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PREFACE

Since the middic of 1980, approximately 150 academic and research institutions around the
world have installed MINOS/AUGMENTUED, the predecessor of the present system. About 30
further installations exist in private industry. With enquiries continuing to arrive almost daily, the
need for a combined lincar and nonlinear programming system is apparent in both environments.
To date, many usecrs have been able Lo devclop substantial nonlinear models and have come to
be [airly confident that the Optimal Solution message actually means what it says. Certainly,
other less joyful exit messages will often have greeted cager eyes. These serve to emphasize that
model building remains an art, and that nonlinear programs can be arbitrarily difficult to solve.
Nevertheless, the success rate has been high, and the positive response from users with diverse
: applications has inspired us to pursue further development.
1 ' MINOS 5.0 is the resuit of prolonged refincments to the same basic algorithms that were in
MINOS/AUGMENTED:

o the simplex method (Dantzig, 1947, 1963),

e a quasi-Newton method (very many authors from Davidon, 1959, onward),
e the reduced-gradient method (Wolfe, 1962), and

¢ a projected Lagrangian mcthod (Robinson, 1972; Rosen and Kreuser, 1972).

From numecrous potential options, it has been possible to develop these particular algorithms into
a relatively harmonious whole. The resulting system permits the solution of both small and large
j problems in the four main arcas of smooth optimization:

e linear programming,

o unconstrained optimization,

o linearly constrained optimization, and
¢ nonlinearly constrained optimization.

‘ In rare cases, the quasi-Newlon method may require excessive storage. We have chosen not to
] provide a nonlinecar conjugate-gradient method, or a truncated linear conjugate-gradient method,
for this situation. Instead, we retain the quasi-Newton method throughout, restricting il to certain

subspaces where necessary. (The strategy for altering the subspaces remains experimental.)

We regret that other obvious algorithms (such as integer programming, piece-wise smooth
oplimization, the dual simplex method) are still not available. Nor are ranging procedures or
parametric algorithms. Sensitivity analysis is still confined Lo the usual interprelation of Lagrange
multipliers.

As before, MINOS 5.0 is a stand-alone system that is inlended for usc alongside commercial
mathematical programming systems whenever such facilitics are available. The systems should
complement cach other.

To users of MINOS/AUGMENTED, the most apparent extensions are a acaling option (for
linear constraints and variables only), and the ability to cstimate some or all gradients numerically,
if they are not computed by the user. On a more mundanc level, the names of the user subroutines
for computing nonlinearities have been changed from CALCFG and CALCON Lo FUNOBJ and FUNCON,
and two new paramcters allow access to Lhe workspace used by MINOS,

Internally, onc of the major improvements has been the development of a new basis-handling
' . package, which forms the foundation of LUSOL (Gill, ct al., 1984), a sct of routines for computing
, and updaling a sparse /1) lactorisation. This package draws much (rom the work of Reid (19786,
' 1982). It replaces the P4-based procedurcs in MINOS/AUGMENTED (Saunders, 1976) and is
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Preface

substantially more cfficient on problems whose basis matrices are not close to trinngular. As
before, column updates are performed by the method of Bartels and Golub (1969, 1971), but the
implementation is more cfficient and there is no scvere degradation arising from large numbers
of “spikes”. We venture to say that LUSOL is the first truly stable basis package that has been
implemented for production use.

A Turther vital improvement has been the devclopment of two new linescarch procedures
(Gill, et al., 1979) for finding a step length with and without the aid of derivatives. In particular
they cater for function values that are somewhat “noisy”—-a common practical circumstance.

From a softwarc engineering viewpoint, the source code has been restructured to case the
problemns of maintenance and future development. MINOS still stands for Modular In-core
Nonlincar Optimization System, and we have done our best to respect the implications of the
“M”. Nevertheless, MINOS 5.0 remains a parameter-driven system. It is a speeding train on a
railroad that has parallel tracks and many switches but few closed circuits. Its various modules
cannot be called upon in an arbitrary order. In fact, there arc 80 parameters that can be set if
necessary —these are the switching points along the railroad. Fortunately, only a handful need
be set for any particular application. In most cases, the default values are appropriate for large
and smal} problems alike.

For interactive users, a new feature is the SUMMARY file, which provides at the terminal
a briel commentary on the progress of a run. Unflortunately, a two-way conversation is not
possible. The only input engendered by this leature is an occasional dive for the Break key to
abort an errant run. While rarely called upon, such a facility can be crucial to the security of
one's computer funds.

Throughout the development of MINOS, we have received a great deal of assistance from
many kind people. Most especially, our thanks go to Philip Gill, Walter Murray and Margaret
Wright, whose knowledge and advice bave made much of this work possible. They are largely
responsible for the linescarch procedures noted above (which are as vital to nonlinear optimization
as basis factors are to linear programming), and they are authoritics on all of the algorithms
employed within MINOS. Their paticnce has been called upon continually as other important
work at SOL cither languished or fell unfairly on their shoulders.

Further to basis factors, we acknowledge the pioncering work of John Reid in implementing
the Markowitz-based LU factorization and the Bartels-Golub update. The LUSOL procedures in
MINOS 5.0 owe much to the ingenuity embodied in his LAOS package.

Users have naturally provided an essential guiding influence. In sotne cases they are algorithm
developers themselves. At home, we have had constant encouragement from George Dantzig and
the benefit of his modeling activity within SOL, notably on the cnergy-cconomic model PILOT.
We thank him warmly for bringing the Systems Oplimizatlion Laboratory into cxistence. We also
thank Patrick McAllister, John Stone and Wesley Winkler for Lhe feedback Lhey have provided by
running various versions of MINOS during their work on PILOT. (We note that PILOT has grown
to 1500 constraints and 4000 variables, and now has a quadratic objective. From our perspective,
it is a nontrivial test problem!) Likewise, Alan Manne has provided encouragement and assistance
from the beginning. T'wo of his nonlincar economic models have been invaluable as test problems
(and arc included on the MINOS distribution tape). We also thank him and Paul Preckel for the
development of proccdures for solving scquences of related problems (Preckel, 1980). The main
ingredients of these procedures are now an integral parl of MINOS. :

Fromn industry, we have received immense benefit from the working relationship between
SOL and Robert Burchett of the General Electric Company (Klectric Utility Systems Engincering
Department) in Schenectady, New York. Many algorithmic and user-oricnted details have resulted

o




4y
LI

Preface

from his experience and from his interest in the fine points of optimization. Three years ago we
did not envisage that problems involving thousands of nonlinear constraints would soon be solved
successfully. Rob constantly pushed test versions of MINOS to their limits, and inspired the
development of techniques to extend those limits. We thank him for his tireless contributions.

We are also gratelful to Zenon Fortuna, Steven Gorcelick, Marc Hellman, Thomas McCormick,
Larry Nazareth, Scott Rogers, John Rowse and John Tomlin for their helpful suggestions andfor
assistance in tracking down bugs. Finally, we thank the stafl of the Oflice of Technology Licensing
and the Information Technology Services at Stanford University (or undertaking the task of
distributing MINOS.

Most of the software development was carried out at the Stanford Lincar Accelerator Center
with the aid of the Wylbur text editor and the University of Waterloo’s WATFIV compiler. This
User's Guide was typesct using T}X*, with editorial assistance from Philip Gill and Margaret
Wright.

Bruce Murtagh
University of New South Wales

Michael Saunders
Stanford University

December, 1983

*D. E. Knuth, TEX and METAFONT, New Dircctions in 1‘ypeseumg, American Mathematical Society and Digital

Press, Bedford Massachusctis (1979).

1)




3
!
|
b
L

CONTENTS
L INTRODUCTION . . . . . . i it s et e it e e o s ot o o o o o v oo v 1
1.1 Linear Programming . . . . . & & . ¢ 4 ¢ ¢ o ¢« « o o o s o s o o o s o o o o« 1
1.2 Nonlinear Objective . . . . . v v v v v v v e v v e e e e et e e e e e e e 2
1.3 Nonlinear Constraints . . . . . . . . . . ¢ ¢ ¢ ¢ 4 ¢ o s o o o o « e e e e e 3
1.4 Problem Formulation . . . . . . ¢ . . ¢ ¢ ¢ 0 i i vt et e e e e e e e e e 5
LORestrictions . . . . ¢« v v o 0 4 0 i e e e e e e e e e e e e e e s e e e e e $
LB Files . . . . . i i i i i i e e e e e e e et e e e e e e e e e e e e e 6
1.7InputDataFlow . .. . . . . . . & . i i s e e e s e e e e e e e e e e e e e e 7
1.8 Multiple SPECS Files . . . . . e e e s s s s e e s s e s e e e e e e e 8
1.9 Internal Modifications T R R s s e e e e e s e e e 8
2. USER-WRITTEN SUBROUTINES . . . . . . . . . i i 4 i v et e v v e v o 9
2.1 Subroutine FUNOBJ . . . . . . . . ¢ ¢ v ¢« v v v o v v o & e e v e e e e e e 9
2.2 Subroutine FUNCON . . . . . . & v it ot e e e e e v o v o s o o s o o o o 11
2.3 Constant Jacobian Elements . . . . . . . . . . . . ¢ ¢ ¢« 4 v 4 4 e e e e e 12
2.4 Subroutine MATMOD . . . . & . . i it ot e et e e e e e e e e e e e 13
2.5 Subroutine MATCOL . . . . & 0 v v v v it e e e v o s o o e oo e b e e 15
2.6 Matrix Data Structure . . . . . . . . . i 0 0t e e e e e e e e e e e e e e 15
8. THESPECS FILE . . . . . ¢ i i i i e et e e o e o s s o v v e st o s o 17
BASPECSFileFormat . . . . . ¢ & ¢ v ot i 4t v o o o o o o o s o s o o s o 17
3.2 SPECS File Checklist and Defaults . . . . . . . . . .. . ¢+ . e 18
3.3 SPECS File Definitions . . . . . . e e e e e e e e s e s e e e e e e e e 21
4. THEMPSFILE . . . . . . .. . ... o et b e e e et e e e e e e e 41
4.1 The NAMECard . . .. ... .. e e et e e e e e e e e e e e e e e e 41
42The ROWS Section . . . . . & . . & ¢ v i i i e e et e st o o o o o s v o 42
43 The COLUMNS Section . . . . . . ¢ ¢ ¢« v i ¢ v 4 o e e v o o o o v o o s o 43
4.4 The RHS Section . . . . . .. e s e e e e h e e e e e e e e e e ... . 45
4.5 The RANGES Section . . . . . . .. ... ... e e b e e e e s e e e e e 45
46 The BOUNDS Section . . . . . . . « ¢ ¢ ¢ s « . e o s s e e e e e e e e e e 46
47Comment Cards . . . . . . . . . ¢ v ¢ o 4+ & C e e e e e e e e e e e e e e 48
4.8 Restrictions and Extensionsin MPS Format . . . . . . . . . . ¢« ¢« ¢« ¢« v+ & .. . 48
8. BASISFILES . . . . ... .... e e e st e e e e e e s e e e e e . . 49
51 0LD and NEWBASISFiles. . . . .. .. .. C e s et e e e e e e e e e e e 49
52PUNCHand INSERT Files . . . . . ¢ . ¢ v ¢« v ¢ ¢ ¢ 0 o o o o o o o e+ . .52
53DUMPand LlOADFiles . . . . . .. ... ... ¢o .. e e e e e e e e e e 53
5.4 Restarting Modified Problems . . . . . . . . . . ... ... ... e e e e 55
B. OUTPUT . . . L i i ittt e b o o ot o v e o oo s oo o s s o v s .87
BllterationLog . . . . . . . & ¢ ¢ ¢ v v o et s e e e e e P 11

6.2 Basis Factorization Statisties . . . . . . . . . . . ... ... .01
BIEXITConditions . . . . & & v 4 v ¢t ¢ ¢ ¢ o s o o o e o o e o v o s o o o s
BA4SolutionQutput . . . . . . . L. L e e e e e e e e e e e e e e e T0
65SOLUTIONFile . . . . . . . 0 ¢t v v v v s vt sttt s s s aoseseess 2
BOSUMMARY File . . . . . . ¢ i ¢ ¢t vt v b o et v s o ot o evnnoesse s




7. SYSTEM INFORMATION . . . . e e e e e e e e ¢ e e e e 75

7.1 Distribution Tape . . . . . e s s e e e s s e e s e s e e e s s e e e s 75
7280urceFiles . . . . . . . ¢ v ¢t o i i o ot e s e s et e s e e e e e .. T8
T3COMMONRBIlocks . . . . ¢ ¢ ¢ v ¢ttt 6 o s e o s o 0 s o o s et e e e 78
7.4 Machine-dependent Subroutines . . . . . . . . . ... ... e e e e e e e e e 79
7.5 Subroutine Structure . . . . . . . L. e L o b e e e e s e e e e e e e e e e 82
76TestProblems . . . . . . . . . . . ¢ v o 0o oo, e s e e e e e e s 83
8. EXAMPLES ... ... ... e e e e e s et e e e G h e e e et e e e e 85
8.1 Linear Programming . . . . . . . e e s e s e e e e s e s e s e e e e e e 86
8.2 Unconstrained Optimisation . . . . . . . st s e e e e e e e s e e e e 88
8.3 Linearly Constrained Optimigation . . . . . . . . . . . .. ... 90
8.4 Nonlinearly Constrained Optimisation . . . . . . . et e e s e e w e e e e s 94
85Useof Subroutine MATMOD . . . . . . . ¢ & ¢ ¢ ¢ « ¢ s o ¢ ¢ o o« s o o+ s s o & 109
8.6 ThingstoRemember . . . . . . . ... ... et s e e e e e e e e e e 112

REFERENCES . . . . . e e e e C st e et e i e e e e e s e e 113




L e O S i e L,

————
B o

gy

1.1 Linear Programming 1

1. INTRODUCTION

MINOS is a Fortran-based computer system designed to solve large-scale optimization problems
expressed in the following standard form:

minimize F(z)+ cTz +dTy (1)
z,y
subject to  f(z) + Ayy = by, (2)
Azz + Azy = by, : (3)
1< (%) <w (1)
v/ .

where the vectors ¢, d, by, by, |, u and the matrices Ay, Az, A3 are constant, F(z) is a smooth
scalar function, and f(z) is a vector of smooth functions { f*(z)}. Ideally the first derivatives
(gradients) of F(z) and f*(z) should be known and coded by the user. (If only some gradients are
known, MINOS will estimate the missing ones using finite differences.)

The ny; components of z are called the nonlinear variables, and the ny components of y are
the linear variables. Similarly, the m, equations (2) are called the nonlinear constraints, and the
mg equations (3) are the linear constraints. Equations (2) and (3) together are called the general
constraints. We define m = my; + m2 and n = n; + ng.

The constraints (4) specify upper and lower bounds on all variables. These are fundamental
to many problem formulations and are treated specially by the solution algorithms in MINOS.
Some of the components of ! and ¥ may be —oo or +oo if desired.

Similar bounds may be defined for the general constraints (2), (3). These constraints may
therefore be thought of as taking the form

L < flz)+ Ay S uy,

I3 < Az + Agy < ug,

though for historical reasons the bounds are specified in terms of a right-hand side b; and a range
Uy — l,'.

In the following sections we introduce some of the terminology required, and give an overview
of the algorithms used in MINOS and the main system features.

1.1 Linear Programming

If the functions F(z) and f(z) are absent, the problem becomes a linear program. Since there is
no need to distinguish between linear and nonlinear variables, we prefer to use z rather than y.
It is also convenient computalionally to convert all general constraints into equalities, with the
only inequalities being simple bounds on the variables. Thus, we will write linear programs in
the form

minir:lize 'z subject to Az + Is =0, 1< (z) <wu
=, 8

where the elements of z are called structural variables (or column variables) and s is a set of slack
variables (called logical variables by some authors). The bounds { and u are suitably redefined.




MINOS solves linear programs using a reliable implementation of the primal simplex method
(Dantzig, 1963). The simplex method partitions the constraints Az + I's = 0 into the form

Bzy + Nz, =0,

where the basis matrix B is square and nonsingular. The elements of z, and z, are called the
basic and nonbasic variables respectively; they are a permutation of the clements of z and s.
At any given stage, each nonbasic variable is equal to its upper or lower bound, and the basic
variables take on whatever values are needed to satisfy the genecral constraints. (Clearly they
may be computed by solving the linear equation Bz, = —Nz,.) It can be shown that if an
optimal solution to a linear program exists, then it has this form. The simplex method reaches
such a solution by performing a sequence of iterations, in which one column of B is replaced by
one column of N (and vice versa), until no such interchange can be found that will reduce the
value of ¢Tz.

If the components of z, do not satisly their upper and lower bounds, we say that the current
point is infeasible. In this case, the simplex method first aims to reduce the sum of infeasibilities
to zero.

MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz
ordering scheme and DBartels-Golub updates, as implemented in the LUSOL package of Gill,
Murray, Saunders and Wright (1984). (For a description of the concepts involved, see Reid, 1978,
1982.) The basis factorization is central to the efficient handling of sparse linear and nonlinear
constraints.

1.2 Nonlinear Objective

When nonlinearities are confined to the term F(z) in the objective function, the problem is a
linearly constrained nonlinear program. MINOS solves such problems using a reduced-gradient
algorithm (Wolfe, 1962) in conjunction with a quasi-Newton algorithm (Davidon, 1959). The
implementation follows that described in Murtagh and Saunders (1978).
In this case, the constraints Az + I's = 0 arc partitioned into the form -

Bz + Szs + Nz, =0, -

where z4 is a set of superbasic variables. At a solution, the basic and supecrbasic variables will -
lie somewhere between their bounds, while the nonbasic variables will again be equal to one of
their bounds. In broad terms, the number of superbasic variables (the number of columns in S)
is a measure of how nonlinear the problem is. Let this number be s. (The context will always
distinguish s from the vector of slack variables.) In many practical cases we have found that s
remains reasonably small, say 200 or less, regardless of the size of the problem.

In the reduced-gradient algorithm, z, is regarded as a set of independent variables that are
free to move in any desirable direction, namely one that will improve the value of the objective
function {or reduce the sum of infeasibilities). The basic variables can then be adjusted in order
to continue satisfying the linear constraints.

If it appears that no improvement can be made with the current definition of B, § and N,
some of the nonbasic variables are selected to be added to S, and the process is repeated with an
increased value of s. At all stages, il a basic or superbasic variable encounters one of its bounds,
that variable is made nonbasic and the value of s is reduced by one.

Users familiar with lincar programs may interpret the simplex method as being exactly the
above process, with s oscillating between 0 and 1. (Later, one step of the simplex mcthod or the
reduced-gradient method will be called a minor iteration.)

PR,

PR

bad  ied




SO Y

1.3 Nonlinear Constraints 3

A certain operator Z will frequently be useful for descriptive purposes. In the reduced-
gradient algorithm it takes the form

-B-'S
z=| 1 |
0

though it is never computed explicitly. Since it has full column rank and satisfies (B S N )Z = 0,
we say that Z spans the null space of the constraint matrix (A 7). Given an LU factorization
of the basis matrix B, Z allows us to work within a region defined by the linear conslraints.

An important part of MINOS is a stable implementation of the quasi-Newton algorithm
for optimizing the superbasic variables. This can achicve superlinear convergence within each
relevant subspace (defined by the current B, S and N). It obtains a search direction ps for the
superbasic variables by solving a system of the form

RTRp, = -2Ty,

where g is the gradient of F'(z), ZTg is the reduced gradient, and R is a dense upper triangular
matrix that is updated in various ways in order to approximate the reduced Hessian according to
RTR == ZTH1 Z, where H is the matrix of second derivatives of F(z) (i.e., the Hessian).

Once pg is available, the search direction for all variables is defined by p = Zp,. A line
search is then performed to find an approximate solution to the one-dimensional problem

minimize F(z + ap) subject to 0 < a < amax
(-3

where ap,.x is determined by the bounds on the variables. Another important part of MINOS is
the step-length procedure used in the line search to determine the step-length a. Two different
procedures are used, depending on whether all gradients are known. (See Gill, Murray, Saunders
and Wright, 1979.} Interested users can influence the amount of work involved by setting a
paramecter called the LINESEARCH TOLERANCE. )

Normally, the objective function F(z) will never be evaluated at a point z unless that point
is feasible, i.e., it satisfies the linear constraints and the bounds on the variables. Facilitics are
provided to check the calculation of gradient elements, and normally the check is performed at
the first feasible point. However, users may request that the check be performed at the very
beginning of a run, in which case £ may not be feasible.

For details of the matters mentioned here and many other essential aspects of numerical
optimization, see Gill, Murray and Wright (1981).

1.3 Nonlinear Constraints

When the problem contains nonlinear constraints, MINOS uses a projected augmented Lagrangian
algorithm, based on a method due to Robinson (1972); sec Murtagh and Saunders (1982). MINOS
treats linear constraints and bounds specially, but the nonlincar constraints may not be satisfied
until an optimal point is reached. Thus, f(z) and its gradients (the Jacobian matrix J(z) =
[8£%(z)/0z;]) may necd to be defined outside the region of interest.

In fact, the constraint functions will aimost never be evaluated unless the linear constraints
and bounds arc satisfied. The principal exception is at the very first point zg, which may
optionally be specified by the user. The vector f(z) and its Jacobian will be cvaluated at zg
regardless of feasibility. This matter must be borne in mind during the formulation of a nonlinear
program. The main point to remember is that the nonlinear constraints may be violated during
the solution process.
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The nature of the solution process can be summarized as follows. A sequence of major
iterations is performed, each one requiring the solution of a linearly constrained subproblem.
The subproblems contain the original linear constraints and bounds, as well as linearized versions
of the nonlinear constraints. This just means that f(z) in cquation (2) is replaced by Lf, its
linear approximation at the current point. We shall write this approximation as

J(z,2) = J(zx) + J(z0)(z — )
or more briefly .
[ = [+ I(z—z2), (5)

where zj is the estimate of the nonlinear variables at the start of the k-th major iteration. The
subproblem to be solved takes the form

minimize F(z) + ¢Tz + dTy =\ (f - f) + %p(f - i)T(f - i) (8)
7,y

subject to [+ Ajy = by, )]

Az + A3y = ba, (8)

<)<

The objective function (6) is called an augmented Lagrangian. The vector . is an cstimate of ),
the Lagrange multiplicrs for the nonlinear constraints. The scalar p is a penalty parameter, and
the term involving p is a modified quadratic penalty function.

Using (5) we see that the linear constraints (7) and (8) take the form

(h )G+ G DC)=C57) o

MINOS uses the reduced-gradient algorithm to minimize (8) subject to (10), with the original
bounds on z and y, and suitable bounds on the slack variables 8, and sz. The Jacobian Jy is
treated as a sparse matrix, the same as the matrices A;.

Unlortunately, there is no guarantee that the algorithm just described will converge from
an arbitrary starting point. The concerned user can influence the likelihood of convergence in
several ways:

1. By specifying zo as carefully as possible.
2. By including sensible upper and lower bounds oun all variables.
3. By specifying a PENALTY PARAMETER p that is higher than the default value, if the problem
is suspected of being highly nonlinear.
4. By specifying a DAMPING PARAMETER that is lower than the default value, again if the problem
is highly nonlinear.
In rare cases it may be safe to use A\ = 0 and p = 0 for all subproblems, by specifying LAGRANGIAN
= NO. However, convergence is much more likely with the default setting, LAGRANGIAN = YES. The
initial estimate of the Lagrange multipliers is then A\g = 0, but for later subproblems, X\, is taken
to be the Lagrange multipliers associated with the (linearized) nonlinear constraints at the end
of the previous major iteration.

The penalty parameter is initially 100.0/m,; by default, and it is reduced in stages for later
subproblems when it appears that the sequence {zi, A} is converging. In many cases it is safe
to specily p = 0 from the beginning, particularly if the problem is only mildly nonlinear. This
may improve the overall efficiency.




1.5 Restrictions 5

1.4 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make the constraints com-
pletely linear if at all possible. Somectimes a simple transformation will suffice. For example, a
pipeline optimization problem has pressure drop constraints of the form

K, K, 2 _ p2
df-s“ +dg.814 +:- < PT—PO

where d; are the design variables (pipe diameters) and the other terms are constant. These
constraints are highly nonlincar, but by re-defining the decision variables to be z; = 1/d}8!4 we
can make the constraints linear. Even if the objective function becomes more nonlinear by such
a transformation (and this usually happens), the advantages of having linear constraints greatly
outweigh this.

Similarly, it is important not to move nonlinearities from the objective function into the
constraints. Thus, we would not replace minimize F(z) by

minimize z subject to F(z)—z=0.

Secaling is a very important matter during problem formulation. A general rule is to scale
both the data and the variables to be as close to 1.0 as possible. In general we suggest the
range 1.0 to 10.0. When conflicts arise, one should sacrifice the objective function in favor of the
constraints. Real-world problems tend to have a natural scaling within ecach constraint, as long
as the variables are expressed in counsistent physical units. Hence it is often sufficient to apply
a scale factor to each row. MINOS has an option to scale the linear constraints and variables
automatically.

Finally, upper and lower bounds on the variables (and on the constraints) are extremely
uscful for confining the region over which optimization has to be performed. If sensible values
are known, they should always be used. They are also important for avoiding singularities in the
problem functions. For salfety when such singularities exist, the initial point zg discussed above
should lie within the bounds.

1.6 Restrictions

MINOS is designed to find solutions that are locally optimal. The nonlinear functionsin a problem
must be smooth (i.c., their first derivatives must exist). The functions need not be separable.
Integer restrictions cannot be imposed directly.

A certain region is delined by the linear constraints in a problem and by the bounds on the
variables. If the nonlinear objective and constraint functions arc convex within this region, any
optimal solution ebtained will be a global optimum. Otherwise there may be several local optima,
and some of these may not be global. In such cases the chances of finding a global optimum are
usually increased by choosing a starting point that is “sufficiently close”, but there is no general
procedure for determining what “close” means, or for verifying that a given local optimum is
indeed global.

MINOS uscs one large array of main storage for most of its workspace. The length of this
array may need to be adjusted to suit a particular problem, but otherwise the implementation
places no fixed limitation on the size of a problem or on its shape (many constraints and relatively
few variables, or vice versa). In general, the limiting factor will be the amount of main storage
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available on a particular machine, and the amount of computation time that one’s budget can
stand.

Some a priori knowledge of a particular application will usually indicate whether the solution
procedure is likely to be efficient. An important quantity is m = m, + mg, the total number
of general constraints in (2) and (3). We note that m < 100 is considered “small”, m = 1000
or 2000 is “medium”, and m > 5000 would be “large”. On machines that use 16-bit integers
(INTEGER#2 on IBM and DEC VAX systems), the normal implementation of MINOS requires that
m < 32767.

The amount of workspace required by MINOS is roughly 100m words, where one “word” is
the relevant storage unit for the floating-point arithmetic being used (REAL*8 on IBM and DEC
VAX, REAL on Burroughs and mest CDC machines}. On IBM and VAX systems, this means about
800 bytes for workspace. A further 300K bytes, approximately, are nceded for the program
itself, along with bulfer space for scveral files,

Another important quantity is n = n; + ng, the total number of variables in z and y. For
nonlinear problems, il m; and ny are small compared to m and n, the total storage required
should not be much greater than just described. If n; is “large” (say n; > 200), the amount of
storage required may or may not be substantial, depending on whether F(z) or f(z) are highly
nonlinear or not.

In this context, the efficiency of MINOS depends on s, the number of superbasic variables.
Recall that m + s variables lie between their upper and lower bounds, where s is zero for purely
lincar problems. We know that s need never be larger than n; + 1. In practice, s is often very
much less than this upper limit.

In the quasi-Newton algorithm, the dense triangular matrix R has dimension s and requires
about $s? words of storage. If it seems likely that s will be very large, some aggregation or
reformulation of the problem should be considered.

1.6 Files

MINOS operates primarily within central memory, and is well suited to a virtual storage environ-
ment. Certain disk files are accessed as follows.

Input file Status Record Length (characters)
READ file see below

SPECS file required 80

MPS file required 81

BASIS files optional 80

Output file Status Record Length (characters)
SCRATCH file required 8

PRINT file required 129
SUMMARY file optional 80

BASIS files optional 80
SOLUTION file optional 111

Fixed-length, blocked records may be used in all cases, and the files are always accessed scquen-
tially. The logical record length must be at Jeast that shown. For efficiency, the physical block
size should be several hundred characters in most cases. Notc that the logical record length
for the SCRATCH file is unusually small. Each record will contain an 8-character name for a
constraint or variable, and there will be m + n such names.
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1.7 Input Data Flow 7

Unit numbers for the READ, SPECS, PRINT and SCRATCII files are defined at compile
time; typically they will be 5, 5, 6 and 8, but they may depend on the installation. The remaining
unit numbers are specificd at run time in the SPECS file.

Unit numbers for the READ, PRINT and SUMMARY [iles are stored in the following COMMON
block:

COMMON /JMAFILE/ IREAD, IPRINT, ISUMM
It may be convenient to reference these in the user subroutines FUNOBJ, FUNCON and MATMOD.

System Note: The READ file is not used explicitly by MINOS, but its unit number is used
to test if a file should be rewound. (Thus, input files are subject to a Fortran REWIND as long as
they are not the same as the READ file.) The PRINT file is used frequently. Other output files
are rewound if they are not the same as the PRINT file.

1.7 Input Data Flow

Some or all of the following items are supplied by the user:

e Subroutine FUNOBJ

e Subroutine FUNCON

e Subroutine MATNOD

e A SPECS file

e An MPS file

o A BASIS file

e Data read by FUNCON on its first entry
o Data read by FUNOBJ on its first entry
o Data read by FUNCON on its last entry
o Data read by FUNOBJ on its last entry

The order of the files and data is important if all are stored in the same input stream.

Subroutines FUNOBJ and FUNCON define the nonlinear objective and constraint functions
respectively (if any); they are not nceded if the functions are purely linear and are defined in
the MPS file.

Subroutine MATMOD is occasionally needed, for applications involving a sequence of closely
related problems. ,

The SPECS file defines various run-time paramecters (ITERATION LIMIT, SAVE FREQUENCY,
etc.). Its filc number is defined at compile time. It will normally be the first data set in the
system card input stream.

The MPS file specifies names for the constraints and variables, and defines all the linear
constraints and bounds. It may flollow the SPECS file in the card input stream, but will often
reside in a file of its own (as specified in the SPECS file). The data format is similar to that
used in commercial mathematical programming systems (hence the name). The format has been
genceralized slightly for nonlinear problems.

If desired, a BASIS file may be loaded at the beginning of a run. This will normally have
been saved at the end of an earlier run. Three kinds of basis file are available; they are used to
restart the solution of a problem that was interrupted, or to provide a good starting point for
some slightly modified problem.
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1.8 Multiple SPECS Files

One or more problems may be processed during a run. The parameters for a particular problem
are delimited by BEGIN and END in the SPECS file. While scanning for the keyword BEGIN,
MINOS recognizes the keywords SKIP and ENDRUN. Thus in the following example:

BEGIN CASE 1

END CASE 1
SKIP CASE 2

.

END CASE 2
BEGIN CASE 3

END CASE 3
ENDRUN
BEGIN CASE 4

END CASE 4
only the first and third problem will be processed.

1.9 Internal Modifications

A sequence of closely related problems may be specified within a single SPECS file, via the CYCLE
parameter; for example,

BEGIN CYCLING EXANPLE
CYCLE LIMIT 10

END EXAMPLE

indicates that up to 10 problems are to be processed. This is intended for cases where the solution
of one problem Py is needed to define the next problem Pgryq.

The actual method for defining the next problem in a cycle depends on the application.
Somectimes it can be done by changing the output from the function subroutines FUNOBJ and/or
FUNCON. Alternatively, the user may provide a third subroutine MATMOD to perform some modifi-
cations to the problem data. MATMOD is called by MINOS at the beginning of every cycle except
the first.

If necessary, the number of linear variables can be increased when a problem Py 1 is defined.
We think of this as adding new columns to P;. The new columns are not included in the MPS file,
and their sparsity pattern need not be known until P’ has been solved. Instead, an appropriate
number of PHANTOM COLUMNS and PHANTOM ELEMENTS are defined in the SPECS file (to rcserve
a pool of storage), and the user's subroutine MATMOD generatcs each new column by calling the
MINOS subroutinc MATCOL. '
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2.1 Subroutine FUNOBJ (]

2. USER-WRITTEN SUBROUTINES

To solve a purely linear problem, only a SPECS file and an MPS file (and possibly a BASIS file)
need be supplied.

For nonlincar problems, one must also provide some appropriate Fortran code. Nonlinearities
in the objective function are defined by subroutine FUNOBJ. Those in the constraints are defined
separately by subroutine FUNCON. On every entry except perhaps the last, these subroutines must
rcturn appropriate function values F. Wherever possible, they should also return all gradient
components in the array G. This provides maximum reliability and corresponds to the default
setting, DERIVATIVE LEVEL = 3. .

In practice it is often convenient not to code gradients. MINOS is able to estimate gradients
by finite differences, by making a call to FUNOBJ or FUNCON for each variable z; whose partial
derivatives need to be estimated. However, this reduces the reliability of the optimization
algorithms, and it can be very expensive if there are many such variables z;.

As a compromise, MINOS allows you to code as many gradients as you like. This option is
implemented as follows: just before a function routine is called, each element of the gradient array
G is initialized to a specific value. On exit, any clement retaining that value must be estimated
by finite diffcrences.

Some rules of thumb follow:

1. For maximum simplicity and reliability, compute F and all components of G.

2. If not all gradients arc known, compute as many of them as you can. (It often happens that
some of them are constant or even zero.)

3. If some gradients are known (but not all), it may be convenient to compute them each time
the function routines are called, even though they will be ignored if MODE = 2.

4. If the known gradicnts are expensive to compute, use the parameter MODE to avoid computing
them on certain entries.

5. While the function routines are being developed, use the VERIFY parameter to check the
computation of any gradient elements that are supposedly known.

2.1 Subroutine FUNOBJ

This subroutine is provided by the user to calculate the objective function F(z) and as much of
its gradient g(z) as possible. (It is not needed if the objective function is entirely lincar.)

