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..s;-
i}ﬁ This thesis has been written to provide a template for a new effort
Bl to harness automation into productive work. Failing this, it should at
" least serve as a cogent argument to encourage new thinking in the field
¢? of coumputer science. Failing even this, it does serve to document one
o frustrated user's view of utopia.
a;ﬁ: The candidate language has been named D for a number of reasons.
2% First, the successor to C {aka the next widely used language) was
. presaged to be either D or P by the C authors [Ritchie:2019 78]. Since
" C strongly influenced D, the candidate language could obtain its name
o for this reason alone. The ADA language also influenced the D
~.{§ extensions to C, in function if not form. D can be considered a
QQ, functional equivalent of ADA without all the Accreted Aggrandizement.
. 8X ADA without the A's is D.
~T The suggested method of reading this thesis is to read interesting
" sections first. Each section is relatively self contained. Although a
by gconplete understanding of D must be gleaned from the entire thesis there
N is a lot of redundance. The motivation was to permit readers who like
)$§ hardwvare to whet their interest in that section; readers who like C to
e read the C comparison section first; and readers who like to see code to
‘ @ start with the examples. So primed, the remainder of the thesis should
- : be more palatable.
0 For those who do believe that new computer architectures are
e required, and have a specific approach defined -« this thesis is not for
7 you... get to work.
;:} As with most engineering endeavors, this thesis builds extensively
: upon four previous bodies of work. Pirst, and foremost, are the ideas
- and motivations of John Von Neumann as documented in his collected works
Rov- (Von Neumann 63]. Although the proposed architecture is not what might
: 3; be classified as a "Von Neumann®™ architecture, I submit that it is very
ﬁsg similar to what he might have proposed to exploit the capabilities of
A current (1983) microelectronic fabrication capabilities. His concepts
— of "organs®” is maintained, and extended in this age of quick and easy
. transplants [Von Neumann:20 63]:
'-At
.{g For the purposes of our discussion we shall distinguish the

Pd

following organs of a digital computer: The memory, i.e. the
part of the machine devoted to the storage of numerical data;
the arithmetic organ, i.e. that part in which certain of the
familiar processes of arithmetic are performed; the logical
control, i.e. the mechanism which comprehends and causes to be
performed the demands of the human operator; and the input-
output organ which is the intermediary between the machine and
the outside world.
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33 Second is the work of Christopher Strachey and Dana Scott, who
‘:;; :35§ attenpted to describe the semantics of languages, as contained in
A Denctational Semantiocs: Ihe Scott-Strachey Approach Lo Programaing
-“.Q. .
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Lapnguage Theory [Stoy 77]. This work defines what the purpose of a
prograeming language is, and what {s important within it. While tixze
was too short to attempt to use derotational semantics to ancher D to a
solid axiomatic base, this work did motivate many of the design
decisions in the hope that D might be anchorable at some future time.
The mecst obvious feature of the language so derived is the approximate
equality within the language of dynamic and passive objects.

Third is the C language. Strachey worked with several
collaborators on a language called CPL, which never published or
implemented [Stoy:xxiv 77]. A variant, BCPL, was implemented by Martin
Richards [Richards 82] and has established itself as an important
implementation language. In 1970, Ken Thompson developed and
implemented B, differing from BCPL mainly in syntax because of the small
size of the first B compiler (UK 18<bit words) [Ritchie:1992 78]. C
evolved from B circa 1972, differing by the introduction of typas,
motivated by ALGOL 68 and PASCAL [Ritchie:1996 78].

Last and (perhaps not) least is the DoD sponsored Ada language
development effort [DARPA 80, Ichbiah 79a, Ichbiah 79b]. The work was
important in a positive sense; many important concepts were brought out
of the esoteric computer science journals and introduced to language
users. The DoD most certainly got an excellent engineering development
version of a potentially acceptable language for their investment.

) . However, the decision was made to standardize upon a language which many
Y felt contained flaws [Boute 80]. One respected language designer even
A took his opportunity to give the ACM Turing award lecture to lambast the
‘N United States Department of Defense [Hoare:i24-5 81]:

R
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ﬂ In this last resort, I appeal to you, representatives of the
programming profession in the United States, and citizens
concerned with the welfare and safety of mankind: do not allow
this language [Ada] in its present state to be used in
applications where reliability is critical, ie, nuclear power
T stations, cruise missiles, early warning systems, anti-
ballistic missile defense systems. The next rocket to go
astray as a result of a programming language error may not be
an exploratory space rocket on a harmless trip to Venus. It
may be a nuclear warhead exploding over our own cities. An
unreliable programming language generating unreliable programs

& _...-l'_

.j constitutes a far greater risk to our eavironment and to our
society than unsafe cars, toxic pesticides, or accidents at

\ nuclear power stations.

N Professor Hoare is now hard at work on his own language, OCCAM, in

K-, collaboration with INMOS Ltd. [Taylor 82].

; In a sense, the candidate language D, 13 a production version of

= Ada. Put another way, the D architecture will support Ada programs more

: efficiently than current architectures.

N Finally I would like to acknowledge two people who made this thesis

A possidble. The first is Cecil Gwinn who convinced me that curreatly

" available computers yere got the greatest technological innovation since

e sliced bread by consistently obtaining accurate results faster with his

,: HP calculator, and some quick analysis, than I could obtain on a DEC

A - Systenm 10. He also introduced me to recreational mathematics,

‘3 SQE} demonstrating mathematics has applications beyond terrorizing

::
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engineering students and obfuscating intuitive results! Needless to

S say, I would bave been unable to ualock many of the ideas in Stoy's text
ROy without his helpful insights.

The second person who should receive credit for this thesis is Harold
Carter, who despite great risk agreed to advise this thesis, and who
permitted me the flexibility to avert impending catastrophes.

Richard Jennings ‘
Dayton Ohio :
November, 1983
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j Conventional computer architectures are obsolete. They are
84 performance limited, unreliable and hard to program. In addition, they
H are able to make very inefficient use of the currently available
microelectronic technology. !
g This state is perpetuated by the attempt to seek new languages, new
§' operating systems, and new hardware independently: the desire to
f maintain compatibility with existing systems; and the desire to design
B with integrated circuits (VLSI) as tiny TTL. This mold is broken by the
~‘ description of an architecture in which the language, software, and
hardware are all designed synergistically, coastrained only by the
- characteristics of the users of automation: people.
3 A candidate language is described and compared with C. Some
b characteristics of a program support environment are suggested. The
i¥ hardware structures implied by the proposed architecture are described.
e - Finally, two examples are provided which demonstrate the language.
0 While the next computer architecture to be used for 40 years is not
) = described, enough ideas are described in detail to provide a stimulus
3 and direction to researchers who have been convinced by contemporary
! computer systems that THERE HAS GOT IO BE A BETIER WAYY Py
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L. INTRODUCTION

The Air Force, and other sophisticated users of information
processing equipment, are contemplating using antediluvian architectures
to meet future information processing requirements. Information
processing systems are being tasked to accomplish fundamentally new and
different objectives; consequently, fundamentally new and different
architectures should be expected to organize these new systems,

Contemporary computer architectures are unsuitable for future
information processing requirements. Simply, they do not provide
sufficient structure to permit the large information processing systems
to be sufficiently organized.

The prole of information processors will be vastly different in the
future, as will be their relationship to users. They will transition
from slaves to partners. Users will evolve from programming experts.
What users will evolve to 1s described in the next section. Past users,
specifically professional programmers, possessed a relatively high
degree of computer literacy, relative to the complexity of past
computers, Computers essentially were, and are, used as human computers
before them: to calculate results from defined algorithms.

Most future users will expect information processors to deduce
theories from data. They will not have a solid notion of how
information processors work in terms of fundamental physics, and of the
failure modes they should be wary. The future architectures must assume
responsibility to maintain the information model they present the user;
during algorithm development as well as during operation.

The responsibility of information processors will also radically

change in the next few years., They will regularly assume not only lifas

1
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3‘1 o aritical roles with respect to individuals, but givilization eritical
N '1""1‘:- roles with respect to nuclear weapons and space operations; to name two
jf::jfs appiications of direct interest to the Air Force. A quote from the back 1
( of the NS 16032 microprocessor data sheet (April 1982) is illustrative:
:;..:1;‘

e NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL

.';:;:j COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE

SN EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

\: SEMICONDUCTOR CORPORATION. As used herein: {life support

3;_‘\-*.' devices and critical components are then defined]

- In the past, information processors have merely been computers e--
:}E ignorant slaves dogmatically executing their instructions. No

'.‘ intelligent user would use computer results without independent checks
_,'.;., as a consequence of their generally unstable behavior. This will scon
:EE be impossible for most applications, as it is already in some.

‘;ﬁ @ Not only will responsibility for major portions of our civilization
.‘::l be held by automation, but this automation will not be executing

“C:‘E' algorithms: it will be infering causal relationships from experience,
‘::': Current architectures can not be extended sufficiently. They were
jt designed to use hardware efficiently, and issues of human comprehension
:::'j'. and reliability were added as an afterthought. An evolutionary path to
’ a satisfactory architecture, which can be easily understood and is

:::'-:; reliable, necessitates the inefficiency imposed by constraints of a
:‘. bygone era. Extraneous concepts must be jdentified and eliminated.
: This is the core objective of this thesis, in the context of the

‘.A hardware-cperating system-language model of information processing.
S: Hardware limitations have constrained most current architectures,
: and these limitations cause myriad user frustrations. The two major
‘ % -.E:; classes of limitations are: 1) those in which certain features,

£
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ﬁzié ;ﬁ?; arbitrarily chosen (at least from the perspective of a particular
NN application), constrain capabilities and efficiencies; and 2) the

7;3 arbitrary selection, and omission, of features (at least from the
;\éﬁ perspective of a particular application). An example of the first

o limitation is the selection of a base of the number system used by
;iz' computers [Ginsberg 77]. An example of the second is the set of

#Ei instructions, and register set, supported by the machine architecture.
N Studies are done to provide 'optimum' instruction sets, based upon
if: programming languages, not upon what a particular user requires [Bal 82,
‘:_iz: INTEL 81, Stritter 79, Patterson 81l.
tfﬁ An approach to this problem is work which will develop a Computer
;ﬁi Aided Design (CAD) technique to generate hardware from the programming
gsﬁ language definition of a program [VLSI 83, Buric 83]. This thesis

= G:z, proposes a compreheﬁsive approach towards addressing the problem of
ﬂﬁi‘ N achieving understandable and reliable architectures which can be

ﬂéﬁ efriciedtly designed, produced and maintained. Simply, all this thesis
"T: suggests is to bring some of the structure developed in Higher Order
_;;ﬁ Languages (HOLs) ianto the hardware after selecting a consistent and
;}ig nonredundant set of concepts.
;:Z Since hardware has been so expensive to build, extensive effort has
:?ﬁ evolved general purpose designs which can be adapted to many uses.

;3 Consequently, most people who specify actions which they would like
:Sf accomplished ﬁy currently available automation can do little more with
;:ﬁ; the basic hardware than warm themselves.
zfgi To permit the hardware to be used, many languages have been

.2: developed which permit the application programmers to describe

Tij ,%iﬁ: algorithas in terms of a model which is closer to their application than
R
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the underlying structure of the hardwere of the machine. For examples:
FORTRAN was developed to compute numerical formulas; APL was developed
to support linear algebra; BLISS and C were developed to specify
operating systems; PASCAL to teach structured programming; LISP was
designed to manipulate symbols; and PL/1 and ADA were designed to be
'universal'. Without exception, languages used in program development
systems require access to operating system and machine instructions to
patch over portions of their model which 1is insufficient for a
particular application.

As computers have become cheap and popular, hardware architectures
have proliferated, System software has evolved from its past role of
giving one machine many faces to giving many diverse machines one face.
The UNIX oper:.iwg system, which has been ported to every widely used
programming environment is a example of the latter.

Conventional wisdom attempts to separate the processing environment
into three areas: the hardware, the gperating system, and the language.
Each of these areas is currently the focus, today, of standardization.
Languages are iterated to be portable across all operating systems.
Operating systeams are iterated to be portable across all hardware and
support all languages. Hardware is designed to support many, if not
all, operating systems & languages at the cost of supporting no language
or no operating system well,

By developing standards at each of these levels, by utility in
industry --- by regulation in the government, short term benefits are
expected in addition to insight into some of the problems mentioned
above. To expect short term benefits is reasonable, to expect insight

into the problems just enumerated is absurd!
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:‘ :.\;;_ Suppose it is desired to define a new language with a new feature.
. i This approach implies that the new language must maintain compatibility
a- with current hardware and operating systems. What if these constraints
" gause the problems, as demonstrated by the ADA language development
effort [Boute 80]7
-‘:- What about enhancing an operating system? It is constrained, as
.‘:E are languages, by current hardware. It is also constrained by
o languages. If the new feature is not conceptually withbin the language,
__j then the only way to exploit the feature is with system calls. Since
E% any system supports many languages, providing appropriate system calls
X which do not erode the structure of the supported languages is not
trivial. Even if this can be done, system to system compatibility
: problems avert all but the most daring programmers from using these
@ features. The computer science literature describes, and most operating
'1' systems have available, many such system utilities. They are not
.: commonly used because they are not integrated into the conceptual
C framework of neither the host coperating system nor any of the popular
__ languages.

\J What about the hardware? People who build the hardware do

= innovate! But recall that the few engineers who are capable of
integrating the hardware with software into an operating system must do
E 80 before the innovations can be exploited. The language must still be
= penetrated.

) In order for hardware to be exploited, the operating system must
. support access to it, or exploit it, and the programing languages aust
X provide access to it, or exploit it. Hardware will be utilized to the
:: Tt degree that it is conceptually integrated into programming languages
%
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.53 :'E} used by those who can banefit from it. The speclalized hardware must
' ) aiso be reliably supported by the operating system.
:;: Special function units have been built for specialized
éi applications, with success limited to specialized applications. But
A hardware has been constrained by the operating systems available, and
Erﬁ the popular programming languages. Hardware has been further
1$E§ irrationally constrained by the strategy of adopting standard
o instruction set architectures, which although successful for IBM in the
;;3 1960's, is without any merit what so ever in the current age.
i;, Essentially, the instruction set is so far below the level of
ad abstraction at which most programmers work, and so antagodistic to
g; efficiently supporting the abstractions which they do use, that
.

L

administrative standardization (read waste) is impedipng defacto

@ standardization at the programming language level which could,
gtf ) potentially, result in more efficient and reliable software at lower
'?ﬁ cost,
fﬁ Initially, hardware was limited, Operating systems and programming
;:S- languages were developed to ease programming of a very limited machine.
igs The cost sunk into programs for these limited machines became great very
- quickly. Based upon the faulty assumption that programming could never
jft be fundamentally simplified, it seemed a good idea to maintain
é% compatibility to get some benefit from past programming effort. That
::5 is: maintain current (read obsolete) operating systems and languages.
:Ej Although hardware is still constrained, it is Dby choice and need not bel!
2¢§ The salient question: "Is it possible to avoid the
E:' hardware/operating system/language model for programming?™ The answer is
?ﬁi ﬂgi; an emphatic yes!, with zreat gains in programming efficiency, execution
-
e
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efficiency and collateral reliability. These gains are the consequence
of unifying the information processing system model so the language,
global architecture (operating system), and local structure (hardware)
are but three instantiations of the same monolithic conceptual entity.

There seems to be substantial agreement that information processors
will evolve; the major questions to be answered are: when? and how?

This thesis attempts to answer these questions respeétively, now,
and by reconstructing information processing architectures from first
2rinciples to be compatible with sophisticated users while exploiting
current and projected hardware fabrication technigues.

- The following thesis is built around a language definition, and
development of a complemeatary global and local architecture to support
it. A comparison will be accomplished to show that the resulting system
@ is at least as competent as the C programming environment. An overview
of the thesis organization, by section title, follows.

Architectural Objectives defines the term architecture in the
context of this thesis. Characteristics of the ysers of the
architecture are developed, and then the architecture is summarized from
their perspective. The section concludes with identifying the
constraints ir -sed upon the architecture.

Appraoach to Algorithm Specification describes the semantic concepts
implemented within the language. Using as a point of departure the
sophisticated user, the fundamental ideas of the language are developed.
This section describes the ideas of the language unburdened by syntax.

An Introductory Example: Bational Arithmetic provides a taste of
the language before the syntax has been introduced. The example

provided is simple enough to permit the style of the language to be

A
..
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o o
N
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x>
‘:: See demonstrated and understood before the language has been studied in
]
detail.
-t:" Language Description focuses upon the syntax of the language. This
4 ;‘.
x:: section serves as a preliminary language reference manual.
h Algorithm Example: 4 Yector Dot Product demonstrates two of the
» more powerful features of the language, generic algorithm definition and
v 1
é parallelism, in a straight forward example.

Erogramming Support Requirements first describes the three
representations through which algorithms metamorphose during their life

4, 4

-
I
N AW W

’ from user definition through machine execution. Programming development
aids are discussed in a speculative, as opposed to definitive, context.

‘ $E Hardware Requirements describes particular architectural features
:':.: which have been developed in concert with the language, and are

& @ consequently required to support the language efficiently.

.',";‘ Language Analvsis provides an informal argument that the proposed
4? environment is sufficient to replace existing programming environments,
L and pnecesasary to instantiate future proposed systems. Since much of the
‘r-j motivation for this language came from C, the informal argument takes

: the form of an approximate comparison of the two languages arranged in
DX the format of the C reference manual [Kernigan 78].

h: Conclusions summarizes what should be done to develop a working

3 model of the architecture, suggests work which should be accomplished to
2N improve the architecture, and states why the proposed architecture

_, development should be continued in light of current language and

? hardware development efforts.

