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ABSTRACT

e

The exact solution, the Born approximation, and its variational improvement are
obtained for the scattering of electromagnetic waves from a random ensemble of
systems, each consisting of two Rayleigh cylinders. The cylinders are parallel, of in-
finite length, and of equal radius. Their separation varies randomly among ensemble
members except that the cylinders cannot overlap. The intent is to test a recently de-
veloped vector stochastic variational principle. The exact solutions are obtained for ;
the average differential scattering cross sections of both the transverse electric (TE) )
and transverse magnetic (TM) fields relative to the cylinder axes with normal plane il
wave incidence. The corresponding variational approximations are obtained using a
recently reported computational alternative to the more familiar dyadic Green’s i
function solution. They are in essential agreement with the exact TE and TM solu- '
tions, whereas the Born results are not. In particular, the variational results accur- 1
ately account for multiple scattering, which is significant in the exact TE, but not '
TM, solution, and also account for the difference in geometric polarizability be-
tween the two solutions. t
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1.0 INTRODUCTION

The potential advantages of variational approx-
imations in scattering problems are well known.'*
First, by virtue of variational invariance, errors in the
initial trial approximation for the fields on or within
the scatterer do not lead to corresponding first-order
errors in the calculated far field scattering amplitude
T. Thus, good initial approximations can lead to im-
proved results, and estimates of the accuracy of vari-
ational results can be made in some cases.>* Because
the usual Schwinger variational form for the scatter-
ing amplitude is a ratio of integrals,” difficulties in
computing the statistical moments of this ratio
resulted in very limited application of this method to
random scattering problems until the mid-seventies.

In 1977, Hart and Farrell* demonstrated that, for ar-

bitrary scatterer statistics, the integrals whose ratio
comprises the deterministic variational expression
can be averaged individually and recombined to form
an invariant expression for the average scattering
amplitude (T) . This form, i.e.,, <) = (N,)
x (N, )»/({D), is inherently simpler to evaluate than
the direct average of the deterministic expression (7
= {N,N,/D), where N,, N,, and D are integrals in-
volving the fields at the scatterer.

Hart and Farrell demonstrated this result for
(T)and ¢ IT1?) in the case of scalar wave scattering
from objects or surfaces with homogeneous boun-
dary conditions. An extension was made recently**
to vector wave scattering and inhomogeneous boun-

'L. Cairoand T. Kahan, Variational Techniques in Eleciromag-
netism, Gordon and Breach, Science Publishers, inc., New York
(1965).

2p. M. Morse and H. Feshbach, Methods of Theoretical Physics,
Parts [ and [I, McGraw-Hill, New York (1953).

3D. s. Jones, “A Critique of the Variational Method in Scatter-
ing Problems,”” /IRE Trans. Antennas Propag. AP-4, 297-301
(1956).

“R. W. Hart and R’ A. Farrell, **A Variational Principle for
Scattering from Rough Surfaces,”” JEEE Trans. Antennas Pro-
pag. AP-28,708-710(1977).

%1, A. Krill and R. H. Andreo, *‘Vector Stochastic Variational
Principles for Electromagnetic Wave Scattering,” IEEE Trans.
Antennas Propag. AP-28,770-776 (1980).

®R. H. Andreo and J. A. Krill, **Vector Stochastic Variational
Expressions for Scatterers with Dielectric, Conductive, and
Magnetic Properties,”” J. Op1. Soc. Am. T1,978-982 (1981).

dary conditions. Specifically, we have derived®* gen-
eral vector stochastic variational expressions for the
statistical moments and probability density functions
of arbitrary polarization components of the vector
scattering amplitude, é, - T and the differential scat-
tering cross section 1é, - TI®. These invariant ex-
pressions are applicable to random scatterers with ar-
bitrary inhomogeneous and anisotropic permittivity,
conductivity, and permeability.

Of present interest is the extent to which the gener-
al vector stochastic variational principle, by virtue of
first-order error cancellation, can approximate polar-
ization-dependent interactive phenomena, i.e., inter-
ference and multiple scattering, even if the initial
field approximation does not. This question is ad-
dressed in this report by calculating the exact solution
to a random scattering problem exhibiting these ef-
fects and then comparing the result with the corre-
sponding Born approximation and its variational im-
provement.