Specification:

SUBROUTINE FUNOBJ( MODE, N, X, F, G, NSTATE, NPROB, Z, NWCORE )
IMPLICIT REAL*8(A-H,0-2)
DIMENSION X(N), G(N), Z(NWCORE)

(The IMPLICIT statement should not be used on machines for which single-precision floating-
point is adequate; e.g., Burroughs and CDC.)
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Parameters:

MODE

X(#)

G(»)

NSTATE

NPROB

2(»)

(Input) This parameter can be ignored if DERIVATIVE LEVEL = 1 or 3 (i.e., if all cle-
ments of G are computed). In this case, MODE will always have the value 2.

Otherwise, you must specifly DERIVATIVE LEVEL = O or 2in the SPECS file to indicate
that FUNOBJ will not compute all of G. MINOS will then call FUNOBJ sometimes with
MODE = 2 and sometimes with MODE = 0. You may test MODE to decide what to do:

If MODE = 2, compute F and as many components of G as possible.

If MODE = 0, compute F but set G only if you wish. (On return, the contents of G will
be ignored.)
(Output} If for some reason you wish to terminate solution of the current problem, set
MODE to a negative value, e.g., —1.

(Input) The number of variables involved in F'(z). These must be the first N variables
in the problem.

(Input) An array of dimension N containing the current values of the nonlinear variables
z.

(Output) The computed value of the objective function F(z).

(Output) The computed gradient vector g(z). In general, G(5) should be set to the
partial derivative 3F /dz, for as many j as possible (except perhaps if MODE = 0—see
above).

(Input) If NSTATE = 0, there is nothing special about the current call to FUNOBJ.

If NSTATE = 1, MINOS is calling your subroutine for the first time. Some data may nced
to be input or computed and saved in local or COMLON storage. Note that if there are
nonlinear constraints, the first call to FUNCON will occur before the first call to FUNOBJ.

If NSTATE > 2, MINOS is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. (If CYCLE LIMIT is
specified, this call occurs at the end of cach cycle.) Note again that il there are nonlincar
constraints, the last call to FUNCON will occur before the last call to FUNOBJ.

In general, the last call is made with NSTATE = 2 + IERR, wherec IERR indicates the
status of the final solution. In particular, if NSTATE = 2, the currcnt X is optimal; if
NSTATE = 3, the problem appears to be infeasible; if NSTATE = 4, the problem appears
to be unbounded; and if NSTATE = 5, the iterations limit was rcached. In some cases,
the solution may be nearly optimal if NSTATE = 11; this value occurs if the linesearch
procedurc was unable to find an improved point.

If the nonlinear functlions are expensive to evaluate, it may be desirable to do nothing
on the last call, by including a statecment of the form IF (NSTATE .GE. 2) RETURN
at the start of the subroutine.

(Input) An integer that can be set by a card of the form PROBLEM NUMBER n in the
SPECS file.

(Input) The primary work array used by MINOS. In certain applications it may be
desirable to access parts of this array, using various COMMON blocks Lo pinpoint the
required locations. (For example, the dual variables are stored in Z(LPI) onward, where
LPI is the first integer in the COMMON block MSLOC.) Othcerwise, Z and NWCORE can be
ignored.

(Input) The dimension of Z.

A
e g
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, 2.2 Subroutine FUNCON

This subroutine is provided by the user to compute the nonlinear constraint functions f(z) and
as many of their gradicnts as possible. (It is not needed if the constraints are entirely linear.)
Note that the gradients of the vector f(z) define the Jacobian matrix J(z). The j-th column of
- J(z) is the vector df /dz;.
FUNCON may be coded in two different ways, depending on the method used for storing the
Jacobian, as specified in the SPECS file.

(JACOBIAN = DENSE |

Specification:

SUBROUTINE FUNCON( MODE, M, N, NJAC, X, F, G, NSTATE, NPROB, Z, NWCORE )

IMPLICIT REAL*B8(A-H,0-2)
DIMENSION X(N), F(M), G(M,N), Z(NWCORE)
Parameters:

MODE (Input) This parameter can be ignored if DERIVATIVE LEVEL = 2 or 3 (i.e., if all ele-
ments of G are computed). In this case, MODE will always have the value 2.

Otherwise, you must specify DERIVATIVE LEVEL = O or 1 in the SPECS file to indicate
that FUNCON will not compute all of G. You may then test MODE to decide what to do:

If MODE = 2, compute F and as many components of G as possible.

If MODE = 0, compute F but set G only if you wish. (On return, the contents of G will
be ignored.)

(Output) If for some reason you wish to terminate solution of the current problem, set
MODE to a negative value, e.g., ~1.

M (Input) The number of nonlinear constraints (not counting the objective function).
These must be the first M constraints in the problem.

N (Input) The number of variables involved in f(z). These must be the first N variables
in the problem.

NJAC  (Input) The value M#N.

X(») (Tnput) An array of dimension N containing the current values of the nonlinear variables
z.

F(») (Output) The computed values of the functions in the constraint vector f(z).

G(x,*) (Output) The computed Jacobian matrix J(z). The j-th column of J(z) should be
stored in the j-th column of the 2-dimensional array G (except perhaps if MODE = 0—
sce above). Equivalently, the gradient of the i-th constraint should be stored in the i-th
row of G. :

The other parameters are the same as for subroutine FUNOBJ.

- M—“
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[ JACOBIAN = SPARSE |

Specification:

SUBROUTINE FUNCON( MODE, M, N, NJAC, X, F, G, NSTATE, NPROB, Z, NWCORE )
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION X(N), F(M), G(NJAC), Z(NWCORE)

This is the same as for JACOBIAN = DENSE, except for the declaration of G(NJAC).

Parameters:

NJAC (Input) The number of nonzero elements in the Jacobian matrix J(z). This is exactly
the number of entries in the MPS file that referrcd to nonlincar rows and nonlinear
Jacobian columns (the first M rows in the ROWS scction and the first N columns in the
COLUMNS section).

Usually NJAC will be less than M*N. The actual value of NJAC may not be of any use
when coding FUNCON, but in all cases, any expression involving G(I) should have the
subsecript [ between 1 and NJAC.

G(*) (Output) The computed elements of the Jacobian matrix (except perhaps if MODE = 0—
see previous page). These elements must be stored into G in exactly the same positions
as implied by the MPS file. There is no internal check for consistency (except indirectly
via the VERIFY paramecter), so great care is essential.

The other parameters are the same as for JACOBIAN = DENSE.

2.3 Constant Jacobian Elements

If all constraint gradients (Jacobian elements) are known (DERIVATIVE LEVEL = 2 or 3), any
constant elements may be specified in the MP’S file if desired. An element of G that is not
computed in FUNCON will retain the value implied by the MPS [ile. (The value is taken to be zero
if not given explicitly in the MPS file.)

This feature is useful when JACOBIAN = DENSE and many Jacobian clements are identically
zero. Such clements need not be specified in the MPS file, nor set in FUNCON.

Note that constant nonzero clements do allect F. Thus, if J;; is defined in the MPS file and
is constant, the array element G (i, ) nced not be set in FUNCON, but the value G(i, ) *X(j) must
be added to F(s).

When JACOBIAN = SPARSE, constant Jacobian clements will normally not be listed in the
MPS file unless they are nonzero. If the correct value is entered in the MPS file, the corresponding
element G(I) need not be reassigned, but a term of the form G({) *X(5) must be added to onc of
the clements of F. (This featurc allows a matrix generator to output constant data to the MPS -
fil; FUNCON docs nol necd to know that data at compile time, but can use it at run time to
compute the clements of P.)

Remecmber, if DERIVATIVE LEVEL < 2, unassigned elements of G are not treated as constant;
they are estimated by finite differences, at significant cxpense.
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2.4 Subroutine MATMOD

This subroutine is called at the start of every cycle except the first. If CYCLE LIMIT k is specified
with £ > 1, you may wish to provide your own MATMOD to make certain changes to the problem
data. MINOS will make a flying start on the modified problem, retaining the current set of
basic, superbasic and nonbasic variables, the reduced Hessian approximation R, and the Lagrange
multiplier estimates A\, for any nonlinear constraints. (The LU factorization of the basis is not
retained; it will be recomputed.)

Specification:

SUBROUTINE MATMOD{.NCYCLE, NPROB, PINISH,

» M, N, NB, NE, NKA, NS, NSCL,
. A, HA, KA, BL, BU,
* ASCALE, HS, IDi, ID2,
» X, PI, Z, NWCORE )
IMPLICIT REAL#*8(A-H,0-2)
INTEGER»*2 HA(NE), HS(NB)
INTEGER KA(NKA), ID1(NB), ID2(NB)
DIMENSION A(NE), ASCALE(NSCL), BL(NB), BU(NB)
DIMENSION X(NB), PI(M), Z(NWCORE)
LOGICAL FINISH
Parameters:
NCYCLE (Input) The number of the cycle that has just terminated.
NPROB  (Input) An integer that can be set by a card of the form PROBLEM NUMBER n in the
SPECS file. :
FINISH (Input) On entry, FINISH = .FALSE.
(Output) On exit, if you wish the cycles to be terminated (e.g., if some convergence
criterion has been satisfied), set FINISH = .TRUE.
| (Input) The number of rows in the constraint matrix.
N (Input) The number of variables, excluding slacks.
NB (Input) The number of variables, including slacks. (NB = N+ N; it is the length of many
arrays including BL and BU. The name is short for Number of Bounds.)
NE (Input) The number of elements in the constraint matrix (used only to dimension A and
HA).
WKA (Input) NXA = N + 1 (used to dimension KA).
NS (tnput) The number of superbasic variables.
NSCL (Tnput) If NSCL = 1, the constraint matrix has not been scaled; there is only one element

in the array ASCALE and it is undefined.
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A(*)

HA(»)
KA(»)
BL (%)

BU(*)

Otherwise, NSCL = NB and the constraint matrix has been scaled. An original element
a;; is now stored in A as a;; X ASCALE (N+7) /ASCALE(j). Similarly, an original bound {;
on a column or slack (7 = 1 to NB) is now stored in BL(7) as {; X ASCALE(j). (Likewise
for upper bounds.) Any new or modified elements must be treated accordingly.

(Input, output) The current elements of the constraint matrix, stored column-wise.
They may be altered as desired. Additional entries in A, HA and KA associated with
“phantom columns” must be set by calling subroutine MATCOL.

(Input, output) The row indices associated with A.
(Input, output) KA(5) points to the start of column j in the arrays A(+), HA(*).

(Input, output) The lower bounds on all column and slack variables, in that order. They
may be altered as desired.

(Input, output) The upper bounds on all variables, including slacks. They may be
altered as desired.

ASCALE (*) (Input) The set of scale factors for columns and rows, in that order (if NSCL > 1).

HS (%)

ID1(»)

IDé(t)
X(»)
PI(#)

Z(»)

(Input) The state vector for all variables.

HS(j) = O if variable 5 is nonbasic at its lower bound;
HS(s) = 1if variable 7 is nonbasic at its upper bound;
HS(y) = 2if variable 5 is superbasic;

H8(5) = 3if variable j is basic.

(Input) The first half of the names of the columns and rows, in that order, in A4 format.
(Sometimes it may be useful to determine the index of a column or row by séarching
ID1 and ID2.)

(Input) The second half of the names of the columns and rows, in A4 format.
(Input) The numerical values of all columns and slack variables.

(Input) The numerical values of the dual variables. The first my components will be
the current estimates of )\, the Lagrange multipliers for the nonlinear constraints.

(Input) The primary work array used by MINOS. In certain applications it may be
desirable to access parts of this array, using various COMMON blocks to pinpoint the
required locations.

MWCORE (Input) The dimension of Z.

O s |
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2.8 Subroutine MATCOL

If PHANTOM COLUMNS c¢ and PHANTON ELEMENTS e are defined in the SPECS file (along with CYCLE
LIMIT k), this subroutine may be called by MATMOD up to ¢ times throughout cycles 2 through k.
The aim is to turn at most ¢ “phantom columns” into normal columns containing a total of at
most ¢ nonzero elements. MATMOD must provide an array COL(*) and a zero tolerance ZTOL for
each call. The significant elements of COL will be packed into the matrix data structure, to form
a new column. The associated variable will be given the default LOWER and UPPER bounds, and a
scale factor of 1.0.

Specification:
SUBROUTINE MATCOL( M, N, NB, NE, NKA, .
* A, HA, KA, BL, BU, COL, ZTOL )
INPLICIT REAL+8(A~-H,0-2)
INTEGER#*2 HA (NE)
INTEGER KA (NKA)
DIMENSION A(NE), BL(NB), BU(NB), COL(M)
Parameters:
M (Input) The length of the array COL. Usually this will be m, the number of rows in the

constraint matrix. In genecral, it may be anywhere in the range 1 < M < m, if the new
column is known to be zero beyond position M.

COL(*) (Input) The dense vector that is to become a new matrix column.

2TOL (Input) A zero tolerance for deleting negligible elements from COL when it is packed
into A and HA. On most machines, a reasonable value is ZTOL = 1.0E-8.

The other parameters come directly from MATMOD. For further details, see the CYCLE options in
section 3.3, and the cxample in section 8.5.

2.8 Matrix Dastas Structure

In the MINOS source code, the constraint matrix A is stored column-wise in sparse format in the
arrays A, HA, KA, as defined in the specifications of subroutine MATMOD (section 2.4). The matrix
I associated wnth the slack variables is represented implicitly. If the objective function contains
linear terms ¢Tz + d”y, then (cT d7) is included as the IOBJ-th row of A (see the COMMON block
MSLOBJ bclow).

If there are nonlinear constraints, the top left-hand corner of A is loaded with the current
Jacobian matrix at the start of each major iteration.

The following COMMON blocks contlain dimensions and other items relating to the storage of
A,

COMMON /M3LEN / M N .NB .NSCL

N m, the number of rows in A, including the linear objective row (if any).
N n, the number of columns in A, possibly including ¢ “phantom columns”.
B n + m = N+N, the total number of variables in the problem, including the slacks.

NSCL [Zither NB or 1, depending on whether SCALE has been specified or not.
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o COMMON  /M2MAPA/ NE  ,NKA ,LA  ,LHA ,LKA

) The number of nonzero clements in A, possibly including e “phantom elements”.
n + 1 = N+1, the number of pointers in the array KA.

The address of A(*) in the work array Z(s).

The address of HA(*) in the work array Z(*).

The address of KA(*) in the work array Z(*).

I

COMMON /MSLEN / MAXR ,MAXS ,MBS ,NN ,NNO  ,NR »NX

5 MAXR The HESSIAN DIMENSION.
) MAXS The SUPERBASICS LINIT.
3 J MBS M+MAXS, the maximum number of basic and superbasic variables.
NN ny = max{NNOBJ, NNJAC}, the number of NONLINEAR VARIABLES.
_ NNO max{1, NN}.
‘ NR The dimension of the array R that is used to approximate the reduced Hessian, R.
NX max{MBS, NN}.
‘ ; COMMON JM5LOBJ/ SINF ,WTOBJ ,MINIMZ,NINF ,IOBJ ;
' 4 SINF The current sum of infeasibilities.
’. WTOBJ  The scalar w used in the composite objective technique. !
i MINIMZ +1 if the objective is to be minimized; —1 if it is to be maximized.
i NINF The current number of infeasibilities.
10BJ The row number for the linear objective. (If I0OBJ is zero, there is no such row.)

COMMON /M7TLEN / FOBJ ,FOBJ2 ,NNOBJ ,NNOBJO
FOBJ The current value of the function value F returned by FUNOBJ.
FOBJ2 A temporary value of FOBJ.
NNOBJ n',, the number of NONLINEAR OBJECTIVE VARIABLES.
NNOBJO max{1, NNOBJ}.

COMMON /MBLEN / NJAC ,NNCON ,NNCONO,NNJAC
NJAC The number of elements in the Jacobian.
NNCOM  m,, the number of NONLINEAR CONSTRAINTS.
NNCONO max{1, NNCON).
NNJAC  nf, the number of NONLINEAR JACOBIAN VARIABLES.
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8. THE SPECS FILE

The SPECS file sets various run-time paramecters that describe the nature of the problem being
solved and the manner in which a solution is to be obtained. The file consists of a sequence of
card images, each of which contains a keyword and cerlain associaled values.

The first keyword is BEGIN and the last keyword is END. If the problem could be solved
using default values for all parameters, the SPISCS file could consist of just those two keywords
(on separate cards). Normally, however, at least some of the parameters must be specificd; for
example, the number of nonlinear variables if there are any.

3.1 SPECS File Format

Each card in the SPECS file contains a sequence of items in free format (they may appear
anywhere in columns 1 to 72). The items are separated by spaces or cqual signs (* ’ or ‘=),
Those sciected from each card are:

1. The first word (the keyword). Only the first 3 characters are significant.

2. The second word (il any). Sometimes this is the keyword's associated namc value, an 8-
character name. More olten it qualifics the keyword, and its first 4 characters are significant.

3. The first number (if any). This may be an integer value or a real value; up to 8 characters in
Fortran's I, F, E or D format.

In the following examples the significant characters are underlined:

OBJECTIVE PROFIT
SOLUTION FILE 12

ROWS 500

ROW TOLERANCE 0.0001
LOWER BOUND 1.9
AlJ TOL 1.0E-6

If the first character of an itemn is one of the following numeric characters
1234567890+ -,

then the item is taken to be a number. The number may be from 1 to 8 contiguous numeric
characters, including an E or a D if need be. It is terminated by a non-numeric character such as
a space.

(An exception is made for the keywords OBJECTIVE, RHS, RANGE and BOUND, which specify
names to be extracted from the MPS file. For these keywords the second item is taken Lo be the
required name value even if il begins with a numeric character. Thus,

AIJ TOLERANCE .00001
OBJECTIVE .00001
RHS ...ZEO00%
BOUND +1000

are all allowed. However, names like OBJECTIVE = COST or RHS = DEMANDO2 will be more com-
mon.)

Blank cards and comments may be used Lo improve readability. A comment begins with an
asterisk (‘#’) and includes all subsequent characters on the same card; these arc ignored. The ‘s°
may be the first non-blank character on the card, or the first non-blank after a space or an equal
sign. For example:
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* MPS file parameters
*

ROWS 1000 * (or less)
COLUMNS 2000 * (or leses)
ELEMENTS 8000 * (or less)
OBJECTIVE = PROFITO2 =* (the 2nd N row)

Scanning terminates once a number has been recognized. An asterisk is therefore not essential
following a number:

WEIGHT ON OBJECTIVE = 10.0 DURING PHASE 1

3.2 SPECS File Checklist and Defaults

The following example SPLECS file shows all valid keywords and their default values. The keywords
are grouped according to the function they perform.

Some of the default values depend on ¢, Lthe relative precision of the “ine being used. The
values given here correspond to double-precision arithmetic on IBM 3¢ " 370 systems and
their successors (¢ = 2.22 X 107 '8). Similar values would apply to any machine having aboat 15
decimal digits of precision.

BEGIN checklist of SPECS file parameters and their default values
L ]

* Keywords for the MP'S file

*

MINIMIZE * (opposite of HAXIIIZE)

OBJECTIVE = ? * the first name encountered

RHS = ? * the first name encountered

RANGE = ? * the first name encountered

BOUNDS = ? * the first name encountered

ROWS 100 *

COLUMNS 300 * or 3*ROWS

ELEMENTS (or COEFFICIENTS) 1600 * or 5*COLUMNS

AIJ TOLERANCE 1.0E-10 =

LOWER BOUND 0.0 *

UPPER BOUND 1.0E+20 * plus infinity

MPS FILE ? * depends on installation

LIST LIMIT 0 * for printing MP’S data

ERROR MESSAGE LIMIT 10 * during MPS input

»

* Keywords for the simplex method

]

CRASH OPTION 1 = all variables cligibie for initial basis
ITERATIONS LIMIT 300 * or 3*ROWS + 10*NONLINEAR VARIABLES
PARTIAL PRICE 1 = or COLS/ (2+ROWS) il COLS is large
MULTIPLE PRICE 1 * BEWARLE - not like commercial .P
WEIGHT ON LINEAR OBJECTIVE 0.0 * during phase 1
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SUMMARY FILE 0 * > 0 for occasional output io terminal
SUMMARY FREQUENCY 100 * iteration log on SUMMARY file
LOG FREQUENCY i * iteration log on PRINT file
CHECK FREQUENCY 30 * numerical test on row residuals
FACTORIZATION FREQUENCY 4] * refactorize the basis matrix
SAVE FREQUENCY 100 * basis map
SCALE NO * linear constraints and variables
4 SOLUTION YES * on PRINT file
*
* DBASIS files
»*
OLD BASIS FILE 0 * input basis map
NEW BASIS FILE o * output basis map
BACKUP BASIS FILE 0 * output basis map
INSERT FILE o * input in industry format
PUNCH FILE 0 * output INSERT data
LOAD FILE 0 * input names and values
DUMP FILE 4] * output LOAD data
SOLUTION FILE o] * geparate from printed solution

*

* Convergence and stability tolerances
*

FEASIBILITY TOLERANCE
OPTIMALITY TOLERANCE

PIVOT TOLERANCE

LU FACTOR TOLERANCE

LU UPDATE TOLERANCE

.

*  Parameters for nonlinear problems
*

NONLINEAR CONSTRAINTS

NONLINEAR VARIABLES

NONLINEAR OBJECTIVE VARIABLES
NONLINEAR JACOBIAN VARIABLES
SUPERBASICS LIMIT"

HESSIAN DIMENSION

*

PROBLEM NUMBER

DERIVATIVE LEVEL

VERIFY LEVEL

EMERGENCY VERIFY LEVEL

x

START OBJECTIVE CHECK AT COL i
STOP OBJECTIVE CHECK AT COL n
START CONSTRAINT CHECK AT COL 1
STOP CONSTRAINT CHECK AT COL ny

- =~ 00 0O

O O Wwo

* % B * »

% * ¥ X * »

% % % »

% % » »

for satisfying bounds

for reduced gradients

et

limits size of multipliers in L
the same during updates

must be the exact number, m,

must be the exact number, n

use if different from Jacobian variables
use if different from objective variables
or HESSTAN DIMENSION

or SUPERBASICS LIMIT

scts subroutine parameter NPROB
assumes all gradients are known
gives cheap check on gradicnts
cheap check before stopping
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LINESEARCH TOLERANCE
SUBSPACE TOLERANCE

FUNCTION PRECISION
DIFFERENCE INTERVAL

CENTRAL DIFFERENCE INTERVAL
*

E-13
7
5

oo Wwoo
N O o

E_
E-.

* Further parameters for nonlinear constraints

*

JACOBIAN

LAGRANGIAN

MAJOR ITERATIONS

MINOR ITERATIONS

PENALTY PARAMETER

DAMPING PARAMETER

*

COMPLETION

ROW TOLERANCE

RADIUS OF CONVERGENCE

PRINT LEVEL (JFLXB)

*

* Sequences of related problems
*

CYCLE LIMIT

CYCLE PRINT

CYCLE TOLERANCE

PHANTOM COLUMNS

PHANTOM ELEMENTS

*x

*  Miscellaneous

E

DEBUG LEVEL

LINESEARCH DEBUG AFTER ITN
WORKSPACE (USER)

WORKSPACE (TOTAL)

* SUPPRESS PARAMETER LISTING
END of SPECS file checklist

DENSE
YES

20

40
100.0/m,
2.0

PARTIAL
1.0E-6
0.01
00001

O OO =
o

0
999999

)
?

* % ¥ X = * X R ¥ #* * # B X * * * X * *

* #* % »

smaller for more accurate search
affects when to PRICE

€28 (almost full accuracy)
(FUNCTION PRECISION)}
(FUNCTION PRECISION)Y

may need to be larger if very nonlinear
affects step-size between subproblems

FULL il no nonlinear constraints
allowable nonlinear constraint violation
for reducing the penalty parameter
J(zk), f(zk), Ak, Tk, Basis statistics

depen-s on installation

F—)

r——
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3.3 SPECS File Definitions

The following is an alphabetical list of recognized SPECS file keywords. A typical use of each
keyword is given, along with a delinition of the quantities involved and comments on usage. In
many cases the value associated with a keyword is denoted by a letter such as k, and allowable
values for k are subsequently defined.

AIJ TOLERANCE t (default t = 1.0E-10)
During input of the MPS file, matrix coefficients a,; will be ignored if |a;;| < ¢.

If a;; is a Jacobian clement, it is not ignored. (Its position is recorded, and it will retain the
value ¢ if DERIVATIVE LEVEL = 2 or 3 and FUNCON does not reset the corresponding elcment of
G.)

If CYCLE LIMIT > 1 and ay; is to be changed from zero to a value greater than ¢ during a
later cycle, set £ = 0.0 to retain all entries in the MPS file.

BACKUP BASIS FILE k (default k = 0)
This is intended as a safeguard against losing the results of a long run. Suppose that a NEW
BASIS FILE is being saved every 100 iterations, and that MINOS is about to save such a basis at
iteration 2000. 1t is conceivable that the run may time-out during the next few milliseconds (i.e.,
in the middle of the save), or the host computer could unexpectedly crash. In this case the basis
file will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS FILE and a BACKUP BASIS FILE may be specified.
The following would be suitable for the above example:

OLD BASIS FILE 11 (or 0)
BACKUP BASIS FILE 11
NEW BASIS FILE 12
SAVE FREQUENCY 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will still be
a useable basis on file 11 (corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates normally, but there
is no need for a further BACKUP BASIS. In the above example, if an optimum solution is found
at iteration 2050 (or if the iteration limit is 2050), the final basis on file 12 will correspond to
iteration 2050, but the last basis saved on lile 11 will be the one for iteration 2000.

BOUNDS BOUNDO1
This specifies the 8-character name of the bound set to be sclected from the MPS file.

1. BNDS is a valid alternative keyword.

2. If BOUNDS is not specified, or if the name is blank, the first bound set in the MPS file will be
sclected.

3. If the MPS file contains one or more bound sets but you do not want any of them to be used,
specify a dummy name such as BOUND = NONE.
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CENTRAL DIFFERENCE INTERVAL hq (default hy = (FUNCTION PRECISION)*)
When DERIVATIVE LEVEL < 3, the central-difference interval hg is used near an optimal solution
to obtain more accurate (but more expensive) estimates of gradients. Twice as many function
evaluations are required compared to forward dilferencing. The interval used for the j-th variable
is hy = ha(1 + |z;]). The resulting gradient estimates should be accurate to O(h?), unless the
functlions are badly scaled.

CHECK FREQUENCY k (default k = 30)

Every k-th iteration after the most recent basis factorization, a numerical test is made to sce if
the current solution z satisfies the general linear constraints (including any linearized nonlinear
constraints, if any). If these are Az + s = 0 where s is the set of slack variables, the residual
vector r = Az + s is computed. If the largest component of r is judged to be too large, the current
basis is refactorized and the basic variables are recomputed to salisfy the general constraints more
accurately.

COEFFICIENTS 6000
Sec ELEMENTS.

COLUNNS n (default n = 3+ROWS)

This must specify an over-estimate of the number of columns in the constraint matrix (cxcluding
slack variables, but including any PHANTOM COLUMNS). If n proves to be too small, MINOS will
continue reading the MDP’S file to determine the true value of n, and an appropriate warning
message will be issued. If the MPS file number is the same as the system card reader, the problem

% will then be terminated; otherwise the MPS file will be re-read.

!

“ COMPLETION PARTIAL (dcfault)
COMPLETION FULL

: When there are nonlinear constraints, Lthis determines whether subproblems should be solved to
moderate accuracy (PARTIAL completion), or to full accuracy (FULL completion). MINOS effects
the option by using two sets of convergence tolerances for the subproblems.

Use of partial completion may reduce the work during early major iterations, unless the MINOR
ITERATIONS limit is aclive. The optimal set of basic and superbasic variables will probably be
determined for any given subproblem, but the reduced gradient may be larger than it would have
been with full completion.

An automatic switch to full completion occurs when it appears that the sequence of major
iteralions is converging. The switch is made when the nonlinear constraint crror is reduced below
100+(ROW TOLERANCE), the relative change in A is 0.1 or less, and the previous subproblem was
solved Lo optimality.

Full completion tends to give better Lagrange-multiplicr estimates. It may lead to fewer
major iterations, but may result in more minor itcrations.

CRASH OPTION k (default k = 1)

If a starting basis is not specified, a triangular basis will be sclected from certain columns of the
constraint matrix (A 7). Free rows and variables are given priority. Columns are then chosen
from A according Lo the following values of k. Slack columns (from I) are then added where

necessary. l

B 2 08 Tkl
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k Meaning

0 The all-slack basis is set up.

1 All columns of A arc considered.

2 Only the columns of A corresponding to the linear variables y will be considcred. Linear
programming will then be used to optimize y as much as possible, before the nonlinear
variables z are altered from their initial values. (If an accurate initial point z¢ is
provided, this may increase overall cfficiency.)

3 Nonlinear objective variables will be excluded from the initial basis.

4 Nonlinear Jacobian variables will be excluded from the initial basis.

In all cases, CRASH will refrain from sclecting variables that were made superbasic by means of
an FX indicator in the INITIAL bounds set.

CYCLE LINIT
CYCLE PRINT

(default { = 1)
(default p = 1)
CYCLE TOLERANCE (default ¢t = 0.0)
PHANTOM COLUMNS (default ¢ = 0)
PHANTOM ELEMENTS e (default e= 0)
These keywords refer to a facility for constructing and solving a sequence of related problems, as
described in seclions 1.9, 2.4 and 2.5. The COMMON block
COMMON /CYCLCM/ CNVTOL, JNEW,MATERR, MAXCY,NEPHNT, NPHANT, NPRINT

contains certain relevant variables.

1. { = MAXCY is the maximum number of problems to be solved.

2. p = NPRINT controls the printing of inlermediate solutions. At most, the last p solutions will
be output.

6 .y -~

3. t = CNVTOL is a rcal number for possible use in a user-specified convergence test within
subroutine MATMOD.

4. ¢ = NPHANT is the number of columns that can be added to the constraint matrix beyond
those specified in the MPS file. Each column must be added by means of a call to subroutine
MATCOL. If an error occurs, MATCOL increments MATERR (which is initially zero). Otherwise,
JNEW records the index of the new column.

5. e = NEPHNT is the number of nonzero elements that are allocated to the “phantom columns”
beyond those specified in the MPS file.

DAMPING PARAMETER d (dcfault d= 2.0)
This paramectler may assist convergence on problems that have highly nonlincar constraints. It is
intended to prevent large relative changes between subproblem solutions (zx, \x) and (Zx 41, Ak41)-
For example, the default value 2.0 prevents the relative change in cither zx or Ay from exceeding
200 per cent. It will not be active on well-bchaved problems.

The parameter is used to interpolate between the solutions at the beginning and end of each
major iteration. Thus, z44; and Az are changed to

Tx + a(zH.. - zk) and A + U(XH.l - Xk)

for some step-length o0 < 1. (In the case of nonlincar equations, this gives a damped Newton
method.)
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1. This is a very crude control. If the sequence of major iterations does not appear to be
converging, onc should first re-run the problem with a higher PENALTY PARAMETER p (say 10
or 100 times the default p). (Skip this re-run in the case of nonlinear equations. There are
no degrees of freedom and the value of p is irrelevant.)

2. If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).

3. For implementation reasons, the shortened step o applies to the nonlinear variables z, but
not to the linear variables y or the slack variables s. This may reduce the efliciency of the
control.

DEBUG LEVEL d (default d = 0)
This causes various amounts of information to be output to the PRINT file.

k Meaning
4] No debug output.
2 (or more) Output from MSSETX showing the maximum residual after a row check.

40 Output from LUSRPC showing the position of the last nonzero in the transformed
incoming column,

50 Output from LU2FAC showing each pivot row and column and the dimensions of the
dense matrix involved in the associated elimination.

100 Output from M2BFAC and M5LOG listing the basic and superbasic variables and their
values at every iteration.

DERIVATIVE LEVEL d (default d = 3)
This specifics which nonlinear function gradients arc known analytically and will be supplicd to
MINOS by the user subroutines FUNOBJ and FUNCON.

d Meaning
3 All objective and constraint gradients are known.
2 All constraint gradients are known, but some or all components of the objective gradient

are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are un-
known.
0 Some componcnts of the objective gradient are unknown and some of the constraint

gradients are unknown.
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The value d = 3 should be used whenever possible. It is the most reliable and will usually be the
most eflicient.

i d = 0or 2, MINOS will estimate the missing components of the objective gradient,
using finite differences. This may simplify the coding of subroutine FUNOBJ. However, it could
increase the total run-time substantially (since a special call to FUNOBJ is required for cach missing
element), and there is less assurance that an acceptable solution will be located. If the nonlinear
variables arc not well scaled, it may be necessary to specily a nonstandard DIFFERENCE INTERVAL
(see below).

If d = 0 or 1, MINOS will estimate missing elements of the Jacobian. For each column of the
Jacobian, one call to FUNCON is necded to estimate all missing clements in that column, if any. If
JACOBIAN = SPARSE and the sparsity pattern of the Jacobian happens to be

* * *®
? e

* ?
* *

where * indicates known gradients and ? indicates unknown elements, MINOS will use one call
to FUNCON to estimate the missing element in column 2, and another call to estimate both missing
elements in column 3. No calls are needed for columns 1 and 4.

At times, central differences are used rather than forward differences. Twice as many calls
to FUNOBJ and FUNCON are then needed. (This is not under the user’s control.)

Remember: when analytic derivatives are not provided, the attainable accuracy in locating
an optimal solution is usually less than when all gradients are available. DERIVATIVE LEVEL 3 is
strongly recommended.

DIFFERENCE INTERVAL hy (default hy = (FUNCTION PRECISION)})
This alters the interval &y that is used to estimate gradients by forward differences in the following
circumstances:

1. In the initial (“cheap”) phase of verifying the objective gradients.
2. For verilying the constraint gradients.

3. For estimating missing objective gradients.

4. For estimating missing Jacobian clements.
In the last three cases, a derivative with respect to z; is estimated by perturbing that component
of z to the value z; + hy(1 + |z;]), and then evaluating F(z) or f(z) at the perturbed point. The
resulting gradient estimates should be accurate to O(h;) unless the functions arc badly scaled.
Judicious alteration of Ay may sometimes lead to greater accuracy.

DUMP FILE / (default f = 0)
It £ > 0, the last solution obtained will be output to file f in the format described in section §.3.
The file will usually have been output previously as a LOAD file.

ELEMENTS e (default e = 5+«COLUMNS)
This must specily an over-estimate of thec number of nonzero clements (cocfficients a,;) in the
constraint matrix, including all cntrics in a DENSE or SPARSE Jacobian, and all nonzeros in the
matrices A,, Az, A3. (It should also include the number of PHANTOM ELEMENTS, if any.)