.T The fundamental objective of this thesis is to stimulate sericus

::.3 :'3; thought about restructuring the information processing model by
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*:f R providing a rough keuristic description of an internally consistent

architecture with apparent potential for realization after refinement.
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1I. ARCHITECTURAL OBJECTIVES
This section first defines the term grchitecture, and then
motivates the development of a new computer architecture. Users,
introduced but not yet described, are characterized and the users!

=

z perspective of the architecture is developed. Limitations which

LS constrain the architecture are mentioned. This section closes with a
summary in which the priorities of the architecture are emphasized.

?3 The focus of this thesis is to define a nutritive design
environment that is realizable; hence initial emphasis will be placed
upon the motivation for and definition of such an environment. The

z following sections describe realization issues.

-

™

N I: Motivation

The term 'architecture' has been subject to many interpretations '

f{ which have specific meaning within the hardware, operating system, and

;{ language model of information processing. To communicate with the word

4 outside of this model, a definition is required:

1

)

A The art or science of building; specifically: the art or

practise of designing and building structures, especially
habitable structures, in accordance with principles determined
by aesthetic and practical or material considerations

..0

Y.

W in this case taken from Webster's Third New International Dictionary

¥

- (1966).

E In the context of information processing systems, huilding refers

3 to engineering an information processing system. Structures refer to

= flexible fundamental building blocks organized within a language.

> TN

X t}LF Habitable means pleasant to use, as a dwelling would be pleasant to live
iy
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in. Jjeathetic implies that the information processing system

architecture captures users thoughts unadulterated: that is, the beau;g
of an algorithm should not be corrupted by the limited language which
must encode it. pPractical insures that new architectures must always
strive to improve upon current methods; uniqueness is not‘aurficient.
Material, as opposed to ethereal, considerations insure that an
architecture is an aid to suggest how information can be organized, as
opposed to how one could conceive of information being organized.

To summarize, an information processing architecturs should serve
to structure automation to be user habitahle. This thesis is but one
attempt to improve upon the computer architectures which are
commercially available.

Automation is not an end in itself; consequently its purpose must
be reflected in the architecture. The purpose of automation, as with
all tools, is to aid and extend user capabilities. This can be done in
essentially two ways. As with all tools, automation contributes to
sensation, actuation or both. Automation can provide control and
information bandwidth reduction. Two forms of bandwidth reduction are
possible: classification (or selection), and concentration.
Concentration of information can take the form of deduction or
induction. Deduction implies that general rules are applied to specific
cases to determine actions, eliminating the need to store specific
responses for each case, Induction implies that specific cases are used
to formulate general rules, eliminating the need to store minutia
associated with each case.

Given this sketch of what automation can accomplish, a test for the

utility of specific automation can be defined. Consider a task within

IO ATIRRTS T i--‘,-._.\';. 7‘.....
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'_$j }wq the framework defined above, and Qquantitatively estimate effort an

.'.," v

’ unajded user would expend. Divide this by the equivalent estimated
l*f effort a user would expend assisted by automation; creating and

Yy validating the taask specification.

N

R, unaided user effort

oo UTILITY(user, task) =

?I‘ automation aided user effort

o This function, of the task and the user, provides an indication of the
" j«.

Ay suitability of the automation available. For example, a utility of

. *

o about 1 or less would indicate that the automation available should be

avoided.

The goal of an information processing system architecture is to

N LA

Sl -

maximize the utility function defined above over a set of users and a

2 ‘ji’ set of tasks. By carefully selecting user characteristics, and coupling
"
ig the architecture tightly to them, the utility function, applied over the
P
‘fé domain of qualifying users, can be increased.
‘
‘ User Characterization
]
';f The user characterization is critical and will shape the
- architecture. The user has responsibility for instantiating automation
;; concepts. As such, two directions are possible: to structure the
:2: architecture to support the requirements of dedicated system
"g.
—_ programmers, or to strive to adapt it to professionals in other
\15 professions so they may use it directly.
LYl
“%
. . System programmers currently provide, in theory, a friendly
B o
)
= interface between automation and professionals. They realize systea
P .
::j vﬁiﬁﬁ capability, and can perform limited debugging. Limited, because
!
~
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algorithms are usually not independent of the automation. Programmers
exist to increase the utility function of the professionals, but in many
cases nust function as a professional in the field they are supporting.
Invoking the suggestion that automation does not exist for its own sake,
it appears that if possible the professionals should be supported
directly.

To target professionals directly, it is important to notice their
relative strengths and weaknesses juxtaposed those of programmers. A
dichotomy between syntax and semantics is apparent, Programmers can
manage multiple complex syntaxes, with fixed semantics... to wit
commonly used languages and operating systems. Professionals require a
simple syntax, since its mastery requires extraprofessional study.
However, they can easily handle the extensible and powerful semantics
within their professions.

Mathematics provides precedence here. It provides structured
extensibility from a common basis. It provides a compact notation which
is rich in semantics with a simple syntax. It can be tailored to a
target group with precision. It encourages researchers to be mutually
supportive by catalyzing efficient communication. It permits results to
be exploited dy applying a utility test, recognizing the inherent
limitations of an algorithm. Finally, it 1is decoupled from material
implementation; it is abstractly selfconsistent and complete.

The "user®” is now chosen to be a skilled professional, without an
extensive education in computer science. The language syntax must be
necessarily small and logically extensible. The semantics must be
powerful, and consist of fundamental building blocks to permit language
extensions to benefit from structure. The architecture must support the
user in an internally consistent interactive environment.

13
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The impedance between the users' comprehension of an algorithnm

specification and its realization by automation must be minimized. Just
as optimal power is delivered to a load when the impedances are matched,
the information bandwidth each way, between the user and the algorithm
development aids, should be equal and maximized. High information
bandwidths imply shared contexts, which suggests that the users model of
the automation environment should be implemented dirsctly.

Put precisely, between the language employed by the user and the
machine code interpreted by the hardware there should exist a bijective,
or one to one and onto, transformation.

The architecture has been justified by the desire to support a
sophisticated user. The user's perspective will now be used to

introduce the architecture.

User Perapective

In order to provide a useful overview of the architecture, two
views are important. The first is the algorithm specification process;
how does the user transition algorithms to automation? The second is
the algorithm life cycle; how is the algorithm born, how is it
implemented, how is its performance improved, how is it maintained, and
how is the algorithm finally replaced.

The following overview starts by describing the algorithm
specification process in terms of the architecture information
processing model.

The information processing model embodied by the proposed
architecture consists of four basic ideas. They are definition,

declaration, action, and gontext. First, objects must be defined.

Second, they must be declared, or instantiated. Third, they may either

14




act upon other objects or be acted upon themselves, and fourth, the
characteristics of an object are not entirely described by its
definition, but are affected by other objects within its environment.

The user first gharacterizes the objects which will constitute the
automation environment. These objects can be either gtatic or agtive.
The term 'user,' in this context, is broadened to include a specific
professional field.

Static objects can be either gcalar, which denote elements of the
set of discrete real numbers, or gtructured, which are composites of
Structured and scalar objects and denote n-dimensional elements in an n-
space., A house number might be a scalar object, while an entire street
address constituted by semantic units is a gtructured object., Active
objects are either gperators or functions. Integer operators are either
monadic or binary, and return an integer. This concept is generalized
to objects., Functions require optionally one object and return
optionally one object. Functions do not inherit the visibility of the
environment from which they are called, but may be passed portions of it
via an argument (by value) and by a concept called linkage (by
reference). Implicit side effects within the calling function do not
oceur,

A definition is a description of an object, just as this thesis
describes an architecture., A description must be declared, or
instantiated, or realized, or built before it can do anything. A
declaration;creatoa an object from a definition and names it., It is
then real and can be used. For example, a subroutine is defined which
coumputes the trigonometric ain function. It is declared with the nanme

"ain", and "sin x" has the conventional meaning.

15
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Actors are processes which act upon static objects. The user

specifies these operations on scalars and structures by operators and
functions he has defined. The two fundamental actions are evaluating
expressions and assigning values to named objects. In addition the
language supports intertask communication, iteration, conditional
execution, and dynamic object allocation. The user's major challenge is
decomposing his algorithn into sequential tasks which minimize intertask
communication and overall elapsed execution time while maximizing
opportunities for parallel execution.

The context in which an object is declared, and used, is important.
In the "gin x" example above, the definition of x was not explicitly
identified. It could have been defined when gin was declared, but in
most cases would be deferred. The trigonometric ain can be defined in
terms of other objects: the operators addition (+), subtraction (-),
multiplication (#), and division (/). Multiplicatiop and division can
also be defined in terms of the operations addition and subtraction, but
for efficiency reasons multiplication and division are often implemented
directly in hardware. In theory, as in this architecture, the semantics
of sin are dependent upon these constituent operations. The linkage
between these ideas occurs, in contemporary parlance, at 'runtime’
without performance penalty because of architectural innovations (see
section V for details),

The next section, "Approach to Algorithm Specification", continues
the development of these ideas. The remaining part of this section will
describe the life cycle of an algorithm,

" An algorithm is born when it is fully described and commupicated.

The language should, and the proposed language does, efficiently share
16
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structure with the user, It accomplishes this sharing by adopting the

organizational perspective of the user with respect to objects. Except
for the basic bullding blocks consisting of the means to construct
Scalars, atructures, functions and gperators, all of the organization

within the language is uaer defined. A language definition language is
being proffered.

This language is specifically designed to flexibly accommodate the
user., Consequently the specification and debugging of a working
algorithm should be the simplest method to communicate its accurate
description., Algorithm specification is catalyzed by an interpretive
environment, with a semantically oriented program editor and execution
monitor (see section VII for further discussions about programming
support).

Once the algorithm has be specified, it must be implemented. The
distinction is that an jpplementation is gonstrained by operatiomal
limitations, such as a time line, or execution costs. The algorithm
must be decomposed into concurrently executable sequential tasks with
the aid of tools to interactively monitor intertask communication and
interactively monitor task eiecution.

Restructuring the algorithm may not be sufficient to meet
operational limitations. imposed upon the algorithm, and exotic
technologies may be required. Computationally intensive portions of
actors can be isolated, and compiled into hardware; the compilation
process is quite simple compared to that required to instantiate the
average software subroutine in hardware. A conceptually similar method
has already been deséribed by Buric [Buric 83]. The architecture

supports a linkage to active objects which is independent of their

17
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implementation in either hardware, software or both. In all cases, task
control is maintained by the standard kernel which is the machine
language interpreter. This will increase performance, reliability, and
compatibility between hardware, users and algorithms; in that order.

Maintenance can be done modularly. Suppose at some point,
returning to the sin example, it is desired to replace a Taylor series
expansion with a Chebychev series expansion. It can be done once for
all obJjects for which gin has meaning.

This can be done because sin contributes a formula, in the form of
a Taylor's series or Chebychev expansion, in terms of the basic
arithmetic operators '-t', t4t, &' and '/', For any domain,
represented by x, for which these operators have meaning... so does zgin
X. This exemplifies the importance placed upon context by the
architecture.

The concept of system replacement will be itself replaced by the
practice of incrementally changing the hardware or the algorithms.
Since the algorithms are not tightly constrained by their automating
system, incremental modifications will be less constrained, hence
cheaper, hence used more often to meet system capability shortfalls:
instead of replacing the entire information processing systen.
Algorithms, since they are represented in a language tailored to the
field from which they sprang, will be easy to understand and reliably
modify: that is change or correct without introducing new bugs or

design errors into the system.

lmplemantation Constraints

Any architecture, because of practical and material considerations,

is constrained. This architecture is primarily constrained by the
18
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?f ééi@ peonle who constitute users. It must reflect 2 human comprehensible

‘ language, which implies what might be considered inefficient structure

i? and hierarchies. It must bend the otherwise ideal machine architecture

2: to permit educable users to think within the structure it provides.
That is, not ones and zaros; 10010100 10101101 10010011 00011101, (The

E 80 motivated reader may wish to compare the meaning of these four bytes

3 in the several machine languages in which he is personally intimate).

; In the short term, it appears that VLSI based upon solid state

.? physics, specifically semiconductors, will be the implementation

3

technology of choice with the attendant interconnection limitations.

However, organic molecules offer a light on the horizon promising

“aa.xl

density, speed, connectability and selfrepair which cannot be ignored

[Ostroff 83, Barker 80)]. How many presaged VLSI im 19507

3 Eriorities

.S In the remaining portion of the thesis, as the topies gradually

g become more applied, it is important not to lose sight of the primary
R motivations. These are now summarized.

33 The interface to the user must be optimized. The user must not be
if bored or frustrated. The impedance beiueen the user and the automation
i must be minimized. This implies two way communication. The purpose of
Eﬂ the language is to facilitate efficient two way communication, which

a; implies a bijective transformation between the language and the machine
j instructions. Communication implies shared gontext, and to maximize the
g context shared, the context should be dynamic and extensible. The user
~£ must be able to easily raise the level of abstraction without

R 325? sacrificing architectural structure: structured extensibility is

> \ required. The langusge must embody a concise system model to

N

-

SN




.................

AL ADMLLRE AR AR CAGS EAEA L MC N JC RN A S S A R S 2N A S i e T R A e |

unambizuously (over the carefully defined user population) interpret a
specification, and the architecture must ensure that automation benavior
consistent with the system model is presented to the user,

Finally, the architecture must support semantic structures
convenient to people efficiently, directly, and comprehensibly. In the

next section these structures will be described.
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SR IIL. APRROACH 10 ALGORITEM SPECIFICATION

The conceptual characteristics of D will be informally introduced
; in this section, bdefore the syntax is described. The following
. panoramic view is designed to aid organization of the language details
* described in section V, entitled ®"Language Description®.

é: The most difficult part of designisg any system is partitioning the
, system into constituent, compatible, comprehensible subsystems. The
; structure of this programming language flexes to meet application
3 requirements. It does not provide a canned solution to any particular
i‘l application but instead provides a nourishing environment for many. In
:": a sense it is a "language deTinition language®, and "application

2 programs® are reslly specialized languages catalyzing communication

| ‘3 between man and machine. By attributing characteristics to the
E: architecture which support experts familiar with it, and their field,
% novices are sure to .bo well supported.

'. As will be seen, the language is interpretive, structured, and

_:.C‘ extensible. The user is guided by the environment in the creation of a
:_:" robust, efficient and extensible prograa.

: Objects are fundamental to the language semantics. They not only
i hold values but may connote meaning. Denotational objects are
;; considered passive, and are called either "scalars" or "structures"”,
Connotational objects are considered active, and are called "“actors".
:, For exanmple, "operators® and "functions"™ are actors.
;{ Certain basic objects are defined within the language. These must
f" - be used as a basis for object definition and declaration. An

E ':::i:; application program must define classes of objects, declare
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instantiations of defined objects, and apply actors to objects within
the language structure to yield program results. The language consists

of structure to:

® dynamically create objects,

® control statement sequencing with iteratioan and conditional
statement execution,

# communicate between actors, and
®* precisely control the scope of object names.

Section IV contains an limited example of this structure in the
form of an algorithm to add rational numbers. Although the syntax will
not have been introduced, the example demonstrates how portions of the
language work together. After this example, the syntax is described in
section V., It, in turn, is followed by an more subatantive program
example which demonstrates generic algorithm specification and parallel

execution.

Introduction to Objeqcts

In the course of specifying an algorithm, classes of objects must
be specified. An object is something that is capable of storing or
manipulating a value. Variables, constants, files, functions and
operators are all objects. A name is not an object.

Characteristics common to a set of objects are abstracted and bound
into a defined class. An object is created, or declared, as a member of
a class. Each object shares its characteristics with other members of
its class with the exception of its name and its value. A unique name
is given to sach object when it is declared. Its value need not be

unique.,
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‘:’-ﬁ ‘:',' 'Value' is used in both the denotative and connotative sense.

i Objects can be either static (passive), or dynamic (active). A passive
object is acted upon, while the active object does the acting. For
example, algsbraically the letter 'x' may name, or denote, a real
number. The function sin x denotes a real number as well if x is

:-‘« known, but also connotes trigonometric theory whether x is known or not.

\' There are four types of files which factor the characteristics of

. objects permitting efficient and modular algorithm automation.

E:'-; Characteristics of static objects are described as scalars and

j‘,.“ composites of scalars, called structures, in gstate definition files.

‘f' Characteristics of dynamic objects are described as operators and

.: functions in terms of sequences of transformations upon static objects

:*': - in actor definition files. The values of objects are declared and

| i @ maintained in atorage files.

E"‘: Context, which controls the interpretation of object

E’! characteristics, can be organized using bundle files each consisting of
a list of file names. .

2 Introduction %o the Programuing Mathod

::::: Every language has a programming method requisite to its effective

~_;I:: use., D is no different. Although programming is recognized to be an

::;:: iterative process, a nominal sequence of steps can be identified.

:f:: First, templates must be defined for each class of static object

., which is required to maintain values by the algorithm.

'_é Second, the transformations (or actors) must be defined. Each

5:’ actor argument class and result class, if any, must be determined and

: \}'-:-: declared. Objects referenced by the defined actor must be determined

:& and realized. Any transformation must be defined in terms of the

s
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transformations available in either preexisting definitions or hardware.
Each of these transformations, implemented as expressions, must be
integrated into the target algorithm via control: conditional expression
evaluation and iteration.

Third, defined objects must be declared or created. Active objects
specialize the class of their arguments, while passive objects
specialize the class of the value they maintain.

Finally, the Jjuxtaposition of generic class-less actors, class
definitions, and object declarations permit algorithms to be defined and

manipulated efficiently at user created levels of abstraction.

Baaic Set of Predefinitions
The proposed architecture and language attempt to provide a

structured and extensible environment for users to adapt automation to
their requirements efficiently and reliably. A core, from which
everything can be built upon, is predefined within the language.