Our approach is based on a similar earlier
analysis.”® In an effort to examine the accuracy and
efficacy of the original scalar stochastic variational
principle,' Gray, Hart, and Farrell’ calculated
closed-form variational and first-order perturba-
tional approximations to transverse magnetic (TM)
wave scattering from a classic, random, perfectly
conducting surface’ on which Dirichlet boundary
conditions are satisfied. The surface consisted of
many parallel, nonoverlapping, hemicylindrical pro-
trusions on an infinite plane. The hemicylinders were
of equal radii, infinite length, and random separa-
tion. The variational approximation for ( !71*) was
found to include the sum of independent hemicyl-
inder scattering contributions as well as a correction
term proportional to the fractional area of the plane

E. P Gray, R. W. Hart, and R. A. Farrell, **An Application of
a Variational Principle for Scattering by Random Rough Sur-
faces," Radio Sci. 13, 333-348 (1978).

$3. A. Krill and R. A. Farrell, “*Comparisons Between Varia-
tional, Perturbational, and Exact Solutions for Scauering from
a Random Rough Surface Model,”” J. Opt. Soc. Am. 68,
768-774 (1978).

v, Twersky, **‘Multiple Scatering of Radiation by an Arbitrary
Planar Configuration of Parallel Cylinders and by Two Parallel
Cylinders,”” J. Appl. Phys. 13, No. 4, 407414 (1952).
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covered by the hemicylinders. Comparison of this re-
sult with first-order perturbation theory showed a
discrepancy that persisted even when the Rayleigh
limit was taken. Krill and Farrell* were able to abtain
the exact solution for the simplest multiple scattering
case for this perfectly conducting surface, consisting
of only two randomly separated, nonoverlapping,
Rayleigh hemicylinders. They showed from the exact
solution that the variational result accounted for
multiple scattering whereas the first-order perturba-
tion approximation did not, thus offering an ex-
planation for the discrepancy.

The present study differs from the earlier one™* as
follows. First, we are testing the recent extension of
the stochastic variational principle to (vector) electro-
magnetic wave scattering from objects or surfaces
with generally nonvanishing boundary conditions.
The scattering model to be considered involves di-
electric cylinders. Because there are differences be-
tween the exact transverse electric (TE) and TM fields
(including interactive effects), we will investigate the
extent to which the vector variational principle ac-
counts for these polarization phenomena. The model
consists of an ensemble of systems, each of which
contains two dielectric, parallel, Rayleigh cylinders
with infinite lengths and equal radii. A plane wave is
incident perpendicular to the cylinder axes and makes
a fixed angle relative to the plane in which the axes
lie. The cylinders are randomly separated but hard;
i.e., they cannot merge or overlap, and their refrac-
tive index goes discontinuously to the value 1 at their
surface.

For normal incidence and arbitrary incident polar-
ization, the scattered field can be written as the
superposition of the (decoupled) TM and TE solu-
tions.'""'' The exact TE and TM solutions for the dif-
ferential scattering cross section are obtained in
Chapter 2 for two identical dielectric Rayleigh
cylinders with axis separation greater than their di-
ameter. In Chapter 3, these solutions are ensemble
averaged over a separation distance subject to the no-
overlap constraint. Chapter 4 presents calculations
using the vector stochastic variational principle to
improve the Born approximation for random cylin-
der scattering and arbitrary polarization. For this
simple random scattering problem, the average of the
deterministic expression could also be calculated and
is presented. In Chapter S, the Born and variational
results are compared to the exact TE and TM solu-
tions, with particular attention to the accuracy with
which the approximations account for polarization
effects and multiple scattering. It is concluded that
the variational approximation accurately describes
both the polarization dependence and the multiple
scattering found in the Rayleigh limit of the exact
solution.

"H. C. Van de Hulst, Light Scattering by Small Particles, Wiley,
New York, pp. 297-301, 306-307 (1957).

1G. Olaofe, ‘*Scattering by Two Cylinders,” Radio Sci. S, No.
11, 1351-1360(1970).




2.0 EXACT TE AND TM SCATTERING CROSS SECTIONS

Figure 1 presents the scattering configuration in
which two parallel, infinitely long cylinders, labeled
cylinder +1 and - 1, are illuminated by a plane wave
incident normal to their axes, which are located at
Y and -V, respectively. The cylinders have
relative refractive index m and radius @, and their
axes are along Z. The incident plane wave has electric
field E, = A¢, exp(ik; - r), where k; is the wave vec-
tor, A is the amplitude, and ¢, is the polarization vec-
tor. The wave vector is in the direction %, i.e., k; =
kx, and forms a fixed angle g relative to the plane in
which the cylinder axes lie. We are interested in the

+ oo
K

0("‘ ) "

Cylinder +1

Figure 1~ The scattering problem consists of two
nonoverlapping, parallel dielectric cylinders illuminated by
a plane wave normal to their axes and forming a fixed angle
2 with the plane in which their nxes lie. The infinite-length
cylinders' separation ¢ = ¢*V - ¢-V i3 a random
variable, and TE and TM scattering cross sections are
calculated in the Rayleigh limit.

differential scattering cross section 1T12, where T
=¢é, - T, for arbitrary polarization é,. Because the
plane wave is incident normal to the cylinder axes, ar-
bitrary polarization can be treated as the sum of
decoupled TE and TM field contributions. The exact
TE and TM solutions will be obtained for the
Rayleigh limit'®* mkaand ka < < 1.