1. COEFFICIENTS is a valid alternative keyword.

2. If e proves to be too small, MINOS continucs in the manner described under COLUMNS.
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EMERGENCY VERIFY LEVEL
W See VERIFY LEVEL.

ERROR MESSAGF. LIMIT e (default e = 10)

This is the maximum number of error messages to be printed for each type of error occurring
whea the MDPS file is read. The default value is rcasonable for early runs on a particular MPS
file. If the same file is used repeatedly, e can be reduced to suppress warning of non-fatal errors.

I S

FACTORIZATION FREQUENCY k (dcfault k= 50)
At most k basis changes will occur between factorizations of the basis matrix.

1. With linear programs, the basis faclors are usually updated cvery iteration. The default k is
reasonable for typical problems. Higher values up to k = 100 (say) may be more efficient on
problems that are extremely sparse and well scaled.

2. When the objective function is nonlinear, fewer basis updates will occur as an optimum is
approached. The number of iterations between basis factorizations will therefore increase.
During these itcrations a test is made regularly (according to the CHECK FREQUENCY) to ensure
that the general constraints are satisfied. If necessary the basis will be refactorized before
the limit of k& updates is reached.

3. When the constraints are nonlinear, the MINOR ITERATIONS limit will probably preempt k.

FEASIBILITY TOLERANCE t (default ¢ = 1.0E~-8) ]
A feasible solution is one in which all variables satisfy their upper and lower bounds te within
the absolute tolerance £. (This includes slack variables. Hence, the general linear constraints are
also satisfied to within ¢t.)

1. MINOS attempts to find a fcasible point before optimizing the objective function. If the sum
of infeasibilitics cannot be reduced Lo zero, the problem is declared INFEASIBLE. Let SINF
be the corresponding sum of infeasibilitics. If SINF is quite small, it may be appropriate to
raise ¢ by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

e O fon o im0 n

2. Note: il SINF is not small, there may be other points that have a significantly smaller sum of -
infeasibilities. MINOS does not attempt to find the solution that minimizes the sum.

3. Il SCALE is used, [lcasibility is dcfined in terms of the scaled problem (since it is then more
likely to be meaningful). ‘1

4. A nonlinear objective function F(z) will be evaluated only at feasible points. If there are
regions where F(z) is undefined, every attempt should be made to eliminate thesc regions
from the problem. For example, if #(z) = /zy + log z3, il is cssential to place lower bounds -1
on both variables. If FEASIBILITY TOLERANCE = 10~6, the bounds z; > 10~% and z3 >
10~* might be appropriate. (The log singularity is more serious; in general, keep z as far

away from singularitics as possible.) -

5. Bounds should also be used to keep z more than ¢t away from singularities in f(z). .

' 8. If there are any nonlinear constraints, each major iteration attempts to satisfy their linearisa- -
tion to within the tolerance ¢. If this is not possible, the bounds on the nonlincar constraints

are relaxed temporarily (in scveral stages). -4

7. Feasibility with respect to the nonlincar constraints themselves is measured against the ROW
§ TOLERANCE (not against t). The relevant test is made at the start of a major iteration. ]
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' FUNCTION PRECISION €R (default ep = €°8)

The rclative function precision ¢g is intended to be a measure of the relative accuracy with which
the nonlincar functions can be computed. For example, if F(z) is computed as 1000.56789 for
some relevant z and if the first 8 significant digits are known to be correct, the appropriate value
for eg would be 1.0E-6.

(Ideally the functions F(z) or f*(z) should have magnitude of order 1. If all functions are
substantially less than 1 in magnitude, ¢p should be the absolute precision. For example, if
F(z) = 1.23458789E-4 at some point and if the first 6 significant digits arc known to be correct,
the appropriate value for ¢g would be 1.0E-10.)

1. The default value of ¢z is appropriate for simple analytic functions.

2. In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at reasonable
cost. Specifying an appropriatc FUNCTION PRECISION may lead to savings, by allowing the
linesearch procedure to terminate when the difference between function values along the
search direction becomes as small as the absolute error in the values.

HESSIAN DIMENSION r (default r = SUPERBASICS LIMIT or 30)

g This specifies that an r X r triangular matrix R is Lo be available for use by the quasi-Newton
algorithm (to approximate the reduced Hessian matrix according to ZTHZ =~ RTR). Suppose
there are s supcrbasic variables at a particular iteration.

1. If s < r, the first 8 columns of R will be used to approximate the reduced Hessian in the
normal manner. If there are no lurther changes to Lhe set of superbasic variables, the rate
of convergence will ultimately be superlinear.

=+ 1)

will be used to approximate the reduced Hessian, where R, is an r X r upper triangular
matrix and D is a diagonal matrix of order 8 — r. The rate of convergence will no longer be
superlinear,

{
!
} 2. If 8 > r, a matrix of the form
{

3. The storage required is of order 372, which is substantial if r is as large as 200 (say). In general,
r should be a slight over-estimate of the final number of superbasic variables, whenever storage
permits. It need not be larger than n, + 1, where n; is the number of nonlincar variables.
For many problems it can be much smaller than n;.

4. If SUPERBASICS LIMIT s is specified, the default value of r is the same number, s (and
conversely). This is a safeguard Lo cnsure supcrlinear convergence wherever possible. If
neither r nor s is specified, both default Lo the value 30.

INSERT FILE / (default £ = 0)
If £ > 0, this references a file containing basis information in the format of section 5.2.

1. The file will usually have been output previously as a PUNCH file.
2. The file will not be accessed if an OLD BASIS file is specified.

INVERT FREQUENCY
Sce FACTORIZATION FREQUENCY.
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ITERATIONS LIMIT k (default k = 3*ROWS + 10+*NONLINEAR VARS)
This is the maximum number of minor iterations allowed (i.e., iterations of the simplex method
or the reduced-gradient algorithm).

1. ITNS is an alternative keyword.
2. k = 0 is valid. Both feasibility and optimality are checked.

3. If CYCLE LIMIT > 1, the limit of & minor iterations applies to each cycle separately.

JACOBIAN DENSE (default)
JACOBIAN SPARSE :

This determines the manner in which the constraint gradients are evaluated and stored. It affects
the MP’S file and subroutine FUNCON.

1. The DENSE option is convenient if there are not many nonlinecar constraints or variables. It
requires storage for three dense matrices of order m; X n,.

2. The MPS file may then contain any number of Jacobian entries. Usually this means no entries
at all. ‘

3. For efficiency, the SPARSE oplion is preferable in all nontrivial cases. (Beware—it must be
specifically requested.) The MPS file must then specify the position of all Jacobian elements
(that are not identically zero), and subroutine FUNCON must store the elements of the Jacobian
array G in exactly the same order.

4. Tn both cases, if DERIVATIVE LEVEL = 2 or 3 the MPS file may specify Jacobian elements
that are constant for all values of the nonlincar variables. The corresponding clements of G
nced not be reset in FUNCON.

LAGRANGIAN YES (default)

LAGRANGIAN NO

This determines the form of the objective function used for the linearized subproblems. The

default value YES is highly recommended. The PENALTY PARAMETER value is then also relevant.
If NO is specified, subroutine FUNCON will be called only twice per major iteration. Hence

this option may be useful if the nonlincar constraint functions are very expensive to cvaluate.

However, in general there is a great risk that convergence may not occur. (Note: FUNCON will be

called more often to estimate J(z) if DERIVATIVE LEVEL < 2.)

LINESEARCH DEBUG AFTER ITERATION: (default 1 = 999999)

This causes considcrable information to be output by the linesearch procedurcs every iteration,
once iteration 7 has been completed. Its principal purpose is to assist the authors of the linescarch
procedures to determine if the pracedures are functioning correctly. In some cases it may confirm
that the function values are very “noisy”, or Lhat the gradicnts comnputled in FUNOBJ or FUNCON
are incorrect. '
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LINESEARCH TOLERANCE t (default t = 0.1)
For nonlinecar problems, this controls the accuracy with which an optimum of the merit function
will be located along the direction of search cach iteration.

1. t must be a real value in the range 0.0 < ¢t < 1.0.

2. The default value ¢ == 0.1 requests a moderately accurate search. It should be satisfactory
for many problems.

3. If the nonlinear functions are cheap lo evaluate, a more accurate scarch may be appropriate;
try t = 0.01 or £ = 0.001. The number of iterations should decrease, and this will reduce
total run time if there are many lincar or nonlincar constraints.

4. If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate.
If all gradicnts are known, try t = 0.5 or perhaps ¢ = 0.9. (The number of iterations will
probably incrcase, but the total number of function evaluations may decrcase enough to
compensate.)

5. If not all gradients are known, a reasonably accurate secarch remains appropriate. Each search
will require only 2-5 function values (typically), but many function calls will then be needed
to estimate missing gradients for the next iteration.

LIST LIMIT k (default k& = 0)

This limits the number of lines of the MPS file to be listed on the PRINT file during input. The
header cards (NAME, ROWS, COLUMNS, RHS, RANGE, BOUNDS, ENDATA) and comment cards will always
be listed, along with their position in the file.

LOAD FILE ! (default f = 0)
It £ > 0, this references a file containing basis information in the format of section 5.3.

1. The file will usually have been output previously as a DUNP file.
2. The file will not be acecssed if an OLD BASIS file or an INSERT file is specified.

LOG FREQUENCY k (default k = 1)
One line of the iteration log will be printed cvery k-th minor iteration. A value such as k = 10
is suggested for those interested only in the final solution.

LOWER BOUND ! (default { = 0.0)
Before the BOUNDS section of the MPS file is read, all structural variables are given the default

lower bound !. (Individual variables may subsequently have their lower bound altered by a
BOUND set in the MPS file.)

1. LOWER BOUND = 1.0E-5 (say) is a uscful method for bounding all variables away from sin-
gularities at zero. (Ixplicit bounds may also be necessary in the MPS file.)

2. If all or most variables are to be FRISK, use LOWER BOUND = -1,0E+20 to specify “minus
infinity”. (The default upper bound is already 1.0E+20, which is treated as “plus infinity”.)
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LU FACTOR TOLERANCE ty (default ¢, = 10.0)
LU UPDATE TOLERANCE ty (default t; = 10.0)

These tolerances affect the stability and sparsity of the basis factorization LB = U, during
refactorization and updates respectively. Bolh lolerances must satisfy ¢; > 1.0. The matrix L ia
a product of matrices of the form
1
()

where the multipliers p will satisfy |u| < &.
1. The default values t; = 10.0 usually strike a good compromise between stability and sparsity.
2. For large and relatively dense problems, t; = 25.0 (say) may give a marked improvement in
sparsity without impairing stability to a scrious degree.
3. For certain very special structures (e.g., band matrices) it may be neccssary to set ¢, in the
range 1.0 < £; < 2.0 to achicve stability.

MAJOR ITERATIONS k (default k = 20)
This is the maximmum number of major iterations allowed. It is intended to guard against an
cxcessive number of linearizations of the constraints, since in some cases the scquence of major
iterations may not converge.

For preliminary runs on a new problem, a lairly low MAJOR ITERATIONS limit should be
specified (e.g., 10 or 20). Sce the advice given under PENALTY PARAMETER.

MAXIMIZE
MINIMIZE (default)
This specifies the required direction of optimization. 1t applies to both linear and nonlinear terms

in the objective.

MINOR ITERATIONS k (default k = 40)

This is the maximum number of iterations allowed between successive lincarizations of the non-
lincar constraints. A moderate value (e.g., 10 < k < 60) prevents excessive effort being expended
on early major iterations, but allows later subproblems to be solved to completion.

In general it is unsafe to specify a value as small as k = 1 or 2. (Even when an optimal
solution has been reached, a few minor iterations may be needed for the corresponding subproblem
to be recognized as optimal.)

Note that an independent limit on total iterations should be specified vy the ITERATIONS
keyword as usual. If the problem is lincarly constrained, this is the only limit (i.e., the MINOR
ITERATIONS keyword is ignored).

WPS FILE ! (default £ = ?)
This is the file number for the MPS file. The default value is the system card reader IREAD, which

is often f = 6.
1. INPUT FILE is a valid alternalive keyword.

2. For nontrivial problems it is usually best to store the MPS file separately from the SPECS
file. If the ROWS, COLUMNS or ELEMENTS eslimatcs prove to be too low, MINOS will be able to
rewind the MPS file and try again.
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MULTIPLE PRICE k (default k = 1)

Whenever a PRICE operation is performed, the k best nonbasic variables will be seclected for
admission to the superbasic set. (“Best” mcans the variables with largest reduced gradients of
appropriate sign. If partial pricing is in effect, up to k variables are selected from the current
partition of A and [.)

1. The default value k = 1 is best for linear programs, since an optiinal solution will have zcro
superbasic variables.

2. Warning: il k > 1, MINOS will go into reduced-gradicnt mode even on purely lincar problems.
The subsequent iterations do not correspond to the very efficient suboptimization. (“minor
iterations”) carried out by standard linear prograinming systems using multiple pricing.
(MINOS varies all superbasic variables simulianeously. However, its storage requirements
are essentially independent of k on linear problems. Thus, k nced not be limited to 5 or 6 as
it is in standard systems, which require storage for k& dense vectors of dimension m.)

3. On large nonlinear problems it may be important to set k& > 1, if the starting point does
not contain many superbasic variables. For example, if a problemn has 3000 variables and 500
of them are nonlinear, the optimal solution may well have 200 variables superbasic. If the
problem is solved in several runs, it may be beneficial to use & = 10 (say) for ecarly runs,
until it seems that the number of superbasics has levelled off.

NEW BASIS FILE b (default f = 0)
If £ > 0, a basis map will be saved on file f every k-th iteration, where k is the SAVE FREQUENCY.

1. The first card of the file will contain the word PROCEEDING if the run is still in progress.

2. If f > 0, a basis map will also be saved at the end of a run, with some other word indicating
the final solution status.

NONLINEAR CONSTRAINTS my (default my = 0)
NONLINEAR VARIABLES ny (default ny = 0)
NONLINEAR OBJECTIVE VARIABLES  n) (default ny = 0)
NONLINEAR JACOBIAN VARIABLES nf (default n{ = 0)

These keywords define the parameters M and N in subroutines FUNOBJ and FUNCON. For example,
M in FUNCON will take the value my, if my > 0.

1. If the objective funclion and the constraints involve the same scl of nonlinear vartables z,
then NONLINEAR VARIABLES n; is the simplest way to sct N to be the same value for both
subroutines.

2. Otherwise, the NONLINEAR OBJECTIVE and NONLINEAR JACOBIAN keywords should be used to
specily n} and nf scparately.

3. If my = 0, the value n{ = 0 is assumed regardless of ny or n.

4. Remember that the nonlinear constraints and variables must always be the first oncs in the
problem. It is usually best to place Jacobian variables before objective variables, so that nf <

n} (unless ny = 0). This affects the way the function subroutines should be programmed,
and the order in which variables should be placed in the COLUMNS section of the MPS file.
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OBJECTIVE CcosT

This specifies the 8-character name of the type N row in the MPS file to be selected as the linear
part of the objective function (i.c., the objective function for linear programs).

t. If 0BJECTIVE is not specified, or il the name is blank, the first N row in the ROWS section
of the MPS file will be sclected. (Warning: objective rows must be listed after nonlinear
constraint rows in the ROWS section of the MI’S file.)

2. If the ROWS section contains one or more N rows but you do not want any of them to be
used in the objcctive function, specify a dummy name. If the objective is defined entirely by
subroutine FUNOBJ it may be helpful to specify OBJECTIVE = FUNOBJ. (I{owever, don't expect
a different name to invoke a different subroutine!)

OLD BASIS FILE J (dcfault f= 0)
If f > 0, the starting point will be obtained from this file in the format of section 5.1.

1. The file will usually have becn output previously as a NEW BASIS FILE.

2. The file will not be acceptable if the number of rows or columns in the problem has been
altered.

OPTIMALITY TOLERANCE t (default ¢t = 1.0E-8)

This is used to judge the size of the reduced gradients d; = g5 — nTas, where g; is the gradient
of the objective function corresponding to the j-th variable, a; is the associated column of the
constraint matrix (or Jacobian), and = is the set of dual variables.

1. By construction, the reduced gradients lor basic variables are always zero. Oplimality will
be declared if the reduced gradients for nonbasic variables at their lower or upper bounds
satisfy

diflixll 2 =t or  d,/lIx]| S ¢t
respectively, and if
Id;1/lim]) < ¢
for superbasic variables.

2. In the above tests, ||x]| is a measure of the size of the dual variables. 1t is included to make
the tests independent of a scale factor on the objective [unction.

3. The quantity actually used is defined by

m
0= E I'l'lr

=1

lIxll = max{o/vm,1},

so that only large scale factors arc allowed for. If the objeclive is scaled down substantially,
the test for optimality reduces to comparing just d; against ¢.
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PARTIAL PRICE P (default p =1 or ¢ (see below))

This parameter is recommended for large problems that have significantly more variables than
constraints. It reduces the work required for each “pricing” operation (when a nonbasic variable
is selected to become superbasic).

1. When p = 1, all columns of the constraint matrix (A [) are secarched.

2. Otherwise, A and I are partitioned to give p roughly equal segments A;, I; (j = 1 to p).
Il the previous pricing scarch was successful on Aj;_y, [;_;, the next search begins on the
segments Aj, I;. (All subscripts here are modulo p.} If a reduced gradient is found that
is larger than some dynamic tolerance, the variable with the largest such reduced gradient
(of appropriate sign) is selected to become superbasic. (Several may be selected if MULTIPLE
PRICE has been specified.) If nothing is found, the scarch continues on the next segments
Aji1, Iy, and so on.

3. The default value of pis 1 for moderate-sized problems, but may be greater than 1 otherwise.
A quantity

¢ = max{1000, 4+ROWS}

is defined. If COLUMNS > ¢ and PARTIAL PRICE has not becn specified, p will take the value
COLUMNS/2*ROWS}.

4. PARTIAL PRICE p is rccommended for time-stage models having p time periods.

PENALTY PARAMETER p {default p = 100.0/m,)
This is the valuc of p in the modified augmented Lagrangian. It is used only when LAGRANGIAN
= YES.

For carly runs on a problem with unknown characteristics, something like the default value
should be specified. If the problem is known to be highly nonlinear, specily a larger value, such
as 10 times the default. In general, a positive value of p may be necessary to ensure convergence,
even for convex programs.

On the other hand, il p is too large, the rate of convergence may be unnecessarily slow. If
the functions are not highly nonlinear or a good starting point is known, it will often be safe to
specify PENALTY PARAMETER 0.0.

If several related problems are to be solved, the following strategy for setting the PENALTY
PARAMETER may be useful:

1. Initially, use a moderate value of p, such as the default, and a reasonably low ITERATIONS
and/or MAJOR ITERATIONS limit.

2. I successive major ilerations appear to be terminating with radically dilferent solutions, the
penalty parameter should be increased. (See also the DAMPING PARAMETER.)

3. If there appears to be little progress beiween major iterations, the penalty parameter could
be reduced.

PHANTOM COLUMNS c {defanlt ¢ = 0)
PHANTOM ELEMENTS e (default e = 0)
Sce the CYCLE parameters.
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PIVOT TOLERANCE t (default t = €8)

This allows the pivot tolerance to be altered if necessary. (The tolcrance is used to prevent
columns entering the basis if thcy would cause the basis to become almost singular.) The default
value of ¢ is roughly 10~!! for double precision on IBM systems. This should be satisfactory in
most circumstances.

PRINT LEVEL (JFLXB) P (default p = 00001)
This varies the amount of information that will be output to the printer file. It is independent
of the LOG FREQUENCY. Typical values are

PRINT LEVEL 1
which gives normal output for linear and nonlinear problems, and
PRINT LEVEL 11

which in addition gives the values of the nonlinear variables z at the start of each major iteration,
for problems with nonlinear constraints.

In general, the value being specified is best thought of as a binary number of the form
PRINT LEVEL JFLXB
where each letter stands for a digit that is either O or 1. The quantities referred to are:

B BASIS statistics, i.e., information relating to the basis matrix whenever it is refaclorized.
X zx, the nonlinear variables involved in the objective function or the constraints.
L Ak, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed if the

option LAGRANGIAN = NO is specified, since Ay = 0 then.)
F J(zk), the values of the nonlinear constraint functions.
J J(zk), the Jacobian matrix.

To obtain output of any item, sct the corresponding digit Lo 1, otherwise to O.

If J=1, the Jacobian matrix will be output column-wise at the start of cach major iteration.
Column j will be preceded by the value of the corresponding variable z; and a key to indicate
whether the variable is basic, superbasic or nonbasic. (Hence if J=1, there is no reason Lo specify
X=1 unless the objeclive contains mote nonlinear variables than the Jacobian.) A typical line of
output is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mecan that z3 is basic at value 12.5, and the third column of the Jacobian has
clements of 1.0 and 2.0 in rows | and 4.

PRINT LEVEL O may be used to suppress most output, including page ejects between major
iterations. (Error messages will not be suppressed.) This print level should be used only for
production runs on well understood models. A high LOG FREQUENCY may also be appropriate for
such cases, e.g. 100 or 1000. (For convenicnce, LOG FREQUENCY O may be used as shorthand for
LOG FREQUENCY 99999.)

PROBLEN NUMBER n (default n = 0)
For nonlincar problems, this assigns a value to the paramcter NPROB in the user subroutines
FUNOBJ, FUNCON and MATMOD. ’

[ el }
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PUNCH FILE / (default f = 0)
If f > 0, the final solution obtained will be output to file f in the format described in section
5.2. I'or lincar programs, this format is compatible with various commercial systems.

RADIUS OF CONVERGENCE r (default r= 0.01)

This determines when the penalty parameter p will be reduced (if initialized to a positive value).
Both the nonlinear constraint violation (sce ROWERR below) and the relative change in consecu-
tive Lagrange multipler eslimates must be less than r at the start of a major iteration before
p is reduced or set to zero. Once p is zero, the sequence of major iterations should converge
quadratically to an optimum.

RANGES RANGEOO1
This specifies the 8-character name of the range set to be selected from the MP’S file.

1. RNGS is a valid alternative keyword.

2. If RANGES is not specified, or if the name is blank, the first range set in the MPS file will be
selected.

3. If the MPS file contains one or more range sets but you do not want any of them to be used,
specify a dummy name such as RANGES = NONE.

RHS RHSIDE3
This specifies the 8-character name of the righthand side to be selected from the MPS file.

1. If RHS is not specified, or il the name is blank, the first righthand side in the MPS fle will be
selected.

2. If the MPS file contains one or more righthand sides but you do not want any of them to be
used, specify a dummy name such as RHS = NONE.

ROWS m (default m = 100)
This must specify an over-estimate of the number of rows in the constraint matrix. It includes
the number of nonlinear constraints and the number of general lincar constraints.

If m proves to be too small, MINOS continues in the manner described undcr COLUMNS.

ROW TOLERANCE €, (default ¢, = 1.0E-8)
This specifies how accurately the nonlincar constraints should be satisfied. (I3oth “ROW” and
“TOLE” are significant on this data card.) The default value of 1.0E-8 is often appropriate, since
the MPS file contains data to about that accuracy.

Let ROWERR be dcfined as the maximum component of the residual vector f(z) + Ajy — by,
normalized by the size of the solution. Thus,

ROWERR = ||f(z) + A1y — bi}|eo /| XNORM,

where XNORM is a measurc of the size of the basic and superbasic variables. The solution (z,y)
is regarded as acceptably feasible if ROWERR < ¢,.

If some of the problem functions are known to be of low accuracy, a larger ROW TOLERANCE
may be appropriate.
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SAVE FREQUENCY k (default k = 100)
Il a NEW BASIS file has been specified, a basis map deseribing the current solution will be saved
on the appropriate file every k-th iteration. A BACKUP BASIS file will also be saved if specified.

SCALE

SCALE YES

SCALE NO (default)

SCALE TOLERANCE t (default ¢ = 0.9)
SCALE, PRINT

SCALE, PRINT, TOLERANCE = t (default t = 0.9)

All forms of SCALE (except NO) request that the linear constraints and variables be scaled by an
iterative procedure that attempts to make the matrix coeflicients as close as possible to 1.0. This
will sometimes improve the performance of the solution procedures.

The printed solution and the basis and solution files are output in original unscaled units.
Scaling is thercfore transparent to the user, except that more storage is required (NB = n + m
double words) and precautions must be taken in applications involving subroutines MATMOD and
MATCOL.

1. The tolerance ¢ must lic in the range 0.0 < ¢t < 1.0. It affects how many passes might
be needed Lhrough the constraint matrix. On each pass, the scaling procedure computes for
cach column j the ratio of the largest and smallest nonzero coeflicients in the column:

' = max |a,,;|/ minla,,
P ‘.(u"j#o)l i/ \ laisl,
and records the largest such ratio, max; p,. If this is less than ¢ times its previous value,
another scaling pass is performed to adjust the row and column scales.

2. Raising ¢ from 0.9 to 0.99 (say) will probably increase the number of scaling passes. At most

10 passes will be made.

3. If PRINT is specified, the row-scales 7(i) and column-scales ¢(7) will be output (f =1 to m,
J = 1 to n). The scaled matrix cocflicients are

ai; = ag;r(i)/c(4),
and the scaled bounds on the variables and slacks are
lj = l;¢(5), u; = u;c(j),

where ¢(j) = r(j — n) if j > n. Thesc scaled items arc stored permanently in place of the
original data.

4. The scale lactors for nonlinear constraints and nonlincar variables arc defined to be 1.0; they
are not printed.

SOLUTION YES (default)

SOLUTION NO

SOLUTION IF OPTIMAL, INFEASIBLE, or UNBOUNDED

SOLUTION IF ERROR CONDITION

SOLUTION FILE / (default f = 0)

The first four options determine whether the final solution obtained is to be output to the PRINT
file. The FILE option operates independently; if f > 0, the final solution will be output to file f
(whether optimal or not).
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{ 1. For the YES, IF OPTIMAL, and IF ERROR options, floating-point numbers are printed in F18.86
format, and “infinite” bounds are denoted by the word NONE.

2. For the FILE option, all numbers are printed in 1PE18.8 format, including “infinite” bounds
which will bave magnitude 1.000000E+20.

3. To sec more significant digits in the printed solution, it will soinetimes be useful to make f
refer to the systemn PRINT file.

START OBJECTIVE CHECK AT COLUMN k (default k = 1)
START CONSTRAINT CHECK AT COLUNN k (default k = 1)
STOP OBJECTIVE CHECK AT COLUMN/ (default | = n})
STOP CONSTRAINT CHECK AT COLUMN/ (default | = nY

These keywords may be used to abbreviate the verification of individual gradient elemments
computed by subroutines FUNOBJ and FUNCON. For example:

1. If the first 100 objective gradients appeared to be correct in an carlier run, and if you have
just found a bug in FUNOBJ that ought to fix up Lhe 101-th component, then you might as
well specify START OBJECTIVE CHECK AT COLUMN 101. Similarly for columns of the Jacobian
matrix.

2. If the first 100 variables occur nonlinearly in the constraints, and the remaining variables are
nonlincar only in the objective, then FUNOBJ must set the first 100 components of G(*) to
zero, but thesc hardly need to be verified. The above data card would again be appropriate.

These keywords are effective if VERIFY LEVEL > 0. For an emcrgency verification at the end of
a run, all objective and constraint gradients will be checked if EMERGENCY VERIFY LEVEL > 0.

SUBSPACE TOLERANCE t (default ¢ = 0.5)
This controls the extenl to which optimization is confined to the current set of basic and superbasic

variables (Phase 4 iterations), beforc one or more nonbasic variables are added Lo the superbasic
set (Phase 3).

1. ¢t must be a real number ir the range 0.0 < t € 1.0. It is used as follows.

2. When a nonbasic variable z; is made superbasic, the resulting norm of the reduced-gradient
vector (for all superbasics) is rccorded. Let this be {|Z7go||. (In fact, the norm will be |d;],
the size of the reduced gradient for z;.)

3. Subsequent Phase 4 iterations will continue at least until the norm of the reduced-gradient
vector satisfies ||ZTg|| < ¢ X ||#Tgoll. ()|%Tg|| is the size of the largest reduced-gradicnt
component among the superbasic variables.)

4. A sinaller value of t is likely to increase the total number of iterations, but may reduce the
number of basis changes. A larger value such as £ = 0.9 may sometimes lead to improved
overall cfficiency, if the number of superbasic variables has to increasc substantially between
the starting point and an optimal solution.

5. Other convergence tests on the change in the function being minimized and the change in
the variables may prolong Phase 4 iterations. This helps Lo make the overall performance
insensitive to larger values of ¢.

P T Y S
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SUMMARY FILE S (default f = 0)
SUMMARY FREQUENCY k (default & = 100)

It £ > 0, a brief log will be output to file f, including one line of information every k-th iteration.
[n an interactive environment, it is useful to direct this output to the terminal, to allow a run to
be monitored on-line. (If something looks wrong, the run can be manually terminated.) Further
details are given in section 6.6.

SUPERBASICS LIMIT 8 (default s = HESSIAN DIMENSION, 30, or 1)
This specities “how nonlinear” you expect a problem to be.

1. Normally, 8 need not be greater than ny + 1, where n) is the specified number of nonlinear
variables. ’

2. For many problems (that are not highly nonlinear), s may be considerably smaller than n;.
This will save storage if n; is very large.

3. This parameter also scts the HESSIAN DIMENSION, unless the latter is specified explicitly (and
conversely). If neither parameter is specified, both default to the value 30 (cxcept if there
are no nonlincar variables, in which case both decfault to 1).

SUPPRESS PARAMETERS

Normally MINOS prints the SPECS file as it is being read, and then prints a complete list of the
available keywords and their final values. The SUPPRESS PARAMETERS option tells MINOS not to
print the full list. (Both “SUP” and “PARA” arc significant.)

UNBOUNDED OBJECTIVE VALUE Froax (default Fp ., = 1.0E+20)

UNBOUNDED STEP SIZE Qrnax (default aynax = 1.0E+10)

These paramecters are intended to detect unboundedness in nonlinear problems. (They may or
may not achieve that purpose!) During a linesearch of the form

min F(z + ap),
o

if |F] exceeds Fiyax OF a exceeds amay, iterations are terminated with the exit message PROBLEM
IS UNBOUNDED (OR BADLY SCALED).

1. If singularitics are present, unboundcdness in /(z) may be manifested by a floating-point
overflow (during the evaluation of F(z + ap)), before the test against Fpax can be made.

2. Unboundednecss in z is best avoided by placing finite upper and lower bounds on the variables.
(For convenicnce, this can be accomplished in the SPECS file; sce the LOWER and UPPER BOUND
parameters.)

UPPER BOUND u (default u = 1.0E+20)

Before the BOUNDS section of the MPS file is read, all structural variables are given the default
upper bound u. (Individual variables may subsequently have their upper bound altered by the
BOUNDS section in the MPS file.)

L1
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VERIFY LEVEL i (default ¢, = 0)
é EMERGENCY VERIFY LEVEL Iy (default I3 = max(ly,0))
VERIFY N0
i VERIFY LEVEL o

VERIFY OBJECTIVE GRADIENTS

VERIFY LEVEL 1

VERIFY CONSTRAINT GRADIENTS

VERIFY LEVEL 2

VERIFY

VERIFY YES

VERIFY GRADIENTS

VERIFY LEVEL 3

These keywords refer to finite-difference checks on the gradient elements computed by the user
subroutines FUNOBJ and FUNCON. It is possible to specify VERIFY LEVELs 0-3 in several ways,
as indicated above. For example, the nonlinear objective gradients (if any) will be verified if
either VERIFY OBJECTIVE or VERIFY LEVEL 1 is specified. Similarly, both the objective and
the constraint gradients will be verified if VERIFY YES or VERIFY LEVEL 3 or just VERIFY is
specified.

If 0 < I} < 3, gradients will be verified at the first point reached that satisfies the linear
constraints and the upper and lower bounds. The current linearization of the nonlinear constraints
must also be satisfied. If {} = 0, only a “cheap” test will be performed, requiring 3 calls to FUNOBJ
or 2 calls to FUNCON. If 1 < I; < 3, a more reliable check will be made on individual gradient
components, within the ranges specified by the START and STOP keywords. A key of the form
“0K” or “BAD?” indicates whether or not each component appears to be correct.

If 10 < I} < 13, the action is the same as for {; — 10, except that it will take place ;
immediately after the first basis factorization. Any superbasic variables will retain their initial i
value (for example, those specified with FX indicators in the INITIAL bound set, if no basis file is
loaded). This option may be prefcrable, or even necessary if the first set of lincarized constraints
has no feasible solution. However, if the nonlinear functions are not well defined at the frst
(infeasible) point, a fatal error may result.

An EMERGENCY gradient check takes place at the end of a run if the solution algorithm is
unable to make proper progress. The various levels I3 = 0-3 have the same meaning as for {;,
but the individual gradient checks are not controlled by the START and STOP keywords.

1. VERIFY LEVEL 3 should be specified whenever a new function routine is being developed.

2. Missing gradients are not checked; i.e., they result in no overhead.

3. The dcfault action is to perform a cheap check on the gradients at the first feasible point.
Even on debugged function routines, the mcssage “GRADIENTS SEEM TO BE OK” will provide
certain comfort al nominal expense.

4. If necessary, checking can be suppressed by specifying VERIFY LEVEL -1 and/or EMERGENCY
VERIFY LEVEL -1,

T e W0, SRS 3
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WEIGHT ON LINEAR OBJECTIVE w (default w = 0.0)

This keyword invokes Lhe so-called composite objective technique, if the first solution obtained is
infeasible, and if linear terms for the objective function are specified in the MPS file. While trying
to reduce the sum of infeasibilities, the mcthod also attempts to optiinize the lincar objective.

e T,

1. At each infeasible iteration, the objective function is defined to be

minimize gw(c"z)+ (sum of infeasibilities),

where ¢ = 1 for MINIMIZE, 0 = —1 for MAXIMIZE, and c is the lincar objective row.

2. If an “optimal” solution is reached while still infeasible, w is reduced by a factor of 10. This
helps to allow for the possibility that the initial w is too large. It also provides dynamic
allowance for the fact the sum of infcasibilities is tending towards zero.

