
"AD-A138 522 MINOS 50 USER'S GUISE(U) STANFORD UNIV CA SYSTEMS 2
OPIMZAONLAB B AMURTAGHETAL DEC83 SOL83-20
060 18424.14 MA NOSO 4-7S C 0267

UNCLASSIFIED F/ 9/2 NL

EEEmmhEEEEEEEEE
EhhEmhhhhEEEEI
mEEmhhhohEEmhE
.EhmhEEEEEohEE
EhhEEEEohEmhEI

EEEsmEmhEEI

L3.

Intl1L1.1. 12.0

imi"

lii ,- -

1.2Ifl 5 II1L4 1111 1

MICROCOPY RESOLUTION TEST CHARTjNATIONAL BUREAU OF STANDARDS 193-A

LK7> systems
1-,i11 Optimization

2 tLaboratory

MINOS 5.0 USER'S GUIDE

by

Bruce A. Murtaght and Michael A. Saunders

TECHNICAL REPORT SOL 85-20

December 198

e-ECTE"r%
MR2 W94 ~

Department of Operations Research
Stanford University
Stanford, CA 94305

I!TJ FILE COPY (2 oR no v

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 04805

MINOS 5.0 USER'S GUIDE

by

Bruce A. Murtaght and Michael A. Saunders

TECHNICAL REPORT 501 83-20

December 1088

Copyright @ 1983 Stanford University

t Dcpartment of Industrial Engineering, The University or New South Wales, Kensington, N.S.W.,
Australia 2033.

r 7 Research and reproduction of this report were supported by the Department of Energy Contract
DEP-AMO3-76SF00326, PA No. DE-ATO3-76ER7201.8; National Science Foundation Grants MCS.
7926009 and K'CS-80l2974; the Omlce of Naval Research Contract N00014-75-C-0267; and the

7 Army Research Office Contract DAAG29-81-K-0I$8.

Any opinions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.

C ocment has been approved
Lz pv'bliz release and mle; itsIll distxibution is unlimited

PREFACE

Since the middle of 1980, approximately 150 academic and research institutions around the
world have installed MINOS/AUGMENT|D, the predecessor of the present system. About 30
further installations exist in private industry. With enquiries continuing to arrive almost daily, the
need for a combined linear and nonlinear programming system is apparent in both environments.
To date, many users have been able to develop substantial nonlinear models and have come to
be fairly confident that the Optimal Solution message actually means what it says. Certainly,
other less joyful exit messages will often have greeted eager eyes. These serve to emphasize that
model building remains an art, and that nonlinear programs can be arbitrarily difficult to solve.
Nevertheless, the success rate has been high, and the positive response from users with diverse
applications has inspired us to pursue further development.

MINOS 5.0 is the result of prolonged refinements to the same basic algorithms that were in
MINOS/AUGMENTED:

* the simplex method (Dantzig, 1947, 1963),
* a quasi-Newton method (very many authors from Davidon, 1959, onward),

* the reduced-gradient method (Wolfe, 1962), and

* a projected Lagrangian method (Robinson, 1972; Rosen and Kreuser, 1972).
From numerous potential options, it has been possible to develop these particular algorithms into
a relatively harmonious whole. The resulting system permits the solution of both small and large
problems in the four main areas of smooth optimization:

o linear programming,

o unconstrained optimization,
o linearly constrained optimization, and

o nonlinearly constrained optimization.

In rare cases, the quasi-Newton method may require excessive storage. We have chosen not to
provide a nonlinear conjugate-gradient method, or a truncated linear conjugate-gradient method,
for this situation. Instead, we retain the quasi-Newton method throughout, restricting it to certain
subspaces where necessary. (The strategy for altering the subspaces remains experimental.)

We regret that other obvious algorithms (such as integer programming, piece-wise smooth
optimization, the dual simplex method) are still not available. Nor are ranging procedures or
parametric algorithms. Sensitivity analysis is still confined to the usual interpretation or Lagrange

" multipliers.

As berore, MINOS 5.0 is a stand-alone system that is intended ror use alongside commercial
mathematical programming systems whenever such facilities are available. The systems should
complement each other.

To users of MINOS/AUGMENTED, the most apparent extensions are a scaling option (for
linear constraints and variables only), and the ability to estimate some or all gradients numerically,
if they are not computed by the user. On a more mundane level, the names of the user subroutines
for computing nonlinearities have been changed from CALCFG and CALCOI to FUNOBJ and PU I N,
and two new parameters allow access to the workspace used by MINOS.

Internally, one of the major improvements has been the development of a new basis-handling
package, which forms the foundation of ILUSOL (Cill, et al., 1984), a set of routines for computing
and updating a sparse 1.J factorization. This package draws much from the work of Reid (1976,
1982). It replaces the P4-based procedures in MINOS/AUGMNTD (Saunders, 1976) and Is

LL

Preface

substantially more efficient on problems whose basis matrices are not close to triangular. As
before, column updates are performed by the method of Bartels and Golub (1969, 1971), but the
implementation is more efficient and there is no severe degradation arising from large numbers
of "spikes". We venture to say that LUSOL is the first truly stable basis package that has been
implemented for production use.

A further vital improvement has been the development of two new linesearch procedures
(Gill, et al., 1979) For finding a step length with and without the aid of derivatives. In particular
they cater for function values that are somewhat "noisy"--a common practical circumstance.

From a software engineering viewpoint, the source code has been restructured to ease the
problems of maintenance and future development. MINOS still stands for Modular In-core
Nonlinear Optimization System, and we have done our best to respect the implications of the
"M". Nevertheless, MINOS 5.0 remains a parameter-driven system. It is a speeding train on a
railroad that has parallel tracks and many switches but few closed circuits. Its various modules
cannot be called upon in an arbitrary order. In fact, there are 80 parameters that can be set if
necessary -- these are the switching points along the railroad. Fortunately, only a handful need
be set for any particular application. In most cases, the default values are appropriate for large
and small problems alike.

For interactive users, a new feature is the SUMMARY file, which provides at the terminal
a brief commentary on the progress of a run. Unfortunately, a two-way conversation is not
possible. The only input engendered by this feature is an occasional dive for the Break key to
abort an errant run. While rarely called upon, such a facility can be crucial to the security of
one's computer funds.

Throughout the development or MINOS, we have received a great deal of assistance from
many kind people. Most especially, our thanks go to Philip Gill, Walter Murray and Margaret
Wright, whose knowledge and advice have made much of this work possible. They are largely
responsible for the linesearch procedures noted above (which arc as vital to nonlinear optimization
as basis factors are to linear programming), and they are authorities on all of the algorithms
employed within MINOS. Their patience has been called upon continually as other important
work at SOL either languished or fell unfairly on their shoulders.

Further to basis factors, we acknowledge the pioneering work of John Reid in implementing

the Markowitz-based LU factorization and the Bartels-Golub update. The LUSOL procedures in
MINOS 5.0 owe much to the ingenuity embodied in his LA05 package.

Users have naturally provided an essential guiding influence. In some cases they are algorithm
developers themselves. At home, we have had constant encouragement from George Dantzig and
the benefit of his modeling activity within SOL, notably on the energy-economic model PILOT.
We thank him warmly for bringing the Systems Optimization Laboratory into existence. We also
thank Patrick McAllister, John Stone and Wesley Winkler for the feedback they have provided by
running various versions of MINOS during their work on PILOT. (We note that PILOT has grown
to 1500 constraints and 4000 variables, and now has a quadratic objective. From our perspective,
it is a nontrivial test problem!) Likewise, Alan Manne has provided encouragement and assistance
from the beginning. Two of his nonlinear economic models have been invaluable as test problems
(and are included on the MINOS distribution tape). We also thank him and Paul Preckel for the
development of procedures for solving sequences of related problems (Preckel, 1980). The main
ingredients of these procedures are now an integral part of MINOS.

Froii industry, we have received immense benefit from the working relationship between
SOl, and Robert Burchett of the General Electric Company (Electric Utility Systems Engineering
Department) in Schenectady, New York. Many algorithmic and user-oriented details have resulted

H

Preface

from his experience and from his interest in the fine points of optimization. Three years ago we
did not envisage that problems involving thousands of nonlinear constraints would soon be solved
successfully. Rob constantly pushed test versions of MINOS to their limits, and inspired the
development of techniques to extend those limits. We thank him for his tireless contributions.

We are also grateful to Zenon Fortuna, Steven Gorelick, Marc lHellman, Thomas McCormick,
Larry Nazareth, Scott Rogers, John Rowse and John Tomlin ror their helpful suggestions and/or
assistance in tracking down bugs. Finally, we thank the staff of the Olice or Technology Licensing
and the Information Technology Services at Stanford University for undertaking the task of
distributing MINOS.

Most of the software development was carried out at the Stanford Linear Accelerator Center
with the aid of the Wylbur text editor and the University or Waterloo's WATFIV compiler. This
User's Guide was typeset using '1W*, with editorial assistance from Philip Gill and Margaret

1 0 Wright.

Bruce Murtagh
University of New South Wales

Michael Saunders
Stanford University

December, 1983

::4

KzI1

S*D. E. Knuth, TKX and METAFONT, New Directions in Typesetting, American Mathematical Society and Digital
Pres, ledrord, Maussahusett (1979).

iII

CONTENTS

1. INTRODUCTION..I
1.1 Linear Programming.. 1
1.2 Nonlinear Objective 2
1.3 Nonlinear Constraints. 3
1.4 Problem F~ormulation 5
1.5 Restrictions
1.6 Files 6
1.7 Input Data Flow 7
1.8 Multiple SPECS Files. 8
1.9 Internal Modifications. 8

2. USER-WRITTEN SUB3ROUTINES. 9
2.1 Subroutine FUNOBJ 9
2.2 Subroutine FUNCON. 11
2.3 Constant Jacobian Elements 12
2.4 Subroutine MATMOD 13
2.5 Subroutine MATCOL. 15
2.6 Matrix Data Structure 15

3. THE SPECS FILE. 17
3.1 SPECS File Format 17
3.2 SPECS File Checklist and Defaults. 1
3.3 SPECS File Definitions 21

4. THE MPS FILE 41
4.1 The NAME Card 41
4.2 The ROWS Section 42
4.3 The COLUMNS Section. 43
4.4 The RIIS Section 45
4.5 The RANGES Section 45
4.6 The BOUNDS Section 46
4.7 Comment Cards 48
4.8 Restrictions and Extensions in IPS Format. 48

6. BASIS FILES 49
5.1 OLD and NE W BASIS Files 49

*5.2 PUNCII and INSERT Files. 52
5.3 DUMP and LOAD Files. 3
5.4 Restarting Modified Problems. 55

a. OUTPUT. 57
6.1 Iteration Log. 57
6.2 Basis Factorisation Statistics 61

6.4 Solution Output. 70
6.5 SOLUTION File 72

6.6 SUMMARY File. 73

Coents

7. SYSTEM INFORMATION................................... 75
7.1 Distribution Tape 75
7.2 Source Files 76
7.3 COMMON Blocks...78
7.4 Machinc-dependent Subroutines. 79
7.5 Subroutine Structure. 82
7.6 Test Problems 83

S. EXAMPLES 85
8.1 Linear Programming. 86
8.2 Unconstrained Optimization 88
8.3 Linearly Constrained Optimization. 90
8.4 Nonlinearly Constrained Optimization. 94
8.5 Use of Subroutine KATMOD. 109
8.6 Thing toemember 112

REFERENCES. 113
INDEX. 115

IV

lami

1.1 Linear Programming

1. INTRODUCTION

MINOS is a Fortran-based computer system designed to solve large-scale optimization problems
expressed in the following standard form:

minimize F(x) + cTx + dTV (1)
Ztf

subject to f(x) + Aly = b, (2)

A 2X + A3Y = b2, (3)

1 (C) .: U, (4)

where the vectors c, d, b,, b2, L, u and the matrices A,, A2 , A3 are constant, F(x) is a smooth
scalar function, and f(x) is a vector of smooth functions (f(x)). Ideally the first derivatives
(gradients) of' F(x) and fi(x) should be known and coded by the user. (If only some gradients are
known, MINOS will estimate the missing ones using finite differences.)

The n, components of z are called the nonlinear variables, and the n2 components of p are
the linear variables. Similarly, the m, equations (2) are called the nonlinear constraints, and the
m 2 equations (3) are the linear constraints. Equations (2) and (3) together are called the general
constraints. We define m = ml + M 2 and n = n1 + n2.

The constraints (4) specify upper and lower bounds on all variables. These are fundamental
to many problem formulations and are treated specially by the solution algorithms in MINOS.

* Some of the components of I and u may be -o or +oo if desired.
Similar bounds may be defined for the general constraints (2), (3). These constraints may

therefore be thought of as taking the form

l1 < f(x) + <_ ,ts,

12 :_ A 2X + A3 Y _ U2,

though for historical reasons the bounds are specified in terms of a right-hand side bi and a range
Ui - l.

In the following sections we introduce some of the terminology required, and give an overview
of the algorithms used in MINOS and the main system features.

1.1 Linear Programming

If the functions F(s) and f(x) are absent, the problem becomes a linear program. Since there is
no need to distinguish between linear and nonlinear variables, we prefer to use X rather than y.
It is also convenient computationally to convert all general constraints into equalities, with the
only inequalities being simple bounds on the variables. Thus, we will write linear programs in
the form

minimize cTz subject to Az+Is= 0, 1 <(<U,

where the elements of x are called structural variables (or column variables) and s is a set of slack
variables (called logical variables by some authors). The bounds I and u are suitably redefined.

rArk

2

* MINOS solves linear programs using a reliable implementation of the primal simplex method
(Dantzig, 1963). The simplex method partitions the constraints Ax + Is = 0 into the form

Bx,, + NzN = 0,

where the basis matrix B is square and nonsingular. The elements of Z. and xN are called the
basic and nonbasic variables respectively; they are a permutation of the elements of z and a.
At any given stage, each nonbasic variable is equal to its upper or lower bound, and the basic
variables take on whatever values are needed to satisfy the general constraints. (Clearly they
may be computed by solving the linear equation BDx, = -NxN.) It can be shown that if an
optimal solution to a linear program exists, then it has this form. The simplex method reaches
such a solution by performing a sequence of iterations, in which one column of B is replaced by
one column of N (and vice versa), until no such interchange can be found that will reduce the
value of cTx.

If the components of x. do not satisfy their upper and lower bounds, we say that the current
point is infeasible. In this case, the simplex method first aims to reduce the sum of infeasibilities
to zero.

MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz
ordering scheme and Bartels-Golub updates, as implemented in the LUSOL package of Gill,
Murray, Saunders and Wright (1984). (For a description of the concepts involved, see Reid, 1978,
1982.) The basis factorization is central to the efficient handling of sparse linear and nonlinear
constraints.

* 11.2 Nonlinear Objective

When nonlinearities are confined to the term F(x) in the objective function, the problem is a
linearly constrained nonlinear program. MINOS solves such problems using a reduced-gradient
algorithm (Wolfe, 1962) in conjunction with a quasi-Newton algorithm (Davidon, 1959). The
implementation follows that described in Murtagh and Saunders (1978).

In this case, the constraints Ax + Is = 0 are partitioned into the form

BzB + Sz, + N, = 0,

where x, is a set of superbasic variables. At a solution, the basic and superbasic variables will
lie somewhere between their bounds, while the nonbasic variables will again be equal to one of
their bounds. In broad terms, the number of superbasic variables (the number of columns in S)
is a measure of how nonlinear the problem is. Let this number be a. (The context will always
distinguish 8 from the vector of slack variables.) In many practical cases we have found that #
remains reasonably small, say 200 or less, regardless of the size of the problem.

In the reduced-gradient algorithm, Z. is regarded as a set of independent variables that are
free to move in any desirable direction, namely one that will improve the value of the objective
function (or reduce the sum of infeasibilities). The basic variables can then be adjusted in order
to continue satisfying the linear constraints.

If it appears that no improvement can be made with the current definition of B, S and N,
some of the nonbasic variables are selected to be added to 5, and the process is repeated with an

increased value of s. At all stages, if a basic or superbasic variable encounters one of its bounds,
that variable is made nonbasic and the value of a is reduced by one.

Users familiar with linear programs may interpret the simplex method as being exactly the
above process, with s oscillating between 0 and I. (Later, one step of the simplex method or the
reduced-gradient method will be .called a minor iteration.)

I -

1.3 Nonlinear Constraints 3

A certain operator Z will frequently be useful for descriptive purposes. In the reduced-
gradient algorithm it takes the form

though it is never computed explicitly. Since it has full column rank and satisfies (IB S N)Z = 0,
we say that Z spans the null space of the constraint matrix (A I). Given an LU factorization
of the basis matrix B, Z allows us to work within a region defined by the linear constraints.

An important part of MINOS is a stable implementation of the quasi-Newton algorithm
for optimizing the superbasic variables. This can achieve superlinear convergence within each
relevant subspace (defined by the current B, S and N). It obtains a search direction Ps for the
superbasic variables by solving a system of the form

RTRp, = -ZTg,

where g is the gradient of F(x), ZTg is the reduced gradient, and R is a dense upper triangular
matrix that is updated in various ways in order to approximate the reduced tessian according to
RTR z. Z TIIZ, where I1 is the matrix of second derivatives of F(x) (i.e., the Hessian).

Once p, is available, the search direction for all variables is defined by p = Zp,. A line
search is then performed to find an approximate solution to the one-dimensional problem

minimize F(x + ap) subject to 0 < a < Gna 8 ,
a

where a..x is determined by the bounds on the variables. Another important part of MINOS is
the step-length procedure used in the line search to determine the step-length a. Two different
procedures are used, depending on whether all gradients are known. (See Gill, Murray, Saunders
and Wright, 1979.) Interested users can influence the amount of work involved by setting a
parameter called the LINESEARCH TOLERANCE.

Normally, the objective function F(x) will never be evaluated at a point x unless that point
is feasible, i.e., it satisfies the linear constraints and the bounds on the variables. Facilities are
provided to check the calculation of gradient elements, and normally the check is performed at
the first feasible point. Hlowever, users may request that the check be performed at the very
beginning of a run, in which case x may not be feasible.

For details of the matters mentioned here and many other essential aspects of numerical
optimization, see Gill, Murray and Wright (1981).

1.3 Nonlinear Constraints

When the problem contains nonlinear constraints, MINOS uses a projected augmented Lagrangian
algorithm, based on a method due to Robinson (1972); see Murtagh and Saunders (1982). NINOS
treats linear constraints and bounds specially, but the nonlinear constraints may not be satisfied
until an optimal point is reached. Thus, f(x) and its gradients (the Jacobian matrix J(z) -
[8f(z)1azA) may need to be defined outside the region of interest.

In fact, the constraint functions will almost never be evaluated unless the linear constraints
and bounds are satisfied. The principal exception is at the very first point z0, which may
optionally be specified by the user. The vector f(t) and its Jacobian will be evaluated at zo
regardless of feasibility. This matter must be borne in mind during the formulation of a nonlinear
program. The main point to remember is that the nonlinear constraints may be violated during
the solution process.

9I

4

The nature of the solution process can be summarized as follows. A sequence of major
iterations is performed, each one requiring the solution of a linearly constrained subproblem.
The subproblems contain the original linear constraints and bounds, as well as linearized versions
of the nonlinear constraints. This just means that f(x) in equation (2) is replaced by Lf, its
linear approximation at the current point. We shall write this approximation as

f(x, Xk) = f(Xk) + J(Xk)(X - Xk)?

or more briefly
=IA + Jk(X - X0), (5)

where zk is the estimate or the nonlinear variables at the start or the k-th major iteration. The
subproblem to be solved takes the form

minimize F(x) + cTx + dTy - X(- f) + I(f _) T(f j) (6)

subject to f+ Aiy = bi, (7)

A2 x + AsY = b2, (8)

L< G <U. (9)

The objective function (6) is called an augmented Lagrangian. The vector Xk is an estimate of X,
the Lagrange multipliers for the nonlinear constraints. The scalar p is a penalty parameter, and
the term involving p is a modified quadratic penalty function.

Using (5) we see that the linear constraints (7) and (8) take the form

(k A'("J(~) Jkzk -) (10)
MINOS uses the reduced-gradient algorithm to minimize (6) subject to (10), with the original
bounds on x and y, and suitable bounds on the slack variables s and 82. The Jacobian Jk is
treated as a sparse matrix, the same as the matrices A .

Unfortunately, there is no guarantee that the algorithm just described will converge from
an arbitrary starting point. The concerned user can influence the likelihood of convergence in
several ways:

1. By specifying x0 as carefully as possible.
2. By including sensible upper and lower bounds on all variables.

3. By specifying a PENALTY PARAMETER p that is higher than the default value, if the problem
is suspected of being highly nonlinear.

4. By specifying a DAMPING PARAMETER that is lower than the default value, again if the problem
is highly nonlinear.

In rare cases it may be safe to use XA = 0 and p = 0 for all subproblems, by specifying LAGRANGIAN
= No. However, convergence is much more likely with the default setting, LAGRANGIAN = YES. The
initial estimate of the Lagrange multipliers is then Xo = 0, but for later subproblems, Xk is taken
to be the Lagrange multipliers associated with the (linearized) nonlinear constraints at the end
of the previous major iteration.

The penalty parameter is initially 100.0/ml by default, and it is reduced in stages for later
subproblems when it appears that the sequence {zk, Xk} is converging. In many cases it is safe
to specify p = 0 from the beginning, particularly ir the problem is only mildly nonlinear. This
may improve the overall efficiency.

1.5 Restrictions 5

1.4 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make the constraints com-

pletely linear if at all possible. Sometimes a simple transformation will suffice. For example, a
pipeline optimization problem has pressure drop constraints of the form

Ki 1 K2 +..<p

~1 2_
dl. 14- + d +"" PT-- po0

where d, are the design variables (pipe diameters) and the other terms are constant. These
constraints are highly nonlinear, but by re-defining the decision variables to be z = 1/di-8 4 we
can make the constraints linear. Even if the objective function becomes more nonlinear by such
a transformation (and this' usually happens), the advantages of having linear constraints greatly
outweigh this.

Similarly, it is important not to move nonlinearities from the objective function into the
constraints. Thus, we would not replace minimize F(x) by

minimize z subject to F(X) - z = 0.

Scaling is a very important matter during problem formulation. A general rule is to scale
both the data and the variables to be as close to 1.0 as possible. In general we suggest the
range 1.0 to 10.0. When conflicts arise, one should sacrifice the objective function in favor of the
constraints. Real-world problems tend to have a natural scaling within each constraint, as long
as the variables are expressed in consistent physical units. Hence it is often sufficient to apply
a scale factor to each row. MINOS has an option to scale the linear constraints and variables

automatically.
Finally, upper and lower bounds on the variables (and on the constraints) are extremely

useful for confining the region over which optimization has to be performed. If sensible values
are known, they should always be used. They are also important for avoiding singularities in the
problem functions. For safety when such singularities exist, the initial point x0 discussed above
should lie within the bounds.

1.5 Restrictions

MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem
must be smooth (i.e., their first derivatives must exist). The functions need not be separable.
Integer restrictions cannot be imposed directly.

A certain region is defined by the linear constraints in a problem and by the bounds on the
variables. If the nonlinear objective and constraint functions are convex within this region, any
optimal solution obtained will be a global optimum. Otherwise there may be several local optima,
and some of these may not be global. In such cases the chances of finding a global optimum are
usually increased by choosing a starting point that is "sufficiently close", but there is no general

procedure for determining what "close" means, or for verifying that a given local optimum is
indeed global.

MINOS uses one large array of main storage for most of its workspace. The length of this
array may need to be adjusted to suit a particular problem, but otherwise the implementation
places no fixed limitation on the size of a problem or on its shape (many constraints and relatively
few variables, or vice versa). In general, the limiting factor will be the amount of main storage

available on a particular machine, and the amount of computation time that one's budget can
stand.

Some a priori knowledge of a particular application will usually indicate whether the solution
procedure is likely to be efficient. An important quantity is m = ml + M2 , the total number
of general constraints in (2) and (3). We note that m < 100 is considered "small", m- = 1000
or 2000 is "medium", and m > 5000 would be "large". On machines that use 16-bit integers
(INTEGER*2 on IBM and DEC VAX systems), the normal implementation of MINOS requires that
m < 32767.

The amount of workspace required by MINOS is roughly 100m words, where one "word" is
the relevant storage unit for the floating-point arithmetic being used (REAL*8 on IBM and DEC
VAX, REAL on Burroughs and most CDC machines). On IBM and VAX systems, this means about
800m bytes for workspace. A further 300K bytes, approximately, are needed for the program
itself, along with buffer space for several files.

Another important quantity is n = n, + n2 , the total number or variables in x and y. For
nonlinear problems, if m, and n, are small compared to m and n, the total storage required
should not be much greater than just described. If n, is "large" (say n, ! 200), the amount of
storage required may or may not be substantial, depending on whether F(x) or f(x) are highly
nonlinear or not.

In this context, the efficiency of MINOS depends on s, the number or superbasic variables.
Recall that m + s variables lie between their upper and lower bounds, where s is zero for purely
linear problems. We know that s need never be larger than n, + 1. In practice, s is often very
much less than this upper limit.

In the quasi-Newton algorithm, the dense triangular matrix R has dimension a and requires
about -s 2 words of storage. If it seemis likely that s will be very large, some aggregation or
reformulation of the problem should be considered.

1.6 Files

MINOS operates primarily within central memory, and is well suited to a virtual storage environ-
ment. Certain disk files are accessed as follows.

Input file Status Record Length (characters)
READ file see below
SPECS file required 80
MPS file required 81
BASIS files optional 80

Output file Status Record Length (characters)
SCRATCH file required 8
PRINT file required 129
SUMMARY file optional 80
BASIS files optional 80
SOLUTION file optional 111

Fixed-length, blocked records may be used in all cases, and the files are always accessed sequen-
tially. The logical record length must be at least that shown. For efficiency, the physical block
size should be several hundred characters in most cases. Note that the logical record length
for the SCRATCH file is unusually small. Each record will contain an 8-character name for a
constraint or variable, and there will be m + n such names. ,I

.. . ' ' ' I II ' = i- -- - -

1.7 Input Data Flow 7

Unit numbers for the READ, SPECS, PRINT and SCRATCH files are defined at compile
time; typically they will be 5, 5, 6 and 8, but they may depend on the installation. The remaining
unit numbers are specified at run time in the SPECS file.

Unit numbers for the READ, PRINT and SUMMARY files are stored in the following COMMON
block:

COMMON /MiFILE/ IREAD.IPRINT.ISUMM

It may be convenient to reference these in the user subroutines FUNOBJ, FUNCON and MATMOD.

System Note: The READ file is not used explicitly by MINOS, but its unit number is used
to test if a file should be rewound. (Thus, input files are subject to a Fortran REWIND as long as
they are not the same as the READ file.) The PRINT file is used frequently. Other output files
are rewound if they are not the same as the PRINT file.

1.7 Input Data Flow

Some or all of the following items are supplied by the user:

* Subroutine FUNOBJ
e Subroutine FUNCON
* Subroutine MATMOD
* A SPECS file
* An MPS file
9 A BASIS file
* Data read by FUNCON on its first entry
* Data read by FUNOBJ on its first entry
* Data read by FUNCON on its last entry
* Data read by FUNOBJ on its last entry

The order of the files and data is important if all are stored in the same input stream.
Subroutines FUNOBJ and FUNCON define the nonlinear objective and constraint functions

respectively (if any); they are not needed if the functions are purely linear and are defined in
the MPS file.

Subroutine MATMOD is occasionally needed, for applications involving a sequence of closely
related problems.

The SPECS file defines various run-time parameters (ITERATION LIMIT, SAVE FREQUENCY,
etc.). Its file number is defined at compile time. It will normally be the first data set in the
system card input stream.

The MPS file specifies names for the constraints and variables, and defines all the linear
constraints and bounds. It may follow the SPECS file in the card input stream, but will often
reside in a file of its own (as specified in the SPECS file). The data format is similar to that
used in commercial mathematical programming systems (hence the name). The format has been
generalized slightly for nonlinear problems.

If desired, a BASIS file may be loaded at the beginning of a run. This will normally have
been saved at the end of an earlier run. Three kinds of basis file are available; they are used to
restart the solution of a problem that was interrupted, or to provide a good starting point for
some slightly modified problem.

8

1.8 Multiple SPECS Files

One or more problems may be processed during a run. The parameters for a particular problem
are delimited by BEGIN and END in the SPECS file. While scanning for the keyword BEGIN,
MINOS recognizes the keywords SKIP and ENDRUN. Thus in the following example:

BEGIN CASE I

END CASE 1
SKIP CASE 2

END CASE 2
BEGIN CASE 3

END CASE 3
ENDRUN
BEGIN CASE 4

END CASE 4

only the first and third problem will be processed.

1.9 Internal Modifications

A sequence of closely related problems may be specified within a single SPECS file, via the CYCLE
parameter; for example,

BEGIN CYCLING EXAMPLE

CYCLE LIMIT 10

END EXAMPLE

indicates that up to 10 problems are to be processed. This is intended for cases where the solution

of one problem Pk is needed to define the next problem P,,+4 .
The actual method for defining the next problem in a cycle depends on the application.

Sometimes it can be done by changing the output from the function subroutines FUNOBJ and/or
FUNCON. Alternatively, the user may provide a third subroutine MATMOD to perform some modifi-
cations to the problem data. MATMOD is called by MINOS at the beginning of every cycle except
the first.

If necessary, the number of linear variables can be increased when a problem PA+l is defined.
We think of this as adding new columns to Pk. The new columns are not included in the MPS file,
and their sparsity pattern need not be known until P has been solved. Instead, an appropriate
number of PHANTOM COLUMNS and PHANTOM ELEMENTS are defined in the SPECS file (to reserve
a pool of storage), and the user's subroutine MATMOD generates each new column by calling the
MINOS subroutine MATCOL.

2.1 Subroutine FUNOBJ

2. USER-WRITTEN SUBROUTINES

To solve a purely linear problem, only a SPECS file and an MPS file (and possibly a BASIS file)
need be supplied.

For nonlinear problems, one must also provide some appropriate Fortran code. Nonlinearities
in the objective function are defined by subroutine FUNOBJ. Those in the constraints are defined
separately by subroutine FUNCON. On every entry except perhaps the last, these subroutines must
return appropriate function values F. Wherever possible, they should also return all gradient
components in the array G. This provides maximum reliability and corresponds to the default
setting, DERIVATIVE LEVEL = 3.

In practice it is often convenient not to code gradients. MINOS is able to estimate gradients
by finite differences, by making a call to FUNOBJ or FUNCON for each variable z whose partial
derivatives need to be estimated. However, this reduces the reliability of the optimization
algorithms, and it can be very expensive if there are many such variables zi.

As a compromise, MINOS allows you to code as many gradients as you like. This option is
implemented as follows: just before a function routine is called, each element of the gradient array
G is initialized to a specific value. On exit, any element retaining that value must be estimated
by finite differences.

Some rules of thumb follow:

I. For maximum simplicity and reliability, compute F and all components of G.

2. If not all gradients are known, compute as many or them as you can. (It often happens that
some of them are constant or even zero.)

3. If some gradients are known (but not all), it may be convenient to compute them each time
the function routines are called, even though they will be ignored if MODE = 2.

4. If the known gradients are expensive to compute, use the parameter MODE to avoid computing
them on certain entries.

5. While the function routines are being developed, use the VERIFY parameter to check the
computation of any gradient elements that are supposedly known.

2.1 Subroutine FUNOBJ

This subroutine is provided by the user to calculate the objective function F(z) and as much of
its gradient g(z) as possible. (It is not needed if the objective function is entirely linear.)

Specification:

SUBROUTINE FUNOBJ(MODE. N, X. F, G. NSTATE. NPROB. Z. NWCORE)
IMPLICIT REAL*S (A-H. O-Z)
DIMENSION X(N), G(N), Z(NWCORE)

(The IMPLICIT statement should not be used on machines for which single-precision floating-
point is adequate; e.g., Burroughs and CDC.)

10 2. User- written Subr .

Parameters:

MODE (Input) This parameter can be ignored if DERIVATIVE LEVEL = 1 or 3 (i.e., if all ele-
ments of G are computed). In this case, MODE will always have the value 2.
Otherwise, you must specify DERIVATIVE LEVEL = 0 or 2 in the SPECS file to indicate
that FUNOBJ will not compute all of G. MINOS will then call FUNOBJ sometimes with
MODE = 2 and sometimes with MODE = 0. You may test MODE to decide what to do:

If MODE = 2, compute F and as many components of G as possible.

If MODE = 0, compute F but set G only if you wish. (On return, the contents of G will
be ignored.)
(Output) If for some reason you wish to terminate solution of the current problem, set
MODE to a negative value, e.g., -1.

N (Input) The number of variables involved in F(z). These must be the first N variables
in the problem.

X(*) (Input) An array of dimension N containing the current values of the nonlinear variables
2.

F (Output) The computed value of the objective function F(z).

G(*) (Output) The computed gradient vector g(x). In general, G(j) should be set to the
partial derivative aF/axi for as many j as possible (except perhaps if MODE = 0-see
above).

NSTATE (Input) If NSTATE = 0, there is nothing special about the current call to FlNOBJ.

If STATE = 1, MlNOS is calling your subroutine for the first time. Some data may need
to be input or computed and saved in local or COMUON storage. Note that if there are
nonlinear constraints, the first call to FUNCON will occur before the first call to FUNOBJ.

If NSTATE > 2, MINOS is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. (If CYCLE LIMIT is
specified, this call occurs at the end of each cycle.) Note again that if there are nonlinear
constraints, the last call to FUNCON will occur before the last call to FUNOBJ.
In general, the last call is made with NSTATE = 2 + IERR, where IERR indicates the
status of the final solution. In particular, if NSTATE = 2, the current X is optimal; if
NSTATE = 3, the problem appears to be infeasible; if NSTATE = 4, the problem appears
to be unbounded; and if NSTATE = 5, the iterations limit was reached. In some cases,
the solution may be nearly optimal if NSTATE = 11; this value occurs if the lineseareh
procedure was unable to find an improved point.
If the nonlinear functions are expensive to evaluate, it may be desirable to do nothing
on the last call, by including a statement or the form IF (NSTATE .GE. 2) RETURN
at the start of the subroutine.

