + = 0, (14)

. .:p -(n o/n') + i [ - ] , Iz
'.'.w2 V W 1

- .. J

-p.2

(nA/ o  + V ] k/ (n) /
p -/.. q k)_[42 + + (15

2%-I2 + 01 w2
qk k{-. AA

- kv-- [(V/VO)(n/nO)(w/w )+ (n (/nO) + (n/no)(v'/v)] (16)

-where - k V0 (X) and w2 wl + i V.

We use the transformation

60(X) *(X) e-f ) dri (17)

OP
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to write the Eq. (14) as

*,0 + Q(X) 0,= , (18)

where

Q(X) " q(x) - p'(X)/ 2 - p(x) 2 / 4 . (19)

In solving the elgenvalue problem, we use WKB boundary conditions on 4':

1/4 X
+ * (1/Q exp(-f Q(n) dn ) as X + (20)

0

We refer to Q(X) as the potential function and we give the plots of Q(X)

and * when we solve Eq. (18) numerically in the next section.

Equations similar to Eq. (18) have been obtained by several authors

studying the stability of stratified shear layers in neutral fluids (Drazin,

1958). However, usually a Rayleigh-Taylor stable density profile was chosen,

mainly to examine the influence of inertia on the velocity shear induced

mixing phenomenon. This situation differs slightly from the one considered in

this paper, since we study a situation where inverted density gradients and

velocity shear both are sources of free energy. The collisionless case can be

compared with the neutral fluid case, and when we set v - 0, in Eqs. (14)-(16)

we regain the mode structure equation obtained by Drazin (1958). Drazin

(1958) considers a weakly inhomogeneous plasma, i.e., by setting n'/n 0 to zero

everywhere except in the driving term containing the gravity, and obtains a

simple equation

V 10

. . .._ %

.'. .:,"' ' i. -x . * . . .. . . . . . . . . .. ~ ,* . . . ** p.
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'I--

*+" + k i2 + 2 + 0 ] 0 (21)

where

R E (g/L) (22)
( 2/L )

and a - w/ky. For this weakly inhomogeneous case, the analysis shows that a
y

neutral stability boundary (where the real and the imaginary parts of c are

zero) can be obtained as

R - i2(l - k2) (23)

(.* This implies that for R < 1/4 the system is stable. Hamieri (1979) considered

a more general case applicable to a Tormac machine and arrived at a less

stringent condition. A theoretical analysis in the collisionless and

* collisional cases will be presented in a future paper.
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III. Analysis and Results

The generalized mode structure equation (Eq. (14)] can be better

understood by first considering two limiting cases: (A) the collisionless and
0

collisional Rayleigh-Taylor instability without velocity shear, and (B) the

Kelvin-Helmholtz instability with no collisions or gravity.

A. Rayleigh-Taylor Instability

Setting V0 - 0 in Eq. (14) we obtain

no/n o
(nn [1.- .( IJ - 0 (24)

0 0 W (W + iv)

Eq. (24) can be solved in the local approximation,

*(x) exp(ikxx); k2 L2 >> k2 L2 >> 1 (25)
x y x

and we obtain the well known dispersion relation (Haerendel, 1974; Hudson and

Kennel, 1975)

W2 + ivinw + g/L n 0 (26)

which has the solution

iv i +( 1 n )]1/2(27)

1 1 an0
where Ln  = no ax Instability can occur when g/Ln < 0. The collisionless

n 0

and collisional solutions are, respectively,

-5 12
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' -- (g/L ) yin<< 12(g/L)1/2 (28)
nnn

w - - i (g/Lv)/V V >> 12(g/L )l/2- (29)
n nin n

We now solve Eq. (24) numerically for a density profile

2
no nO exp(-j--) + An. (30)

The results are shown in Fig. 2, which is a plot of normalized growth

1/2rate, y - y/(g/L) / , vs normalized wave numbers, k = k L. Curve A is for
y

the collisionless Rayleigh-Taylor instability and curve B is for the

collisional Rayleigh-Taylor instability with v - 0.5. We use An/n0 = 0.01 for

both cases. As expected, the growth rate maximizes in the regime k >> 1 and

the maximum growth rate agrees well with the growth rate predicted by local

theory [Eq. (27)] with the growth rate evaluated at the maximum density

gradient. The potential function (Q(X) given by Eq. (19)) and the wave

function (*(X)) , corresponding to k - 1.0 are shown in Figs. 3 and 4,

respectively. We note that for An/n0  -0.01, n6/n0 has a maximum at

X - -2.4and a potential well [-Q(x) is a minimum] is formed around this point

as can be seen from Fig. 3. We see from Fig. 4 that the wave function also

localizes at X - -2.4. The negative sign implies that the Rayleigh-Taylor

instability is active where the density gradient opposes the gravity. We note

that the wave function spreads out into the positive region of the x-axis,

where the Rayleigh-Taylor instability is locally stable (gravity acts in the

same direction as the density gradient).