The exact solution for scattering from two dielec-
tric cylinders with arbitrary, but fixed, axis separa-
tion f{={*+h &Y has appeared in several
sources.”'"'"* As in our two-hemicylinder solution,®
we again follow the procedures described by
Olaofe,!"'? which are based on scalar wave functions
related to the TE and TM fields.” First, the wave
function ¥,,, used to describe the total field external
to the scatterers, is written as the sum of an incident
plane wave and scattered wave contributions from
each cylinder, i.e., ¥, = Vi + ¥.. The incident
plane wave is expanded in a Besse] series in terms of
coordinates centered at the j-th cylinder axis, where j
= +1] or —1 (Fig. 1). The scattered field from each
individual cylinder is expressed as a sum of cylin-
drically outgoing waves centered at that cylinder with
as-yet undetermined coefficients. Finally, the addi-
tion theorem is applied that expresses the outgoing
waves from one cylinder in terms of coordinates cen-
tered at the other cylinder. The resulting equation for
the external wave function, expressed in the coor-
dinates centered on the j-th cylinder, is"

Ve = A, E o {,‘n wje""” J, (krd)

+ 0, H (krV) + J, (kr?" ) (~1)"

x L, oH2%k0 (-1, )

SR

126G, Olaofe, *Scattering Cross Section for Two Cylinders,”” IEEE
Trans. Antennas Propag. AP-18, No. 6, 823-825 (1970).

By, Twersky, “‘Scattering of Waves by Two Objects,”’ Electro-
magnetic Waves, R. E. Langer, ed., The University of Wiscon-
sin Press, Madison, pp. 361-389 (1962).

“N. Zitron and S. N. Karp, ‘‘Higher-Order Approximations in
Multiple Scattering, 1, Two-Dimensional Scalar Case,"' J.
Math. Phys. 2, No. 3, 394-402 (1961).
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where j’ is — 1 when jis +1 and vice versa; ¢ equals ¢
or n, respectively, when j equals —1 or +1; and w;
= exp[ik{¥’ cos B]. The factor w; accounts for the
phase shift of the incident wave that occurs when the
coordinate origin is translated to the axis of cylinder
J. The sum over the first term in the brackets is the
incident plane wave, the sum over the second term is
the scattered wave from the j-th cylinder, and the
doubl sum represents that from the j’-th cylinder.
Her:. 4e incident scalar wave function is assumed to
be a pisne wave of amplitude 4, . This amplitude can
be related’® to the corresponding amplitude 4 of the
incident plane wave electric field. Because the ampli-
tude of the incident wave cancels in the final expres-
sion for.T (c.f. Egs. 6a, 6b, 40, and 41), it will not be
discussed further.

An expression for the coefficients in Eq. 1 can be
obtained by applying the appropriate boundary con-
ditions for the fields at the cylinders’ surfaces, '

b, = —c,finwem + (~ 1y

x © bH200-1¥), @

(= -~

n=0, %1, 22, ..., £,

where c, is the n-th order scattering coefficient for a
single cylinder.'®!" These latter coefficients will be
designated by ¢ and ¢,™ for the TE and TM solu-
tions, respectively.

For nonoverlapping Rayleigh cylinders ({ > 2a,
mka < <1, and ka < <1), it can be shown®'2!*13 that
the infinite set of coupled equations in Eq. 2 may be
truncated. This conclusion holds even in the limit
that the cylinders touch, i.e., { — 2a(l +4,), where
8, — 0. Series convergence considerations and ex-
amination of c, reveal®'*" that, in the Rayleigh
limit, the ;b, coefficients that are lowest order in ka
correspond ton = O for TM fieldsand n = +1 for
TE fields. Moreover, the series in ¢ may be cor-
respondingly truncated so that

Ya. A. Ivanov, Diffraction of Eleciromagnetic Waves on Two
Bodies, Nauka i Tekhnika Press, Minsk, pp. 66-69 (1968)
(English translation).

™
P = "coTM w,, (3)

where c™ = ix(m® — 1)(ka/2)?, and

Fic y .
b= g A eEe +ow e @
where ¢t = —ix(ka/2)*(m* —1)/(m* +1), and the

interaction parameter p = ¢EH,(k{) appéars in both
the exact and the variational solutions for the TE
case. We note that in the Rayleigh limit of the two-
cylinder problem, multiple scattering is expected to
be significant only when the cylinders are in proximi-
ty. Observe in Eqs. 3 and 4 that the only variable that
has such a characteristic is p, which appears only for
the TE case.