NFROB (Input) An integer that can be set by a card of the form PROBLEM NUMBER n in the
SPECS file.

Z(*) (Input) The primary work array used by MINOS. In certain applications it may be
desirable to access parts or this array, using various COMMON blocks to pinpoint the
required locations. (For example, the dual variables are stored in Z (LPI) onward, where
LPI is the first integer in the COMMON block MSLOC.) Otherwise, Z and NICORE can be
ignored.

NIWCORE (Input) The dimension of Z.

I _ _

2.2 FUNCON 11

2.2 Subroutine FUNCON

This subroutine is provided by the user to compute the nonlinear constraint functions $(z) and
as many of their gradients as possible. (It is not needed if the constraints are entirely linear.)
Note that the gradients of the vector f(z) define the Jacobian matrix J(x). The j-th column of
J(z) is the vector Of/Oz.

FUNCON may be coded in two different ways, depending on the method used for storing the
Jacobian, as specified in the SPECS file.

JJACOBIAN = DENSE

Specification:

SUBROUTINE FUNCON(MODE. M. N. NJAC. X. F, G. NSTATE. NPROB, Z, NW1COPE)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION X(N). F(M). G(M,N), Z(NWCORE)

Parameters:

MODE (Input) This parameter can be ignored if DERIVATIVE LEVEL = 2 or 3 (i.e., if all ele-
ments of G are computed). In this case, MODE will always have the value 2.

Otherwise, you must specify DERIVATIVE LEVEL = 0 or 1 in the SPECS file to indicate
that FUNCON will not compute all of G. You may then test MODE to decide what to do:

If MODE = 2, compute F and as many components of G as possible.

If MODE = 0, compute F but set G only if you wish. (On return, the contents of G will
i be ignored.)

(Output) If for some reason you wish to terminate solution of the current problem, set
MODE to a negative value, e.g., -1.

M (Input) The number of nonlinear constraints (not counting the objective function).

These must be the first M constraints in the problem.

N (Input) The number of variables involved in f(z). These must be the first N variables
in the problem.

NJAC (Input) The value M*N.

X(*) (Input) An array of dimension N containing the current values of the nonlinear variables
z.

F(*) (Output) The computed values of the functions in the constraint vector f(x).

G(*,*) (Output) The computed Jacobian matrix J(z). The i-th column of J(z) should be
stored in the j-th column of the 2-dimensional array G (except perhaps if MODE = 0-
see above). Equivalently, the gradient of the i-th constraint should be stored In the i-th
row of 0.

The other parameters are the same as for subroutine FUNOBJ.

12 2. User-written Subroutines

1JACOBIAN = SPARSE

Specification:

SUBROUTINE FUNCON(MODE, M, N, NJAC, X, F, G, NSTATE. NPROB, Z. NWCORE)
IMPLICIT REAL*8(A-HO-Z)

DIMENSION X(N), F(M), G(NJAC), Z(NWCORE)

This is the same as for JACOBIAN = DENSE, except for the declaration or G(NJAC).

Parameters:

NJAC (Input) The number of nonzero elements in the Jacobian matrix J(z). This is exactly
the number of entries in the WPS file that referred to nonlinear rows and nonlinear
Jacobian columns (the first M rows in the ROWS section and the first N columns in the
COLUMNS section).

Usually NJAC will be less than M*N. The actual value or NJAC may not be of any use
when coding FUNCON, but in all cases, any expression involving G(L) should have the
subscript I between I and NJAC.

G(*) (Output) The computed elements of the Jacobian matrix (except perhaps if MODE = 0-
see previous page). These elements must be stored into G in exactly the same positions
as implied by the MPS file. There is no internal check for consistency (except indirectly
via the VERIFY parameter), so great care is essential.

The other parameters are the same as for JACOBIAN = DENSE.

2.3 Constant Jacobian Elements

If all constraint gradients (Jacobian elements) are known (DERIVATIVE LEVEL = 2 or 3), any
constant elements may be specified in the MPS file if desired. An element of G that is not
computed in FUNCON will retain the value implied by the MIS file. (The value is taken to be zero
if not given explicitly in the MPS file.)

This feature is useful when JACOBIAN = DENSE and many Jacobian elements are identically
zero. Such elements need not be specified in the MPS file, nor set in FUNCON.

Note that constant nonzero elements do affect F. Thus, if iq is defined in the MPS file and
is constant, the array element G(i,j) need not be set in FUNCON, but the value G(ij)*X(j) must
be added to F(i).

When JACOBIAN = SPARSE, constant Jacobian elements will normally not be listed in the
MPS file unless they are nonzero. If the correct value is entered in the MPS file, the corresponding
element 0(1) need not be reassigned, but a term of the form G(1)*X(j) must be added to one of
the elements of F. (This feature allows a matrix generator to output constant data to the MPS

file; FUNCON does not need to know that data at compile time, but can use it at run time to

compute the elements of F.)

Remember, if DRIlVATIVE LEVEL < 2, unassigned elements of 0 are not treated as constant;

they are estimated by finite differences, at significant expense.

2.4 MATMOD U3

2.4 Subroutine MATMOD

This subroutine is called at the start of every cycle except the first. If CYCLE LIMIT k is specified
with k > 1, you may wish to provide your own MATUOD to make certain changes to the problem
data. MINOS will make a flying start on the modified problem, retaining the current set of
basic, superbasic and nonbasic variables, the reduced Iessian approximation R, and the Lagrange
multiplier estimates X1 for any nonlinear constraints. (The LU factorization of the basis is not
retained; it will be recomputed.)

Specification:

SUBROUTINE MATMOD(.NCYCLE, MPROB. FINISH.
* M. N. NB, ME, NKA, MS. NSCL.
* A, HA, KA, BL, BU.
* ASCALE. HS, IDi. ID2,
* X. PI, Z, NWCORK)

IMPLICIT REAL*8(A-HO-Z)
INTEGERs2 HA(NE), HS(NB)
INTEGER KA(NKA). IDI(NB). ID2(NB)
DIMENSION ACNE), ASCALE(NSCL), BL(N). BU(N)
DIMENSION X(NB). PI(M). Z(NWCORE)
LOGICAL FINISH

Parameters:J NCYCLE (Input) The number of the cycle that has just terminated.

NPROB (Input) An integer that can be set by a card of the form PROBLEM NUMBER n in the
SPECS file.

FINISH (input) On entry, FINISH = .FALSE.

(Output) On exit, if you wish the cycles to be terminated (e.g., if some convergence

criterion has been satisfied), set FINISH = .TRUE.

M (Input) The number of rows in the constraint matrix.

N (Input) The number of variables, excluding slacks.

NB (Input) The number of variables, including slacks. (9B = N+M; it is the length or many
arrays including BL and BU. The name is short for Number of Bounds.)

ME (Input) The number of elements in the constraint matrix (used only to dimension A and
HA).

A (Input) NU = N + I (used to dimension KA).

No (input) The number of superbasic variables.

MCL (Input) If ISCL = 1, the constraint matrix has not been saled; there is only one element

in the array ASCALE and it is undefined.

/P

14 2. User-written Subroutines

Otherwise, NSCL = NB and the constraint matrix has been scaled. An original element
ai3 is now stored in A as ai3 X ASCALE(N+i) /ASCALE(j). Similarly, an original bound j.
on a column or slack (j = I to NB) is now stored in BL(j) as I X ASCALE(j). (Likewise
for upper bounds.) Any new or modified elements must be treated accordingly.

A(*) (Input, output) The current elements or the constraint matrix, stored column-wise.
They may be altered as desired. Additional entries in A, HA and KA associated with
"phantom columns" must be set by calling subroutine MATCOL.

HA(*) (Input, output) The row indices associated with A.

KA(*) (Input, output) KA(j) points to the start of column j in the arrays A(*), HA(*). i
BL(*) (Input, output) The lower bounds on all column and slack variables, in that order. They

may be altered as desired.

BU() (Input, output) The upper bounds on all variables, including slacks. They may be
altered as desired.

ASCALE () (Input) The set of scale factors for columns and rows, in that order (if NSCL > 1). 1
HS(*) (Input) The state vector for all variables.

Hs Ci) = 0 if variable j is nonbasic at its lower bound; I
HS(j) = 1 if variable j is nonbasic at its upper bound;

HS (j) = 2 if variable j is superbasic;

HS W = 3 if variablej is basic.

IDI () (Input) The first half of the names of the columns and rows, in that order, in A4 format.
(Sometimes it may be useful to determine the index of a column or row by searching I
IDI and ID2.)

1D2(*) (Input) The second half of the names of the columns and rows, in A4 format. I
X() (Input) The numerical values of all columns and slack variables.

PI() (Input) The numerical values of the dual variables. The first ml components will be
the current estimates of X, the Lagrange multipliers for the nonlinear constraints.

Z(*) (Input) The primary work array used by MINOS. In certain applications it may be

desirable to access parts of this array, using various COMMON blocks to pinpoint the I
required locations.

YNCORE (Input) The dimension of Z.J

I
r |I!

i' I

2.6 Matrix Data Structure 15

2.5 Subroutine MATCOL

If PHANTOM COLUMNS c and PHANTOM ELEMENTS e are defined in the SPECS file (along with CYCLE
LIMIT k), this subroutine may be called by MATMOD up to c times throughout cycles 2 through k.
The aim is to turn at most c "phantom columns" into normal columns containing a total of at
most c nonzero elements. MATMOD must provide an array COL(*) and a zero tolerance ZTOL for
each call. The significant elements or COL will be packed into the matrix data structure, to form
a new column. The associated variable will be given the default LOWER and UPPER bounds, and a
scale factor of 1.0.

Specification:

SUBROUTINE MATCOL(M. N. NB. NE, NKA.
* A. HAI KA, BL, BU, COL. ZTOL)
IMPLICIT REAL*8 (A-H, O-Z)
INTEGER*2 HA(ME)
INTEGER KA(NKA)
DIMENSION A(NE), BL(NB). BU(NB), COL(M)

Parameters:

M (Input) The length of the array COL. Usually this will be m, the number of rows in the
constraint matrix. In general, it may be anywhere in the range I < M < m, if the new
column is known to be zero beyond position M.

COL(*) (Input) The dense vector that is to become a new matrix column.

ZTOL (Input) A zero tolerance for deleting negligible elements from COL when it is packed
into A and HA. On most machines, a reasonable value is ZTOL = 1.OE-8.

The other parameters come directly from MATMOD. For further details, see the CYCLE options in
section 3.3, and the example in section 8.5.

2.6 Matrix Data Structure

In the MINOS source code, the constraint matrix A is stored column-wise in sparse format in the
arrays A, HA, KA, as defined in the specifications of subroutine MATMOD (section 2.4). The matrix
I associated with the slack variables is represented implicitly. If the objective function contains
linear terms cJz + dry, then (CT dT) is included as the IOBJ-th row of A (see the COMMON block
M6LOBJ below).

If there are nonlinear constraints, the top left-hand corner of A is loaded with the current
Jacobian matrix at the start of each major iteration.

The following COMMON blocks contain dimensions and other items relating to the storage of
A.

COMMON /M3L N I I/ , N ,N ASCL

M m, the number of rows in A, including the linear objective row (if any).

N n, the number of columns in A, possibly including c "phantom columns'.

11b n + m = N+M, the total number of variables in the problem, including the slacks.

NOL Either N11 or 1, depending on whether SCALE has been specified or not.

16 2. User-writtcn Subroutines

COMMON /M2MAPA/ NE ,NKA , LA * LHA * LKA

NE The number of nonzero elements in A, possibly including e "phantom elements".

NKA n + I = N+I, the number of pointers in the array KA.

LA The address of A(*) in the work array Z(*).

LHA The address of HA(W) in the work array Z(*).

LA The address of KA(*) in the work array Z(*).

COMMON /M5LEN / MAX 0MAXS . MBS .NN oNNO °NR ,NX

MAR The HESSIAN DIMENSION.

* MAXS The SUPERBASICS LIMIT.

' lMS M*MAXS, the maximum number of basic and superbasic variables.

NN n = max{NNOBJ,NNJAC}, the number of NONLINEAR VARIABLES.

NNO max(l, NN}.

NR The dimension of the array R that is used to approximate the reduced Hessian, R.

NX maxMBS, NN}.

COMMON /M5LOBJ/ SINF ,WTOBJ ,MINIMZNINF 0IOBJ

SINF The current sum or infeasibilities.

SUrTOBJ The scalar w used in the composite objective technique.

NINIMZ +i ir the objective is to be minimized; -1 if it is to be maximized.

NI F The current number of infeasibilities.

IOBJ The row number for the linear objective. (If IOBJ is zero, there is no such row.)

COMMON /M7LEN / FOBJ *FOBJ2 *NNOBJ .NNOBJO

FOBJ The current value of the function value F returned by FUNOBJ.

FOBJ2 A temporary value of FOBJ.

NNOBJ n, the number of NONLINEAR OBJECTIVE VARIABLES.

KNOBJO max{ 1, NNOBJ}.

COMMON /MSLEN / NJAC NNCON ,NNCONO.NNJAC

NJAC The number of elements in the Jacobian.

NNCON m, the number or NONLINEAR CONSTRAINTS.

NICONo max{1, neON}.

NUJAC n", the number of NONLINEAR JACOBIAN VARIABLES.

3.1 SPECS File Format 17

3. THE SPECS FILE

The SPECS file sets various run-time parameters that describe the nature of the problem being
solved and the manner in which a solution is to be obtained. The file consists of a sequence of
card images, each of which contains a keyword and certain associated values.

The first keyword is BEGIN and the last keyword is END. If the problem could be solved
using default values for all parameters, the SPECS file could consist of just those two keywords
(on separate cards). Normally, however, at least some of the parameters must be specified; for
example, the number of nonlinear variables if there are any.

3.1 SPECS File Format

Each card in the SPECS file contains a sequence of items in free format (they may appear
anywhere in columns 1 to 72). The items are separated by spaces or equal signs (or
Those selected from each card are:

1. The first word (the keyword). Only the first 3 characters are significant.

2. The second word (if any). Sometimes this is the keyword's associated name value, an 8-
character name. More often it qualifies the keyword, and its first 4 characters are significant.

3. The first number (if any). This may be an integer value or a real value; up to 8 characters in
Fortran's I, F, E or D format.

In the following examples the significant characters are underlined:

OBJECTIVE PROFIT
SO-LUTION EIkE 12

ROW TOLERANCE 0.0001
LOWER BOUND A
AIJ TOL 1.OF,_

If the first character of an item is one of the following numeric characters

1 2 3456 7 8 Q0 +- .
then the item is taken to be a number. The number may be from I to 8 contiguous numeric
characters, including an E or a D if need be. It is terminated by a non-numeric character such as

a space.
(An exception is made ror the keywords OBJECTIVE, RHS, RANGE and BOUND, which specify

names to be extracted from the MPS file. For these keywords the second item is taken to be the
required name value even if it begins with a numeric character. Thus,

AIJ TOLERANCE .00001
OBJECTIVE .00001
RHS ... ZEO0
BOUND +1000

are all allowed. However, names like OBJECTIVE = COST or RHS = DEMANDO2 will be more com-
mon.)

Blank cards and comments may be used to improve readability. A comment begins with an
asterisk ('W') and includes all subsequent characters on the same card; thes are ignored. The 'W'
may be the first non-blank character on the card, or the first non-blank after a space or an equal
sign. For example:

iA

18 3. The SPECS File

* MPS file parameters

ROWS 1000 * (or less)
COLUMNS 2000 * (or less)
ELEMENTS 8000 * (or less)
OBJECTIVE = PROFIT02 * (the 2nd N row)

Scanning terminates once a number has been recognized. An asterisk is therefore not essential
following a number:

WEIGHT ON OBJECTIVE = 10.0 DURING PHASE I

3.2 SPECS File Checklist and Defaults

The following example SPECS file shows all valid keywords and their default values. The keywords
are grouped according to the function they perform.

Some of the default values depend on (, the relative precision of the "ins being used. The
values given here correspond to double-precision arithmetic on IBM 3t, 370 systems and
their successors (c 2.22 X 10-16). Similar values would apply to any machine having aboit 15
decimal digits of precision.

BEGIN checklist of SPECS file parameters and their default values
0 *

* Keywords for the MI'S file

MINIMIZE * (opposite of MAXIMIZE)
OBJECTIVE = * the first name encountered
RHS * the first namie encountered
RANGE = * the first name encountered

BOUNDS ? * the first name encountered
ROWS 100 *

COLUMNS 300 * or 3*ROWS
ELEMENTS (or COEFFICIENTS) 1500 * or 5*COLUMNS

AIJ TOLERANCE 1.OE-10 *
LOWER BOUND 0.0 *
UPPER BOUND 1.0E+20 * plus infinity
UPS FILE ? * depends on installation
LIST LIMIT 0 * for printing MIPS data
ERROR MESSAGE LIMIT 10 * during MPS input

* Keywords for the simplex method

CRASH OPTION 1 * all variables eligible for initial basis
ITERATIONS LIMIT 300 * or 3*ROWS + 10*NONLINEAR VARIABLES
PARTIAL PRICE 1 * or COLS/(2*ROWS) if COLS is large
MULTIPLE PRICE 1 * BEWARE - not like commercial LP
WEIGHT ON LINEAR OBJECTIVE 0.0 * during phase 1 •

3.2 SPECS File Checklist and Defaults ig

SUMMARY FILE 0 * > 0 for occasional output to terminal
SUMMARY FREQUENCY t00 * iteration log on SUMMARY file
LOG FREQUENCY 1 * iteration log on PRINT file
CHECK FREQUENCY 30 * numerical test on row residuals
FACTORIZATION FREQUENCY 50 * refactorize the basis matrix
SAVE FREQUENCY 100 * basis map
SCALE NO * linear constraints and variables
SOLUTION YES * on PRINT file
,

• BASIS files

OLD BASIS FILE 0 * input basis map

NEW BASIS FILE 0 * output basis map
BACKUP BASIS FILE 0 * output basis map

INSERT FILE 0 * input in industry format
PUNCH FILE 0 * output INSERT data
LOAD FILE 0 * input names and values
DUMP FILE 0 * output LOAD data
SOLUTION FILE 0 * separate from printed solution
,

* Convergence and stability tolerances
,

FEASIBILITY TOLERANCE I.OE-8 * for satisfying bounds
OPTIMALITY TOLERANCE I.OE-8 * for reduced gradients
PIVOT TOLERANCE 3.7E-11 * el
LU FACTOR TOLERANCE 10.0 * limits size of multipliers in L
LU UPDATE TOLERANCE 10.0 * the same during updates

• Parameters for nonlinear problems
,

NONLINEAR CONSTRAINTS 0 * must be the exact number, m
NONLINEAR VARIABLES 0 * must be the exact number, nv
NONLINEAR OBJECTIVE VARIABLES 0 * use if different from Jacobian variables
NONLINEAR JACOBIAN VARIABLES 0 * use if different from objective variables

SUPERBASICS LIMIT' 1 * or HESSIAN DIMENSION
HESSIAN DIMENSION 1 * or SUPERBASICS LIMIT

PROBLEM NUMBER 0 * sets subroutine parameter NPROB
DERIVATIVE LEVEL 3 * assumes all gradients are known
VERIFY LEVEL 0 * gives cheap check on gradients
EMERGENCY VERIFY LEVEL 0 * cheap check before stopping

START OBJECTIVE CHECK AT COL I *

STOP OBJECTIVE CHECK AT COL n, *
START CONSTRAINT CHECK AT COL 1 *

STOP CONSTRAINT CHECK AT COL nt *

20 3. The SPECS File

LINESEARCH TOLERANCE 0.1 * smaller for more accurate search

SUBSPACE TOLERANCE 0.6 * affects when to PRICE

FUNCTION PRECISION 3.0E-13 * c 08 (almost full accuracy)
DIFFERENCE INTERVAL 5.SE-7 * (FUNCTION PRECISION)1

CENTRAL DIFFERENCE INTERVAL 8.7E-5 * (FUNCTION PRECISION)i

• Further parameters for nonlinear constraints

JACOBIAN DENSE *

LAGRANGIAN YES *

MAJOR ITERATIONS 20 *

MINOR ITERATIONS 40 *

PENALTY PARAMETER 100.0/m, * may need to be larger if very nonlinear
DAMPING PARAMETER 2.0 * affects step-size between subproblems

COMPLETION PARTIAL * FULL if no nonlinear constraints
ROW TOLERANCE 1.OE-8 * allowable nonlinear constraint violation

RADIUS OF CONVERGENCE 0.01 * for reducing the penalty parameter
PRINT LEVEL (JFLXB) 00001 * J(Xk), f(zk), Xk, zk, Basis statistics

• Sequences of related problems

CYCLE LIMIT 1 *

CYCLE PRINT I *

CYCLE TOLERANCE 0.0 *

PHANTOM COLUMNS 0 *

PHANTOM ELEMENTS 0 *

* Miscellaneous

DEBUG LEVEL 0 *

LINESEARCH DEBUG AFTER ITN 999999*

WORKSPACE (USER) 0 *

WORKSPACE (TOTAL) ?* dependIs on installation
* SUPPRESS PARAMETER LISTING

END of SPECS file checklist

lI
*L

ii

iI

3.3 SPECS File Definitions 21

3.3 SPECS File Definitions

The following is an alphabetical list of recognized SPECS file keywords. A typical use of each
keyword is given, along with a definition or the quantities involved and comments on usage. In
many cases the value associated with a keyword is denoted by a letter such as k, and allowable
values for k are subsequently defined.

AIJ TOLERANCE t (default t = I.OE-10)
During input of the NPS file, matrix coefficients aji will be ignored if ja1jI < t.

If aj is a Jacobian element, it is not ignored. (Its position is recorded, and it will retain the
value t if DERIVATIVE LEVEL = 2 or 3 and FUNCON does not reset the corresponding element of
G.)

If CYCLE LIMIT > 1 and a,3 is to be changed from zero to a value greater than t during a
later cycle, set t = 0.0 to retain all entries in the MPS file.

BACKUP BASIS FILE k (default k = 0)
This is intended as a safeguard against losing the results of a long run. Suppose that a NEW
BASIS FILE is being saved every 100 iterations, and that MINOS is about to save such a basis at
iteration 2000. It is conceivable that the run may time-out during the next few milliseconds (i.e.,
in the middle of the save), or the host computer could unexpectedly crash. In this case the basis
file will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS FILE and a BACKUP BASIS FILE may be specified.
The following would be suitable for the above example:

OLD BASIS FILE 11 (or 0)
BACKUP BASIS FILE 11
NEW BASIS FILE 12
SAVE FREQUENCY 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file I1. If the run is interrupted at iteration 2000 during the save on file 12, there will still be
a useable basis on file 11 (corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates normally, but there
is no need for a further BACKUP BASIS. In the above example, if an optimum solution is found
at iteration 2050 (or if the iteration limit is 2050), the final basis on file 12 will correspond to
iteration 2050, but the last basis saved on file 11 will be the one for iteration 2000.

BOUNDS BOUNDOI
This specifies the 8-character name of the bound set to be selected from the MPS file.

1. BNDS is a valid alternative keyword.

2. If BOUNDS is not specified, or if the name is blank, the first bound set in the MPS file will be
selected.

3. If the MPS file contains one or more bound sets but you do not want any of them to be used,
specify a dummy name such as BOUND NONE.

22 3. The SPECS File

CENTRAL DIFFERENCE INTERVAL h2 (default h2 = (FUNCTION PRECISION)i)
When DERIVATIVE LEVEL < 3, the central-difference interval h2 is used near an optimal solution
to obtain more accurate (but more expensive) estimates of gradients. Twice as many function
evaluations are required compared to forward differencing. The interval used for the j-th variable
is hj = h2(1 + IXil). The resulting gradient estimates should be accurate to O(h), unless the
functions are badly scaled.

CHECK FREQUENCY k (default k = 30)
Every k-th iteration after the most recent basis factorization, a numerical test is made to see if
the current solution x satisfies the general linear constraints (including any linearized nonlinear
constraints, if any). If these are Ax + a = 0 where s is the set of slack variables, the residual
vector r = Ax + s is computed. If the largest component of r is judged to be too large, the current
basis is refactorized and the basic variables are recomputed to satisfy the general constraints more
accurately.

COEFFICIENTS 5000
See ELEMENTS.

COLUMNS n (default n = 3*ROWS)
This must specify an over-estimate of the number of columns in the constraint matrix (excluding
slack variables, but including any PHANTOM COLUMNS). If n proves to be too small, MINOS will
continue reading the MI'S file to determine the true value of n, and an appropriate warning
message will be issued. If the MPS file number is the same as the system card reader, the problem
will then be terminated; otherwise the MPS file will be re-read.

COMPLETION PARTIAL (default)
COMPLETION FULL
When there are nonlinear constraints, this determines whether subproblems should be solved to
moderate accuracy (PARTIAL completion), or to full accuracy (FULL completion). MINOS effects
the option by using two sets of convergence tolerances for the subproblems.

Use of partial completion may reduce the work during early major iterations, unless the MINOR
ITERATIONS limit is active. The optimal set of basic and superbasic variables will probably be
determined for any given subproblem, but the reduced gradient may be larger than it would have
been with full completion.

An automatic switch to full completion occurs when it appears that the sequence of major
iterations is converging. The switch is made when the nonlinear constraint error is reduced below
lO0*(ROW TOLERANCE), the relative change in X is 0.1 or less, and the previous subproblem was
solved to optimality.

Full completion tends to give better Lagrange-multiplier estimates. It may lead to fewer
major iterations, but may result in more minor iterations.

CRASH OPTION k (default k = 1)
If a starting bwsis is not specified, a triangular basis will be selected from certain columns of the I
constraint matrix (A I). Free rows and variables are given priority. Columns are then chosen
from A according to the following values of k. Slack columns (from I) are then added where
necessary. I

!

3.3 SPECS File Definitions 23

k Meaning

0 The all-slack basis is set up.

1 All columns of A are considered.

2 Only the columns of A corresponding to the linear variables y will be considered. Linear
programming will then be used to optimize y as much as possible, before the nonlinear
variables z are altered from their initial values. (If an accurate initial point zo is
provided, this may increase overall efficiency.)

3 Nonlinear objective variables will be excluded from the initiai basis.

4 Nonlinear Jacobian variables will be excluded from the initial basis.

In all cases, CRAShl will refrain from selecting variables that were made superbasic by means of
an FX indicator in the INITIAL bounds set.

CYCLE LIMIT L (default 1 = 1)
CYCLE PRINT p (default p = 1)
CYCLE TOLERANCE t (default t = 0.0)
PHANTOM COLUMNS c (default c = 0)
PHANTOM ELEMENTS e (default e - 0)
These keywords refer to a facility for constructing and solving a sequence of related problems, as
described in sections 1.9, 2.4 and 2.5. The COMMON block

COMMON /CYCLCM/ CNVTOL, JNEW, IMATERR, MAXCY. NEPHNT, NPHANT, NPRINT
contains certain relevant variables.

1. 1 - MAXCY is the maximum number of problems to be solved.
* 2. p - NPRINT controls the printing of intermediate solutions. At most, the last p solutions will

be output.
3. t = CNVTOL is a real number for possible use in a user-specified convergence test within

subroutine MATMOD.

4. c = NPHANT is the number of columns that can be added to the constraint matrix beyond
those specified in the MPS file. Each column must be added by means of a call to subroutine
MATCOL. If an error occurs, MATCOL increments MATERR (which is initially zero). Otherwise,
JNEW records the index of the new column.

5. e = NEPHNT is the number of nonzero elements that are allocated to the "phantom columns"
beyond those specified in the MPS file.

DAMPING PARAMETER d (default d = 2.0)
This parameter may assist convergence on problems that have highly nonlinear constraints. It is
intended to prevent large relative changes between subproblem solutions (xz, X&) and (xZ+l, Xk+l).
For example, the default value 2.0 prevents the relative change in either zk or XAI from exceeding
200 per cent. It will not be active on well-behaved problems.

The parameter is used to interpolate between the solutions at the beginning and end of each
major iteration. Thus, zx+t and X;+, are changed to

Zk + a1(Zk+l - ZAI) and Xk + u(X&+i - 4)

for some step-length a < I. (In the case of nonlinear equations, this gives a damped Newton
method.)

_ _ _ _ _

24 3. The SPECS File

1. This is a very crude control. If the sequence of major iterations does not appear to be
converging, one should first re-run the problem with a higher PENALTY PARAMETER p (say 10
or 100 times the default p). (Skip this re-run in the case of nonlinear equations. There are
no degrees of freedom and the value of p is irrelevant.)

2. If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).

3. For implementation reasons, the shortened step o applies to the nonlinear variables z, but
not to the linear variables y or the slack variables s. This may reduce the efficiency of the
control.

DEBUG LEVEL d (default d = 0)
This causes various amounts of information to be output to the PRINT file.

k Meaning

0 No debug output.

2 (or more) Output from M5SETX showing the maximum residual after a row check.

40 Output from LU8RPC showing the position of the last nonzero in the transformed
incoming column.

50 Output from LU2FAC showing each pivot row and column and the dimensions of the
dense matrix involved in the associated elimination.

100 Output from M2BFAC and M5LOG listing the basic and superbasic variables and their
values at every iteration.

DERIVATIVE LEVEL d (default d = 3)
This specifies which nonlinear function gradients are known analytically and will be supplied to
MINOS by the user subroutines FUNOBJ and FUNCON.

d Meaning

3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all components of the objective gradient
are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are un-
known.

0 Some components of the objective gradient are unknown and some or the constraint
gradients are unknown.

1[1

3.3 SPECS File Definitions 25

The value d = 3 should be used whenever possible. It is the most reliable and will usually be the
most efficient.

If d = 0 or 2, MINOS will estimate the missing components or the objective gradient,
using finite differences. This may simplify the coding of subroutine FUNOBJ. flowever, it could
increase the total run-time substantially (since a special call to FUNOBJ is required for each missing
element), and there is less assurance that an acceptable solution will be located. If the nonlinear
variables are not well scaled, it may be necessary to specify a nonstandard DIFFERENCE INTERVAL
(see below).

If d = 0 or 1, MINOS will estimate missing elements of the Jacobian. For each column of the
Jacobian, one call to FUNCON is needed to estimate all missing elements in that column, if any. If
JACOBIAN = SPARSE and the sparsity pattern or the Jacobian happens to be

?

where * indicates known gradients and ? indicates unknown elements, MINOS will use one call
to FUNCON to estimate the missing element in column 2, and another call to estimate both missing
elements in column 3. No calls are needed for columns I and 4.

At times, central differences are used rather than forward differences. Twice as many calls
to FUNOBJ and FUNCON are then needed. (This is not under the user's control.)

Remember: when analytic derivatives are not provided, the attainable accuracy in locating
an optimal solution is usually less than when all gradients are available. DERIVATIVE LEVEL 3 is
strongly recommended.

DIFFERENCE INTERVAL h, (default hl = (FUNCTION PRECISION)i)
This alters the interval hl that is used to estimate gradients by rorward differences in the following
circumstances:
I. In the initial ("cheap") phase of verifying the objective gradients.
2. For verifying the constraint gradients.
3. For estimating missing objective gradients.
4. For estimating missing Jacobian elements.

In the last three cases, a derivative with respect to z1 is estinated by perturbing that component
or z to the value z + h1(l + Izl), and then evaluating F(x) or f(z) at the perturbed point. The
resulting gradient estimates should be accurate to O(hi) unless the functions are badly scaled.
Judicious alteration of hi may sometimes lead to greater accuracy.

DUMP FILE f (default f = 0)
If I > 0, the last solution obtained will be output to file f in the format described in section 5.3.
The file will usually have been output previously as a LOAD file.

ELEMENTS e (default e = 5*COLUMNS)
i This must specify an over-estimate of the number or nonzero elements (coefficients ai,) in the

constraint matrix, including all entries in a DENSE or SPARSE Jacobian, and all nonzeros in the
matrices AI, A., A 3. (It should also include the number of PHANTOM ELEMENTS, if any.)

I. COEFFICIENTS is a valid alternative keyword.

2. ir e proves to be too small, MINOS continues in the manner described under COLUMNS.

L I- -dqwp

26 3. The SPECS File

EMERGENCY VERIFY LEVEL
See VERIFY LEVEL.

ERROR MESSAGE LIMIT • (default e - 10)
This is the maximum number of error messages to be printed for each type of error occurring
when the MI'S file is read. The default value is reasonable for early runs on a particular MIPS
file. If the same file is used repeatedly, e can be reduced to suppress warning of non-fatal errors.

FACTORIZATION FREQUENCY k (default k = 50)
At most k basis changes will occur between factorizations of the basis matrix.

1. With linear programs, the basis factors are usually updated every iteration. The default k is
reasonable for typical problems. Higher values up to k = 100 (say) may be more efficient on
problems that are extremely sparse and well scaled.

2. When the objective function is nonlinear, fewer basis updates will occur as an optimum is
approached. The number of iterations between basis factorizations will therefore increase.
During these iterations a test is made regularly (according to the CHECK FREQUENCY) to ensure
that the general constraints are satisfied. If necessary the basis will be refactorized before
the limit of k updates is reached.

3. When the constraints are nonlinear, the MINOR ITERATIONS limit will probably preempt k.

FEASIBILITY TOLERANCE t (default t = 1.OE-6)
A feasible solution is one in which all variables satisfy their upper and lower bounds to within

*the absolute tolerance t. (This includes slack variables. llence, the general linear constraints are
also satisfied to within t.)

* 1. MINOS attempts to find a feasible point before optimizing the objective function. If the sum
of infeasibilities cannot be reduced to zero, the problem is declared INFEASIBLE. Let SINF
be the corresponding sum of infeasibilities. If SINF is quite small, it may be appropriate to
raise t by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

2. Note: if SINF is not small, there may be other points that have a significantly smaller sum of

in feasibilities. MINOS does not attempt to find the solution that minimizes the sum.