13
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Figure 2. Normalized growth rate Y Y y/g/L- vs k Sk L for the Rayleigh-
y

Taylor instability. Curve A represents the collisionless

mode (v - 0); curve B represents the collisional mode

(; - 0.5), where ; - v//gL . The density prof ile used is a

Gaussian-like profile nex2/2L2 + An, with An/no - 0.01.
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Figure 3. Plot of potential term, Q(X), as a function of X for the

collisional case and density profile used in Fig. 2.
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B. Kelvin-Helmholtz Instability

We retain the flow velocity V0  V0 (x) but consider a collisionless,

uniform fluid with no gravity. Eq. (14) becomes

"o-V11

.y+ [- k ( - k Vo) 0, (31)

which is well known (Mikhailoviskii, 1974). Rayleigh's theorem

(Mikhailovskii, 1974) predicts an instability if the velocity profile has a

vanishing second derivative between the boundaries, i.e., [a2 V0 /ax
2  

0 = 0,

where x <12 and x, and x2 are the boundaries.

Equation (31) is solved for an equilibrium velocity profile

Yo V0 tanh(x/L) y (32)

and the results are shown in Fig. 5 (curve A) in which we plot

y/(Vo /L ) versus k yL. The instability is purely growing and is bounded I
between kvL - 0 and 1 with a maximum growth rate of y- 0.18 (Vo/L) at

k L z 0.45 (Michalke, 1964).

When a density gradient is included, we arrive at the following equation

(n'/n + 0 0 0 ] + (
0 (0 w kyVO) (

Using the same pocedure as outlined following Eq. (31), we can show that

for instabilty the density and velocity profiles should be such that
'(noV 0 where x0 is any point within the boundaries. It is

n- . o 0 x0
interesting to note from Eq. (33) that no instability exists if the density

and velocity profiles are such that VO0 /V- -no/n O  Equation (33) is

17
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solved numerically for the velocity profile given in Eq. (32) (in this example

we have set the density and shear scale lengths to be equal). The properties

of this mode are shown in curve B of Fig. 5 for an exponentially decreasing

density profile. Two features are to be noted here: (1) that the density

gradient has a stabilizing influence which reduces the maximum growth rate

from y - 0.18 (V0/L) to y - 0.074 (V0 /L), and (2) that the instability exists

in the region 0.1 < kyL < 0.9 shifting the wave number at which the growth

rate maximizes from kyL - 0.45 to kyL - 0.55.

A

0.24

/

0.20-

0.16-

A "

0.12-

(VO/L)

0.08-

0D4

ODO
0.0 0.2 0.4 0.6 0.8 ID

A
k

4A

Figure 5. Growth rate y/(V 0/L) vs k- k yL for the Kelvin-Helmholtz mode.

Curve A represents the case v - 0, Vn - 0; Curve B represents

the case v - 0, and no - n0 exp(-x/L).
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1V. Generalized Rayleigh-Taylor Instability

In the previous section we considered the limiting cases where an

inverted density gradient in the presence of gravity and a velocity shear

individually give rise to different instabilities. We now consider the

general problem where both free energy sources jointly give rise to a

generalized Rayleigh-Taylor instability (Hamieri, 1979; Vinas, 1980).

We consider two different cases: (A) a self-consistent equilibrium, and

(3) a general equilibrium based on the experimental observations.

A. Self-consistent Equilibrium

We choose the following density profile

n0 (x) 0 (1 + e tanh(x/L))/(!--s), (34)

and the following velocity profile

VOx) Vin0 1n0 ( x)) (35)

such that

V n n __

V0 0~2T* 00o , ,-12 n x 7 s n(.X)
(gL) n0(x)

1/2we have defined a dimensionless parameter s 0 ) Note that

the zeroth order continuity equation is satisfied by these profiles for

Vn constant, i.e.,

- [(no(x) Viox(x)] 0 . (36)
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which implies

n0 (x) E 0(x) constant

or using the definition of V0 from Eq. (4),

n 0 (x) V0(x) = constant.

We solve Eq. (14) numerically using these profiles and present the results

below.