Using the standard relationship between the
fields and the wave function, one can show that the
scattering amplitude definition,

2 eikro
Ve —A“\JH i T, &)

results in the following TE and TM amplitudes:

s _ _ad-D _
TTM = [—IbOTM + ”b‘;rMe—lk\COS(ﬂs J)}e ki cos (8 - g} s

(6a)
where it is recognized that
IV =g"=0-8=0,
Y = A" and
A — f- = —rcos(d, — B),
and

T7E - {,,B + , Be-tieos, m}e ikl = s (8- ,
(6b)

where B = i(;,b"; exp(-i0, - B) - b
exp(+ /0, — 1)), and we have used a coordinate sys-
tem centered on the origin in Fig. 1. The cross sec-
tions 17™ 12 and 17" 12 are readily obtained by tak-
ing the absolute square of Eqs. 5 and 6 and inserting
Egs. 3 and 4, respectively.

e T

i
'
o
{
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3.0 ENSEMBLE AVERAGES OF EXACT SOLUTIONS

Ensemble averages of the exact cross sections over
random cylinder separation ¢ will be evaluated in the
manner of Krill and Farrell.® The cylinder axes point
in the z-direction and lie in the plane that forms an
angle g relative to the incident wave. The axes are lo-
cated within the limits —L/2 < {V'<+L/2, j =
+1, and are constrained not to overlap, i.e., { > 2a.
The two-center probability density function is

1
=2 if { > 2aand
p[r»n’r—l)] = -L/2 =V <+L/2,

Jj= =1

0 otherwise

The average ( ) of an arbitrary function g({) that
de?ends onlyon { = {*" — & can be shown to
be

L
| -2+ e-oar,
(7a)

1
g = (_L—_Za)z

which, in the limit L — o0, goesto ®

L
Ja-uniew +e-mar,
(7b)

@) =

provided this limit exists. Applying Eq. 7 to average
the TM cross section ¢ I712)™ using Egs. 3 and 5,
one obtains

(IT12)™ =%z- (ka)*(m* - 1)*(1 ~ »), (8)

where the subscript E denotes the exact result, and »
= 4a/L is the packing density. The term linear in »
comes from the factor (w,w? ) in the absolute square
of Eq. 5 and represents mean destructive interference

between the cylinders caused by their nonoverlap
condition.

The TE case is treated by noting that performing
the absolute square of Eq. 6b and applying Eq. 4
leads to terms that are of the form

f(r)="~—|‘$‘—?. ©)
| B

where (n,0) = 0,1,and 2, v = [k cos 3, k cos 8, k(cos
8 * cos 6), or 0], and the interaction parameter is,
again, p = ¢, H{"(k{), which approaches (Ma’/{)
for small k¢ where M = (m* - 1)/(m* + 1). These
averages are evaluated analytically in the same man-
ner as in Ref. 8 (see Egs. 18 and 20a of that reference)
to give

M2 pAmee

s dy,
. (A=) ly, (10)

.
S = (- 1y VM|

where y = VM a/{. The validity of Eq. 10 can be
verified by demonstrating® that it differs from Eq. 9
by terms that are higher order in ka. Equation 10 can
be evaluated analytically'® to give (to first order in »
and second order in M)

—vM/4, n+ (=1
vM?/48,

0, n+(=4

(AN = n+(=2,

1))

where we have assumed that m = 1 + éwithé < <
1, so that M < < 1. The terms that are second order
in M are retained because the inaccuracies of the
stochastic variational results first appear at that
order.

The exact result for ( I7,12)™ in the limits (mka,
ka, and M) —~ 0 may now be expressed by applying

1. S. Gradshteyn and 1. M. Ryzhik,Table of Integrais, Serses,
and Products, Academic Press, New York (1968).
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Egs. 11, 9, and 4 to the average absolute square of As in the TM case, the (1 — ») term describes scatter-

Eq. 6, giving (to the fourth order in M) ing by two independent cylinders, modified by inter-
ference effects (the — » term). The remaining terms in
Eq. 12 are due 1o multiple scattering.

T, 1Y = = (ka)* M feos®,01 ~ ) i
— Myvcos 8, cos (238 — 6,)

+ MZEE [Zcosze‘ + cos> (28 - 0‘)]}.