3. If SCALE is used, feasibility is defined in terms of the scaled problem (since it is then more
likely to be meaningful).

4. A nonlinear objective function F(x) will be evaluated only at feasible points. If there are
regions where F(x) is undefined, every attempt should be made to eliminate these regions
from the problem. For example, if l"(r) = Vf7 + logx 2 , it is essential to place lower bounds

on both variables. If FEASIBILITY TOLERANCE = 10-6, the bounds z 10- 5 and z2 >
10- 4 might be appropriate. (The log singularity is more serious; in general, keep z as far
away from singularities as possible.)

5. Bounds should also be used to keep z more than t away from singularities in f(z).

6. If there are any nonlinear constraints, each major iteration attempts to satisfy their lineariza-
tion to within the tolerance t. If this is not possible, the bounds on the nonlinear constraints

are relaxed temporarily (in several stages).

7. Feasibility with respect to the nonlinear constraints themselves is measured against the ROW
TOLERANCE (not against I). The relevant test is made at the start of a major iteration.

"" T, o. ,,~ iI

3.3 SPECS File Definitions 27

FUNCTION PRECISION fR (default ER - £o.6)
The relative function precision tR is intended to be a measure of the relative accuracy with which
the nonlinear functions can be computed. For example, if F(z) is computed as 1000.56789 for
some relevant z and if the first 6 significant digits are known to be correct, the appropriate value
for (R would be 1.OE-6.

(Ideally the functions F(z) or f'(x) should have magnitude of order 1. If all functions are
substantially less than I in magnitude, cR should be the absolute precision. For example, if
F(z) = 1. 23466789E-4 at some point and if the first 6 significant digits are known to be correct,
the appropriate value for iR would be 1.OE-10.)

I. The default value of (,R is appropriate for simple analytic functions.

2. In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at reasonable
cost. Specifying an appropriate FUNCTION PRECISION may lead to savings, by allowing the
linesearch procedure to terminate when the difference between function values along the
search direction becomes as small as the absolute error in the values.

HESSIAN DIMENSION r (default r = SUPERBASICS LIMIT or 30)
This specifies that an r X r triangular matrix R is to be available for use by the quasi-Newton
algorithm (to approximate the reduced Hessian matrix according to ZTJIZ = RTR). Suppose
there are a superbasic variables at a particular iteration.

1. If a < r, the first a columns of R will be used to approximate the reduced Hessian in the
4 normal manner. If there are no further changes to the set or superbasic variables, the rate

of convergence will ultimately be superlinear.

2. If s > r, a matrix of the form

R (R,. 0)

will be used to approximate the reduced H essian, where R, is an r X r upper triangular
matrix and D is a diagonal matrix of order a - r. The rate of convergence will no longer be
superlinear.

3. The storage required is of order r2 ,which is substantial if r is as large as 200 (say). In general,
r should be a slight over-estimate of the final number of superbasic variables, whenever storage
permits. It need not be larger than n1 + 1, where n1 is the number of nonlinear variables.
For many problems it can be much smaller than n4.

4. If SUPERBASICS LIMIT a is specified, the default value of r is the same number, a (and
conversely). This is a safeguard to ensure superlinear convergence wherever possible. If
neither r nor a is specified, both default to the value 30.

INSERT FILE f (default f = 0)
If f > 0, this references a file containing basis information in the format of section 5.2.

1. The file will usually have been output previously as a PUNCH file.

2. The file will not be accessed if an OLD BASIS file is specified.

INVERT FREQUENCY
See FACTORIZATION FREQUENCY.

28 3. The SPECS File

ITERATIONS LIMIT k (default k = 3*ROWS + 1O*NONLINEAR VARS)
This is the maximum number of minor iterations allowed (i.e., iterations of the simplex method
or the reduced-gradient algorithm).

1. ITNS is an alternative keyword.

2. k = 0 is valid. Both feasibility and optimality are checked.

3. If CYCLE LIMIT > 1, the limit of k minor iterations applies to each cycle separately.

JACOBIAN DENSE (default)
JACOBIAN SPARSE

This determines the manner in which the constraint gradients are evaluated and stored. It affects
the MPS file and subroutine FUNCON.

1. The DENSE option is convenient if there are not many nonlinear constraints or variables. It
requires storage for three dense matrices of order m, X n1.

2. The MPS file may then contain any number of Jacobian entries. Usually this means no entries
at all.

3. For efficiency, the SPARSE option is preferable in all nontrivial cases. (Beware-it must be
specifically requested.) The MPS file must then specify the position of all Jacobian elements
(that are not identically zero), and subroutine FUNCON must store the elements of the Jacobian
array G in exactly the same order.

4. In both cases, if DERIVATIVE LEVEL = 2 or 3 the MPS file may specify Jacobian elements
that are constant for all values of the nonlinear variables. The corresponding elements of G
need not be reset in FUNCON.

LAGRANGIAN YES (default)
LAGRANGIAN NO

This determines the form of the objective function used for the linearized subproblems. The
default value YES is highly recommended. The PENALTY PARAMETER value is then also relevant.

If NO is specified, subroutine FUNCON will be called only twice per major iteration. Hence
this option may be useful if the nonlinear constraint functions are very expensive to evaluate.
However, in general there is a great risk that convergence may not occur. (Note: FUNCON will be
called more often to estimate J(z) if DERIVATIVE LEVEL < 2.)

LINESEARCH DEBUG AFTER ITERATIONi (default i = 999999)
This causes considerable information to be output by the linesearch procedures every iteration,
once iteration i has been completed. Its principal purpose is to assist the authors of the linesearch I
procedures to determine if the procedures are functioning correctly. In some cases it may confirm
that the function values are very "noisy", or that the gradients computed in FUNOBJ or FUNCON
are incorrect. i

I

3.3 SPECS File Definitions 29

LINESEARCH TOLERANCE t (default t 0. 1)
lFor nonlinear problems, this controls the accuracy with which an optimum of the merit function
will be located along the direction of search each iteration.

I. t must be a real value in the range 0.0 < t < 1.0.

2. The default value t = 0. 1 requests a moderately accurate search. It should be satisfactory

for many problems.

3. If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate;
try t = 0.01 or t = 0.001. The number of iterations should decrease, and this will reduce
total run time if there are many linear or nonlinear constraints.

4. If the nonlinear functions are expensive to evaluate, a less accurate search may he appropriate.

If all gradients are known, try t = 0.5 or perhaps t = 0.9. (The number of iterations will
probably increase, but the total number of function evaluations may decrease enough to
compensate.)

5. If not all gradients are known, a reasonably accurate search remains appropriate. Each search
will require only 2-5 function values (typically), but many function calls will then be needed
to estimate missing gradients for the next iteration.

LIST LIMIT k (default k = 0)
This limits the number of lines of the MPS file to be listed on the PRINT file during input. The
header cards (NAME, ROWS, COLUMNS, RHS, RANGE, BOUNDS, ENDATA) and comment cards will always

* :be listed, along with their position in the file.

LOAD FILE f (default f = 0)

If f > 0, this references a file containing basis information in the format of section 5.3.

1. The file will usually have been output previously as a DUMP file.

2. The file will not be accessed if an OLD BASIS file or an INSERT file is specified.

LOG FREQUENCY k (default k = 1)
One line of the iteration log will be printed every k-th minor iteration. A value such as k - 10
is suggested for those interested only in the final solution.

LOWER BOUND I (default I = 0.0)
Before the BOUNDS section of the MPS file is read, all structural variables are given the default
lower bound 1. (Individual variables may subsequently have their lower bound altered by a

BOUND set in the MPS file.)

1. LOWER BOUND = 1.OE-5 (say) is a useful method for bounding all variables away from sin-
gularitics at zero. (Explicit bounds may also be necessary in the MPS file.)

2. If all or most variables are to be FIIRE, use LOWER BOUND = -1 .OE+20 to specify "minus
infinity". (The default upper bound is already 1.OE+20, which is treated as "plus infinity".)

.. :. " .. _

30 3. The SPECS File

LU FACTOR TOLERANCE tl (default t, = 10.0)
LU UPDATE TOLERANCE t 2 (default tN = 10.0)
These tolerances affect the stability and sparsity of the basis factorization LB = U, during
reractorization and updates respectively. Both tolerances must satisfy t _> 1.0. The matrix L is
a product of matrices of the form C')
where the multipliers 1 will satisfy II& < t,.

I. The default values ti = 10.0 usually strike a good compromise between stability and sparsity.

2. For large and relatively dense problems, t = 26.0 (say) may give a marked improvement in
sparsity without impairing stability to a serious degree.

3. For certain very special structures (e.g., band matrices) it may be necessary to set tL in the
range 1.0 1 < 2.0 to achieve stability.

MAJOR ITERATIONS k (default k = 20)
This is the maximum number of major iterations allowed. It is intended to guard against an
excessive number of linearizations of the conistraints, since in some cases the sequence of major
iterations may not converge.

For preliminary runs on a new problem, a fairly low MAJOR ITERATIONS limit should be
specified (e.g., 10 or 20). See the advice given under PENALTY PARAMETER.

MAXIMIZE
MINIMIZE (default)
This specifies the required direction of optimization. It applies to both linear and nonlineqr terms
in the objective.

MINOR ITERATIONS k (default k = 40)
This is the maximum number of iterations allowed between successive linearizations of the non-
linear constraints. A moderate value (e.g., 10 < k < 60) prevents excessive effort being expended
on early major iterations, but allows later subproblems to be solved to completion.

In general it is unsafe to specify a value as small as k = I or 2. (Even when an optimal
solution has been reached, a few minor iterations may be needed for the corresponding subproblem
to be recognized as optimal.)

Note that an independent limit on total iterations should be specified oy the ITERATIONS
keyword as usual. If the problem is linearly constrained, this is the only limit (i.e., the MINOR
ITERATIONS keyword is ignored).

UPS FILE f (default f =-)

This is the file number for the MPS file. The default value is the system card reader IREAD, which
is often f = 5.

I. INPUT FILE is a valid alternative keyword. J
2. For nontrivial problems it is usually best to store the MPS file separately from the SPECS

file. If the ROWS, COLUMNS or ELEMENTS estimates prove to be too low, MINOS will be able to
rewied the MPS file and try again. I

I
~ |

3.3 SI'ECS Pilk Definitions 31

MULTIPLE PRICE k (derault k -)

Whenever a PRICE operation is performed, the k best nonbasic variables will be selected for

admission to the superbasic set. ("Best" means the variables with largest reduced gradients of
appropriate sign. If partial pricing is in effect, up to k variables are selected from the current
partition of A and I.)

1. The default value k = I is best for linear programs, since an optimal solution will have zero
superbasic variables.

2. Warning: irk > 1, MINOS will go into reduced-gradient mode even on purely linear problems.
The subsequent iterations do not correspond to the very efficient suboptimization ("minor
iterations") carried out by standard linear programming systems using multiple pricing.
(MINOS varies all superbasic variables simultancously. However, its storage requirements
are essentially independent of k on linear problems. Thus, k need not be limited to 5 or 6 as
it is in standard systems, which require storage for k dense vectors of dimension m.)

3. On large nonlinear problems it may be important to set k > 1, if the starting point does
not contain many superbasic variables. For example, if a problem has 3000 variables and 500
of them are nonlinear, the optimal solution may well have 200 variables superbasic. If the
problem is solved in several runs, it may be beneficial to use k = 10 (say) for early runs,
until it seems that the number of superbasics has levelled off.

NEW BASIS FILE f (default f = 0)
If f > 0, a basis map will be saved on file f every k-th iteration, where k is the SAVE FREQUENCY.

1. The first card of the file will contain the word PROCEEDING if the run is still in progress.

2. If f > 0, a basis map will also be saved at the end of a run, with some other word indicating
the final solution status.

NONLINEAR CONSTRAINTS MI (default m, 0)
NONLINEAR VARIABLES n1 (default nt 0)
NONLINEAR OBJECTIVE VARIABLES n1 (default n' - 0)
NONLINEAR JACOBIAN VARIABLES n' (default n'" 0)
These keywords define the parameters X and N in subroutines FUNOBJ and FUNCON. For example,
H in FUNCON will take the value ml, if m, > 0.

i. If the objective function and the constraints involve the same set of nonlinear variables z,
then NONLINEAR VARIABLES nt is the simplest way to set N to be the same value for both
subroutines.

2. Otherwise, the NONLINEAR OBJECTIVE and NONLINEAR JACOBIAN keywords should be used to
specify n' and n"' separately.

3. If mi = 0, the value n"' = 0 is assumed regardless of n or n.

4. Remember that the nonlinear constraints and variables must always be the first ones in the
problem. It is usually best to place Jacobian variables before objective variables, so that n" <
n' (unless n' = 0). This affects the way the function subroutines should be programmed,
and the order in which variables should be placed in the COLUMNS section of the MPS file.

. ,,,I I _.I III_________________________......____________

32 3. The SPECS File

OBJECTIVE COST

This specifies the 8-character name of the type N row in the MPS file to be selected as the linear
part of the objective function (i.e., the objective function for linear programs).

1. If OBJECTIVE is not specified, or if the name is blank, the first N row in the ROWS section
of the MPS file will be selected. (Warning- objective rows must be listed after nonlinear
constraint rows in the ROWS section of the MPS file.)

2. If the ROWS section contains one or more N rows but you do not want any of them to be
used in the objective function, specify a dummy name. If the objective is defined entirely by
subroutine FUNOBJ it may be helpful to specify OBJECTIVE = FUNOBJ. (However, don't expect
a different name to invoke a different subroutine!)

OLD BASIS FILE f (default f = 0)
If f > 0, the starting point will be obtained from this file in the format of section 5.1.

1. The file will usually have been output previously as a NEW BASIS FILE.

2. The file will not be acceptable if the number of rows or columns in the problem has been
altered.

OPTIMALITY TOLERANCE t (default t = I .OE-8)
This is used to judge the size of the reduced gradients dj = gj - 7rTa,, where g3 is the gradient
of the objective function corresponding to the j-th variable, ai is the associated column of the
constraint matrix (or Jacobian), and 7r is the set of dual variables.

I. By construction, the reduced gradients for basic variables are always zero. Optimality will
be declared if the reduced gradients for nonbasic variables at their lower or tipper bounds
satisfy

d/117r1l > -t or d/I/1irI < t

respectively, and if
Id,,l/lirli < t

for superbasic variables.

2. In the above tests, 11w11 is a measure or the size of the dual variables. It is included to make
the tests independent of a scale factor on the objective function.

3. The quantity actually used is defined by

S= i I ,I,
i=1

IIll = max{0/Vd, 1),

so that only large scale ractors are allowed for. If the objective is scaled down substantially,

the test for optimality reduces to comparing just d, against t.

3.3 SPECS File Definitions 33

PARTIAL PRICE p (default p = 1 or c (see below))
This parameter is recommended for large problems that have significantly more variables than
constraints. It reduces the work required for each "pricing" operation (when a nonbasic variable
is selected to become superbasic).

1. When p = 1, all columns of the constraint matrix (A I) are searched.

2. Otherwise, A and I are partitioned to give p roughly equal segments A,, I (j - I to p).
If the previous pricing search was successful on Aj- 1 , lj-1, the next search begins on the
segments Aj, Ij. (All subscripts here are modulo p.) If a reduced gradient is found that
is larger than some dynamic tolerance, the variable with the largest such reduced gradient
(of appropriate sign) is selected to become superbasic. (Several may be selected if MULTIPLE
PRICE has been specilied.) If nothing is found, the search continues on the next segments
Aj+1, Ij+,, and so on.

3. The default value of p is 1 for moderate-sized problems, but may be greater than I otherwise.
A quantity

c -- max{1000, 4*ROWS}

is defined. If COLUMNS > c and PARTIAL PRICE has not been specified, p will take the value
COLUMNS/2*ROWS}.

4. PARTIAL PRICE p is recommended for time-stage models having p time periods.

PENALTY PARAMETER p (default p = 100. O/mi)
This is the value of p in the modified augmented Lagrangian. It is used only when LAGRANGIAN

= YES.
For early runs on a problem with unknown characteristics, something like the default value

should be specified. If the problem is known to be highly nonlinear, specify a larger value, such
as 10 times the default. In general, a positive value of p may be necessary to ensure convergence,
even for convex programs.

On the other hand, if p is too large, the rate of convergence may be unnecessarily slow. If
the functions are not highly nonlinear or a good starting point is known, it will often be safe to
specify PENALTY PARAMETER 0.0.

If several related problems are to be solved, the following strategy for setting the PENALTY
PARAMETER may be useful:

1. Initially, use a moderate value of p, such as the default, and a reasonably low ITERATIONS
and/or MAJOR ITERATIONS limit.

2. If successive major iterations appear to be terminating with radically different solutions, the
penalty parameter should be increased. (See also the DAMPING PARAMETER.)

3. If there appears to be little progress between major iterations, the penalty parameter could
be reduced.

PHANTOM COLUMNS C (default c = 0)
PHANTOM ELEMENTS e (default e = 0)
See the CYCLE parameters.

.....

34 3. The SPECS File

PIVOT TOLERANCE t (default t f l)
This allows the pivot tolerance to be altered if necessary. (The tolerance is used to prevent
columns entering the basis if they would cause the basis to become almost singular.) The default
value of t is roughly 10-11 for double precision on IBM systems. This should be satisfactory in T
most circumstances. L

PRINT LEVEL (JFLXB) p (default p = 00001)
This varies the amount of information that will be output to the printer file. It is independent
of the LOG FREQUENCY. Typical values are

PRINT LEVEL I

which gives normal output for linear and nonlinear problems, and
PRINT LEVEL " it

which in addition gives the values of the nonlinear variables Xk at the start or each major iteration,
for problems with nonlinear constraints.

In general, the value being specified is best thought of as a binary number of the form
PRINT LEVEL JFLXB

where each letter stands for a digit that is either 0 or 1. The quantities referred to are:

B BASIS statistics, i.e., information relating to the basis matrix whenever it is refacorized.

X xi, the nonlinear variables involved in the objective function or the constraints.

L Xk, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed if the
option LAGRANGIAN = NO is specified, since Xk = 0 then.)

F f(xk), the values of the nonlinear constraint functions.

J J(Xk), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0.
If J=1, the Jacobian matrix will be output colunmn-wise at the start of each major iteration.

Column j will be preceded by the value of the corresponding variable x, and a key to indicate
whether the variable is basic, superbasic or nonbasic. (Hence if J=1, there is no reason to specify
X=1 unless the objective contains more nonlinear variables than the Jacobian.) A typical line of
output is

3 1.250000D+01 BS 1 1.OOOOOE+00 4 2.00000E+00

which would mean that X3 is basic at value 12.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows I and 4.

PRINT LEVEL 0 may be used to suppress most output, including page ejects between major I
iterations. (Error messages will not be suppressed.) This print level should be used only for
production runs on well understood models. A high LOG FREQUENCY may also be appropriate for

such cases, e.g. 100 or 1000. (For convenience, LOG FREQUENCY 0 may be used as shorthand for !
LOG FREQUENCY 99M99.)

PROBLEM NUMBER n (default n = 0)
For nonlinear problems, this assigns a value to the parameter NPROB in the user subroutines .

FUNOBJ, FUNCON and MATMOD.

-- ."..1

. . .._•._!__ _Ii_. . ..

3.3 Si'i'CS File Definitions 35

PUNCH FILE f (default f = 0)
If f > 0, the final solution obtained will be output to file f in the format described in section
5.2. For linear programs, this format is compatible with various commercial systems.

RADIUS OF CONVERGENCE r (default r = 0.01)
This determines when the penalty parameter p will he reduced (if initialized to a positive value).
Both the nonlinear constraint violation (see ROWERIR below) and the relative change in consecu-
tive Lagrange inultipler estimates must be less than r at the start of a major iteration before
p is reduced or set to zero. Once p is zero, the sequence of major iterations should converge
quadratically to an optimum.

RANGES RANGEOOI
This specifies the 8-character name of the range set to be selected from the MI1S file.

1. RNGS is a valid alternative keyword.

2. If RANGES is not specified, or if the name is blank, the first range set in the MPS file will be
selected.

3. If the MPS file contains one or more range sets but you do not want any of them to be used,
specify a dummy name such as RANGES = NONE.

RHS RHSIDE3
This specifies the 8-character name of the righthand side to be selected from the MPS file.

1. If RHS is not specified, or if the name is blank, the first righthand side in the MPS file will be
selected.

2. If the MPS file contains one or more righthand sides but you do not want any of them to be
used, specify a dummy name such as RHS = NONE.

ROWS m (default m 1 100)
This must specify an over-estimate of the number of rows in the constraint matrix. It includes
the number of nonlinear constraints and the number of general linear constraints.

If m proves to be too small, MINOS continues in the manner described under COLUMNS.

ROW TOLERANCE f, (default c, = I.OE-8)
This specifies how accurately the nonlinear constraints should be satisfied. (Both "ROW" and
"TOLE" are significant on this data card.) The default value of 1.OE-8 is often appropriate, since
the MPS file contains data to about that accuracy.

Let ROWERIR be defined as the maximum component of the residual vector f(z)+ Ay- bi,
normalized by the size of the solution. Thus,

ROWERR = Ill(=) + Aly - bill, /XNORM,

where XNORM is a measure of the size of the basic and superbasic variables. The solution (x, y)
is regarded as acceptably feasible if ROWERR < e,.

if some or the problem functions are known to be of low accuracy, a larger ROW TOLERANCE

may be appropriate.

-- _ _ __ _ -

36 3. The SI'ECS File

SAVE FREQUENCY k (default k = 100)
if a NEW BASIS file has been specified, a basis map describing the current solution will be saved
on the appropriate file every k-th iteration. A BACKUP BASIS file will also be saved if specified.

SCALE

SCALE YES
SCALE NO (default)
SCALE TOLERANCE t (default t = 0.9)
SCALE, PRINT
SCALE. PRINT. TOLERANCE t (default t = 0.9)
All forms of SCALE (except NO) request that the linear constraints and variables be scaled by an
iterative procedure that attempts to make the matrix coefficients as close as possible to 1.0. This
will sometimes improve the performance of the solution procedures.

The printed solution and the basis and solution files are output in original unsealed units.
Scaling is therefore transparent to the user, except that more storage is required (NB = n + m
double words) and precautions must be taken in applications involving subroutines MATUOD and
MATCOL.

1. The tolerance t must lie in the range 0.0 < t < 1.0. It affects how many passes might
be needed through the constraint matrix. On each pass, the scaling procedure computes for
cacii column j the ratio or the largest and smallest nonzero coefficients in the column:

V mIax a,1/ minla1A,P s,(a., o)

and records the largest, such ratio, max i Pi. If this is less than t times its previous value,
another scaling pass is performed to adjust the row and column scales.

2. Raising t from 0.9 to 0.99 (say) will probably increase the number of scaling passes. At most
10 passes will be made.

3. If PRINT is specified, the row-scales r(i) and column-scales c(j) will be output (i I 1 to m,
j = 1 to n). The scaled matrix coefficients are

ai = a,3 (i)l,(A)

and the scaled bounds on the variables and slacks are

1j 'AA(j), Ui = uc(j),

where c(j) =_ r(j - n) if j > n. These scaled items are stored permanently in place of the
original data.

4. The scale factors for nonlinear constraints and nonlinear variables are defined to be 1.0; they~I
are not printed.

SOLUTION YES (default)
SOLUTION NO •
SOLUTION IF OPTIMAL, INFEASIBLE, or UNBOUNDED
SOLUTION IF ERROR CONDITION
SOLUTION FILE f (default f = 0)
The first four options determine whether the final solution obtained is to be output to the PRINT
file. The FILE option operates independently; if f > 0, the final solution will be output to file f
(whether optimal or not).

A - -. '. -., - -- ,.,I-: -,,.d :,. !

3.3 SPIECS File Definitions 37

1. For the YES, IF OPTIMAL, and IF ERROR options, floating-point numbers are printed in F16.5
format, and "infinite" bounds are denoted by the word NONE.

2. For the FILE option, all numbers are printed in 1PE18.6 format, including "infinite" bounds
which will have magnitude 1.000000E 20.

3. To see more significant d1gits in the printed solution, it will sometimes be useful to make f
refer to the system PRINT file.

START OBJECTIVE CHECK AT COLUMN k (default k = 1)
START CONSTRAINT CHECK AT COLUMN k (default k = 1)
STOP OBJECTIVE CHECK AT COLUMNI (default I n)
STOP CONSTRAINT CHECK AT COLUMN I (default I = ni')
These keywords may be used to abbreviate the verification of individual gradient elements
computed by subroutines FUNOBJ and FUNCON. For example:

1. If the first 100 objective gradients appeared to be correct in an earlier run, and if you have
just found a bug in FUNOBJ that ought to fix up the 0ll-th component, then you might as
well specify START OBJECTIVE CHECK AT COLUMN 101. Similarly for columns of the Jacobian
matrix.

2. If the first 100 variables occur nonlinearly in the constraints, and the remaining variables are
nonlinear only in the objective, then FUNOBJ must set the first 100 components of G(*) to
zero, but these hardly need to be verified. The above data card would again be appropriate.

*These keywords are effective if VERIFY LEVEL 0 0. For an emergency verification at the end of
a run, all objective and constraint gradients will be checked if EMERGENCY VERIFY LEVEL > 0.

SUBSPACE TOLERANCE t (default t = 0.5)
This controls the extent to which optimization is confined to the current set of basic and superbasic
variables (Phase 4 iterations), before one or more nonbasic variables are added to the superbasic
set (Phase 3).

I. t must be a real number ;r the range 0.0 < t < 1.0. It is used as follows.

2. When a nonbasic variable Zj is made superbasic, the resulting norm of the reduced-gradient
vector (for all superbasics) is recorded. Let this be JIZTg0fI. (in fact, the norm will be Idil,
the size of the reduced gradient for z,.)

3. Subsequent Phase 4 iterations will continue at least until the norm of the reduced-gradient
vector satisfies IIZT11 5 t X IIZTgoll. (1IZTgll is the size or the largest reduced-gradient
component among the superbasic variables.)

4. A smaller value of i is likely to increase the total number of iterations, but may reduce the
number of basis changes. A larger value such as t = 0.9 may sometimes lead to improved
overall efficiency, if the number of superbasic variables has to increase substantially between
the starting point and an optimal solution.

5. Other convergence tests on the change in the function being minimized and the change in
the variables may prolong Phase 4 iterations. This helps to make the overall performance
insensitive to larger values of t.

38 3. The SPECS File

SUMMARY FILE f (default f = 0)
SUMMARY FREQUENCY k (default k = 100)
Iff > 0, a brief log will be output to file f, including one line of information every k-th iteration.
In an interactive environment, it is useful to direct this output to the terminal, to allow a run to
be monitored on-line. (If something looks wrong, the run can be manually terminated.) Further
details are given in section 6.6.

SUPERBASICS LIMIT a (default a = HESSIAN DIMENSION. 30, or 1)
This specities "how nonlinear" you expect a problem to be.

1. Normally, a need not be greater than n1 + 1, where nj is the specified number of nonlinear
variables.

2. For many problems (that are not highly nonlinear), a may be considerably smaller than ni.
This will save storage if n1 is very large.

3. This parameter also sets the HESSIAN DIMENSION, unless the latter is specified explicitly (and
conversely). If neither parameter is specified, both default to the value 30 (except if there
are no nonlinear variables, in which case both default to I).

SUPPRESS PARAMETERS
Normally MINOS prints the SPECS file as it is being read, and then prints a complete list of the

* available keywords and their final values. The SUPPRESS PARAMETERS option tells MINOS not to
print the full list. (Both "SUP" and "PARA" are significant.)

UNBOUNDED OBJECTIVE VALUE Fax (default Fmax = I.OE+20)
UNBOUNDED STEP SIZE clmax (default am,, = I.OE+10)
These parameters are intended to detect unboundedness in nonlinear problems. (They may or
may not achieve that purpose!) During a linesearch of the form

min F(z + ap),
a

if IFI exceeds Fm.x or a exceeds Gmax, iterations are terminated with the exit message PROBLEM
IS UNBOUNDED (OR BADLY SCALED).

1. If singularities are present, unboundedness in F(x) may be manifested by a floating-point
overflow (during the evaluation of F(x + ap)), before the test against Fmax can be made.

2. Unboundedness in z is best avoided by placing finite upper and lower bounds on the variables.
(For convenience, this can be accomplished in the SPECS file; see the LOWER and UPPER BOUND
parameters.)

UPPER BOUND u (default u = 1.E+20)
Before the BOUNDS section of the MPS file is read, all structural variablet are given the default
upper bound u. (Individual variables may subsequently have their upper bound altered by the
BOUNDS section in the MPS file.)

-I i-.. . . . *

3.3 SPECS File Definitions 30

VERIFY LEVEL it (default L - 0)
EMERGENCY VERIFY LEVEL 12 (default 12 = max(li,0))

VERIFY NO
VERIFY LEVEL 0

VERIFY OBJECTIVE GRADIENTS
VERIFY LEVEL I

VERIFY CONSTRAINT GRADIENTS
VERIFY LEVEL 2

VERIFY
VERIFY YES
VERIFY GRADIENTS
VERIFY LEVEL 3

These keywords refer to finite-difference checks on the gradient elements computed by the user
subroutines FUNOBJ and FUNCON. It is possible to specify VERIFY LEVELs 0-3 in several ways,
as indicated above. For example, the nonlinear objective gradients (if any) will be verified if
either VERIFY OBJECTIVE or VERIFY LEVEL 1 is specified. Similarly, both the objective and
the constraint gradients will be verified if VERIFY YES or VERIFY LEVEL 3 or just VERIFY is
specified.

If 0 < 11 3, gradients will be verified at the first point reached that satisfies the linear
constraints and the upper and lower bounds. The current linearization of the nonlinear constraints
must also be satisfied. If 11 = 0, only a "cheap" test will be performed, requiring 3 calls to FUNOBJ
or 2 calls to FUNCON. If 1 < 1i 3, a more reliable check will be made on individual gradient
components, within the ranges specified by the START and STOP keywords. A key of the form
"OK" or "BAD?" indicates whether or not each component appears to be correct.

If 10 < I 13, the action is the same as for I - 10, except that it will take place
immediately after the first basis factorization. Any superbasic variables will retain their initial
value (for example, those specified with FX indicators in the INITIAL bound set, if no basis file is
loaded). This option may be preferable, or even necessary if the first set of linearized constraints
has no feasible solution. However, if the nonlinear functions are not well defined at the first
(infeasible) point, a fatal error may result.

An EMERGENCY gradient check takes place at the end of a run if the solution algorithm is
unable to make proper progress. The various levels l = 0-3 have the same meaning as for 11,
but the individual gradient checks are not controlled by the START and STOP keywords.

1. VERIFY LEVEL 3 should be specified whenever a new function routine is being developed.

2. Missing gradients are not checked; i.e., they result in no overhead.

3. The default action is to perform a cheap check on the gradients at the first feasible point.
Even on debugged function routines, the message "GRADIENTS SEEN TO BE OW" will provide
certain comfort at nominal expense.

4. If necessary, checking can be suppressed by specifying VERIFY LEVEL -1 and/or EMERGENCY
VERIFY LEVEL -1.

40 3. The SPIECS File

WEIGHT ON LINEAR OBJECTIVE to (default w = 0.0)
This keyword invokes the so-called composite objective technique, if the first solution obtained is
infeasible, and if linear terms for the objective function arc specified in the MPS file. While trying
to reduce the sum of in feasibilities, the method also attempts to optimize the linear objective.

1. At each infeasible iteration, the objective function is defined to be

minimize arw(c'T) + (sum of infeasibilities),

where a = I for MINIMIZE, o = -1 for MAXIMIZE, and c is the linear objective row.
2. If an "optimal" solution is reached while still infeasible, to is reduced by a factor of 10. This

helps to allow for the possibility that the initial w is too large. It also provides dynamic
allowance for the fact the sum of infeasibilities is tending towards zero.

3. The effect of w is disabled after 5 such reductions, or if a feasible solution is obtained.

WORKSPACE (USER) maxw (default maxw = 0)
WORKSPACE (TOTAL) maxz (default maxz = NWCORE)
These keywords define the limits of the region of storage that MINOS may use in solving the
current problem. The main work array is declared in the main program, along with its length,
by statements of the form

DOUBLE PRECISION Z(25000)
DATA NWCORE/25000/

where the actual length of Z must be specified at compile time. The values specified by the
*WORKSPACE keywords are stored in

COMMON /M2MAPZ/ MAXW.MAXZ.LEN(30),.LOC(60)

and workspace may be shared according to the following rules:

1. Z(1) through Z(MAXW) is available to the user.

2. Z(MAXW+1) through Z(MAXZ) is available to MINOS, and should not be altered by the user.

3. Z(MAXZ I) through Z(NWCORE) is unused (or available to the user).
The arrays LEN and LOC are not used by MINOS.

The WORKSPACE parameters are most useful on machines with a virtual (paged) store. Some
systems will allow NWCORE to be set to a very large number (say 500000) with no overhead in
saving the resulting object code. At run time, when various problems of different size are to be I
solved, it may be sensible to confine MINOS to a portion of Z to reduce paging activity slightly.
(Ilowever, MINOS accesses storage contiguously wherever possible, so the benefit may be slight.
In general it is far better to have too much storage than not enough.) T

'I,

4.1 The NAME Card 41

4. THE MPS FILE

An MPS file is required for all problems to specify names for the variables and constraints, and to
define the constraints themselves. In contrast to the relatively free format allowed in the SPECS
file, a very fixcd format must be used for the MPS file. (This means that each item of data must
appear in specific columns.)

Various "header cards" divide the MIPS file into several sections as follows:

NAME
ROWS

COLUMNS

RHS

RANGES (optional)

BOUNDS (optional)

ENDATA

E ach header card must begin in column 1. The intervening card images (indicated by "." above)
*all have the following data format:

Columns 2-3 5-12 15-22 25-36 40-47 50-61

Contents Key NamceO Namel Valuel Naine2 Value2

In addition, "comment" cards are allowed; these have an asterisk "*" in column I and any
characters in columns 2-22.