In Fig. 6 we plot the normalized growth rate - versus k for the

collisionless and collisional cases. The solid lines represent the

collisionless case ( 0 - C) and the dashed lines represent the collisional case

(v - 0.5). We set e = 0.8 in the density profile. Several points are to be

noted in this figure. First, we note that in a shear-free, collisionless

Rayleigh-Taylor plasma the growth rate asymptotes to the local growth rate

evaluated at the peak density gradient, (solid line), i.e.,

y(k >>I) = g(n; /n 0)iL/ (37)
x =x

For the density profile given in Eq. (36) n'/n 0 maximizes at obtained from

tanhX [-1 ( - e2 1/] (38)

20

! 1 7j> : 2 ~.



A-A

0.8

A.A

0.2-

.0 A0
4.-I

.0.4

0.8-

0.61

A..

are 0.e sefcnitn rfls q. (34 an (5)

J A
21



.- .0 E ( ( w

For,= 0.3 Eq. (38) yields-~ = -0.55 and using this in 2q. (37) we find the

' local growth rate to be y 1.0. This agrees with the growth rate for large

k (see Fig. 6, solid line). Second, we find that ion-neutral collisions have

a stabilizing influence as seen from the dashed line, which represents the

growth rate curve for v = 0.5 and s 0. Third, in a collisionless Rayleigh-

Taylor unstable plasma, for s = 1.0 (shear frequency, V0 /L, equal

- . to Vg/L) velocity shear stabilizes the short wavelength modes (solid

line; s 1.0); the cut-off mode number, where the growth rate becomes zero,

is k - 11.0. As a result the growth rate maximizes at k 1.5 and has a
c

maximum value y' = 0.675. Fourth, in a collisional plasma also,

with v 0.5 the short wavelength modes are completely stabilized (dashed

line; s 1 1.0). The cut-off mode number in this case is, k.- 10.0, which is

less than that of the collisionless case. The peak growth rate is also

3maller with y 0. 5 occurring at k = 1.5. .e see that the ion-neutral

collisions not only reduce the growth rate but also reduce the cut-off mode

number.

In Fig. 7 we give the plots of the wavefunction for 0, K = 0.5,

v = 0.5 , and = 0.8. We note that the wavefunction localizes at

X0 =;-0.55 which is the point where the density gradient (no,'no) has an

extremum. The wavefunction localizes at this point because 0"X) has a local

minimum. We refer to this point (for s 0 0) as the Ravleigh-Taylor

localization point. The negative sign indicates that the density gradient has

to oppose the gravity for instability.

In Fig. 8 we give the wavefunction for the case s 1 with the

same v. and e as in Fig. 7. The solid and the dotted lines represent the

real and imaginary parts of the wavefunction, respectively. "e note that when

'20S
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x

-:Figure 7. The wave function corresponding to Fig. 6 (solid line; s =0)

and k -0.5.
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Figure 8. Real and imaginary parts of the wavefunction, corresponding to

Fig. 6 (dotted line, s 1.0 )and k =0.5.
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the velocity shear is introduced into the problem, the wavefunction picks up

an imaginary part. Furthermore, we find that for k > 1, the wavefunction

localizes at a point closer to the origin in the velocity shear layer.

In comparing our results with Drazin (1958) we note that since we use a

density profile whose density gradient is not a constant, and since we have a

Raleigh-Taylor unstable plasma, our threshold condition on R is quite

different. This aspect will be dealt with in a future paper.

B. General Equilibrium

Recent experimental observations, made during equatorial spread F (ESF)

(Kudeki et al., 1981) and in the high latitude ionospheric F region (Kelley et

al., 1978), indicate that ionospheric plasmas usually support inhomogeneous

equilibrium plasma flows. In the case of ESF it was found that the flow

velocity reverses its direction as a function of altitude (x, the direction of

the density gradient). Furthermore, the velocity reversal point moves up as

the spread F develops. This equilibrium situation, where the flow velocity

profile is not related to the density profile in a simple manner, is generated

by the coupling of the plasma to the neutral atmosphere, for example, by the

neutral winds and the inherent shear in the neutral wind velocity or in the

case of ESF due to an incomplete coupling caused by background ionospheric

Pedersen conductivity away from the equatorial plane (Zalesak et al., 1982).

Our earlier numerical results indicate that the inhomogeneity

in w - kyVo(x), and not necessarily the V' and V is primarily responsible

for stabilizing the short wavelength interchanger modes (Huba et al., 1983).

Therfore, based on the experimental observations (Kudeki et al., 1981; Tsunoda

et al., 1981) and our numerical results (Huba et al., 1983), we choose the

following density and velocity profiles for a general equilibrium study:

25
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n 0 (X) (i + tanh y)/(I - c) (39)

Vo(X) -V tanh (x - x 0 ) (40)

%: i where ,(0 is the velocity reversal point (in the ionospheric case, X0 is the

point where the westward flow becomes eastward). Using these profiles we

solve Eq. (14) numerically. Also, for simplicity, we choose the density

gradient scale length and velocity shear scale length to be equal. The

numerical results are given below.