(12
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4.0 VARIATIONAL AND BORN APPROXIMATIONS

Vector stochastic variational expressions were re-
cently derived for general conducting, dielectric, and
magnetic scatterers.>® In order to investigate the ex-
tent to which these expressions can account for polar-
ization and interactive scattering phenomena, a
stochastic variational approximation to the two-Ray-
leigh-cylinder random scattering problem addressed
in the previous sections will now be calculated. The
Born approximation for this problem is computed as

an intermediate result that the stochastic variational
calculation improves. We are also able to evaluate
the direct average of the deterministic variational ex-
pression for this simple random scattering problem in
the limit of nearly transparent Rayieigh cylinders,
where m — 1. The various approximate solutions are
compared with the exact solutions in the Summary
and Conclusions.

4.1 Variational Formulation for Infinite Cylinders

The variational expressions derived in Refs. 5 and
6 are for scatterers localized in three dimensions in
which the scattered field is a spherical wave in the
far-field limit. For the infinite-length, homogeneous
cylinders of current interest, the scattered field E_. is
a cylindrical wave in this limit and is expressed as E_
— AT e* /Vr, forr, > > ¢(see Fig. 1). An integral
wave equation for two-dimensional scatterers may be
obtained from the three-dimensional results*¢ by rec-
ognizing that E, E, and U = k*(m* — 1) are all inde-
pendent of the z coordinate in Fig. 1 for a normally
incident plane wave. Using the relationship'’

G(,(r, r'y - 8L1r S‘x dh etz >H0(|)(KR2)
~ (13)

with &2 = & + h* and

R, =V((x-x") + (y-y')?,
one can integrate the three-dimensional resulis**

over ine z coordinaie 10 obtain

EO=E + S G2t - (UE()]dS’,
‘ (14)

L. B. Felsen and N. Marcuvitz, Radiation and Scartering of
Waves, Prentice Hall, Inc., Englewood Cliffs, New Jersey, p.
635(1973).

where c¢s denotes integration over the scatterer cross
section, E, is the incident plane wave with polariza-
tion ¢, and propagation direction k,, the two-
dimensional vector ¢ = x¥ + yy, and the two-
dimensional dyadic Green’s function is

G(1.8) = PVIT + v V/k)

x L H{R,) = Eog- £k . 019)

Here I is the three-dimensional unit dyadic, H,'"
(kR,) is the 0-th order Hankel function of the first
kind, PV indicates principal value integration when
the first term in Eq. 15 is in the integrand, and L is
the depolarization dyadic that depends on the shape
of the infinitesimal e~tuded region used in com-
puting the PV integral. (We note that the total in-
tegral involving G/ is independent of this shape.'")
In the far field, because { and {’ are never coinci-
dent, Eq. 14 can be used to express the scattering
amplitude, T = ¢ - T, as

i
T=T Nl' (l())

®A. D. Yaghjian, *‘Electric Dyadic Green's Functions in the
Source Region,'* Proc. IEEFE 68, 248-263 (1980).
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with

No= | dsie  (T- KR)-TUBE) e
° an

where ¢, specifies the scattered wave polarization of
interest, K, is the unit vector in the scattered direction
that makes an angle 0, relative to the incident direc-
tion in Fig. 1, and integration is over the cross-sec-
tional area of the scatterer.

The procedures outlined in Refs. 5 and 6 may be
applied to Eq. 14 to derive a stochastic variational
principle for 7. As for the three-dimensional case,
this results in an expression of the form

1 CINIBYOIN, 12
Yy —————
AT =16 — <ty > 49

where
Nz(e‘:nk‘:;‘:’k‘.\) = Nl (‘:» - kAn'¢T’ e ,‘:;) (19)
and

D= | ds UBE) B - | ds| ds'uim)

-Gy ?(6,¢7) - (UE(E)] . (20)

4.2 Evaluation of the Integrals N,, N,, and D

We encountered calculational difficulties in our at-
tempts to evaluate the double surface integral in Eq.
20 for two dielectric cylinders. Consequently, we em-
ployed'® methods analogous to those used by Yagh-
jian'® to obtain an alternative expression in which D
is reexpressed as

D=D, ~D, +D,, @y
where

D, = | as'UE(r) - 101 + UIKIEG) ],

(22)

i ’ ’ ’

D, =05 LdsL ds’ [UED]- (V' x ¥
x (UE(S'ND1HM(KR,) , 23)

5. A. Krill, R. H. Andreo, and R. A. Farrell, “‘A Computational
Alternative for Variational Expressions that Involve Dyadic
Green Functions,’”” IEEE Trans. Antennas Propag. AP-3,
1003-1005 (1982).

and

D, == | asukp - aei - {Urwr)

X [V HMKR,) x 1)

+ [V x UBE)] x TH(KR,)],  @4)

where the contour integral in D, is over the boundary
T' of the scatterer cross section (cs), and 7 is the out-
ward normal at the boundary. Although Eq. 21 is not
as compact as Eq. 20, its evaluation is straightfor-
ward because all of the singularities are integrable.