MPS format has become the industry standard. Files of this kind are recognized by all
commercial mathematical programming systems (including MPS/360, MPSX, MPSX/370 and
MPS IIl on 1BM systems; APIElX II1 and IV on CDC machines; FMPS on Univac systems; TEMPO
on Burroughs systems). They may be created by hand, by your own special-purpose program, or
by various commercial "matrix generators", such as GAMMA, MAGEN and OMNI.

Beware that variations are inevitable in almost any "standard" format. Some restrictions in
the format accepted by MINOS are listed later. Some extensions are also needed for nonlinear
problems.

4.1 The NAME Card

NAME MODELO01 (for example)

This card contains the word NAME in columns 1-4, and a name for the problem in columns 15-22.
(The name may be from I to 8 characters or any kind, or it may be blank.) The name is used to
label the solution output, and it appears on the first card or each basis file.

The NAMIE card is normally the first card in the MPS file, but it may be preceded or followed
by comment cards.

_ A -

42 4. The MPS File

4.2 The ROWS Section

ROWS
E FUNO 1
G FUN02 (for example)
L CAPITALl
N COST

The general constraints are commonly referred to as rows. The ROWS section contains one card
for each constraint (i.e., for each row). Key defines what type the constraint is, and NamncO gives
the constraint an 8-character name. The various row-types are as follows:

Key Row-type

E
G >
L
N Objective
N Free

(The 1-character Key may be in column 2 or column 3.)

Row-types E, G and L are easily understood in terms of a linear function aTz and a right-hand
side P. They would be used to specify constraints of the form

aTz=, aTz f and aTx <I

respectively. (Nonzero elements of the row-vector a will appear in appropriate parts of the
COLUMNS section, and if # is nonzero it will appear in the RIS section.)

Row-type N stands for "Not binding", also known as "Free". It is used to define the objective
row, and also to prevent a constraint from actually being a constraint. (Note that -oo < ax <
+oo is not really a constraint at all. Type N rows are implemented by giving them infinite bounds
of this kind.)

The objective row is a free row that specifies the vectors c and d in the objective fu nction
F(x) + cTz + dTy. It is taken to be the first free row, unless some other free row is specified l)y
the OBJECTIVE keyword in the SPECS file. I

The ROWS section need not contain any free rows if c = d = 0. If there are some nonlinear
objective variables, the objective function will then be F(z) as defined by subroutine FUNOBJ.
Otherwise, no objective function exists and MINOS will terminate at the first point that satisfies I
the constraints.

If the ROWS section does contain free rows but none of thein is intended to be an objictive
row, then some dummy name such as OBJECTIVE = NONE should be specified in the Si'i'CS file I
to prevent the first free row from being selected. (if the objective function is F(z) with no linear
terms, OBJECTIVE = FUNOBJ would be a mnemonic reminder.)

Row-names for Nonlinear Constraints

The names of nonlinear constraints must be listed first in the ROWS section, and their order T
must be consistent with the computation of the array F(*) in subroutine FUNCON.

In particular, the objective row (if any) must appear after the list or nonlinear row names.
For simplicity we suggest that potential objective rows be placed last: I

___ ___ -_ _ r

4.3 The COLUMNS Section 43

ROWS

G FUNOI nonlinear constraints first
G FUN02

E LIN01 now linear constraints
E LIN02

N COSTO1 objective rows last
N COST02

4.3 The COLUMNS Section

1 5 12 15 22 25 36 40....47 60 61 (fields)

COLUMNS

X01 FUN06 1.0 ROW09 -3.0

XO1 ROW0 2.5 ROW12 1. 123456 (example)
X01 ROW03 -11.111111

X02 FUN02 1.0

X02 COSTO1 5.0

For each variable x, (say), the COLUMNS section defines a name for x, and lists the nonzero
entries a,, in the corresponding column of the constraint matrix. The nonzeros for the first
column must be grouped together before those for the second column, and so on. If a column has
several nonzeros, it does not matter what order they appear in (as long as they all appear before
the next column).

In general, Key is blank (except for comments), NamcO is the column name, and Namel,
Valucl give a row name and value for some coefficient in that colunn. If there is another row
name and value for the same column, they may appear as Narne2, Value2 on the same card, or
they may be on the next card.

If either Namel or Namne2 is blank, the corresponding value is ignored.
Values are read by MINOS using Fortran format E12.0. This allows values to be entered

in several forms; for example, 1.2345878, 1.2345878E 0, 123.45678E-2 and 12345678E-07 all

represent the same number. It is usually best to include an explicit decimal point.
Beware that spaces within the value fields are the same as O's (on most computer systems).

In particular, this means that if an exponent like E-2 appears then it must be right-justiflcd in
the value field. For example, the two values

1.23E-02
1.231-2

are not the same if the decimal point is in column 30 in both cases. The second value is actually
1.23E-20.

In the example above, the variable called XOt has 5 nonzero coefficients in the constraints
named FUN08, ROW09, ROW08, ROW12 and ROW03. The row names and values may be in an arbitrary
order, but they must all appear before the entries for column X02.

There is no need to specify columns for the slack variables; they are incorporated implicitly.

44 4. The MI'S File

Nonlinear Variables

Nonlinear variables must appear first in the COLUMNS section, ordered in a manner that is
consistent with the array X(*) in the user subroutines FUNOBJ and/or FUNCON. In the example

minimize (z + y + z) 2 + 3z + 5w

subject to z 2 + Y2 + z = 2
X4 + Y4 + w= 4
2z + 4y > 0

z>0O, w>0

we have three nonlinear objective variables (x, y, z), two nonlinear Jacobian variables (x, y), one
linear variable w, two nonlinear constraints, one linear constraint, and some simple bounds. The
nonlinear constraints and variables should always be ordered in a similar way, at the top left-hand
corner or the constraint matrix. The latter is therefore of the form

A = (Jk t
A2 A3

where J.i is the Jacobian matrix. The variables associated with Jk and A 2 must appear first in
the COLUMNS section, and their order must be consistent with the array X(*) in subroutine
FUNCON. Similarly, entries belonging to A must appear in an order that is consistent with the
array G(*) in subroutine FUNCON.

For convenience, let the first n, columns of the constraint matrix be

A2 a, all.. a.,

where Ji is the first column of J and a, is the first column of A 2 . The coefficients or i t and
a, must appear before the coefficients of j 2 and a 2 (and so on for all columns). Usually, those
belonging to jt will appear before any in at, but this is not essential. (If certain linear constraints
are made nonlinear at a later date, this means that entries in the COLUMNS section will not
have to be reordered. However, the corresponding row names will need be moved towards the top
of the ROWS section.)

If JACOBIAN = DENSE, the elements of Jk need not be spcilied in the MIS file. If JACOBIAN
= SPARSE, all nonzero elements of .A must be specified. Any variable covllicients should be given
a dummy value, such as zero. These dummy entries identify the location or the elements; their
actual values will be computed later by subroutine FUNCON or by inite difTerences.

If all constraint gradients are known (DERIVATIVE LEVEL = 2 or 3), any Jacobian elements
that are constant may be given their correct values in the COLUMNS section, and then they need
not be reset by subroutine FUNCON. This includes values that are identically zero such elements
do not have to be specified anywhere (in the MI'S file or in bUNCON). In other words, ,Jacobian
elements are assumed to be zero unless specified otherwise.

Note that X(*) need not have the same dimension in stibroutines FUNOBJ and FUNCON (i.e.,
the parameter N may differ), in the event that different numibers .are spccified by the NONLINEAR
OBJECTIVE and NONLINEAR JACOBIAN keywords. llowever the shorter set of nonlinear variables
must occur at the beginning of the longer set, and the ordering of variAh'.s in the COI,;MNS
section must match both sets.

A nonlinear objective function will often involve variables that occur only linearly in the
constraints. In such cases we recommiend that the objective ariable's be place'd :iflv'r Ihe .hacobian
variables in the COLUMNS section, since the Jacobian will teln be as small as possible. (See the

variable z in the example above.)

:1 __ __ _ _ _

*I w•

4.5 The RANGES Section 45

4.4 The RHS Section

1 5 12 15 22 25 38 40 47 50 81

RHS

RHSO1 FUNO1 1.0 ROW09 -3.0

RHSO1 ROWO8 2.5 ROW12 1.123468

RHSO1 ROW03 -11.111111

RHSO2 FUNO2 1.0
RHS02 FUN04 5.0

This section specifies the elements of bt and b2 in (2)-(3). Together these vectors comprise what
is called the right-hand side. Only the nonzero coefficients need to be specified. They may appear
in any order. The format is exactly the same as in the COLUMNS section, with NameO giving a
name to the right-hand side.

If bi = 0 and b2 = 0, the RHS header card must appear as usual, but no rhs coefficients need
follow.

The RIIS section may contain more than one right-hand side. The first one will bc 3ed
unless some other name is specified in the SPECS file.

4.5 The RANGES Section (Optional)

1 5 12 16 22 25 38 40 47 50 81

ROWS
E FUN01
E FUN02

G CAPITALI

L CAPITAL2

COLUMNS

RHS
RHSO1 FUNOI 4.0 FUN02 4.0

RANGES
RANGEOl FUNOI 1.0 FUN02 -1.0

RANGEO CAPITALt 1.0 CAPITAL2 1.0

Ranges are used for constraints of the form

I < aTr < u,

where both I and u are finite. The range or the constraint is r = u - I. Either I or u is spv,'tiied
in the RHS section (as b say), and r is defined in the RANGES section. The resulting I and it
depend on the row-type or the constraint and the sign of r as follows:

Row-type Sign of r Lower limit, I Upper limit, u

E + b b + Irl
E - b-Irl b
G + or - b b + Irl
L + or - b-Itl b

46 4. The MPS File

The format is exactly the same as in the COLUMNS section, with NamcO giving a name to

the range set. The constraints listed above will have the following limits:

4.0 < FUNO I < 5.0,

3.0 < FUN02 < 4.0,

4.0 < CAPITALI < 5.0,

3.0 < CAPITAL2 < 4.0.

The RANGES section may contain more than one set of ranges. The first set will be used

unless some other name is specified in the SPECS file.

4.6 The BOUNDS Section (Optional)

1 6 12 15 22 26 38

BOUNDS
UP BOUNDOt XOI 4.0
UP BOUNDOl X02 4.0

LO BOUNDOI X04 -1.0
UP BOUNDOI X04 4.0

FR BOUNDOI X06
UP BOUNDOI X08 4.0

The default bounds on all variables zj (excluding slacks) are 0 < zj co. If necessary, the

default values 0 and oo can be changed in the SPECS file to I < x, _ u by the LOWER and UPPER
keywords respectively.

if uniform bounds of this kind are not suitable, any number of alternative values may be

specified in the BOUNDS section. As usual, several sets of bounds may be given, and the first
set will be used unless some other name is specified in the SIPICS file.

In this section, Key gives the type of bound reqrired, N.-ruO is the narne of the bound set,

and Namel and Valuel are the column name and bound value. (N.:Isr2 anid Valu eare ignorvd.)

Let I and u be the default bounds just mentioned, arnd IeL x and b be the column and value

specified. The various bound-types allowed are as follows:

Key Bound-type Rcsulting bounds

LO Lower bound b < z < u

UP Upper bound I < z < b

FX Fixed variable b < z < b (i.e., z = b)
FR Free variable -00 < X < +00

MI Minus infinity -c < X < u
PL Plus infinity I < X < +c

The effect of the examples above is to give the following bounds:

I <XoI <4.0
I < X02 < 4.0

-1.0 < X04 < 4.0

-0o < X06 < 4.0

Note that types FR, M1, or PL should always be used to slwify "infinite" bounds; they imply

values of -1020, which are treated specially at certain times.4 _ _

4.6 The BOUNDS Section 47

Nonlinear Problems

It is often essential to use bounds to avoid singularities in the nonlinear runctions. For example,
if an objective function involves log z, a bound of the form x, 10- 4 may be necessary to avoid
evaluating the objective function at zero or negative values of x,. (Subroutine FUNOBJ is usually
not called until a feasible point has been found. Note that z is regarded as feasible if it satisfies
its bounds to within the FEASIBILITY TOLERANCE t. Thus, it would not be safe to specify the
bound z > 10- 8 if t retained its default value t = 10-6.)

Beware that subroutine FUNCON sometimes will be called before the nonlinear variables satisfy
their bounds. If this causes difficulty, one approach is to specify feasible values for the offending
variables in the INITIAL bounds set described next.

The INITIAL Bounds Set

The name INITIAL is reserved for a special bound set that may be used (optionally) to assign
initial values to any number of the column variables. The INITIAL bounds set must appear after
any normal bound sets (if any). A warning is given if it is the first set encountered after the
BOUNDS card.

All bound types except FR have a meaning. In the example

FX INITIAL Xl 1.0

LO INITIAL X2 2.0

UP INITIAL X3 3.0
MI INITIAL Y1

PL INITIAL Y2

suppose that the live variables have already been given the tipper and lower bounds 0.0 <
Xt, X2, X3, Yl, Y2 < 5.0. The initial basis and the starting point will then be affected as follows:

1. X1 will be rnade superbasic at the value 1.0.

2. X2 will initially be made nonbasic at its lower bound, but if it is involved in the nonlinear
constraints, it will have the value 2.0 when subroutine FUNCON is called for the first time.

3. X3 will initially be made nonbasic at its upper bound, but if it is involved in the nonlin,:ir
constraints, it will have the value 3.0 when subroutine FUNCON is called for tile first time.

4. Y1 will initially be inade nonbasic at its lower bound, and its initial value will be that bottd
(0.0 in this case).

5. Y2 will initially be made nonbasic at its upper bound, and its initial value will be that bound
(5.0 in this case).

The key FX should be used if good starting values are known, particularly for nionlinoar
variables. lowever, this should not be at the expense of forming a very large set of superba.sic
variables, if the optimal solution is likely to contain only a few. I1f the number of FX entries has
reached the SUPERBASICS LIMIT, any further FX will be treated as LO or UP, depending on which
bound is closer to the specified numerical value.

Variables that are not specified in the INITIAL bounds set will initially be nonbasic at their
lower or upper bounds (whichever is smaller in absolute value), or at zero if a variable is free.

In this context, variables that are initially nonbasic may be seleted by the CIZASII procedure
to become basic, in which case their initial values are unpredictable. If this arbitrariness sounds
troublesome, use one of the CRASH OPTIONs to prevent various sets of variables from being chosen
for the initial basis.

48 4. The MPS File

As with normal bound sets, variables may be listed in any order. (For each entry a linear
search is made through the column names, starting at the name on the previous entry. Thus, for
large problems it helps to follow the order of the variables in the COLUMNS section, at least to
some extent.)

The INITIAL bounds set is ignored if a basis file is supplied.

4.7 Comment Cards

Any card in the MPS file may contain an asterisk "*" in column I and arbitrary data in columns
2-22. Such cards will be treated as comments. They will appear in the printer listing but will
otherwise be ignored.

Note that comment cards are input as if they were genuine data in each section of the MPS
file. Thus, columns 25-36 and 50-61 should preferably be blank. If not, they should contain valid
numerical data whenever non-comment cards would do so. (This is a limitation of ANSI 1966
Standard Fortran; data cannot be read under one format and then re-read under another.)

4.8 Restrictions and Extensions in MPS Format

1. Blanks are significant in the 8-character name fields. We recommend that all names be left-
justified with no imbedded blanks. In particular, names referred to in the SPECS file must
be left-justified in the MPS file; for example, OBJECTIVE = COST02 specifies an 8-character
name whose last two characters are blank.

2. Comments ideally should use only columns 1-22 as noted above.
3. Scale factors cannot be entered in the ROWS section.

4. It does not matter if there is no row of type N.

5. There must be at least one row in the ROWS section, even for problems with no general
constraints. (It may have row-type N.)

6. Nonlinear constraints must appear before linear constraints in the ROWS section.

7. Markers such as INTORG and INTEND are not recognized in the COLUMNS section.

8. Numerical values may be entered in E or F format. Spaces within the 12-character fields arc
treated as if they were O's.

9. Nonlinear variables must appear before linear variables in the COLUMNS section.

10. If RANGES and BOUNDS sections are both present, the RANGES section must appear firb.

II. In the BOUNDS section, if an UP entry specifics a zero tipper bound, the corresponding lower
bound is not affected. (Beware--in some MP systems, the lower bound is converted to -oo.)

12. The bounds name INITIAL has a special meaning.

__ I

5.1 NEW and OLD BASIS Files 4g

6. BASIS Files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order to
restart the run if necessary, or to provide a good starting point for some closely related problem.

Three formats are available for saving basis descriptions. They are invoked by SPECS cards
of the following form:

NEW BASIS FILE 10
BACKUP FILE 11 (same as NEW BASIS but on a different file)
PUNCH FILE 20
DUMP FILE 30

The file numbers may be whatever is convenient, or zero for files that are not wanted.
NEW BASIS and BACKUP files are saved every k-th iteration, in that order, where k is the

SAVE FREQUENCY.
NEW, PUNCH and DUMP files are saved at the end of a run, in that order. They may

be re-loaded at the start of a subsequent run by specifying SPECS cards of the following form
respectively:

OLD BASIS FILE 10
INSERT FILE 20
LOAD FILE 30

Only one such file will actually be loaded. If more than one positive file number is specified, the
order of precedence is as shown. If no BASIS files are specified, one of the CRASH OPTIONs takes

effect.

Figures 5.1-5.3 illustrate the data formats used for BASIS files. 80-character fixed-length
records are suitable in all cases. (36-character records would be adequate for PUNCH and DUMP
files.) The files shown correspond to the optimal solution for the economic-growth model MANNE,
described in section 8.4. Selected column numbers are included to define significant data fields.
The problem has 10 nonlinear constraints, 10 linear constraints, and 30 variables.

5.1 NEW and OLD BASIS Files

We sometimes call these files basis maps. They contain the most compact representation of the
state of each variable. They are intended for restarting the solution of a problem at a point
that was reached by an earlier run on the same problem or a related problem with the same
dimensions. (Perhaps the ITERATIONS LIMIT was previously too small, or some other objective
row is to be used.)

As illustrated in Figure 5.1, the following information is recorded in a NEW BASIS file.

1. A card containing the problem name, the iteration nrmber when the file was created, the
status or the solution (OPTIMAL SOLN, INFEASIBLE, UNBOUNDED, EXCESS ITNS, ERROR CONDN,
or PROCEEDING), the number of infeasibilities, and the current objective value (or the sum of
infeasibilities).

2. A card containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = the number of rows

in the constraint matrix, N = the number of columns in the constraint matrix, and SB = the

number of superbasic variables.

05. BASIS Files

3. A set of (N + M - 1)/80 + I cards indicating the state of the N column variables and the M
slack variables in that order. One character HS(j) is recorded for each j = 1,2,..., N + M as
follows, written with FORMAT(8011).

H8(j) State of the j-th variable

0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic

If variable j is fixed (lower bound = upper bound), then HS(j) may be 0 or 1. The same
is true if variable " is.free (infinite bounds) and still nonbasic, although free variables will
almost always be basic.

4. A set of cards of the form
j i

written with FORMAT(18. IPE24. 14) and terminated by an entry with j = 0, wherej denotes
the j-th variable and xi is a real value. The j-th variable is either the j-th column or the
(j-N)-th slack, if j > N. Typically, HS(j) = 2 (superbasic). When nonlinear constraints are
present, this list of superbasic variables is extended to include all basic nonlinear variables.
The Jacobian matrix can then be reconstructed exactly for a restart.

Loading a NEW BASIS file

A file that has been saved as an OLD BASIS file may be input at the beginning of a later run as
a NEW BASIS file. The following notes are relevant:

1. The first card is input and printed but otherwise not used.

2. The values labelled M and N on the second card must agree with those for the MPS file that
has just been read. The value labelled SB is input and printed but is not used.

3. The next set of cards must contain exactly M values HS j) = 3, denoting the basic variables.

4. The list of j and x1 values must include an entry for every variable whose state is HS(j) = 2
(the superbasic variables).

5. Further j and x, values may be included, in any order.

6. For any j in this list, if HS(j) = 3 (basic), the value xj will be recorded for nonlinear
variables, but the variable will remain basic.

7. If HS(j) 3 3, variable j will be initialized at the value x1 and its state will be reset to 2
(superbasic). If the number of superbasic variables has already reached the SUPERBASICS
LIMIT, then variable j will be made nonbasic at the bound nearest to zj (or at zero if it is a
free variable).

I

I -" "

5.1 NEW and OLD BASIS Files 51

1...... a s 23 29 40 43 so 57 so

MA4EI0 ITH 11 OPTIMAL SOLN NZNF 0 OBJ -2.6700976576430 00
O6J:FUH4OJ RNS-":14S pENGsRAMtE1 1:O=SU.Rl M= 2O Ha 30 $6, 7
03222222230333333333333333333111111111110000000000

3 3.214430306846170 00
4 3.304004540903450 00
5 3.395219967011400 00
6 3.487878208733720 00
7 3.561722961684240 00
8 3.676428591145790 00
9 3.771582587441020 00
1 3.050000000000000 00
2 3.126650351567880 00

10 3.866666666666670 00
I1 9.S00004000000000-01
12 9.68418063859247D-01
13 9.978010109641690-01
14 I.02820056913317M 00
Is 1.059670152206730 00
16 1.092272226137000 00
17 I.12607635491810D 00
18 1.161163958088100 00
19 1.197628149454330 00
20 1.213943080245590 00

0

I 8 12 32

Figure 6.1. Format of NEW and OLD BASIS files

Warning: This format is not quite compatible with MINOS 4.0 in the following respects.

1. On the second card, 11 is the number of constraints (m, as before) but N is now the number
of variables excluding slacks (i.e., n, the number of columns in the MPS file plus the number
of phantom columns, if any). Previously, N had the value n + I + m; this included 1 for the
right-hand side and m for the slacks.

2. The basis map starting at card 3 does not contain an entry for the right-hand side, which
was previously in position n + 1. The length of the map is now n + m, not n + I + m.

3. In the list of (j z,) entries, the values of j referring to slacks are now one less than before.
(These are entries for which j > n.)

A basis map from MINOS 4.0 can therefore be converted to the present format with reasonable
ease. PUNCH and DUMP files from MINOS 4.0 should be acceptable as INSERT and LOAD files
without change.

52 5. BASIS Files

5.2 PUNCH and INSERT File*

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain a
useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading of
nonbasic solutions. It is illustrated in Figure 5.2. Apart from the first and last card, each entry
has the following form:

Columns 2-3 5-12 15-22 25-36

Contents Key Namel Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed that
the basis is initially set to be the full set of slack variables, and that column variables are initially
at their smallest bound in absolute magnitude.

Key Action to be taken during INSERT

X0 Make variable Namel basic and slack Name2 nonbasic at its lower bound.
XU Make variable Namel basic and slack Name2 nonbasic at its upper bound.
LL Make variable Namel nonbasic at its lower bound.
UL Make variable Namel nonbasic at its upper bound.
SB Make variable Namel superbasic at the specified Value.

Note that Namel may be a column name or a row name, but (on XL and XU cards) Name2 must
be a row name. In all cases, row names indicate the associated slack variable, and if NaInel is
a nonlinear variable then its Value is recorded for possible use in defining the initial Jacobian
matrix.

The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

Notes on PUNCH Data

I. Variables are output in natural order. For example, on the first XU. or XU card, Name/ %kill he
the first basic column and Name2 will be the first row whose slack is not basic. (The slack
could be nonbasic or superbasic.)

2. LL cards are not output for nonbasic variables if the corresponding lower bound value is zero.

3. Superbasic slacks are output last.

4. PUNCH and INSERT files deal with the status and values of slack variables. This is in
contrast to the printed solution and the SOLUTION file, which deal with rows.

Notes on INSERT Data

1. Before an INSERT file is read, column variables are made nonbasic at their smallest bound
in absolute magnitude, and the slack variables are made basic. j

2. Preferably an INSERT file should be an unmodified PUNCH! file from an earlier run on the
same problem. If some rows have been added to the problem, the INSERT file need not be
altered. (The slacks for the new rows will be in the basis.) ,"I

5.3 DUMP and LOAD Files 53

3. Entries will be ignored if Namel is already basic or superbasic. XL and XU cards will be

ignored if Name2 is not basic.

4. SB cards may be added before the ENDATA card, to specify additional superbasic columns or

slacks.

5. An SB card will not alter the status of Namel if the SUPERBASICS LIMIT has been reached.

However, the associated Value will be retained if Namel is a Jacobian variable.

5.3 DUMP and LOAD Files

These files are similar to PUNCH and INSERT files, but they record solution information in
a manner that is more direct and more easily modified. In particular, no distinction is made
between columns and slacks. Apart from the first and last card, each entry has the form

Columns 2-3 5-12 25-36

Contents Key Name Value

as illustrated in Figure 5.3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit, Basic
and Superbasic respectively.

Notes on DUMP Data

* 1. A card is output for every variable, columns followed by slacks.

2. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD Data

1. Before a LOAD file is read, all columns and slacks are made nonbasic at their smallest bound
in absolute magnitude. The basis is initially empty.

2. Each LL, UL or BS card causes Name to adopt the specified status. The associated Value will
be retained if Name is a Jacobian variable.

3. An SB card causes Name to become superbasic at the specified Value.

4. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first BS or

SB card takes effect for any given Name.)

5. An SB card will not alter the status of Name ir the SUPERBASICS LIMIT has been reached,

but the associated Value will be retained if Name is a Jacohiari vatriable.

6. (Partial basis) Let M be the number or rows in the problem. If' fewer Lhain M variables are
specified to be basic, a tentative basis list will be constrirted by adding the requisite number

of slacks, starting from the first row and taking those that were rot previously specified to
be basic or superbasic. (If the resulting basis proves to be singudar, the basis factorization

routine will replace a number of basic variables by other slacks.) The starting point obtained
in this way will not necessarily be "good".

7. (Too many basics) If u variables have already been sp'cified as basic, any further BS keys will
be treated as though they were SB. This feature may Ihe useful ror combining solutions to
smaller problems.

4 5. BASIS Files

15 It is t t 36 I S it is 2t 2S 36

KMU HNm I PUNME/DGIMS r IMNOI S 01WI/LOAD
LL KAPS01 3.050000 00 LL KAPOSI 3.0S000O 00
XUJ KAPONI WWOII! 3. 1266S0 o B9 KAP002 3.1266S 0

SW KAPO03 3.214430 00 3S KAP003 3.214430 00
3S KAPOO4 3.30400 00 5 KAP004 3.30400D 0
S KAPOOS 3.39520 00 S KAPOOS 3.39522D 00
3S KAPO06 3.487610 00 IS KAP006 3.487880 00
31 KAP007 3.01720 0S 3S KAP00? 3.S81720 00
i1 KAPON 3.676430 00 IS KAPON 3.67643D 00
US KAPSS9 3.771S400 1 KAPOO9 3.771S0 00

XU KAPIS NMet 3.866670 00 S3 KAPOI 3.866670 00
LL CWN00I 9.500000-0I LL CONOOI 9.500000-01
xu comet MhI003 9.684180-11 BS COOSt 9.684180-01
WU CINO3 104004 9.976010-01 83 CONM03 9.970010-01

XU CONO04 MONOOS 1.028200 OS S CGNOO4 1.028200 00
xI CONOOS 1O006 1.059470 00 8S CONOOS 1.059670 00
XU Cow"0 1101007 1.092270 00 W C4000 1.09t70 00
XU Coe? "wmoo . N12000 O0 BS CONO? i.izoao co
xII CONOm rMNSO t.161160 Go S CONSO i.W6160 00
XI CONO09 OIM010 1.197630 00 S CoO9 1.197630 00
XL CiOMIS CAPOI 1.213940 00 S Cowie 1.213940 00
X DIVOoI CAPO03 7.656540-02 S 1IWOSI 7.665040-02
XL eVe0t CAP004 8.778000-0t S INVoot 8.778000-02
XL DEvOS3 CAPSOS 6.95740-St US Io3 8.9S7420-02
XL INVWO4 CAP406 9.121540-0t BS VVO4 9.121S40-02
XL MO0S CAPOS? 9.26560-0t 8s INVOOS 9.265820-02
XL INVO0 CAPON 9.364410-0t S 1NVO06 9.384480-02
XL INYO? CAP09 9.470160-02 S INVOS? 9.470S60-02
XL INVO0 CAPOIS 9.515400-0t ft tIwO" 9.515400-0t
XL DVO09 TENI 9.50410-Ot S INVO09 9.506410-02
UL INVOIS !.160050-0! UL DIVO!O 1.160000-01

DISATA UL N010 0.000000-01
UL H NO0t 0.000000-01
UL 1 o014003 0.000000-o
UL M04o 0.000000-01

Filgure .2. Format or PUNCH and INSERT iss UL oos 0.000000-01
UL 11NOO6 0.000000-01
UL MON007 0.000000-01
UL O006 0.000000-01
UL 1014009 0.000000-01
UL MONOIO 0.000000-01
LL CAP002 0.000000-01
LL CAP003 0.000000-01
LL CAPO04 0.000000-01
LL CAP00S 0.000000-01
LL CAP006 0.000000-01
LL CAPOO7 0.000000-01
LL CAPO0 0.000000-01
LL CAPOO9 0.000000-01
LL TPiSI4 0.000000-01

ENDATA

Figure 5.3. Format of DUMP and LOAD files

j ._ _ _

dL -- - - - -

5.4 Restarting Modified Problems 55

5.4 Restarting Modified Problems

Sections 5.1-5.3 document three distinct starting methods (OLD BASIS, INSERT and LOAD
files), which may be preferable to any of the cold start (CRASII) options. The best choice depends
on the extent to which a problem has been modified, and whether it is more convenient to specify
variables by number or by name. The following notes offer some rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is specified
to be nonbasic at an upper bound that happens to be +oo, it will be made nonbasic at its lower
bound. Conversely if its lower bound is -oo. If the variable is free (both bounds infinite), it will
be made nonbasic at value zero. No warning message will be issued.

Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound that is
smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free variables will
again take the value zero.

Restarting with Different Bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been altered.
Any of the basis files may be used, but the starting point obtained depends on the status of X at
the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things being
equal). The value of X may lie outside its new set of bounds, but there will be minimal loss of
feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its lower bound (which happens to be
the same as its upper bound). Increasing its upper bound will not alTect the solution.

In contrast, ifX is nonbasic at its upper bound and if that bound is altered, the starting values
for an arbitrary number of basic variables could be changed (since they will be recomptuted from
the nonbasic and superbasic variables). This may not be of great consequence, but sometimes it
may be worthwhile to retain the old solution precisely. To do this, one must make X superbasic
at the original bound value.

For example, if X is nonbasic at an upper bound of 5.0 (which has now been changed), one
should insert a card of the form

j 5.0

near the end of an OLD BASIS file, or the card

SB X 6.0

near the end of an INSERT or LOAD file. Note that the SPECS file must specify a SUPERBASICS
LIMIT at least as large as the number of variables involved, even for purely linear problems.

Sequences of Problems

Whenever practical, a series of related problems should be ordered so that the most tightly
constrained cases are solved first. Their qolutions will often provide feasible starting points for
subsequent relaxed problems, as long the above precautions are taken.

I V

56 5. BASIS Files

Altering Bounds with the CYCLE Option

Sequences or problems will sometimes be defined in conjunction with the CYCLE facilities. Various
alterations can be made to each problem from within your own subroutine MATUOD. In particular,
it is straightforward to alter the bounds on any of the columns or slacks.

Unfortunately, the present implementation of MINOS does not make it easy to alter the set
of superbasic variables from within MATMOD. If the bound on a nonbasic variable is altered, it is
simplest to accept the resulting perturbation to the values of the basic variables (rather than
making the variable superbasic as suggested above).

Lr

!I
iI

I

6.1 Iteration Log 57

6. OUTPUT

The following information is output to the PRINT file during the solution or each problem referred
to in the SPECS file.

* A listing of the relevant part of the SPECS file.

e A listing of the parameters that were or could have been set in the SPECS file.

9 An estimate of the amount of working storage needed, compared to how much is available.
* A listing of the MPS file, possibly abbreviated to the header cards and comment cards.
* Some statistics about the problem in the MPS file.

* The amount of storage available for the LU factorization of the basis matrix.
* A summary of the scaling procedure, if SCALE was specified.
* Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

e The iteration log.

* Basis factorization statistics.

* The EXIT condition and some statistics about the solution obtained.

* The printed solution, if requested.

The last four items are described in the following sections. Further brief output may be
directed to the SUMMARY file, as discussed in section 6.6.

6.1 Iteration Log

One line of information is output to the PRINT ile every k-th minor iteration, where k is the
specified LOG FREQUENCY (default k = 1). A heading is printed before the first such line following
a basis factorization. The heading contains the items described below. In this description, a
PRICE operation is defined to be the process by which one or more nonbasic variables are selected
to become superbasic (in addition to those already in the superbasic set). Normally just one
variable is selected, which we will denote by JQ. If the problem is purely linear, variable JQ will
usually become basic immediately (unless it should happen to reach its opposite bound and return
to the nonbasic set).

If PARTIAL PRICE is in effect, variable JQ is selected from App or Ipp, the PP-th segme.nts of
the constraint matrix (A I). If MULTIPLE PRICE is in effect, several variables may be slectc,
from App or Ipp. In this case, JQ refers to the variable with the largest favorable reduced cost,
DJ.

Label Description

ITN The current iteration number. For problems with nonlinear constraints, this is Ilie
cumulative number of minor iterations.

PH1 The current phase of the solution procedure, as follows:

1 Phase 1 of the simplex method is being used to find a feasible point.

2 Phase 2 of the simplex method is being used to optimize the linear objective.

Normally, Phase 1 and 2 are used for purely linear problems. They may also be
used at the start of a run even for nonlinear problems, if the initial basis cont:ains
only linear variables. Any superbasic variables will be temporarily held at their
initial values.

i _ _ _ _ _ _ _ _ _ _ _

V.