First we study the role of XO on stability and determine the optimum

.O to be used in later calculations. We set v = 0.5 and E = 0.8. In Fig. 9

we plot the normalized growth rate y versus k. Curve A shows the nonlocal

collisionless Rayleigh-Taylor instability (s 0). Curves B, C, and D

correspond to s I for different values of XO. Curve B gives the growth

rates for s - 1 and X. - -2.0 which shows a significant reduction in the

- growth rate. The growth rate maximizes with y - 0.52 at 1 - 3.0. However,

*"."when XO is set to -0.55 (the Rayleigh-Taylor localization point) the growth

rate is sharply reduced, maximizing at k - 0.5 with y = 0.256 (curve C). For

X0 O 0 (curve D) there is a significant reduction in the growth rate and a

severe reduction of the k domain for instability. The instability is bounded

between k - 0.5 and 3.6. Here, the growth rate peaks around k - 1.7.

- For X 2.0 (not shown) the growth rate curve is similar to that cf

XO .- 2.0 (curve C). From this we conclude that the effects of velocity

shear are strongest when the velocity reversal point falls in the Rayleigh-

g- ~. Taylor localization region.

I%,
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AFigure 9. Variation of the dispersion curve, y vs k, for different

'"

transition points (Xc), of the flow velocity profile given by

V = V tanh(X - X0) for X0 rn -0.5, -2.0, and 0.0. Parameters used

are s - 1, v - 0.5, e - 0.8, and for the profiles given in Eqs.

(39) and (40). Curve A corresponds to shear-free case (s -0)

where as curves B, C, and D correspond to s=1.0 and

0 -2.0, -0.55, and 0.0 respectively.
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In order to throw some light on the variation of the dispersion curves as

a function of the velocity shear we plot Y versus k for various values of

s keeping v, s , and fixed at 0.5, 0.3, and -0.55, respectively, in Fig.

10. This figure shows that the general (non self-consistent) profiles yield

results similar to those of the self-consistent profiles (sec. IV.A; see fig.

6). As s is increased, k the mode number at which the growth rate maximizes,

moves towards smaller k and the growth rate is substantially reduced. For

very large shear, s >> 1, the mode becomes purely Kelvin-Helmholt-e like,

preferentially exciting a long wavelength mode (k - 0.45 ) with the cut-off

k less than 1.0 (to be compared with Fig. 5). This aspect is further
p A A

illustrated in Fig. 11 where we plot y versus s for several values of

- k. The figure shows that for v - 0.5 , modes with k 1 0.8 are always

unstable. No amount of shear (measured in units of s ) stabilizes these

modes due to the onset of the Kelvin-Helmholtz instability for these large s

and small k. Furthermore, for the parameters used in the figure, moderate to

strong velocity shear stabilizes modes with k > 0.8. An empirical estimate of

the shear that stabilizes the smallest k mode can be obtained from the k =
'.°

0.8 curve in Fig. 11, i.e., s = 2.5 or Vo/L - 2.5 Vg7L; the figure also shows

that the critical shear depends on the wavenumber.

From Fig. 10 we see that for v = 0.5, the mode with k - 0.45 is the

fastest growing mode for large s. It is interesting to study the behavior of

this mode as a function of s. In Fig. 12 we plot y (for k - 0.45) versus s.

Curves A and B represent the collisionless (v 0) and collisional

(v - 0.5) cases respectively. Note that for s 0 0, y is purely Rayleigh-

Taylor-like; but as s increases, y initially decreases, which shows that

velocity shear is reducing the growth rate of the Rayleigh-Taylor

"N*" instability. Beyond s > I the velocity shear dominates and the Kelvin-

28
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Figure 11. Study of growth rate y as a function of s f or k 0. 4 thru

2.0. The parameters used are c 0.8, v -0.5, and X. -055
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Helmholtz mode sets in. We note that Y increases linearly with s for large s

since it is normalized to VgL and not Vo/L • For the collisional case we see

that the velocity shear has a stronger influence over a broader domain in

s and the Kelvin-helmoholtz type instability sets in for larger (s 2.5).