The architecture understands a practical subset of discrete real
numbers, and their associated arithmetic and logical operators.
Predefined arithmetic operators are (=, +, =). Note that (®, /) can be
defined in terms of (+) as can the logical operators. Fixed, flcat,
character, and other types which often are considered part of
contemporary languages are all user.derincd.

All the classes and their supporting operations and functions must
be defined in terms of the predefined operations. This does not imply
poor performance because of the architecture, as will be seen, is
designed to support hardware instantiation of compute bound actors. A
fpredefined® sot.for any realization need not be the minimal

"predefined" set of the architecture, but should include it.

....................

......................
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N Four Important Files
;_1.',‘ The architecture is constructed to support four basic concepts.

Eié These concepts are combined to automate verifiable and reconfigurable
t;§ algorithms,

'Q: The structure of a file contains four entites with specific
i:$ functions. They are the file class (either state, actor, storage or

!?i bundle), the name of the file, the linkage section (identifying other

;\ files to be shared or copied to correctly interpret the following body),
}‘: and the body.

:if Files can be either copied for exclusive use of the body, or they
_':::: may be shared. Usually definition files are shared, while declaration
i& files are copied. If two concurrent actors need to share access to

:& v objects, then they might share the storage files instantiating the

.4 CiE, shared objects., The linkage section also permits objects to be renamed
%3 for user clarity and machine efficiengy. The differentiating porticn of
)

_-'h

each file type 1s its body. Each of the body functions is introduced in

'S

the following paragraphs.

[ 3

The first two classes of files (atate and actor) are required to

e

.E% construct the basic building blocks of an automated algorithm. Scalars
;f: and structures are defined by state definition files. A scalar is an
%S objeoct with one value. A structure is a composite of scalars, other
;Eg structures, and pointers to active objects.

Ffj Actors, operators and funotions, are defined by the agtor

fjs definition file. Operators are named by special operator symbols and
.»: require one, optionally two, arguments and always return a result.

;;; Qgﬁ? Functions are referenced with object names and require, optionally, one
:3 ” argument returning, optionally, one result. Since structures may be
:l: arguments, this is not as restrictive as it may first appear.

o 25
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o
.kzg "?Zi? Once building blocks have heen designed, they must be constructed
:\, out of compatible ™materials™. In this architecture, this is analogous
:Eﬁ to creating objects, both active and static, with compatible classes.
?: Storage files are used to declare objects, or create entities with names
— and values from the definitions.

:%5 Bundle files organize the logistics of integrating the building
;?5 blocks into an automated algorithm, or application program. Related

- State files, gctor files, siorage files, and hundle files can be bound
;éz: together into a structured unit constituting a component in an even
~§E‘ larger system. This file class effects the agglomeration of related

o, files into an entity which can be manipulated as a unit. It provides an
$§ amenity to encourage modularity and functional factorization of

: y definitions.

o (:g, In the following subsections, each of the file bodies will be
.;Zs decomposed into its salient concepts. The inteant is to motivate the
229 capability included in the language. Precise specification of the
.}" language is deferred until section V.

g
e Definitions

> In order to conceptually manipulate many objects, it is imperative
$§Z to factor the characteristics shared by sets of objects into classes.
:ES; During algorithm specification this process has already been largely
EE; accomplished motivated by analysis as opposed to algorithm automation
:fﬁ issues, The problem is to construct blueprints of the many objects
522 which must be modeled by the automation using as many common building

p
;:f blocks as possible. This must be dotte without constraining analysis or
‘;; SEZE obfuscating tke algorithm in its executable form.
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ST The objective is to concentrate shared informatica into single
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files. This information can be efficiently referenced using linkage
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without respecification. Minor changes should be localized to one small

file., This is an example of the ortrogonality the architecture is
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designed to support.

« ; Each state definition must have a unique class name., Each state
F;ig definition defines a machine representation and a yser representation.
W Definitions serve to communicate the users design to the automation in
fﬁt; three major areas.
ﬁé;s In the first area, scalar representation, the range of values must
.-;. defined as well as the compatibility of these values with other classes.
E;; All scalar values are represented as a countable set, bijectively mapped
ES% onto a set of discrete whole numbers. Through this discrete set of
_‘ « @ whole numbers, the predefined operators are given meaning.
'S§3 In the second area, multiple scalars and known structures are
Eﬁg organized into new structures. The machine format is specified in terms
E of scalars and known structures. The user format is specified in terms
%ﬁﬁ of scalars, known structures and Qquoted literals, with the capability to
_kzg specify whether leading or trailing zeros in the representation of a
ﬁl value are significant. For example, in a floating point representation
:Eii trailing zeros are not significant in the mantissa. Zeros on either
"é% side of the decimal point are; and so on. The important point to recall
55% is that the user format is bound to the glass of the object., It is not
ggﬁ determined by an input or output acter.
:§S§ In the third area actors, which manipulate static objects, are
ijl‘ - defined as sequential procedures. The body of an actor definition
‘::S :$§f consists of an operator or function declaration which names the function
i)
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about to be defined, and declares its arguments, Two types of dynamic
objects can be defined: functions and operators. Operators require at
least one argument, and may be either prefix, infix, or postfix. An
operator must return one value. The operator name space and all other
name spaces are disjoint.

Functions may optionally have one argument, and may optionally
return one valus, They are named from the same name space as static
obJjects.

It is possible to defer the identification of the class of an
argument, or a returned value, until actor declaration or even
execution. The argument of an operator or function can use its class,
if defined, as a parameter. This can be handled in two ways: first, the
class can determine which actor is selected; second, the actor can be
defined in terms of other actors which are visible during execution. 1In
the latter case the function is class independent.

Actors can perform conversions from one class to another, but they
cannot accept arguments of different classes. However, if a function
is invoked with arguments of two different classes and a functional is
available in the execution environment to perform the requisite class
conversion it will dbe invoked to perform the conversion automatically.

Each actor definition contains a block which sequences object
manipulations invoked during execution. Blocks will subsequently

discussed.

DReclaration

After all the classes relevant to the algorithm have been defined,

the blueprints for the building blocks are complete, and the building

blocks are ready for construction. The purpose of a declaration is to
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instantiate an object and then bind it to a referencing method and a
class definition.

The class definition serves as a template for the declared object.
There are five kinds of templates: scalar, structure, operator, function
and file. The template provides a class name denoting abstract
properties of an object. It also provides information to permit access
to components of a structured object. The range of an object is defined
by its declaration template. For actors, the domain of the arguments
Q2 and the range of the result are defined.

Four basic referencing methods are possible in the language. A
tree model underlies structured classes, and this method is controlled
i: by the definition of a class. The other three methods are arbitrated by
the object's declaration., A direct referencing method requires a name
‘3 to refer to an object. An indirect reference permits a name to paoint to
another name which references an object. Objects so declared may be
initialized to known pnames not values. A group of components may be
collected together into an array, and referenced with the aid of an
index. The defined class of an object and its referencing technique may
be abstracted and used as a template for yet another object. In such a
manner, pointers to pointers and multidimensional arrays may be declared
;. although a series of steps is required.
Objects may be created statically by creating and copying storage
files. They may also be created dypamically with the pew keyword and a
'i known pointer object. The dynamically created object is appended to the

pointer's owning storage file. The object reference value is assigned

to the pointer, and the object may be initialized when it is created.
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The lifs of object begins when it is instantiated by a storage file
or when it is copied as part of a storage file, or when it is declared
by a pnew statement. The life of an object ends when it is no longer
referenced by either the declaring actor, or any subsequent referencing
object. The keyword pnull can be used to dereference objects from
pointers,

Linkage may be used to locally introduce new objects with known
names, The o0ld objects are hidden only until the end of the block in

which the new objects were introduced.

Action

Action occurs when a new value 1s assigned to an object. Three

ingredients are required:

the logical name of the object to be assigned the new value,
an expression which will evaluate to the new value, and

an assignment operator which effects the assignment.

First ibn concept of a logical name will be discussed; second,
expressions will introduced with the additional complications to action
they engender; and third assignment will be described. For now consider
the action connoted by an actor to be defined by a list of statements
assigning expression values to logical names and executed sequentially.

The simrlest form of a logical name is an object name which
provides a direct reference to the object of interest. Some objects,
called pointers, hold, as values, the logical names of other objects.
An ambiguity between naming the object holding an object name and an

obJject holding a object value is resolved by preceding the name with a

-------------
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A special symbol, '#', wkhen the value holding object i3 required. That is
if "ptr® is a pointer name, "ptr®" refers to an object name while "#ptr"

refers to an object value; the object value of the object name pointed

MLt

to by "ptr*.

File names are also considered to be logical names, but of a

 ~arer—
1]
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particular class. Each logical name is bound to a particular class.
- Objects referenced by a pointer must all be of the same class. No

object can be declared to be of a generic class which permits it to

i maintain values of all classes.

1 4 logical name can also ferer to components within a structure.

. The structure must be named, and then following a special symbol, *'¥,

3 the component must be named,
%; Many objects derived from a class may be bound into a

_, 9 multidimensional array. The entire array, a dimension, or a component
; may be referenced using a logical name consisting of an array nage

EE followed by indexes in brackets, '[' and ']', which select dimensions

y and components.

.2 Pointer names and array names are logical nanes themselves,

: pernitting nested indirect references. A renaming capability within the
4 linkage model permits logical names to be streamlined.

35 Assignnent is the one operation in the language which is predefined
;? for all objects regardless of class. The class of the expression on the
t. right of the assignment operator is coerced, if required and posaible,
fg to match the class of the logically named object on the left of the

E assignment operator. Assignment occurs only if the class of the logical
- ?ca? name, on the left, is identical to the class of the value, on the right.

Ty

The resulting class required for assignment does influence the selection
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3: t;fj of operators within an expression.
{-. Careless definition of operators can lead to ambiguous expressions
E; with values which are not precisely defined. The language irn no way
;g supports such careless programmers. A linkage facility is provided
\j which permits competent programmers to precisely tailor the scope of
:S% actors to insure that this problem is avoided,
}Ij The simplest expression consists of a logical name. The value of
LI such an expression is simply the value of the object referenced by the
'E% logical name, Normally, an expression consists of multiple logical
‘,g names separated by functions and operators with various levels of
i' precedence. Operator precedence can be explicitly controlled by
w;} parentheses. Each function and each operator is defined in terms of a
'éﬁ sequence of statements within an actor definition.
) {EE, An actor may be evaluated by hardware, ancther task, or by a
‘j§ declared function. The context of a declared function invocation is
3’5 that of the calling environment. If control is passed to another task

- (active actor) which fields the function call with an accept, only the
3§ argument values are passed. The execution context of the fielding task
i: is used to evaluate the function. This is also true if hardware is

i invoked to perfora the evaluation.
:Si The concept of an expression has been discussed, as has the concept
:3; of assignment permitting connotative results to be statically
:T maintained. An algorithm generally consists of multiple expressions,
?zz bound together with control structures to implement iteration and
;EE conditional execution. In the case of this language, dynamic variable
A Ea declaration and local scope control are also supported to simplify the
-‘ﬁ Ry definition of actors.
N
Y
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The statement is the basic unit of sequential execution in D.
There are four statement types, three of which are expressions. The
aforementioned expression is syntactically a statement. The return
statement is an expression which consists of the language defined
function "return® which may have an optional argument. This function
passes control back to the calling function. The pey statement is is an
expression which consists of the language defined function "new" which
requires the logical name of a pointer, and optionally an initialization
expression.

Since D is a block structured language, unlike any widely used
language, it is not surprising that the statement which is not an
expression is a block. Each actor is functionally defined by a bhlock.
A block essentially is the one and only control structure in the
language.

Poremost, a block is a list of statements to be executed in turn.
Each block begins with linkage making the block the fundamental unit of
scope control within the language. Since the list of statements within
a block may consist of other blocks, "block structure”™ as used within
other contemporary languages is descriptive hers.

However, D blocks support gopnditional execution. Each statement
may be prefaced by a guard. The guards of all the statements of a block
form a vector of expressions which is evaluated each time the block is
entered. The resulting values of the guard determine whether the guard
is open or not. Statements without guards are always considered gpen.

Upon entering a block, control passes to the first statement which
has an open guard. In addition to a guard preceding a statement, a
sontinuation follows it., Depending upon the gontinuation selected,
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control may pass either to the next open statement, or to the next
statement regardless of the guard value. The "next statement" may be
put into the context of any of the enclosing dlocks, assuming that the
enclosing blocks are labeled. Each dlock may be preceded by a header
containing a dblock label.

In addition, D blocks support iteration. Continuation symbols are
provided to cause control to reenter a block, or to terminate it.

In addition, D blocks provide real time support. In addition to
labeling blocks, the header contains an expression which defines the
value of open guards, and a switch which enables real time support
within the block. When enabled, control within a block passes through
the first guard to open, as opposed to the first open guard in the list

after all previous guards have been evaluated and are not open.

Context

The intent of the language is to be tailorable to abstractions
employed by users in their endeavors. Context permits ideas and
connotations to be factored into their constituent parts, and referenced
precisely. Each idea can become a building block of a larger
abstraction. Key objectives are modularity and controlled communication
between the modules, where 'module' is used interchangably with file.

Coumunication permits the plethora of factored parts to be
integrated into an algorithm. The architecture supports local
communication, defined to be interaction between related parts of an
algorithm executing simultaneously in one processing system. The
architecture also supports global communication, defined to be
interaction between different algorithms which execute at different

times on different processing systems. Both forms of communication are

34
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implemented consistently with respect to eacn other.

Communication is implemented via linkage. All object names for
scalars, structures, files, operators and functions have no meaning
unless the module in which they occur either defines them in terms of
known quantities or accesses, via linkage, a module where they are
defined, or declared. By changing links, a similar idea can be
exploited in vastly different contexts.

Modules may be shared or copied., If modules exist then they may be
accessed by establishing a link to them. They may be shared with other
using processes, or copied to create a private instantiation for
exclusive use., Definition modules would normally be shared because they
are not modified by the modules establishing links to them. Storage
modules would normally be copied because they are normally modified by
using modules. Most algorithms do not expect static objects to change
their values without being operated upon by the algorithm. However, one
pethod of establishing communication is through sharod.atorage modules.

Once linkage to a module has been established, the object names
defined or declared within the module are accessible. If name
collisions occur, or if the names within the module are inappropriate,
the object may be renamed. In cases where a reference consists of
several levels of indirection, renaming provides a direct name for the

~ obJject.

Bundle files hierarchically organize modules which are required to
instantiate an algorithm. By linking to a bundle file, all of its
constituent files become accessible. Modules may be organized as
lidraries of functionally related operators as opposed to algorithms,

Context manipulation permits connotations to be factored from their
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-;:j- implementation, as they are perceived. The connotation of the

s trigonometric sin function is independent of the numerical technique
:: used to implement it. Similarly, the connotation of a Chebychev

) NI approximation is independent of the function approximated. Through the
context management provided by linkage, these two ideas can work
together, and with many others, without a great deal of redundant
implementation. Operator structures as well as data structures may be

extensibly supported.
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'f, Although the following example is mundane, it demonstrates how

5 parts of the language work together. The algorithm takes several

. rational numbers of the form ®"x/y", such that 'x' and 'y' are integers,
-$§ and adds them. The sum 1s presented in relatively prime rational form.
itﬁ The algorithm consists of several steps:

8 converting the entered expressionm intc internal form;

* performing addition of the rational numbers;

P\ ’ el:ninating factors common to the numerator and denominator;
an

*' | * presenting the final result,
::@ Two classes need to be defined, one to specify rational numbers and
' ‘:E} one to specify addition over rational numbers. An expression is entered
$§: on a keyboard as it might appear in a program. The result is evaluated
'EE: and displayed on the terminal screen. In this case the algorithm is
;; defined to be a function named "add®™. Assume that two user written
727 functions, "get" and "put", are available. Assume that "get® obtains
EE; input from the user, and that "put"™ displays output to the user. These
' functions have access to the definitions about to be described. Also
7;2 assume that the file "standard definitions"™ contains definitions of the
-gi operators "<{s" less-than-or-equal, "=a2" is-~equivalent-to, and "&&"
‘;; logical and.
-.%" When code is given as an example, as in the remainder of this
:5; section, a general description of the chunk of code will be provided
%j' . first. Then the code will be listed on numbered lines. The numbers,

:? :§é3 not part of the language, serve to tie the following more detailed

Eg explanation to the code presented.
f, 37
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First, the definition of a rational number must be specified. It
consists of two integers, separated by a '/!', and leading zeros (those
zeros on the left of the integer) are not significant and are not
printed. Since rational numbers consist of integers, access to the
standard definitions are needed. A period ends the definition file.

Note that an ambiguity is introduced with respect to a rational
nunber of the form "a/b" and the integer division operator '/! since
both *a' and 'b' are integers. This is resolved by applying resolving
operator names after all passive objects have been recognized. For
example if the result of an expression is assigned to a integer object,
then "a/b" is not interpreted to be a rational number, for 'a' and 'b!

integer.

888 code segment #i4

1: state rational_pumber definition
2: share standard_definitions ~~ where integer is defined

3: rational :: { ) “= ) means 02 = 2
H integer: numerator
5: /) ~< ) means 2/09 = 2/9
6: integer: denominator
B ’

888 eoxplanation #¢

1: The file type is a "state® file, and the file name is
"rational_pumber_definition”.

2: The scope is opened to include the file named
"standard_definitions®,

3: A structure with the name "rational®™ is declared, and the
leading zeros of the component declared on the next line are
suppressed when they are displayed.

4: The first component is declared to be of class integer, a
predefined class, with the name "numerator”,

5: The separator between the two components is declared to be a

'/', and as in (3:), the leading zeros of the next component

are to be suppressed in the user format.