58 6. Output

3 Phase 3 of the reduced-gradient procedure is being used. This is the same as Phase
4 except that a PRICE operation is performed prior to the iteration, adding one

or more nonbasic variables to the superbasic set.

4 Phase 4 of the reduced-gradient procedure is being used. Optimization is per-
formed on the basic and superbasic variables (ignoring the nonbasics).

PP The Partial Price indicator. The variable(s) selected by the last PRICE operation
came from the PP-th partition of A and 1. PP is set to zero when the basis is
refactored. It is reset during Phase 1, 2 or 3.

NOPT The number of "non-optimal" variables present in the set of nonbasic variables
that were scanned during the last PRICE operation. It is reset during Phase 1, 2
or 3.

DJ.RG In Phase 1, 2 or 3, this is DJ, the reduced cost (or reduced gradient) of the variable
JQ selected by IRICE at the start of the present iteration. Algebraically, DJ is
dj = gj - 7r'ra, for j = JQ, where gj is the gradient of the current objective
function, 7r is the vector of dual variables, and aj is the j-th column of the

constraint matrix (A I).

In Phase 4, this quantity is RG, the norm of the reduced-gradient vector after the
present iteration. (It is the largest value of Id.j for variables j in the superbasic
set.)

Note that for Phase 3 iterations, DJ is the norm of the reduced-gradient vector at
the start of the iteration, just after the PICE operation.

+SBS The variable JQ selected by PRICE to be added to the superbasic set. (This is

zero in Phase 4.)

-SBS The variable chosen to leave the set of superbasics. It has become basic if the
entry under -BS is nonzero; otherwise it has become nonbasic.

-8S The variable removed from the basis (if any) to become nonbasic.

STEP The step length a taken along the current search direction p. The basic and
superbasic variables z, have just been changed to x0 ,n + ap.

PIVOT If column aq replaces the r-th column of the basis I, PIVOT is the r-th element of a

vector y satisfying By = a.. Wherever possible, STEP is clhosen to avoid extremely
small values of PIVOT (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the PIVOT TOLERANCE to exclude very small
elements or y from consideration during the tomputttion of STEP.

L The number of nonzeros representing the basis factor I.. Inineiately after a basis
factorization 1,11 = U, this is LENL, the number of sbh)i.tgori elements in the

columns of a lower triangular matrix. l',rther ntoz,'ros are added to L when
various columns of 11 are later replaced. (Th|s, L increases monotonically.)

U The number of nonzeros in the basis factor ! . hmuediately after a basis ractoriza-
tion, this is LENU, the number of diagonal and sup'rdi agon cih nvn s in ithe rows
or an upper triangular matrix. As columns of It are replae d, the matrix U is
maintained explicitly (in sparse form). The value of U may fluctuate ip or down;
in general it will tend to increase.

!

6.1 Iteration Log 59

NCP The number of compressions required to recover storage in the data structure for
U. This includes the number of compressions needed during the previous basis
factorization. Normally NCP should increase very slowly. If not, the amount or
workspace available to MINOS should be increased by a significant amount. As a
suggestion, the work array Z(*) should be extended by L + U elements.

NINF The number of infeasibilities before the present iteration. This number decreases
monotonically.

SINF.OBJECTIVE If NINF > 0, this is SINF, the sum of infeasibilities before the present iteration.
(It will usually decrease at each nonzero STEP, but if NINF decreases by 2 or more,
SINF may occasionally increase.)

Otherwise, it is the value of the current objective function after the present
iteration. Note that "current objective function" can mean different things when
NINF = 0. For linear programs, it means the true linear objective function. For
problems with linear constraints, it means the sum of the linear objective and the
value returned by subroutine FUNOBJ. For problems with nonlinear constraints, it
is the quantity just described if LAGRANGIAN = NO; otherwise it is the value of the
augmented Lagrangian runction for the current major iteration (which tends to
the true objective function as convergence is approached).

The following items are printed if the problem is nonlinear or if the superbasic set is non-empty
(i.e., if the current solution is nonbasic).

Label Description

NCON The number of times subroutine FUNCON has been called to evaluate the nonli,,ar
constraint functions.

NOBJ The number of times subroutine FUNOBJ has been called to evaluate the norlin,':lr
objective function.

NSB The current number of superbasic variables.

HMOD An indication of the type of mno(ifications made to the triangular matrix hR th it
is used to approximate the reduced Hessian matrix. Two integers i1 and i- are
shown. They will remain zero for linear problems. If il = 1, a BIFGS quasi-Newston
update has been made to R, to account for a move within the current subspace.
(This will not occur if the solution is infeasible.) If i2 = I, R has been moditie.d
to account ror a change in basis. This will sometimes occur even if the solution is
infeasible (if a feasible point was obtained at some earlier stage).

Both updates are implemented by triangularizing the matrix R + vivT for sonme
vectors v and w. If an update fails for numerical reasons, i1 or i2 will he Wt to 2,
and the resulting It will be nearly singular. (However, this is highly unlikely.)

60 6. Output

H-CONDN An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R.
This constitutes a lower bound on the condition number of the matrix 1T!R that
approximates the reduced Hessian. H-CONDN gives a rough indication of whether or
not the optimization procedure is having difficulty. If c is the relative precision of
the machine being used, the reduced-gradient algorithm will make slow progress if
H-CONDN becomes as large as c- 1 / 2 , and will probably fail to find a better solution
if H-CONDN reaches c-3/4 or larger. (On IBM-like machines, these values are about
10" and 1012.)

To guard against high values of H-CONDN, attention should be given to the scaling
or the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

CONV A set of four logical variables C1, C2, C3, C4 that are used to determine when to
discontinue optimization in the current subspace (Phase 4) and consider releasing a
nonbasic variable from its bound (the PRICE operation of Phase 3). Let RG be the
norm of the reduced gradient, as described above. The meaning of the variables
C, is as follows:

C is TRUE if the change in x was sufficiently small;
C2 is TRUE if the change in the objective was sufficiently small;
C3 is TRUE if RG is smaller than some loose tolerance TOLRG;
C4 is TRUE if RG is smaller than some tighter tolerance.

The test used is of the form

if (Cl and C2 and C3) or C4 then go to Phase 3.

In the present implementation, TOLRG = tIDJI, where t is the SUBSPACE TOLERANCE
(nominally 0.5) and DJ is the reduced-gradient norm at the most recent Phase 3
iteration. The "tighter tolerance" is the inaximulm of 0.1 TOLRG and 10-7[17Irl.

Only the tolerance t can be altered at run-time (see section 3.3).

I Il ;- - I

6.2 Basis .actorization Statistics 61

6.2 Basis Factorization Statistics

The following items are output whenever the basis matrix B is factored. Gaussian elimination is
used to compute an LU factorization of the form

LB = U,

where L is unit lower triangular and IP1Q is upper triangular for some permutation matrices PJ
and Q. 'Tis factorization is stabilized in the manner described under LU FACTOR TOLERANCE in
section 3.3.

Label Description

FACTORIZE The number of factorizations since the start of the run.

DEMAND A code giving the reason for the present factorization. (Since this is not important
to the user we omit details.)

ITERATION The current iteration number.

INFEAS The number of infeasibilities at the start of the previous iteration.

OBJECTIVE If INFEAS > 0, this is the sum of infeasibilities at the start of the previous iteration.

If INFEAS = 0, this is the value of the objective function after the previous
iteration. If there are nonlinear constraints, it is the value of the augmented
Lagrangian for the present subproblem.

NONLINEAR The number of nonlinear variables in the current basis B.

LINEAR The number of linear variables in B.

SLACKS The number of slack variables in B.

ELEMS The number of nonzero matrix elements in B.

DENSITY The percentage nonzero density of 1;, 100 X ELEMS/(M X M), where M is the number
of rows in the problem (M = NONLINEAR + LINEAR 4- SLACKS).

COMPRSSNS The number of times the data structure holding the partially factored imtrix
needed to be compressed, to recover unused storage. Ideally this number shold
be zero. If it is more than 3 or 4, the amount of workspace available to lINOS
should be increased for elficiency.

MERIT The average Markowitz merit count for the ,ITMwnls C1ho0Sei to h' the dia3i,,ds

of PUQ. Each merit count is defined to be (c - I)(r - I) whcre c and r ar,' the
number of nonzeros in the column and row cont.ljning the eulement at the ti ,,, it
is selected to be the next diago,,al. MERIT is Ihe a,rage of M such quantities. It
gives an indication of how much work was required to irese'rve ,parsity during the
factorization.

LENL The number of nonzeros in L. On Il IM-like i.tchines, each non zero is represented

by one REAL*8 and two INTEGER*2 dat.L types.

LEWU The nurnber of nonzros in U. The storage required for each nonzero is the same

as for the nonzeros of L.

62 6. Output

INCREASE The percentage increase in the number of nonzeros in L and U relative to the
number or nonzeros in B; i.e., 100 X (LENL + LENU - ELEMS)/ELEMS.

LVAX The maximum subdiagonal element in the columns of L. This will be no larger
than the LU FACTOR TOLERANCE.

BUAX The maximum nonzero element in B.

UILAX The maximum nonzero element in U, excluding elements of B that remain in U
unaltered. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of U without alteration. Elements in such rows will not
contribute to UMAX. If the basis is strictly triangular, none of the elements of B
will contribute, and UMAX will be zero.)

Ideally, UMAX should not be substantially larger than BMAX. If it is several orders
of magnitude larger, it may be advisable to reduce the LU FACTOR TOLERANCE to
some value nearer 1.0. (The default value is 10.0.)

UMIN The smallest diagonal element of PUQ in absolute magnitude.

GROWTH The ratio UMAX/BUAX, which should not be too large (see above).

As long as LMAX is not large (say 10.0 or less), the ratio max{BMAX,UMAX}/UMIN
gives an estimate of the condition number of B. If this number is extremely large,
the basis is nearly singular and some numerical difficulties could conceivably occur.
(However, an effort is made to avoid near-singularity by using slacks to replace
columns or B that would have made UMIN extremely small. Messages are issued to
this effect, and the modified basis is refactored.)

1!

6.3 EXIT Conditions 63

6.3 EXIT Conditions

For each problem in the SPECS file, a message of the 'arm EXIT -- message is printed to
summarize the final result. Here we describe each message and suggest possible courses of action.

System Note: A number is associated with each message below. It is the final value assigned
to the integer variables INFORM and IERR, for possible use within subroutines MINOS1 and MINOS2.
The variables appear in the declarations

SUBROUTINE MINOS2(Z.NWCORE,NCALLSINFORM)
and

COMMON /M5LOGt/ IDEBUGIERRLPRINT

If a problem is infeasible, for example, their final values will be INFORM = IERR = 1.

[The following messages arise when the SPECS file is found to contain]
no further problems.

-2. EXIT -- INPUT ERROR. MINOS ENCOUNTERED END-OF-FILE OR AN
ENDRUN CARD BEFORE FINDING A SPECS FILE ON UNIT nn

The SPECS file may not be properly assigned. Its unit number nn is defined at compile time in
subroutine MIFILE, and normally it is the system card input stream.

Otherwise, the SPECS file may be empty, or cards containing the keywords SKIP or ENDRUN
may imply that all problems should be ignored (see section 1.8).

-1. ENDRUN
This message is printed at the end of a run if MINOS terminates or its own accord. Otherwise,
the operating system will have intervened for one of many possible reasons (excess time, missing
file, arithmetic error in user routines, etc.).

The following messages arise when optimuization termuinates grace-
fully. A solution exists, any of the IIASIS files may lie saved, and
the solution will be printed and/or saved on the S01.1-ION file if
requested.

0. EXIT -- OPTIMAL SOLUTION FOUND
This is the message we all hope to see! It is certainly prrerablle to 'very ,other riessage,
and we naturally want to believe what it says, because this is surely one ,iluation where the
computer knows best. There may be cause for celebration ir the objective function has reached
an astonishingly new high (or low). Or perhaps it will signal t lie cmd of a strenuous series of runs
that have iterated far into the night, depleting one's patience and computing funds to an equally
alarming degree. (We hope not!)

In all cases, a distinct level of caution is in order, even if it earl wait until next morning. For
example, if the objective value is much better than expected. we mauy have olbtained an optimal
solution to the wrong problem! Almost any item of data could have (hat effect, if it has the wrong
value or is entered in the wrong columns of an input record. "l'hrer may be thousands of items of3 data in the NIPS file, and the nonlinear functions (if any) could depend on input files and other

' l

64 6. Output

data in innumerable ways. Verifying that the problem has been defined correctly is one of the
more difficult tasks for a model builder. For early runs, we suggest that the LIST LIMIT be set
to a suitably large number to allow the MPS file to be printed for visual checking. It is also good
practice in the function subroutines to print any data that is read in on the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one local
optimum? When the constraints are linear and the objective is known to be convex (e.g., a sum
of squares) then all will be well if we are minimizing the objective: a local minimum is a global
minimum in the sense that no other point has a lower function value. (However, many points
could have the same objective value, particularly if the objective is largely linear.) Conversely, if
we are maximizing a convex runction, a local maximum cannot be expected to be global, unless
there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the functions of a problem are more likely to be neither convex nor concave.
Our advice is always to specify a starting point that is as good an estimate as possible, and to
include reasonable upper and lower bounds on all variables, in order to confine the solution to
the specific region of interest. We expect modellers to know something about their problem, and
to make use of that knowledge as they themselves know best.

One other caution about "OPTIMAL SOLUTION"s. When nonlinearities are present, the final
size of the reduced-gradient norm (NORM RG) should be examined to see if it is reasonably small
compared to the norm of the dual variables (NORM PI). These quantities are printed following the
EXIT message. MINOS attempts to ensure that

NORM RG / NORM PI < OPTIMALITY TOLERANCE.

However, if messages of the form XXX SEARCH TERMINATED occur at the end of the run, this
condition will probably not have been satisfied. The final solution may or may not be acceptably
close to optimal. Broadly speaking, if

NORM RG / NORM PI = 10-,

then the objective function would probably change in the d-th significant digit if optinization
could be continued. One must judge whether or not d is siulliciently large.

1. EXIT -- THE PROBLEM IS INFEASIBLE
When the constraints are linear, this message can probably be trusted. Feasibility is measured
with respect to the upper and lower bounds on the variables. The message tells us that aimong
all the points satisfying the general constraints Ax + s = 0, there is apparently no point that
satisfies the bounds on x and s. Violations as small as tile FEASIBILITY TOLERANCE are ignored,
but at least one component of z or s violates a bound by more than the tolerance.

Note: Although the objective function is the sum of infeasibilities (when NINF > 0), this slim
will usually not have been minimized when MINOS recognizes the situation and exits. There may
exist other points that have a significantly lower sum of infeasibilities.

When nonlinear constraints are present, infeasibility is much harder to recognise correctly.
Even if a feasible solution exists, the current linearization of the constraints may not contain a
feasible point. In an attempt. to deal with this situation, MINOS is prepared to relax the bounds
on the slacks associated with nonlinear rows. In the current implementation, the bounds are
relaxed by increasingly large amounts up to 5 times per major iteration. Normally a reasible point

P .j

6.3 EXIT Conditions 65

will be obtained to the perturbed constraints, and optimization can continue on the subproblem.
However, if 5 consecutive subproblems require such perturbation, the problem is terminated

and declared INFEASIBLE. Clearly this is an ad hoc procedure. Wherever possible, nonlinear
constraints should be defined in such a way that feasible points are known to exist when the
constraints are linearized.

2. EXIT -- THE PROBLEM IS UNBOUNDED (OR BADLY SCALED)
For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic variable
to violate a bound. A message prior to the EXIT message will give the index of the nonbasic
variable. Consider adding an upper or lower bound to the variable. Also, examine the constraints
that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroneous indication of unboundedness. Consider using the SCALE option.

For nonlinear problems, MINOS monitors both the size of the current objective function and
the size of the change in the variables at each step. If either of these is very large (as judged by
the UNBOUNDED parameters - see section 3.3), the problem is terminated and declared UNBOUNDED.
To avoid large function values, it may be necessary to impose bounds on some of the variables in
order to keep them away from singularities in the nonlinear functions.

3. EXIT -- TOO MANY ITERATIONS
Either the ITERATIONS LIMIT or the MAJOR ITERATIONS LIMIT was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If so,
restart the run using a basis file that was saved (or should have been saved!) at the end of the
run.

4. EXIT -- THE OBJECTIVE HAS NOT CHANGED FOR THE LAST nrm ITERATIONS
This is an emergency measure for the rare occasions when the solution procedure appears to be
cycling. Suppose that a zero step is taken for several consecutive iterations, with a basis change
occurring each time. It is theoretically possible for the set of basic variables to become the same
as they were one or more iterations earlier. The same sequence of iterations would then occur ad

inlinitum.
No direct attempt is made to recognize such cycling. The method used for determining

the step size tends to guard against it happening, but nothing is guaranteed. Furthermore, on
so-called degenerate models (in which many basic variables are equal in value to their upper or
lower bounds), a great number of consceutive zero steps may have to occur before any progress
can be made. A generous limit is therefore used on the number of consecutive zero steps allowed
before this exit is taken. For small problems, the limit nm is the maximum of 200 and 2(m + n).
For large problems (m + n > 1000) it is 1000.

5. EXIT -- THE SUPERBASICS LIMIT IS TOO SMALL... nnn
The problem appears to be more nonlinear than anticipated. The current set of basic and
superbasic variables have been optimized as much as possible and a I'l{CE operation is necessary
to continue, but there are already nn superbasics (and no room for any more).

In general, raise the SUPERBASICS LIMIT a by a reasonable amount, bearing in mind the
storage needed for the reduced Hessian. (The HESSIAN DIMENSION h will also increase to s

66 6. Output

unless specified otherwise, and the associated storage will be about I/2sW words.) In extreme
cases you may have to set h < s to conserve storage, but beware that the rate of convergence
will probably fall off severely.

6. EXIT -- REQUESTED BY USER IN SUBROUTINE FUNOBJ (or FUNCON)
AFTER nnn CALLS

This exit occurs if the subroutine parameter MODE is set to a negative number during some call
to FUNOBJ or FUNCON. MINOS assumes that you want the problem to be abandoned forthwith.

In some environments, this exit means that your subroutines were not successfully linked
to MINOS. If the default versions of FUNOBJ and FUNCON are ever called, they issue a warning
message and then set MODE to terminate the run. For example, you may have asked the operating
system to

LINK MINOS. FUNOBJ, FUNCON

when in fact you should have said

LINK FUNOBJ. FUNCON. MINOS

(or something similar) to give your own subroutines priority. Most linkers or loaders retain the
first version of any subprogram that they see.

7. EXIT -- SUBROUTINE FUNOBJ SEEMS TO BE GIVING INCORRECT GRADIENTS
A check has been made on some individual elements of the gradient array, and at least one
component G(j) is being set to a value that disagrees markedly with a forward-difference estimate
of OF/azi. (The relative difference between the computed and estimated values is 1.0 or more.)
This exit is a safeguard, since MINOS will usually rail to make progress when the computed
gradients are seriously inaccurate. In the process it uray expend considerable effort before
terminating with exit 9 below.

Check the function and gradient computation very carcully. A simple omission (such as
forgetting to divide F by 2) could explain everything. If F or G(j) is very large, then give serious
thought to scaling the function or the nonlinear variables.

If you feel certain that the computed G(j) is correct (and that the forward-difference estimate
is therefore wrong), you can specify VERIFY LEVEL 0 to prevent individual elements fron being
checked. However, the optimization procedure is likely to terminate unsuccessfully.

8. EXIT -- SUBROUTINE FUNCON SEEMS TO BE GIVING INCORRECT GRADIENTS
This is analogous to the preceding exit. At least one of the comptied Jacobian elements is
significantly different from an estimate obtained by forward-dillerencing the constraint vector
f(z). Follow the advice given above, trying to ensure that the arrays F and G are being set
correctly in subroutine FUNCON.

9. EXIT -- THE CURRENT POINT CANNOT BE IMPROVED UPON

Several circumstances could lead to this exit.

1. Subroutine FUNOBJ and/or subroutine FUNCON could he returning accurate function values

but inaccurate gradients (or vice vcrsa). This is the most likely cause. Study the comments
given for exits 7 and 8, and do your utmost to ensure that the subroutines are coded correctly. 1

-Now -

6.3 EXIT Conditions 67

2. The function and gradient values could be consistent, but their precision could be too low. For
example, accidental use of a single-precision data type when double-precision was intended
throughout, would lead to a relative function precision of about 10 - 6 instead of something
like 10 - ' 5 . The default OPTIMALITY TOLERANCE of 10-6 would need to be raised to about
10 - 3 for optimality to be declared (at a rather suboptimal point). Of course, it is better to
revise the function coding to obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate
to rather few significant figures, and gradients will probably not be available. One should
specify

FUNCTION PRECISION t
OPTIMALITY TOLERANCE vi

but even then, if t is as large as 10 - 5 or 10-6 (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

10. EXIT -- NUMERICAL ERROR. GENERAL CONSTRAINTS CANNOT BE SATISFIED ACCURATELY
An LU factorization of the basis has just been obtained and used to recompute the basic variables
XB, given the present values of the superbasic and nonbasic variables. A single step of "iterative
refinement" has also been applied to increase the accuracy of XB. However, a row check has
revealed that the resulting solution does not satisfy the current constraints Az+ s = 0 sufficiently
well.

This probably means that the current basis is very ill-conditioned. Request the SCALE option
if there are any linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of UMAX, UMIN and GROWTH in section
6.2, and set the LU FACTOR TOLERANCE to 2.0 (or possibly even smaller, but not less than 1.0).

It. EXIT -- CANNOT FIND SUPERBASIC TO REPLACE BASIC VARIABLE
If this exit occurs, the problem must be very badly scaled. A basic variable has reached a bound
and must be replaced, but none of the superbasic columns has a pivot element exceeding the
PIVOT TOLERANCE. The latter could be reduced (at great risk). You should first try specifyving
SCALE.

12. EXIT -- BASIS FACTORIZATION REQUESTED TWICE IN A ROW
This exit may occur after the linesearch has terminated unsuccessfully several times in a row. It
is a safeguard to prevent the various recovery measures from being repeated endlessly. It should

probably be treated as if it were exit 9.

I

* u.

68 6. Output

If the following exits occur during the first basis factorization, the
basic variables XB will have certain default values that may not be
particularly meaningful, and the dual vector w will be zero. BASIS
files will be saved if requested, but certain values in the printed
solution will not be meaningful. The problem will be terminated,
even if the CYCLE LIMIT has not yet been reached.

20. EXIT -- NOT ENOUGH STORAGE FOR THE BASIS FACTORIZATION
The main storage array Z(*) is apparently not large enough for this problem. The routine
declaring Z is probably the main program. It should be recompiled with a larger dimension for
Z. The new value should also be assigned to NWCORE.

In some cases it may be sufficient to increase the specified WORKSPACE (USER), if it is currently
less than WORKSPACE (TOTAL).

An estimate of the additional storage required is given in messages preceding the exit.

21. EXIT -- ERROR IN BASIS PACKAGE
A preceding message will describe the error in more detail. One such message says that the current
basis has more than one element in row i and column j. This could be caused by a corresponding
error in the MPS file. (MINOS does not check for duplicate row names within each column.)
Determine the name of row i (e.g., by consulting the i-th entry in the rows section of the printed
solution), and scan the COLUMNS section of the MI'S file for that name. Alternatively, check
the (j -)-th variable in the COLUMNS section of the MPS file, where I is the number of slack
variables in the basis.

22. EXIT -- THE BASIS IS STRUCTURALLY SINGULAR AFTER TWO FACTORIZATION ATTEMPTS
This exit is highly unlikely to occur. The first factorization attempt will have found the basis
to be structurally or numerically singular. (Some diagonals of the triangular matrix PUQ were
respectively zero or smaller than a certain tolerance.) The associai(d variables are replaced by
slacks and the modified basis is refactorized. The ensuing singularity must mean that the problem
is badly scaled, or the LU FACTOR TOLERANCE is too high.

If the following messages arise, the MI'S file was read successfully. r

However, either an OLD BASIS file could not be loaded properly, or
some fatal system error has occurred. New IASIS liles cannot be
saved, and there is no solution to print. The problem is abandoned.

30. EXIT -- THE BASIS FILE DIMENSIONS DO NOT MATCH THIS PROBLEM

On the first card of the OLD BASIS file, the dimensions lahIled M antd N aret different from those
associated with the MPS file that has just been read. You have probably loatded a lile that belongs
to some other problem.

Remember, ir you have added rows or columns to the MI'S fil,, you will have to alter N and
N and the map beginning on the third card (a hazardous operation). It may be easier to restart
with a PUNCH or DUMP file from the earlier version of tie problem. J

pI

6.3 EXIT Conditions 6g

31. EXIT -- THE BASIS FILE STATE VECTOR DOES NOT MATCH THIS PROBLEM

For some reason, the OLD BASIS file is incompatible with the present problem, or is not consistent

within itself. The number of basic entries in the state vector (i.e., the number of 3's in the map) is

not the same as H on the first card, or else some of the 2's in the map did not have a corresponding
j x entry following the map.

32. EXIT -- SYSTEM ERROR. WRONG NO. OF BASIC VARIABLES... rum
This exit should never happen. If it does, something is seriously awry in the MINOS source code.

Perhaps the single- and double-precision files have been mixed up.

The following messages arise if the PS file is seriously deficient, or

if additional storage is needed to allow the MPS file to be input or to
allow optimization to begin. The problem is abandoned.

40. EXIT -- FATAL ERRORS IN THE UPS FILE

One of the following conditions exists:

1. There are no entries in the ROWS section.

2. There are no entries in the COLUMNS section.

3. A type N row has been selected to be the linear objective row, but it is one of the first m,
rows, where m, is the number of NONLINEAR CONSTRAINTS.

The first two conditions speak for themselves. If condition 3 occurs, the N row may be have been
selected by default (if you did not specify any OBJECTIVE name in the SPECS file). To prevent

this, specify some other (possibly fictitious) row name. Otherwise, you must put the N row after
the nonlinear row names in the ROWS section.

41. EXIT -- NOT ENOUGH STORAGE TO READ THE MPS FILE
One of the ROWS, COLUMNS, or ELEMENTS estimates in the SIPECS ile proved to be too small. The

minimum (exact) values are shown in earlier messages. You must specify these values, or higher

valucs, and re-run the problem.
If the MPS data had been on a file of its own (rather than in the card input strearm), MI.NOS

would have been able to continue by rewinding the MPS file and trying again.

42. EXIT -- NOT ENOUGH STORAGE TO START SOLVING THE PROBLEM
The NIPS file was read succesfully, but the main storage array Z(*) is riot large enough to provhle
workspace for the optimization procedure. Be sure that the SUPERBASICS LIMIT and HESSIAN
DIMENSION are not unreasonably large. Otherwise, see the advice given for exit 20.

I

I !" I

... .I

70 6. Output

6.4 Solution Output

At the end of a run, the final solution will be output to the PRINT file in accordance with the
SOLUTION keyword. Some header information appears first to identify the problem and the final
state of the optimization procedure. A ROWS section and a COLUMNS section then follow,
giving one line of information for each row and column. The format used is similar to that seen
in commercial systems, though there is no rigid industry standard.

ROWS Section

The general constraints take the form I < f(x) + Ay < u, where x and y are the nonlinear and
linear variables respectively. The i-th constraint is therefore of the form

a < f'(x) + aTY /,

and we define the i-th "row" to be the linearization of f'(z) + aTy. For linear constraints, the
i-th row is just sTy.

Internally, the constraints take the form Lf(x) + Ay + s = 0 where Lf(z) is the current
linearization of f(x), and s is the set of slack variables (which happen to satisfy the bounds
-u < a < -1). For the i-th constraint it is the slack variable s, that is directly available, and it
is sometimes convenient to refer to its state.

Label Description

NUMBER The value n + i. This is the internal number used to refer to the i-th slack in the
iteration log.

ROW The name of the i-th row.

STATE The state of the i-th row relative to the bounds a and /. The various states
possible are as follows.

LL The row is at its lower limit, a.

UL The row is at its upper limit, P.

EQ The row is equal to the RHS element, a = 3.

BS The constraint is not binding, a, is basic.

SBS The constraint is not binding, s is superbasic.

A key is sometimes printed before the STATE to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient is
essentially zero. This means that if the slack were allowed to start moving away
from its bound, there would be no change in the value of the objective function.
The values of the basic and superbasic variables might change, giving a genuine
alternative solution. Ilowever, if there are any degenerate variables (labelled D),
the actual change might prove to. be zero, since one of them could encounter a
bound immediately. In either case, the values of dual variables might also change.

D Degenerate. The slack is basic or superbasic, but it is equmal to (or very close to)
one of its bounds.

1

6.4 Solution Output 71

Infeasible. The slack is basic or superbasic and it is currently violating one or its
bounds by more than the FEASIBILITY TOLERANCE.

N Not precisely optimal. The slack is nonbasic or superbasic. if the OPTIMALITY
TOLERANCE were tightened by a factor of i0 (e.g., if it were reduced from 10- 5 to
10-6), the solution would not be declared optimal because the reduced gradient
for the slack would not be considered negligible. (If a loose tolerance has been
used, or if the run was terminated before optimality, this key might be helpful in
deciding whether or not to restart the run.)

Note: If SCALE is specified, the tests for assigning the A, D, I, N keys are made on
the scaled problem, since the keys are then more likely to be correct.

ACTIVITY The row value; i.e., the value of ary for linear constraints, or the value of the
linearization lf'(x) + aTy ir the constraint is nonlinear.

SLACK ACTIVITY The amount by which the row differs from its nearest bound. (For free rows,
it is taken to be minus the ACTIVITY.)

LOWER LIMIT a, the lower bound on the row.

UPPER LIMIT /, the upper bound on the row.

DUAL ACTIVITY The value of the dual variable 7r,, often called the shadow price (or simplex
multiplier) for the i-th constraint. The full vector ?r always satisfies B'Tr = B,
where B is the current basis matrix and 9B contains the associated gradients for
the current objective function.

If the solution is feasible, the first ml components of ir are used at the start of the
k-th major iteration to define Xk, the estimate of the Lagrange multipliers for the
nonlinear constraints.

I The constraint number, i.

COLUMNS Section

Here we talk about the "column variables" (x,y). For convenience we let the j-th component
of (x,y) be the variable x, and assume that it satisfies the bounds a < x, i_ J1. linuar and
nonlinear variables are treated the same.

Label Description

NUMBER The column number, j. This is the internal number used to rerer to x, in the
iteration log.

COLUMN The name of x7 .

STATE The state of x, relative to the bounds a and /3. The various states possible are as
follows.

LL xi is nonbasic at its lower limit, a.

UL xz is nonbasic at its upper limit, (.

EQ z is nonbasic and fixed at the value a =/3.

72 6. Output

FR zy is nonbasic and currently zero, even though it is free to take any value. (its
bounds are a = -o, = +00. Such variables are normally basic.)

ES z is basic.

SBS x is superbasic.

A key is sometimes printed before the STATE to give some additional information
about the state of x.. The possible keys are A, D, I and N. They have the same
meaning as described above (for the ROWS section of the solution), but the words
"the slack" should be replaced by "xj".

ACTIVITY The value of the variable z.

OBJ GRADIENT g,, the j-th component of the combined linear and nonlinear objective function
F(x) + cTx + dTy. (We define g, = 0 ir the current solution is infeasible.)

LOWER LIMIT a, the lower bound on z.

UPPER LIMIT /f, the tipper bound on zi.

REDUCED GRADNT The reduced gradient di = g - xTal, where aj is the j-th column of the
constraint matrix (or the j-th column or the Jacobian at the start or tile final
major iteration).

M J The value m + j.

An example or the printed solution is given in chapter 8. Infinite UPPER and LOWER LIMITS
are output as the word NONE. Other real values are output with format F16.5. The ma ximim
record length is Ill characters, including the first (carriage-control) character.

Note: If two problems are the same except that one minimizes F(x) and the other rriaximizes

-F(x), their solutions will be the same but the signs of the dual variables 7r, and the reduccd
gradients d. will be reversed.

6.5 SOLUTION File

If a positive SOLUTION FILE is specified, the information contained in a printed solulitn y
also be output to the relevant file (which may be the PRINT file if so desird). Infinit, UPPER
and LOWER LIMITS appear as ±1020 rather than NONE. Other real values are output wit h t,,riat
1PE16.8. Again, the maximum record length is IlI characters, including what wouild ho the
carriage-control character if the file were printed.

A SOLUTION file is intended to be read from disk by a self-contained program thait (,\I r'ids
and saves certain values as required for possible further computation. Typically the Iir4L It I
records would be ignored. Each subsequent record may be read using

FOR¥AT(IS, 2X, 2A4. iX, At, iX, A3. 5Et6.8. 17)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts1 ~with a I and is otherwise blank. ir this and the next 4 records are skipped, the ('OIINS!

section can then be read under the same format. (There should be no need to use any BACKSPACE
statement%.)

I l _ I ..
- - . -____-____-,.ii_____i| _i__iiia__lii_

6.6 S R Fe 7

6.6 SUMMARY File 73

61.6 SUMMARY File

If SUMMARY FILE f is specified with f > 0, artain brief information will be output to file f.
When MINOS is run interactively, file f will usually be the terminal. For batch jobs, a disk file
should be used to retain a concise log of each run (if desired; a SUMMARY file is more easily
perused than the associated PRINT file).

A SUMMARY file (like thc PRINT file) is not rewound after a problem has been processed. It
can therefore accumulate a log for every problem in the SPECS file, if each specifies the same file.
The maximum record iength is 72 characters, including a carriage-control character in column 1.

The following information is included:

1. The BEGIN card from the SPECS file.

2. The actual number of rows, columns and elements in the MPS file.

3. The basis file loaded, if any.

4. The status of the solution after each basis factorization (whether feasible; the objective value;
the number of function calls so far).