We see from Fig. 10 that the cut-off mode numbers and the mode numbers

where the growth rate maximizes vary significantly as a function of velocity

shear. In order to show the values they asymptote to for large velocity

shear, we plot the cut off mode numbers k (curves A), and the mode numbers of
c

the fastest growing modes, k (curves B) as a function of s in Fig. 13. We
m

use X0 = -0.55 , = 0.8, and v = 0 and 0.5. Solid lines represent the

collisionless case (v = 0) and dashed lines represent the collisional case

( - 0.5). From the figure, we see that k , and k fall sharply as s ism c

increased and asymptote to smaller k values. For 0 = , (solid lines)

k asymptotes to 0.3 and k asymptotes to 1.0. 3ecause for large s the modem c

is Kelvin-Helmholtz-like, k and k ,as expected, attain the values shown inm c

Fig. 5. For v - 0.5 (dashed lines) both km and k are initially smaller thanmc

those for the collisionless case. However, as s is increased these maximum

and cut-off wavenumbers achieve a minimum value, then rise and again asymptote

to similar values as those corresponding to the collisionless case, namely 0.5

and 1.0, respectively.

Finally, in Fig. 14 we show the effects of introducing a spatially

dependent collision frequency. In the ionosphere the ion-neutral collision

frequency decreases exponentially as a function of the altitude. We use the

profile v - 0.Sexp(-x/L), choosing the scale length to be the same as the

density gradient scale length for simplicity. Curve A shows the growth rate
A

curve for constant collision frequency, v - 0.5, and for s - 1.0, and

- 0.8. The growth rate maximizes at Y m 0.256 around k = 0.55. Curve B,

32



with v- v(x), shows a drastic reduction in the growth rate. The ma.cimum

growth rate (y 0.09) occurs at k - 0.7. Interestingly, in this case the

lowerbound of the instability is shifted. The domain of unstable wave numbers -

is 0.15 ( k < 1.2; whereas, Eor the constant collision frequency case the

domain was 0 < k < 1.2 (the lower bound for curve A is not shown in the

figure). Curve C for a weaker shear, namely s 0.5, shows that the maximum

growth rate is comparable to that of curve A. However, in this case modes

with wave numbers 'k > 3.0 are completely stabilized.
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Figure 14. Normalized growth rate versus the normalized wavenumbers for the

case of a spatially dependent collision frequency. The density

and velocity profiles are given in Eqs. (39) and (40). The

parameters used are s - 0.8, X0 = -0.55, and v = 0.5. Curve A

refers to constant collision frequency, v = 0.5, and s = 1.0.

Curves B and C refer to v = 0.5 exp(-X) and for s 1.0 and 0.5

respectively.
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V. Discussion and Conclusions

We have investigated the influence of velocity shear on the Rayleigh-

Taylor instability. The Rayleigh-Taylor instability is driven by gravity and

an inverted density gradient. In general this instability is most unstable in

the short wavelength domain, k L > I, where L is the density inhomogeneity
y

scale length and k is perpendicular to the density gradient and the magnetic O

field. We obtain the well known results that the maximum growth rate is given

by Vg!L (giv. L) in the collisionless (collisional) domain. On the other

hand, a sheared transverse velocity drives the Kelvin-Helmholtz instability in

the long wavelength domain, kyL < I. In the presense of transverse velocity

shear, the short wavelength spectrum (kyL > I) of the Rayleigh-Taylor

instability is strongly suppressed or stabilized and the growth rate maximizes

in the long wavelength domain (kyL < 1). Thus, velocity shear causes a long

wavelength mode to be preferentially excited; whereas in the absense of

velocity shear the dominant wave mode usually has a shorter wavelength

determined by initial conditions or non-linear processes. This prominant

conclusion had been stated in an earlier paper (Guzdar et. al., 1982, 1983).

We note that the wavepacket generally localizes in the region where the

density gradient opposes the gravity, which in our case also happens to be the

shear layer. 2he wave function falls off rapidly away from the localization

region of the Raleigh-Taylor instability, but still has some finite amplitude

in the stable region (where g.7n is positive). This is due to the global

sampling of the entire density profile.

* Another interesting feature of the generalized (including velocity shear)

Rayleigh-Taylor instability is its crucial dependence on the velocity reversal

point. in the absense of velocity shear, the wave function localizes at a

point, say Xw , determined primarily by the background density profile. In the
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case of the hyperbolic tangent density profile (Eq. 34), the wave function

localizes in the region where the density gradient opposes the gravity. If

the velocity reversal point, X0 (where the y-component of the equilibrium

velocity changes sign), is in the region where the density gradient is

parallel to the gravity, the velocity shear has a generally stabilizing

influence without the characteristic peak in the growth rate vs wave number

curve in the long wavelength domain (Fig. 9). However, when w= X0 , velocity

shear reduces the growth rate significantly and moves the peak toward longer

wavelengths, preferentially exciting longer wavelength modes.