For Rayleigh dielectric cylinders in which ka < < 1
and mka < < 1. it is appropriate to approximate the
total original and adjoint fields appearing in the in-
tegrals of the variational expression by the cor-
responding fields that would occur in the absence of
the cylinders, i.e., by the original and adjoint plane
waves’® E = A¢é, exp(k, - JandE = A€, exp (- ik,
- §), respectively, where ¢ = r — zZ. Using these trial
approximations, one finds

No=N, = AG - ke -nE| e vas,
L @5)
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where the sum is over cylinders j = +1 and the in-
tegral is over the cross section of the j-th cylinder.
Further, we have used the definitions @ = k, — k,
and U = kK2(m* - 1) for {’ecs;, and U = 0 for
¢'fes; . The integral is evaluated by first expressing the
coordinates for points interior to the cylinders as {;
= 9 + r, where ¥ = [x¢Y cos B + ¥V sin B is
the position of the j-th cylinder axis (see Fig. 1) and r
is the field point within the j-th cylinder relative to its
axis. Applying this transformation to Eq. 25 results
in

N, = A(e, -¢)k*(m* — )xa®S,, (26a)

where

SI = Zem rw = emw‘“) (l + em f)'
’ (26b)

a= lal,

and we have used the fact that

—xa’ .

| e as= x| —z

€3

2J,(aa)
—IT:_G_]

Applying these trial approximations to the denom-
inator integrals, Eqs. 22 through 24, results in

D, = A%, - ik (m* ~ m?

x L[ e vas’ =mna4, @n
Vi

<)

D, = ; Aakm -1y Yy L_ ds
i Jj i

X S dS’ el
o,

J

v x v x(e%5)] x HPwRy,
(28)

and

D, =£,42k2(mz - L L[ dse s
¢ J

l‘SJ

: <§r dvi' - {e et o x IV’H‘;"(kRZ) x 7|
)

+ [v' X (¢', et )] X Hé”(kRz)i}. 29)

where T, denotes the circumference of the j-th
cylinder. By applying the coordinate transformation
§, = ¢ + rand evaluating the double curl in Eq.
28, D, reduces to

D, = éAZkZ(mZ S 1P -6

i

S dSS dS’ e %t et H{KR,)
cs; cs; (30)

since é; -k, = 0. By applying the addition theorem
(e.8., see Watson®) for the cases i = jand i # jin
Eq. 30 and evaluating the resulting integrals in the
Rayleigh limit, Eq. 30 is found to be proportional to

‘(ka)*. This should be contrasted with the other in-

tegrals N,, N,, D,, and (as will be shown) D,, which
are of the order (ka)’. Thus, D, does not contribute
to the variational calculation in the Rayleigh limit.

Evaluation of the D, integral, Eq. 29, remains.
This integral arises from the discontinuity in refrac-
tive index at the surface of the scatterer and vanishes
in the case of soft scatterers.'® (Of course, D, would
be more complicated for soft scatterers.) We will
show that, for hard scatterers, D, accounts for all the
multiple scattering and contributes to the polariza-
tion dependence in the variational approximation.
We rewrite Eq. 29 in a form more convenient for cal-
culation by using a vector identity and by translating
the cylindrical coordinate systems. This gives

0G. N. Watson, A Trearise on the Theory of Bessel Functions,
2nd ed., Cambridge University Press, New York, Chap. XI
(1962).
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i i i
D, = Ak (m — 1) L Tets 17 em "

g 2 . .
. s s l’dl’d¢ e—lh ‘“"S'”c,
0 Y0

. S:'ad¢e—ik¢coso [f . [vHé”(kRz)]c‘,-

- §(& - VHPKR,)) = i(f = k) EHP(KR,)

+ilf - KHPURY < g ()

where g is the radial cylindrical unit vector. When i
=j,R, = [@ + ' - 2a’ cos (¢ — ¢')]", and
wheni # j, R, = [P® + &* ~ 2Pacos (¢ — P,
where P = [ + "2 — 28 cos (x — ¢’ — B)]".
These geometrical parameters are illustrated in Fig.
2. The addition theorem is applied once for i = jand
twice for i # j, and the gradients on H,(kR,) are
then taken. The resulting series of integrals is
straightforward to evaluate, and uvpon retaining
terms that are the lowest order in ka, we find

D, = A*x(ka)*(m* - 1)
x {m -0G-HG-Hr-4-ils
- %’(m’ - Dka) HOKDG - 66

- [#sin(28) - $eos 2B, ), (32a)

Figure 2 — lllustration of parameters that relate to R, us-
ing the cosine law. When / = j, 1+ and ¢’ are within the
same cylinder; however, when i # j, + and ¢’ lie in different
cylinders.

where
S Y eh i)
)
= e,,, R f("(e"“ ot + ell, f) . (zzb)

and S, is defined in Eq. 26b. Observe that (ka)*
H;"(k$) in Eq. 32 is of the same order as ¢ in the
exact TE solution Eqs. 4 and 6. For { - 24, this coef-
ficient is of the order (ka)*.