5. The same information every k-th iteration, where k is the specified SUMMARY FREQUENCY
(default k = 100).

6. Warnings and error messages.

7. For nonlinear constraints, 1II7+1 - XJJ, IIXA+1 - 'kJ! and the norm of the nonlinear constraint
violation at the start of each major iteration.

8. The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item 5 is not. All items are illustrated in Figure 6.1, which
shows the SUMMARY file for the test problem MANNE, using SUMMARY FREQUENCY I.

MIND$ (5.6 DEC 1963)

BEGIN MANNISi
ROWS to
COLUMN 36
ELEMENTS 59
)000(NWIMN - ThI ENS IS l30

OCOC TOTAL NO. OF EUWOS IN WS FILE 2

*" r1JC4 SETS 7 OUT OF 1O CONSTWAINT GIADIENT.

START OF MAJOR Ilr I PENALTY PARAMETER u l.O00-OW
CONSTRAINT VIOLATION a 0.6

111" * $INFn 1.0000000000-03 NINF, I
ITH 1 UHF. 1.0000000000-03 NINF2 I

0 FIBUJ GETS 17 OUT OF 20 OBJECTIVE SRAOIENT3.

IN I ObJs t.6690907150*90 FUNSO I S 583 6
11i ONJ Z.6698275580+00 FUNSu 30 23 Son
OPTIMAL USPROSLEN AT INOR 11t 2 - TOTAL IWIf * I

Figure 6.1. Format or SUMMARY file for tcst problemn MANNE

74 6. Output

START OF MAJOR 311 2 PENALTY PARAMETER a 1.000-O1
CHANGE IN JACOON YARS a 3.33330-0
CHANGE IN IULTIPLIERS 2 9.86430+00
CONSTRAINT VIOLATION a 9.17350-06

-TH 2 QSJ2 2.669730897D*00 FUNS5 31 0* Sea 8
1TW 3 OBJ1 2.6698220*O00 FUS4S 40 33 Us 7
rTH 4 OJs 2.6700Z2604*00 FUN5 47 40 Sea 7
OPTIMAL SUBPROBLEM AT MINOR ITH t - TOTAL IT1N a 4

START OF MAJOR IT 3 PENALTY PARAMETER x 1.000-41
CHANGE IN JACOBN VANS a 1.67010-02
CHANGE IN IIULTIPLIERS a 1.4206D-02
CONSTRAINT VIOLATION • !.76700-06

I1 4 OBJz 2.670022627D*O0 FUt43 48 41 s8 7
ITN 5 8Jz Z.670063679D*0O0 Fu135 59 52 355 7
ITH 6 08x 2.6700803580#00 FUNS: 64 57 502 7
1TH 7 0BJ 2.6700880090+00 FU9= 69 62 SB= 7
ITH S 08J 2.670092644*0O0 FUNS-: 76 69 S= 7
1TH 9 05J 2.67009760ZD00 FUNS2 82 75 SB: 7
ITN 10 08J: Z.6700976670'00 FUHS= 69 a2 se8 7
ITH 11 08:J= .6700976670*00 FUNSa 94 67 Sea 7
OPTIMAL SUBPROBLEN AT MINOR 1TH 7 - TOTAL 1THS : Is

START OF MAJOR ITH 4 PENALTY PARAMETER a 0.0

CHANSE IN JACOWI VANS a 1.S2SI0-02
CHANGE IN IULTIPLhERS 2 5.72510-03
CONSTRAINT VIOLATION a 2.01700-04

1TH 11 06Jz 2.6700976580400 FUNS 95 8 Sa 7
1TH 12 O8Jz 2.6700976S80'00 FUNS= 103 96 Sea 7
OPTIMAL SUBPROBLEH AT MINOR 11W I - TOTAL IThS : 12

START OF MAJOR 11W 5 PENALTY PARAMETER a 0.0

CHAGF IN JACOSM VARS 2 4.01140-06
CHANGE IN MULTIPLIERS a 9.60640-07
CONSTRAINT VIOLATION a 1.43S40-13

EXIT -- OPTIMAL SOLUTION FOUND

MAJORi* MINOR ITHS 5 12
OBJECTIVE FUICTION 2.6700976S764300*00
SUPERASICS, RGIIOR 7 2.410-09
XNOM, PINOI 8.1000*0 7.610400
FUI4084, FUNCON CALLS 103 96

BASIS MAP SAVED ON FILE 11 IT" a 12

SOLUTION PRINTED

FUNCON CALLE0 MiTn NSTATI a 2

F11408 CALLEO MITN NSTATE U 2

Figure 6.1, (continued). Format or SUMMARY file for test problem MANNE

__ _ __ _ _ __ _ __ _ _

- -- --

7.1 D~istribution Tape 15

7. SYSTEM INFORMATION

7.1 Distribution Tape

The source code and test problems for MINOS are distributed on a magnetic tape containing
14 files. The tape characteristics are described in a dlocumfent accompanying the tape; normally
they are: 9 track, 1600 bpi, unlabeled, ASCII, 80-character records (card images), 3600-character
blocks.

The following is a list or the files and a summary or their contents. For reference purposes
we give a name to each file. Hlowever, the namies will not be recordled on unlabeled tapes. The
HEAD and BODY files are composed of several smaller files described] in section 7.2.

File Name Type Cards Description

1. HEAD 1 FORTRAN 923 Source Files 1 2: MIOOMAIN and MIlOMACH
2. BODYl FORTRAN 128416 Source files 3 13: MI15BLAS thru MI80NCON
3. HEAD2 FORTRAN 923
4. BODY2 FORTRAN 12846

5. HEAD3 FORTRAN 923
6. BODY3 FORTRAN 12846
7. MANNE DATA 146 SPECS and %IPS files ror test problemn MANNE
8. WEAPON FORTRAN 56 Double- precision file MIOOMAIN for WEAPON
9. WEAPON SINGLE 56 Single-precision version of file 8

10. WEAPON DATA 154 SPECS aind] "viS files for W'IA1PON
11. ETA.MACRO FORTRAN 135 Douib le- p recis-i on file MIQOMAIN For ETA-MACRO
12. ETAMACRO SINGLE 135 Single-precision version of file 11
13. ETAMACRO SPECS 38 SPECS file For 1-TAMACRO
111. ETAMACRO MPS 213.1 MP~S file For HTAMACRO

One HEAD and one BODY file should be selected for any given installation. HEADI and BODYl
-ire intended for machines using F'ortran declarations of' the Form

IMPLICIT REAL*8(A-H.O-Z)
DOUBLE PRECISION Z(NWCORE)
INTEGER KA (NKA) (long integers)
INTEGER*2 HA(NE) (short integers)

For example: IBM Systems 360, 370, 3033, 3081, etc.; Amdlahl 170, Facom, Fujitsu, Hitachi, and
other systems analogous to IBM; DEC VAX 11/750 and 11/780; D~ata Genieral NIV/8000; W~I,
2900 series; recent PRIME systems.

HEAD2 and BODY2 are intended for mrachines using Fortran declarations of the form

IMPLICIT DOUBLE PRECISION (A-H. O-Z)
DOUBLE PRECISION ZCNWCORE)

I'INTEGER KA(NKA) (long integers only)
For example: I)EC Systerm 10 and 20; hloneywell systemns; tPeivac 1100 series.

HEAD3 and BODY3 are inUtnded for machines using Fortran declarations of the rorm
REAL Z(NWCORE)
INTEGER KA(NKA)

For example: Burroughs 6700 and 7700 series; CD)C 6000 and 7000 series and their Cyber
3 cou nterparts; Cray. 1.

76 7. System Information

Installation Procedure

1. Obtain the appropriate HEAD and BODY files from the tape, along with the test data in file 7

(MANNE DATA).

2. Split the HEAD file into file MIOOMAIN and file MIlOMACH as suggested in section 7.2.

3. If necessary, edit the subroutines in MI1OMACH according to section 7.4.

4. Decide whether or not to split the BODY file into files MI15BLAS through MI8ONCON as suggested

in section 7.2.

5. If all source code must be compiled together (e.g., with the Watfiv compiler), compile all the
routines that were originally in the HEAD and BODY files, and run them on the test data in file
MANNE DATA. Check the output against that shown in section 8.4.

6. If all source code can be compiled together and saved as a load module, and if various routines
can later be compiled and linked to the load module, then do as described in step 5.

7. If individual routines cannot be recompiled to replace those in an already compiled collection,
it is essential to compilk '.he four routines in file MIOOMAIN separately; these contain the default
user routines (appropriate for the test problem MANNE), and they will be replaced for other
problems. Compile all remaining HEAD and BODY routines together (or separately if more
convenient). In sonic circumstances it may be desirable to keep subroutines MIFILE, MINOSI

and MINOS2 separate. Run the resulting code on the test data in file MANNE DATA, and check
the output against that shown in section 8.4.

8. If further testing is desired, compile the appropriate WEAPON FORTRAN file and link it to the
previously compiled IUNOS code. Run it on the SPECS and NIIPS files contained in WEAPON
DATA. See section 7.6 for a summary of the test problem results.

9. For a more demanding test, perform the same steps on the three relevant EiAMXACRO files.

7.2 Source Files

The source code for MINOS is intended to be acceptable to ihoth Fortran 66 and Fortran 77
compilers, with a minimum of editing required for any particular installation. (ertain unavoidable
machine dependencies are confined to a few short subroit iTcs, involving file definitions, word
lengths, and end-of-file recognition. The only widespread dilliciilty arises in the definition of
character strings in DATA statements and FORMAT statements. I"or example,

DATA LWORD /4HWORD/
FORMAT(33H FANCY HAVING TO COUNT CHARACTERS)

is accepted by most Fortran 66 compilers, but may result in warning messages from Fortran 77
compilers. We have chosen to use quotes to delimit strings, as in I

DATA LWORD /'WORD'/

FORMAT(' THIS STRING IS EASY TO TYPE')

since it is legal in Fortran 77 and it rails on very few Fortran 66 compilers. (In the past, C|)C

compilers have allowed strings to be delimited by asterisks (*) rather than quotes.)
DATA statements are used to initialize integer variables to characte'r strings in the manner

just shown. The strings vary from I to 4 characters in length. Imilicitly lyped integers are

therefore assumed to be at least 32 bits long. On some systems (e.g., l'l{ll) this means that
Curtqpihr option must be invoked to treat. implicit integers ais "long". (Ilsewhere in the soure

r't4. ariables that are intended to be 16 bits long are explicitly typed INTEGER*2.) 3
I

7.2 Source Files 77

The source code is divided into 13 logical parts. For ease of handling, these are combined into
the HEAD and BODY files on the distribution tape, but for subsequent maintenance we recommend
that 13 separate files be kept. In the description below we suggest a name for each file and
summarize its purpose. We then list the names of the Fortran subroutines and functions involved.
The naming convention used should minimize the risk of a clash with user-written routines.

File 1. MIOOMAIN Main program and default user routines.

MAIN FUNOBJ FUNCON MATMOD

File 2. MlIOMACH Machine-dependent routines.

MIFILE MINOSI MINOS2 MIHASH IINIT UIREAD

File 3. UI15BLAS Basic Linear Algebra Subprograms (a subset).
DASUM DAXPY DCOPY DDOT DNRM2 DSCAL
These routines are functionally similar to members of the BLAS package (Lawson, et al.,
1979). Beware that they perform the correct function only when the parameters INCX
and INCY are both equal to I (which is the only way MINOS uses them). If possible they
should be replaced by authentic BLAS routines. There may exist versions that have
been tuned to your particular machine.

DZERO HCOPY ICOPY
These are additional utility routines that could be tuned to your machine. DZERO is used
the most, to set a vector to zero. If tuned versions of the BLAS are available, DZERO
could call DCOPY with appropriate arguments.

File 4. MI20AMAT Constraint matrix routines.

M2APRD M2APR5 M2APR7 M2APR8 M2BSPR M2CRSH M2SCAL M2UNPK
M2UNP2 MATCOL

File 5. MI25BFAC Basis factorization routines.

LU1FAC LU2FAC LU3CP LU4AC LU4AR LU5PQI LU5PQ2 LU5PQ3
LU8SOL LU7MVR LU7MVW LU8RPC M2BELM M2BFAC M2BMAP M2BSOL
M2SING

File 6. uI3OSPEC SPECS file routines.

M3SPCO V3SPC1 M3SPC2

File 7. MI35INPT Storage allocation and MPS file input.

M3CORE M3INPT M3MPS M3NAME 3READ

File 8. MI4OBFIL BASIS file input/output and SOLUTION printing.

M4GETB M4DUMP M4INST M4LOAD M4NEWB M4OLDB M4PNCH M4SAVB
M4SOLN M4SOL1 M4SOL2

File 9. MI5OLP Primal simplex method.

| M5CHZR 95FRMC U5LOG u5LPIT U5PRIC H5SETP U6SETX u5SOLV

I; = : -,,, m I : I -" " :

7. System Inormation

File 10. mI8osmC Linesearch and merit function.

GETPTC GETPTQ MERFUN MERGRD MERSAV SEARCH M8DCON U600BJrM8DMMY M8FCON UGFOBJ

File 11. M185RHOD Maintaining the quasi-Newton factor R.

M8BFGS M8BSWP M8RADD K6RCKD M8RDEL M8RUOD U8RSET M8RSOL
M8SWAP

File 12. M170NOBJ Nonlinear objective; reduced-gradient algorithm.

M7BSG M7BSX M7CHKD M7CHKG M7CHZQ M7RG M7RGIT M7SDIR
M7SSCV

File 13. M180NCON Nonlinear constraints; projected Lagrangian algorithm.

M8AJAC M8AUGL M8AUG1 U8CHKJ M8PRTJ M8SETJ

7.3 COMMON Blocks

Certain Fortran COMMON blocks are used in the MINOS source code to communicate between
subroutines. Their names are listed below.

MIEPS MIFILE MIWORD

M2FILE M2LU1 M2LU2 M2LU3 M2MAPA M2MAPZ 92PARM

M3LEN M3LQC I43UPS1 M3MPS2 II3MPS3 1I31PS4 W13SCAL

U5LEN M5LOC M5FREQ M5LOBJ M5LOG1 M5LOG2 M5LOG3 95LPI

M5LP2 M5PRC M5TOLS

M7LEN M7LOC M7CG1 M7CG2 M7CONV M7PHES M7TOLS

MBLEN M8LOC M8AL1 M8AL2 418DIFF MSFUNC M8SAVE M8VERI

CYCLCM

A complete listing or Ohe COMMON blocks and their contents appears in subroutine MINOS2. (Also
see section 2.6). It may be convenient to make use or these occasion ally;- for example,

COMMON /MIFILE/ IREAD,IPRINT,ISUMM

gives the file numbers for the system reader and printer andl for thev N\IMAIIY file. Otherwise,
the naming convention should again minimize the risk or a clasi withi ijsr-tlclined COMMON blocks
and subroutines.

As supplied, MINOS does not use blank COMMON. However, in some installations it mnay be
desirable to store the workspace array Z there, as noted in ie nvxt section.

'1-

7.4 Machine-dependent Subroutines 79

7.4 Machine--dependent Subroutines

Some of the routines in the HEAD file may require modification to suit a particular machine or a
non-standard application. We discuss each of them in turn.

The Main Program

The workspace for MINOS is allocated in the main prograia by code of tle following form:

DOUBLE PRECISION Z(10000)
DATA NWCORE/10000/

C

CALL MINOSI(Z,NWCORE)
RETURN

C
C END OF MAIN

END

Ten thousand words of storage are sufficient to solve small examples such as the test prob-
lems MANNE and WEAPON. About 25000 words are needed for ETAMACRO, which has ap-
proximately 400 constraints and 700 variables. For linear programs containing m constraints, the
length of Z should be roughly 100m, depending on the density of the constraint matrix. Nonlinear
programs may require more workspace if there are many nonlinear variables.

On some machines it is possible to replace the main program by a non-Fortran routine that
allocates storage for Z at run-time.

For Burroughs installations, the main program should allocate Z by calling an Algol procedure
GETCOR (not provided), which in turn should call MINOSI as above. This will overcome two
problems in the process:

1. The binder can replace GETCOR in a compiled code file (but it cannot replace the main
program).

2. The length of Z is effectively unlimited if declared in an Algol procedure (but is restricted to
be 65535 or less when declared in Fortran).

In some installations it will be desirable to put Z in blank COMMON and then extend it at
run-time if necessary. This could be done in MAIN, or in subroutine MINOS2 (see below).

On Honeywell machines, Z must be in blank or labeled COMMON to avoid a limit on the total
storage for local variables (18K words).

The CDC version of MAIN will need to begin with PROGRAM cards of the following gcneral
form:

PROGRAM MINOS(INPUT. OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT,
I TAPES. TAPE9, TAPEIO, TAPEr1,
2 TAPEr2, TAPEr3, TAPE14. TAPERS)

The unit numbers are suggested for use as follows:
TAPES The SCRATCH file (record length 8)
TAPE9 A SUMMARY' file (e.g., a terminal)
TAPE10 An MPS file
TAPEtt An OLD BASIS file and/or a BACKUP file
TAPE12 A NEW BASIS file

----. .Ii' = m l I i / = : , ...

so 7. System Information

TAPE13 An INSERT file or a LOAD file
TAPE14 A PUNCH file or a DUMP file
TAPE15 A SOLUTION file (record length 111)

Subroutines FUNOBJ, FUNCON, MATMOD

These are the user routines described in Chapter 2. The HEAD file contains default versions
that are appropriate for the test problem MANNE. They test if PROBLEM NUMBER 1111 has been
specified, as in the file MANNE DATA. If not, they terminate the run with a message indicating that
the required subroutine has not been loaded. (See exit 6 in section 6.3.)

Subroutine MIFILE

This subroutine assigns explicit unit numbers to certain global files, namely the "card reader",
the "line printer", the SCRATCH file, and the SPECS file. Typical values are 5, 6, 8, and 5, but
these will not be suitable for all installations.

In some cases (e.g., DEC 10 and 20), MIFILE must use explicit OPEN statements to open both
the global files and certain others that are defined in the SPECS file for a particular problem, and
to assign symbolic names to these files. In such cases, it may be sensible to let the user compile
his own version of MIFILE each time MINOS is run.

For Burroughs installations, MIFILE may need to be compiled separately with some Burroughs
FILE statements inserted at the start (since they must be the first statements that the compiler
sees). The attributes in these FILE statements can be altered by the usual WFL statements
associated with a run, but their default values cannot be altered by binding in a different version
of NIFILE. It is therefore advisable to consider the FILE statements carefully before compiling
the entire source code.

Subroutine MINOSI

This opens some global files and then passes the array Z to subroutine MINOS2 as many times as
necessary, until a signal is given that all problems in the SlIECS file have been processed.

For special applications, MINOSI may need to be expanded. The most likely extension would
be to call a matrix generator and a report writer (before and after the call to subroutine MINOS2).

Subroutine MINOS2

For special applications, MINOS2 may requi-,e modification. Again, one may wish to insert calls to
a matrix generator or a report writer.

Some systems (e.g., CDC) allow blank COMMON to be extended at run-time. If so, a sensible 1

place to do this is after the call to M3CORE, making use of the integer variables NWCORE, MINCOR
and MAXZ. MINCOR will contain an estimate of the amount of storage required, and the user may
assign a value to MAXZ by means of a data card of the form I

WORKSPACE (TOTAL) 50000

in the SPECS file. See the in-line documentation for further details. j

i' __,iili~l mii l ii ll

7.4 Machine-dependent Subroutines 81

Subroutine UIHASH

This subroutine should not require modification if a word containing four characters of left-
justified data (read under A4 format) can be treated as a valid INTEGER.

On certain machines that regard INTEGER variables as a subset of the REALs, the characters
must be right-shifted in order to produce a zero floating-point exponent. The in-line documenta-
tion points to four words requiring conversion.

For CDC and Cray installations, an offending word KEYt may be converted into an acceptable

integer KI as follows:
DECODE(4,10.KEYI) K1

10 FORMAT(R4)

For Burroughs machings, the following statement has the required effect if KZERO = 0:
KI = CONCAT(KZERO.KEY1.31,47.32)

Burroughs installations need some further non-standard Fortran to facilitate character com-
parisons. In MIHASH, the statement

IF (KEYI .EQ. NAMEI(KT) .AND. KEY2 .EQ. NAME2(KT)) GO TO 80
must be changed to use ".IS." in place of ".EQ.", and the same change must be made to many
".EQ." tests in subroutine H3SPC1 (in the BODY file).

Subroutine UtINIT

The variable EPS in this subroutine should be set to the relative precision of the machine's
floating-point arithmetic, when it operates on words of the same type as the main storage array
2. Typical values are as follows:

EPS = 18.0**(-13) for IBM systems,
EPS = 2.0.* (-55) for DEC VAX 11/780 with standard double precision,
EPS = 2.0**(-81) for DEC 10 and 20,
EPS = 2.0**(-82) for Honeywell systems,
EPS = 2.0**(-59) for Univac systems,
EPS = 2.0**(-47) for CDC and Cray systems,

EPS = 2.0,*(-37) for Burroughs systems.

Some VAX systems have additional double-precision hardware wit h slightly lower precision but a
greater exponent range. Use of this option may be worthwhile, since it will essentially eliminate
some annoying (but otherwise harmless) occurrences of floating-point urderflow.

Subroutine MIREAD

This subroutine contains a READ statement that is required to recognize an end-of-file condition
(when reading the SPECS file). Most compilers allow the form

READ(ISPECS. 1000, END=900) L,LINE
RETURN

but CDC compilers require the statements

READ(ISPECS, 1000) L.LINE
IF (EOF(ISPECS)) 900. 100

100 RETURN

Note: Once installed correctly, subroutines MIHASH, IINIT and MIREAD will not be changed

by the user. They should be treated the same as the subroutines in the BODY file.

- -. . 2

82 7. System Information

7.5 Subroutine Structure

The first five levels of the subroutine hierarchy are shown~ below.

MIFILEMINOS2

MUI _3NTM4OLDB mUssET M4SAVB

M4LDB M5FRMC M41JEWB

MSAJAC U5SETP M4DUMP
142SCAL M5PRIC
M2CRSH M5LPIT

M7RGIT
U5LOG
M4NEWB

1. The main program allocates workspace and calls NINO8i.

2. MINOSI defines the READ, PRINT, SCRATCH and SPECS files via MIFILE, then calls UINOS2

once for each problem in the SPE CS file.

3. MINOS2 inputs the SPECS rilec and the WOS rile, loads an initial basis, solves the problemn
(or a sequence or problems according to the CYCLE LIMIT), and finally saves B3ASIS files and
prints the solution.

J.

7.6 Test Problems 83

7.6 Test Problems

Test Problem MANNE

This is a small example of an economic model due to Marine (1979). It has a nonlinear objective
function, 10 nonlinear constraints, 10 linear constraints, and 30 variables. The nonilinearities are
defined by the default function routines FUNOBJ and FUNCON in the MINOS source code. The
starting point given in the MPS file is intentionally close to the optimum solution, to make this
an inexpensive test problem. Other values in the INITIAL bounds set can be tried.

As supplied, FUNOBJ and FUNCON compute all gradients analytically if the SPECS file specifies
DERIVATIVE LEVEL 3. For test purposes, the first three nonzero gradients in each routine are not
computed if DERIVATIVE LEVEL = 0. We give a sunimary of the output produced by MINOS for
the latter case. A full listing appears in section 8.4.

For this and later examples, the results were obtained on an IBM 3081 using the Fortran I1
Extended (Enhanced) compiler with optimization level 0PT=3.

Maximum objective value: 2.67009603
Iterations to get feasible: 1
Total iterations: 14
Major iterations: 5
Evaluations of F(z) and its gradient: 21
Evaluations of f(x) and its Jacobian: 24
Number of superbasics at optimum: 7
CPU time (IBM 3081): 0.3 seconds

The Weapon Assignment Problem, WEAPON

This problem has a nonlinear objective function and linear constraints. It is d,.crihd by lBracken
and McCormick (1969) and flimmelblau (1972). The constraitt iatrix is 12 / 100 arid all 100
variables occur nonlinearly in the objective Function I"(x). ''le latter depends oil 12 data cards
which are read during the first entry to subroutine FUNOBJ.

The following are some solution statistics, obtained by MENOS on an 111I 3081 as rioted
above. They give an indication of the effort required to solve th probheim. I lowever, one should
not expect to obtain identical results on some other machine.

Minimum objective value: -1735.561358
Iterations to get feasible: 3
Total iterations: 120
Evaluations of r, (z) and its gradient: 270
Nuiber oF superbasics at optimum: 18[CIPU time (IBM 3081): 2 seconds

-E

,: -.... ,unl .mi mi nni• H-","l""

I.

84 7. System Information

Test Problem ETAMACRO (linear version)

This is one example of the energy model developed by Manne (1977). The constraint matrix is
401 X 689. To obtain a linear problem, we have included one linear objective row OPTIMALG in
the MPS file. The latter also contains one right-hand-side vector RHS00001, and one bounds set
BOUNDSOt.

The objective row OPTIMALG contains the optimal gradient values for the 80 nonlinear vari-
ables in the original (nonlinear) form of ETAMACRO. Hence the linear version of the problem has
the same optimal dual variables 7r as the nonlinear version (but rather different primal variables
X).

The file ETAKACRO SPECS is set up to solve this linear program first. It asks for the linear
variables and constraints to be scaled. (Note that it also asks for a BASIS map to be saved on
unit II every 100 iteration'. This may be used as a starting basis for the nonlinear version of the
problem.)

Typical solution statistics follow.

Maximum objective value: 755.715213
Iterations to get feasible: 240
Total iterations: 904

CPU time (IBM 3081): 15 seconds

Test Problem ETAMACRO (nonlinear version)

The objective function for the original form of the energy model is entirely nonlinear, and involves
the first 80 variables. It is defined by subroutine FUNOBJ in file ETAVACRO FORTRAN. It depends
on 3 data cards which are included at the end of file ETAMACRO SPECS and are read during the
first entry to FUNOBJ.

The MPS file does not initialize any of the nonlinear variables. When started from the optimal
solution to the preceding linear problem, typical solution statistics (with scaling requested) are
as follows.

Maximum objective value: 1337.72468
Iterations to get feasible: 0
Total iterations: 235
Evaluations of F(z) and its gradient: 444
Number of superbasics at optimum: 28
CPU time (IBM 3081): 7 seconds

From a cold start, with and without scaling, typical statistics are as follows.

SCALE YES SCALE NO

Maximum objective value: 1337.72468 1337.72468

Iterations to get feasible: 235 213
Total iterations: 1022 1267
Evaluations of F(z) and its gradient: 1271 1554 l
Number of superbasics at optimum: 28 28
CPU time (IBM 3081): 21 seconds 26 seconds

Im

!~----

7.6 Test Problers 85

I. EXAMPLES

The following sections define some example problems and show the input required to solve them
using MINOS. The last example in section 8.4 is test problem MANNE as supplied on the
distribution tape. For this example we also give the output produced by MINOS.

As the examples show, certain Fortran routines may be required to run a particular problem,

depending on the problem and on the Fortran installation:

" A main program to allccate workspace

" Subroutine FUNOBJ to define a nonlinear objective function (if any)

* Subroutine FUNCON to define nonlinear constraint functions (if any)

" Subroutine MATMOD for special applications

The following input items are always required:

" A SPECS file

" An MPS file

Additional input may include a BASIS file and data read by the Fortran routines.

Load modules and file specifications are inevitably machine-dependent. A resident expert
will be needed to install MINOS on your particular machine and to recommend job control or
operating system commands. On some machines it will be possible to run linear programs through
MINOS without compiling any routines or linking them to the MINOS code file. For nonlinear
problems, some compilation and linking is unavoidable.

For some installations it may also be convenient to have your own copy of subroutine MIFILE,
to define certain file attributes in (non-standard) Fortran, rather than via operating system
commands. The resident expert will know best.

Good luck! We hope the examples that follow are general enough to set you on the right
track.

ii -

86 8. Examples

8.1 Linear Programming

One of the classical applications of the simplex method was to the so-called diet problem. Given
the nutritional content of a selection of foods, the cost of each food, and the consumer's minimum
daily requirements, the problem is to find the combination that is least expensive. The following
example is taken from Chvital (1983).

minimize crx subject to Az > b, 0 < z < u,

where (. 0 0 o.,'°°
wee(110 205 160 160 420 2609 b= (20O00A 4 32 13 8 4 14], b 55),

A 2 12 54 285 22 80. 800

and
c=(3 24 13 9 20 10)T, u=(4 3 2 8 2 2)T.

Main program (not needed for some installations)

DOUBLE PRECISION Z(10000)
DATA NWCORE/1OOOO/

C
CALL MINOSI(Z,NWCORE)
STOP
END

Dummy user routines (not needed for some installations)

SUBROUTINE FUNOBJ
ENTRY FUNCON
ENTRY MATMOD
RETURN
END

SPECS File

BEGIN DIET PROBLEM
MINIMIZE
ROWS 20
COLUMNS 30
ELEMENTS 50

SUMMARY FILE g
SUMMARY FREQUENCY 1 * (for small problems only)
NEW BASIS FILE It

END DIET PROBLEM

/ I
-- = -' .. . - , °, . / I I I i I I I " ', I II N I

8.1 Linear Programming 87

MPS File

NAME DIET

ROWS

G ENERGY

G PROTEIN
G CALCIUM

N COST

COLUMNS
OATMEAL ENERGY 110.0 PROTEIN 4.0
OATMEAL CALCIUM 2.0 COST 3.0
CHICKEN ENERGY 205.0 PROTEIN 32.0

CHICKEN CALCIUM 12.0 COST 24.0

EGGS ENERGY 180.0 PROTEIN 13.0
EGGS CALCIUM 54.0 COST 13.0
MILK ENERGY 160.0 PROTEIN 8.0

MILK CALCIUM 285.0 COST 9.0
PIE ENERGY 420.0 PROTEIN 4.0

PIE CALCIUM 22.0 COST 20.0
PORKBEAN ENERGY 280.0 PROTEIN 14.0

PORKBEAN CALCIUM 80.0 COST 19.0
RHS

DEMANDS ENERGY 2000.0 PROTEIN 55.0
DEMANDS CALCIUM 800.0

BOUNDS

UP SERVINGS OATMEAL 4.0
UP SERVINGS CHICKEN 3.0
UP SERVINGS EGGS 2.0

UP SERVINGS MILK 8.0
UP SERVINGS PIE 2.0

UP SERVINGS PORKBEAN 2.0

ENDATA

Notes on the Diet Problem

1. For small problems such as this, the SPECS file does not really need to specify cvrtain
parameters, because the derault values are large enough. Ilowever, we include theri as a
reminder for more substantial models.

2. In the MPS file we put the objective row last. Looking ahead, this is one way or cn.suring
that it does not get mixed up with nonlinear constraints, whose names must appear fir. t in
the ROWS section.

3. The constraint matrix is unusual in being 100% dense. Most models have at least a rew
zeros in each column and in b. They would not need to appear in the COLUMNS and lIllS
sections.

4. MINOS takes three iterations to solve the problem. The optimal objective is cTr = 92.5.
The optimal solution is z = (4, 0, 0, 4.5, 2, 0)T and s = (0, -5, -534.5). The oplitnal
dual variables are ?r = (0.05625, 0, 0)T.

85 8. Examples

8.2 Unconstrained Optimization

The following is a classical unconstrained problem, due to Rosenbrock (1960):

minimize F(z) = 100(z2 - z)+ (1 - z1)2 .

We use it to illustrate the data required to minimize a function with no general constraints.
Bounds on the variables are easily included; we specify -10 < z _ 5 and -10 < X2 _< 10.

Calculation of F(z) and its gradients

SUBROUTINE FUNOBJ(MODE, N. X, F, G, NSTATE, NPROB. Z. NWCORE)
IMPLICIT REAL*8(A-HO-Z)

DOUBLE PRECISION X(N), G(N), Z(NWCORE)

C ROSENBROCK'S BANANA FUNCTION.
C

Xl = X(1)
X2 = X(2)

T1 = X2 - X1**2

T2 = 1.0-X1
F 100.0 * T1**2 * T2*.2

G(1) - 400.0 * TI * X1 - 2.0 * T2

G(2) = 200.0 * Ti

RETURN

C
C END OF FUNOBJ FOR ROSENBROCK

END

SPECS File

BEGIN ROSENBROCK
OBJECTIVE = FUNOBJ

NONLINEAR VARIABLES 2

SUPERBASICS LIMIT 3

LOWER BOUND -10.0

UPPER BOUND 10.0

SUMMARY FILE 9

SUMMARY FREQUENCY I
ITERATIONS LIMIT 50

END ROSENBROCK

;i |

8.2 Unconstrair I Optimization g

MPS File

NAME ROSENBROCK

ROWS
N DUMMYROW

COLUMNS
Xl

X2
RHS
BOUNDS
UP BOUNDI Xl 5.0

FX INITIAL X1 -1.2
FX INITIAL X2 1.0

ENDATA

Notes on Rosenbrock's function

1. There is nothing special about subroutine FUNOBJ. It returns the function value F(z) and
two gradient values Y, = OF/x, on every entry. If G(1) or G(2) were not assigned values,
MINOS would "notice" and proceed to estimate either or both by finite differences.

2. The SPECS file apparently does not need to estimate the dimensions of the constraint matrix
A, which is supposed to be void anyway. But in fact, MINOS will represent A as a I X n1

matrix containing nt elements that are all zero. For very large unconstrained problems, the
COLUMNS and ELEMENTS keywords must be specified accordingly.

3. The SPE (S file must specify the exact number of nonlinear variables, nl. To allow a little
elbow room, the SUPERBASICS LIMIT must be set to n1 + 1, unless it is known that sonie of
the bounds will be active at the solution.

i. The 'NS file must specify at least one row. Ilere it is a dummy free row (type N - tion-

binding constraint). The basis matrix will remain I? = I throughout, corresponding to the
slack variable on the free row.

5. The COLUMNS section contains just a list of the variable names. The RIIS header card
must appear, but a free row has no right-hand-side entry.