Two possible applications of this theory to ionospheric phenomena have

been discussed in a previous paper (Guzdar et al., 1982, 1983). Briefly, the

major feature of this theory, viz., preferential excitation of a long

wavelength mode, may explain (1) the structuring (1-3 km) of barium releases

which are injected across the magnetic field (Linson et al., 1980; Wescott et

al., 1980), and (2) the long wavelength (few hundred kms) oscillations of the

bottomside F layer during equatorial spread F (Tsunoda and White, 1981; Kelley

et al., 1981).

The shaped barium release experiment (Wescott et al., 1980) was conducted

at high latitudes in the presence of a pulsating aurora at an altitude of 571

km. Numerical simulations showed that a charge separation induced radial

polarization electric field results in an E x B velocity shear. This shear

layer seems to be located in the region where the density gradient is steepest

(Wescott et al., 1980). Our analysis does not strictly apply in the auroral

environment. However, the basic instability leading to structuring of the

S.. barium cloud is possibly a Rayleigh-Taylor type instability (Pillip, 1971;

Fedder, 1980) due to the deceleration of the cloud (Scholer, 1970). So our

* results in the collisionless domain could be applied to this case. For
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example, gradient scale sizes of 500 m - 1 km can lead to irregularity scale

sizes of 1.5 - 3 kms with growth rates - 10 sec - .*

Kudeki et al. (1981) have shown, from the observations at Jicamarca using

a Radar interferometer technique, that the velocity reversal point moves

upward as the spread-F structures evolve. The position of the F-peak was not.I

available at the time of these measurements. However, we conjecture that

since the velocity reversal point is at a different location with respect to

the F-peak at different times, the velocity shear induced long wavelength

modulations of the bottom side F-layer may not be apparent at all times, but

may be seen when the velocity reversal point is in the Rayleigh-Taylor

localization region (namely, in the bottom side of the F region).

Tsunoda (1983) recently has shown that the background density gradient

has a scale length of 25 km when long wavelength fluctuations were observed in

strength of the shear or velocity reversal point, were available. We point

out that the measured absense of the velocity shear prior to or immediately

after the onset of the wave-like structure is expected because ALTAIR needs

the formation of the bubble and spike structures to measure the plasma

velocities. Despite the lack of shear data in his paper there is resonable

agreement between the data and the theoretical results. However, data on

velocity shear, for example by alternate techniques, are crucial to confirm or

disprove the theory. The question of short circuiting effects by the E-layer,

raised by Tsunoda (1983), needs a closer examination and is not addressed

here.

Similar results were obtained by Vinas (1980) in connection with the

investigations of the erosion of the plasmapause. Tle conjectured that strong

velocity shear could exist in the plasmapause region and lead to long
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wavelength irregularities in competition with the ballooning mode type

interchange phenomenon. However, an important difference exists in comparing

Vinas" theory with ours, namely, that g/L is positive in his case, meaning

that the heavy fluid supports the lighter fluid. le also find similar results

in the topside of the equatorial ionosphere, where gravity acts in the same

direction as that of the density gradient (a situation similar to Vinas" case)

and the collision frequency is very small. These results indicate that in a

Rayleigh-Taylor stable plasma the velocity shear could excite Kelvin-Helmholtz

type modes. Thus we can conclude that in the absence of equatorial spread F

if the flow velocity in the topside ionosphere is sufficiently strongly

inhomogeneous, it can induce some large scale irregularities. Figure 5 (curve

B) shows that if sufficient velocity shear exists, irregularities of scale

sizes of - 300 km with weak growth rates (l0- sl) could possibly exist in

the weakly collisional topside of the ionosphere.

In conclusion, we have shown that:

(i) Sheared plasma velocity flows can have pronounced effects on the

collisional and collisionless Rayleigh-Taylor instabilities.

Sufficiently strong velocity shear preferentially excites a long

wavelength mode. This result may explain the long wavelength

oscillations of the bottomside F layer during equatorial spread F

and the prompt structuring of injected barium clouds (Guzdar et

al., 1982; 1983).

(ii) Since the wavefunction localizes in the Rayleigh-Taylor unstable

region we expect these long wavelength fluctuations to be seen at

the bottomside of the F-layer.
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(iii) This phenomenon is most likely to occur when the velocity reversal

point is within the Rayleigh-Taylor localization region (where

gravity opposes the density gradient).

(iv) The generalized Rayleigh-Taylor instability is qualitatively

similar but has quantitatively different properties in the

collisional and collisionless domains (see fig. 12). The cut-off

mode numbers and maximally growing mode numbers are different in

these two cases (see fig. 13).