3. The effect of w is disabled after 5 such reductions, or if a feasible solution is oblained.

WORKSPACE (USER) maxw (default maxw = 0)

WORKSPACE (TOTAL) maxz (default maxz = NWCORE)

These keywords define the limits of the region of storage that MINOS may use in solving the
current problem. The main work array is declared in the main program, along with its length,
by statements of the form '

DOUBLE PRECISION Z(25000)
DATA NWCORE/25000/

where the actual length of Z must be specified at compile time. The values specified by the
WORKSPACE keywords are stored in

COMMON /U2MAPZ/ MAXW,MAXZ,LEN(30),L0OC(80)
and workspace may be shared according to the following rules:
1. 2(1) through Z (MAXW) is available to the usecr. .
2. Z(MAXW+1) through Z(MAXZ) is available to MINOS, and should not be altered by the user. ‘
3. Z(MAXZ+1) through Z(NWCORE) is unused (or available to the user).
The arrays LEN and LOC are not used by MINOS.

The WORKSPACE parameters are most uscful on machines with a virtual (paged) store. Some !
systems will allow NWCORE to be set to a very large number (say 500000) with no overhead in '
T

saving the resulting object code. At run time, when various problems of different size are to be
solved, it may be sensible to confinc MINOS to a portion of Z to reduce paging activity slightly.
(However, MINOS accesses storage contiguously wherever possible, so the benefit may be slight.
In general it is far better to have too much storage than not enough.)
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4. THE MPS FILE

An MPS file is required for all problems to specify names for the variables and constraints, and to
define the constraints themselves. In contrast to the relatively free format allowed in the SPECS
file, a very fixed format must be used for the MI'S file. (This means that each itemn of data must
appear in specific columns.)

Various “header cards” divide the MI’S [ile into several sections as follows:

NAME
ROWS

CbLUMNS

RHS

RANGES (optional)
Bl;)UNDS (optional)

ENDATA

Iach header card must begin in column 1. The intervening card images (indicated by “.” above)

all have the following data format:

Columns 2-3 5-12 15-22  25-36 40 -47 50-61
Contents Key Name0 Namel  Valuel Name2  Value2

In addition, “comment” cards are allowed; these have an asterisk “*” in column 1 and any
characters in columns 2-22, :

MPS format has become the industry standard. Files of this kind are recognized by all
commercial mathemnatical programming systems (including MPS/360, MPSX, MPSX/370 and
MPS 111 on 1BM systems; APIXX 11 and IV on CDC machines; FMPS on Univac systems; TEMPO
on Burroughs systems). They may be created by hand, by your own special-purpose program, or
by various commercial “matrix generators”, such as GAMMA, MAGEN and OMNI.

Beware that variations are inevitable in almost any “standard” format. Some restrictions in
the format accepted by MINOS are listed later. Somce cxtensions are also needed for nonlinear
problems.

4.1 The NAME Card
NAME MODELOO1 (for example)

This card contains Lhe word NAME in columns 1-4, and a name for the problem in columns 15--22.
(The name may be from 1 to 8 characlers of any kind, or it may be blank.) The name is used to
label the solution outputl, and it appears on the first card of cach basis file.

The NAME card is normally the first card in the MI’S file, but it may be preceded or followed
by comment cards,
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4.2 The ROWS Section

ROWS
E FUNO1
G FUNO2 (for example)
L CAPITAL1
N COST

The general constraints are commonly referred to as rows. The ROWS section contains one card
for each constraint (i.e., for each row). Key defines what type the constraint is, and Nanc0 gives
the constraint an 8-character name. The various row-types are as follows:

Key Row-type

AV

E
G
L <
N Objective
N Free

(The t-character Key may be in column 2 or column 3.)

Row-typesE, G and L are easily understood in terms of a linear function aTz and a right-hand
side 8. They would be used to specify constraints of the form

aTz =, a’z > p and a’z < B

respectively. (Nonzero clements of the row-vector a will appear in appropriate parts of the
COLUMNS section, and il 3 is nonzero it will appear in the RIS section.)

Row-type N stands for “Not binding”", also known as “Free”. It is used to define the objective
row, and also to prevent a constraint from actually being a constraint. (Note that —oo < a7z <
+00 is not really a constraint at all. Type N rows are implemented by giving them infinite bounds
of Lhis kind.)

The objective row is a free row that specifies the vectors ¢ and d in Lhe objective function
F(z) +cTz + dTy. It is taken to be the first free row, unless some other free row is specilicd by
the OBJECTIVE keyword in the SPECS file.

The ROWS section need not contain any [ree rows if ¢ = d = 0. If there are some nonlinear
objective variables, the objective function will then be F{z) as defined hy subroutine FUNOBJ.
Otherwise, no objective function exists and MINOS will terminate at the first point that satisfies
the constraints. .

If the ROWS section does contain lree rows but none of them is intended to be an objective
row, then some dummy name such as OBJECTIVE = NONE should be specilied in the SPIECS file
to prevent the first free row from being sclected. (If the objective function is ¥(z) with no linear
terms, OBJECTIVE = FUNOBJ would be a mnemonic reminder.)

Row-names for Nonlinear Constraints

The names of nonlincar constraints must be listed first in the ROWS scction, and their order
must be consistent with the computation of the array F(#) in subroutine FUNCON.

In particular, the objective row (if any) must appcar after the list of nonlincar row namecs.
For simplicity we suggest that potential objective rows be placed last:

| —d o) — o —
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] ROWS
G FUNO1 nonlinear constraints first
G FUNO2
E LINOL now linear constraints
E LINO2

N COSTO1 objective rows last
N CO0STo02

4.8 The COLUMNS Section

1 5..... 12 15....22 25........ 36 40....47 5BO........ 81 (fields)
COLUMNS
X01 FUNOS 1.0 ROWO9 -3.0
X01 ROWOS 2.6 ROW12 1.123456 (example)
X01 ROWO3 -11.111111
- X02 FUNO2 1.0
X02 COSTO1 5.0

For each variable z; (say), the COLUMNS section defines a name for z; and lists the nonzero
entries a,, in the corresponding column of the constraint matrix. The nonzeros for the first
column must be grouped togcther before those for the second column, and so on. If a column has
several nonzeros, it does not matter what order they appear in (as long as they all appear before
’ the next column).

In general, Key is blank (except for comments), Name0 is the column name, and Namel,
Valuel give a row name and value for some coefficient in that column. If there is another row
name and value for the same column, they may appear as Name2, Value2 on the same card, or
they may be on the next card.

If either Namel or Name2 is blank, the corresponding value is ignored.

Values are read by MINOS using Fortran format E12.0. This allows values to be entered
in several forms; for example, 1.2345878, 1.2345878E+0, 123.45678E-2 and 12345878E-07 all
represeni the same number. It is usually best to include an explicit decimal point.

Beware that spaces within the value fields are the same as 0's (on most computer systems).
In particular, this means that if an cxponent like E-2 appears then it must be right-justified in
the value ficld. For example, the two values

1.23E-02
1.23k-2
are not the same if the decimal point is in column 30 in both cases. The second value is actually

1.23E-20.

et A

In the example above, the variable called X01 has 5 nonzero coeflicients in the constraints
named FUNOS, ROWO9, ROWO8, ROW12 and ROWO3. The row names and valucs may be in an arbitrary
: order, but they must all appear before Lhe entries for column X02.

There is no need Lo specify columns for the slack variables; they are incorporated implicitly.
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Nonlinear Variables

Nonlincar variables must appear first in the COLUMNS scction, ordered in 2 manner that is
consistent with the array X(») in the user subroutines FUNOBJ and/or FUNCON. In the example

minimize (2 +y+ 2)% + 3z + 5w

subject to 22 + ¢ + z =2
oyt + w=1
2z + 4y >0

2>0, w>0

we have three nonlinear objective variables (z, y, 2}, two nonlinear Jacobian variables (z, y), one
lincar variable w, two nonlinear constraints, one linear constraint, and some simple bounds. The
noalincar constraints and variables should always be ordered in a similar way, at the top left-hand
corner of the constraint matrix. The latter is therefore of the form

A=(h M)
Az A3

where Ji is the Jacobian matrix. The variables associated with Ji and Az must appear first in
the COLUMNS section, and their order must be consistent with the array X(*) in subroutine
FUNCON. Similarly, entries belonging to Ji must appear in an order that is consistent with the
array G(*) in subroutine FUNCON.

For convenience, let the first n; columns of the constraint matrix be

(Jk) _ (jl J2 ---jm)
Az o 0102...0,“’

where j; is the first column of Ji and a, is the first column of A;. The cocflicients of j; and
a), must appear before the cocflicients of j; and az (and so on for all columns). Usually, those
belonging to ji will appear beforc any in a1, but this is not essential. (If cortain lincar constraints
are made nonlinear at a later date, this mecans that entries in the COLUMNS scction will not
have to be reordered. Howcever, the corresponding row names will need be moved towards the top
of the ROWS section.)

If JACOBIAN = DENSE, the elements of J; nced not be specified in the MP’S file. If JACOBIAN
= SPARSE, all nonzero elements of .J, must be specified. Any variable cocflicients should be given
a dummy value, such as zero. These dummy entries identily the location of the elements; their
actual values will be computed later by subroutine FUNCON or by [inite differences.

If all constraint gradients are known (DERIVATIVE LEVEL = 2 or 3), any Jacobian elements
that are constant may be given their correct values in the COLUMNS section, and then they need
nol be reset by subroutine FUNCON. This includes values that are identically zero  such clements
do not have to be specified anywhere {in the MI’S file or in FUNCON). In other words, Jacobian
elements are assumed to be zero unless specified otherwise.

Note that X(*) necd not have the same dimension in subroutines FUNOBJ and FUNCON (i.c.,
the parameter N may differ), in the event that dilferent numbers are specified by the NONLINEAR
OBJECTIVE and NONLINEAR JACOBIAN kcywords. However the shorter set of nonlinear variables
must occur at the beginning of the longer set, and the ordering of variables in the COLUMNS
section must match both sets.

A nonlinear objective function will often involve variables that occur only finearly in the
constraints. In such cases we recommend Lhat the objective variables be placed after the Jacobian
variables in the COLUMNS section, since the Jacobian will then be as small as possible. (Sce the
variable z in the example above.)
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4.4 The RHS Section

1 5..... 12 15....22 25........ 36 40....47 b6O........ 61
RHS
RHSO1 FUNO1 1.0 ROWO9 -3.0
RHSO01 ROWOS 2.6 ROW12 1.1234566
RHS01 ROWO3 -11.111111
RHS02 FUNO2 1.0
RHS502 FUNO4 5.0

This section specifies the elements of b; and by in (2)-(3). Together these vectors comprise what
is called the right-hand side. Only the nonzero cocfficients nced to be specified. They may appear
in any order. The format is exactly the same as in the COLUMNS section, with Name0 giving a
name to the right-hand side.

If 4 = 0 and by = 0, the RHS header card must appear as usual, but no rhs coefficients need
follow.

The RHS section may contain more than one right-hand side. The first one will be sed
unless some other name is specified in the SPECS file.

4.5 The RANGES Section (Optional)

1 5..... 12 15....22 25........ 38 40....47 650........ 81
ROWS
E FUNO1
E FUNO2
G CAPITAL1L
L CAPITAL2
COLUMNS
RHS
RHSO1 FUNO1 4.0 FUNO2 4.0
RANGES
RANGEO1 FUNO1 1.0 FUNO2 -1.0
RANGEO1 CAPITAL1 1.0 CAPITAL2 1.0
Ranges are used for constraints of the form
1 <aTz <y,
where both [ and u are finite. The range of the constraint is r = u ~ {. Either [ or u is specified

in the RHS section (as b say), and r is defined in the RANGES section. The resulting { and u
depend on the row-type of the constraint and the sign of r as follows:

Row-type Sign of r Lower limit, | Upper limit, u

E + b b+ ir|
E - b—|r| b
G + or — b b+ |r|
L +or — b—|r| b
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The format is exactly the same as in the COLLUMNS section, with Name0 giving a name to
the range set. The constraints listed above will have the following limits:

4.0 <FUNO1 < 5.0,
3.0 <FUNo2 < 4.0,
1.0 < CAPITAL1 < 5.0,
3.0 < CAPITAL2 < 4.0.

The RANGES section may contain more than one sct of ranges. The first set will be used
unless some other name is specified in the SPECS file.

4.6 The BOUNDS Section (Optional)

1 6..... 12 15....22 2b........ 36
BOUNDS

UP BOUNDO1  XOt 4.0

UP BOUNDO1  X02 4.0

LO BOUNDO1  XO4 -1.0

UP BOUNDO1  XO04 4.0

FR BOUNDO1  XO8
UP BOUNDO1  XO08 4.0

default values 0 and oo can be changed in the SPECS file to { < z; < u by the LOWER and UPPER
keywords respectively.

Il uniform bounds of this kind are not suitable, any number of alternative values may be
specified in the BOUNDS section. As usual, several scts of bounds may be given, and the first
sct will be used unless some other name is specified in the SPICS file.

In this section, Key gives the type of bound required, Narmc@ is the name of the bound set,
and Namel and Valuel are the column name and bound value. (Name?2 and Value2 are ignored.)

l.et { and u be the default bounds just mentioned, and let z and b be the column and value
specified. The various bound-types allowed are as follows:

The default bounds on all variables z; (excluding slacks) are 0 < z; £ oo. If necessary, the

Key Bound-type Resulting bounds
LO Lower bound b <z< u
UP Upper bound [ <z< b
FX Fixed variable b <z< b (ie, £=0b)
FR Frce variable -0 < &< +o0
MI Minus infinity —o<r< u
PL Plus infinity | <<+
The effect of the examples above is to give the lollowing bounds:

i <x01<4.0
I <€Xx02<10
~1.0< X04 < 4.0
—-o0o0 < X08 < 1.0

Note that types FR, MI, or PL should always be used to specify “infinite” bounds; they imply
valucs of +10%9, which are treated specially at certain times.
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Nonlinear Problems

It is often essential to use bounds to avoid singularities in the nonlincar functions. For example,
if an objective function involves log z;, a bound of the form z, > 1074 may be necessary to avoid
cevaluating the objective function at zero or negative values of z,. (Subroutine FUNOBJ is usually
not called until a feasible point has becen found. Note that z is regarded as feasible il it satisfies
its bounds to within the FEASIBILITY TOLERANCE {. Thus, it would not be safe to specify the
bound z, > 1073 if ¢ retained its default value ¢t = 1078.)

Beware that subroutine FUNCON sometimes will be called before the nonlinear variables satisfy
their bounds. If this causes difliculty, one approach is to specify feasible values for the offending
variables in the INITIAL bounds set described next.

The INITIAL Bounds Set

The namne INITIAL is rescrved for a special bound set that may be used (optionally} to assign
initial values to any number of the column variables. The INITIAL bounds set must appear after
any normal bound sets (if any). A warning is given if it is the first set encountered after the
BOUNDS card.

All bound types except FR have a meaning. In the example

FX INITIAL X1 1.0
LO INITIAL X2 2.0
UP INITIAL X3 3.0

MI INITIAL Y1
PL INITIAL Y2

suppose that the five variables have already been given the upper and lower bounds 0.0 <
X1, X2, X3, Y1, Y2 < 5.0. The initial basis and the starting point will then be affected as follows:

1. Xt will be made superbasic at the value 1.0.

2. X2 will initially be made nonbasic at its lower bound, but if it is involved in the nonlinear
constraints, it will have the value 2.0 when subroutine FUNCON is called for the first time.

3. X3 will initially be made nonbasic at its upper bound, but if it is involved in the nonlinear
constraints, it will have the value 3.0 when subroutine FUNCON is called lor the first time.

4. Y1 will initially be inade nonbasic at its lower bound, and its initial value will be that bound
(0.0 in this case).

5. Y2 will initially be made nonbasic at its upper bound, and its initial value will be that bound
(5.0 in this case).

The key FX should be used if good starting values are known, particularly for nonlinear
variables. llowever, this should not be at the expense of forming a very large set of superbasic
variables, if the optimal solution is likcly to contain only a few. Il the numnber of FX entries has
reached the SUPERBASICS LIMIT, any [urther FX will be treated as LO or UP, depending on which
bound is closcr to the specified numerical value.

Variables that are not specified in the INITIAL bounds set will initially be nonbasic at their
lower or upper bounds (whichever is smaller in absolute value), or at zcro if a variable is free.

In this context, variables that are initially nonbasic may be selected by the CRASH procedure
to become basie, in which case Lheir initial values are unpredictable. If this arbitrariness sounds
troublesome, use one of the CRASH OPTIONs Lo prevent various sets of variables from being chosen
for the initial basis.
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As with normal bound sets, variables may be listed in any order. (For cach entry a linear
scarch is made through the column names, starting at Lhe name on the previous entry. Thus, for
large problems it helps to follow the order of the variables in the COLUMNS section, at least to
some extent.)

The INITIAL bounds set is ignored if a basis file is supplied.

4.7 Comment Cards

Any card in the MPS file may contain an asterisk “#” in column 1 and arbitrary data in columns
2-22. Such cards will be treated as comments. They will appear in the printer listing but will
otherwise be ignored.

Note that comment cards are input as if they were genuine data in each section of the MPS
file. Thus, coluinns 25-36 and 50-61 should preferably be blank. If not, they should contain valid
numerical data whenever non-comment cards would do so. (This is a limitation of ANSI 1966
Standard Fortran; data cannot be read under one format and then re-read under another.)

4.8 Restrictions and Extensions in MPS Format

1. Blanks are significant in the 8-character name fields. We recommend that all names be left-
justified with no imbedded blanks. In particular, names referred to in the SPECS file must
be left-justified in the MPS file; for example, OBJECTIVE = COSTO2 specifies an 8-character
name whose last two characters are blank.

. Comments ideally should use only columns 1-22 as noted above.
. Scale Tactors cannot be entered in the ROWS section.

It does not matter if there is no row of type N.

o o

There must be at least one row in the ROWS section, even for problems with no general
constraints. (It may have row-type N.)

>

. Nonlinear constraints must appear before linear constrainls in the ROWS scction.
7. Markers such as INTORG and INTEND are not recognized in the COLUMNS section.

8. Numerical values may be entered in E or F format. Spaces within the 12-character ficlds are
treated as if they were 0's.

9. Nonlinear variables must appear belore linear variables in the COLUMNS section.
10. If RANGES and BOUNDS sections are both present, the RANGIS scction must appear first.

11. In the BOUNDS section, il an UP entry specifics a zero upper bound, the corresponding lower
bound is not affected. (Beware-—in some MP systems, the lower bound is converted to —o0.)

12. The bounds name INITIAL has a special meaning.
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5. BASIS Files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order to
restart the run if necessary, or to provide a good starting point for some closely related problem.

Three formats are available for saving basis descriptions. They are invoked by SPECS cards
of the following form:

NEW BASIS FILE 10
BACKUP FILE 11 (same as NEW BASIS but on a different file)
PUNCH FILE 20
DUMP FILE 30

The file numbers may be whatever is convenient, or zero for files that are not wanted.

NEW BASIS and BACKUP files are saved every k-th iteration, in that order, where k is the
SAVE FREQUENCY.

NEW, PUNCH and DUMP files are saved at the end of a run, in that order. They may
be re-loaded at the start of a subsequent run by specifying SPECS cards of the following form
respectively:

OLD BASIS FILE 10
INSERT FILE 20
LOAD FILE 30

Only one such file will actually be loaded. If more than one positive file number is specified, the
. order of precedence is as shown. If no BASIS files are specified, one of the CRASH OPTIONs takes
X : effect.
; Figures 5.1-5.3 illustrate the data formats used for BASIS files. 80-character fixed-length
' records are suitable in all cases. (36-character records would be adequate for PUNCH and DUMP
{ files.) The files shown correspond to the optimal solution for the economic-growth model MANNE,
‘ described in section 8.4. Sclected column numbers are included to define significant data fields.

The problem has 10 nonlincar constraints, 10 linear constraints, and 30 variables.

5.1 NEW and OLD BASIS Files

We sometimes call these files basis maps. They contain the most compact representation of the
state of each variable. They are intended for restarting the solution of a problem at a point
that was reached by an earlier run on the same problem or a related problem with the same
dimensions. (Perhaps the ITERATIONS LIMIT was previously too small, or some other objective
row is to be used.)

As illustrated in Figure 5.1, the following information is recorded in a NEEW BASIS file.

‘ 1. A card containing the problem name, the iteration number when the file was created, the
status of the solution (OPTIMAL SOLN, INFEASIBLE, UNBOUNDED, EXCESS ITNS, ERROR CONDN,
or PROCEEDING), the number of infeasibilities, and Lhe current objective value (or the sum of
infeasibilitics).

2. A card containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = the number ol rows
in the constraint matrix, N = the number of columns in the constraint matrix, and SB = the
number of superbasic variables.

S et
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A set of (N+ M — 1)/80 + 1 cards indicating the state of the N column variables and the M
slack variables in that order. One character HS(j) is recorded for each j = 1,2,...,N+ M as
follows, written with FORMAT (8011).

HS(j) State of the j-th variable
0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic

If variable j is fixed (lower bound = upper bound), then HS(j) may be 0 or 1. The same
is true if variable j is.free (infinite bounds) and still nonbasic, although free variables will
almost always be basic.

. A set of cards of the form

J zy
written with FORMAT (18, 1PE24.14) and terminated by an entry with 7 = 0, where j denotes
the j-th variable and z; is a real value. The j-th variable is either the j-th column or the
(7 ~ N)-th slack, if § > N. Typically, HS(3) = 2 (superbasic). When nonlinear constraints are
present, this list of superbasic variables is extended to include all basic nonlinear variables.
The Jacobian matrix can then be reconstructed exactly for a restart.

Loading a NEW BASIS file

P A file that has been saved as an OLD BASIS file may be input at the beginning of a later run as
! a NEW BASIS file. The lollowing notes are relevant:

( 1.

2.

The first card is input and printed but otherwise not used.

The values labelled M and N on the second card must agree with those for the MPS file that
has just been read. The valuc labelled SB is input and printed but is not used.

. The next set of cards must contain exactly M values HS(j) = 3, denoting the basic variables.
. The list of j and z; values must include an entry for every variable whose state is HS(j) = 2

(the superbasic variables).

. Further 5 and z, values may be included, in any order.

6. For any j in this list, if H8(y) = 3 (basic), the value z, will be recorded for nonlinecar

variables, but the variable will remain basic.

. If HS(5) $ 3, variable j will be initialized at the value z, and its state will be resct to 2

(superbasic). If the number of superbasic variables has already reached thc SUPERBASICS
LIMIT, then variable j will be made nonbasic at the bound nearest to z, (or at zero if it is a
free variable).
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Tecoens 8 15.....23 4 PRSI 40 43....50 5%.ccc..e seseccscases .80
MANNE10 IT™N " OPTIMAL SOLN NINF O 08J) -2.6700976576430 00
08J=FUNOBJ RHS=RHS RNG=RANGE1 SNO=B0UND ¢ N= 20 W= 30858 7

03222222230333333333333333333111111111110000000000
3 3.214430306846170 00
4 3.304004540903450 00
5 3.395219987011400 00
é 3.487878208733720 00
7 3.58172296168424D 00
8 3.67642859114579D 00
9 3.771582587441020 00
' 3.050000000000000 00
2 3.12665035156788D 00
10 3.86666666666667D 00

111 9.500000000000000-01
12 9.684180638592470-01
13 9.978010109641690-01
14 1.02820056913317D0 00
15 1.059670152206730 00
16 1.092272226137000 00
17 1.126076354918100 00
18 1.161163958088100 00
19 1.197628149454330 00
20 1.21394308024559D 00

Figure 6.1. Format of NEW aod OLD BASIS files

Warning: This format is not quite compatible with MINOS 4.0 in the following respects.

1. On the second card, M is the number of constraints (m, as before) but N is now the number
of variables excluding slacks (i.e., n, the number of columns in the MPS file plus the number
of phantom columns, if any). Previously, N had the value n + 1 + m; this included 1 for the
right-hand side and m for the slacks.

2. The basis map starting at card 3 docs not contain an cntry for the right-hand side, which
was previously in position n + 1. The length of the map isnown 4+ m, notn+ 1 + m.
3. In the list of (5 z;) entries, the values of j referring to slacks arc now one less than before.
(These are entries for which j > n.)
A basis map from MINOS 4.0 can therclore be converted to the present format with rcasonable
ease. PUNCH and DUMP files from MINOS 4.0 should be acceptable as INSERT and LOAD files
without change.
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6.2 PUNCH and INSERT Files

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain a
useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading of
nonbasic solutions. It is illustrated in Figure 5.2. Apart from the first and last card, each entry
has the following form:

v

Columns 2-3 5-12 15-22 25-36
Contents Key Namel Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed that
the basis is initially set to be the full set of slack variables, and that column variables are initially
at their smallest bound in absolute magnitude.

Action to be taken during INSERT

Make variable Namel basic and slack Name2 nonbasic at its lower bound.
Make variable Namel basic and slack Name2 nonbasic at its upper bound.
Make variable Namel nonbasic at its lower bound. '
Make variable Namel nonbasic at its upper bound.

Make variable Namel superbasic at the specified Value.

BEFHE T

Note that Namel may be a column name or a row name, but (on XL and XU cards) Name2 must
be a row name. In all cases, row names indicate the associated slack variable, and if Namel is
a nonlinear variable then its Value is recorded for possible use in defining the initial Jacobian
matrix.

The key SB is an addition to the standard MPS format to allow lor nonbasic solutions.

Notes on PUNCH Data

1. Variables are output in natural order. For example, on the first XL or XU card, Name! will be
the first basic column and Name2 will be the first row whose slack is not basic. (The slack
could be nonbasic or superbasic.)

2. LL cards are not output for nonbasic variables if the corresponding lower bound value is zcro.

3. Superbasic slacks are output last.

4. PUNCH and INSERT files decal with the status and values of slack variables. This is in
contrast to the printed solution and the SOLUTION file, which deal with rows.

Notes on INSERT Dala

1. Before an INSERT file is read, column variables are made nonbasic at their smallest bound
in absolute magnitude, and the slack variablcs are made basic.

2. Preferably an INSERT file should be an unmodified PUNCIHI file from an earlier run on the
same problem. If some rows have been added to the problem, the INSERT file necd not be
altered. (The slacks for the new rows will be in the basis.)

’
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3. Entries will be ignored if Namel is already basic or superbasic. XL and XU cards will be
ignored if Name2 is not basic.

4. SB cards may be added before the ENDATA card, to specily additional superbasic columns or
slacks.

5. An SB card will not alter the status of Namel if the SUPERBASICS LIMIT has been reached.
However, the associated Value will be retained if Namel is a Jacobian variable.

5.3 DUMP and LOAD Files

These files are similar to PUNCH and INSERT files, but they record solution information in
a manner that is more direct and more easily modified. In particular, no distinction is made
between columns and slacks. Apart from the first and last card, each entry has the form

Columns 2-3  5-12 25-36
Contents Key Name Value

as illustrated in Figure 5.3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit, Basic
and Superbasic respectively.

Notes on DUMP Data

1. A card is output for cvery variable, columns followed by slacks.
2. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD Data

1. Before a LOAD file is read, all columns and slacks are made nonbasic at their smallest bound
in absolute magnitude. The basis is initially empty.

2. Each LL, UL or BS card causes Name to adopt the specified status., The associated Value will
be retained if Name is a Jacobian variable,

3. An SB card causes Name to become superbasic al the specified Value.

4. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first BS or
SB card takes effect for any given Name.)

5. An 8B card will not alter the status of Name il the SUPERBASICS LIMIT has been reached,
but the associated Value will be retained if Name is a Jacobian variable.

8. (Partial basis) Let M be thc number of rows in the problem. If fewer than M variables are
specificd to be basic, a tentative basis list will be constructed by adding the requisite number
of slacks, starting from the first row and taking those that were not previously specified to
be basic or superbasic. (If the resulting basis proves to be singular, the basis factorization
routine will replace a number of basic variables by other slacks.) ‘T'he starting point obtained
in this way will nol nccessarily be “good”.

7. (Too many basics) If M variables have already been specified as basie, any further BS keys will
be treated as though they were SB. This feature may be uselul for combining solutions to
smaller problems.




54 5. BASIS Files

1 S.ee..12 15....228 25........3 1] $.....12 15,....22 25........%
NAME MANNEI®  PUNCH/INSERT | NAME MANNETC DUMP/LOAD
LL KAPOO1 3.050000 00 LL KAPOOY 3.05000D0 00
XU KAPOO2 MONOOY 3.126650 00 B8S KAPOO2 3.126650 00
S8 KAPOO3 3.21443D0 00 S8 KAPOO3 3.2164430 00
. B KAPOOS 3.304000 00 S8 KAPOOS 3.30400D0 00
3 B KAPOOS 3.395220 00 98 KAPOOS 3.39522D0 00
SB KAPOOG 3.48788D0 00 S8 KAPOOS 3.487880 00
98 KAPOO?7 3.58172D0 00 S8 KAPOO? 3.581720 ¢0
SB KAPOGS 3.67643D 00 S8 KAPOCS 3.676430 00
B KAPOO® 3.771580 00 S8 KAPOOY 3.771580 00
XU KAPO1O MONOO2 3.86667D 00 B8S KAPOtO 3.86667D0 00
LL CONOOY 9.500000-01 LL CONOO1 9.500000-01
XU CONOOR MONOO3 9.684180-01 BS CONOO2 9.684180-01
XU CONOO3 MONOOS 9.978010-01 88 CONDO3 9.978010-0t
XU CoONOOS MONOOS 1.028200 00 BS CONOOS 1.028200 00
XU CONOOS MON006 1.059%670 00 BS CONOOS 1.05% 7D 00
XU CONOOS MONOO7 1.092270 00 BS CONOOS 1.092270 00
XU CONOO? MON0OS 1.126080 00 88 CONCO7 1.12608D 00
XJ CONOOS MONOOY 1.161160 00 88 CONOOS 1.16196D 00
XU CONOOY MONO10 1.197630 00 BS CONOOY 1.197630 00
XL CONO1O CAPOO2 1.213940 00 88 CONGtS 1.213940 00
XL INVOO1 CAPOO3 7.665040-02 838 INVOO? 7.66504D-02
;' XL INVOO2  CAPOO®  8.778000-02 BS INVOO2 8.778000-02
' XL INVOO3 CAPOOS 8.957420-02 88 INVOO3 8.957420-02
E XL INVOOS CAPOOS 9.121540-02 B3 INVODS 9.12154D-02
o XL INVOOS CAPOO? 9.265820-02 88 INVOOS 9.265820-02
] XL INVOOé CAPOOS 9. 304480-02 : B8S INVO06 9.38448D-02
. XL INVOO7 CAPCOY 9.4703560-02 88 INVOO? 9.47056D0-02
; XL INVOOS CAPO1O 9.515400-02 88 INVOOS 9.515400-02
| XL INVOOY TERNINY 9.50841D-02 BS INVOO9 9.50841D0-02
H UL INVOte 1.160000-01 UL INVOIO 1.160000-01
i ENDATA UL MONOOY 0.000000-01
H UL MONOO2 0.000000-01
. UL MON0OO3 0.00000D0-01
! UL MONOOS 0.000000-01
' UL MONOOS 0.000000-01
: Figure §.3. Format of PUNCH and INSERT files UL HONO0G 0.000000-01
UL MONOO7? 0.00000D-0%
UL MONOOS 0.000000-0t
YL MONGO9 0.000000-01
UL MONG10 0.000000-01
LL CAPOO2 0.00000D-01
LL CAPOO3 0.000000-01
LL CAPOOG 0.000000-01
LL CAPOOS 0.000000-01
LL CAPOOS 0.000000-01
LL CAPOO? 0.00000D-01
LL CAPOOS 0.00000D-01
LL CAPOOY 0.00000D-01t
LL CAPOYO 0.000000-01
LL TERMINY 0.000000-01
] ENDATA
{
3
3 Figure 6.3. Format of DUMP and LOAD files
& '
t |
¥
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5.4 Restarting Modified Problems

Sections 5.1-5.3 document three distinct starting methods (OLD BASIS, INSERT and LOAD
files), which may be preferable to any of the cold start (CRASH) options. The best choice depends
on the extent to which a problem has becn modified, and whether it is more convenient to specify
variables by number or by name. The [ollowing notes offer some rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is specified
to be nonbasic at an upper bound that happens to be +oo, it will be made nonbasic at its lower
bound. Conversely if its lower bound is —oo. If the variable is free (both bounds infinite), it will
be made nonbasic at value zero. No warning message will be issued.

Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound that is
smallest in absolute magnitude. Ties are broken in favor of lower bounds, and frec variables will
again take the value zero.

Restarting with Different Bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been altered.
Any of the basis files may be used, but the starting point obtained depends on the status of X at
the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things being
equal). The value of X may lie outside its new set of bounds, but there will be minimal loss of
feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its lower bound (which happens to be
the same as its upper bound). Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and il that bound is altered, the starting values
for an arbitrary number of basic variables could be changed (since they will be recomputed from
the nonbasic and superbasic variables). This may not be of great conscquence, but sometimes it
may be worthwhile to retain the old solution precisely. To do this, one must make X superbasic
at the original bound value.

For example, if X is nonbasic at an upper bound of 5.0 (which has now been changed), one
should insert a card of the form

J 5.0
near the end of an OLD BASIS file, or the card
SB X 5.0

near the end of an INSERT or LOAD file. Note that the SPECS file must specily a SUPERBASICS
LIMIT at least as large as the number of variables involved, even for purcly linear problems.

Sequences of Problems

Whenever practical, a scries of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starting points for
subsequent relaxed problems, as long the above precautions are taken.
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56 5. BASIS Files

Altering Bounds with the CYCLE Option

Sequences of problems will sometimes be defined in conjunction with the CYCLE facilities. Various
alterations can be made to each problem from within your own subroutine MATMOD. In particular,
it is straightforward to alter the bounds on any of the columns or slacks.

Unfortunately, the present implementation of MINOS does not make it easy to alter the set
of superbasic variables from within MATMOD. If the bound on a nonbasic variable is altered, it is
simplest to accept the resulting perturbation to the values of the basic variables (rather than
making the variable superbasic as suggested above).
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8. OUTPUT

The following information is output to the PRINT file during the solution of each problem referred
to in the SPECS file.

o A listing of the relevant part of the SPECS file.

e A listing of the parameters that were or could have been set in the SPECS file.

o An estimate of the amount of working storage nceded, compared to how much is available.

e A listing of the MPS file, possibly abbreviated to the header cards and comment cards.

o Some statistics about the problem in the MPS file.

e The amount of storage available for the LU factorization of the basis matrix.

e A summary of the scaling procedure, il SCALE was specified.

o Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

e The iteration log.

o Basis [actorization statistics.

e The EXIT condition and some statistics about the solution obtained.

e The printed solution, if requested.