Another integer is declared with the name "denominator"®,

The structure declaration is terminated.

The state file is terminated.

w-~3 O
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The 's' operator is always defined: it always cogies, verbatim, the
contents of one object to another, checking to ensure classes involved
are oompatible., Other functions and operators are required, and must be
defined.

As before, the standard defintions are required since integer
operations are used to define the operations on rationals. A
declaration file is also required, although it has not yet been defined.
This is permissible, since linkage to these files is required only
during the execution of the functions defined here, and linkage occurs

dynamically just before execution.

888 code segment #88
1: actor rational_actor_definitions
2: share standard_definitions
3: share rational_number_declarations
888 goxplanation #3#
1: The file is of type "actor®, and named

*rational_actor_definitions”.

2: Scope is opened to include the file "standard_definitions™ and
3: "rational_number_declarations®,

The first function defined takes a rational argument and provides a
rational result. Since the structural definition of rational numbers is
verbose, it is convenient to give each component of the rational number
operated upon another more succinct name. With brute force 'i?,
declared in "rational_number_declarations” along with all the other non-
standard actors and struoctures, is used to attempt a reduction of the
rational number argument. It is initialized to 1, and then incremented
until it i1s greater than one half the denominator.

If it divides both the numerator and denominator evenly, then the

numerator and denominator are reduced. The index 'i' is incremented,
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>y
"'-:‘:
bl d}’: and this iteration is continued until 'i' is too large.
- ,: qld‘l
Q': 883 code segment ¥
NN 1: reduce :: in rational: r
N 2: out rational: r
" 3: rename r'numerator N
4 rename r'denominator D
: {132
AR : new_divisor:
: { 1< D/2,
e : $ factor:
o : { ((D/1) ®# 4 - D == 0),
10: . && ((N/1) ® { - N =z 0),
LN 11: $ {D=D/1
L 12: N = N/4
1, 13: } factor \
i 142 i a1+ 1 nev_divisor \
B 15: }
y 16 }
9:' 17: }
.‘{-c..
Yy %98 oxplanation #8¢
"‘ 5 1: The defined function is named "reduce®, and its formal
argumeat is of class "rational®, and ia named 'r°'.
: 2: The range of this function is also the class "rational®, and
A the formal name of the result is 'r',
:}; 3: The component of 'r' named "numerator® is renamed 'N'.
¢ 4: The component of 'r' named "denominator® is renamed D',
g 5: The block defining the function "reduce® is opened, and “he
scratch variable 'i' is initialized to 2.
}_\,n 6: The next statement is a block, and this line labels it with
:;\j the name *new_divisor®,
Tl 7: The block is opened, and the expression "i <= D/2" is
' ;.j evaluated. Since the line ends with a comma, the logical line
! continues to the next physical line.
B 8: The '$' symbol indicates that the preceding expression is a
> guard. In this case if the preceding expression evaluates to
ot a positive nonzero value, then control passes to the following
‘-"' statement (9:), otherwise control passes to statement (16:).
?\*, The following statement is a block, and is labeled "factor®,
R 9: The block is opened, and D is tested for divisibility by i,
the comma terminating the line signifying that the logical
kol line continues.
St 10: And ("&&") N is also tested for divisibility by i, and the
}-f? line continues.
,.-:Z 11: If both D and N are divisible by i then the following unlabled
Ya block is entered, else control passes to (14:). An i is
.. B factored from D.
20 ION 12: An 1 1s factored from N.
?}: v 13: The current block is closed, and control passes to the
A o beginning of the block labeled "factor",
R
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ALY 14: The value of i is incremented, and coatrol is passed to the
T block labeled "new_divisor®.

15: The current block is closed. (factor)

16: The current block is closed. (new_divisor)

17: The current block is closed. (reduce)

) "- “oJ‘l;‘;.‘?’.l '

L)
]

Now the definition of rational number addition willlbe

accomplished., Two rational arguments result in a rational sum, and the

“ I,:‘, ...'

rational sum is obtained by component by component addition after giving

v

each term a common denoainator. Since the reduce function is available,

the sum is reduced before it is returned.

- %88 code segment #3d

+

HH in rational: adi, ad2
out rational: sum
{
sum'denominator = ad1'denominator * ad2'denominator
sum'numerator = ad!'numerator * ad2'denominator,
+ ad2'numerator ®* adi'denominator
sum = reduce sum

}

%0 @0 oo o0 o0 o0 00 oo

WO & ) =

O

Pl NS

%88 oxplanation *e8

1: An operator with the name '+' is defined which requires two
rational arguments. The formal names are "adi®™ and "ad2®.

The result will be rational as well, with the formal name
*sun®. )

The defining block is opened.

The component named "denominator® of "sum® is computed,

and the component named "nuzerator®™ is computed,

over two lines, using the predefined integer operators.

The result "sum”™ is reduced to lowest common denominator form.
N The defining block is closed, and sum is shipped off to the
3&; calling function.
£y

AL
N
..

-.
»

) ‘s “.

-3 OWUNn & W
s e %¢ eo oo oo

: For completeness, the rational subtraction operator is defined

without explanation.
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#%#2* code segment #ud

HH in rational: sb1, sbd2
out rational: sum
{
sum'denominator = sbil'denominator * sb2'derncminator
sum'numerator = sbi'numerator * sb2'denominator,
« sb2'numerator # sb1'denominator
sum = reduce sum

}

3 Partly to demonstrate the language, the C operator '+=' is defined.
4
.% It is defined in terms of the 's! operator, which is universal, and the
| '+! operator which must be available at runtime.
;' #88% code segment ¥#*#
)
: 1: += 3¢ in $sum: suk, inc
' 2: out $sum: sum
: 3: {
v, 4: sum = sum + inc
, 5: }
‘f i 888 explanation ###

ﬁ 1: A function named "+=" is defined which has formal arguments of
i any class with two formal arguments named "sum" and "inc®.
s 2: The result has the same class of the arguments, and is one of
1 the arguments: "sum®.

3: The defining block is opened.

N 4: A new value for sum is defined using a presumably visible
_ operator named "+" capable of operating on objects of the
» class of "sun".
' 5: The defining block is closed.
hui Now the object function can be defined. It does not take any
- arguments per se, since it invokes the input function "get"™ and output
A function "put®, If "add" was omitted from the command line below, the
P
2 result would be nearly the same. The error handling might be different.
% When "get" finds a rational, or '+', waiting in the input buffer,
\ .
: it returns a 1 or a '+' respectively. It assigns the value of the
A
. waiting rational to the object declared as "temp_rational®™. While "get"
i {Esﬁ returns positive results or "+", "add" alternately sums rational values
ﬁ e
A 42
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to sum. A negative result from "get"™ stops the magic, and yields either

the correct result, or "error". As before, 3 period ends the file.

#2#% oode segment *¥#

add :: {sum = 0
addternm:
{get $ { sum +=z temp_rational;
get == '+' $ add_term\
} addterm ..
put "error® ..
}

put sum

}.

WER~NoNn EWN -
®0 60 0 ce 0o oo e se e

888 oxplanation #as

1: The function name is "add", and the first statement in the

defining block initializes the temporary value "sum®” to zero.

: The next block, starting on line 3: is labeled "addterm".

¢ The new block is opened, and the function "get" is called to

give a new value to "temp_rational"™., If a rational is
available the unlabeled block is opened, and "temp_rational"
is added to "sum". Otherwise control passes to line 6:.

4: If get returns a '+' control passes to the label "addterm", or
line 2:. Otherwise control continues to line S:.

5: Control passes to the line following the block labeled
"addterm”, line 8:. The current unlabeled block is
terminated.

6: The quoted literal "error" is sent to the output device, and

control passes to the bottom of the block labeled "add_tern"

(7:).

The current block is closed. (add_term)

The result "sum®™ is sent to the output device.

The current block is closed (add), and the actor definition

file terminated.

O o~
oe oo oo

Before "add" can be used its declaration, and the declarations of
the objects it requires, must be accomplished. Note that "+=" was

defined once, but appears twice!
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LY |
\::1
7
,:ﬁ _#8% code segment ###
"‘-'
- <7
- T 1: storage rational_number_declarations
Pl . 2: share rational_number_definition,
" kH rational_actor_definitions,
! 4: standard_definitions
T 5: rational: sum, temp_rational,
o, 6: + rational, += rational, reduce rational
»éﬁ T: integer: 1,
‘ 8: +z integer
o 9: @ add < no arguments required
i 10: . “~ none returned
Ry
‘zﬁ 88 gxplanation 88
o
2 1: The "storage” file is named "rational_number_declarations",.
o 2: The scope 1s opened to include "rational_pnumber_definition®,
- 3: "rational_actor_definitions®, and
{f‘ 4: "standard_definitions”,
Y- 5: The passive objects "sum" and "temp_rational™ are declared to
g:} be of type rational.
g 6: The actors, '+!, "+a2®, and "reduce" are declared to have

rational arguments and results.
) 7: The obJject 'i' is declared to be an integer, and

%S 8: the operator "+s" 1s declared to have integer arguments and
L results,

'Eﬂ 9: The function "add”™ is declared to require no arguments and to
@ produce no results.
’ - 10: The period termiaates the storage declaration file.
-3
.i:"
- All that remains is to run the program. Typing at the prompt
»
\ .‘
ﬂ yields the following results.
el
1%y >add 1/12 « 1/4 + 1/6
::1 1/2
;g7 21712 « 1/ + 1/6
- 1/2
, >
ON
;: The latter does not use the function "add®, but the '+' operator
PN
g- directly. If the input line was typed without the rational definitions,
- the result would be different (i.e. 0).
+ A
[
‘“S This concludes the introductory example, and should have convinced
~3
‘2 even the casual reader that the proposed language D is, at the least,
B different.
o W,
)
i
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Y. LANGUAGE DESCRIPTION

An enumeration of the notation selected to describe the language
will precede the language description. The language will be described
from the bottom up, starting with the symbols constituting the language

and concluding with the structured extensibility embodied within it.

Notation

Notation used to convey the language syntax consists of an alphabet
of nonterminals, terminala, and punctuation.

Nonterminals are symbols which are defined by productions included
in the syntax, and are strings of printed characters bracketed by <’
and '>', Terminals are strings of printed characters which stand for
themselves, and appear in D programs. Productions show how nonterminals
can be reduced into simpler nonteraminals and terminals, and are of the
form:

<filed> ::=

{state_file>
<storage_file>

| <actor_filed> }
| <bundle_file>

the punctuation ?::=' indicates that the production reduces the
nonterminal <{file>. Vertical separators, '|', separate alternatives.
Wherever "(file>" appears, any of the four alternatives listed above can
be substituted. The primary units of punctuation used in the notation
describing the language are "¢,>,::=,|",

To reduce the amount of text needed, additional punctuation is
introduced. Text between dollar signs, "$<{text>$", is optional. Text
between pound signs, "#<text>#", pust be repeated one or more times.

Parentheses are included to reduce the need for intermediate
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a2
2
o nonterminals. For example:
sp
:.::;., <literal) ::= (Kdigit> | _ ) $#<char>#$
o
'._\"
.:_\:
could also be written:
AN
A Cliteral> ::= <digitor_>$#<char>#$
-o?-\ <digitor_> ::= <digit> | _
Y
X% but would require the additional nonterminal <digitor_>.
»’ \ In several cases, the parentheses bracket a single nonterminal, and
J::h"_l: in these cases the parentheses are terminals; not punctuation. Note
-
that the construction "$#<text)>#3" denotes zero, one, or more
Y $~ repetitions of "<(text>®. The secondary units of punctuation used in the
¢
gr‘- notation describing the language are: "$,#,(,)".
<y
n < @ If lexical units are equivalent syntactically, but are semantically
,-'. different the construction is as follows:
J.,\ﬁ
b3
.;s% <array_pame> |
v <file_name> |
- <{funct_name> |
SR <label_name)> |
RN <{pointer_name> ]
OB <{scalar_name> |
oS! <structure_pame> ::z <pame>
A
o This conveys that the seven left-side nonterminals are syntactically
v
;?{ equivalent to the right-side nonterminal.
\ -
:‘, ;, This concludes the introduction to the notation used in this
. document to describe the D syntax.
LS ]
“ \:
o Symbola
o
.. . There are five types of tokens in D: symbols, names, quoted
s .%‘ ..,'. ‘,"
}"Ej o literals, integers, and comments., Symbols will be described first.
oy |
S5
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-)

:
\j The language alphabet consists of four disjoint sets of symbols,
S el

$j :j;jz which can be considered tokens which uniquely affect a user output

. device (such as a Video Display Terminal (VDT)). They are character,
fﬁ operator, punctuation and format symbols.

§ Characters. Characters consist of the upper and lower case
S alphabet, (a..z, A..Z), the digits 0..9 and the underscore character

Y

> '_'. Characters are used to form names and literals. They can appear
¢‘-
;Q in comments and quoted literals.
'y <char> ::s

N <digit> | <alpha> I -

5

N <digit)> ::=

ojl1l21314}s516l7181l5s

': <alpha) ::=

N A|lB|CI|/D|E|F|G|EBE|I|]JIK|LI[M]

- NjojJPiQiR]S|T]U}VIWIX]|Y] Z)]
CON ajblejldlelriglnlstiglkil!|nml]

u nlolplalrlis]itiufviwlixly!z

0

»

- Operator Symbols. Each operator name consists solely of operator
N

o symbols. The operator symbol set defines the symbols that can be used
i to form an operator name, and define the precedence of the operator. An
operator's precedence is determined by the right most operator symbol of

ﬁf its name. The following production defines the precedence associated
‘ with each operator symbol. Starting from the left, the first two

3,\

:2 operators (!,“) have the highest precedence. Each group of two symbols
‘}‘\
QQ to the right has a lower precedence than the two to their left. The
;, assignment operator (=) has the least precedence.

"

-.:'
Lo {oper> ::=
- I I L VA B B 3
A ,@. +l=1&] 11 <i>]=

£ Yoty ¢

\; '
G
e
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Operator symbols can appear in comments and gquoted literals.

Punctuation. The syntax of the language is vested in the
punctuation, which consists of 20 syxbols; each have a unique meaning
which may be context dependant. Punctuation can appear in comments and

quoted literals.

-—
-
-
v
f

The following table describes the the meaning that each of the
punctuation symbols can have in sach of the three punctuated files; 'S!
corresponds to the State file, 'A' corresponds to the Actor file, and
D' correspoads to the storage Declaration file. A 'e' in a file, (S or
D), position indicates that the symbol is introduced only through
expressions. Similarly, a 'd' in a file, (S or A), position indicates

that the symbol is introduced only through declarations.

Y:
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o
8
ijq Table I: Description of Punctuation Symbols
W
LT M “-.- SAD
aymbol " Liles nmeaning
W {} S delimits structure definitions
A delinits blocks
L] S AD denotes an array by following a <name)
ddD with an indsx range optionally specified by
a scalar value within the square brackets
e A e with an index optionally specified by a
scalar value within square brackets
() e A e controls expression precedence
) S suppress zeros to right
( S suppress zeros to left
’ SAD line continuation character
H ddpD <class)> delimiter -~ declaration
HH S A <class)> delimiter =~ definition
- SAD comment initiator
* e A e single symbol quoted literal delimiter
» e d e string quoted literal delimiter
' ¢ A e possession indicator
# ddD creates pointar to declared class
e A e obtains object referenced by pointer
e e A ¢ address abstraction on following <named>
$ ddD class abstraction on following <name>
A delimits guard expressions
? A selects block behavior
<blank> A goto next line of block
; f goto next gpen line of block
\ A goto beginning of block & reexecute
oe A goto end of block
KEY: S - contained in atate file
A = contained in agtopr file
D = oontained in atorage (Declaration) file
e - only appears in expressions
d - only appears in declarations
LS ‘;'CJ:\
9 ,u:.w.
- .
d
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é;? ) Keywords are also a a form of punctuation, and keyword names are
A,
j?f S reserved. The language keywords perform three specific functions: they
:
3&, determine file type (actor, bundle, state, structure); they denote
N,
’}i interfile visibility (copy, rename, share); and they are used to define
f:' actors. In the latter role, they control intertask communication
;‘. (accept, in, out, return) and dynamic memory allocation (new, null).
NS
p:g <keywords> ::=
)
accept ! new | return )
o actor | null | share |
Bl bundle | out | state !
e copy | rename ! storage ]
ey in
ol
’ Format. Formatting symbols organize other symbols upon the page
:f; and delimit files. Horizontal white space (consisting of blank and
ffi horizontal tab tokens) is insignificant except to delimit names.
'n\" o
_ (ii? Vertical white space (consisting of line feed, vertical tab and form
WY
jhﬂ feed tokens) serves to end lines, unless the last nonformatting and
o
)
th noncoament symbol is a comma, ','. Commas serve to continue the current
| logical line on to the next physical line. All files are terminated
Y\
f“i with a period '.°,
}'? Formatting symbols can appear in comments and quoted literals,
- except for line terminators (vertical white space). The printable
e
‘3; symbol set consists of the above mentioned symbol set, including the
1
) white space formatting symbols.
a4
b
2l
‘.l
e
’0
3
SRS
g
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N
3o
:ﬁ X <format) ::= {wspace> ]
AN <fterm> I
et ) {lterm>
ial <wspace) ::z <HI> |
= <SP>
by
3 <lterm) ::=  <LP> |
<V |
<P
Uy
T <fterm> ::z .
N,
<l <psymbol> ::= <punct) |
= <oper> ]
<{char> |
. <wspace>

-

Eaning

A name can be loosely considered as a string of symbols with which

3, s QUL £ 44 ¥,

S W

~

the uscr ideatifies labels, functioas, operators, scalars, structures,
pointers, arrays, files and classes. Syntactically, there are three

olassifiocations of identifiers.

x

& .
Nemes. In the context of the language, the term name has a
specific meaning. It is an <alpha> followed by a string of characters.