(v) The properties of the Rayleigh-Taylor instability are similar for

self-consistent as well as for general equilibrium density and

velocity profiles.

(vi) As the velocity shear is increased, the cut-off mode numbers and

the maximally growing mode numbers asymptote to values similar to

those of the collisionless Kelvin-Helmholtz instability (see fig.

12).

4 (vii) A spatially dependent collision frequency alters the results

drastically by reducing the growth rate, and by restricting the

band of unstable wave numbers to a smaller region (see fig. 14).

4.
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01CY ATTN R. TURCO
MITRE CORPORATION, THE OICY ATTN L. DeRAND
P.O. BOX 208 OIC ATTN W. TSAI
BEDFORD, 11A 01730

P OICY ATTN JOHN MORGANSTERN RAND CORPORATION, THE
01CY ATTN G. HARDING 1700 MAIN STREET
01CY ATTN C.E. CALLAHAN SANTA MONICA, CA 90406

01CY ATTN CULLEN CRAIN
MITRE CORP 01CY ATTN ED BEDROZIAN
WESTGATE RESEARCH PARK

7: 1820 DOLLY MtADISON BLVD RAYTHEON CO.
"MCLEAN, VA 22101 528 BOSTON POST ROAD

01CY ATTN W. HALL SUDBURY, MA 01776
01CY ATTN W. FOSTER OICY ATTN BARBARA ADAMS

PACIFIC-SIERRA RESEARCH CORP RIVERSIDE RESEARCH INSTITUTE
12340 SANTA MONICA SLfD. 330 WEST 42nd STREET
LOS ANGELES, CA 90025 NEW YORK, NY 10036

OICY ATTN E.C. FIELD, JR. OiCY ATTN VINCE TRAPANIi
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LA :OILA,--A 2037REDONDO BEACH, CA 90278
0 . AT WI .TQ:S~ ICY ATTN R. K. PLEBUCH

OLCY A=TN DANIEL A. HAMLIN OICY ATTN S. ALTSCHLER
OICY ATN E.OIC ATTN D. DEE

aOE^. ATTNl S.A. STRAICER OICE ATTN 21ST ZrELGCY ATTN CURTIS A. SMITH SNTF/1575

FREEZ PMANT1% !; SOUTH BEDFORD STiREET

AM.N: J. COCKAWE-c 0lCE ATTN J. CARPENTER

333 RVNSODAVENUE
ME!L3 ARK CA94025
OICYATT"DONALDNELO
OIC ATI.1ALAN XURNS
Ol~, -- NG.SMITH
OIC A-7:1R.TSUNODA

01CYAT~lDAVID A. JOHN'SON!
01C AT71W.ALTE'R G. CHEESNWL-
OIC A,-!;CHARLES L. RINO

DICE AT::; WALTER JAY:
OECE ATTN S. VICKRET
O1CY AlTN RAY L. LEADABRAU-,D
01CE ATTN G. CARPENTER
OICY ATTN G. PRICEU

OICE ATTN V. GONZALES .
OLCE ATTN D. MCDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730

* 01CE ATTN Ni.P. BOQUIST

TOYON RESEARCH CO.I
SANTA BARB&2'A, CA 931LL

OLCE A-T:: JOHN ISE, isa.
Oicy ATTN JOEL GAP.KRI::O
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IONOSPHERIC M1ODELING DISTRI3UTON LIST
(UNCLASSIFIED ONLY)

: PLEASE DISTRI3UTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTE WISE

NOTED)

N(AVAL -ESEARCH LABORATORY NASA
WASHINGTON, D.C. 20375 GODDARD SPACE FLIGHT CENTER

Dr. P. MANGE - CODE 4101 GREENBELT, mD 20771
Dr. P. GOODMAN - CODE 4180 DR. K. MAEDA

DR. S. CURTIS
A.F. GEOPHYSICS LABORATORY DR. M. DUBIN
L.G. HANSCOM FIELD DR. N. MAYNARD - CODE 696
BEDFORD, MA 01730

DR. T. ELKINS COMMANDER
DR. W. SWIDER NAVAL AIR SYSTEMS COMMAND

RS. R. SAGALYN DEPARTMENT OF THE NAVY
DR. J.M. FORBES WASHINGTON, D.C. 20360
DR. T.J. KENESHEA DR. T. CZUBA
DR. W. BURKE
DR. H. CARLSON CO'1A NDER
DR. S. JASPERSE NAVAL OCEAN SYSTEMS CENTER