The last four items are described in the following sections. Further bricf output may be
directed to the SUMMARY file, as discussed in section 6.6.

8.1 Iteration Log

One line of information is output to the PRINT file every k-th minor iteration, where k is the
specified LOG FREQUENCY (default k = 1). A heading is printed before the first such line following
a basis factorization. The hcading contains the items described below. In this description, a
PRICE operation is defined to be the process by which one or more nonbasic variables are sclected
to become superbasic (in addition to those alrcady in the superbasic set). Normally just one
variable is selected, which we will denote by JQ. If the problem is purcly lincar, variable JQ will
usually become basic imimediately (unless it should happen to reach its opposite bound and return
to the nonbasic set).

If PARTIAL PRICE is in effect, variable JQ is selected from App or Ipp, the PP-th segments of
the constraint matrix (A 7). If MULTIPLE PRICE is in effect, scveral variables may be sclected
from App or Ipp. In this case, JQ refers to the variable with the largest favorable reduced cost,
DJ.

Label Description

ITN The current iteration number. For problems with nonlincar constraints, this is the
cumulative number of minor iterations.

PH The current phase of the solution procedure, as follows:
1 Phase | of the simplex method is being used to find a fcasible point.
2 Phase 2 of the simplex method is being used to optimize the linear objective.

Normally, Phase 1 and 2 are used for purcly linear problems. They may also be
used at the start of a run even for nonlinear problems, il Lhe initial basis containg
only lincar variables. Any superbasic variables will be Lemporarily held at their
initial values.
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PP
: NOPT

1 DJ.RG

f +SBS

A -SBS

STEP

PIVOT

Phase 3 of the reduced-gradient procedure is being used. This is the same as Phase
4 except that a PRICE operation is performed prior to the iteration, adding one
or more nonbasic variables to the superbasic sei.

Phasc 4 of the reduced-gradient procedure is being used. Optimization is per-
formed on the basic and superbasic variables (ignoring the nonbasics).

The Partial Price indicator. The variable(s) selected by the last PRICE operation
came {rom the PP-th partition of A and I. PP is sel to zero when the basis is
refactored. It is reset during PPhase 1, 2 or 3.

The number of “non-optimal” variables present in the set of nonbasic variables
that were scanned during the last PRICE operation. It is reset during Phase 1, 2
or 3.

In Phase 1, 2 or 3, this is DJ, the reduced cost (or reduced gradient) of the variable
JQ selected by PRICE at the start of the present iteration. Algebraically, DJ is
d; = g; — nTaJ for j = JQ, where g; is the gradient of the current objective
function, x is the vector of dual variables, and a, is the j-th column of the
constraint matrix (A 1).

In Phase 4, this quantity is RG, the norm of the reduced-gradient vector after the
present iteration. (It is the largest valuc of |d,| for variables j in the superbasic
set.)

Note that for Phase 3 iterations, DJ is the norm of the reduced-gradient vector at
the start of the iteration, just after the PRICIS operation.

The variable JQ sclected by PRICE to be added to the superbasic set. (This is
zero in Phase 4.)

The variable chosen to leave the set of superbasics. It has become basic if the
entry under -BS is nonzcro; otherwise it has become nonbasic.

The variable removed from the basis (if any) to become nonbasic.

The step length a taken along the current scarch direction p. The basic and
superbasic variables z,, have just been changed to z,4 + ap.

If column ag replaces the r-th column of the basis 4, PIVOT is the r-th element of a
vector y satisfying By = a,. Wherever possible, STEP is chosen to avoid extremely
small values of PIVOT (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the PIVOT TOLERANCE to exclude very small
elements of y [rom consideration during the computation of STEP.

The number of nonzeros representing the basis factor L. linmediately after a basis
factorization L1} = U, this is LENL, the number of subdiagonal elements in the
columans of a lower triangular matrix. Further nonzeros are added to L when
various columns of £ are later replaced. (Thus, L increases monotonically.)

The number of nonzeros in the basis factor {7 Immediately after a basis factoriza-
tion, this is LENU, the number of diagonal and superdiagonal clements in the rows
of an upper triangular matrix. As columns of /# are replaced, the matrix U is
maintained explicitly (in sparse form). The value of U may lluctuate up or down;
in general it will tend to increase.
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NCP

NINF

SINF,0BJECTIVE If NINF > 0, this is SINF, the sum of infeasibilitics before the present iteration.

The following items are printed if the problem is nonlinear or if the superbasic set is non-empty
(i.e., if the current solution is nonbasic).

Label

NCON

NOBJ

NSB

HMOD

The number of compressions required to recover storage in the data structure for
U. This includes the number of compressions nceded during the previous basis
factorization. Normally NCP should increase very slowly. If not, the amount of
workspace available to MINOS should be increased by a significant amount. As a
suggestion, the work array Z(*) shouid be extended by L + U elements.

The number of infeasibilities before the present iteration. This number decreases
monotonically.

(It will usually decrease at each nonzero STEP, but if NINF decreases by 2 or more,
SINF may occasionally increase.)

Otherwise, it is the value of the current objective function after the present
iteration. Note that “current objective function” can mean different things when
NINF = 0. For linear programs, it mcans the true linear objective function. For
problems with linear constraints, it means the sum of the linear objective and the
value returned by subroutine FUNOBJ. IFor problems with nonlinear constraints, it
is the quantity just described if LAGRANGIAN = NO; otherwise it is the value of the
augmented Lagrangian function for the current major iteration (which tends to
the true objective function as convergence is approached).

Description
The number of times subroutine FUNCON has becn called to evaluate the nonlincar
constraint functions.
The number of times subroutine FUNOBJ has been called to evaluate the nonlinear

objective furction.
The current number of superbasic variables.

An indication of the type of modifications made to the triangular matrix /2 that
is used Lo approximate the reduced Ilessian matrix. 1'wo integers 1) and 15 are
shown. They will remain zcro for linear problems. [[{), = 1, a BFGS gquasi-Newton
update has been made to I, to account for a move within the current subspace.
(This will not occur if the solution is infeasible.) If i3 = 1, R has been moditied
to account for a change in basis. This will sometimes occur even if the solution is
infeasible (if a fcasible point was obtained at some carlier stage).

Both updates are implemented by triangularizing the matrix 1 + vwT for some
vectors v and w. Il an update fails for numerical reasons, 1| or 13 will be sel to 2,
and the resulting R will be nearly singular. (However, this is highly unlikely.)
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H-CONDN

CONV

An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R.
This constitutes a lower bound on the condition number of the matrix RTR that
approximates the reduced Hessian. H-CONDN gives a rough indication of whether or
not the optimization procedure is having difficulty. If ¢ is the relative precision of
the machine being used, the reduced-gradient algorithm will make slow progress if
H-CONDN becomes as large as ¢~'/2, and will probably fail to find a better solution
if H-CONDN reaches e~3/4 or larger. (On IBM-like machines, these values are about
108 and 10'%)

To guard against high values of H-CONDN, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

A set of four logical variables Cy, Cq, C3, C4 that are used to determine when to
discontinue optimization in the current subspace (Phase 4) and consider releasing a
nonbasic variable from its bound (the PRICE operation of Phase 3). Let RG be the
norm of the reduced gradient, as described above. The meaning of the variables
C; is as follows:

C, is TRUE if the change in z was sufficiently small;

C, is TRUE if the change in the objective was sufficiently small;
C3 is TRUE if RG is smaller than some loose tolerance TOLRG;
C4 is TRUE il RG is smaller than some tighter tolerance.

The test used is of the form

if (C\ and C; and Cj3) or C,4 then go to Phase 3.
In the present implementation, TOLRG = ¢|DJ|, where ¢ is the SUBSPACE TOLERANCE
(nominally 0.5) and DJ is the reduced-gradient norm at the most recent Phase 3

iteration. The “tighter tolerance” is the maximum of 0.1 TOLRG and 1077 |{x||.
Only the tolerance ¢ can be altered at run-time (see section 3.3).




v o e g - o e st e s
LGS LSS e i . Tl o 2 adll TN LI v

6.2 Basis Factorization Statistics 61

6.2 Basis Factorization Statistics

The following items are output whenever the basis matrix B is factored. Gaussian climination is
used to compute an LU factorization of the form

where I is unit lower triangular and PUQ is upper triangular for some permutation matrices P
and Q. This factorization is stabilized in the manner described under LU FACTOR TOLERANCE in
section 3.3.

Label Description
FACTORIZE The number of factorizations since the start of the run.

DEMAND A code giving the reason for the present factorization. (Since this is not important
to the user we omit details.)

ITERATION The current iteration number.
INFEAS The number of infeasibilities at the start of the previous iteration.
OBJECTIVE If INFEAS > 0, thisis the sum of infeasibilities at the start of the previous iteration.

If INFEAS = 0, this is the value of the objective function after the previous
iteration. [f there are nonlinear constraints, it is the value of the augmented
! Lagrangian for the present subproblem.

: NONLINEAR The number of nonlinear variables in the current basis B.

t LINEAR The number of linear variables in B.
! SLACKS The number of slack variables in 1.
: ELEMS The number of nonzero matrix elements in 3.
DENSITY The pereentage nonzero density of 17, 100 X ELEMS/(M X M), where Mis the number

of rows in the problem (M = NONLINEAR + LINEAR + SLACKS).

COMPRSSNS The number of times the data structure holding the partially factored matrix
needed to be compressed, to recover unused storage. ldeally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to MINOS
should be increased for cflicicncy.

MERIT The average Markowitz merit count for the clements chosen to be the diagonals
E. of PUQ. Each merit count is defined to be (¢ — t}{r — 1) where ¢ and 7 are the
i number of nonzeros in the column and row containing the clement at the time it

is selected to be the next diagoral. MERIT is the average of M such quantities. It
gives an indication of how much work was required to preserve sparsity during the
factorization.

¥ LENL The number of nonzeros in L. On IBM-like machines, cach nonzero is represented
by one REAL#*8 and two INTEGER*2 dal. Lypes.

LENU The number of nonzeros in {7, The storage required for cach nonzero is the same
as for the nonzeros of L.
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INCREASE

BMAX

UMIN
GROWTH

The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in Bj; i.e., 100 X (LENL + LENU — ELEMS)/ELENKS.

The maximum subdiagonal element in the columns of L. This will be no larger
than the LU FACTOR TOLERANCE.

The maximum nonzero element in B.

The maximum nonzero element in U, excluding elements of B thatl remain in U
unaltered. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of I/ without alteration. Elements in such rows wiil not
contribute to UMAX. If the basis is strictly triangular, none of the clements of B
will contribute, and UMAX will be zero.)

Ideally, UMAX should not be substantially larger than BMAX. If it is several orders
of magnitude larger, it may be advisable to reduce the LU FACTOR TOLERANCE to
some value ncarer 1.0. (The default value is 10.0.)

The smallest diagonal element of PU/Q in absolute magnitude.
The ratio UMAX/BMAX, which should not be too large (see above).

As long as LMAX is not large (say 10.0 or less), the ratic max{BMAX, UMAX}/UMIN
gives an estimate of the condition number of B. If this number is extremely large,
the basis is ncarly singular and some numerical difficulties could conceivably occur.
(However, an cffort is made to avoid near-singularity by using slacks to replace
columns of B that would have made UMIN extremely small. Messages are issucd to
this effect, and the modified basis is refactored.)
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6.3 EXIT Conditions

For each problem in the SPECS file, a message of the form EXIT -- message is printed to
summarize the final result. Here we describe each message and suggest possible courses of action.

System Note: A number is associated with each message below. It is the final value assigned
to the integer variables INFORM and IERR, for possible use within subroutines MINOS1 and MINOS2.
The variables appear in the declarations

SUBROUTINE MINOS2( Z,NWCORE,NCALLS,INFORM )
and
COMMON /M5L0G1/ IDEBUG,IERR,LPRINT

If a problem is infeasible, for example, their final values will be INFORM = IERR = 1.

The following messages arise when the SPECS file is found to contain
no further problems.

-2. EXIT -- INPUT ERROR. NINOS ENCOUNTERED END-OF-FILE OR AN
ENDRUN CARD BEFORE FINDING A SPECS FILE ON UNIT nn
The SPECS file may not be properly assigned. Its unit number nn is defined at compile time in
subroutine MIFILE, and normally it is the system card input stream.
Otherwise, the SPECS file may be empty, or cards containing the keywords SKIP or ENDRUN
may imply that all problemns should be ignored (see section 1.8).

-1. ENDRUN

This message is printed at the end of a run if MINOS terminates of its own accord. Otherwise,
the operating system will have intervened for one of many possible reasons (cxcess time, missing
file, arithmelic error in user routines, etc.).

The following messages arise when optimization terminates grace-
fully. A solution exists, any of the BASIS files may be saved, and
the solution will be printed and/or saved on the SOLUTION file if
requested.

0. EXIT -- OPTIMAL SOLUTION FOUND
This is the message we all hope to sce! It is certainly preferable to every other message,
and we naturally want to believe what it says, because this is surely one situation where the
computer knows best. There may be cause for celebration il the objective Tunction has reached
an astonishingly new high (or low). Or perhaps it will signal the end of a strenuous series of runs
that have iterated (ar into the night, depleting one’s patience and computing funds to an equally
alarming degree. {We hope not!)

In all cases, a distinct level of caution is in order, even il it ean wait untit next morning. For
example, if the objective value is much better than expected, we may have obtained an optimal
solution to Lhe wrong problem! Almost any item of data could have that cffect, if it has the wrong
value or is entered in the wrong columns ol an input record. There may be thousands of items of
data in the MPS file, and the nonliincar functions (if any) could depend on input files and other
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data in innumerable ways. Verifying that the problem has been defined correctly is one of the
more difficult tasks for a modecl builder. For early runs, we suggest that the LIST LIMIT be set
to a suitably large number to allow the MI’S file to be printed for visual checking. It is also good
practice in the function subroutines to print any data that is read in on the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one local
optimum? When the constraints are linear and the objective is known to be convex (e.g., a sum
of squares) then all will be well if we are minimizing the objective: a local minimum is a global
minimum in the sense that no other point has a lower function value. (However, many points
could have the same objective value, particularly if the objective is largely linear.) Conversely, if
we are maximizing a convex lunction, a local maximum cannot be expected to be global, unless
there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the funclions of a problem are more likely to be neither convex nor concave.
Our advice is always to specily a starting point that is as good an estimate as possible, and to
include reasonable upper and lower bounds on all variables, in order to confine the solution to
the specific region of interest. We expect modcllers to know something about their problem, and
to make use of that knowledge as they themsclves know best.

One other caution about “OPTIMAL SOLUTION"s. When nonlincarities are present, the final
size of the reduced-gradient norm (NORM RG) should be examined to see if it is reasonably small
compared to the norm of the dual variables (NORM PI). These quantitics are printed following the
EXIT message. MINOS attempts to ensure that

NORM RG / NORM PI < OPTIMALITY TOLERANCE.

However, if messages of the form XXX SEARCH TERMINATED occur at the end of the run, this
condition will probably not have been satisfied. The final solution may or may not be acceptably
close to optimal. Broadly speaking, if

NORM RG / NORM PI = 1079,

then the objective function would probably change in the d-th significant digit if optimization
could be continued. One must judge whether or not d is sufliciently large.

1. EXIT -- THE PROBLEM IS INFEASIBLE
When the constraints are linear, this message can probably be trusted. Feasibility is measured
with respect to the upper and lower bounds on the variables. The message Llells us that among
all the points satisfying the gencral constraints Az + s = 0, therc is apparently no point that
satisfies the bounds on z and s. Violations as small as the FEASIBILITY TOLERANCE arc ignored,
but at least onc component of z or s violates a bound by more than the tolerance.

Note: Although the objective function is the sum of infeasibilitics (when NINF > 0), this sum
will usually not have been minimized when MINOS recognizes the situation and exits. There may
exist other points that have a significantly lower sum of infeasibilities.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly.
Even if a [easible solution exists, the current linearization of the constraints may not contain a
feasible point. In an attempt to deal with this situation, MINOS is prepared to relax the bounds
on the slacks associated with nonlincar rows. In the current implementation, the bounds are
rclaxed by increasingly large amounts up to 5 times per major ileration. Normally a leasible point
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will be obtained to the perturbed constraints, and optimization can continue on the subproblem.
However, if 5 consecutive subprobiems require such perturbation, the problem is terminated
and declared INFEASIBLE. Clearly this is an ad hoc procedure. Wherever possible, nonlinear
constraints should be defined in such a way that fcasible points are known to exist when the
constraints are linearized.

2. EXIT -- THE PROBLEM IS UNBOUNDED (OR BADLY SCALED)
For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic variable
to violate a bound. A message prior to the EXIT message will give the index of the nonbasic
variable. Consider adding an upper or lower bound to the variable. Also, examine the constraints
that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroncous indication of unboundedness. Consider using the SCALE option.

For nonlinear problems, MINOS mnonitors both the size of the current objective function and
the size of the change in the variables at each step. If either of these is very large (as judged by
the UNBOUNDED parameters - see section 3.3), the problem is terminated and declared UNBOUNDED.
To avoid large function values, it may be necessary to impose bounds on some of the variables in
order to keep them away from singularities in the nonlinear functions.

3. EXIT -- TOO MANY ITERATIONS
Either the ITERATIONS LIMIT or the MAJOR ITERATIONS LIMIT was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If so,
restart the run using a basis file that was saved (or should have been saved!) at the end of the
run.

4. EXIT -- THE OBJECTIVE HAS NOT CHANGED FOR THE LAST nnn ITERATIONS
This is an emergency measure for the rare occasions when the solution procedure appears to be
cycling. Suppose that a zero step is taken for several consecutive iterations, with a basis change
occurring cach time. It is theoretically possible for the set of basic variables to become the same
as they were one or more iterations earlier. The same sequence of iterations would then occur ad
infinitum.

No direct attempt is made to recognize such cycling. The method used for determining
the step size tends to guard against it happening, but nothing is guaranteed. Furthermore, on
so-called degenerate models (in which many basic variables arc equal in value to their upper or
lower bounds), a great number of consccutive zero steps may have Lo occur before any progress
can be made. A genecrous limit is Lhercfore used on the number ol consecutive zero steps allowed
before this exit is taken. For small problems, the limit nnn is the maximum of 200 and 2(m + n).
For large problems (m + n > 1000) it is 1000.

6. EXIT ~- THE SUPERBASICS LIMIT IS TOO SMALL... nnn
The problem appears to be more nonlinear than anticipated. The current set of basic and
superbasic variables have been optimized as much as possible and a PRICE operation is necessary
to continue, but there arc already nan superbasies (and no room for any more).

In general, raise the SUPERBASICS LIMIT s by a reasonable amount, bearing in mind the
storage needed for the reduced Ilessian. (Thc HESSIAN DIMENSION A will also increase to s

SRy

IS UGN




-

66 8. Output

unless specified otherwise, and the associated storage will be about 1/2s? words.) In extreme
cases you may have to set h < s to conserve storage, but beware that the rate of convergence
will probably fall off severely.

6. EXIT -- REQUESTED BY USER IN SUBROUTINE FUNOBJ (or FUNCON)
AFTER nnn CALLS

This exit occurs if the subroutine parameter MODE is set to a negative number during some call
to FUNOBJ or FUNCON. MINQOS assumes that you want the problem to be abandoned forthwith.

In some environments, this exit means that your subroutines were not successfully linked
to MINOS. If the default versions of FUNOBJ and FUNCON are ever called, they issue a warning
message and then set MODE to terminate the run. For example, you may have asked the operating
system to

LINK MINOS, FUNOBJ, FUNCON
when in fact you should have said
LINK FUNOBJ, FUNCON, MINOS

(or something similar) to give your own subroutines priority. Most linkers or loaders retain the
first version of any subprogram that they see.

7. EXIT -- SUBROUTINE FUNOBJ SEEMS TQO BE GIVING INCORRECT GRADIENTS

A check has been made on some individual elements of the gradient array, and at least one
component G(j) is being sct to a value that disagrees markedly with a forward-difference estimate
of 3F [3z;. (The relative diffcrence between the computed and cstimated values is 1.0 or more.)
This exit is a safeguard, since MINOS will usually fail to make progress when the computed
gradients are scriously inaccurate. In the process it may expend considerable effort before
terminating with exit 9 below.

Check the function and gradient computation very carcfully. A simple omission (such as
forgetting to divide F by 2) could explain everything. Il F or G(j) is very large, then give serious
thought to scaling the function or the nonlinear variables.

If you feel certain that the computed G (j) is correetl (and that the forward-difference estimate
is therefore wrong), you can specify VERIFY LEVEL O to prevent individual clements from being
checked. However, the optimization procedure is likely to terminate unsuccessfully.

8. EXIT -- SUBROUTINE FUNCON SEEMS TO BE GIVING INCORRECT GRADIENTS

This is analogous to the preceding cxit. At least one of the computed Jacobian clements is
significantly different from an estimate obtained by forward-differencing the constraint vector
f(z). Follow the advice given above, trying to ensure that the arrays F and G are being set
correctly in subroutine FUNCON.

9. EXIT -- THE CURRENT POINT CANNOT BE IMPROVED UPON
Several circumstances could lead to this exit.
1. Subroutine FUNOBJ and/or subroutine FUNCON could be returning accurate function values

but inaccurate gradients (or vice versa). This is the most likely cause. Study the comments
given for exits 7 and 8, and do your utmost to cnsurc that the subroutines are coded correctly.

y -
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2. The function and gradient values could be consistent, but their precision could be too low. For
example, accidental use of a single-precision data type when double-precision was intended
throughout, would lead to a rclative function precision of about 1078 instead of something
like 107!5. The default OPTIMALITY TOLERANCE of 10~® would need to be raised to about
1073 for optimality to be declared (at a rather suboptimal point). Of course, it is better to
revise the function coding to obtain as much precision as economically possible.

3. If function values arc obtained from an expensive iterative process, they may be accurate
to rather few significant figures, and gradicnts will probably not be available. One should
specify

FUNCTION PRECISION t

OPTIMALITY TOLERANCE V1
but even then, if ¢ is as large as 1073 or 10~% (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

10. EXIT -- NUMERICAL ERROR. GENERAL CONSTRAINTS CANNOT BE SATISFIED ACCURATELY
An LU factorization of the basis has just been obtained and used to recompute the basic variables
zp, given the present values of the superbasic and nonbasic variables. A single step of “iterative
refinement” has also been applied to increase the accuracy of zg. However, a row check has
revealed that the resulting solution does not satisfy the current constraints Az + s = 0 sufficiently
well.

This probably means that the current basis is very ill-conditioned. Request the SCALE option
if there are any linear constraints and variables.

For certain highly structured basis matrices {notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of UMAX, UMIN and GROWTH in scction
6.2, and set the LU FACTOR TOLERANCE to 2.0 (or possibly even smaller, but not less than 1.0).

11. EXIT -- CANNOT FIND SUPERBASIC TO REPLACE BASIC VARIABLE

If this exit occurs, the problem must be very badly scaled. A basic variable has reached a bound
and must be replaced, but none of the superbasic columns has a pivot clement exceeding the
PIVOT TOLERANCE. The latter could be reduced (at great risk). You should first try specifying
SCALE.

12. EXIT -- BASIS FACTORIZATION REQUESTED TWICE IN A ROW

This cxit may occur after the linesearch has terminated unsuccessfully several times in a row. [t
is a safeguard to prevent the various recovery measures from being repeated endlessly. It should
probably be treated as if it were exit 9.
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If the following exits occur during the first basis factorization, the
basic variables zg will have certain default values that may not be
particularly meaningful, and the dual vector x will be zero. BASIS
files will be saved if requested, but certain values in the printed
solution will not be meaningful. The problem will be terminated,
even if the CYCLE LIMIT has not yet been reached.

20. EXIT -~ NOT ENOUGH STORAGE FOR THE BASIS FACTORIZATION
The main storage array Z(*) is apparently not large enough for this problem. The routine
declaring Z is probably the main program. It should be recompiled with a larger dimension for
Z. The new value should also be assigned to NWCORE.

In some cases it may be sufficient to increase the specified WORKSPACE (USER), if it is currently
less than WORKSPACE (TOTAL).

An estimate of the additional storage required is given in messages preceding the exit.

21. EXIT ~-- ERROR IN BASIS PACKAGE

A preceding message will describe the error in more detail. One such message says that the current

basis has more than one element in row ¢ and column j. This could be caused by a corresponding

error in the MPS file. (MINOS does not check for duplicate row names within each column.)

Determine the name of row i (e.g., by consulting the i-th cntry in the rows section of the printed

solution), and scan the COLUMNS section of the MPS file for that name. Alternatively, check
i the {5 — {)-th variable in the COLUMNS section of the MPS file, where [ is the number of slack
variables in the basis.

‘ 22. EXIT -~ THE BASIS IS STRUCTURALLY SINGULAR AFTER TWO FACTORIZATION ATTEMPTS

: This exit is highly unlikely to occur. The first factorization attempt will have found the basis
to be structurally or numerically singular. (Some diagonals of the triangular matrix PUQ were
respectively zero or smaller than a certain tolerance.) The associated variables are replaced by
slacks and the modified basis is refactorized. The ensuing singularity must mean that the problem
is badly scaled, or the LU FACTOR TOLERANCE is too high.

If the following messages arise, the MI’S file was read succvssl‘m
However, cither an OLD BASIS file could nol be loaded properly, or .
some fatal system error has occurred. Ncw BIASIN hiles cannot be
saved, and there is no solution Lo print. The problem is abandoned.

30. EXIT -- THE BASIS FILE DIMENSIONS DO NOT MATCH THIS PROBLEM
On the first card of the OLD BASIS file, the dimensions labelled M and N are different from those
associated with the MPS file that has just been read. You have probably loaded a file that belongs
to some other probiem.

Remember, if you have added rows or columns Lo the MPS file, you will have to alter N and
N and the map beginning on the third card (a hazardous operation). It may be casier to restart
with a PUNCH or DUMP file from the carlicr version of the problem.
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31. EXIT -- THE BASIS FILE STATE VECTOR DOES NOT MATCH THIS PROBLEM

For some reason, the OLD BASIS file is incompatible with the present problem, or is not consistent
within itself. The number of basic entries in the state vector (i.c., the number of 3's in the map) is
not the same as M on the first card, or else some of the 2's in the map did not have a corresponding
J z; entry following the map.

32. EXIT -- SYSTEM ERROR. WRONG NO. OF BASIC VARIABLES... nnn
This exit should ncver happen. If it does, something is seriously awry in the MINOS source code.
Perhaps the single- and double-precision files have been mixed up.

The following messages arise if the MPS file is seriously deficient, or
if additional storage is needed to allow the MPS file to be input or to
allow optimization to begin. The problem is abandoned.

40. EXIT -- FATAL ERRORS IN THE MPS FILE
One of the following conditions exists:

1. Therc are no entries in the ROWS section.
2. There are no entries in the COLUMNS section.

3. A type N row has been selected to be the linear objective row, but it is one of the first m;
rows, where m, is the number of NONLINEAR CONSTRAINTS.

The first two conditions speak for themselves. If condition 3 occurs, the N row may be have been
selected by default (if you did not specily any OBJECTIVE name in the SPECS file). To prevent
this, specifly some other (possibly ficlitious) row name. Otherwise, you must put the N row after
the nonlinear row names in the ROWS section.

41. EXIT -- NOT ENOUGH STORAGE TO READ THE MPS FILE
One of the ROWS, COLUMNS, or ELEMENTS estirnates in the SPECS (ile proved to be too small. The
minimum (exact) values are shown in earlier messages. You must specify these values, or ligher
valucs, and re-run the problem.

If the MPS data had been on a file of its own (rather than in the card input stream), MINOS
would have been able to continue by rewinding the MPS file and trying again.

42. EXIT ~-- NOT ENOUGH STORAGE TO START SOLVING THE PROBLEM

The MPS file was read succesfully, but the main storage array Z (#) is not large enough to provide
workspace for the optimization procedure. Be sure that the SUPERBASICS LIMIT and HESSIAN
DIMENSION are not unreasonably large. Otherwise, see the advice given for exit 20.
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6.4 Solution Output

At the end of a run, the final solution will be output to the PRINT file in accordance with the
SOLUTION keyword. Some header information appears first to identify the problem and the final
state of the optimization procedure. A ROWS section and a COLUMNS scction then follow,
giving one line of information for each row and column. The format used is similar to that seen
in commercial systemns, though there is no rigid industry standard.

ROWS Section

The general constraints take the form { < f(z) + Ay < u, where z and y are the nonlinear and
linear variables respectively. The i-th constraint is therefore of the form

a< fi(z)+ay < B,

and we define the i-th “row” to be the linearization of f*(z) + aTy. For linear constraints, the
i-th row is just aTy.
Internally, the constraints take the form Lf(z) + Ay + s = 0 where Lf(z) is the current
linearization of f(z), and s i3 the set of slack variables (which happen to satisly the bounds
g —u < 8 < —I). For the i-th constraint it is the slack variable s; that is directly available, and it
8 is sometimes convenient to refer to its state.

Label Description

NUMBER The value n + ¢. This is the internal number used to refer to the i-th slack in the
iteration log.

ROW The name of the i-th row.

STATE The state of the i-th row relative to the bounds a and 3. ’fhc various states

possible are as follows.

'
.
1
]
s
'
‘
.

LL The row is at its lower limit, a.
UL The row is at its upper iimit, 8.
EQ The row is equal to the RHS element, a = 8.
BS  The constraint is not binding. s, is basic.
SBS  The constraint is not binding. s, is superbasic.

A key is sometimes printed before the STATE to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradicnt is
essentially zero. This means that if the slack were allowed to start moving away
from its bound, there would be no change in the value of the objective function.
The values of the basic and superbasic variables might change, giving a genuine
alternative solution. owever, if there are any degencrate variables (labelled D),
the actual change might prove to. be zcro, since one of them could encounter a
bound immediately. In either case, the values of dual variables might also change.

D Degencrate. The slack is basic or superbasic, but it is equal to (or very close to)
one of its bounds.




K - SIS ~ i O v - ARG e 05” PR Py

6.4 Solution Output 71

ACTIVITY

Infeasible. The slack is basic or superbasic and it is currently violating one of its
bounds by more than the FEASIBILITY TOLERANCE.

Not precisely optimal. The slack is nonbasic or superbasic. If the OPTIMALITY
TOLERANCE were tightened by a factor of 10 (e.g., if it were reduced from 1073 to
1078), the solution would not be declared optimal because the reduced gradient
for the slack would not be considered ncgligible. (Il a loose tolerance has been
used, or if the run was terminated before optimality, this key might be helpful in
deciding whether or not to restart the run.)

Note: If SCALE is specified, the tests for assigning the A, D, I, N keys are made on
the scaled problem, since the keys are then more likely to be correct.

The row value; i.e., the value of aTy for linear constraints, or the value of the
lincarization Lf*(z) + aTy il the constraint is nonlinear.

SLACK ACTIVITY The amount by which the row differs from its nearest bound. (For free rows,

it is taken to be minus the ACTIVITY.)

LOWER LIMIT a, the lower bound on the row.

UPPER LIMIT [, the upper bound on the row.

DUAL ACTIVITY The value of the dual variable =, often called the shadow price (or simplex

multiplicr) for the i-th constraint. The full vector = always satisfies BTr = gg,
where B is the current basis matrix and gg contains the associated gradicnts for
the current objective function.

If the solution is feasible, the first m, components of ® are used at the start of the
k-th major iteration to define A, the estimale of the Lagrange multipliers for the
nonlinear constraints.

The constraint number, .

COLUMNS Section

llere we talk about the “column variables” (z,y). For convenience we let the j-th component
of (z,y) be the variable z, and assume that it satisfics the bounds a < z, < 4. Lincar and
nonlinear variables are treated the same.

Label
NUMBER

COLUMN
STATE

LL

EQ

Description

The column number, 5. This is the internal number used to refer to £, in the
iteration log.

The name of z;.

The state of z, relative to the bounds a and 8. The various states possible arc as
follows.

r; is nonbasic at its lower limit, a.

z, is nonbasic at its upper limit, 8.

z, is nonbasic and fixed at the value a = .
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FR  z, is nonbasic and currently zero, even though it is free to take any value. (lts
bounds are a = ~oo0, B = +00. Such variables are normally basic.)

BS  z, is basic.
SBS 1z, is superbasic.

A key is sometimes printed before the STATE to give some additional information
about the state of z,. The possible keys are A, D, I and N. They have the same
meaning as described above (for the ROWS section of the solution), but the words
“the slack” should be replaced by “z,".

ACTIVITY The value of the variable z;.

OBJ GRADIENT g;, the j-th component of the combined linear and nonlinear objective function
F(z) + ¢Tz + dTy. (We define g; = 0 if the current solution is infeasible.)

LOWER LIMIT a, the lower bound on z,.
UPPER LIMIT g, the upper bound on z,.

REDUCED GRADNT The reduced gradient d; = g, — xTa;, where @, is the j-th column of the
constraint matrix (or the j-th column of the Jacobian at the start of the final
major iteration).

MeJ The value m + j.

An example of the printed solution is given in chapter 8. Infinite UPPER and LOWER LIMITS
are output as the word NONE. Other real values are cutput with format F18.5. The maximum
record length is 111 characters, including the first (carriage-control) character.

Note: If two problems are the same except that one minimizes F(z) and the other maximizes
—F(z), their solutions will be the same but the signs of the dual variables x, and the reduced
gradients d, will be reversed.

6.6 SOLUTION File

If a positive SOLUTION FILE is specified, the information contained in a printed solution may
also be output to the relevant file (which may be the PRINT file if so desired). Infinite UPPER
and LOWER LIMITS appear as + 1020 rather than NONE. Other real values arc output with format
1PE16.8. Again, the maximum record length is t11 characters, including what would be the

carriage-control character if the file were printed.