" Any number of characters can be used within limits. Two limits

X
‘:3 ismediately come to mind: comprehensible limits, and line length limits.
‘.,;l

':§ If commas are used, note that they gontinue lines but daelimit names.

' Only operator names say not dbe derived from this classification.

o

i)
- <name> ::s= <alpha>$#<char>#$
b Literals. The second kind of name is what will be called a

ot diteral. It is identical to a pame except the first character must be a
'
A digit or an underscore (_). Such an object may only be assigned a value
fxea
. by initialization during declaration. Its value from then on is
I e A

:{ A constant. Only operator names may not be derived from this

o
O
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=)
Y

B \“
\i\
4 N

&

S
sNQQ symbols, delimited by a reverse appostrophe '‘!, or quotation marks '"',
A
)
b ~'§ respectively.
‘; Formatting symbols should be provided with a printable
Y
kﬁ: representation for inclusion within quoted literals.
% <qliteral> ::= ‘<symbold® | "$<symbol>#"
o
o Integera
CAN
‘~E¢ The only predefined type in the language is intager, which may be
- denoted int. Scalar types are defined by creating finite mappings onto
(4
3§§ a contiguous set .of integers. A string of digits and underscores
»Ny
:ﬁa constititute a literal which denotes the expected value. Underscores
I
e are not significant although it is suggested that they be used to
, LN
4 "' n'_'
 f§ LY separate chiliads, or groups of three decimal digits.
e "¢
X
>2
0
30
:":"‘o"\ (LR rel T Qe V' n® v . - * N e v v w m o a T T
_ DB A TIEAY 300 AT Do, Y R S 3 -J-.._-._-..- .o L e e e e e e e e P TN
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classification.

<literal)> ::= (<digit> | _ )$#<char>#$

Operator Names. The third kind of name is an gperator pname which
is constituted by 1,2 or 3 operator symbols. It denotes, with the
argument and result class, a particular operator. Like functions,
operators are user definable. Unlike functions, which may take one
argument and may return a result, operators require one or two arguments

and must return one result.

<op_name> ::= $<operd>$soper>$<oper>

Quoted Literals
For situations where the value of an expression is a string of
symbols, as opposed to a defined internal value, two kinds of quoted

literals are provided. Quoted literals are represented as a symbol, or

P A S -'. -"‘-'\d
W SRS, D, S S Sk S S




"
P

L0

PN
;S ] Any expression which yields, as its result, a scalar is
{' :iij syatactically an integer.
& dntd 1z (#<digitd | _#) |
~::3 <scalar_expression>
Commsnta
é; Comments may be inserted into the language following the token
ég (*=). Text on the remainder of the line will be rendered syntactically
i and semantically insignificant. The comma acts to continue comments as
?; it continues lines. 1If both a line and an comment are continued, the
iéi next physical line contains the continuation of the comment. The only

symbols which cannot be included in comments are the terminator symbols

for lines.

<{comment> ::z ““$#<psymbol >#$ <lterm>

v

%E .Funotiona, objects, and literals are all sources of values.

. Expressions connote values as static objects denote them. Function

_; names always precede their single argument, and bind more tightly than
:¢§ operators. Operators permit multiple values to be reduced to a single
- value. Binary operators require two value arguments, one on either

:é side. Unary operators may either precede or follow their argument.

‘3 Oporafor precedence is determined by the right most operator symbol of
:f the operator name. Parentheses can be used to change the precedence of
§§ expression evaluations.

f The assignment operator takes two arguments, a logical name and an
- —~ expression. The assignment operator has the lowest evaluation

b 3535 precedence and returns the the value of its right hand side argument.
ii;
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Multiple logical names may be assigned values in one expression.

The value produced by the expression, right side, is converted to
the class of the object referenced by the logical name, left side, with
a user supplied conversion routine and then assignment is accomplished.
Conversions may not always be required. The assignment is defined in
this way for all user defined classes.

Logical names may denote the values of the objects they reference
and may consequently appear in expressions. A '€'! preceding a logical
name returns, as a value, a logical name. This value is equivalent to
that held by a pointer to the object referenced by the logical name.

The order of subexpression evaluation is undefined. For example

the evaluation of the expression

£(a) + (£(B) + £(C))

may start with the evaluation of f£(A4), £(B), £(C) or simultaneous
evaluation of all three functions. If the evaluation order of
subexpressions is important explicit temporary variables should be used
to force the order of expression evaluation,

Portions of an expression may be evaluated by different tasks upon
different processocrs. Expressions are the basic unit of parallel
execution within the language. Evaluation of an expression will cause
the owning process to hang until all the values required for its
evaluation are available and all subexpression evaluations have been
accomplished. The block structure will dbe introduced below, permitting
neutralization of expressions which tend to hang.

The keyword accapt has been integrated into the language to refer

to a function that can intercept actor calls. It captures the actor's

54

= E R el i A B B e -t | L i e i - - e . T oA T 4V s g Y el -
AN O I LR Sl o~ ar L P r i (AE Rl S SR R AL I L A I AR I A S GO LR Gl T e e e N G A S i RN e

! v . . e O G PR U P R R SR L R R RS R DR PR RS SRR R SR S SR . & LS TRARNT S i
DN T '9'&'\.‘!- PO 0 W VY 5 - R S N . ¢J. S ,- S

|



........

¥
ol
0 arguments, if any, and the caller identification. Arguments to an
4' .
L '_‘}{_ﬁ accapt function consists of a function or operator name.
) The value returned by an accepit expression to its containing
253
‘:E expression is either the function argument it is passed or the value
A
*-} denoted by the keyword pull signifying that a request for services has
been made but no argument was passed. The caller identification is
oy .
;_“:ﬁ passed to the next raturn statement, discussed below, in the thread of
\.\'
‘\.\ control.
i The keyword null is also used to denote the value of a pointer
“ which does not reference an object.
XY
3
b {expr> ::= <literald |
<qliteral> |
s @<lname> |
;’.; <lname> |
e <{expr><op_name> ]
f~, $<expr>$<op_name><expr> |
- - (<expr>) [
G <funct_name>$<expr>$ |
. accept <funct_name> |
\: aull
s .
3". The concept of a logical name permits values to be accessed using
A
. more than one method. Usually the object is directly named. If the
IL
N object is part of a structure, the structure and the component separated
bt by a (') constitute the logical name. Pointers provide indirect access,
‘Z‘L
and arrays provide indexed access. A pointer name points to, or has as
:,:: a value of, the logical name of an object. A '#' immediately preceding
.
KL a pointer name provides the value of the object. An array name returns
- an array; components may be accessed with indices. Multiple levels of
:- pointers and multidimensional arrays are possible, but each level must
f be explicitly declared one at a time. The class abstraction operator
.;' - permits an "array of arrays®, a "pointer to a pointer", or a "pointer to
;o H |f'-‘:'¢
if e a funotion® to be declared.
"’
ol
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The number of meaningful ‘'#' preceding a logical name is dependent
upon the referencing path of the logical nare. Too0 many result in the

pull value. File names may also be logical names.

{lnanme)> ::= <object_name> )
$#4<1name> |
<lname>$[ ($<int>$)]$ |
<file_pame) |
<lname>'<lnanme>

Statements

The statement is the basic unit of sequential execution in the
language. Once a statement has begun execution it must completely
finish before control is passed to another statement. There are four
kinds of statements; three of which can be interpreted as expressions
and one which is a compound statement or a block.

Nominally each statement consists of an expression which is
evaluated. In addition to §xpresaion evaluation, the language supports
interprocess communication, local access to external modules,

conditional execution, and dynamic memory management.

<atatement> ::=

{expr>

return $<expr>$

<block>

new <{pointer_name>$z<expr>$

If an operator or function returns a value, a formal variable must
be declared by the function AQrinition to hold the value to be returned
when the operator or function is terminated. A return statement may be
considered an expression consisting of the language defined return
function. In any case the expression, if any, in the return statement
is assigned to the formal result object, and the enclosing actor is

terminated.
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At . Following an expression whieh includes an agcept fuaction, the

Y el
f:§ i:;t return statement sends its argument back to the calling function. The
F:, accepting actor is not terminated because its activity does not stem
EE% from the calling process, but from some other source,
o Another statement that can be considered an expression consists of
3{ the keyword pew followed by a known logical name which has been declared
%:i a pointer to a class C. This language defined function dynamically
:é? creates another instance of an object of type C, and assigns the value
‘?; of its logical name to the pointer. This new object may be initialized.
;SE Objects which are no longer referenced by any pointer cease to

S& exist, If immediately after creating an object with pew, the pointer
ﬂiﬁ: used is assigned' null, the object would eliminated and its resources
}Eﬁ reclaimed. A function 'free! could be written by tracking down all
f:j' (jE? references to a object and setting them to some other object, or null.

&) Objecta dynamically created and shared with other processes may be
223 referenced by object pointers outside of the control of the creating
- process. Until all the objects referencing an object are terminated,
S\ the object cannot be itself terminated.
:;g Statements are the element of sequential execution in the language.
?T: A blogk is a compound statement which provides some relisf from this
é:: monotony. 1t contains mechanisms to locally introduce objects

\: externally declared, and to implement conditional and iterative
;ji execution of statements.
o5
- t-;f Blocks
1335 In addition to serving syntactically as a statement, a block is the
;f: —_ basic unit which defines each actor. Statements can only appear within
g ‘..l'__.
.\§ oY blocks, ‘
a) 19 |
/ ::; . |
¢ 57
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§ii e A Dlock consists of an optional header followed by iinkage and a a
\‘:'. SO
e v list of lines. The block is the fundamental unit of scope control. The
{
:ﬁﬁ block is the smallest syntactic unit within the language to permit local
..\‘
{2} names to be introduced via linkage. A block, with the exception of an
optional header, is delimited by curly brackets ({,}).
- <block> 1:=  $<headerd$
f,}-_, {<linkage>
P #<line>#
L ,
#Q Each line consists of a statement optionally prefaced by a guard,
_;I and optionally succeeded by a gontinuation. The guard supports
:” conditional execution, and the continuation supports a limited jump
3:; capability.
';: <line> ::= $<{guard>$<statement>$<contind>$<lterm>
o~ -
. @ {guard> ::z  <expr>$
- Ceontind ::z $<labeld$ |
| $<label>$\ |
) 3(13!)01)3.. '
» $<labeld$;
’:{ After the statement has been executed, the continuation determines
"-I

l’I

which statement will execute next in conjunction with the guards. The

'.‘l<

enclosing Blook referred to by the gcontinuation is identified by the

C

[~

l.’l.

label. No continuation character indicates that the next statement will

LN

“~

;&E be executed regardless of whether the guard is open, closed, or not yet
Et: evaluated. A backslash (\) indicates that the block will be reentered.
;f% Two double dots (..) indicates that the block will be terminated. A
;§§ semicolon (;) indicates that the next open statement of the block will
’231 be executed. From the top of the block, control first must pass to an
-ee £§S§ statement with an open guard. Statements without guards are considered
oA open,

.$s 3
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Each time a block is entered the vector uf guards is evaluated and
the results stored in a vector of guard values. These values will be
maintained until the block is reentered or terminated.

The header consists of a label and an optional selector. The label

identifies the block for the continuation as just described.

<header> ::=
<label>: $<selector><lterm>$
<selector> ::=
? |
<expr> !
?2<expr>

The selector consists of an optional expression and and optional
token (?). The expression, if present, is evaluated each time the block
is entered. The resulting value is the value that gpen guard expression
mist have. If the expression is absent, then guards with values greater
than zero are open.

The token (?) is used to modify the sequencing behavior of the
block. Nominally, no (?), the guard vector is sent off for evaluation.
Each guard is evaluated simultaneously with the other guards. Each
guard value is assessed, in the order the guards appear in the block.
Control passes through the first open guard to the guarded statement.

If the block is reentered before all the guards have been evaluated,
pore guards cloé the evaluation stack. However, all guard evaluations
must be complete before the block can be terminated.

The alternate form of blook control, indicated by the presence of a
(?) following the label, sends the vector of guard expressions out for
evaluation sizmultaneously as before. In this case control passes

through the first guard which is returned gpen --- regardless of
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" position in the block. When the block is reentered or terminated, all
RN
N i peading guard evaluations are flushed.
: J
N Scalars and Struoture Definitions
$:
-::4 In order to apply algorithms in the form of functions and actors to
objects, the precise characteristics of objects must be defined. Unlike
;:. most widely used languages, this language leaves such definitions for
>
}\ the users (or programmers).
There are four kinds of definitions which occur in two kinds of
i:g files. A atate definition file is used to define the static objects
‘E called scalars and structures. An actor definition file is used to
W)
define dynamic obJjects called gperators and functions. This subsection
§3 will describe the definition of static objects, and the next subsection
-~
§3 will describe the definition of active objects.
‘ a Each definition of a static object assigns to a scalar or structure
:j] class: 1) a name; 2) representation internal to the language; and 3) a
Ij:- convenient user representation. Scalar and structure definitioms
_ constitute state definition files.
, . Each state definition file starts with the keyword atate which is
d'.':
3:: immediately followed by the file name. Linkage follows. Linkage is
.
’ followed by the list of definitions. Scalars are defined to be simple
3‘: obJects which can assume integer values. Structures are declared to be
E composites of scalars and other structures.
29
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f;% .ii:. <state_file> ::=z
_ state <state_file_name><lterm>
L~ <linkage>
-
R (

<scalar_definition> }

structure_definitiond>
o )"
- .
.7
f; The internal representation of scalars is based upon integers. The
I value of each object may be constrained between bounds, and must be
%
W explicitly integer valued. Derived classes are function and operator
_{l\
vg compatible with actors compatible with their parent class.
. If a single integer is specified, the range implied lies between
’gf the value of the specified integer and zero. Nominally scalar values
>
;S ‘ range from 0 to a single upper bound. If two bounds are given, the
. 1:59 scalar value ranges from the first, lower dound, to the second, upper
3 q
}2 bound, inclusive.
X

<{scalar_definition)> ::=

;3 <scalar_name> :: <int>$..<int>$ <lterm>
:: Scalars are implemented in precisely as many bits, in a binary
N
o representation, as is required to contain the range desired. Other
fi nonbinary implementations are possible. Implementations may suggest
e
. ranges for efficiency. The user sees the values of scalar objects as
Fy )] ' .
b integer literals. Negative values are preceded by a '-', Classes given
:3 a range permitting negative values hold a space for the sign.
89
:é Structures enable compositions of all previously defined classes to
:; be bound together. Recursion is not permitted, but pointers within a
- ,:¢3 structure may point to the objects of the structure class being defined.
ol L
-
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‘{structure_definitiond> ::=
<structure_pame> :: {#<comp><lterm>#
}<lterm>

Each structure is defined as a list of composites. A composite is
either an object declaration or a a string of symbols. Parenthesis may
be placed on either side, or both sides, of the symbol string.

The internal representation of directly referenced objects on the
structure list is their scalar representations as described, from top
(left) to bottom (right), tightly packed. Pointers and arrays form
boundaries over which this need not be true.

The user I/0 representation consists of the component scalar values
presented from left to right, modified by interspersed symbol strings in
the structure definition list. A '(' or !')!' suppresses zeros beside the

symbol string, on the side it appears.

{comp> ::=
<object_decl> |
$($ (# <psymdol> | . #) $)$ |
$(3) |
(
Eunction and Qperator Definitions
Functions and operators are objects which act upon other objects.
They are defined in a file initiated by the keyword actor, followed by
the actor file name. The actors are defined in terms of previously
defined objects, and accessed through linkage.
In addition to a name and linkage, each file consists of a list of
definitions. Each definition consists of a name and a Rlgock, and may
include a result and an argument declaration. The manipulations it

perforns are specified by its bdlock.
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'''''
........................

S
08 ..
\:v -“"::'g <act0!‘_file> H
Y
- actor <actor_file_name><lterm>
"is. <linkage>
o
X (#
3
' ( <op_decl> |
R <funct_decl> )
[ <block><lterm>
3 ".
- The class and number of arguments and results of functions and
'i".- operators must be declared in their definitions. The class can be
2
3;'.;:- declared generic. The declarator determines whether an array, pointer,
% or obJject value is required or returned. The structure of the argument
1‘0:"‘
\;‘ is provided as an object declaration following the keyword in. The
>
. structure of the returned value is provided as an object declaration
—_ @ following the keyword out.
[~
:-'. An operator must have one or two arguments. An operator must
?:, always return a result. The form of the in declaration contains two
: e declarators. The first corresponds to the argument preceding the
" : operator. The second, following a comma, corresponds to the argument
1
1, following the operator. The comma must always precede the following
A - argunment.
r{.‘-
\‘;g If the input argument is initialized, the operator may optionally
‘z omit the argument, the initialization serving as a default. Operators
must have one uninitialized declarator. If the output is initialized,
o a
$'-.j: and the operator fails catastrophically during execution, the
oo
;:. initialized result is returned.
Ry
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<op_d§cl> s:=
<op_name> :: in <class>:
(
<{declaration>, <{declaration)> |
<declaration> |
s<{declaration>
<1term>
out <class)>: <declaration>{lterm>
Functions are similarly defined, and may have only one argument.
The argument and the result are optional. Both the argument and the

result may be initialized.

<funct_decl)> ::=

{funct_name> :: $out <class):
<declaration><lterm>$

$in <class):
<declaration><{lterm>$

<lterm>

Storage Declarations
A storage file has a name preceded by the keyword storage and

consists of linkage followed by a list of object declarations.

{storage_file> ::a
storage <{storage_fils_name><lterm>

<linkage>
#<object_decl><lterm>$

In this file, objects are created from defined templates identified

as classes which are defined in state definition files.