SAN DIEGO, CA 92152
BOSTON UNIVERSITY MR. R. ROSE - CODE 5321

DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215 NOA.A

DR. J. AARONS DIRECTOR OF SPACE AND
ENVIRONMENTAL LABORATORY

CORNELL UNIVERSITY BOULDER, CO 80302

ITHACA, NY 14850 DR. A. GLENN JEAN
DR. W.E. SWARTZ DR. G.W. ADAMS
DR. D. FARLEY DR. D.N. ANDERSON
DR. X. KELLEY DR. K. DAVIES

DR. R.F. DONNELLY

HARVARD UNIVERSITY
HARVARD SQUARE OFFICE OF NAVAL RESEARCH
CAMBRIDGE, MA 02138 800 NORTR QUINCY STREET

DR. M.B. AcELROY ARLINGTON, VA 22217
DR. R. LINDZEN DR. G. JOINER

INSTITUTE FOR DEFENSE ANALYSIS PENNSYLVANIA STATE UNIVERSITY

400 ARMrY/NAVY DRIVE UNIVERSITY PARK, PA 16802
ARLINGTON, VA 22202 DR. J.S. NISBET

DR. E. BAUER DR. P.R. ROHRBAUGH
DR. L.A. CARPEN TER .

SSACHUSETTS INSTITUTE OF DR. X. LEE
TECHNOLOGY DR. R. DIVAN!

PLASUA FUSION CENTER DR. P. BENNETT
LIBRARY, '..16-262 DR. F. KLZVANS
CAMBRIDGE, ,A 02139

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037

DR. D.A. HAMLIN

DR. E. FRIEMAN
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.1 STANFORD UNIVERSITY UNIVERSITY OF TEXAS

S STAMFORD, CA 94305 AT DALLAS
DR. P.M. BANKS CENTER FOR RESEARCH SCIENCES

P.O. BOX 688
U.S. ARMY ABERDEEN RESEARCH RICHRDSON, TX 75080

AND DEVELOPMENT CENTER DR. R. HEELIS
BALLISTIC .RESEARICH LABORATORY DR. W. HANSON
ABERDEEN, ., DR. J.P. McCLU'E

DR. J. HMIRL
UTAH STATE UNIVERSITY

GEOPHYSICAL INSTITUTE 4TH AND 8TH STREETS
UNIVERSITY OF ALASKA LOGAN, UTAH 84322
FAIRBA KS, Ax 99701 DR. R. HARRIS

DR. I.E. LEE DR. K. BAKER
DR. R. SCHUNK

UNIVERSITY OF CALIFOR'IA, DR. J. ST.-MAURICC
BEDKELEY

BERKELEY, CA 94720 PHYSICAL RESEARCH LABORATORY
DR. M. HUDSON PLASMA PHYSICS PROGLA±L'ff

AHMEDABAD 380 009
UNIVERSITY OF CALIFORNIA INDIA
LOS ALAM!OS SCIENTIFIC LABORATORY P.-. PAZ-UK, LIBRARIAN
J-10, HS-664
LOS ALAMOS, "M 87545 LABORATORY FOR PLASM% AND

DR. !. PON N GRATZ FUSIO. ENERGY STUDIES
DR. D. SIMONS UNIVERSITY OF HARYI.ND
DR. G. BARASCH COLLEGE PARK, HD 20742
DR. L. DUNCAN JHAN VARYAN HELRIAN,
DR. ?. BERNAARDT REFERENCE LIBRRIAN
DR. S.P. GARY

UNIVERSITY OF MARYLAND

COLLEGE ?ARK, MD 20740
DR. K. PAPADOPOULOS
DR. E. OTT

JOHNS HOPKINS UNIVERS:TY
APPLIED PHYSICS LABORATZRY
JOHNIS HOPKINS ROAD

LAUREL, MD 20810
DR. R. GREENWALD
DR. C. MENG

UNIVERSITY OF PITTS3URGH
PITTSBURGH, PA 15213

DR. X. ZADUSKY
DR. X. BIONDI
DR. E. OVEL\A'

56

'.4, . ,,-..A._ .. .. . . . . .in,-.,. ... . . . . . .... 5... ..



L.

4

I

'A
~i1

.9

.' 'A

*4 1
I 'I

*1

* 9

4, ,,'

I
~4
'I

* *1* -4

1' 4d*

jL 9

* 9

-I "~

I a
U Pd

*L. *~ .x .5-.. 4

4 '4 *~. ~ 'Z4 ~ '-fP-1P~PA4'~ar.

* '4

'- ~ 4

4 ~. . .

- A~A~C.4~9 ~ - **~* .* *.~,-* . . -. - - - -