6. Uniform bounds -10 < K, < 10 are specified in the SPECS file as a matter of good pr.ik Ic,

*; Their presence does not imply additional work. If the LOWER and UPPER BOUND keywor,!, ,i

not appear, the variables would implicitly have the bounds 0 < r, < 00, which Il not
always be appropriate.

7. With the uniform bounds specified, only one additional card is needed in the BOUNI)S -wcI ion

to impose the restriction x, < 5.

8. The INITIAL bound set. illustrates how the starting point (xi, r2) = (-1.2, 1.0) is spccilid.
These cards must appear at the end of the IJUNI)S section. Since the SUPERBASICS LIMIT
is sufficiently high, both variables will initially be superbasic at the indicated values.

9. If the INITIAL bound set were absent (and if no BASIS file were loaded), x, and X2 ,oIl,

initially be nonbasic at the bound that is smaller in absolute value (with ties broken in f~ivor

of lower bounds); in this case, z, = u = 5 and X2 = 12 = -10.

10. From the standard starting point shown, a quasi- Newton method with a moderately aic'urc

* linesearch takes about 20 iterations and 60 function and gradient evaluations to rearch I,

unique solution , =X2 = 1.0.

AD-A138 522 MINOS 50 USER'S GUIDE(U) STANFORD UNIV CA SYSTEMS
OPTIMIZATION LAB B AMURTAGHET AL DEC 83 SOL-8320
ARC 18424.14 MA NOSS 4-75-C 0267

UNCLASSFIE /E9/2NL

I P4

11111I.O~2 1=25 J

tttU. oA 32-IIIIIL .6

*1.25 1 ___ 116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- 963-A

-:7

9. Example

6.8 Unearly Constrained Optimization

Quadratic programming (QP) is a particular case of linearly constrained optimization, in which
the objective function F(z) includes linear and quadratic terms. There is no special way of
informing MINOS that F(z) is quadratic, but the algorithms in MINOS will tend to perform more

efficiently on quadratics than on other nonlinear functions. The following items are required to
solve the quadratic program

I , Tminimize F(z)=-z Q + c x subject to Az~b, x>O
2

for the particular data

Q:(2 4 0 =(8)9 A=(1 1 2), b 3.

Calcislation of quadratic term and Its gradients

SUBROUTINE FUNOBJ(MODE, N. X. F. G. ISTATE. UPROD. Z. NICOlE

IMPLICIT REAL*8 (A-H.G -Z)
DOUBLE PRECISION X(N), G (M). Z(NWCORE)

COMMON /QPCOMM/ Q(50.50)

C Computation of F = 1/2 x'Qx. g = Qx.

C The COMMON statement and subroutine SETQ are problem dependent.
C

IF (NSTATE .EQ. 1) CALL SETQ(Q. 50. N)

F 0.0
C

DO 200 1 = 1, N
GRAD a 0.0
DO 100 J a 1. N

GRAD = GRAD + Q(I.J)eX(J)
100 CONTINUE

F = F X(I)GRAD
G(I) Z GRAD

200 CONTINUE 1T
C

F a 0.5*7

j RETURN

C IND OF FUNOJFOR V

8.3 Linearly Constrained Optimisatoa

SPECS File
BEGIN V

NONLINEAR VARIABLES 3
SUPERBASICS LIMIT 3

SUMMARY FILE 9
SUMMARY FREQUENCY I
ITERATIONS LIMIT s0

END QP

MPS File

NAME QP
ROWS

L A
N C

COLUMNS
X1 A 1.0 C -8.0
X2 A 1.0 C -6.0
X3 A 2.0 C -4.0

BlHS

B A 3.0
ENDATA

Notes on the QP example

I. In subroutine FUNOBJ we assume that the aray Q(*,*) is initialized during the first entry
by another subroutine SETQ, which is problem-dependent. The COMMON statement is also
problem-dependent and is included to ensure that Q will retain its values for later entries. (In
some Fortran implementations, local variables are not retained between entries.)

2. The quadratic form will often involve only some of the variables. In such cases the variables
should be ordered so that the nonzero rows and columns of Q come first, thus:

3. The parameter N and the number or NONLINEAR VARIABLES would then be the dimension or
Q.

4. FUNOBJ could have computed the linear term cTz (and its gradient c). However we have
included c as an objective row in the MPS file, in the same manner as ror linear programs.
This is more general, because c could contain entries for all variables, not just those associated
with Q.

5. Beware-if c 9 0, the factor I makes a vital difference to the runction being minimized.
V S. The optimal solution to the QP problem as stated is

* 1. T
z = (1.3333,0.77777,0.44444), zrQz = 8.2222, c - -17.111 F(s) -8.8888.

2

Tet Preble WEAPON .d ETAMACRO

The MINOS distribution tape contains data for then two lnearly constrained proble. The
SPECS Ale for ITAMACRO Is as folow. It Is at up to solve a linear form of the problem trst
and then use the optimal basis as a starting point for the nonlinear form.

on= EM0o AS AN LP IP"K .

U5JECTMY a GPTMHLS

cOUJW 76
IlI8N n t6se

9U0 FILE 9
IWS FILM Is

EN SAM FILE 11

,AU YS
IMATI lqo

.33 ALMWeE SKS USEL ETMNAO

OBJBLCTM a I'UMO

M See
COUAw 709

UDUMY FILE 9
PS PILE 10

OLD A5SU FILE 11
No *M FILE is

HONL.Vam VAWIMLES
SUPONimBSC LVnxT

WALE YESi XIMATlM Un

N NUTE - AFMn 1=1 M FILE6 TN AN 3 CU OU DATA,
T IO w n N i VIES UUW Y ToslUlwIrm FUNSJ.

me
1.160 1.46 1.717 2.9 1.3" 2.744 3 .101 5.9083.073 4.276 4.71 9.813 |.? 6.]3% 7.016 ?.70A
g0.0ff 0.200 0.400 0.33M I S.8O

Dada-lt en give d to a .eaatra How iJs -mpquarea problem of the form

mlluse IIs- fis subje to As '. b, I : s .

Tde, i maW be elved with MINOS a It stands, by coding subroutine FUN=0 to compute
e objetve fun 1 = JlX - 1ll1 and Its gradient g(s) - X"(X% -1). If X Is a spate e

| It my be more convenient to xprem the problem In the form

I X')(r1misimise F(r) !rr ubeetto (: (1b . , free, 1!5, I! U.

A z

8.3 Linearly Constrained Optimization U

Notes on the keast-sqres problem

1. As usual, the constraints in Az 'e b may include all types of inequality.

2. r = p- Xz is the residual vector and rTr is the sum or squares.

3. The objective function is easily programmed as F(r) - rTr and g(r) = r.

4. More stable methods are known for the least-squares problem. If there are no constraints at
all, several codes are available for minimizing JJXx - yI1s when X is either dense or sparse.
When there are equality constraints only (Ax = b), we know of one specialized method that
can treat X and A as sparse matrices (Bjorck and Duff, 1980). For the more general case
with inequalities and bounds, MINOS is one of very few systems that could attempt to solve
problems in which X and A are sparse. However, if n (the dimension of x) is very large,
MINOS will not be effiient unless almost n constraints and bounds are active at the solution.

5. If it is expected that most of the elements of x will be away from their bounds, it will be
worthwhile to specify MULTIPLE PRICE 10 (say). This will allow up to 10 variables at a time
to be added to the set currently being optimized, instead of the usual 1.

The Discrete 41 Problem

An apparently similar data-fitting problem is

minimize IIXx - V111 subject to Ax > &

where JIrJJ =- F fr1 . However, this problem is best solved by means of the following purely
linear program: maximize ,T"> + bTp

subject to XTX + ATIA = 0, -1 < X, 5 1, _O.

Notes on the t, problem

1. The solution z is recovered as the dual variables, i.e., the Lagrange multipliers associated

with the general constraints.

2. The optimal value of IJXx - yJI, is the sum of the absolute values of the reduced costs
associated with X. (It is also the maximal value of yTX + b6T".)

3. If a particular row In Ax > b is required to be an eqc~ality constraint, the corresponding
component of is should be a free variable.

4. It does not appear simple to include the bounds I < z < u except as part of Ax > b. If
there are many finite bounds, it may be best to solve the original problem directly as a linear
program, thus:

minimize eTr + eTS

subject to -l A " s>o, < < ,

where e"= (l...1).

IX
i .

I-

8. Exampie.

S.4 Nonlinearly Constrained Optimization

Two example problems are described here to illustrate the subroutines and data required to specify
a problem with nonlinear constraints. The first example is small, dense and highly nonlinear; it
shows how the Jacobian matrix may be handled most simply (as a dense matrix) when there are
very few nonlinear constraints or variables. The second example has both linear and nonlinear
constraints, and illustrates most of the features that will be present in large-scale applications
where it is essential to treat the Jacobian as a sparse matrix.

Problem MHW4D (Wright (1976), example 4, starting point D)

minimize (z1 - 1)2 + (zI - X2)' + (z - X3)3 + (z3 - z4) 4 + (z4 - zs) 4

subject to zi + A2 + -- 3V + 2,

Z2 - 2 + X4 = 2v - 2,
t 2125 -- 2.

Starting point- so = (-1,2, 1,-2,-2)

Notes for problem MHW4D

1. The function subroutines include code for a second problem (Wright, 1976, example 9). The
parameter NPROB is used to branch to the appropriate calculation.

2. In subroutine FUNOBJ, F is the value of the objective function F(z) and a contains the
corresponding 5 partial derivatives.

3. In subroutine FUNCON, F is an array containing the vector of constraint functions 1(x), and
G holds the Jacobian matrix; thus, the i-th row of G contains the partial derivatives for the
i-th constraint. In this example the Jacobian is best treated as a dense matrix, so G is a
two-dimensional array. Note that several elements of G are zero; they do not need to be
explicitly set.

4. Subroutine FUICON will be called before subroutine FUNODJ. The parameter NSTATE is u(ed
to print a message on the very first entry to FUNCON. This is just a matter or good practice,
since it is often convenient to compile MINOS and the function routines into an executable
code file, and one can easily forget which particular function routines were used.

5. The SPECS file shown contains keywords that should in general be specified for small, dense
problems (i.e., ones whose default values would not be ideal).

6. The COLUMNS section of the MPS file contains only the names of the variables, since they
are all "nonlinear", and because there are no linear constraints.

7. The BOUNDS section specifies only the initial point. Uniform bounds on the variables are
given in the SPECS file.

8. Since FX indicators are used for the INITIAL bounds, the SUPLBABICS LIMIT needs to be at
least 5 in this cae, plus I for elbow room during the optimization.

9. This example has several local minima, and the performance or MINOS is very dependent on
the initial point zo. See Wright (1976) or Murtagh and Saunders (1982) for computational
details.

II'! 71

&4 NonDmrly C...ral..d OPUmkatIs.

P'.Nsm MHW4D; c.mpastation of the .hjectlv fhoti

INPLXCIT IALUS(A-N ,O-Z
DOUBLE PREChSION X(I3.SIN).ZIISIOUE)

C
C 11111
C

IF INPl HE. 4) so To S"
TV a XII I - I.0

TS a MEI) - X131
T4 a XII - X14)
TS a XI41 - MI

C
P 8 TIS'S 4 TRUSS * T5US ' TSIIU 0 TI~uS
611) a 2.SITI T I)
511) a -9.00T& MO.STPS
0(3) -3.**TSUUI# * .5675665

G15) *-4.*UTSUU 55135

C 199
C

500 TI a OSINIXfS) - XI311
TE a SCUIXISI - XI311
F a 1S.RUXI)OISI * XII)USSOa Xli) - 6.SUXI3)6I)"Xs)

1 4 9.5611 MIM 0133 KISIUSS 0 XI510"S
*MI a IS.S'XISI * .O'XII)6Ut MEXI)

6(31 a -ti.0R10 - I1.UX2)UI
G14 a 10.0111US U oXtIUOS U M X15)UU
613 a -S.S'ISUU - .Xts XI)t 0 X(slows

uw END or u vU W sOWM9

L

Prebim MHW4Dj .sinpu.thi or the cmetnuks fwamet

zIczT KIALUSA-i 0ZI
DOSSLE PRECIO XIN)spin) o) 91NI.11MCM~)

IF OIGAT! .9. 11 NRM(69 ISM) NR
IF INWWa .N1. 46 mol TO50

Fit) a xII) - X12)UUS X14)U
6(1.t)13.0

c (M 04) 1 .5X3)U

3 f Ff23 *M XII)O-XS)u XS

0(305) axII)
RETURN ()U(5
6(,c*XS

s"6i PI a X(131o # X(Effma * X(S)OW * X(*31 * xI5I"t

* 6(1.) a It. OXI 2

61104) a ISUXIE)

Me) a t XIqUI I)XS
altos) a 2.xf I Ia

W14 a Is
Glss a h MobIWS19

Ft .3) a eVOMMn040MO9
W39 aCOM Msitm a

mnum
IM FRMA41 3 T~S IsPROIM MUM9 IN!its 2I
c eeOF FNCO Fe MAI

V4I

8.4 Naoabiay Camtrained OpWEAMiao

pr~bI.i mtIw4D$; the SPECS U.e

BEGIN HNIN 4

NMaNZI6 CONSTRADITS 3
NONLINEAR VARIABS 5
JACCSRANDo

LSPN 3LM 5.

WII9WY FILE 9
ITENATIN I
K46001 ITERATION Is

HHNITEWATIONS to
PCHALTY PARAMETUR 1.

PRINT LEVEL IJFUXS) IM
VIVIFY LEVEL 6

EN 124H 4

P oblem MHUW4D;- the MPS No.

KOS

a s cow~E~4
2 EN U

*m

FX INITIAL XI -1.0
FX INITIAL X2 2.6
P1 INITIAL X3 1.0
P21 INITIAL M -4.0
P21 INITIAL X5 -1.6

ji

Problem MANNE (Manne, 1979)

maximize P, log C,
I-ni

subject to aK 6 > C, + It, I < t < T, (nonlinear constraints)

K€+1 _ Ks + It, I < t < T, (linear constraints)

with various ranges and bounds.

The variables here are Kt, C and It, representing capital, consumption and investment during
T time periods. The first T constraints are nonlinear because the variables Kg are raised to the
power b = 0.25. The problem is described more fully in Murtagh and Saunders (1982), where
results are given for the case T = 100.

The main program and subroutines shown on the following pages are part of the file HEAD1
on the MINOS distribution tape (see sections 7.1 and 7.4). The SPECS data and MPS data are
contained in the file MANNE DATA; they apply to the case T = 10.

Notes for problem MANNE

1. For efficiency, the Jacobian variables K are made the first T components of z, followed by
the objective variables C,. Since the objective does not involve Kg, subroutine FUNOBJ must
set the first T components of the objective gradient to zero. The parameter N will have the
value 2T. Verification of the objective gradients may as well start at variable T + 1.

2. For subroutine FUNCON, I will be T. The Jacobian matrix is particularly simple in this
example; in fact J(z) has only one nonzero element per column (i.e., it is diagonal). The
parameter IIJAC will therefore be T also. It is used only to dimension the array G.

3. STATE enables 3, AT and BT to be initialized on the first entry to FUNCON, for subsequcnt use
in both or the function subroutines. (Remember that the first call (o FUNCON occurs before the
first call to FUtOBJ.) The name chosen for the labeled COMMON block holdiiig these quantities
must be different from the other COMMON names used by MINOS, as listed in section 7.3.

4. NSTATE is also used to produce some output on the final call to FUNCON.
5. The COMMON block MiFILE is one of those used by MINOS; see section i.6. I'or test purposes

we also use COMMON block MODIFF to access the variable LDERIV.
6. The SPECS file uses keywords that you should become familiar with before running large

problems. Other values will be appropriate for other applications.
7. The UPS file specifies a sparse T X T Jacobian in the top left corner of the constraint matrix. T

An arbitrary value of 0.1 has been used for th,. nonzero variable coefficients. A zero or blank
numeric field would be equally good.

I

.:,his" -~i iI

8.4 Nonhnealy Coutralod 0pt/imrswao w

Problem MANNE; main pogrOm and calculation of the objective functon

C THIS Is THE DEFAULT MAIN FROM FOR MOS.
C IT SHOULD PROVIOE AS IUCH NOKSPACE AS SEEMS APPROPRIATE.
C

DOUBLE PRECISION (10006)
DATA IIICORE/10400/

C
CALL IH"OSIi ZHiNCME)
STOP

C
C END OF MIN

D

SUWEUTINI VUIOBJ(Il tlO,N,X,F ,$NSTATIWlROSZICOE I
IMPLICIT REALOSIA-H,0O-Z)
DOUBLE PRECISION X(N),SOIN,ZINCRE)
COMM /"MIOIFF/ DIFINT(E)DUIIYWLERILVLOSP

COMMOH IVMH1 / SATII)O),M5TO0)
LOSICAL 1W1 4mm1

C THIS 1S THE DEFAULT VERSION OF FUNMJ FOR MINDS.
C IT BELONGS TO THE NONLINEAR TEST PROGLEM NMUNE9
C WICH WILL SPECIFY PROBLEI NUMER IIII
C IN ORDER TO IDENTIFY ITSELF.
C
C FOR TEST PRPOSES, HE LOOK AT OERIVATIVE LEVEL
C AND SOMETIMES PRETEND THAT NE DONT KNOW THE FIRST
C THREE ELIEM OF THE GRADIENT.

IF ("PROD .III I GO TO "M
ZERO a 0.0)
"KNOIN 2 LDERIV .E9. 1 .M3. LDERIV .EQ. 3
HT aN/t

- P a zEml
C

SDO0 SO J a It NT
XCON a XINTJ)J
F a F * STWJ)ULOS(2ON3
o(J) a ZERO
IF (1KNW1 .0R. J .6T. 33 SI(TOJI STIJ)/XCON

* NCONINUE

C IT LOOKS LIKE SOM 01 IER P is Hr1.
~c900 HITIRfZPRINT9s, 00C

IF fIlSUI .T. *I UrITEIIUI, 9"I3
MIPOOR I,
1161 UJIm
RETRN

C
i3FORATI/))O SUiNIWVIE FIUSJ "AS NOT KE LOAMD. * I

C Do OP F'.IUJ FOR Knml

E m!

Ir

Pu'.bhm MANN!; eakISUiUU of the eomstraust tfiteouw

VAU11fU FLOaNI III,NMJWX,,NIATE.IS.*ZlMc~
INUCT? *EALUSA4-10)

c 5UL9 PaloSIS xINI.FMUIOMNACIZU1on

cous no lFILElE M.DIPEUI,IuIU
camU /MSIFF/ DIFINTI II.sIDuNV.WUWLVDIP

I.CUIIN flwU / .ATI i), look6
LOICAL MamUS

9K~~ C 1 15 M DEFAULT vEESIS OF pUwN MR mmU.
c IT KLWMS TM INS 6LDM TMS pEOSLE UWUE.
C 01101 MILL IECIFY FROM.U IlIM lit
C I of To IDNTIff ImtF.

C M TEST PUMMS NE LOW AT KEIVATW LEVEL
C AM =WUTWE MUM~h ThT 1 U T ES mmieu FIRST
C hT l ELEMT OF THE1 mADehT.

C
c

SUISS a LOEIY .99. a
off 41N
IF INSTATE .Mg. II US To in6

c
9. c rsu EMTi

me a 0."

a *6.25

A a IONE * 81)/ SM

STII 1) SaETA
w0 is J t , NTf

ATII a ATIJ-I)UUAC
STI STCJ-U)MEETA

STINT) 8 STINTI/IWE - DTAI

C NOML ShUT

16 U0 156t J a it wT
)OCAP a K J I
FJ % ATIJ)0 APUS
FIJI a FJ
IF ISOUH -OR- J .6T. 31 6(J a J I XKAP

IF INSTATE ALT. 2) RilUM

C W1INSIPlT, 3566 (jf. 4 a of NT)

C IT LOOKS LugE Me1 amp1 u I mm NEDM.

IF (hUSH .6T. of WMITE(I6 9m6)
"Oft a -1

~IOW FPWIAT I/, * IS RU MEULEN 111094. S V, P5.31
1565 F1AT4/ FINAL NIILINE*I FWCTIUI4 VALUES ** tIIES))
966 FgfIIT/ * -. SW 31411N FW=~ MAS NU KIN LOADS.'I

C M1 or FuSCU FOR PnwE

Do

8.4 Non flnearly Contrained OptMisMt~w tot

Problem MANNE; the SPECS Meu

BEGIN "ANNE10
MAXIMIZE
RONS 100
COMING too
ELEMENTS Ice
UPPER BOUN 100.6
OBJECTIVE x *NB

NONLINEAR CONSTRAINTS to
NONLINEAR JACCBIAN VARS It
NONLINEAR OBJECTIV VANS to

SMIARY FILE 9
SIJIIARY FREQUENCY I
MN BA3IS PILE 11

PROGLEM NIIER tilt
JACOBIAN SPANSE
MAJOR ITERATIONS a
IIOR ITERATIONS to

PENALTY PARAMIETER 0.1

HESSIAN DI"MNIGN IS
DERIVATIVE LEVEL 0
VERIFY GRADIENTS

ITERATIONS so
PRINT LEVEL (JFUSIB 06101

CYCLE LIMITI
CYCLE PRINT 2

END MHNEtS

Problem MANNE; the MIPS Mie

NMEI MNMEI@
NOMS

0 Hamel
6 "OHOsI
0 "DROSS6

*11014004
1 1014095

* I1I466
*11014007

6 "oe
* 01009
* 110161

L CAPOSE
L CAP003
L CAP004
L CAPOOS
L CAPO04
L CAP007
L CAPOOS,
L CAP009
L CAPOIS
L TUIN

COLLM~
KAPOI Hamel66 . CAPOGW 1.6
ICAPOOI CAPSO! -1.6
KAPO M10"466 .1 CAPOSI 1.6
KAP002 CAMS6 -1.6
KAP663 11004003 .1 CAPO63 I.6
KAP063 CAP0O* -1.6
KAP004 mwg@*4 . CAP90S 1.0
KAP004 CAP0S5 -1.6

* 4KAPOSS 11014665 .1 CAPOOS 1.6
KAPOSS CAPOOG -1.6
KAP006 11DROSS* .1 CAPOOSS 1.0
KAPOOG CAPOS? -1.0
NAP007 It1067 .1 CAPSO? 1.0
KAPOOT 1101466 -. 0 AOO .
KAPOSS CAP00 -1.6
KAP069 Mw@0 . CAP0O9 1.0
KAP009 CAPONS -1.0
KAPOIO "awls .1 CAPOtO 1.0
KAPOIS TIRNIW .63
cmmst0 "0M66t -1.6
C614613 "MOE6 -1.6
Comes 10DROSS -4.6
CUNOS* "Owes63 -1.6
C466, 1006 -1.0

CU4607 1101967 -1.6

weeN 11040169 -I.e
INSS 1101166 -I.*A~g -~
DVOol 0110116 -i.e CAPO63 -1.6
INS o 11014663 -1.6 CAPOSS -1.6
hIwoos "DROSS6 -1.6 CAPeS4 -1.0DWo" 11014004 -1.5 CAPOOS -1.6
D4V63* 104065 -1.1 CAP006 -1.6
IWSO? 1101467 -1.0 CAPOOS -1.6
Iwo" 010146 -1.6 CAP009 -1.S
XNVO9 1101009 -1.0 CAPOI# -1.0 i

MIOIS 11014019 -1.6 CAPOII -1.6

8.4 Nonfilnwry Constrained Optlnlme

Peblem MANNER- the MPS fle, continued

mul mais ZsmO

DAMIl ""4to 16.6 TEIWW 16.6

FX 55.361 KAPOSS 3.65
Wo SOUNDS KAPOOZ 3.65
1.0 901 KAP003 3.65
1.0 80116? KAPOOS 3.05

0101U"t KAPOOS 3.65
1O0110001 KAP006 3.05
1O0.01361 KAPOS? 3.65
1.0 35161 KAPOOS 3.65
LO030UN61 KAP069 3.65
.0 BOUNDS KAPOID 3.05

1.0 35.16 CUOSI0 I"5
WO 301 CONOSI .9

1.0 35.361 COMMSS .9

1.0 N01N61 COMOS .9
Lo 35161 CONDOOI .9
1.0 301161 CO097
.0 Bomll comic .9

Lo 35361f C0N60 .05
1.0 301361 CNOS .25
wo BOnNDs ztmsi .05
1o 301361 INOSE .05
1.0 301361 INVOSS .05
1.0 3Omni IVOSS .05
LO 35161 INVOOI .65

LO 0OU161 Ift669 .05
Lo0.01361 DIOS 0
tip 301361 INVOSS .112
UP 35.161 INVO09 .116

lPX INITIAL KAPOSE 3.1
PX INITIAL KAPOSS 3.
PX INITIAL KAPOSS 3.3
PX INITIAL KAPSO 3.4

-* X INITIAL KAP006 3.5
PX INITIAL KAPOS? 3.4
IX INITIAL KAPOSS 3.7
WX INITIAL1 KAPO 3.5
IX IZZAL KAP9IS 3.9

2NDATA

PolmMANNE; .tpvA from MINOS

all. is01

its. -OA

Its gam ni
1111110 *mm ISM VISSis

tat. 141a,31614I MC n

MU. vft110833 Flu? i~s
835.
M. nom ma~a fil
tn. mwAvaUM WON.irn. umAp, asTI MIT111
sit. low*S IS

in. sne a

1~31 0 SA US.
55221. rnw G-~.. ms

51i: 631PMT soS.
mei. nsa. i in ae

"I: CPua una a

am LIM. . Li Lw UMi mPAP. .

WoamInI amesmaag IS ws nSuS ... ? 0nag Co *MI.....IOmoae Flua .. w imAN Fu M P) .. I. favvmml sem
vuiew Fle.........tail Af P ... 085 5 41taC flwu Is a
P1111 Fu........aea u 0r amma Fum a

MumnLa... am Famm "Loume=.s. fees OMuse eli PaCM Iammti -i ... : ... Wet P.. "m Pm -I
pupil" m*mam.tia meum. asa * maw p wi.. oum ... 1.0-1OUm" ime ~van *WMI U1119 t-IFa.bfmt.. .00

*RB 0111111111...... sitm minemins *ulm . .0 oiniawi...t.....
WIM100 'aeew M Vang~ . I~M SM ~~ 111,61110 ... @NW NIPemu LU u IU

*901a meummic Ma UM *.. .. u

mmpo omama OMat eM ... '40" ... mow 1111089111146 goopon M" n 0 .. m .. em 111101

8.4 Nonlinearly Constrained Optimisatdon lag

Problem MANNE; output from MINOS, continued

"PS Flu

KI MOKPO - DO LIMIA G&RlIix 11RCTIU
V=a 001-9IxSTaIN IN SPICtIsm -Ca - bClay SHNY I tLmW t4
VOO1 106-IXIU1UNF 3W SPIU -- C59011 SMVV SINO IN LINE 63

69 Um

Too w w inN U s IZs

IOO5 MUAL WB. OF SUM IN HsPI LE I

OWNS SELECED

OOJCTI nowni fox, 0

ans anset

MATll STATISTICS

TOTAL MORL IVE Pix"e ag6i
111044 to 1: a

No U MRAKI ELEMENTS SO DNITY 9.033
meg IW EiJECTED cupu~s 9 szInse. isaesm

NoMEOW VsSALLAST $004PPSb Iwesa 3.w.M~eu~u~ ses

LOOT" OF igi-WHEx NAUI TOLE Elf
COLLISIONS OCRI TABLU LOblUP 9

NO PINITIAL BOUNDS PRCESSS 9

.. a ALLOW FOR IN W FAdE~s 16M

INITIAL @ASIS

wo PU= EST$ 7 OUT OF is CONTRAINT GRMISNII.

Com OPTION I mesm
FMS POIN 0 Fni iOLO I PAM Is. SI PIS 0

WP CONSTRAIN violIWNUU a IMS

FACTO IZ 1 11"A0 IYb' 0 I " T V 0.0em tza

NOeLIuuiR IS 11 SK ILimS SC mNGlY P.3so
cw sosu * "1t : e N "Mie Se 14:01491 e.g

IRAX S.0 IAXi 5.5 5891 1.300" 36511W 0.6
ITH, 0 -- P4SIS LI. AMS 1.016036W-SI

Ilk PHt Pp ISPT Sj.*4 .me9 -1145 STEP PIVOT L V NCO PI lowA t 0101 go SENm 0-CMe COW

fmmoba t"I 17 an OF as O"CT2V1W alm".

IN I -- PSASW~ U~aMamint.1R. YOUR a NJ so .6698907110000 AVRA ft a.661MWVaU

NO 1119

106 &Rxm~

Problm MANNE output from MINOS, continued

vmznmmm 0 inniw 111111111111 w sa inusMs.

urn ur iu sa~e To au-s a.ama

mm aija mwe 6.1111114 IN comam ismssmaimu

* .3555UU0U 1.39.0 6 * 0.07ssusm s.07uiainoa a
S LUUN5Io553.tg5 :M1-1 5.USW4.60emoima

, sammeeso am-s .*.spwrna sMssas-

1.1- leI niu us r is mm isa a.a
7r aiacus IsNw COL aI i-as mm a. um

in innm aosomu Ideals umase 111m a.

Melo maas amvs sm sum.t~o""

mama Iffaim l s1auna Ilani isa R *A11101111 5-5
go 1 910176h10111 11.11411-411 7.Ut ssissei aa aias-a

si Gs.~ i asas ws swa 4111 a1iee Ofs Vela sas m a

111.160-01s im 1m e e t Ism a mm0 i s te pe 7.11161

AN T sss Miaus m a ama-a aMN is as0-

mat a an in- m i ra 0 m 1 i a 1.111101 Imisues a

W9111111 SU 11 NtI"m a 9.4040tM a a 1.640 oa5
ft~ainmum OA a ma. ausaw I a 1.011111-1 ".aaa

swa11a1130 1 lawsm a *045-5 a 4DV .I13a ummmuma

~umm a. s Sam 9.10 ame 6. 5a.U 1111111 m w 0.1

wa -a1~-aS9111 silo of iae ia s 41 c10f MR I .aasseM s s i P ra's
M~~ sV-s sAA s0 1es-a~ OV, 001111 At.sssw 11111 Ms I VIM IM

miasma ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 r_ w-iiaa-iwau s 534 mNai5W

&4 NseJInwly COaataied Ope~mhsatioi.lo

Prosa MANNE4 output brom MINOS, continued

110113110 C1101111 i 6" I.519-41 . Sim-ee ERSU5
Nkuuam 1310111 M3U1 * I .e: - I a &as.5i m es
mam am iomma vuulzi a 1.55?gg-a 1 a 3.6310-e, NMaUMI

*.558691U-tS WS4 :1.VSSN4I-o 7.~Ut.9111361"

UMSt UU S5US-4 5:1S40 VWAI S5111W 3.SSSSUSSS

Um" I - OO 1.; m.4 0111 &.490. 011S111 9.SISUIq 3a~ .eiggaU
si n m s t " A s a mu e m s -a m 1 1a m e 1 . ? 8 9w 1 4 I M A ev 8E 1.6 5 8 1 6 -E S U S 3

9 4 0-1 4.s-es S0 41 4..151 S.S a 555 a gOSaI~ 59 1.671101,6m""gimst uum111Wm is 4. 040-m witsL a
65 SE-f 66 07 S 1.* . 5563SWm.SUI ~ .'C1
a 4 1 0 1.4"S * 0 Stin. e~ U S S 3.YSh-tb 6 We I 1 0 La= WIT
.9 6 1 g .ma 0 S *6ui =~ g s e 1 .670119010011 a m 7 1 0 ,ss nlmesn

11M. 10100 nS .553-O LULlS. I
Ill, 6 1 e - s 0*4 e 3Mie e.0 0 ns e e a..vmemnow so am v I # ~me -m i

1t *6 t S 0.0e-0 0 * * 1.4"a e.g e n e e g.owmissee~ I a 1 0 OS" n wTm
0011110f m a -tam-ag nat 10 tt III aM 9.1101 lll t 10 8 .3f

0111 4P RUME 1111 - 6PV 111011114 AT NO53W M - TW111 1 i6 11

slAm, Vm FWAS 111 PML614001 a3 0.0

'sm Clm IN MuIlapum a steas-.: mf 1 m.a641n-413 fmwUUSI

MOM~ ~ ~ ~ -111111 mW 00AOUI ma S.711" 1 13993 as1MI;Itlllm U:SWUUSa V-AM 61074 11007NML
VILo201-am1 a aewge-e aa

-0.0"90, .59"U1s-0 a a .' U6-0 .mmao6.71MIG"I 6."lem-mi 11a3101" 5 .1l4" 9.4663"o

106 8.Exaunpka

Problem MANNE; output fbom MINOS, coflUnued

11- OWN -OIV Pem

Us. V toatm SWU 110161111 m.1wwe3W

. 10ISiw S OFU otmouw .

$. v - n3Em t 0. WIF S ITS KL60

1*11. at "Mel it. ur411 10 C1111 "M-1 10. . urn so 4

CMBA ow #o"K e0106 i SlDE cum P4U town eznuugaas t

plsi Ispo see (OiU 01%1agia 0o MhU a toO ssm

NORM sle smal, cauewm.. VOW eos4* e14o.

Palo. "We"l Me p10011 it VUMMM I

fimm Puft o

oem ... MM.. "011 ... 11111"...~ Ism WTY .. t L. . 1111. VJmLa.iww J111?