A SOLUTION file is intended to be read from disk by a scif-contained program that extracts
and saves certain valucs as rcquired for possible further computation. Typically the first 114
records would be ignored. Each subsequent record may be read using

FORMAT(I8, 2X, 2A4, 1X, A1, 1X, A3, 5E16.8, I7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts
with a 1 and is otherwise blank. If this and the next 4 records are skipped, the COLUMNS
section can then be recad under the same format. (There should be no need to use any BACKSPACE
statements.)
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SUMMARY File

If SUMMARY FILE [ is specified with f > 0,  crtain brief information will be output to file f.
When MINOS is run interactively, file f will usually be the terminal. For batch jobs, a disk file
should be used to retain a concise log of each run (if desired; a SUMMARY file is more easily
perused than the associated PRINT file).

A SUMMARY file (like the PRINT file) is not rewound after a problem has been processed. It

can therefore accumulate a log for every problem in the SPECS file, if each specifies the same file.
The maximum record iength is 72 characters, including a carriage-control character in column 1.

> o

The following information is included:

The BEGIN card from the SPECS file.
The actual number of rows, columns and elements in the MPS file.

. The basis file loaded, if any.
. The status of the solution after each basis factorization (whether feasible; the objective value;

the number of function calls so far).

. The same information every k-th iteration, where k is the specified SUMMARY FREQUENCY

(default k& = 100).

6. Warnings and error messages.

8.

. For nonlinear constraints, ||zx+1 — zx{], IAk+1 — /! and the norm of the nonlinear constraint

violation at the start of each major iteration.
The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item 5 is not. All items are illustrated in Figure 6.1, which
shows the SUMMARY file for the test problem MANNE, using SUMMARY FREQUENCY 1.

NINDS ( 5.0 DEC 193 )

BEGIN MANNENS
ROMS 20
coLumNs 30

ELEMENTS 59
000 MARMING - THE WNS 19 ZERO

XVOXX TOTAL ND. OF ERRORS IN 'S FILE L

#nn  FUNCON 9273 7 OUY OF 10 CONSTRAINT GRADIENTS.
START OF MAJOR ITN ¢ PENALTY PARAMETER = 1.000-01
CONSTRAINT VIOLATION = 0.0

I™ o SINF= 1.0000000000-03 NINP: 1

I™ t SINF= 1.0000000000-03 NINFs: 1

e FUNDBY TS 17 OuUT OF 20 OBJECTIVE GRADIENTS.
I™ f 0BJz  P.6690907250%00 FUNS: 1 S sb:x 8

I™ 2 0BJz 2.669027558D°0C FUNSs 30 3 ses= s
OFTIMAL SUBPROBLEM AT NINOR ITHN 2 - TOTAL ITNS » 4

Figure 6.1. Format of SUMMARY filc for test problem MANNE

- . * R
. - ——— oy = .
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; START OF MAJOR ITN 2 PENALTY PARAMETER = 1.000-01
& CHANGE IN JACOBN VARS = 3.33330-02
- CHANGE IN MULTIPLIERS = 9.86430400

CONSTRAINT VIOLATION = 9.17350-06

™ 2 0BJz 2.669730897D*00 FUNS: 7] ge SBz B
I™ 3 0BJ3 2.6698282040400 FUNS= %0 33 S8 7
I™ 4 O0BJT 2.670022604D400 FUNS:z &7 a0 SBx 7
OPTIMAL SUBPROBLEM AT MINOR ITN 2 - TOTAL ITNS = .
START OF MAJOR ITN 3 PENALTY PARAMETER = 1.000-81
8 CHANGE IN JACOBN VARS = 1.67010-02
. CHANGE IN MULTIPLIERS = 1.4206D-02
_ CONSTRAINT VIOLATION = 2.7670D-06
I™ 4 O0BJT 2.670022627D%00 FUNS: Y 4 Bz 7
I™ S 0BJx 2.670063679D+00 FUNS= 59 52 Bz 7
I™ 6 0BJT 2.6700803580¢00 FUNS= 6 57 S8z 7
1IN 7 0BJ= 2.670088009D*00 FUNS= 69 62 SBx 7
, ITN 8 OBJ= 2.670092644D°00 FUNS= 7 €9 sBx 7
3 ™ 9 = 2.670097602D400 FUNS= 82 75 sz 7
' I™ 10 = 2.670097667D¢00 FUNS= 89 82 B2z 7
: I™ 1" = 2.670097667D400 FUNSZ 9% 87 sz 7
K OPTIMAL SUBPROBLEM AT MINOR ITN 7 - TOTAL ITNS = 1t
START OF MAJOR ITN & PENALTY PARAMETER = 0.0
E CHANGE IN JACOBN VARS = 1.52510D-02
-, . CHANGE IN MULTIPLIERS = §.7251D-03
- . CONSTRAINT VIOLATION = 2.0170D-06
: ™ 11 OBJ: 2.6700976580400 FUNS: 9 88 Sz 7
- ™ 12 0BJz 2.670097658D400 FUNS= 103 % SBz 7

{ OPTIMAL SUBPROBLEM AT MINOR ITH 1 - TOTAL ITNS = 12

START OF MAJOR ITN 8 PENALTY PARAMETER = 0.0
CHANGF IN JACOBN VARS = 4.91140-0¢
1 CHANGE IN MULTIPLIERS = 9.60640-07

CONSTRAINT VIOLATION = §.4354D-13

EXIT -~ OPTIMAL SOLUTION FOUND |

MAJOR, MINOR ITNS 5 12
OBJECTIVE FUNCTION 2.67009765764300400
SUPERBASICS, RGNORM ? 2.410-09
SNORN » PINORM 8.100%00 7.610400
FUNOBJ,» FUNCON CALLS 103 9%

BASIS MAP SAVED ON FILE 1% ITN= 12
SOLUTION PRINTED

| FUNCON CALLED WITH NSTATE = 2
FUNDBJ CALLED WITH NSTATE = 2

Figure 6.1 (continued). Format of SUMMARY fle for test problem MANNE
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7. SYSTEM INFORMATION

7.1 Distribution Tape

The source code and test problems for MINOS are distributed on a magnetic tape containing
14 files. The tape characteristics are described in a document accompanying the tape; normally
they are: 9 track, 1600 bpi, unlabeled, ASCII, 80-character records {card images), 3600-character
blocks.

The following is a list of the files and a summary of their contents. For reference purposes
we give a name to each file. HHowever, the names will not be recorded on unlabeled tapes. The
HEAD and BODY files are composed of several smaller files described in section 7.2.

File Name Type Cards Description
1. HEAD1 FORTRAN 923 Source files 1 2: MIOOMAIN and MI1OMACH
2. BODY1 FORTRAN 12846 Source files 3 13: MI15BLAS thru MISONCON
3. HEAD2 FORTRAN 923
4, BODY2 FORTRAN 128486
5. HEAD3 FORTRAN 923
6. BODY3 FORTRAN 12846
7. NANNE DATA 146 SPECS and MPS files for test problem MANNE
8. WEAPON FORTRAN 56 Double-precision file MIOOMAIN for WEAPON
9. WEAPON SINGLE 56 Single-precision version of file 8
10. WEAPON DATA 154 SPECS and MPS files for WIEAPON
11. ETAMACRO FORTRAN 135 Double-precision file MIOOMAIN for ETAMACRO
12. ETAMACRO SINGLE 135 Single-precision version of file 11
13. ETAMACRO SPECS 38 SPECS file for KTAMACRO
11. ETAMACRO NPS 2134 MPS file Tor ETAMACRO

One HEAD and one BODY lile should be selected for any given installation. HEAD1 and BODY1
are intended for machines using Fortran declarations of the form

k- IMPLICIT REAL*8 (A-H,0-2)

k. DOUBLE PRECISION Z (NWCORE)

3 INTEGER KA (NKA) {(long integers)

£ INTEGER#2 HA (NE) (short integers)

: For example: IBM Systems 360, 370, 3033, 3081, cte.; Amdahl 70, Facom, Fujitsu, Hitachi, and
= other systems analogous to IBM; DEC VAX 11/750 and 11/780; Data General MV/8000; ICL

2900 series; recent PRIME systema.
HEAD2 and BODY2 arc intended for machines using lortran declarations of the form

F IMPLICIT DOUBLE PRECISION(A-H,0-2)
".' - DOUBLE PRECISION Z (NWCORE)
. INTEGER KA (NKA) (long integers only)
For example: DEC Systems 10 and 20; Honeywell systems; Upnivac 1100 series.
HEAD3 and BODY3 are intended for machines using Fortran declarations of the form
9 i REAL Z (NWCORE)
4 INTEGER KA (NKA)
.! For example: Burroughs 6700 and 7700 scries; CDC 6000 and 7000 series and their Cyber
., counterparts; Cray-1.

o i i o AL A AT R - o
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Instailation Procedure

1. Obtain the appropriate HEAD and BODY files from the tape, along with the test data in file 7
(MANNE DATA).

2. Split the HEAD file into file MIOOMAIN and file MI1OMACH as suggested in section 7.2.
3. If necessary, cdit the subroutines in MI1OMACH according to section 7.4.

4. Decide whether or not to split the BODY file into files NI15BLAS through MIBONCON as suggested
in section 7.2.

5. If all source code must be compiled together (e.g., with the Watfiv compiler), compile all the
routines that were originally in the HEAD and BODY files, and run them on the test data in file
MANNE DATA. Check the output against that shown in section 8.4.

6. If all source code can be compiled together and saved as a load module, and if various routines
can later be compiled and linked to the load module, then do as described in step 5.

7. Ifindividual routines cannot be recompiled to replace thosc in an already compiled collection,
it is essential to compil~ the four routines in file MIOOMAIN separately; these contain the default
user routines (appropriate for the test problem MANNE), and they will be replaced for other
problems. Compile all remaining HEAD and BODY routines together (or separately if more
convenient). In some circumstances it may be desirable to keep subroutines MIFILE, MINOS1
and MINOS2 separate. Run the resulting code on the test data in file MANNE DATA, and check
the output against that shown in section 8.4.

8. If further testing is desired, compile the appropriate WEAPON FORTRAN file and link it to the
previously compiled MINOS code. Run it on the SPECS and MPS files contained in WEAPON
DATA. See scction 7.6 for a summary of the test problem results.

9. For a more demanding test, perform the same steps on the three relevant ETAMACRO f(iles.

7.2 Source Files

The source code for MINOS is intended to be acceptable to hoth Fortran 66 and Fortran 77
compilers, with a minimum of editing required for any particular installation. Certain unavoidable
machine dependencies are confined to a few short subroutines, involving file definitions, word
lengths, and end-of-file recognition. The only widespread difliculty arises in the definition of
character strings in DATA statements and FORMAT statements. For example,

DATA LWORD /4HWORD/
FORMAT (33H FANCY HAVING TO COUNT CHARACTERS)

is accepted by most Fortran 66 compilers, but may result in warning messages from Fortran 77
compilers. We have chosen to use quotes to delimil strings, as in

DATA LWORD /'WORD'/
FORMAT(’ THIS STRING IS EASY TO TYPE®)

since it is legal in Fortran 77 and it fails on very few Fortran 66 compilers. (In the past, CDC
compilers have allowed strings to be delimited by asterisks (#) rather than quotes.)

DATA statements are used to initialize integer variables to character strings in the manner
just shown. The strings vary from 1 to 4 characters in length. Implicitly typed integers are
therefore assumed to be at least 32 bits long. On some systemns {e.z., PRIMIT) this means that
+ compiler oplion must be invoked to treat implicit integers as “long™. (IXlsewhere in the source
“nde, variables that are intended Lo be 16 bits tong are explicitly typed INTEGER#2.)

R o o  smgy =  —
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The source code is divided into 13 logical parts. For ease of handling, these are combined into
the HEAD and BODY files on the distribution tape, but for subsequent maintenance we recommend
that 13 separate files be kept. In the description below we suggest a name for each file and
summarize its purpose. We then list the names of the Fortran subroutines and functions involved.
The naming convention used should minimize the risk of a clash with user-written routines.

File 1. MIOOMAIN Main program and default user routines.
MAIN FUNOBJ FUNCON MATMOD

File 2. MI1OMACH Machine-dependent routines.
MIFILE MINOS1 MINGSZ K1HASH MLINIT KIREAD

File 3. MI1SBLAS  Basic Linear Algebra Subprograms (a subset).

DASUM DAXPY DCOPY DDOT DNRM2 DSCAL i
These routines are functionally similar to members of the BLAS package (Lawson, et al.,
1979). Beware that they perform the correct function only when the parameters INCX
and INCY are both equal to I (which is the only way MINOS uses them). If possible they
should be replaced by authentic BLAS routines. There may exist versions that have
been tuned to your particular machine.

DZERO HCOPY ICOPY
These are additional utility routines that could be tuned to your machine. DZERO is used
the most, to set a vector to zero. If tuned versions of the BLAS are available, DZERO
could call DCOPY with appropriate arguments.

File 4. MI20AMAT Constraint matrix routines.

M2APRD  M2APRS  M2APR7 M2APR8 M2BSPR  M2CRSH  M2SCAL  M2UNPK
M2UNP2  MATCOL

File 5. MI25BFAC Basis factorization routines.
LULFAC LU2FAC LU3cCp LU4AC LU4AR LUSPQ1 LUSPQ2 LUSPQ3

A LUBSOL LU7MVR LU7MVW LUBRPC M2BELM M2BFAC  M2BMAP  N2BSOL
¥ M2SING

£

ks File 8. KI30SPEC  SPECS file routines.

M3SPCO  M3SPC1  M3SPC2

‘ File 7. MI3SINPT  Storage allocation and MPS file input.
; . M3CORE  M3INPT M3MPS M3NAME  M3READ

File 8. MI40BFIL  BASIS file input/output and SOLUTION printing.

M4GETB  M4DUMP  M4INST M4LOAD M4NEWB  M4OLDB  M4PNCH  M4SAVB
M4SOLN  M4SOL1  M4SOL2

- File 9. MI50LP Primal simplex method.
?3 ‘ M5CHZR K5FRMC M5L0OG MSLPIT M5PRIC M5SETP KSSETX M5SOLV
oo | et e ATTE e ewoa T p—y

. -
L A ——— ey s ——




78 7. System Information

File 10. MIBOSRCH Linesearch and merit function.

GETPTC GETPTQ MERFUN MERGRD MERSAV  SEARCH M6DCON  M6DOBJ
MBDMMY MO6FCON  M6FOBJ

File 11. MIBSRMOD  Maintaining the quasi-Newton factor R.

MBBFGS M6BSWP  MSRADD M6RCND  MGRDEL MGRMOD  M6RSET  M6RSOL
MOSWAP

File 12. MI7ONOBJ  Nonlinear objective; reduced-gradient algorithm.

M7BSG M7BSX M7CHKD M7CHKG  M7CHZQ  M7RG M7RGIT  M7SDIR
M7S8CV

File 13. MISONCON  Nonlinear constraints; projected Lagrangian algorithm.
MBAJAC MSBAUGL  N8AUG1 M8CHKJ MBPRTJ  MSSETJ

7.3 COMMON Blocks

Certain Fortran COMMON blocks are used in the MINOS source code to communicate between
subroutines. Their names are listed below.

M1EPS MIFILE M1WORD

M2FILE  M2LU1 M2LU2 M2LU3 M2MAPA  M2MAPZ  M2PARM

M3LEN M3LOC M3MPS1  M3NPS2  M3IMPS3  NM3MPS4  M3SCAL

MSLEN MSLOC M5FREQ M5LOBJ  M5LOG1  M5L0G2  MSLOG3  MG6LP1
MSLP2 M5PRC M5TOLS

M7LEN M7LOC M7CG1 M7CG2 N7CONV  M7PHES  M7TOLS

MBLEN MBLOC M8AL1 M8AL2 M8DIFF M8FUNC  M8SAVE  MSVERI
CYCLCM

A complete listing of the COMMON blocks and their contents appears in subroutine MINGS2. (Also
see section 2.6). It may be convenient to make use of these oceasionally; for example,

COMMON /MIFILE/ IREAD,IPRINT,ISUMM
gives the file numbers for the system reader and printer and for the SUMMARY file. Otherwise,

the naming convention should again minimize the risk of a clash with user-defined COMMON blocks
and subroutines,

As supplied, MINOS does not use blank COMMON. However, in some installations it may be
desirable to storc the workspace array Z there, as noted in Lhe next section.

P




7.4 Machine-dependent Subroutines 79

7.4 Machine-dependent Subroutines

Some of the routines in the HEAD file may require modification to suit a particular machine or a
non-standard application. We discuss each of them in turn.

The Main Program
The workspace for MINOS is allocated in the main prograi by code of the following form:
DOUBLE PRECISION Z (10000)

DATA NWCORE/ 10000/
c
CALL MINOS1( 2Z,NWCORE )
RETURN
c
c END OF MAIN
END

Ten thousand words of storage are sufficient to solve small examples such as the test prob-
lems MANNE and WEAPON. About 25000 words are needed for ETAMACRO, which has ap-
proximately 400 constraints and 700 variables. For linear programs containing m constraints, the
length of Z should be roughly 100, depending on the density of thc constraint matrix. Nonlinear
programs may require more workspace if there are many nonlinear variables.

On some machines it is possible to replace the main program by a non-Fortran routine that
allocates storage for Z at run-time.

For Burroughs inslallations, the main program should allocate Z by calling an Algol procedure
GETCOR (not provided), which in turn should call MINOS1 as above. This will overcome two
problems in the process:

1. The binder can replace GETCOR in a compiled code file (but it cannot replace the main
program).

2. The length of Z is effectively unlimited if declared in an Algol procedure {but is restricted to
be 85535 or less when declared in Fortran).

In some installations it will be desirable to put Z in blank COMMON and then extend it at
run-time if necessary. This could be done in MAIN, or in subroutinc MINGS2 (sce below).

On Honeywell machines, Z must be in blank or {abeled COMMON to avoid a limit on the total
storage for local variables (18K words).

The CDC version of MAIN will nced to begin with PROGRAM cards of the following general
form:

PROGRAM MINQS( INPUT, OUTPUT, TAPES=INPUT, TAPE8=0UTPUT,
1 TAPES, TAPE9, TAPE10, TAPE11,
2 TAPE12, TAPE13, TAPE14, TAPE16 )

The unit numbers are suggested for use as foliows:
TAPE8  The SCRATCH file (rccord length 8)
TAPES A SUMMARY file (c.g., a terminal)
TAPE10 An MPS file
TAPE11 An OLD BASIS file and/or a BACKUP file
TAPE12 A NEW BASIS file

B R N . 4
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TAPE13  An INSERT file or a LOAD file
TAPE14 A PUNCH file or a DUMP file
TAPE16 A SOLUTION file (record length 111)

Subroutines FUNOBJ, FUNCON, MATMOD

These are the user routines described in Chapter 2. The HEAD file contains default versions
that are appropriate for the test problem MANNE. They test if PROBLEM NUMBER 1111 has been
specified, as in the file MANNE DATA. If not, they terminate the run with a message indicating that
the required subroutine has not been loaded. (See exit 6 in section 6.3.)

Subroutine MIFILE

This subroutine assigns explicit unit numbers to certain global filcs, namely the “card reader”,
the “line printer”, the SCRATCIH file, and the SPECS file. Typical values are 5, 8, 8, and 5, but
these will not be suitable for all installations.

In some cases (e.g., DEC 10 and 20), MIFILE must use explicit OPEN statements to open both
the global files and certain others that are defined in the SPECS file for a particular problem, and
to assign symbolic names to these files. In such cases, it may be sensible to let the user compile
his own version of MIFILE each time MINOS is run.

For Burroughs installations, MIFILE may need to be compiled separately with some Burroughs
FILE statements inserted at the start (since they must be the first statements that the compiler
sees). The attributes in these FILE statements can be altered by the usual WFL statements
associated with a run, but their default values cannot be altcred by binding in a different version
of NIFILE. It is therefore advisable to consider the FILE statements carefully before compiling
the entire source code.

Subroutine MINOS1

This opens some global files and then passes the array Z to subroutine MINOS2 as many times as
necessary, until a signal is given that all problems in the SPECS file have been processed.

For special applications, MINOS1 may need to be expanded. The most likely extension would
be to call a matrix generator and a report writer (before and after the call Lo subroutinc NIN0S2).

Subroutine MINOS2
For special applications, MINOS2 may requi:e modification. Again, one may wish to insert calls to
a matrix generator or a report writer.

Some systems (e.g., CDC) allow blank COMMON to be cxtended at run-time. If so, a scnsible
place to do this is after the call to M3CORE, making use of the integer variables NWCORE, MINCOR
and MAXZ. MINCOR will contain an cstimate ol the amount of storage required, and the user may
assisn a valuc to MAXZ by means of a data card of the form

WORKSPACE (TOTAL) 50000

in the SPECS file. See the in-line documentation for further details.

G e ey
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Subroutine W1HASH

This subroutine should not require modification if a word containing four characters of left-
justified data (read under A4 format) can be treated as a valid INTEGER.

On certain machines that regard INTEGER variables as a subset of the REALs, the characters
must be right-shifted in order to produce a zero floating-point exponent. The in-line documenta-
tion points to four words requiring conversion.

For CDC and Cray installations, an offending word KEY1 may be converted into an acceptable
integer K1 as follows:

DECODE( 4,10,KEY1 ) K1
10 FORMAT(R4)
For Burroughs machings, the following statement has the required effect if KZERO = O:
K1 = CONCAT( KZERO,KEY1,31,47,32 )

Burroughs installations need some further non-standard Fortran to facilitate character com-

parisons. In M1HASH, the statement
IF (KEY1 .EQ. NAME1(KT) .AND. KEY2 .EQ. NAME2(KT)) GO TO 80

must be changed to use “.IS.” in place of “.EQ.”, and the same change must be made to many
“.EQ.” tests in subroutine M3SPC1 (in the BODY file).

Subroutine MIINIT

The variable EPS in this subroutine should be set to the relative precision of the machine's
floating-point arithmetic, when it opcrates on words of the same type as the main storage array
2. Typical values are as follows:

EPS = 18.0+**(-13)  for IBM systems,

EPS = 2.0%+(-58) for DEC VAX 11/780 with standard double precision,
EPS = 2.0+x(-681) for DEC 10 and 20,

EPS = 2.0s%%(-62) for Honeywell systerns,

EPS = 2.0+*(-59) for Univac systems,

EPS = 2.0#%(-47) for CDC and Cray systems,

EPS = 2.0%*(-37) for Burroughs systems.

Some VAX systems have additional double-precision hardware with slightly lower precision but a
greater exponent range. Use of this option may be worthwhile, since it will essentially climinate
some annoying (but otherwise harmless) occurrences of floating-point underflow.

Subroutine M1READ

This subroutine contains a READ statement that is required to recognize an end-of-file condition
{when reading the SPECS file). Most compilers allow the form

READ (ISPECS, 1000, END=900) L,LINE

RETURN
but CDC compilers require the statecments

READ (ISPECS, 1000) L,LINE

IF (EOF(ISPECS)) 900, 100

100 RETURN

Note: Once installed corrcctly, subroutines M1HASH, W1INIT and MIREAD will not be changed
by the user. They should be treated the same as the subroutines in the BODY file.
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7.5 Subroutine Structure

The first five levels of the subroutine hierarchy are shown below.

MAIN
MINOS1
[V
MIFILE NINOS2
/—/-
MLINIT M3INPT MAGETB M6S0LV M4SAVB
M3SPCO
M3SPC1
M3SPC2
MIFILE
M3CORE
M3MPS M40LDB M8SETJ MANEWB ¥
M3CORE M4INST M2BFAC M4SOLN
M4LOAD M5FRNC M4PNCH
M8AJAC MSSETP M4DUMP
M2SCAL MSPRIC
M2CRSH MSLPIT
N7RGIT
M5LOG
M4ANEWB

1. The main program allocates workspace and calls MINOS1.

2. MINOS1 defines the READ, PRINT, SCRATCIH and SPECS files via MIFILE, then calls MINOS2
once for each problem in the SPECS file.

3. NINOS2 inputs the SPECS filc and the MPS file, loads an initial basis, solves the probhlem
(or a scquence of problems according to the CYCLE LIMIT), and finally saves BASIS liles and
prints the solution,
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7.6 Test Problems

Test Problem MANNE

This is a small example of an economic model due to Manne (1979). It has a nonlinecar objective
function, 10 nonlinear constraints, 10 lincar constraints, and 30 variables. The nonlinearities are
defined by the default function routines FUNOBJ and FUNCON in the MINOS source code. The
starting point given in the MPS file is intentionally close to the optimum solution, to make this
an inexpensive test problem. Other values in the INITIAL bounds set can be tried.

As supplied, FUNOBJ and FUNCON compute all gradicnts analytically if the SPECS file specifies
DERIVATIVE LEVEL 3. For test purposes, the first three nonzero gradients in cach routine are not
computed if DERIVATIVE LEVEL = 0. We give a summary of the output produced by MINOS for
the latter case. A full listing appears in section 8.4.

For this and later cxamples, the results were obtained on an IBM 3081 using the Fortran H
Extended (Enhanced) compiler with optimization level OPT=3,

Maximum objective value: 2.67009603
Iterations to get feasible: 1

Total iterations: 14

Major iterations: 3
Evaluations of F(z) and its gradient: 21
Evaluations of f(z) and its Jacobian: 24

Nusmber of superbasics at optimum: 7

CPU time (IBM 3081): 0.3 seconds

The Weapon Assignment Problem, WEAPON

This problem has a nonlinear objective function and lincar constraints. {tis deseribed by Bracken
and McCormick (1969) and Himmelblau (1972). The constraint matrix is 12 < 100 and all 100
variables occur nonlinearly in the objective function I7(z). ‘T'he latter depends on 12 data cards
which are read during the first entry to subroutine FUNOBJ.

The following arc some solution statistics, oblained by MINOS on an IBM 3081 as noted
above. They give an indication of the effort required to solve the problem. However, one should
not expect to obtain identical results on sowme other machine.

Minitum objective value: —-1735.56958
Iterations to get feasible: 3

Total iterations: 120
‘valuations of F(z) and its gradient: 270

Number of superbasics at optimum: 18

CPU time (IBM 3081): 2 seconds
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Test Problem ETAMACRO (linear version)

This is one example of the energy model developed by Manne (1977). The constraint matrix is
401 X 689. To obtain a linear problem, we have included one linear objective row OPTIMALG in
the MPS file. The latter also contains one right-hand-side vector RHS00001, and one bounds set
BOUNDSO1.

The objective row QPTIMALG contains the optimal gradient values for the 80 nonlinear vari-
ables in the original (nonlinear) form of ETAMACRO. Hence the linear version of the problem has
the same optimal dual variables x as the nonlinear version (but rather diflcrent primal variables
z).

The file ETAMACRO SPECS is set up to solve this lincar program first. It asks for the linear
variables and constraints to be scaled. (Note that it also asks for a BASIS map to be saved on
unit 11 every 100 iterations. This may be used as a starting basis for the nonlinear version of the
problem.)

Typical solution statistics follow.

Maximum objective value: 755.715213
Iterations to get feasible: , 240
Total iterations: 904
CPU time (IBM 3081): 15 seconds

Test Problem ETAMACRO (nonlinear version)

The objective function for the original form of the energy model is entirely nonlinear, and involves
the first 80 variables. It is defined by subroutine FUNOBJ in file ETAMACRO FORTRAN. It depends
on 3 data cards which are included at the end of file ETAMACRO SPECS and are read during the
first entry to FUNOBJ.

The MPS file docs not initialize any of the nonlinear variables. When started from the optimal
solution to the preceding linear problem, typical solution statisties (with scaling requested) are
as follows.

Maximum objective value: 1337.72468
Iterations to get feasible: 0

Total iterations: 235
Evaluations of F(z) and its gradient: 444
Number of superbasics at optimum: 28

CPU time (IBM 3081): 7 seconds

From a cold start, with and without scaling, typical statistics are as follows.

SCALE YES SCALE NO

Maximum objective value: 1337.72168 1337.72468
Iterations to get feasible: 235 213

Total iterations: 1022 1267
Evaluations of F(z) and its gradient: 1271 1554
Number of supcrbasics at optimum: 28 28

CPU time (IBM 3081): 21 seconds 26 seconds
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7.8 Test Problems

8. EXAMPLES

The following sections define some example problems and show the input required to solve them
using MINOS. The last example in section 8.4 is iest problem MANNE as supplied on the
distribution tape. For this example we also give the output produced by MINOS.

As the examples show, certain Fortran routines may be required to run a particular problem,
depending on the problem and on the Fortran installation:
e A main program to allccate workspace
e Subroutine FUNOBJ to define a nonlinear objective function (if any)
e Subroutine FUNCON to define nonlinear constraint functions (if any)
¢ Subroutine MATMOD for special applications

The following input items are always required:

¢ A SPECS file
e An MPS file

Additional input may include a BASIS file and data read by the Fortran routines.

Load modules and file specifications are inevitably machine-dependent. A resident expert
will be needed to install MINOS on your particular machine and to recommend job control or
operating system commands. On some machines it will be possible to run lincar programs through
MINOS without compiling any routines or linking them to the MINOS code file. For nonlinear
problems, some compilation and linking is unavoidable.

For some installations it may also be convenicnt to have your own copy of subroutine MIFILE,
to define certain file attributes in (non-standard) Fortran, rather than via operating system
commands. The resident expert will know best.

Good luck! We hope the examples that follow are general enough to set you on the right
track. 1
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8.1 Linear Programming

One of the classical applications of the simplex method was to the so-called diet problem. Given
the nutritional content of a selection of foods, the cost of each food, and the consumer's minimum
daily requirements, the problem is to find the combination that is least expensive. The following

example is taken from Chvital (1983).

minimize ¢’z subject to Az > b, 0<z<uy,
where 110 205 160 160 420 260 2000
A= 4 32 13 8 4 14 |, b= 55 1,
2 12 54 285 22 80 800
and

ce=(3 24 13 9 20 19)T, u=(4 3 2 8 2 2)T

Main program (not needed for some installations)

DOUBLE PRECISION  Z(10000)

DATA NWCORE/ 10000/
(]

CALL MINOS1( Z,NWCORE )

STOP

END

Dummy user routines (not needed for some installations)

SUBROUTINE FUNOBJ

ENTRY FUNCON

ENTRY MATMOD

RETURN

END

SPECS File
BEGIN DIET PROBLEM

MININIZE
ROWS 20
COLUMNS 30
ELEMENTS 50
SUMMARY FILE 9
SUMMARY FREQUENCY 1 #* (for small problems only)
NEW BASIS FILE 11

END DIET PROBLEN

ee—-
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MPS File
k NAME DIET
] ROWS
4 G ENERGY
G PROTEIN
G CALCIUM
N COST
COLUMNS
OATMEAL ENERGY 110.0 PRGTEIN 4.0
3 OATMEAL CALCIUM 2.0 COST 3.
= . CHICKEN ENERGY 206.0 PROTEIN 32.0
3 CHICKEN  CALCIUM 12.0 COST 24.0
EGGS ENERGY 180.0 PROTEIN 13.0
EGGS CALCIUM 54.0 COST 13.0
MILK ENERGY 180.0 PROTEIN 8.0
MILK CALCIUM 285.0 COST 8.0
PIE ENERGY 420.0 PROTEIN 4.0
PIE CALCIUM 22.0 COST 20.0
PORKBEAN ENERGY 280.0 PROTEIN 14.0
X PORKBEAN CALCIUM 80.0 COST 19.0
? RHS |
k. DEMANDS ENERGY 2000.0 PROTEIN 66.0
3 DEMANDS CALCIUM 800.0
3 BOUNDS
1 UP SERVINGS OATMEAL 4.0
3 UP SERVINGS CHICKEN 3.0
: t UP SERVINGS EGGS 2.0
UP SERVINGS MILK 8.0
N UP SERVINGS PIE 2.0
# UP SERVINGS PORKBEAN 2.0
N ENDATA
& Notes on the Diet Problem
« 1. For small problems such as this, the SPECS file does not really neced to speccify certain
; parameters, because the default values are large cnough. However, we include them as a
reminder for morc substantial models.
2. In the MPS file we put the objective row last. Looking ahead, this is one way of cnsuring
that it does not get mixed up with nonlinear constraints, whose names must appear first in
'! - the ROWS section.
; 3. The constraint matrix is unusual in being 100% dense. Most models have at least a lew
zeros in each column and in b. They would not nced to appear in the COLUMNS and RIS

.- sections.

4. MINOS takes three itcrations to solve the problem. The optimal objective is ¢Tz = 92.5.
The optimal solution is z = (4, 0, 0, 4.5, 2, 0)T and s = (0, =5, =534.5)T. The oplimal
dual variables are 7 = (0.05625, 0, 0)T.
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8.2 Unconstrained Optimization
The following is a classical unconstrained problem, due to Rosenbrock (1960):
minimize F(z) = 100(z3 — z%)* + (1 — z,)%.
We use it to illustrate the data required to minimize a function with no general constraints.

Bounds on the variables are easily included; we specily —10 < z; < 5 and —10 < z3 < 10.

Calculation of F(z) and its gradients

SUBROUTINE FUNOBJ( MODE, N, X, F, G, NSTATE, NPROB, Z, NWCORE )

IMPLICIT REAL«8 (A-H,0-2)
3 DOUBLE PRECISION X(N), G(N), Z(NWCORE)
k c
C ROSENBROCK'S BANANA FUNCTION.
C
X1 = X(1)
X2 = X(2)
] T1 = X2 - X1#+2
T2 = 1.0-X1
' F = 100.0 * Tis%2 + T2++2
G(1) = - 400.0 « T1 =« X1 - 2.0 = T2
G(2) = 200.0 = T1
i RETURN
c
3 C END OF FUNOBJ FOR ROSENBROCK
#} END
# SPECS File
BEGIN ROSENBROCK
OBJECTIVE = FUNOBJ
NONLINEAR VARIABLES 2
SUPERBASICS LIMIT 3
'} LOWER BOUND -10.0
. UPPER BOUND 10.0
g
; SUMMARY FILE 9
SUMMARY FREQUENCY 1
ITERATIONS LIMIT 50

END ROSENBROCK
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MPS File

NAME ROSENBROCK
ROWS
N DUMMYROW
COLUMNS
X1
X2
RHS
BOUNDS
UP BOUND1 X1
FX INITIAL X1 -
FX INITIAL X2
ENDATA

- = o
o N O

Notes on Rosenbrock’s function

1.

: 7
3 8.
: 9.
7

10.

There is nothing special about subroutine FUNOBJ. It returns the function value F(z) and
two gradient values g, = dF/Jz, on every entry. If G(1) or G(2) were not assigned values,
MINOS would “notice” and proceed to estimate either or both by finite differences.