4.3 Evaluation of the Averages

The integrals IN, 12, IN, 12, and 1D, 1 depend on
the cylinder separation {"through the phase term

IS,1? = 2 + 2Real (¢ 7). 03)

Using Eq. 7 to average these integrals over random
(but nonoverlapping) separations, we find

(N = 4122 (k) (m? ~ 1), - EP(1 - »)
(4
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and, from Egs. 25 and 27,
CIN 12y = (ING12Y = (1D 1P Y/ (m* A%).  (35)

The final step needed to obtain ¢ I7, 1 )* from Eq.
18 is to complete the evaluation of ¢ {DI?). From
Eq. 21 and the fact that D, does not contribute in the
Rayleigh limit,

(ID1?)y = (1D, 1*) + 2Real (D?D,) + (D, 1) .
36)

The averages appearing in the latter two terms of this
equation can be expressed in the general form

) = ((ka)** " H, " (kD) H,™ (kD) cos (D))

2(ka)" Xr - )
L

x | HP ke HE (k) cou i ds,
67

as can be shown by direct substitution of Eqs. 31 and
27 (with Eq. 26) into Eq. 36. In particular, Eq. 37
must be evaluated for thecases n + ¢ = (0,1,2) and v
= [0, kcos 8, kcos (0, — B),ork(cos 8 x cos(®, -
59 ]. In the Rayleigh limit, the evaluation of Eq. 37
can be accomplished using procedures analogous to
those used to obtain the average of Eq. 9,° with the
result

(ka)* n+(=0 9=0
~ v(ka)* n+1=0 9#=0
(-1 (iv/x)(ka)* n+ (=1
()" (W3 NkY n + (=2

J)y =

(38)

.pital’s rule, is
¢ i to evaluate the

*An alternate evaluation procedure -
given in Ref. 21. This alternative c..
average of Eq. 9.

E. P. Gray, R. W. Hart, and R. A. Farrell, A Variational Ap-
proximation for the Scattering of Scalar Waves by Stochestic
Swrfaces, JHU/APL TG 1322(1979).

to first order in ». These results lead 10
(IDI) = A*x*(m* - l)z(ka)‘{Z(l - v)[(m: - 1)y

x ((j‘:)z(jé)): +(m - 1) -E)

X (F-é)E - é) + (6 -é)
+ 2-; (m* - 1) [(j-e‘,)é - [¥sin (28) -ﬁcosmi)l]:
- »(Y -¢)e, - |Xsin(28) - ycos(20)]

—y (V- e)(y-e)

> +(m:—|)(¢'\-¢',)” .

39

o

The ﬁnd step is (o insert Eqs. 34, 3S, and 39 into
the variational expression Eq. 18. Expanding the re-
snl.m in powers of » and retaining the first-order term

yields

AT, ™ = = ke - 120 -0 40

8
and
v
At = 2 (ka)* M fcos” 0,1 - »)

- My cos® cosi(28 - 0)

- M*ii‘ cos' 2 - 0)]. N

where M = (m’ - 1)/(m° + 1); and we have used
the facts that

7 for TM waves

g

v for TE waves
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. z for TM waves
¢ = - -
~xsinf, + ycosf, for TE waves
(42b)

This completes the evaluation of our vector
stochastic variational principle. Next, we obtain the
noninvariant Born approximation ard the direct
average of the Levine-Schwinger dete: ..nistic varia-
tional result.