64




phi Bas dga e B S i Rat e n fie o jum Bia< ey i Jlag it~ udiar- A 2R i P A - AT L T A R e e P TR .‘,T

<object_decl)> ::=
{class)>: ($#<declaration)>,$#) <declaration>
<{class> ::s
<file_class> | <object_class>
Classes may refer to either objects or files. Files are a special
fora of object containing modules of the language. File classes consist

of atate files, actor files, storage files and buypdle files.
<file_class> ::= state | actor |
bundle | storage
Object classés are defined by scalar definitions, structure
definitions, operator definitions, and function definitions. Scalars
and structures can be specified directly by definition names. 4ll
classes may be obtained indirectly by abstracting the objeect class from
an object referenced by a logical name with the class abstraction
operator ($).
<object_class) ::= <{scalar_pame> |
{struct_npame> |
<op_pane> |
<{funct_name> |
$<lnane>
Declarations instantiate objects from visible definitions. Upon
instantistion of an object according to a named definition, a

referencing method must be established for each obJject, and the object

Sf may be initialized. If the created object is a constant, as indicated
X by its name, it must be initialized. An initialization is an expression
:é ~ of already known objects which returns a value of the class of the

f? object declared. This value is assigned to the declared object.

TJ ixﬁi Struotures cannot be initialized component by component.

03
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{declaration)> ::= <{declarator> $= <expr>$

The declarator defines how the object will initially be referenced.
If the declarator is a name, a direct reference is provided.

If the name is preceded by a '#' then the name itself provides an
indirect reference to the object and is called a pointer. The ‘
declaration creates a variable that holds, as a value, the logical name
of a object of a particular class. Pointers can be initialized to
logical names of objects with a class compatible with the declaration.
The pointer name references a logical name as 3 value. When the
pointer name is preceded by the '#', the logical name held as a value by
the pointer is used to reference an obJject.

If the name is followed by square dbrackets, relative addressing is
indicated. Th§ name alone provides the logical name of an entire array.
The name with an index 'n' provides the logical name of the a'th object
in the array. If a scalar appears between the square dbrackets in a
declaration, it serves as a bound upon the range of possible indices.

If the brackets are empty, no constraints are imposed. In this context,
all scalars are converted to equivalent integers internally.

The pointer symbol '#' binds most tightly, followed by the square
brackets indicating an array. Precedence in a declaration may not be
changed with parentheses. The logical name "#array_of pointers(n]"
references an array of pointers, not a pointer to an array.

Each active object acts upon objests of one class, and returns
values which may be compatible with another. Active object declarations
may be contained within a list of passive object declarations returning
objects of the same class, The class of the value returned is analogous
to that returned by passive objects. The class of the argument, if any,
must follow the operator or function name.
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L

v .. <declarator> ::=

,.f.v "'..._ ~

S el

e <object_name> {

" #<pointer_name> 1

R <array_pame>[$<int>$] |

’§ ‘ <op_pame> <class> !

e <{funct_name> <class)

4‘-"
‘ Array names and pointer names can both be recursively defined
Zk§ during declaration, but not within a declarator. A4 series of

"\

i;; declarations using the class abstraction operator (§) must be made,
:"n.‘
- first declaring a pointer 'P', declaring 'P1' to be a pointer to the
‘&‘\: class of 'P' etcetera.
o
et The building block through which most algorithms should be
s
,:3. implemented is the module, or file. The language supports four file
gxﬂ typea: two to define objects, one to instantiate objects, and one to
. @ organize the special objects called files.
s

;H Each file begins with a descriptive keyword unique to it, which
% : descridbes its function. Follo:.ng the keyword is the name of the file
; object. On following lines, linkage is included which defines the
by | N

’;: context of the body of the file.

Y
§§} The language permits and facilitates modulation of algorithms,

definitions, obJects, and communication channels. Linkage permits

A¥Y
f;: familiar concepts to be placed into new contexts to serve in new

\ capacities. In the context defined, the body of the file accomplishes
the definition, declaration or juxtaposition dependent upon file type.
2 Each filé ends with a file terminator which is the same for all files.
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Linkage

Execution requires that several modules work together to provide

;E meaning to a program. Linkage provides a means for one module to access
N another by either gopying a module for exclusive use or shareing access
with other modules. It also permits local logical names and object
fi class names to be bound to different names defined within the accessed
: modules.

Pirst, all the files which can be shared are listed following the
key word share. Second, all the files which must be copied are listed
following the key word gopy. Third, the key word repame is used to

introduce bindings of new names to an external object names and class

W names,
.
o
b i <linkage> ::=
g n $share ($#<file_name>, #$)<file_name><lterm>$
3
M $copy ($#<file_named>, #3$)<file_name><lterm>$
)
o $rename #( <lname> <name><lterm> |
{obJject_class> <name><lterm>
)#$
4
~ Linkage can be used to hide currently visible names. Renaming
Ny
- takes place before the linking file knows about the linked object name:
., the old name has no effect on the linking file's name space. Cbjects
F.
.: can only be renamed in the original linking operation.
o
> Storage files, which contain the values of variables, are usually
copied because these files are modified during the course of progran
execution; unless interprocess communication is desired. Definition
s
: files are usually shared, because they are not usually modified. Since
Y, _n$\} the gopy operation performs object instantiation, each f'ile may have its
' e N
fl e
" own private cache of objects.
l
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Bundles, or Encapsulated Linkage.
A medule, or file, in this language has no intrinsic meaning. A

collection of modules is required to define object characteristics, and

<

to declare objects. Several modules, together, constitute an
3

h Y
5 instantiation of an automated algorithm. A bundle of modules forms an
54 element which can, with other elements, constitute an application
- package.
) <bundle_file> ::=
.
“.f bundle <bundle_file_name><lterm>
) <linkage>

.Y

‘ #<{f1ile_pame><lterm>#
o
\] .
31N
,_ {file_name)> ::s
o8 .

@ <state_file_name> !

) <actor_file_pame> |
;3:. <storage_file_name) ]
o <bundle_file_name>

o

. Y
.j Bundle files may contain references to other bundles, but not to
- themselves.
-;::
) A lidbrary of modules which do not constitute a complete algorithm
X
' may be bound into a bundle for convenience.
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JI. ALGORITEM ZXAMPLE: A Yector Dot Product

In general, computers are useful because they eliminate errors by
performing consistency checks upon assumptions. Put another way, a
major use for computers is to perform simulations based upon a set of
assumptions. The computed results determine if the assumptions are
consistent with the expected results. A reasonable objective is to
communicate with computers in a language which supports as high a level
of abatraction as possible. First, because the dcmain of trivial errors
is minimized; and second because communication efficiency is increased.

The purpose of this section is to show how the proposed language
can be easily extended to efficiently support ideas specific to
particular users; in this case the dot product operation applied to
vectors. This section consists of an example of how the language may be
formed to fit particular users' needs, how parallelism is supported, and
how algorithms can be generically specified. This exanmple is a
microcosm of the computer capabilities the proposed language has been
developed to support.

After reviewing the mechanics of the dot product operation, the
file hierarchy required to support a generic encoding of the dot
product algorithm, in D, will be described. In addition to code
implementing the dot product algorithm, code to define a vector, vector
components, and operations upon vector components will be listed. The
- effect that special purpose hardware might have on speeding the
algorithm will be discussed, followed by a summary of the key points of

this section.
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Ibe Yector Dot Product

For the purposes of this thesis, a vector can be considered as a
one dimensional array of 'n' components, where 'n! is a positive
integer. Neither the class of the component nor the specific value of n
need be explicitly specified.

The vector dot product, for the purposes of this example named '®!,
requires two vector arguments. Each vector must consist of 'n!
components of the same class, The operation forms a value with the
class of the components.

If A = (a1, a2, ... an) and B = (b1, b2, ... bn) then A®B = (a1?b1
+ a2%h2 + .. + an?bn), where the component operation '#! would nominally

be a scalar multiplication for integer ai and bi.

Ihe File Hierarchy

To completely define a vector dot product algorithm for a specific
vector, additional information beyond that provided by the generic
algorithm specification, just given, is required. Characteristics of
the components need to be defined, as must a set of compatible
operators. The representation of a vector must be specified, and its
length must be set. This done, a dot product can actually be computed.

Figure 1 shows how the vector dot product is coanstructed from the
basic standard definitions. The file class is written above the box.
Some boxes represent multiple file classes. The number inside the bdox,
in parentheses, is provided to connect the figure with the following
code listings. Asterisks, '®*!', indicates code for the block is

subsequently listed.
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Figure 1: File Hierarchy
Ihe Yector Dot Product Algordithm (1)

The following generic dot product algorithm first establishes the
other files required to give the definition meaning. Some simple error
checking is defined, on errors passing control to functions which are
implicitly visible. The result "dp" is cleared and the index 'n' is
initialized.

Then the dot product is computed. The block structure spools the
component expressions onto the execution queue exactly 'n' (the number
of components) times. The variable "dp" collects the values of all the
queued expressions. The block terminates when all the values have have
been collected. Since the expression queue is a parallel structure,

parallel execution will occur if there is sufficient hardware.
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< " To conclude, the result is returned to the task tkhat called the dot

3}
| LSRN
5 Tafe

product operator. The listing follows:

238 gode segment %49

S
vt 9y Y
LY

Chat Mt

: actor dot_product “~ (1)

2: share vector_definition,

component_definition,

component_addition,

error_definition
copy component_operations, scrateh
®  :: in vector: vi,v:

out $vitv[]: dp

,.
RA

)

e
]

ol
el

block1:

{ vi'n =z v2'n $ dimension_incompatible..
vi'n == 0 $ dimension_zero..
n=vita
dp = 0
block2:

{n>1 $ 0= n-1
dp =z vi'v[n] ® v2'v[n] + dp § ..

14: }

return dp

16: )

@ 88% goxplanation %48

'a *n

-

AN

LR XN 4
" WAL

L)
[ 4 <
oh b b b
W —=200CO-~IO0 wm W

»

S5

2 )
A

»
A
-—h
¥ ]
L 1]

-
-

35 1: This is an "actor" definition file named "dot_product®,
x, 2: Access is required to a file named "vector_definition"”,
! "component_definition", "component_addition®, and
£ "error_definition",
N 3: Exclusive access is required to files named

}}’ "component_operations”, to give meaning to (!=z, z=z, >, ®, +, =
- ) and provide for integer to vector component conversions, and
. "scratch™” to declare and hold the value of the object denoted

by 'n’'.

s 4: The generic actor (dot product operator) is assigned an
operstor name '#7, and two formal arguments "vi" and "v2" are
defined to be of the claass "vector”,

5: The result, named "dp®, is declared to be of the same class as
the vector components.

u
. {'.‘o
J"}J'~

Tz

‘js 6: The defining block is labeled "block1",
N 7: Block1! is opened, and the dimensions of each vector are

E,

checked for compatibility. If they contain a different number
of components, then control passes to the function
"dimension_incompatible” defined in the file

o
LAY

T
-

o "error_definition”™ and to the end of the block (16:).

2 Otherwise, control passes to the next line, (8:).

;f 8: The arguments are checked to insure they have a nonzero

b . dimension. If their dimension is zero, control is passed to
AR the function "dimension_zero", defined in the file

' "error_definition", before terminating the block as above.
)
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- 9: The dimension of the arguments are assigned to the scratch
' variable 'n'.
e 10: The result is initialized to zero.
- 11: The following block is labeled "block2".
* - 12: The block is opened, and all the guards are evaluated with the
N current value of 'n'. As soon as 'n' is determined to be
'.-::- greater than 1, 'n' is decremented and the cycle repeats.
oY When "n<z1", the block terminates.
o 13: Each time the block is opened, a new value is added to "dp”
which is dependent upon 'n!'. The block may be reentered
- before all the guards have been evaluated from the last entry,
:}Z: demonstrating a decoupling between the control and expression
,-::, evaluation parts of the language. This may be exploited via
",s.‘ parallelism to improve execution speed.
A 14: Block 2 is closed after all guard expressions have been
N evaluated.
15: The value contained in the output variable, "dp", is returned
Ay to the calling actor.
= 16: Block1 is closed, and the actor definition file terminated.
N Definition of the Class *Vector® (2)
’ A vector is implemented as a structure with two components. The
o
fxg first component is the dimension of the vector; an object which stores
;::'.' . the number of objects in the array. The second component is the array
‘5 . @ of components,
'S4
o The value of 'n' must be known, and accessible to this definition,
:‘..
_:}- before this vector definition can be invoked. It is provided in the
\_\ file "n_declaration®, which is assumed to exist. The file required to
G0
W define a vector follows.
292
‘.
— *8® code segment %%
R : state vector_definition =~ (2)
" 2: share n_declaration
N ¢ share standard_definitions
- ¢ veotor :: { int: n
: component: vin]
e 6: }o
;ZEI; #2% explanation ###
L 1: This file will define static classes, and is named
"vector_definition”
R TR 2: The file "n_declaration™ is required to determine the number
G of components.
e
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3: The file "standard_definitions™ is required to define the
class "int", although it could de deferred as is "component".
4: The structured object to be defined i3 named "vector", and the
fi;:& component of the structure is named 'n' and is of class i
5: The s;cond component is an 'n' dimensional array of

"gomponents®™ named 'v’',

6: The structure definition and state file are terminated.
Components and Compatible Operators (3 & 4)

Components may be defined by considering a passive object
definition and basic set of operators, and then the more general set of
component operators required in the dot product definition.

First consider the definition of the components and a basic set of
operators (+, =, =) (4). The '=z' operator is predefined for all
classes, but the meaning of the binary '+' and unary and binary !'-!
needs to be explicitly specified. In addition it is convenient to
specify component to integer and integer to component conversion
procedures in the form of functions with the class names and arguments
of the class to be converted. This done, literals composed of digits
take on their usual meanings.

Since the object is a genaric algorithm the component definitions,
Just described, will be assumed to exist. The component class rational
has been defined, see section IV, and could be used here.

Second, consider expanding the kernel set of operators in terms of

themselves (3). In this case the operators (==, >, ®) are required

since they were used in the code above., They are defined below.

888 gode segment 4%

1: actor component_definitions == (3)
2: copy component_definition
3: ocopy component_addition ~~ (+, =, int <{=> component conv. )
: copy scratch “~ (sign, n)
75
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ac
o3 :
o 5: ==z :: in component: operandi, operand2 |
L L 6: cut component: result |
N T: { result = operand! - operand2;
, 8: result §
N 9: -result § result = 0 ..
558 10: result = 1 ..
:'_3\ 11: }
3¢ 12: > :: in component: operandi, operand2
13: out component: result
oy 14: { result = operandi =~ operand2;
&) 15: result § result = 1 ..
e 16: result = 0 ..
L 17: }
. 18: ® :: in component: operandi, operand2
x&q 19: out component: product
P 20: { product = 0;
=X 21 sign = {;
“ 22: ~operand1 $ { sign = -sign
e 23: operandi sz -operandi
. 24: };
LL<: 25: -operand2 § { sign = -sign
N 26: operand2 = -operand2
27: };
Ry 28: operand? == 0 § product = 0 ..
'ty 29: operand2 == 0 $ product = 0 ..
. @ 30: { operand1 = opersndi - 1 § \ ~~ parallel
AN 31 product = product + operand2 $ ..
o 32: };
:‘,} 33: -sign § produet =z =product;
34: }
b
- 888 eoxplanation #ad
K, 1: The file contains actor definitions and is named
"component_definitions”,
\ 2: The files defining the structure of a component,
it "component_definition®,
3 3: and defining the basic set of operators (+, =, int <=> comp.),
A “"component_addition", are required to be available.
s‘\’-' 4: A "secratch® file must also be visible in which the variables
t}: "sign" and 'n' are declared.
5
5: The "=s" operator is defined to take two operands of class
"component®™, with the formal names “operandi™ and "operand2©,
6: The result will also be of class "component®™ and has the
N formal name "result®.
e 7: The formal object "result™ is assigned the difference between
,‘- the two operands, and control is passed to the next statement
b with an open guard.
.. . 8: If "result® is positive, control passes to the next statezent
= .::IJ'-. despite the guard value., If "result” is negative, control
£ a2 passes to (9:) and the value of the guard is considered.
5
l. 5
76
{-::;'»
bow
(7 h - - - . L.’ 4. o ‘." ' ',. ‘ \‘ N AP I IR ‘:. -0 ~.-.:'. oA ..-._ -..."_._" _.‘;":‘... ...............




Yevtu ava.’ave AR Jrie e PR B’ A B B A IR R ) ", Rn S o' me n VoS a V¥ gV 3" AR ST U Il DS R RS |

S *:
N
‘
\\
‘tf e g: If "result® is negative, or considering the previous statement
3 i§§~ nonzero, the value of 0 is assigned to "result™ and the block
’ is terminated.
\ 10: Otherwise, "result"” is assigned the value 1,
- 11: and the block is terminated.
. |
1. 12: The '>' operator is defined to require two operands of the 3
" class "component® which are given the formal names "operandi® l
and "operand2®.
A 13: The result is named "result” and is of the class "component"”
as well.
) 14: The defining block opens by assigning to result the difference
1§f between "operandi™ and “operand2®. Control passes to the next
A open statement: (15:) if "result” is positive.
‘ 15: If "result® is positive, it is assigned the value 1 and the
™ block ends causing the operator to return the value of
0 "result®,
' 16: Otherwise, result is assigned the value 0,
) 17: and the operator '>!' returns the value of "result"”.
N
18: The '#' operator is defined to require two operands of the
;" ¢lass "component" which are given the formal names "operandi®
) and "operand2®,
% 19: The result is of class "component®™ with the formal name
§ "product®,
) ~ 20: "product® is initialized to the value 0, and control passes to
“ the next statement without a closed guard,
- 21: "sign™ is initialized to the value 1, and control passes to
N the next statement without a closed guard.