The SPECS file apparently does not need to estimate the dimensions of the constraint matrix
A, which is supposed to be void anyway. But in fact, MINOS will represent A as a 1 X n,
matrix containing ny elements that are all zero. For very large unconstrained problems, the
COLUMNS and ELEMENTS keywords must be specified accordingly.

The SPECS file must specify the exact number of nonlinear variables, n,. To allow a little
elbow room, the SUPERBASICS LIMIT must be set to ny + 1, unless it is known that some of
Lthe bounds will be active at the solution.

. The MPS file must specify at least one row. Ilere it is a dummy free row (type N = non-

binding constraint). The basis matrix will remain # = [ throughout, corresponding to the
slack variable on the free row.

The COLUMNS section contains just a list of the variable names. The RUS header card
must appear, but a free row has no right-hand-side entry.

. Uniform bounds —10 < z, < 10 arc specified in the SPIECS file as a matter of good practice.

Their presence does not imply additional work. If the LOWER and UPPER BOUND keywaords oid
not appear, the variables would implicitly have the bounds 0 < r, < oo, which will nut
always be appropriate.

. With the uniform bounds specified, only onc additional card is needed in the BOUNDS <ection

to impose the restriction z; < 5.

The INITIAL bound set illustrates how the starting point (z, 1) = (—1.2,1.0) is specilied.
These cards must appear at the end of the BOUNDS section. Since the SUPERBASICS LIMIT
is sufficiently high, both variables will initially be superbasic at the indicated values.

If the INITIAL bound set were absent (and if no BASIS file were loaded), zy and 1, would
initially be nonbasic at the bound that is smaller in absolute value (with ties broken in favor
of lower bounds); in this case, 7y == u; = 5 and o = [ = —10.

From the standard starting point shown, a quasi-Newton method with a moderately accurare
linesearch takes aboul 20 iteralions and 60 function and gradient evaluations to reach the
unique solution zy = ry = 1.0.
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0 8. Examples

8.3 Linearly Constrained Optimization

Quadratic programming (QP) is a particular case of linearly constrained optimization, in which
the objective function F(z) includes linear and quadratic terms. There is no special way of
informing MINOS that F(z) is quadratic, but the algorithms in MINOS will tend to perform more
efficiently on quadratics than on other nonlinear functions. The following items are required to
solve the quadratic program

minimize F(z)= %zTQz +c'z subject to Az <b, 220

for the particular data

4 2 2 -8
Q=(2 4 0)» °=(—°)’ A=(1112) =3
2 0 2 —4

Caleulation of quadratic term and its gradients

SUBROUTINE FUNOBJ( MODE, N, X, F, G, NSTATE, NPROB, Z, NWCORE )
INPLICIT REAL#8 (A-H,0-2)

DOUBLE PRECISION X(N), G(N), Z(NWCORE)

COMMON /QPCOMM/ Q(50,50)

c
c Computation of F = 1/2 x’Qx, g = Qx.
c The COMMON statement and subroutine SETQ are problem dependent.
c
c
IF (NSTATE .EQ. 1) CALL SETQ( Q, 60, N)
F = 0.0
c

DO200 I =1, N
GRAD = 0.0
DO 100 J =1, N
GRAD = GRAD + Q(I,J)*X(J)
100 CONTINUE
r = F + X(I)*GRAD

G(I) = GRAD
200 CONTINUE
C
r = 0.5eF
RETURN
c

c END OF FUNOBJ FOR QP
END

PO

ERA. |
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8.3 Linearly Constrained Optimisation o

SPECS File

BEGIN QP
NONLINEAR VARIABLES 3
SUPERBASICS LIMIT 3

SUMMARY FILE

SUMMARY FREQUENCY

ITERATIONS LIMIT 50
END QP

- O

MPS File

NAME QP
ROWS
L A
N C
COLUMNS
x1
x2
X3
RHS
B A 3.0
ENDATA

> >
N e
ococo
a
odo
ocoo

Notes on the QP example

1.

In subroutine FUNOBJ we assume that the a,ray Q(»,#) is initialized during the first entry
by another subroutine S8ETQ, which is problem-dependent. The COMMON statement is also
problem-dependent and is included to ensure that Q will retain its values for later entrics. (In
some Fortran implementations, local variables are not retained between entrics.)

. The quadratic form will often involve only some of the variables. In such cases the variables

should be ordered so that the nonzero rows and columns of Q come first, thus:

(%)

. The parameter N and the number of NONLINEAR VARIABLES would then be the dimension of

. FUNOBJ could have computed the linear term cTz (and its gradient ¢). However we have

included ¢ as an objective row in the MPS file, in the same manner as for linear programs.

This is more general, because ¢ could contain entries for all variables, not just those associated
with @.

. Beware—if ¢ 7 0, the factor } makes a vital difference to the function being minimized.
. The optimal solution to the QI problem as stated is

z = (1.3333,0.77777, 0.44444), %zTQz =8.2222, cTz=-17.111 F(z) = -8.8888.
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Test Probloeme WEAPON and ETAMACRO

The MINOS distribution tape contains data for these two linearly constrained problems. The
SPECS file for ETAMACRO is as follows. It is set up to solve a linear form of the problem first,
and then use the optimal basis as a starting point for the nonlinear form.

SETEIN ETANACRO AS AN LP PROBLEN.
NAXINIZE
OBJECTIVE = OPTINMALS
ROMS

ol
coLNe 700
CLEMENTS 2600
SUSURY FILE 9
Ps PFILE 10
NEX BASIS FILE 1"
SCALE es

mnunm 1000

BEGIN ALAM MANME'S ENERSY MODEL ETAMACRO
HAXINIZE
OBJECTIVE = FUNOBY
ROMS

00
counes 700
ELEMENTS 2600
ITURY FILE ’
s PILE 10
OLD BASIS FILE "
NEM DASIS FILE 12
NONLINEAR VARIABLES o0
SUPERBASICS LIMIT “
SCALE YES
ITERATIONS 2000

% NOVE -- AFTER TNIS SPRCS PILE TNERE ARE 3 CARDS OF DATA,
® TO BE READ ON THE FIRST ENTRY TO SUBROUTINE PUNDBY

o )
1.160 1.0 1.7 2.039 2.364 2.749 3.101 3.508
3.07% .27 [ ¥% /4] S.213 3.758 ¢.354 7.01¢ 7.7
19.000 0.200 9.400 0.33330 0.800

Dats-Atting can give rise o a constrained linear least-squarcs problem of the form
minimise [ Xz—~glls subjectteo Az2b I<z< .
This problem may be solved with MINOS as it stands, by coding subroutine FUNOBJ to compute

the objective function F(z) = }||Xz — y|i} and its gradient g(z) = XT( X'z —y). If X Is a sparse
matrix, it may be more convenient to express the problem in the form

misimise F(r) = -:-r"r subject to (’ i)(:)'z' (:), r free, IS2<

. . : A I T J . -
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8.3 Linearly Constrained Optimisation o3

Notes on the least-squares problem

1. As usual, the constraints in Az 2> b may include all types of inequality.

2. r = y— Xz is the residual vector and r7r is the sum of squares.

3. The objective function is easily programmed as F(r) = }rr and g(r) =r.

4. More stable methods are known for the least-squares problem. If there are no constraints at
all, several codes are available for minimizing [[Xz — y|[z when X is either dense or sparse.
When there are equality constraints only {Az = b), we know of one specialized method that
can treat X and A as sparse matrices (Bjorck and Duff, 1980). For the more general case
with inequalities and bounds, MINOS is one of very few systems that could attempt to solve
problems in which X and A are sparse. However, if n (the dimension of z) is very large,
MINOS will not be efficient unless almost n constraints and bounds are active at the solution.

5. If it is expected that most of the elements of z will be away from their bounds, it will be
worthwhile to specily MULTIPLE PRICE 10 (say). This will allow up to 10 variables at a time
to be added to the set currently being optimized, instead of the usual 1.

The Discrete ¢, Problem
An apparently similar data-fitting problem is

minimize ||[Xz - y|ly  subjectto Az > b

where ||r]l; = Y |ri|. However, this problem is best solved by means of the following purely
linear program:
ma::imi:e YA+ 6T
» I

subjectto XTA+ATu=0, -1<\N<L, w20

Notes on the {; problem

1. The solution z is recovered as the dual variables, i.c., the Lagrange multipliers associated
with the general constraints.

2. The optimal value of ||Xz — y||; is the sum of the absolute values of the reduced costs
associated with X. (It is also the maximal value of yTX + 6Tu.)

3. If a particular row in Az > b is required to be an cquality constraint, the corresponding
component of u should be a [ree variable,

4. It does not appear simple to include the bounds | < z < u cxcept as part of Az 2> b. If
there are many finite bounds, it may be best to solve the original problem directly as a lincar
program, thus:

minimize eTr+els
e

A"\ > b
subject to ([ -1 X)(:)=(y)' r, 820, 1<z<u,

where eT = (11...1).
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8.4 Nonlinearly Constrained Optimization

Two example problems are described here to illustrate the subroutines and data required to specify
a problem with nonlinear constraints. The first example is small, dense and highly nonlinear; it
shows how the Jacobian matrix may be handled most simply (as a dense matrix) when there are
very few nonlincar constraints or variables. The second example has both linear and nonlinear
constraints, and illustrates most of the features that will be present in large-scale applications
where it is essential to treat the Jacobian as a sparse matrix.

Problem MHW4D  (Wright (1978), example 4, starting point D)
minimize (z) —1)? + (21 — 23)? + (23 — 23)® + (23 — 24)* + (24 — 75)*

subject to  z) + z3 + z) = 3V2 + 2,
T3 — 23 + 74 = 2V2 - 2,

zyzs = 2.
Starting point: zg = (-1,2,1,-2,-2)

Notes for problem MHW4D

1. The function subroutines include code for a second problem (Wright, 1978, example 9). The
parameter NPROB is used to branch to the appropriate calculation.

2. In subroutine FUNOBJ, F is the value of the objective function F(z) and G contains the
corresponding 5 partial derivatives.

3. In subroutine FUNCON, F is an array containing the vector of constraint functions f(z), and
G holds the Jacobian matrix; thus, the i-th row of G contains the partial derivatives for the
i-th constraint. In this example the Jacobian is best treated as a dense matrix, so G is a
two-dimensional array. Note that several elements of G are zero; they do not need Lo be
explicitly set.

4. Subroutinc FUNCON will be called before subroutine FUNOBJ. The parameter NSTATE is uscd
to print a message on the very first entry to FUNCON. This is just a matter of good practice,
since it is often convenient to compile MINOS and the function routines into an executable
code file, and one can easily forget which particular function routines were used.

5. The SPECS file shown contains keywords that should in general be specified for small, dense
problems (i.e., ones whose default values would not be ideal).

6. The COLLUMNS section of the MPS file contains only the names of the variables, since they
are all “nonlinear”, and because there are no lincar constraints.

7. The BOUNDS section specifies only the initial point. Uniform bounds on the variables are
given in the SPECS file.

8. Since FX indicators are used for the INITIAL bounds, the SUPERBASICS LIMIT nceds to be at
least 5 in this case, plus 1 for clbow room during the optimization.

9. This example has several local minima, and the performance of MINOS is very dependent on
the initial point z9. Seec Wright (1976) or Murtagh and Saunders (1982) for computational
details.

[ —~— B ——— R R
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| Preblem MHWAD; computation of the ohjective function

p SUBROUTINE FUNOBJ( MODENoXoF 8, NSTATE ,NFROD, Z,NOICORE )
3 IMPLICIY REALSS(A-H,0~2)
DOUBLE PRECISION  X(N),B(N);Z(NNCORE)

L)

;X . 1;]

NE. 4) 60 TO 500
Xt1) - 1.0
X(1) - X(e)
- X(3)
X(3) - X(o)
X(8) - X(S)

4 T TIoNg & TEUug ¢ TIMS ¢ Tenud ¢ TSane
G(1) = 2.0MTY ¢ T2)
G(2) = -2.0nTE ¢ 3,00T3neg

t

s

)

e Ir
T
T2
3
Te
3

sunen
x
-
~
-

G(3) = -3, 9uTINNZ ¢ 4, 0nToNn3
Y G(Q) = -4.0nT4NN3 ¢ 4 OnTEWN]
g ) 8(S) = -4.0nTSHN3
RETURN

ann

: 500 71 = DSINIX(S) - X(3))
) T¢ = DCOS(X(S) - X(3))
. 4 = 10.00X(1)0X(4) ¢ X(1)08T & X(2) - ¢.0uX(2)uNR & X(3)
: 1 ¢ 9.00T1 ¢ X(2)%a3 # X(4)un2 » X(5)nne
H Q1) = 10.00X(4) ¢ 3.00X(0)wng » X(2)

S(2) = X(1)wn3 -« 12.06X(R)uX(3)

) ¢ 3.0MX(2)ung # X(4)wng # X(5)nn4

G(3) = ~4.0uX(2)ung - 9.0uT2
: . G(4) = 10.0uX(1) ¢ 2.0uX(2)%03 0 X(4) # X(5)une
; G(3) = 9. 0NT2 ¢ 4.0uX(2)un3 # X(4)un2 & X(S)un3
f RETURN

fi

o0




e - ea——

8. Examples

% [
- ¢ LK)
¢

F(1)

8(1,1)
81,2)
(1,3

| r(e)

! 6(2,2)
8(e,3)
8(2,6)

e A £ty
8(3: 1)
X 8(3.8)
RETURN

o060

P ; 300 F(1)

! 8l1,0)
811,2)
81,3)
: 801,6)
2 8(1,5)

Preblom MHW{D; computation of the constreint functions

SUBROUTINE PUNCONG MODE » MM MJAC 1 X, F 1 8, NSTATE . NPROB» Z,M0ICORTE. )
meLIcIT
pouBLE

REALWS(A-N,0-2)
PRECISION  X(N),F(N),8{M.N),Z(NNCORE )

IF (NSTATE .£Q. 1) MRITE(Gy 16000) NPROB
IF (NPROB .NE. ¢) G0 TO 3500

3 X(1) ¢ X(2)wug ¢ X(3)wn3
s 1.0

s 2.0uX(2)

= J.euX(3)ung

X(2) - X(3)nng ¢ X(o)
t.0

-2.0%X(3)

1.0

= X019 HN(S)
= X($)
s Xt1)

B X(1In0g ¢ X(Q)nng ¢ X(Z)ung ¢ X(4)nng ¢ X(§)veg
s 2.0uX(1)
= 2.0mX(2)
s 2.00X(3)
s 2.0%X(4)
s 2.0uX(B)

8 XY )engux(3) ¢ X(4)eX(S)
s 2.09%( 1) D)
s X(1)eng
s X($)
= X(e)

8 X(2)nu2EA(Q) & 19.0MM(1)9X(S)
s 10.0%%X(S)

s 2.06%X(2)eX(4)

s Nig)nag

s 10,071 1)

¢
1000 FORMAT(/ 364 THIS IS PRUBLEN MBRANDY. NPROB =, 13)
¢ FUNCON POR MR0ADY




8.4 Noalinearly Constrained Optimisatioa o7

; Problem MHW4D; the SPECS file
A BEGIN Mt &
PROBLEM MIBER .
NONLINEAR CONSTRAINTS 3
NONLINEAR VARIABLES s
JACOBIAN oense
UPPER BOLND 5.9
LOMER BOUND -5.0
SUSARY PILE ’
ITERATIONS 100
MAJOR ITERATIONS 13
NINOR ITERATIONS 10
PENALTY PARAMETER 1.0
\ SUPERBASICS LIMIT .
PRINT LEVEL (JFLB) 108
VERIPY LEVEL 0
oD 1N o

Problem MHW4D; the MPS file

NAME "
ROMS
€ CONt
€ CON2
€ CON3
COLUMNS .
X1
xg2
! x3
X8
i x5
: s
‘ ms coMt 6.20263
' ms cone 0.02002
-, ms cons 2.9
DOUNDS
FX INIVIAL X0 -1.0
‘ X INITIAL X2 2.0
: X INITIAL X3 1.0
: X INITIAL X& -2.0
i FX INITIAL X8 2.0
. CNDATA

|
!
i
§
!
[
j

——y
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Problem MANNE  (Manne, 1979)
T
maximise 2 Bilog C,
tamy
subject to aK!>C+IL, 1<t<T, (nonlinear constraints)
Ky < Ko+ I, 1<t<T, (linear constraints)

OKT S IT;

with various ranges and bounds.

The variables here are K, C; and I, representing capital, consumption and investment during
T time periods. The first T constraints are nonlincar because the variables K, are raised to the
power b = 0.25. The problem is described more fully in Murtagh and Saunders (1982), where
results are given for the case T = 100.

The main program and subroutines shown on the followink pages are part of the file HEAD1

on the MINOS distribution tape (sce sections 7.1 and 7.4). The SPECS data and MPS -data are
contained in the file MANNE DATA; they apply to the case T = 10.

Notes for problem MANNE

1.

For efficicncy, the Jacobian variables K, are made the first T components of z, followed by
the objective variables C,. Since the objective does not involve K, subroutine FUNOBJ must
set the first T components of the objective gradient to zcro. The parameter N will have the
value 2T. Verification of the objective gradients may as well start at variable T + 1.

. For subroutine FUNCON, N will be 7. The Jacobian matrix is particularly simple in this

example; in fact J(z) has only one nongero element per column (i.e., it is diagonal). The
parameter NJAC will therefore be T also. It is used only to dimension the array G.

. NSTATE enables B, AT and BT to be initialized on the first entry to FUNCON, for subsequent use

in both of the function subroutines. (Remember that the first call to FUNCON occurs before the
first call to FUNOBJ.) The name chosen for the labelcd COMMON block holding these quantities
must be different from the other COMMON names used by MINOS, as listed in scction 7.3.

. NSTATE is also used to produce some output on the final call to FUNCON.
. The COMMON block MIFILE is onc of those used by MINOS; sce section i.6. For test purposes

we also use COMMON block MBDIFF to access the variable LDERIV.

. The SPECS file uses keywords that you should become familiar with before running large

problems. Other values will be appropriate for other applications.

. The MPS file specifies a sparse T X T Jacobian in Lthe top left corner of the constraint matrix.

An arbitrary value of 0.1 has been used for the nonzcro variable cocflicients. A xzcro or blank
numeric ficld would be equally good.
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Problem MANNE; main program and calculation of the objective function

; c THIS IS THE DEFAULT MAIN PROGRAM FOR MINDS.
5 c IT SHOULD PROVIDE AS MUCKH NORKSPACE AS SEEMS APPROPRIATE.
c
DOUBLE PRECISION Z(10000)
DATA NMCORE/10000/
c
CALL MINOSI( Z,NHCORE )
sSTOP
c
c END OF MAIN
3 0o
; SUBROUTINE FUNOBJ( HODE,N,X,F 16, NSTATE,NPROB,Z,MICORE )
Y INPLICIT REAL®S(A-H,0-2)
DOUBLE PRECISION  X(N),8(N),Z(NNCORE)
3 c
; COMMION  /MBDIFF/ DIFINT(2),GOUMIY,LDERIV,LVLDIF
3 COMION  /MANNE / B,AT1100),8T(100)
LOSICAL GKNOMN
k. c
13 THIS IS TNE DEPAULT VERSION OF FUNOBJ FOR MINOS.
5 c IT BELONGS TO THE NONLINEAR TEST PROBLEM  MANNE,
¢ WHICH WILL SPECIFY PROBLEM NRDER 1111
c IN ORDER YO IDENTIFY ITSELF.
: c
K c FOR TEST PURPOSES, ME LOOK AT  OERIVATIVE LEVEL
; c AND SOMETIMES PRETEND TNAT NE DONT KNOM THE FIRST
5 ¢ THREE ELEMENTS OF THE GRADIENT.
c
c
IF (NPROB .NE. 1111) G0 TO 909
ZERO = 0.0
.- GKNOWN = LDERIV .€Q. 1 .OR. LDEWIV .EQ. 3
! oy NT 3 N2
. ] i | 4 s ZERO
; ! c
I 00 S0 J =1, NT
¢y XCON = XINT*J)
N F = F ¢ BT(JINDLOGIXCON)
! ‘ 8(J) = ZERO
! IF (GKNOMN .OR. J .ST. 3) GINT®J) = BT(J)/XCON
56 CONTINUE
{ RETURN
| :
- 3 IT LOOXS LIKE SOME OTHER FUNOBJ 13 NEEDED.
c

900 MRITEIIPRINT, 9000)
IF (ISUY .6T. 0) WRITECINANY, 9000)
E "oE = -
RETURN

c
‘ 000 PORMAT(/ * J00X SUBROUTINE FUNDBJ NAS NOT BEEN LOADED.®)
, ¢ 00 or race) For AueR

ypm |

ay e

(= - - -
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Problem MANNE; calculation of the constraint functions

OB ONONOONNN

nno

10

SUBROUTINE PUNCONC MODE 18N, NJAC 1 Xo P , 8, NSTATE , NPRUS » 2, NICORE )
meerr REALSG(A-N,0-2)
OOUBLE PRECISION  X(N),FIN),G(HIAC ), Z(IOKORE )

CONeIN /MIFILE/ IREAD, IPRINY, IS

COreoN /M001IFP/ DIFINT(2),00U0NY » LDERIV, LVLDIF
COMMON ANNR /7 B:ATL100),BT(100)

LOSICAL GKNDMN

THIS IS THE DEFAULT VERSION OF PUNCON FOR NINDS.
IV GELONGS TO TME NONLINEAR TEST PROBLEN RANNE,
MNTICH NILL SPECIPY PROBLEN MABER 1119
IN OROER TO IDENTIFY ITSELF.

POR TEST MMPOSES, ME LOOK AT DERIVATIVE LEVEL
AD SOMETIMES PRETEMD THAT WE OONT KNOM THE FIRST
THREE ELEMENTS OF THE SRADIENY.

IF (NPROB .NE. 1111) 80 TO %09
GXNOMN = LDERIV .88. 2

L1 s N

IF (NSTATE .NE. 1) €0 O 108
FIRST ENTRY

o 1.9

ON = 0.03

NTA = 0.93

e s 3.0

xxe 0.9

e s 0.08

] s 0.28

MRITE(IPRINY, 1000) O

A s (XCO ¢ X10) /7 XRKew

SPAC = (ONE ¢ GROM)sMONE - O)
AT(t) = AngPAC
ST(1) = BETA
00 16 J =2, NV

AT(J) = AT(J-1 )uGFAC

BY(J) = BTLJ=1 JUBETA
CONTINUE
STINT) = BTI(NT)Z(ONE - BRETA)

NORTAL ENTRY

00 150 J = 1, NT
XKAP = X(J)
[<) 3 AT(J) & XKAPWSG
PJ) s P
IF (GKNOMM .OR. J .6T. 3) 6(J) = BoFy 7 XKAP

CONTINUR
IF (NSTATE .LY. 2) RETURM
FINAL ENTRY

MRITECIPRINT, 2000) (F(JS), 4 s &, NT)
RETURN

IT LOOKS LIKE SO0ME OTNER PFUNCON IS NEEDYD.

900 \MRITE(IPRINT, 9000)

IF (ISUSY .6T. 0) IRITE(ITAN, 9000
not = -y
RETURN

1000 FORMAT(// * THIS IS PROBLENM NANNE. 6 =°, F8.3)

2000 FORMAT(// * FINAL NONLINEAR FUNCTION VALUES® / t3F12.8))
900 PORMAT(/ * 00 SUBROUTINE PUNCON NAS NOT BEEN LOADED.')
¢ ZND OF FUNCON POR RANNE
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2 Problem MANNE; the SPECS file

i BEGIN MANNE10

Y MAXINIZE
RONS 100
coLuNs 100
ELEMENTS 100
UPPER BOUND 100.0
OBJECTIVE = ruNDBY

NONLINEAR CONSTRAINTS 1o

NONLINEAR JACOBIAN VARS 10
NONLINEAR OBJECTIV VARS 20

SUMIARY FILE )
SUNARY FREQUENCY 1
NEM BASIS FILE 1"
3 PROBLEN NRBER 111
' JACOBIAN SPARSE
. MAJOR ITERATIONS s
E - MINOR ITERATIONS 20
PENALYTY PARAMETER 0.1
’ HESSIAN DIMENSION 10
. : DERIVATIVE LEVEL 0

E VERIFY GRADIENTS
‘ § ITERATIONS S0
’ PRINT LEVEL (JFUB) 00101
CYCLE LINIV 1
! CYCLE PRINT 2

END MANNE1O
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Problem MANNE; the MPS file

1 2

s
.
s
s
o MONOOS
S MONOO®
S HONOO?
S MONOOS
S NONOOY
S noNO10
L CAPOO2
L CAPOO3
1 L CAPODS
~ L cAPOOS
L CAPOOS
L CAPOO7
L CAPOOS
L CAPOO9
L capoto
L TERMINV
CoLIANS
, KAPOO!  MONOOY .1 CAPOO1 1.0
. KAPOO!  CAPOOZ  -1.0
KAPOOZ  MONOOZ N ] caposz 1.0
_ KAPOO2  CAPOO3  -1.0
3 KAPOO3  MONOOS 8] CAPOO3 1.0
' KAPOOS  CAPOOS  -1.0
4 KAPOOS  MONOOS N ] CAPOOS 1.0
: ; KAPOOS  CAPOOS  -1.0
{ KAPOOS  MONOOS N CAPOOS 1.0
} KAPOOS  CAPODG  -1.0
! KAPOO6  MONOOS N CAPOSe 1.0
i KAPOO6  CAPOO?  -1.0
KAPOO7  MONOO7 N CAPOO? 1.0
‘ KAPOO?  CAPOOS  -1.0
: KAPOOS  MONOOS .1 CAPOOS 1.0
: KAPOOS  CAPOOY  -1.0
KAPOOY  MONOOY - CAPOOY 1.0
KAPOOY  CAPO1O  -1.0
KAPOTO  MONO1O o CAPO1O 1.0

KAPO10 TERMINY .03

CoNoOOt ONOOt -1.0

CoNOOR noNeee 1.0

CONDOS MoNGeS -1.0 -
CONOOS MONGOS -1.0

CONGOS HONoOS -1.0

CONOOG 1ONOOS -1.0

CONGO7 noNoe? -1.0

CONOOS MONOOS  -1.0 -
CONOO®? MONGOY  -1.0
CONOIO  MONOI®  -1.0 .
INvVoo) MONOOY -1.0 CAPOO2 -1.9
; INVOOZ  1ONOOZ -1.0 CAPOO3  -1.0
! ' INVOO3  MONOO3  -1.0 CAPOOS  -1.0
i INVOOS  MONODG 1.0 CAPOOS  -1.0
: INVOOS  MONOOS  -1.0 CAPOOG  -1.0
INVOOS  MONOOS -1.0 CAPOO? 1.0
‘ INVOO7  MONOO?  -1.9 CAPOOS  -1.0
i . INVOOS 1HONOOS «1.0 CAPOOY -1.0
X INVOO®  MONGO®  -1.0 CAPOI® 1.0
INVOIO  MONOIO  -1.0 CAPO1Y 1.0

INVO10 TERMINV  -1.0
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Problem MANNE; the MPS file, continued

! s
i »
f ® THNE WS IS ZERO
H [ 3
RaES
RANSZ!  MONOTO  10.0 TeROW  20.0
BOUDS

FX SOWD1 KAPOO1 3.08
L0 SOUD1 KaPQO2 3.08
L0 S0UND1 KAPOO3 3.08
L0 BOUNDL KAPOOS 3.08
L0 BOUND1 KaPo0Ss 3.08
L0 BOWNDY KAPOOS 3.08
L0 BOUND? KAPOO? 3.03
L0 BOUND1 KAPOOS 3.08
L0 SOUND1 KAPOOY 3.08
L0 BOUND' KAPO10 3.08

LO BOLNDY  CONOS! .98
L0 80UNDY  CONOOZ .98
LO BOUND!  CONOOS .95
LO BOUNDY  CONOOe .98
L0 BOUNDT  CONOOS .95
LO BOUND!  CONOOG .98
LO BOUNDY  CONOOY .9
L0 BOUND1  CONGOS .95
LO BOUND!  CONOOY .98
L0 BOUNDY  CONG1O .98
L0 BOUNDY  INVOOH .08
L0 BOUNDY  INVOOZ .08
L0 BOUNDI  INVOOS .08
L0 BOUNDY  INVOOS .08
L0 BOUND!  INVOOS .08
L0 BOUNDY  INVEOS .08
L0 BOUNDY  INVOOY 08
L0 BOUNDY  INVODD .08
LO BOUNDY  INVOOY .08
L0 BONDY  INVO1D .08
; UP BOUNDY  INV0OS 112
UP BOUNDY  INVOO9 118
UP BOUNDY  INVO10 116

X INITIAL KaPoO2
FX INITIAL KAPOOS

X IMIVIAL  KAPOOS
X INITIAL  KAPOOS
X INITIAL  KAPOOY
.- FX INITIAL KAPOOS

UUI‘U:‘“UUU
GONOCRIPUN -

: FX INITIAL  KAPO1O

. miirampmtey
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8. Examples

Problem MANNE; output frem MINOS

NINGS -— veNsIm 5.0 e 1993
S eSeN
wecs r1u
e aaee
ne. S0DI a8
23, xDRZE
tie. [~ 100
us. touse "o
the. fLomre 190
. =y 100.0
tie. oBECTIVE o
9.
220, WIADEAR CRETRADITS 19
2. MOATNEAR JACISIAN VARS 19
ae. NOLDHEAR GRUECTIV VA8 19
180, soemay PILe ’
1s. MISWY PRERUNEY H
s WM BASSS PTAS H
27.
s2e. MoLIN anee '
1y, ) ense
e, MAJR TTERATIONS ]
. ADNR TTERATION *
. FOULYY MANETER X
. ) "
.. OENIVATIVE LEVEL H
2%, ventry
7.
. ITERATIONS %
1. DT LIVEL (FUS)  te101
e, cveue '
e, tTCLe D 2
2e3. o0 nwemie
LD 8ASTS FILE (WP)...
WEM 0ASIS PILE IMMP), ..
PEASIRILITY TOLORMER.
SPTBWAIYY e
IOABEIN ROLeS.
MOANEIR CONSTRADIS. " NI SPWRIN,
MILDEAR JACIRLM VAR 10 SIINASICI LINT. ... ..
ADEAS SIECTIV Wi " TIIRATED €O rQTWD. ...
oy ) L ADEIRAND! TOLORARE. ..
VUSSP STIP SI11.... 1.00008
BT LASASL,
AARNGLIY, .| " NEER JTERATING LDNIY.
L PACTOR 10.00
W usary 19.00
PUASIMNLE MUIISPACE LENETS AN

LR S0US DEPMAY. ...
UPPER OORO BEIFAAT. ...
A3 TOLRRANER......c0000

(CARD NRADERS. ... ......
CPUINTRRE. ..o cuvoncenen
(ICRATCH PILE)....u0uee
OWP PILR. . .hiennanns

SAVE 1RW BASIS MWD, . ., .
CYCAR LBMSY....cuvnnnen

PARTIAL PRITCE FACTER. ..
MATIRE MICL.........
SCALE TOLIRNRR........

VERIPY LRVEL...........
CNRODETY VWIrY LIVRL.

HERA Or CvIRdRNY. .
sessavsnse

M TOLERMIKS
FREIT LEVEL. . LIPUBL, ..

PEBB AEVEL..oicinncnese
LINESCARCN SOOMD APYER.

.0
1.000+02
1.000-19
[
¢
L]
[}
190
]
]
A
.. %
3.000-13
8.
o.

P
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Problem MANNE; output from MINOS, continued

"y FILE
] el nasEIe
: SO
ty  colues

000 MARNING - MO LINEAR OBJRCTIVE SELECTED
g MON-EXISTENT ROM SPECIFIED -- CAPOM -~ ENTRY IGMORER IM tg: "

NON-EXISTENT RO SPECIPILS -~ CAPOIY -~ ENTRY IDNDRED N 3
48 s
. o .
(34 s TME WS 1S 2ERO
: [ .
3 69 RANSES
A mnm - TR M9 19 21RO
(21) BOATA

000X TOTAL ND. OF TRRORS IN WP FILE [ 4

NANES SELECTED
oaJecTIve raoe)  (max) .
s ~s »
8 e aBE 2
S0WDS 0UD1 n
2 MATRIX STATISTICS
H ToTaL oL et fixes  aoeR
. ) 2 13 . " ¢
. coures » N . ' '
ND. OF MATRIX ELEMENTS s DewsITY s.033
NO. OF NEJECTED CORPFS [ ATJTOL 1.000008-19
SISSEST MD TULLEST COLFFS  1.000000°08  3.000000-02 (LICLUODNS GO M@ 9!
LENSTH OF SOM-NAME WASH TABLE m
COLLISIONS DURING TABLE LODKUP .
; NO. OF JACORIAM ENTRIES SPECIFIED 1
NO. OF INITIAL GOUNDS PROCESSED ’
MO, OF SUPLPBASICS SPECIFIEO .