The noninvariant Born approximation ¢ 17,1°) is
obtained by using the plane wave trial function in the
expression®

(I 17y = (IN,12y/(16141%) . 43)

From Eqs. 34 and 42, the TE and TM solutions are

(kay'(m* - 1)’'(l — v)
44)

( IT. |Z )TM -

o |9,

and

(1T 12 = g(lm)‘(m2 - 1cos’0,(1 - »).
45)

The standard Levine-Schwinger form of the varia-
tional principle is

IN, 12 IN, I2

TR 46)

T4 =

For nearly transparem Rayleigh cylinders, the
denominator integral, D, can be expanded in powers
of M. In particular, recognizing that D, = 0 in this
limit and combining Eqgs. 27 and 32,

D =D, + D,
N A for the TM case
= 2
Na( ')n + MD] for the TE case
2 @7

where

ir(ka)’ . -

p = M) H;"(ko<‘——~—~°s(2" %) )szxs‘.
4 cos @

(48)

[y

It should be noted that L does not depend on M and
is of order (ka)* except when the cylinders are nearly
touching where D is of order unity. Using Eq. 47, we
can write the direct average of Eq. 46 as

T, 0%

(IN, /A1 Y/ 16 for the TM case
- “9)
1 . :
X [< IN,/(A(m + 1)1y

—“M(T,)+M <r:>] for the TE case

where IN,/(A(m* + 1)12, T, and T, are each pro-
portional to M*, and terms of order M* and higher
have been neglected. In particular,

A}

T, = i% (ka)* M’ cos 6, cos(23 — 6,)
X [HI'(K$)SS, — HP(k)S, S2)  (50)

and

r, = M ("_'zf)‘ cos’ (23 ~ 0)
x “ ka) H*k S, |

~ (ka)* (H{" (kp) )* $783/5,

- k' (HE k)" 5,80/81). o)

o

PAPR=e A

- o
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We note that S°S, and S,/S,depend on the cylin-
ders’ positions only through the axis separation §.
Therefore, the averages appearing in Eq. 49 can be
evaluated using Eqs. 37 and 38. The result is

o
[ ] (ka)'(m* —1)*(1 - ») for the TM case

'2
(Tl =1 5 ta)ae {cos 0,01 - 0 52)
~ Mvycos b, cos (28 - 6,)
+ M-g cos’ (28 - 0,)]} for the TE case
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5.0 SUMMARY AND CONCLUSIONS

The recently developed vector stochastic varia-
tional principle for electromagnetic wave scattering
has been reexpressed in terms of the scalar Helm-
holtz-Green's function and evaluated for a test case
of two randomly separated dielectric cylinders. This
study examines, for the first time, the extent to which
this principle can account for polarization and inter-
active phenomena even though the approximation
that it improves does not. This has been accom-
plished by calculating the exact solution and compar-
ing the result with the variational approximation.
The two randomly separated cylinders have parallel
axes and are infinitely long. The cylinders are not
allowed to overlap, i.e., they are hard, and their di-
ameter is small relative to a wavelength. The varia-
tional and exact results may also be compared with
the Born approximation, which is obtained as an in-
termediate step in calculating the variational result
when simple plane wave trial functions are used.

Comparison of Eqs. 8, 40, and 44 indicates that
both the Born and the stochastic variational approx-
imations give the exact result for the average TM dif-
ferential scattering cross section. As the exact TM so-
lution contains no multiple scattering, this conclu-
sion is not surprising.

Comparison of Eqs. 12 and 45 indicates significant
discrepancies between the Born approximation and
the exact result for the mean TE cross section. First,
the Born approximation accounts for the angular de-
pendence of the TE solution but does not give the
correct refractive index dependence in its amplitude,
i.e., (m* — 1)?/8 for the Born versus M?/2 = ((n*
~ 1)/{m* + 1)]2/2 for the exact solution. This dis-
crepancy arises because the Born approximation neg-

lects the geometric polarizability (resulting from the
cylindrical shape) in approximating the fields inside
the cylinders. Second, as expected, the Born approx-
imation includes interference but does not account
for TE multiple scattering.

The stochastic variational improvement (Eq. 41) of
the Born approximation for this TE scattering cor-
rects for the geometric polarizability. In addition, it
contains a multiple scattering contribution that is
correct through the lowest-order term in the variable
M, i.e., through M. Thus the stochastic variational
correction factor {412 IN,?)/(IDI*) significant-
ly improves the Born approximation to give the po-
larization and multiple scattering dependences ac-
curately (even though these effects are missing from
the simple Born trial field).

The direct average of the Levine-Schwinger deter-
ministic variational expression was obtained in the
limit of nearly transparent Rayleigh cylinders. Thai
approximation also agrees with the exact result
through the terms of order M".

As with the stochastic variational principle, the M*
term is incorrect. (This discrepancy was uncovered
subsequent to the publication of Ref. 22.) Neither
variational result reproduces the cos® 8, dependence
found in the M* term of the exact result, and both
give an incorrect value for the coefficient of the
cos’(28 — 6.) term.

25 A. Krill, R. H Andreo, and R. A. Farrell, ** Variational Calcu-
lations of Electromagnetic Scattering from Two Randomly
Separated Rayleigh Dieleciric Cylinders,'" J. Opt. Soc. Am. 13,
408-410 (1983).
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