51 nmiOS LL 6.0 6.0 0.0 AEM1.060 I
30 "mom &L. 6 0.6 0.m W -4.611141 a0
is $""$0 11. 0.0 9.1 6 E04.110116 3
to "won0 14 0.0 0.0 0.0 Is" -0.1111 6
is Holm0 LL 0.0 0.0 11.4 WN -0.1101 £
14I 006 II 0.0 0.0 0. own -0-6t" Is
1? 155W? $11 0.0 6.0 0 lam -0.510*5 1
10 15606 &L 0.0 0.0 4.4 #Am 4793S a

*391 00 teos 1.6 0.0 6.0 s." AE .06111 0

44 CA MS I 6.0 "we.61 .00 0 - U ~ a IGo C~~ "M :: Too I's; 1r "
PIS3 0A" Vs U.SM 1

so Tm" -10lee 0. .06000 10.000 to610 I

stm 111se im IleS . os. 'e.. eo..
w"" 5606o "a ..1116.0 Sos--. WY ki L31111.0 0.0006 loap 0 i

R~aee us 11.10114111g ww. o.,, o

11*500 m 0140.sm~w 110.,= ew11,..4 t
0am"?1 loo 3.016" 11-0,111 ,w.0., of

00 ONS~ 11 .62000 *00 .01 "see". to004 lI

LSL00 0 .60 '"M' S0.19. 990.000 .0 014*
tw10160 0 0.96M1 "I"60 Cole. $1,1.40111 0.6 a6

t? Gem?1 0 0.0166 0.601 G.""$ *0000 0.6 It
t ODOM 0 1.010 0. 0.91M 40000 0.0 0
so Cole" $a 1.09011 *..0 tnw we.~ 1.11

to a*0 t .0000 9.&0 e1."# OW.NS0 0.0 0
Is o1wn6 00 0068 .6 0.0000 400.0000 5.0 4%
nm ssosO 00 oel .6oo. 0w. 0.0 41

86 355600 00 0.000 ee *,Iwm 0".1100 0.0 0
00 P6080 110.010 .0 4.00600 f. 0.560 .06 00
tom 10911180 414000

" 9"00 1.8 .#"a .0.0 0.1.30.067

PMNOR40 CAU am sll& 0 1

mo m moow a

L .

8.5 Use of Subroutine MATOD 106

s.s Use of Subroutme MATHMI

The following example illustrates the construction or a sequence of problems, based on the Diet
problem of section 8.1. It assumes that the following cards have been added to the SPECS file:

CYCL.E LIMIT 3
CYCLE PRINT 3
CYCLE TOLERANCE 2.0
PHANTOM COLUMNS 1 (or more)
PHANTOM ELEMENTS S (or more)

1. Solution of the original problem constitutes cycle 1.
2. After cycle 1, MATMOD will be called twice with NCYCLE = 2 and 3 respectively, denoting the

beginning of cycles 2 and 3. The value of N will include the normal columns and the phantom
columns; in this case, N = 6 + 1 = 7. Likewise, NE includes normal and phantom elements;
in this case, = 24 + 3 =2 7.

3. For cycle 2, we alter the cost coefficient on the variable called CHICKEN. This happens to be
the second variable, but for illustrative purposes we use the MINOS subroutine M3MNEA to
search the list of column names to find the appropriate index. In this case, M3MAMZ will return
the value JCHICK = 2.

4. Similarly, we use M3NANE to search the list or row names to find the index for the objective
row, whose name is known to be COST. In this case, M31AVE will return the value JCOST =
11. Since rows are stored after the N columns, this means that the objective is row number
JCOST - N = 4. (As it happens, this value is already available in the COMON variable IOBJ.)

5. This example assumes that CHICKEN already had a nonzero cost coefficient, since it is not
possible to increase the number of entries ir, existing columns. If the cost coefficient was
previously zero, it would have to be entered as such in the MPS file, and the SPECS file
would have to set AIJ TOLERANCE a 0.0 to prevent zero coefficients from being rejected.

6, For cycle 3, we generate one new column by calling upon the MINOS subroutine MATCOL.
The PHANTOM COLUMNS and PHANTOM ELEMENTS keywords must define sufficient storage ror
this new column. (The estimates defined by the normal COLUMNS and ELEMENTS keywords
must also allow for the phantom columns and elements.)

7. For illustrative purposes, we make use or the specified CYCLE TOLERANCE and the value or
X(1) in the current solution, to decide whether to proceed with cycle 3.

8. After the call to MATCOL, the COMMON variable JNEI points to the new column. It allows us to
set a finite upper bound on the associated variable. If there had been insufficient storage, or
if COL(s) contained no significant elements, MATERR would have been increased from 0 to I.
Usually, this means that the sequence of cycles should be terminated (by sctting FINISH :

,,. .133.).

I.
1!

!I

I ... : " , .. .l

110 8. Examples

SUBIOU I E DITN NCYCLE, NPlOS. FINISN.
•~N He H, o 1 N1 HNKA, NS, NIICL,
* N~~A, NP 96. 9, BUA.MS, ML* A, HA, KA. SL, WN,

• ASCALE, HS. 101o ID0.
SX, PI.ZP NNCORE)

C
IX1PuCIT REAL(A-N,O-Z1
INTE6E110 HAINE), HSIIN
INTEGIR KAINKADI D1l M)6, lZ0IB)
ODUBLE PRECISION AINEP, ASCALIENSCL), BLISD). lUll

DOUBLE PRECISION X(14), PI(), Z(iGOE)
LOGICAL FINISH

C
C IlNDS COHNON BLOCK$ (TO E USED lUT NOT ALTERED).
C

cIHN /IFILE/ IREAD, PRINT *ISUHN
ChlON ULOSJ1 SINFONTO s INIMZ, NINF, 155J
COPIION ,CYCLOV CNVTOL,JNEMNIATRR .IWCT, H[EIOTIWWIWRIW

C
C LOCAL STORASE.
C

OOUDL1 PRECISION COLt IS 8 ,TO
INTEGIR CHICKI P CIMEK, COSTI, COST2
DATA CHICKS. CHICK /'CHIC' KEN '
taTA COST). COST I'COST', I

C THIS IS AN EXANPLE OF A US-IITTEN SUUIOTINE PATO#.
C WHICH DIFINES A SEQUEICE OF PROBLEMS BY PERF01 S NI TE[IML
C ODIFICATIONS TO THE DATA FOR THE DIET PROBLEM.
C
C MiNODS IS CALLED AT THE SEI[IHSD& OF EACH CYCLE EEPT THE FIRST.
C NCYCLE MILL TAKE THE VALUES t, 3, ... UP TO THE CYCLE LlINT.

C
IF INCYCLE .ST. a) 0 TO no

C
C CYCLE 2. ALTER THE COST ON CHICKEN.

C
C
C USE THE 1040 S UBhO1TIHE HNIANE TO FIND THE COLUWB INDEX
C FOR THE VANIALE NAME CHICKEN. COLU NA ES ARE CONTAINED
C IN THE FIRST N LOCATIONS OF 111 AID ot.
C
C CERTAIN QUNTITIES HUST BE I4TIALIZEO BEFORE THE CALL.
C THE FIRST THEE SUPPRES Eo MESSAGES. THE NEXT THREE
C DEFINE THE RAIN OP NAMES TO SE SEARCHED AN4 WHERE TO START.
C "ICARD 0

NAXNBS a
J) a) I

JINMIK aJI
CALL NI3NIE(HOP I01 IDI, CHICK, CHICKS,
,0 • NCAID.P NOTFISP RAXNSS, J. JtP JHMAK, JCNICK I
IF IJCNICK EQ. O) O0 TO 90

AC

II

&5 Um. of Subroutine KAThOD11

C WO FID IN 211 OF TME DJCTIWE M, W06 ID 1111 COOT.
c -l HUMn MRt $101 III mu LAST N LOCATISI OP 131 AMS lot.
C

it

CALL MUM(Ns. 1019 tug. USTI, CaSTE,
0 Nclam. wOTWBm nAMus, J19 a.o .uW9 JCsTI
IF (icon .13. a) a TO W0

C
C IH N M UUJ IS HOM JCOBT - M. I FACT, 11615 VALUE mis MAW
C UM OBAINED DIXECTLY FRSM THE 5NMO VMZMIE 109j.
C

11=4T *JEOT -
IF (ICOST .141. ZBJI 601TO W

C
C NOR NE DIP ORO1 THE 19ATODX DATA SIICIU in 71 WM13 TME
C COIT COEFFICIENT U DN THE MATRIX COLUMN ASSCIATED WITH1 C6HIC1EN.
C

KS a KA(,1101)
RE a jAIJCI~I() - I
10 226 K a KS, Kt

IF (66A(KI .94. ICOST) 1 8 To tW

C
C HE F01111 IT. I' SUPPOSE 0110156 89LLORS AT A WMIAS RATE.
C

00 OM a A(K)
AIR) a 10.0
IF (311361 .61. Of WI(INIU tOO) OLDC. AIK)

C
C - - ---- ------------

C CYCLE 3. UNWATE A NW COLUM61.
C
C FOR ILLUSTRATIVE RUFOES IIET UP ml NIN pnULEN ONLT V
C ml SOUTION To ml OsM8ff OKnn COTAUS NU OATMEAL THAN1

cm IFOIFIES CYCLE TOmmclE. w mAFUN To am THAT aAvmlL
C is mlt FIST VDmLRu, X1 11.
C --- - - -e--- - ----

3" IF ("CYCLE .41T. 316so To "s
IF I mAU .or. 031 lam(1UmImeWI XIIII
IFtxlll .1.1.01 SWTO60TO 9W
COl a 500.
COL~ll a 30.G
GOLU31 a 0.0
COL01) a 5.1
Em61 a 1.98-0
CALL MTCDU He No RS.U. lMKA.

a At NA* Rh.o DL. We1 COL. 376 I
C
C 113co~o UIN il VILEMTE is nITALuUI amL To ED.
C 631061L MILL KUNIU IT Dl mIl EVENT OF 110110.
C NATWL ALS MSUWU .JN To PON. To 116 mU CoIWS.
C a =I J111113 isW am AUSCIATEl mImLI mS UPPER Usn.
c

IF lo"fh .1. Ofso To "I

C
C
c rmumu cia.. UDI veau CONITIOS.

ON P36WN a TW11l.

C
MW4 , 6" CUT OP S~RIW WUUS P3115% P4.18

DOW FlN~IS6 I Of CIUREN Now18 OF HAAL~ Ie U'. O
9 N s i

END_______

112 8. examples

* 6.6 Things to Revnembr

Use the following space to record the fruits of your experience. They may be useful reminders
the next time you come to run MINOS. (We suggest you use a pencil.)

mob

Refermcu 113

REFERENCES

Bartels, R. H. (1971). A stabilization of the simplex method, Num. Math. 16, pp. 414-434.

Bartels, R. H. and Golub, G. H. (1969). The simplex method of linear programming using the
LU decomposition, Comm. ACM 12, pp. 266-268.

Bjfrck, I. and Duff, I. S. (1980). A direct method for the solution of sparse linear least squares
problems, Linear Algebra and its Applics. 34, pp. 43-67.

Bracken, J. and McCormick, G. P. (1968). Selected Applications of Nonlinear Programming,
John Wiley and Sons, New York and Toronto.

Chvital, V. (1983). Linear Programming, W. H. Freeman and Company, New York and San
Francisco.

Dantsig, G. B. (1963). Linear Programming and Extensions, Princeton University Press, Prince-
ton, New Jersey.

Davidon, W. C. (1059). Variable metric methods for minimization, A. E. C. Res. and Develop.
Report ANL-5990, Argonne National Laboratory, Argonne, Illinohs

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press,
London.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1979). Two step-length algorithms
for numerical optimization, Report SOL 79-25, Department of Operations Research, Stanford
University.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984). LUSOL: A package for
updating a sparse L factorization (to appear).

Himmelblau, D. M. (1972). Applied Nonlinear Programming, McGraw-Hill.

Lawson, C. L., Hanson, R. J., Kincaid, D. R. and Krogh, F. T. (1979). Basic Linear Algebra Sub-
programs for Fortran usage, ACM Trans. Math. Software 5, pp. 308-323 and (Algorithm)
324-326.

Manne, A. S. (1977). ETA-MACRO: A Model or Energy-Economy Interactions, in C. J. Hitch

(ad.), Modeling Ener--economy Iiteractions, Resources for the Future, Washington, D.C.
Also appears a pp. 205-233 in R. Pindyck (ed.), Advances in the Economics of Energy
and Rewuoe@, Vol. 2: The Production and Pricing of Energy Resources, JAI Press, Inc.,
Greenwich, Connecticut, 1979.

Manne, A. S. (179). Private communication.

Murtagh, B. A. and Saunders, M. A. (1978). Large-scale linearly constrained optimization, Math.
Prog. 14, pp. 41-72.

Murtagh, B. A. and Saunders, M. A. (1982). A projected Lagrangian algorithm and its implemen-
tation for sparue nonlinear constraints, Math. Prog. Study 16, Algorithms for Constrained
Minimization of Smooth Nonlinear Functions, pp. 84-117.

Preckel, P. V. (1960). Modules for use with MINOS/AUGMENTED in solving sequences of
mathematical programs, Report SOL 80-15, Department of Operations Research, Stanford

i. University.

Li.

is.

114 References

Reid, J. K. (1976). Fortran subroutines for handling sparse linear programming bases, Report
R8269, Atomic Energy Research Establishment, Harwell, England.

Reid, J. K. (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases, Math. Prog. 24, pp. 55-69.

Robinson, S. M. (1972). A quadratically convergent algorithm for general nonlinear programming
problems, Math. Prog. 3, pp. 145-156.

Rosen, J. B. and Kreuser, J. (1972). A gradient projection algorithm for nonlinear constraints,
in Numerical Methods for Non-Linear Optimisation (F. A. Lootsma, ed.), pp. 297-300,
Academic Press, London and New York.

Rosenbrock, 11. H. (1960). An automatic method for finding the greatest or least value of a
function, Computer J. 8, pp. 175-184.

Saunders, M. A. (1976). A fast, stable implementation of the simplex method using Bartels-Golub
updating, in Sparse Matrix Computations (J. R. Bunch and D. J. Rose, eds.), pp. 213-226,
Academic Press, New York.

Wolfe, P. (1962). The reduced-gradient method, unpublished manuscript, RAND Corporation.

Wright, M. H. (1976). Numerical methods for nonlinearly constrained optimization, Ph..D. thesis,
Stanford University.

,4

II

I

Index 115

INDEX D, in printed solution, 70, 72
Damped Newton method, 23
DAMPING PARAMETER, 23-24

A, in printed solution, 70, 72 Dantsig, G. B., i, ii, I
Accuracy, for satisfying linear constraints, 26, 67 Data, input sequence, 7

for satisfying nonlinear constraints, 35 Davidon, W. C., 1, 2
for solving linearized subproblems, 22 DEBUG LEVEL, 24
or computed functions, 27, 66-67 Default values for SPECS Me keywords, 15-20
of linesearch procedure, 28-29 Degenerate variable, 70

AIJ TOLERANCE, 21 DEMAND, in basis factorization statistics, 61
Alternative optimum, 70 Dense Jacobian matrix, 44, 94, 96
Augmented Lagrangian, 3-4, 59 DENSITY, in basis factorization statistics, 61

DERIVATIVE LEVEL, 9-12, 24-25
DIFFERENCE INTERVAL, 25

B, Buis matrix, 2-3, 34 Difference approximation to derivatives,
BACKUP BASIS FILE, 21, 40-1 see missing gradients
Bartels, R. H., ii, 2 DJ, in iteration log, 58, 60
Basic variables, 2 Dual simplex method, I
BASIS files, 49-46 Dual variables, 10, 32, 64, 70, 71, 72
Basis map, 49-51, 68-69 DUMP file, 25, 53-54
Basis matrix, B, 2-3, 34
Bounds, 1-5, 46-48

specification of default values, 29, 38 ELEMENTS, estimate of nonerce In A, 25

BMAX, in basis factorization statistics, 2 ELEMS, in basis factorization statistics, 61

BOUNDS section of MPS file, 45-48 EMERGENCY VERIFY LEVEL, see VERIFY options

BOUNDS keyword, specifying name of bound set, 21 End-of-File conditionwhen reading SPECS fil,

-BS, in iteration log, 568 63, s
ENDRUN message, 63
Equality constraints, 42

CALCFG, subroutine, I Error checks, on computed gradients, 36-37,
CALCON, subroutine, I 38-39, 66
CENTRAL DIFFERENCE INTER VAL, 22 on satisfying Az + a = 0, 22, 67
CHECK FREQUENCY, 22 Error messages, 34, 63-69
COEFFICIENTS, 22 during input of MPS file, 26
Cold start, see CRASH procedure ETAMACRO, test problem, 75, 84, 92
Column ordering, implicit, 31, 44 Example problems, 85-108
Column variables, 1, 71 Exit conditions, 63-69
COLUMNS section, of' MPS file, 31, 43-44

of printed solution, 71-72 F, parameter of FUNOBJ, 10, IS
COLUMNS, estimate of number of variables, 22 F(*), parameter of FUNCON, 11, 12
Comment cards, in MPS file, 41-48 F(z), see nonlinear objective function

in SPECS file, 17-18 f(z), see nonlinear constraint functions
COMMON blocks, 7, 15-16, 63, 78, 79 Factorization of basis matrix, 26, 29, 33, 58-59,

reserved, 78 61-62
Compatibility with MINOS 4.0, 51 FACTORIZATION FREQUENCY, 26
COMPLETION options, 22 FACTORIZE, in basis factorization statistics, 61
Composite objective technique, 40 FEASIBILITY TOLERANCE, 26, 47, 64
COMPRSSNS, in basis factorization statistic, 61 Feasible points, definition, 3
Conjugate-gradient method, i evaluation of functions at, 3, 26, 47
Constant Jacobian elements, 12, 44 Files, 6- 7, 80, 82, 85
CONV, in iteration log, 60 Formulation of problems, 5, 6
Convergence, likelihood of, 4, 23-24, 30 Fortran source files for MINOS, 75-81

rate o, 3, 27, 34 Fortran 66 versus Fortran 77, 75
tolerances, see FEASIBILITY TOLERANCE Free rows, 42

S OPTIMALITY TOLERANCE and Free variables, 46
ROW TOLERANCE; Full completion (accurate solution of subproblems),
also see CYCLE TOLERANC 22

CRASH procedure, for selecting initial basi, FUNCON, subroutine, 7, 8
22-23, 47 consistency with MPS le, 44

CRASH options, 22-23, 47 examples, 96, 100
Cycle facilities (for sequences of problems), 8, specifiration, 11-12

13-1, 23, 56, 109-111 FUNCTION PRECISION, 27, 67
- CYCLE options, see cycle facilities FUNOBJ, subroutine, 7, 8

Cycling (endless Iterations), U consistency with MPS Ille, 44

L

n _____I___ _II_____

116 Mios 50 User's Guide

examples, 90, 95, Ll problem, 93
specification, -t0 Xk, see Lagrange multipliers

L, in iteration log, 58
LA0 basis-handling package, i
Lagrange multipliers, X1,, i, 4, 13, 14, 71

G(*), parameter of FUNOBJ, 10 printing, 34
G (*), parameter of FUNCON, 11-12, 44 initial estimate, Xo, 4
Gill, P. E., U, 2, 3 Lagrangian, 4
Global optimum, 6, 64 LAGRANGIAN option (YES or N0), 4, 28
Golub, G. H., 11, 2 Least squares, linear, 92-93
GROWH, in basis factorisation statistics, 62 LENL, in basis factorisation statistics, 61

LENU, in basis factorization statist cs, OI
LINEAR, in basis factorisation statistics, 61
Linear approximation to nonlinear constrantsd,

Header cards in MPS file, 41 see linearised constraints
HESSIAN DIMENSION, 21, 27 Linear constraints, 1-5, 15
Hessian matrix, 3 Linear programming, 1, 9
HMOD, in iteration log, 53 example, 86-87
H-CONDN, in Iteration log, 0 test problem, see ETAMACRO
HS(*), state vector, 14, 50-51, if Linearised constraints, 4, 70

Linearly constrained optimization, 2-2
examples, 90-93

Line search, 3
I, n in ted solution, 71, 7 accuracy of, 29
INCREASEK, in basis factorization statistics, 42 failure of, 66-67
Inequality constraints, 42 LINESEARCH DEBUG, 2e
INFEAS, in basis factorisatlon statistics, 61 LINESEARCH TOLERANCE, 28-29

Linesearch procedures, ii, 28-29, 3Infeasibleitle 2 6, 4 -0 Linking subroutines to NMOS, 66

bOInfeasible problems, 2, 645 LIST LIMIT, for printing MPS file, 23
Infeasible subproblems, 64-8 LMAX, in basis factorisation statistics, 62
Infinite bounds, 46 LOAD file, 29, 53-54

SInitial point, xo, 3, 4, 5, 23, 47-48 LOG FREQUENCY, 29, 34
INITIAL bounds et in hMPS Ws, 47-48 Local optimum, 5, 64
Input to MINOS, 7 Logical variables (slacks), 1

examples of, 8-10 Lower bounds, see bounds 1
INSERT file, 27, 52-53, 54 LOWER BOUND (default lower bound on all variables),29
Installing MINOS, 75-61, U w
IntalgerK p MINO,--,6 I factorisation of basis matrix, i-ii, 2, 3, 61, 68
intger programmcin, i see factorization of basi matrix
Internal modifcations to problem, -e cycle I S LU FACTOR TOLERANCE, 30, 62

Invert procedure, see factorisatlon of basis matrix LU UPDATE TOLERANCE, 30
Iteration log, 29, 51-0 LUSOL basis-handling package, i-il, 2

example, 105-100
ITERATIONS LIMIT, 28 m - m + m2 (number of nonlinear and linear
ITN, in iteration lag 87 constraints), 1, 6

mt (number of nonlinear constraints), 1, 6, 16
ms (number of linear constraints), 1, 6, 16 I

Jacobian matrix, J(s, definition,$ Machine-dependent subroutines, 75, 7941
somputatin , -1 oMachine precision, e, 18, 81

computation of, ll-l Main program, 79, 32
constant coeflclents, 12, 44 Major iteration, 4 I
position within constraint atrix A, 4, 44 MAJOR ITERATIONS limit, 30
printIng 24 Manne, A. S., ii, 83, 84
sparsity pattern, 12, 44 MANNE, test problem, 75, 76, 80, 3, 96-10

JACOBIN option (DENS1 or SPAIBK) 28, 44 Markowits, ordering for spane LU factorization,
ii, 2, 61

MAITCOL, subroutine, 14, 23
specification, 15

Keywords In SPECS file, 17 Mathematical programming systems, i, 34, 41, 48,
checklist and default values, 1-0 52-54
defnitions, 21-40 MATMOD, subroutine, 7, 8, 23, 83

Kreuse, J., I example, 109-111

Index 117

specification, 13-14 Objective function (P(z) + e~s +d),
Matrix coellicients, Ignoring small values, 21, 109 Objective row in MIPS file (defining z § g),4

number of, 2 OBJECTIVE, in basis factorization statistics, 61
Matrix data structure, 15 OBJECTIVE, in iteration log, 50
Minor iteration, 2 OBJECTIVE keyword, specifying name of Dner
MINOR ITERATIONS Uint, 30 objective, 2

MINO, scOLD BASIS file, 21, 32, 49-51
MEITO, acny iscizainsaitc,$ Optimal solutions, local and global, 5, 03-64

MERIT, iexasise facorblo, stais-s7 6 OPTIMALITY TOLERANCE, 32, g4, 67, 11
MHW4, exmpleprobem, 447Ordering of constraints and variables, 31, 42, 44

Missing gradients, 1, 9, 24-25 Output from MINOS, 57-74,
MODE, parameter of FUNOBJ and FUNCON, 9-10, 11, see also LOG FREQUENCY, PRINT LEVE,

12, 66 SUMMARY FREQUENCY
MIPS file, 6, 7, 30, 41-48, W3

examples, 87, 69, 91, 97, 103I03 P4 ordering for sparse LU factorisatlon, I
restrictions and extensions, 48 Parameters, fi, 7

MULTIPLE PRICE option, 21 Parametric algorithms, i
Murray, W., Hl, 2, 3 Partial completion, 22
Murtagh, B. A., 2, 3 Partial pricing, 33, 57-158

Penalty parameter, p, 4, 23, 25
PENALTY PARAMTER, 4, 33

ns -w psi + gi (number of nonlinear and linear PH (Phase), in iteration log, 57-58
varabls, xcldin @lck*, 1 6PHANTOM COLUMNS and ELEMENT, a, is, 2
varible, ecluing lacs),1,6Piece-wise smooth functions, 43

-max(%',, a,") (number of nonlinear variables,), PILOT energy-economic modal, N
1, 6,16,37 PIVOT, in iteration log, W8

, (number of nonlinear objective variabls), 31 PIVOT TOLERANCE, 34,u5, ey
n~(number of nonlinear Jacobian variables), 31 PP, in iteration log. 57

n2 (number of linear variable., W), 1 Preckel, P. V., II
N, matrix associated with nonbasic varlables. 2 PRICE operation, 57
N, in printed solution, 71, 72 Primal simplex method, see smplex method
NAME card In NIPS Me., 41 PRINT file, 6-7,36
UCON, in iteration leg, 59 PRINT LEVEL opt~ons, 24
NCP, in iteration log, 59 Problem foram solved by M]fNOS, 1

NINF initertio log 59Problem formulation, "-
NINF initeatio lo, HPROBLEM NUMBER, 10, 1s, 34

NJAC, parameter of FUNCON, 11, 12, 16 PUNCH fie, 35,5U,564
? WBASIS fie, 21, 31, 41

NOBW, in iteration log, 59 Quadratic programming, II
Niyfunctions, 1, 27, 66-47 example, go-Il

Nonbasic variables, 2 Quasi-Newton method, 1, 2, 3, 6, 27, 59410
Nonlinear constraint functions, J(x), 1, 3-4, 7, 11-12

Noninar cosri3s4,~ R, triangular matrix for approximation toNonlnearconsraits, , 3-, 5reduced Hessian, 3,.6, 27, 59-60
Nonlinear equatioas, 23-24 RADIUS OF CONVERGENCE,325
Nonlinear Jacobian variables, 31, 44 Ranges on general constraints, 1,45-46
Nonlinear objective function, P(s). 1, 223, 7, 9410 RANGES section of NIPS file, 45-46
Nonlinear objective variables, 21, 44 RANGES keyword, specifying name of range set, 25
Nonlinear variables, 1, 4, 44 Ranging procedures, i

printing, 34 READ file, 6-7
NONLINEA, In basis factorisation statistics, 61 Record length of fies, 6-7
NONLINEAR CONSTRAINTS and VARIADLIS, 21 Reduced gradient (vector), 3, 32,237,58, 72
Nonlinearly constrained optimisation, 3-4 Reduced-gradient algorithm, 2, 4, U8-0

examples, 14-106 Reduced Hessian (matrix), 13, 59-0
NOon, In iteration leg, 5 Reid, 71K,1.U

NPRO, pramter f FNOB, FNCONandMATOD, Restarting previous runs, 40, 5546,
N 1O0prmtr fFNBFNCNadMTU Restrictions, in NIPS format, 48

on problem characteristics, &-6183, in Iteration log, 59 Rewinding file, I
NSTATE, parameter of FUNOBJ and FUNCON, t0 RO, in Iteration log, 56
NWCORE, parameter of FUNODJ, FUNCON and MATUOD, RHS section of NIPS Ms, 45

10,40,79 11113 keyword, specifying nmem of right-hand ads,% 35

us Mine 5.0 User's Guide

Right-hand side, 1, 45 SUPPRESS PARAMETERS option, 36
Robinson, S. W. i, 3 System information, "S, 15-16, 63, 7542
Rosen, J. B., I
ROW CHECK, mnunac in PRIT Me Tast problems, 75, 76, 83-M, 85-92, 4-106

see CHECK FREQUENCY,.2 TOO MANY ITERATIONS, exit condktion, 6
ROW TOLERANCE, 22, 26,25 rnfrain fvrals
ROWS section, of MP~S M e 'fasfraio f alble

of printed solution, 70-71
ROWS, estimate of number of general eamtralats, U, ink iteration log, 56

35 UMAX, in basis factorisation statistics, U3
UN, in basis factorization statistics, U

., vcto ofslak ~ ~ ~Unbounded problems, 38, 65
a, vctorof lackvarable, me slck arlolasUnconstrained optimisation, quampisW4

a, number of superbsic vriabls, 1, 5 Upper bounds, aee bounds
S, matrix associated with superbasic Variables, 2UPPER BOUND (default upper bound on sll varlables),
Saunders, M. A., 1, 2, 3 3
SAVE FREQUENCY, 21, 36 3
Saving basis Mlee, 21, 36, 65VEIYotosfrcekngadns,2
+SBS. -538, in Iteration log, 58VRF pin o cskn rdet,3
SCALE options, 36
Scaling of data and variables, 5, 35-36 Warm start, 41-5
SCRATCH file, $47 WATFIV compiler, 11,76
Search direction, 3 WEAPON, test problem, 75, U
Sensitivity analysis, I WEIGHT ON LINEAR OBJECTIVE 40
Separable functions, 5 Wolfe, P., 1, 2
Sequence of problems, 7, 8, 13-15 Workspace (storaget requlremeat.), 549, 10, 40, 56,
Simplex method, 1-2, 57 68, 69, 79, so0
SINP, in iteration log, 56 WORKSPACE parameters in SPECS ie 40, U
Singular basis 62,6N Wright, M4. H., i1, 2, 3,694
Singularities in nonlinear flanctioas, 5, 36, 30 Wylbur text editor, U
Slack variables, 1, 15, 36, 70-11
SLACKS, in basis factorization statIcs, 61 x, nonlinear variables, 1, 4
Smooth functions, 1, 5 so, me initial point
Solution output, 70-72 sa, 4

example, 106 pitn,3
SOLUTION Mie, 6-?, 36, 72 p~tn,3
SOLUTION options, 2611417 V nwvrals
Source filies (MINOS Fortran code), 75-1vlnaarals
Sparse Jacobian matrix, 4, 44
Sparse constraint matrix, 4, 15 X. null-space operator, a
SPECS file, 64, 17-40 Z. workspace array, on workspece

checklist and default values, 18430
examples, 86, 88, 01, 32, 37, 101
format, 17-15
keywords, 21-40

Spikes, I
Standard form for problemns, 1
START and STOP gradient verifeatloaq 3?
State vector, H8(*), 14, 51, W3
STEP, In iteration log, 56
Storage allocation and/or rsqulressms,

so workspae
Structural variables, 1
Subproblem, deflitklo, 4
Subroutine hierarchy, U
Subroutine nanses, reered w 77
Subroutines, required from mar, 7,60SUBSPACE TOLERANE, ?,
SUMMARY fie, 6-7, 36,73-14
SUMMARY FREQUENCY, 38
Superbasic variables, 2, 6, 13, U
SUPERBASIC8 LIMIT, 27, U
Suppression of output, 34,3 U

-- w:

UNCLASSIFIED
RECURITV CLASIFICATION OF VON$ Ph"bNI =W. e-*-________________

RPM DOCAMATM M Sur~ O PLThO 70
VREOTNUME OWY ACCEUWS iii RECIVICAY1 CATLOGN Em

SOL- 83-20 rA1 -1 _5 - .)__________

4. TILE (M4 "1110 L TVPE OF REPORT & PERIOD COVERED

MINOS 5.0 USER'S GIDE Technical Report
6- PlERFORNO 0116. REPORT NMB~ER

7AuTwOR(s) IL CONTRACT On R ANT RuUE

Bruce A. MURTAGH and Michael A. SAUNDERS N00014-75-C-0267
DAAG29-81 -K-0156

9. PERFORMING ORGANIZATION MA11E AMD 0DRSS. P~ANJ.EMN.P JECT. TASK
Department of Operations Research - SOL ALDm.UI UMR

Stanford University MR-047-143
Stanford, CA 94305

I I. CONTROLLING OFFICE NAME AND ADDRS St. REPORT DATS
Office of Naval Research - Dept. of the Navy December 1983
800 N. Quincy Street 1& 101118611 OF PAGES
Arlington, VA 22217 118

14. MONITORING AGENUCY NAME A ADDESS(D iditWMI AOM Camtd OW..) IS. SECURITY CLASS. (of IaO nowt)e

U.S. Army Research Office UCAS !E
P.O. Box 12211 UNCLASSIFIED________

Research Triangle Park, NC 27709 IS% kI.CkATOIWNRDO

IS. OISTRIGUTION STATEMENT (of $Me Atepart

This document has been approved for public release and sale;
its distribution is unlimited.

f17. DISTRIOUTSON STATEMENT (.t. wefm* ONIVOfd SNM 2ea. SN, t a m RMWO

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (C.Ubu. in m "Vrs 014 ".... 608uae an p 11116-
AUGM'ENTED LAGRAt4GIAN NONLINEAR CONSTRAINTS REDUCED-GRADIENT METHOD
FORTRAN CODE NONLINEAR PROGRAM4MING SIMPLEX METHOD
LARGE-SCALE OPTIMIZATION OPTIMIZATION SPARSE MATRIX
LINEAR CONSTRAINTS PROJECTED LAGRANGIAN METHOD
LINEAR PROGRAMMING QUASI-NEWTON METHOD
S& AWSTRACT (Cintbu ON #uOi 1D~ N m00e0ev Md M11110 AV WO 11114

7 SEE ATTA0HED

p~ ~ ~~~A am"* ~ ~ 3 EIINof, I NOV 66 IS OUSUEqTE PTI AN UDe

6SCURITY CLASSIFICATION OF TII PA63411b DNS E !

S01 83-20: MINOS 5.0 USER'S GUIDE, by Bruce A. Nirtagh and Michael A.

Saunders

MINOS Is a large-scale optimization system, for the solution of sparse
linear and nonlinear programs. The objective function and constraints may

be linear or nonlinear, or a mixture of both. The nonlinear functions must

be smooth.

Stable numerical methods are employed throughout. Features include a

new basis package (for maintaining sparse LU factors of the basis matrix),

automatic scaling of linear constraints, and automatic estimation of some

or all gradients. Upper and lower bounds on the variables are handled

efficiently. File formats for constraint and basis data are compatible
with the industry MPS format.

The source code Is suitable for machines with a Fortran 66 or 77

compiler and at least 500K bytes of storage.

* I

IHSECURSTY CLAUSiPICAYIOl *F' YM**e P~AOU4¢) Eam.