. 22: If Woperand1® is negative, control is passed to the unlabeled
‘ block, "sign®" changes sign, and control passes to the next

% statement (23:). Otherwise control passes to the next
statement without a closed guard.

23: "operandi"™ changes sign.

23: The current block ends, and control passes to the next
statement without a closed guard.

25: Similar to (22:) with "operand2® replacing "operandi®.

26: ] " (233) ] " L] "

27: » n (2]‘:) ] [ ] " [ ]

28: If "operandi™ is equal to 0, "product® is set equal to 0, the
block is terminated, and "product® is returned to the calling
actor.

29: Similarly, ®operand2" equal to 0 causes the same effect.

30: A new block is opened, and the guard vector is evaluated,

- "operandi® is decremented, and "operand2® is accumulated into

"product®., If "operandi” is greater than zero after it has

‘ been decremented, then control passes back to (30:) for

another guard vector evaluation, When “operandi" finally is

I’.'

P iy ¢
s 878 B &

e
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:: nonpositive, control is permitted to pass to the next
" statement,
) 31: Each time the block is entered, the guard expression is placed
' AT, into the evaluation queue. Once the iteration is done,
¥} control passes either way through this statement to
¢
5
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\
:i; e 32: close the current block. Control passes to the next statement
R without a closed guard.
; 33: If "sign” has a negative value, then the sign of "product® is
4 changed.
23 34: The defining block is closed, the file terminated, and
iy *product® is returned to the calling actor,
%
{: For completeness, the division operator is also defined in terams of
XN the kernal operators without elaboration. The working part of this
é: algorithm must be executed sequentially in contrast to the
\
j: multiplication algorithm in which portions could be evaluated
2\ simultaneously. Compare how the block is used to enable parallelism in
\f lines 30: & 31: with how it is used in lines U46: & 47:.
>

#88 code segment #4#

;$ 35¢ / :: in component: numerator, denominator

3 36: out component: quotient

.g 37: { quotient = 0;

4 . 38: divisor a= 0 $§ divide_by_zero .. “~“error

G 39: sign = 1;

§ o 40: -pumerator ${ sign = -sign

X h1: numerator = -numerator

5% 42: b
e 4 43: =denominator ${ sign = -sign

» 44; denominator = ~denominator

45 };

s hé6: { numerator = numerator - denominator,

& 47 $ quotient = quotient + 1 \ =~ sequential

1 48; };

ﬁ 49: -sign § quotient = -quotient

'4" 50: }.

- Hardware Support

2

;; A major motivation for decoupling the language, as has been

- $llustrated by this oxanq;c. was to permit high performance special
;: purpose hardware to be easily introduced toc the architecture in a user
:: transparent manner. A user may define his own comfortable component
’,

- class and a set of compatible primitive operations. These nsed not be
g -

:ﬁ ﬁéif simple nor disjoint with respect to each other. This done, the
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language specification can be used to build and verify hardware.

The core hardware architecture may consist of many asynchronous
processors working on different aspects of language interpretation.

This permits inexpensive hardware to be exploited via a form of
parallelisn inherent in the language.

This last feature is rapidly becoming common in contemporary
architectures; the contribution made here is that a reasonably high
level language is supported as opposed to a virtual memory paging
scheme, or a communication ptotocol, or a graphics standard, or an error

detecting and correcting algorithm, and so forth.

Suzmary

In a normal environment, it is likely that a user would only need
to select a component. The system would already know about components
and know about vectors. The effort required to obtain a result would be
quite a lot less than that expended hers.

This discussion did develop five positive and unique
characteristics of the proposed language:

1] when parallelism appears in algorithms, it is naturally
exploited by D;

2] vhen algorithms are generic in character, so are their D
instantiations;

3] although the basic set of D objects is quite small it can be
easily extended, with notational support, to communicate with
users on their own terms;

4] the language lends itself to exploiting the capabilities of
special purpose dedicated function hardware specified by the
user; and last but not least

5] the language lends itself to interpretation by multiple
asynchronous independent tasks offering the pctential of
unleashing the latent capability of emerging microelectronic
technologles.
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. YII. PROGRAMMING SUPPORT REQUIREMENTS
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The program development environment currently envisioned to support

:$j language users is described in this section. First, the various
523 language formats will be motivated and discussed. Second, development
o aids will be described. Third, the process of creating a hardware

; instantiation of a compute bound actor will be elaborated. Finally,
i?: some comments will be made about the language in a multiprocessor,

;N multitasking environment.
;%f The purpose of this section is not to specify what should be

eventually implemented, but to share ideas.

T

,:j Formata
‘Sﬁ A D program, in the course of its existence, is required to exist
» ‘2
o ‘s:, in three formats. They are the user format, the storage format, and the
': ) sxecution format as depicted in the following figure.
3\
A
o) N Mass User emman=d
' | Storage | <=z> Memory Port <=> | User |
- 4+EEESEEERESP +2x3T2P
55 -1 . -1z
i -1 -
:*S-u - | -1
¥ w | edelalalalalalalalelalalalalalal=l=a |
ededededadedededadedV > “edadadadodadedadadad”
i~ vi®
4 1.:: $ITTTNTETETDS
o Language | Execution | Processor
- Figure 2: Language Formats.
fii The most important format is the human readable format, which is
"¢
X the format normally discussed by us (humans). Since the exscution unit
. 1s not modeled after the human brain, but after the D language, it is
S
PYe
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reasonable to expect that a different form might be optimum for

i,fi é§§; execution, and it is. For example, the execution unit does not need

X ) sulti-character ke; words, nor object names with many characters, nor
-_’:“-" (by definition) comments.

}:f: The second format is the format in which the program is stored.

hf;' The motivation for the storage format is two fold: to permit the user
§¢3 format to be reconstructed, comments and all; and to enable efficient

:f 3 generation of the execution format.

" At the User Port, which may consist of a video terminal, the user
;'a format is translated into the storage format. The language is

??ﬁ fragmented, and a single language 'file' is broken into several modules
gs-' and tables. For example, comments are removed and are replaced with
:% T comment markers, a comment table, and a comment file. The comment file
%:; contains the comments, the comment table connects the comment markers to
v @ the comments, and the comment markers identify where the comments belong
§§§ in the source file. Similar manipulations are performed on object

;;;ﬁ names.

};@ A source file is listed by the system in cannonical form. Although
ﬁiﬁ the aystem will understand various input formats, it expects the user to

adapt to the cannonical output format. Users must learn to appreciate

[ SRR
Maiu

‘4 e ko At
. ‘ 2, A
o

the "free” pretty formatter!

)

;Eﬁ When a program is to be executed, the storage unit sends the
A
Bl requisite files to the execution unit less extraneous markers, tables
*528 and files. In the storage format, as opposed to the execution format,
L

[ object names that the user defines are used to establish a

B

;%\ correspondence between files., If two files reference an external object
Co AT, of a particular type named ®variable®, and if both files are visible in
\,",’, Y] Y A

N

o




the same context, storage symbol tables will establish that both nanmes
RS reference the same object by comparing the characters which constitute
their names,

In the execution format, the names have been stripped away leaving

only tokens which serve as indexes to tables. When files are converted
» from storage to execution format, linking between the currently active !
Y token tables and the files being converted occurs. The figure 3
illustrates these ideas.
The important concepts to grasp are that the Editor and the Linker
(which is more akin to the software which implements virtual memory, at

the semantic as opposed to binmary level) are semantically intelligent

and that this intelligence is used to manage the program development

: environment.
i{
Ry | | information removed
‘j | User |
PN ! Format |
! } H Comments, Punctuation
Wi Editor e & I ITT I T )]
. | | & Keywords
¥ | Storage |
) | Format |
) ! ] Comment tokens,
LN Linker +=+t T T T T TT IO
¥ | | Symbol Tables, Names
| Execution|
X | Pormat |
| [
. ‘--.---m-'
h
? Figure 3: Storage Format 7inversion.
. A corollary of this observation is that the functions served by the
L
;i BEditor and the Linker are "hardware® in the sense they are immutable in
¢ the context of the language.
o L
¥
#
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22 It is probably optimistic to expect users to sit at terminals and

e type error free code into the Editor, By forcing the editor to format
n\“-'
;E: the source text in a meaningful way, major classes of errors simply
)

" cannot be made. It is suggested that in the context of currently

*iﬂ popular video screens, the feedback to the user be from the storage
b

;:j representation. Each keystroke must be meaningful. Excellent error
A%y

s

diagnostics are also facilitated by these features and should be

! provided,

Two classes of errors cannot be checked at this stage; naming

oY errors and algorithmic errors. Special consideration should be given to

displaying the names of a file, arranged in a meaningful way.

*,i Applications which reserve certain names, including operator names,

Lo ‘ji’ should be able to extend the editor using the modules used to extend the
» : language. Algorithmic errors will require a trace-debug capability

W described below.

In several instances mention has been made of a macro processor

{53 [Cole 81] which would permit the more or less permanent features of the
#ig language (punctuation) to be altered to fit specific user requirements.
éiﬁ In order to preserve the extensibility sought in the language, this

::ﬂ processor must be implemented in the Editor, and must work

,Ea interactively. Essentially, the semantic gap between the user and

l:? storage formats will inorease slightly.

' If files are to be listed, provisions can be made to recognize the
f" macros. Problems can result from entering a program with one set of
;H’ maocros, and then listing it with another set. If this appears a rare
%i, ji:@ occurance, consider a person who desires to look at the socurce of systenm
;i“

2
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gt
-‘.: utility. For this reason, macro processing should only occur during the
v editing process. Listings will always appear in the cannonical format
-:‘ of the architecture. Another appearance of the "free" pretiy formatter.
i" The trace-debug facility should permit a program to be run
5O interactively, with full access to the runtime structures using
character names, The actual runtime structures should be used; not a
.:E simulation of them. Although initially increasing the amount of
& information which must be understood by the programmer, this additional
\: information will permit much more efficient debugging and provide the
J'E'.E programmer with a better insight into the logical processes of the
» architecture.
:}: The last feature that is required to support efficient program
:::'." development is a library manager. Since the language will fragment big
) @ software programs into myriads of tiny ones, automation must be
‘ i available to manage them all.
o Hardware Inatantiations
.:: The software tools just described will facilitate the development
-E: of actor definitions. A major objective of the architecture is to
:{ address applications which are computation limited, and which can absord
the capability of the smerging custom microelectronics capability.
Once a function has Pesn defined, and tested, a special function
?-' unit can be designed and tested by simulating the unit with an actor
communicating via the accept function and return statement. Such an
bE actor has a scope independent of the calling actors, and can consist of
z multiple processes, or actors, itself., Each of these may be in any
4 o stage of development, definition through hardware.

.
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When a suitable actor has been defined, a detailed functional

description of the chip is available at the bit level. In addition, if
algorithms are decoupled into control intensive and computationally
intensive portions, the computationally intensive portion can be
instantiated into hardware. The control portion of the algorithm can
take full advantage of the language processor. In most cases this will
be significantly faster than implementing the algorithm directly as a
single hardware function.

The motivation for removing control is to permit the hardware
design to take advantage of regular design structures. This will
simplify the design while increasing performance and reliability.
Memories, and other arrays of small equivalent functional blocks, are
preferred to personal design triumphs. The idea 1s to keep the user
defined hardware simple emough so that a compiler coupled to a generic
chip architecture can bandle the design.

In a sense, the language defined by this thesis could be considered

the functional part of a hardware design language.

Intertask Communicatdion

Multitasking within the language is a natural consequence of it,
and needs no special discussion. Even single tasks often create many
internal tasks which execute simultaneously.

The coordination of multiple processors does introduce some
problems not yet described. Considering the most general case of an n-
dimensional ( n - 10,000) net of processors, storage files must be used
(in conjunction with some form of capability based addressing) to

translate execution formats between processors. The entire systenm
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e
‘;3 cannot have a single token table for all objects. Each processing node
, e
SO must maintain its own symbol table.
N The Bus Interface Unit is given the responsibility of maintaining
fa "
::§ the files in their pseudo-storage format, and performing the coanversion
..
", to execution format on the fly. A generic processor is illustrated in
N the following figure.
=33
339 to \ | / to
o~ other nodes \ | / other nodes
\ == /
2 /lstd] \
_;.::. { BIU }
.’ ::\. |zzzzzmazzz3323) /
' ,-:: || data -/\=
:"', H I
- YR V A |1 control —
N2 |STORAGE | . \/. . | ACTOR |
s}-‘ |HARDWARE {=~eeee-| Language |e==eee=)> HARDWARE|
t;r: | [8td] |eweee=) Processor (~eee=--| [std] |
Y l | | [std] | | |
@ | [ ' [ |
- |[user | [ (user |
N | defined]| | defined]!
T | I data | !
:.-: | {zzzzzzx33T2XTTITZZZTZTTZ3T) !
\’.' . - owcceanaaas
‘-,4; Figure 4: A Multiprocessing Node.
SN
[ :'3
o :
':, The important message of this section is that the task of
s presenting a consistent, comprshensible, and complete view of the
t\.':l
$ internal structure of the proposed architecture to users forms an
g
implicit constraint upon its design. The method of providing
4 programming support to the user has been, and continues to be, an
{ L]
) f'- integral part of defining the architecture and the language.
¥
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i JLII. HARDWARE RECUTREMENTS

557 Even though it has been argued in this thesis that hardware should

iﬁ be designed to support the language, the capabilities of hardware have

gﬁ significantly motivated major portions of the language. To insure that

% hardware can efficiently support the language, it is imperative to

_Ei define a language which gan be so supported. The purpose of this

};5 section is to motivate three portions of the language which were driven
by bardware considerations.,

:§E The utility of this section to the thesis is threefold: 1) it

é& provides rationale for what might otherwise seem esoteric syntax; 2) it

y provides insight into how the language is put together; and perhaps most

1'; important 3) it should serve to mitigate (if only slightly) exclamations

tf: . of "it can't be implementedi®

: :‘: @ The three basic hardware related problems which were encountered,

.;: and will be described in this section, are 1) defining an application

';1 independent kernal to interpret the language, 2) developing an efficient

25 control structure, and 3) catalyzing the exploitation of special purpose

'E? hardwvare constructed from Very Large Scale Integrated (VLSI, spelled

f;: VHSIC by the DoD) circuits. 1In each of the following three cases the
problem will first be summarized, and then the proposed implementation
model will be described. While this section will fall considerably

: ‘ short of defining the structure of a D machine, it should provide the

sy major insights required to attempt a D machine design.
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Broblem 1: Kernal Definitlion

Conventional computers achieve their general utility by including

huge numbers of instructions, occupying microcode or incorporating logic
that is seldom used. The Reduced Iunstruction Set Computer (RISC)
developed at UC at Berkeley [Patterson 81] has focused on this
inefficiency, and now a commercial product is available which has a
limited instruction set and extra general purpose registers. It is
claimed to be twice as quick executing PASCAL and C programs [Morrow 83]
as "traditional 32-bit computers”,

Why not use this as a kxernal? The cobjectives of this thesis are
not met because of the limitations of C and PASCAL. For examples, type
independent algorithms and parallelism cannot be adequately supported.
In retrospect it is obvious that if it is known, apriori, that only C
and PASCAL will be used on a machine, and that C and PASCAL require only
a subset of the machine's capability, a simpler machine could be used to
support C and PASCAL. In the context of a given technology simpler
machines are faster machines.

The objective here is to move in the other direction; to
unconstrain programmers and let hardware support what ever they want,
while at the same time unburdening them of excess complexity. The
excess complexity required to meet the requirements of some other
application which must be supported to sell the requisite number of
machines to justify d&vclopncnt and production tooling costs.

The desire is to provide the smallest common denominator each user
can live with. In the context of the utility measure discussed in

section II of this thesis the smaller the denominator is, the greater

the incentive will be for widely adopting it.
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fﬁ igii The basic purpose of any algorithm is to manipulate values of

" objects. These manipulations are inherently application dependent. The
‘é approach taken toward finding the smallest common denominator for all

é people who want to develop and automate algorithms was to develop a

. language which would permit the user definition of tokens within an
*ﬁ expression. In addition to serving users better, this saved a lot of

f$ effort trying to guess what such a set of universally useful tokens

might be, and then developing them to provide to users as a lapguage

Dredefined set.
With great humility it was realized that language users,

=

o se e v g ¥

"

irrespective of the language, generally know more about the structures

4

15
, E they need to support their application, than do the original language
;; designers at the time the language was designed.
o ‘ji’ This decision made, the language can be partitioned (as it has
;S been) into a part common to all language users, and a part specific to a
3‘ particular application. The common part consists of defining the tokens
, which constitute expressions (static object names, literals, operators
'A and functions), and the structure required to meld the expressions into
§f meaningful algorithms incorporating conditional execution and dynamic
. context management. This part is the part of the language which all
é% . users must use to describe the algorithm they want to implement, and the
?; abstract concepts they would like to use within eprosaiona.
:T The second part is expression evaluation, which is almost purely
?? subject to the needs and requirements of the user. Before the
» expression evaluation is descoridbed, it should be noted that two
N —~ questions arise: 1) what should the control structure look like? and 2)
o S
3
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. how should operators and functions be modeled so as to permit the most

B

" i,_-g'.- common functions of anm application to run fastest with VLSI support?