NONZEROS ALLOMED POR IN LU PACTORS 1409

ITERATIONS
STARY OF MAJOR ITH 1§ SENALTY PARMNETER © 1.000-00
RAXTMUM COMBSTRAINT VIO' R 1=0.0 MORmALIZRO
FacTORIZT ) ot - “ERATION [ DeeAsS ) wmscTive 0.0
NONLINEAR " [ 34 X (4 fens » (L 1344
COMPRESSNS L .3 . L] L 30 weorase
[ LMax 0.0 MAX s < 0.0 univn 1.00°00 ;™ 0.
I ¢ -- INFEASIBAL. e 1, 0000000000-03
, - 1T P PP NOPY DJ.AG 509 -8 -08 STEP rIvor L VP NI ST, EBJCTIVE DY IDEN 1D WD N-OEN CBN
' 1 4 1 0 00 0 10 30 1.10¢00 -3.00-02 [ ] » 0 1 1.000000000-08 ] L] e 000.0 ”wee
“s FUMR MY 2 oo 19 GAACTIVE ohARIENTS.

me t oo PEASIBAE SUDFRCBLEN. TRUR OBJ ® £.66909%7290°00 MBS 6BY & 2.00%00NIN

PURSESRV
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Problem MANNE; eutput frem MINOS, continued

VERIPICATION OF CHOTRADN UMOCENG SENANN WV SERIVTRE POEM.
THE JACTURIAN STV TO 08 &,
00t THE LARGRST DZECREPANEY M0  0.300-10 IN COTRARNY L)

nJ W) RLENINT WD, MM JMCIBIAN VAR  BIPPERBIEE AFFRIRIY
5.300000000°00 £.240-00 [} ¢ S.ATTSINS-0E  0.47TNOOIZ-0C
3.000000000°00 2.010-00 L $  S.ATHNSNN-E 0.479N01%40-0C
3.500000000°00 8.000-00 [] ¢ S.ATRISNI-E  5.47RNI3NB-08
3.000000000°00 £.900-0¢ ? 7 S.GE0MMMMIN-0E  §.00000000-00
3. 70000000008 L.5-00 [} S S.P0RE0MNED-3E  S.502E0MRDB-R
3.000000000400 L.030-00 * ?  0.53000083-08  §.500000310-00
3.000000070°00 2.00-00 " 19 S.9WNNNE- S.SNNTI-E
JACORIAN SLEMTS IN CULS " T 10 900N TO 88 X.
00t THE LARGEST BELATIVE GBROR A8  2.100-00 3N AN S  COusN L)

CRADIOWT FROMICTED IN N DINECTEOMD  0.0R00TA011310-81  4.891NATES-01
VIPFEINIEE APVIBLINATION 5.0010700014080-01 .09 NENIPW0-0Y

nn ") | '} BIPPERDRE AP
1.00907N47000 3.000-00  7.99259%0000-01 7.9909090%-01 0K
1.002733740400 35.159-00  7.350000008-01 7.300000030-01 X
1.067946200400 3.868-08  §.761000960-0¢ 6.761600030-00 OX
1.922356300400 3.3W-00  6.2001 W0 6.202173%08-01 o
1.180; 3.000-00  5.787008110-01 8. 707000000-00 X
1.220073720°00  3.610-00  5.130000040-8¢ B.130904300-00 o
1L.21390E00%00 6.030-090  V.0MEDMTNNE . MAMI &

CBJECTIVE GRMDIEINTS QyY O " TN 20 SEONTO M m.

00t THE LARSESY RELATIVE SangR W0 2.000-800 MMCRAN 8o

nmr 0 3.

2 6t 0 L0 O 0 00N 00 O B 0 0 2.0000ETINRND 30 5 8 1 0 2.30000 YIS
DI00EEY BJ o 5.1040-00 IVARIADLE 300 AN BB o S.0W0-00 NIRRT T 7.437000

OO MR I - GPromAL NAFEREN AT NDER SYH R - TOTAL I ¢ ]

STARY 09 MAJED IW & PRBLYY MAUETER 1.000-0¢
XSGR CAMNER N JACIDEAN VRS * 5. 35380-00 t & §.99000-08 WIALEEED )
NADAN OWONE TR VATIFLIING © 9.0 1 8 1.00000°00 WINRMAIEDY
A CONMNG VERATIIN © 0.17000-00 ¢ 8 0,00000-00 MERNALEEED )
MATIFLIER COTIRTED
0. 000079901  5.497000-01 7. 9001071900
0. 7318300-01  0.00000000-00 B.0NMIN-=01  5.90850-01 0.
racrenise [ ] STNATION [ ] ®  GRIETIVE £.00%0LTROMDO0
NERDES of [ 4 : NIRS (] m‘ " uMIYY 1.8
COUNIen ¢ Wmft 9.0 [ o ¢ s »  DaNtase .o.o
N ot 1.00°00 WeR o VAN . .
l.-:mn.um e e 8. LS G ¢ £.0097THOVN
LY mg -4 ;e v [N YIRS NRP SUP.GONCTIVE WD) WEUR (D WWED n-CUln COw
c”o ot :g-.ct [ ] ﬂ...—u 1.00%0 3 0 0 200NN 0 B3 11 2.0 TP
O 0 <1 0,000 & 0 000-00 00 1T 3 0 0 207NN & W P 1t 0L NI

OBONRET BJ & 0. 0000-08 (VARSABAR V9D VIR BB ¢ 0.03I0-00 WM PR o 7.0300400
GO MARIN ¢ - MBuL MMM AT FDER IR ¢ - TOTML IV ° L]
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Problem MANNE; eutput from MINOS, continued

MANDIEN CHANDE IN JACERIAN VARG & 1.67010-68
NAXDAD CAANEE IN MATIFLIENS o 1.40000-08
MAXDIA COMBTRALIY VEBLATION = 2.74700-00

1.01160070%00  0.300001080-01  5.61000000-91
0.70203000-00  6.19000700-0t B.470032W-0

PUALL CRPLETION AOUEOTED AS PREN M.
POALTY MAMETER GECIEMED YO 0.0

COPRESS e Wanv L4
WX 0.8 AR 1.08
I &= PT . .08
ITH M PP NEPT 3J.N8 ‘808 -0B8
$ 6 0 -1 4.10-08 U ®
TOLRO AESUCED TO 4. 9400-00 0
6 61 0 2W-03 O [
748 ¢ .00 ¢ o
8 6 1 0 1.40-03 O [
6 1 0 2.00-00 L [
TOLRG REBUCED 'O 2.0070-00
196 ¢ 0 0. ® [
TS RERCED TO  7.409-00
" e 0 5.:-00 O L]

7.00000000-00  7.30933%10-01
5.22303030-01  9.00A0N0*00

DUEAs 0 GRECTIVE £.4700000000400
wee 33 sbmIvy e.18

LD 3 ICREASE 0.0

N 3.05~08 GAOUTM o.0

® @ seece o
g 888 ¥c
® o ovee .Q

:

!

s
s s asss sb
s & aszs =f

32
]
§

GO RN IT™ 3 -~ CPYINAL UDFREDLEN AT NDMIR IV 7 - TOTAL ITW8 = "

STARY OF MAJER TV &

RAXTIS CHAMBE TN JACORIAN VARS = 1.58810-0¢
MAXTIAD CHANDE I MULTIPAIORD o §.71510-03
FANDIAM CONBTRAINY VEMATION o 2.01708-06

WATINI ISTDUATES
1.01003040¢00  9.31931590-01  5.59063019-0
6. 70990000-01  6.2014%000-01  5.71340000-00

racTensse (] 0 ITERATION

0.0 [ o) 1.00%¢ Uax 0.0

PBIALYTY MANETIR = 0.0

7.90160890-01  7.30200500-01
5.00000000-0¢  9.0003200°00

" DetA L4 CBJECTIVE  2.407009N4 7000
(4 wes 1] otNeLTY ..28
[ ] 3 ITREASE 0.0

[ Y ISP DO S, GBJCTIVE MEBJ) MEEN VD WNED N-CODN COW

sSTP  PMIVR
12060 =t 28.40-00 0 0 0 1.00%0 0.0 ® 3 0 0 L.0700%I008 1) L} 7 10 33000 TITY
SI000NT BJ © ~1.0000-08 (VRIABLE 11) RN NG & R.010D-~00 MEEN OF ° 7.60%00
SO @M IN 6 - PTEN. SUMINLER AT MDER I™ 1 - TOTAL IT® * "

VXD CHER 30 JACEREAN WD =  4.01140-00
FARBAS CRE T WALTIFLIONG © 9.00000-07
FAXIAS CRUTRARNY VIRRATIEN © 1.00000-13

MATIALIN SOTDRYES
R L D TR DS S 2 )
1.01000000°00  9.30900000-0¢ 5.0V~
O.7NUNNED-01  ¢.0000000-01 5. NPT
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Problem MANNE; output from MINOS, continued

- . OF ITERATIOND " SBNCTIVE VLR 2.67009708 740000
. OF NJR TTORATIOG [ DG aaeeTIVE (Y}
. POMLTY palaniTeR .0 MDALDEAR SIJECTIVE  2.0700PMSNANDS
3 LY B S.100000 o of 01 2.500%%¢
, 0. OF MPWRASTCS 7 OB OF RERUCED SRASIENY s.0180-09
. ", OF QASIC NORMINEAS " VDN 00 7 Wewm P2 3630000
- WD, OF TALLS 10 PUNGR "3 0. OF CALLS T8 AN »
p CALLS MITW AOBESE 16, KNI §) » CALLY NITH MODEeE (£, KNI §) -
\ CALLS FQN FONASD BI/PERENCDN - CALLS 70N POMMRD DIFPEOLICINS -
CALLS FEB CHITRAL SLIPTRRICLIN . CALLS FOR CENTRAL PIFPLABICIND [

FRGMARA MR RN GRJECTIVE VAL £.0700909 000
sTane OFTIRAL SN TemATION 13 APTRRANS 7

..UbpER DY, | .2
e ]
wa
e 3
o .
e ]
won [)

H e 7

! NONE [

\ wo 13

19.00400¢ "

19,7324 0

$—

ney

1 RaP®Y ”n 1.05000 2
T Radesz L 3.45000 "
3 Kivess = 3.05000 2
S e we 1.05000 e
S RAPGS e $.95000 "
o Mrets W8 3.03090 "
7 wapee? [ 3.0%000 134
¢ Kanrete »e 5.55000 1Y
! 9 APNSS ne 3.9500¢ e
19 RAPE10 [ 205000 »
19 COet “w . 9000 ”n
12 CONSe [ 0.95000 »
19 oNees [ $.95008 )
19 CONNS " 0. 95000 "
15 O " 5.95000 ”»
15 CONNN [ .90 »
17 conee? [ 0.95098 »
16 CONes [ 0.95008 "
19 CONY [ o €. 9500 "
16 come [ 0. 95000 )
2 DVesy [ ] 0.05090 .«
1 DNt " 4.05000 (o4
22 Dhevees » 0.05%00 1)
Lol i [ 9.95000 «“
1 Dves " 0.05000 )
20 IWese " 0.05000 “
277 Iwveer -» 400000 034
1% Dweee » 9.05090 [
9 Dvese [ 0.09000 133
" .90 | ]

[]
0 Dwvers S.00000 .00

PACEN CALLID T IgTAN @ ¢

MORIB) CALLES WITH WpTave & @
BORN
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8.5 Use of Subroutine MATHOD

The following example illustrates the construction of a sequence of problems, based on the Diet
problem of section 8.1. It assumes that the following cards have been added to the SPECS file:

CYCLE LIMIT 3
; CYCLE PRINT 3
5 CYCLE TOLERANCE 2.0
3 PHANTOM COLUMNS 1 (or more)

PHANTOM ELEMENTS 3 (or more)

1. Solution of the original problem constitutes cycle 1.

2. After cycle 1, MATMOD will be called twice with NCYCLE = 2 and 3 respectively, denoting the
beginning of cycles 2 and 3. The value of ¥ will include the normal columns and the phantom
columns; in this case, N = 6 + 1 = 7. Likewise, NE includes normal and phantom elements;
in this case, NE = 24 + 3 = 217.

3. For cycle 2, we alter the cost coefficient on the variable called CHICKEN. This happens to be
the second variable, but for illustrative purposes we use the MINOS subroutine M3NAME to
search the list of column names to find the appropriate index. In this case, MINAME will return
the value JCHICK = 2,

4. Similarly, we use M3NAME Lo scarch the list of row names to find the index for the objective
row, whose name is known to be COST. In this case, M3NAME will return the value JCOST =
11. Since rows are stored after the N columns, this means that the objective is row number
JCOST — N = 4. (As it happens, this value is already available in the COMMON variablc I0BJ.)

5. This example assumes that CHICKEN already had a nonsero cost coefficient, since it is not
possible to increase the number of entries in existing columns. If the cost coefficient was
previously sero, it would have to be entered as such in the MPS file, and the SPECS file
would have to set AIJ TOLERANCE = 0.0 to prevent zero coeflicients from being rcjected.

For cycle 3, we gencrate one new column by calling upon the MINOS subroutine MATCOL.
The PHANTOM COLUMNS and PHANTOM ELEMENTS keywords must define sufficicnt storage for
this new column. (The estimates defined by the normal COLUMNS and ELEMENTS keywords
-- must also allow for the phantom columns and elements.)

7. For illustrative purposes, we make use of the specificd CYCLE TOLERANCE and the value of
X(1) in the current solution, to decide whether to proceed with cycle 3.

i 8. After the call to MATCOL, the COMMON variable JNEW points to the new column. It allows us to
set a finite upper bound on the associated variable. If there had been insufficicnt storage, or
if COL(s) contained no significant clements, MATERR would have been incrcased from 0 to 1.
Usually, this means that the sequence of cycles should be terminated (by sctting FINISH =

[-J
-

L.

c--»-—q‘

v

|
v
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£

——————

R Y

L

o0nn

OO0

OO0 O00OD/OONON

SUBROUTINE MATMOD( NCYCLE, NFROB, FINION,

M, No NB, NE, NXA, NS, NBCL,
Ay NA, KA, BL, OU,

ASCALE, HS. 101, 102,

X, PX, Z,» NICORE )

IMPLICIT REAL®B(A-N,0-2)

INTEGER=2 HAINE), HSIND)

INTEGER KA(NKA), IDI(NB), ID2(ND)

DOUBLE PRECISION A(NE), ASCALE(NSCL), BLINB), BUIND)
DOUBLE PRECISION X(NB), PI(N), Z(NMCORE)

LOGICAL FINISH

MINOS COMMON BLOCKS (TO BE USED BUT NOT ALTERED).

COMMON /ZMFILE/ IREAD,IPRINT, 19U
COMON /MSL0BJ/ SINF,NTOBJ.MININZ,NINF,108J
COMMON /7CYCLOW CNVTOL , JNEM . MATERN , MAXCY , NEFNNT . NFHANT . NPRINT

LOCAL STORASE.
OCUBLE PRECISION COL(19), ZTOL

INTESER CHICKY, CHICKE, COSTY, COST2
DATA CHICK?, CHICKEZ /'CHIC', 'KEN '/
LaTa CosTY, COSTE /°COST’, ° 4

THIS IS AN EXAMPLE OF A USER-MRITTEN SUBROUTINE MATMOD,
MMICH DEFINES A SEQUENCE OF PROBLENS BY PERFORMING INTERNAL
MODIFICATIONS TO THE OATA FOR THE DIET PROBLEN.

MATMOD IS CALLED AT THE BEGINNING OF EACHN CYCLE EXCEPT THE FIRNST.
NCYCLE MILL TAKE THE VALUES 2, 3, ... UP TO THE CYCLE LIMIT.

IF (NCYCLE .6T7. 2) 00 TO 300

CYCLE 2. ALTER TNE COST ON CNICKEN.

USE THE MINOS SUBRCUTINE M3NAME TO FIND THE COLUMN INDEX
FOR THE VARIABLE NAMED CMICKEN. COLUMN NAMES ARE CONTAINED
IN THE FIRST N LOCATIONS OF IDV AND ID2.

CERTAIN QUANTITIES MUST BE INITIALIZED BEFORE THE CALL.
THE PIRST THREE SUPPRESS ERROR MESSAGES. THE NEXT THREE
OUFINE THE RANSE OF NAMES TO BE SEARCHED AND WHERE TO START.

NCARD = 0

NOTPID = O

MAXES = O

J1 LR}

Je s N

JUANK =

CALL MINAME( NB. 101, IDZ, CMICX!, CMICX2,

. NCARD, NOTFND, MAXISS, JV, J2, JMARK, JCNICK )

IF (JONICK .EQ. 0) 60 YO %00

Led o g ey

|

Pt T Ot At=

e

o o e —
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8.5 Use of Subroutine MATMOD

11t

NOM FIND THE INDEX OF THE OBJECTIVE ROM, MMICH IS NAMED COST.
c mmmmmmwnmtmu I0! AND JID2.

J1 sNey

Je s

JURK = Jt

CM.LM( 8, 10V, IDZ, COSTY, COSTZ,
NCARD, NOTFND, RAMSS, Ji, J2» JHARK, JCOST )
xnm .EQ. 0) 60 TO %0

THE ROW NMABER IS NOM JCOST - N. IN FACT, THIS VALUE COULD NAVE
SEEN OBTAINED OIRECTLY FROM THE COMSION VARIABLE 10BJ.

ICOST = JCOST - N
IF (ICOST .NE. I0BJ) €0 TO %

NOM ME DIFP INTO THE MATRIX DATA STRUCTURE TO FIND MNERE THE
COST COEFFICIENT IS IN THE MATRIX COLUMN ASSOCIATED WITHW CNICKEN.

3 & KA(JENICK)
Ke 2 KA(JCNICK ¢ 1) -
00 220 K = X1, K¢
IF (NA(K) .EQ. ICOST) GO TO 258

CONTINUE

80 YO Y0

I FOUND IV. NOM SUPPOSE CNICKEN IS SELLING AT A BARGAIN RATE.
280 OLDC = A(K)

AK) = 10.0
IF (IMAST .6T. 6) MRITE(INANY, 2000) OLDC, A(K)
RETURN

aoonNon

Nnonn

oano

CYCLE 3. GENERATE A NEN COLLMN.

FOR ILLUSTRATIVE FURPOSES WE SET UP THE NEM PROBLEN ONLY IF
THE SOLUTION TO THE CURRENT PROBLEM CONVAING MORE OATMEAL THAN
THE SPECIFIED CVYCLE TOLERANCE. WE MAPPEN TO KNON TNAT OATMEAL
IS TR FINST VARIABLE, X(1).

300 IF (NCYCLE .6T. 3) 80 TO %0
IF (INANE .6T. &) MRITR(INNNS, 3000) X(1)
IP (X(1) .LE. OWTOL) @D TO 900
COL(t) = 500.0
COL(2) = 20.0
CoL(3) = 0.0
cOL(e) = 5.0
oL = 1.08-0
ﬂuﬂm N Ny M8, ME, NKXA,
Ae WAy KA, BL, BU, COL, ZTOL )

mcouno
U MEN TO SIVR TNE ASSOCIA V.VMHIM“.
™

a0 O0MO0O

€

mr-uw/:u:‘m' ”w"m CNANBED FRON°, PFO.2,
L]

3000 POAT(/ ' #oa CURRENT ANDUNT OF OATHMEAL 18°, FO.2)

¢ =.~m¢

il ';';

3
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3 8.8 Things to Remember

Use the following space to record the fruits of your experience. They may be useful reminders
the next time you come to run MINOS. (We suggest you use a pencil.)
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A, in printed solution, 70, 72
Accuracy, for satisfying linear constraints, 26, 67
for satisfying nonlinear constraints, 35
for solving linearised subproblems, 23
of computed functions, 27, 66-67
of linesearch procedure, 28-29
AIJ TOLERANCE, 21
Alternative optimum, 70
Augmented Lagrangian, 34, 59

B, Basis matrix, 2-3, 34
BACKUP BASIS FILE, 21, 49-51
Bartels, R. H,, ii, 3
Basic variables, 2
BASIS files, 49-56
Basis map, 49-51, 6869
Basis matrix, B, 2-3, 34
Bounds, 1-5, 46-48

specification of default values, 20, 38
BMAX, in basis factorization statistics, 62
BOUNDS section of MPS file, 46-48
BOUNDS keyword, specifying name of bound set, 31
-BS, in iteration log, 58

CALCFG, subroutine, i
CALCON, subroutine, i
CENTRAL DIFFERENCE INTERVAL, 22
CHECK FREQUENCY, 22
COEFFICIENTS, 22
Cold start, see CRASH procedure
Column ordering, implicit, 31, 44
Column variables, 1, 71
COLUMNS section, of MPS file, 31, 4344
of printed solution, 71-72
COLUMNS, estimate of number of variables, 23
Comment cards, in MPS fle, 41-48
in SPECS file, 17-18
COMMON blocks, 7, 15-16, 63, 78, 79
reserved, 78
Compatibility with MINOS 4.0, 81
COMPLETION options, 32
Composite objective technique, 40
COMPRSSNS, in basis factorisation statistics, 61
Conjugate-gradient method, i
Constant Jacobian elements, 12, 44
CONV, in iteration log, 60
Convergence, likelihood of, 4, 23-24, 30
rateof, 3, 27, M4
tolerances, see FEASIBILITY TOLERANCE,
OPTIMALITY TOLERANCE and
ROW TOLERANCE;
also sce CYCLE TOLERANCE
CRASH procedure, for selecting initial basis,
22-23, 47 .
CRASH options, 23-28, 47
Cycle facilitics (for sequences of problems), 8,
13-15, 23, 58, 109-111
CYCLE options, see cycle facilities
Cycling (endless iterations), 65

D, in printed solution, 70, 72
Damped Newton method, 23
DAMPING PARAMETER, 23-24
Dantsig, G. B,, i, ii, 1
Data, input sequence, 7
Davidon, W. C,, i, 2
DEBUG LEVEL, 24
Default values for SPECS file keywords, 18-20
Degenerate variable, 70
DEMAND, in basis factorization statistics, 61
Dense Jacobian matrix, 44, 04, 96
DENSITY, in basis factorization statistics, 61
DERIVATIVE LEVEL, 9-12, 24-28
DIFFERENCE INTERVAL, 25
Difference approximation to derivatives,
see missing gradients
DJ, in iteration log, 58, 60
Dual simplex method, i
Dual variables, 10, 32, 64, 70, 71, 72
DUMP file, 25, 53-54

ELEMENTS, estimate of nonseros in A, 238
ELEMS, in basis factorization statistics, 61
EMERGENCY VERIFY LEVEL, see VERIFY options
End-of-File condition when reading SPECS file,
63, 81
ENDRUN message, 63
Equality constraints, 42
Error checks, on computed gradients, 36-37,
38-39, 66
on satisfying Az + s == 0, 22, 67
Error messages, 34, 63-69
during input of MPS file, 26
ETAMACRO, test problem, 75, 84, 02
Example problems, 85-108
Exit conditions, 63-69

F, parameter of FUNOBJ, 10, 16
F(#), parameter of FUNCON, 11, 12
F(z), see noniinear objective function
f(z), see nonlinear constraint functions
Factorization of basis matrix, 26, 29, 33, 58-59,
61-62
FACTORIZATION FREQUENCY, 26
FACTORIZE, in basis factorization statistics, 61
FEASIBILITY TOLERANCE, 26, 47, 64
Feasible points, definition, 3
evaluation of functions at, 3, 26, 47
Files, 6-7, 80, 82, 85
Formulation of problems, S, 6
Fortran source files for MINOS, 75-81
Fortran 66 versus Fortran 77, 76
Free rows, 42
Free variables, 46
Full completion (accurate solution of subproblems),
22
FUNCON, subroutine, 7, 8
consistency with MP'S file, 44
examples, 96, 100
specification, 11-12
FUNCTION PRECISION, 27, 67
FUNOBJ, subroutine, 7, 8
consistency with MPS file, 44
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examples, 90, 95, 99
specification, 9-10

G(*), parameter of FUNOBJ, 10

G(*), parameter of FUNCON, 11-13, 44
Gil, P.E, 123

Global optimum, 5, 84

Golub, G. H,, ii, 2

GROWTH, in basis factorisation statistics, 62

Header cards in MPS file, 41
HESSIAN DIMENSION, 27, 87
Hessian matrix, 3

HMOD, in iteration log, 59
H-CONDN, in iteration log, 60

HS (»), state vector, 14, 50-51, 69

I, in printed solution, 71, 72
INCREASE, in basis factorisation statistics, 62
Inequality constraints, 43
INFEAS, in basis factorisation statistics, 61
Infeasibilities, 26, 40
Infeasible problems, 26, 64-88
Infeasible subproblems, 64-88
Infinite bounds, 46
Initial point, =9, 3, 4, 5, 23, 4748
INITIAL bounds set in MPS file, 4748
Input to MINOS, 7
examples of, 85-103
INSERT file, 27, 53-53, 54
installing MINOS, 75-81, 88
Integer programming, |
Internal modifications to problem, see cycle facilities
Invert procedure, see factorisation of basis matrix
Iterstion log, 29, 57-60
example, 105-108
ITERATIONS LINIT, 28
ITN, in iteration log, §7°

Jacobian matrix, J(z), definition, 3
computation of, 11-13
constant coeficients, 13, 44
position within constraint matrix A, 4, 44
printing, 34
sparsity pattern, 13, 44

JACOBIAN option (DENSE or SPARSE), 28, 44

Keywords in SPECS file, 17
checklist and default values, 18-20
definitions, 31-40

Kreuser, J., |

&y problem, 93
i, see Lagrange muitipliers
L, in iteration log, 58
LAOS basis-handling package, ii
Lagrange multipliers, A, i, 4, 13, 14, 71
printing, 34
initial estimate, Mo, 4
Lagrangian, 4
LAGRANGIAN option (YES or NO), ¢, 28
Least squares, linear, 92-93
LENL, in basis factorisation statistics, 61
LENU, in basis (actorisation statistics, 81
LINEAR, in basis factorisation statistics, 61
Linear approximation to nonlinear constraints,
see linearised constraints
Linear constraints, 1-5, 15
Linear programming, 1, 9
example, 86-87
test problem, see ETAMACRO
Linearised constraints, 4, 70
Linearly constrained optimisation, 3-3
examples, 90-93
Line search, 3
accuracy of, 29
failure of, 66-67
LINESEARCH DEBUG, 28
LINESEARCH TOLERANCE, 28-29
Linesearch procedures, ii, 28-29, 38
Linking subroutines to MINOS, 88
LIST LIMIT, for printing MPS file, 20
LMAX, in basis factorization statistics, 63
LOAD file, 29, 53-54
LOG FREQUENCY, 29, 4
Local optimum, S, 64
Logical variables (slacks), 1
Lower bounds, see bounds
LOWER BOUND (default lower bound on all variables),
29
LU factorization of basis matrix, i-it, 2, 3, 61, 68
see factorization of bast: matrix
LU FACTOR TOLERANCE, 30, 62
LU UPDATE TOLERANCE, 30
LUSOL basis-handling package, i-ii, 2

m = m3 + m3 (number of ponlinear and linear
constraints), 1, 8
m; (number of nonlinear constraints), 1, 6, 16
mz (number of linear constraints), 1, 6, 16
Machine-dependent subroutines, 75, 79-81
Machine precision, ¢, 18, 81
Main program, 79, 83
Major iteration, 4
MAJOR ITERATIONS limit, 30
Manne, A. 8., ii, 83, 84
MANNE, test problem, 75, 76, 80, 83, $8-108
Markowits, ordering for sparse LU factorizsation,
ii, 2, 61
MATCOL, subroutine, 14, 28
specification, 18
Mathematical programming systems, i, 34, 41, 48,
8284
MATMOD, subroutine, 7, 8, 23, 82
example, 109-111
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specification, 13-14
Matrix coefficients, ignoring small values, 321, 109
number of, 28
Matrix data structure, 18
Minor iteration, 2
MINOR ITERATIONS limit, 30
MINOS, acronym, ii
MERIT, in basis factorisation statistics, 61
MHW4D, example problem, $4-07
Missing gradients, 1, 9, 24-28
MODE, parameter of FUNOBJ nnd FUNCON, 9-10, 11,
12, 68
MPS £le, 8, 7, 30, 4148, 68
examples, 87, 89, 91, 97, 102-103
restrictions and extensions, 48
MULTIPLE PRICE option, $1
Murray, W., i, 2, 8
Murtagh, B. A, 3, 8

n = n; + ny (number of nonlinear and linear
variables, excluding slacks), 1, 6
n; = max{n},n]} (number of nonlinear vnrhblu, =),
1, 6, 16, 37

n) (number of nonlinear objective variables), 31

n’ (number of nonlinear Jacobian variables), 81

na (number of linear variables, y), 1

N, matrix associated with nonbasic variables, 3

N, in printed solution, 71, 72

NAME card in MPS$ file, 41

NCON, in iteration log, 50

NCP, in iteration log, 59

NINF, in iteration log, 59

NJAC, parameter of FUNCON, 11, 13, 16

NEW BASIS file, 21, 31, 49-51

NOBJ, in iteration log, 59

Noisy functions, i, 27, 66-87

Nonbasic variables, 2

Nonlinear constraint functions, f(z), 1, 34, 7, 11-13
printing, 34

Nonlinear constraints, 1, 34, §

Nonlinear equations, 23-24

Nonlinear Jacobian variables, 31, 44

Nonlinear objective function, F(z2), 1, 3-8, 7, 9-10

Nonlinear objective variables, 31, 44

Nonlinear variables, 1, 4, 44
printing, 34

NONLINEAR, in basis factorisation statistics, 61

NONLINEAR CONSTRAINTS and VARIABLES, 31

Nonlinearly constrained optimisation, $—4
examples, 94-108

NOPT, in iteration log, 88

IPROB parameter of FUNOBJ, FUNCON and MATMOD,

NSB, in iteration log, 50
NSTATE, parameter of FUNOBJ and FUNCON, 10

NWCORE, parameter of FUNOBJ, FUNCON and MATMOD,

10, 40, 79

Objective function (F(z) + ¢Tz + dTy), 1
Objective row in MPS file (deﬂmn‘ eTz + dTy), 42
OBJECTIVE, in basis factorisation statistics, 61
OBJECTIVE, in iteration log, 50
OBJECTIVE keyword, specifying name of linear
objective, 32
OLD BASIS file, 21, 32, 49-51
Optimal solutions, local and global, 5, 63-84
OPTIMALITY TOLERANCE, 32, 64, 67, 71
Ordering of constraints and variables, 31, 43, 44
Output from MINOS, 57-74,
see also LOG FREQUENCY, PRINT LEVEL,
SUMMARY FREQUENCY

P* ordering for sparse LU factorisation, {
Parameters, li, 7

Parametric algorithms, §

Partial completion, 22

Partial pricing, 38, 57-58

Penalty parameter, p, 4, 33, 38

PENALTY PARAMETER, 4, 33

PH (Phase), in iteration log, 57-58
PHANTOM COLUMNS and ELEMENTS, 8, 185, 23
Piece-wise smooth functions, i, 93

PILOT energy-economic model, B
PIVOT, in iteration log, 58

PIVOT TOLERANCE, 34, 58, §7

PP, in iteration log, 57

Preckel, P. V., ii

PRICE operation, 57

Primal simplex method, see simplex method
PRINT file, 6-7, 36

PRINT LEVEL options, 34

Problem forms solved by MINOS, 1
Problem formulation, 5-8

PROBLEM NUMBER, 10, 13, M

PUNCH file, 35, 53, 54

Quadratic programming, il
example, 90-91

Quasi-Newton method, i, 2, 3, 8, 27, 59-60

R, triangular matrix for approximation to
reduced Hessian, 3, 6, 27, 59-60

RADIUS OF CONVERGENCE, 35
Ranges on general constraints, 1, 45-46
RANGES section of MPS file, 45-46
RANGES keyword, specifying name of range set, 38
Ranging procedures, i
READ file, -7
Record length of files, 6-7
Reduced gradient (vector), 8, 32, 87, 58, 73
Reduced-gradient algorithm, 2, 4, 38-60
Reduced Hessian (matrix), 13, 59-60
Reid, J. K., |, 1i, 2
Restarting previous runs, 49, 35-38, 71
Restrictions, in MPS format, 48

on problem characteristics, 5-6
Rewinding files, 7
RG, in iteration log, 58
RHS section of MPS file, 48
RHS keyword, specifying name of right-hand side, 35
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Right-hand side, 1, 48

Robinson, S. M., 1, $

Roeen, J. B, |

ROW CHECK, message in PRINT file,
see CHECK FREQUENCY, 22

ROW TOLERANCE, 23, 28, 38

ROWS section, of MPS file, 4243

of printed solution, 70-71

ROWS, estimate of number of general constraints,

35

8, vector of slack variables, see slack variables
#, number of superbasic variables, 2, §
S, matrix associated with superbasic variables, 3
Saunders, M. A, |, 2, 3
SAVE FREQUENCY, 21, 38
Saving basis files, 21, 38, 88
+SBS, -SBS, in iteration log, 58
SCALE options, 36
Scaling of data and variables, 5, 35-38
SCRATCH file, 6-7
Search direction, 8
Sensitivity analysis, i
Separable functions, §
Sequence of problems, 7, 8, 13-18
Simplex method, 1-2, §7
SINF, in iteration log, 59
Singular basis, 62, 68
Singularities in nonlinear functions, 5, 36, 38
Slack variables, 1, 15, 3§, 70-71
SLACKS, in basis factorisation statistics, 61
Smooth functions, 1, §
Solution output, 70-73
example, 108
SOLUTION file, 6-7, 36, 73
SOLUTION options, 36~-87
Source files (MINOS Fortran code), 75-81
Sparse Jacobian matrix, 4, 44
Sparse constraint matrix, 4, 18
SPECS file, 8-8, 17-40
checklist and default values, 18-30
examples, 86, 88, 91, 82, 97, 101

format, 17-18
keywords, 2140
Spikes, i
Standard form for problems, 1
START and STOP t verification, 37

State vector, H8(*), 14, 50-51, 60

STEP, in iteration log, 88

Storage allocation and/or requirements,
see workspace

Structural variables, 1

Subproblem, definition, 4

Subroutine hierarchy, 83

Subroutine names, reserved, 77-78

Subroutines, required from user, 7, 80

SUBSPACE TOLERAINCE, 37, 80

SUMMARY file, 6-7, 38, 73-74

SUNMMARY FREQUENCY, 39

Superbasic variables, 3, 6, 18, 8

SUPERBASICS LIMIT, 21,

Suppression of output, ﬂ.

SUPPRESS PARAMETERS option, 38
System information, 6-8, 15-16, 63, 75-83

Test problems, 75, 76, 83-84, 85-932, 94-108
TOO MANY ITERATIONS, exit condition, 68
Transformation of variables, §

U, in iteration log, 58

UMAX, in basis factorizsation statistics,

UMIN, in basis factorization statistics, 63

Unbounded problems, 38, 65

Unconstrained optimisation, example, 88-89

Upper bounds, see bounds

UPPER BOUND (default upper bound on all variables),
38

VERIFY options for checking gradients, 30

Warm start, 49-58

WATFIV compiler, iii, 76

WEAPON, test problem, 7§, 838

WEIGHT ON LINEAR OBJEC'I'IVI. 0

Wolfe, P., i, 2

Worbpm (uongc requirements), 5-8, 10, 40. 89,
68, 69, 79, 80

WORKSPACE parameters in SPECS file, 40, 68

Wright, M. H., i, 2, 3, 94

Wylbur text editor, il

=, nonlinear variables, 1, 4
So, soe initial point

prinﬂn( ]
¥, linear variables, 1

Z, null-space operator, 3
Z, workspace array, see workspece
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