) The following figure illustrates how a subexpression, A%B, is

i evaluated and assigned to t".he temporary variable C. To the common part
of the language, a token representing an expreasion is simply a token
:” representing a value. In some cases, for example a nominal guard

3 evaluation, the value must be converted to an integer before it is used.
& To obtain the value, the language model requires that the

,1. expression list, consisting of tokens representing actors and static

53 objects, be placed on the evaluation stack. In the figure, two versions
£ of this stack are presented. The initial stack shows the name tokens
.-2 (%, A, B) which are on the stack at the particular moment we begin to
"3 wvatch. The final stack shows the temporary token (C) which holds the
3 ﬁ value produced by computing A%B. The action to be described is A ®# B
j ' 2> C in the midst of a larger expression involving the name tokens (A

5;: again, #, G, H) and more. A name token does not refer to an object, it
is just shorthand for a particular name. Consequently, it is not

M associated with a pame or a class.

What must occur first is that a subexpression must dbe recognized to
be ready for evaluation. In_this case, ? is recognized to require two
b2 arguments, of a particular class, which A and B are. If A or B were

;? . different classes, then activation of ®* would be preceded by a class

’ conversion. Since everything is ready, a transaction identification

’, number, <trans_id)>, is assigned to. the operation, and an internal obJject
:.:: name is coreated, C, and a result token, <r_token>, is created for the

result.
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- Figure 5: Expression Evaluation.
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A message is sent to STORAGE where the values ¢f all the ¢bjects
are held which consists of <(trans_id>, the two <d_token>'s, and the
<r_token>. In other words: fetch the value associated with the
<d_tokens> and put them on the Data Queue to be referenced by
<trans_id>. After this is done, forget about the <d_tokens>. When the
result comes back, assign its value to some temporary object which will
be referenced in the future by <r_token>.

When STORAGE can produce results for the <d_value>s they, with
<tramns_id>, will be sent to the Data Queus.

'Simultaneously <trans_1id> is sent to the Control Queue with the
<op_token>. What occurs here is essentially the problem alluded to
earlier. As will be descridbed in a following subsection, a dynamic
symbol table links the <op_token> to, in this case, a hardware special
function unit which is identified by a hardware id, <h_id>. This may
not occur immediately, but will occur when the hardware unit is
available, and <{trans_id> bas the highest priority of all the waiting
transactions.

When the hardware unit is allocated by the Control Queue,
<trans_id> and the Jjust identified <h_id> are sent from the Control
Queue to the Data Queue. This enables the Data Queue to put the data it
associates with the transaction on the proper bus and to wait for a
result.

When the hardunne'unit is done, it sends the result back to the
Data Queue and a ready signal to the Control Queue. The Data Queue
attaches the result data to <trans_id> and sends it to STORAGE. If
STORAGE has something else to do with it, it is routed back to the Data
Queue as data in another transaction. If not it is stored, awaiting

reference, accessible via the token <r_value).
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>, Three important things to understand about this scheme are: 1) it
-:;f' maintains the partition between the common part of the language and tte

user definable part; 2) it permits subexpressicns to be executed in

3 parallel, but in sequence when required; and 3) it breqks up the

02 expression evaluation process into many smaller processes which

N asynchronously communicate with each other.

? Eroblem 2: Struotured Control

” There has been much debate about whether goto statements are good
;; or bad. People who avoid them claim, and rightly, that they can be used
¢§ to write code that is impenetrable. Why, one wonders, is this

i capability a requireament for contemporary programming languages? The

\: answer is that conventional structures are not powerful enough, or at

least they are not elegant enough.

I ﬁ Although it is not widely publicized, some programmers (at least
iﬁ one) are also frustrated with the if-then~else construct which appears
fij benign enough in programming texts. Out of the isolation of a trivial
P

example, with five to six (or more) of its esteemed colleagues, one is
¥y faced with, again, impenetrable code. Most language designers have
attempted to mitigate programmers' frustration with conventional control
structures by providing several different structures, often blending in
iteration control as a lagniappe.
The obJjective is to find a comprehensible way to tackle iteration

and conditional execution, and to do so in a way that it could be

T
« 0
s e

implemented efficiently (using the smallest address space possible), in

the context of the solution to the previous problenm.
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Block Executdion

The approach taken was to extend the properties of the "block" in

\,.-
Led’y
L e
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¥,
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A
L

- two significant ways. A traditional block is a series of statements
'3.‘ which are executed sequentially, and each block may modify its scope by
kg introducing local variables. A D block can be thought of in a similar
.‘9 way, with each statement 1) preceded by a guard expression and 2)

;" followed by a gontinuation.

& This has the effect of making each statement of the block a

; conditional statement (covering conditional execution), and a "goto"

¥ statement with a limited jump capability: control may be passed to the
E& beginning of the block, the end of the block, the next statement

.‘g (regardless of the guard value), or the next statement with an open

;g-' guard. Blooks can be labeled, and the labels used to place the jump
* G commands in the context of any enclosing block.
”‘ ‘ In contrast to the traditional panoply of control statements, this
fi extended block structure is simpler to understand and to implement «=-
i despite being considerably nmore powerful. The implementation model is
A depicted in the following figure, and consists of a block stack, and a
g block table.
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f” Pigure 6: Block Execution.
The Block Stack keeps track of the current block which is active.

po

Within a task, or single invocation of an actor, only one block can be

P

PRV
Pl s

active at a time. When a child block is entered from a parent, the

child block's identification is pushed onto the Block Stack and becomes

. Al ey o
T

active. The parent's Block Table is saved until the child bloek is

b

§ done. When a Block Table is saved, the current line number serves to
3 continue the block state when the Block Table is recalled. In the

§ figure, the current block is identified by the token <block n)>, which
f appears both in the Block Stack and on the current Block Table.

f The block type influences how the guard vector of expressions and
% values is treated. In any case upon entry into a block the open

§ expresaion is sent out for eviluation followed by the list of guard

%’ 25;} expressions. If an ._..'. Jf the guard list returns a value equal to
¥,
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that returned by the open expression, a value of open is entered in the
Block Table,

Normally, (no (?) appearing in the user format), each guard value
is considered in list order to determine if control should pass to its
following statement. If it should, control passes to that statement
(even if all the guard vectors have not been evaluated); otherwise it
waits for guard on the next line to be evaluated. The block cannot be
left until gll guard expressions bave been evaluated,

The other type of block, (a (?) following the block label), passes
control to the first guard, regardless of its position on the list,
which returns an open value. Should the block end, all pending guard
evaluations are flushed. If the block is saved, guard evaluations
continue.

In the Block Table, a guard has the value of gpen, gclosed, or
unknown. Each statement essentially consists of a block token,
indicating entry to another block, or an expression token. All
statements, with the exception of blocks, can be reduced to expressions
with language defined functions,

The label field contains an optional block identification. The
continue field contains a block label and a token which determine the
thread of control.

Unless the statement consists of a block, the only action taken by
the language progessor is to put an expression token onto a queue for
execution. In a compute bound system, one such processor can handle
several tasks, After putting the guard list of the first task on the
execution queue, it can start on the second task's guard list and so on.

When a guard from a higher priority task returns an open value, the




~ \
K X processor saves the current task upon which it is working and spools ‘
._ 3 ~__§_.‘ expression tockens onto the execution queue from the first task until it |
e must wait for another guard to be evaluated,
: It should be apparent that execution time is dependent upon how
7 fast special purpose hardware can perform its function; although this
‘ - language does require overhead it does not effect, to the first
3‘:; approximation, elapsed time required for execution.
;'f; |
}'; A natural consequence of most "extensible™ languages is that no
{ pmatter how well the new functions can be implemented into the language,
unless the hardware supports the new structures efficiently, slow
23 execution speed precludes widespread acceptance. The emerging
J_Ed performance afforded by custom VLSI [Foster 80] at affordable cost
o @ offers an opportunity for users to customize their hardware
..; configuration much as they have customized their software. In stead of
’i‘i foreing users to purchase entire machines to obtain quick execution of
just one algorithm, for example a Fourier Transform which is both
f'::: geperic and has a wide enough user base to justify the development of an
E" entire processing system just to support it, the idea is to permit users
': a path to a quick (VLSI hardware) version of one of their own compute
e bound operators or functions.
What is sought is akin to a switch on an "optimizing™ complier
\« which says: optimize the hardware as well as the software.
" Contemporary architectures are a long way from this as evidenced by the
:§« dearth of software which is able to exploit the plethora of fantastic
\' bhardware available to augment the IBEM personal computer, and its clones.
"5 a7
%
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‘$~ The problem is epitomized by what it requires to get standard compilers
<o .~:'.-,

SAEERChIN to exploit the capabilities of the 8057 (floating point chip) wkich was
” designed into the IBM-PC, simply to speed up a common function.

" Astor Execution

'~

’ In D a standard linkage convention is imposed for actors which are
o,

e supported by hardware units, for actors which are supported by accept
L

§ statements, and for those actors which have only been specified within a
> definition file, The following figure illustrates the processes which
‘;: contribute to the meaning of a transaction. A transaction

'% identification token, <trans_id>, is sent with an actor token,

b {act_token>, to the Control Queue. An <act_token)> can be either an

’8 <op_token>, as it was in the previous discussion of expression

23

.} evaluation, or it may represent a function token.

..

' G An actor token can reference a hardware unit, a task hung on an

:E accept function, or an actor definition. An actor instantiation must be
"l

i visible at the time it is invoked. Hardware hides waiting tasks, which
i hide definitions. Linkage can be used to override this architectural

v
;i bias.
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Figure 7: Actor Execution.
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Each task has its own linkage table which is used to create three

- tables, within the Control Queue, of resources which are available to
)3 . execute operators. These tables are changed as blocks are entered and
i§ exited, as tasks accept function calls from other tasks (in a

D multitasking environment), and as hardware becomes faulty, and then

Lé again when the hardware is replaced.

;é If a hardwvare unit is availadble, as described above for expression
;é tgz; evaluation, the <act_token> is replaced by a <h_id)>. Similarly, if the
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operator is to be connected to a waiting accept then the <act_token’ is
replaced by an <a_id> which the Data Queue is smart enough to recogaize.
Instead of sending data to the hardware units, it sends tie data to the
Task Queue which returns the appropriate result. Should it be required
to invoke a definition to obtain an evaluation, then a <d_id> is routed
to the Task Queue via the Data Queue which causes a new internal task to
be created which will live until the actor result is returned. In this
latter case, a mechanism for inducing parallelism has been described.
Within an expression, each function may define an internal task, and may
be simultaneously active.

In all cases the computed result is returned to the Data Queue, and

subsequent activity parallels that described for expression evaluation.

Sumnary

The D programming model roughly consists of three basic ideas
touched upon in this section. Each idea can be thought of as an
independent process which communicates asyunchronously with the other
two.

The first works its way through code, evaluating some expressions
to determine sesquencing, and Jjust dumping others to be executed on
expression queues and stacks.

The second takes the expression stacks, and compresses the

expressions to values, making any assignments to permanent variables as

AR

required.
The third is a giant dyramic symbol table that ensures that the
various object tokens, which the various processors use to reference

objects instead of names, always reference the proper objects

SR SRR |
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. .~ . consistently with respect to the user program. It is acknowledged that
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the third example examined only a small, but representative, piece cf

‘
’.

this problen.

» ¥ "4
(A,

’ l'l
PN

" ol
44,5 S

' 'h".,&(

CCTEVE
Lo

o I

el

» n’ '.‘ l.‘ :.. -‘
'.l s N ." ." ..'

1
R *

» -
Lt
R

.
['4

gl

101

)

e

e S

T 5 T A 3 T S B S A T A Sy O A AT, A,



e, R A Ar it B - haraiitdh i A S 3 hadh SadiCS AR N
M S a ya o e A h Sl R ORI AL PAACA A MCH RO ROASR IR S MRS A S AAAS M S A
......

. :
L 5 ..4_

AN

IX. LANGOAGE COMPARISCHN
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15 Since an implementation has not beea accomplished (yet) sese form
Y
i” of analysis should be performed to determnise if the prepesed language is

workable. The approach selected is to previde, 1a this sestien, &

comparison with the C progreaming langwage [Eeraigea 76).
The odjective ias to provide s dasis feor the sugpesties that the

i M
G A Ay Syt

proposed language ia both guflislent te replace the C presremniag

ot language, yet REGSASArY to effiecieatly pregren future syetems. ™. -

r: will be done heuriatically vith the iateat to ceavines tae resser tast
"; the proposed language is as capable ss C.

f-:: The D language will de disocussed ia the osmtest of the C laaguage,
} following the general format of "The C Reference Mamuel® as it appesrs
S in Appendix A of Ihs C Prograsmisg Lassuase (Kernigea 70]. The sumbers
™ w provided refer to the sectioas of "The C Referense Mamual®. 4 dasic

.-:';:’. understanding of C is assuned. To completely understand this comparisoa

D should be understood as well. The problea with completely describing
D in this format is that while the format is fime for C, D i3 a
differsut language which is more lucidly covered by approaching its

capabilities from a different perspective.

& By selecting this approach, as opposed to a rigorous "proof®, C
'.
e ™
i‘: programmers also obtain a quick introduction to the D language in
"
familiar terms., At the time of this writing, a D environment does not
i exist. Consequently, a viable approach to learning D is through a
>% . .
lj: thorough understanding of C. Computer architectures in general use
\v
g change very slowly, and C is unquestionably the language of choice for
p"" @: current architectures -~ 30 time so spent will certainly not be wasted.
\j ',
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N .
.j A rigorous proof should be attempted using the concept of structural
™ ’j:: induction described by Stoy [Stoy 77], and is left as an exercise for
. the determined reader.
\ Introduction (1)
The C language was primarily developed for the PDP-11 architecture.
. Although it has been ported to many other commercial architectures, and
) been ported relatively efficiently, this should not be interpreted to
sean that it can be efficiently ported to all future architectures. It
2 should be interpreted to mean that most of the architectures in use
. today are similar to the PDP-11 model.
3 For such architectures it makes obvious sense to constrain the
extensibility of the language to prevent the programmer from creating
‘T complex and inefficient programs. For this reason, C has remained
) e simple, and is now the language of choice for many programming chores in
1983.

) New architectures are not so constrained. The trend is to exploit
= special purpose processors for specialized functions. Consequently, if
g specialized functions can be isolated and defined, they can be
‘é instantiated in bhardware. New architectures, including the architecture
; suggested by D, supports this approach.

% D contributes astructured extensibility: the language structures

% the user extensions as it does the language kernel. C can also be
E; extended (which is one of its major strengths) by defining types,

3 declaring functions, and using the macro-processor included with most C
3 compilers. The extensions are by definition inefficient since they must
3 be implemented though C primitives, and do not always benefit from the
z :;E; urderlying structure of the C language.

i 103
>




> v -
e,

K}
L

‘l "‘l ..‘4". A

[
DI

-t

4, %
»

VI

S

‘s
Pd

s
5-’

BXNXN
y :':‘}.L

R AR
A

=N
N

A |

O - AR R
XA AR

el

TAEY

'y

G

.
r

For example, if one is not happy with the implementation of

floating point in C, short of rewriting the compiler not much can be
done. For those who claim that all arithmetic can be accomplished by
using function calls, it is suggested that users of such an
sgglomeration are not fully benefiting from C structure. They are not,
in a pure sense, programming in C but in some bastardized functional
language of their own design.

In short, C makes a great many more assumptions about the
architecture of the underlying hardware than is required. In the
context of Very Large Scale Integrated (VLSI) eircuits, D provides an

alternative which is developed below.

Lexical conventiona (2)

Comments in D are terminated with lines (by line terminators), and
consequently are more limited than those provided in C. As will be
argued in many cases below, a macro processor can easily extend the
features provided in D sufficiently.

Identifiers may be of infinite length, limited only by the line
length and comprehensibility.

There are 13 reserved keywords in D as opposed to 29 in C.

Literals serve the role of constants. They are names which start
with a digit or underscore, and may take on values only by
initialization. Digits are predefined literals. Characters are
predefined and may be manipulated via quoted literals, which follow the
C convention. The backslash convention is not implemented as it can be

left to a macro processor,
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Syntax Notation (3)

The syntax is sunmarized in the appendix. The notation is

described at the beginning of section V entitled "Language Description”.

Mhat's Iz a name? (M)

In D the lifetime of each object is indefinite. The storage unit
for every variable is a file which continues its existence as long as it
is referenced. Within a actor definition, no variables are locally
declared, so they all are "external® in the C nomenclature.

Automatic variables are limited to the arguments and results of
functions in D. Regiaﬁor variables have no meaning because the D
programmer views an unlimited number of virtual registers which contain
user defined objeots, not some arbitrary number of binary bits. To make
an odbject static, it only needs to be declared in a file that is put
into a system directory. Uantil its referencing file is removed from the
directory, or the system is terminated, the variable will remain.

D supports exactly four types of basic objects: scalars (which can
be mapped onto a finite set of whole numbers); structures (which are
composites of scalar and structure types); functions; and operators.

All other types must be user defined. This does not mean that each
programmer must write bis own floating point package, only that the
decisions made in designing and developing a floating point jackage have
less to do with this language than most applications.

Classes, similar to C types, may be modified in three other ways:

1] they may be changed into an array of objects of a class;
2] they may be Qh:nged into a pointer to an object of a class; or

3] they may be made generic; e.g. the class of an actor's formal
argument is deferred until the actor is invoked.
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T i There is no requirement in D for unions since they are motivated by
NS PDP-11 architectural limitations ... PDP-11's think in terms of bytes,
T and worry about word alignments.
P

-i:

3 Obiecta and lvalues (5)

Objects and lvalues (short for location of values) are common to

b both D and C.
v_F.
Converaions (6)

X The concept of conversions in D is in concept similar to the

Ny

:} approach taken in C, but more absatract, again because of fewer

$ architectural assumptions in D. The rule is that implicit conversions,

which may be required to evaluate an expression, may always be made from

a source class to a destination class if 1) a conversion function exists

o Lof o . .
2o ol ool

&
Y

é and 2) the destination class has a greater dynamic range than the source

}Q class. A greater dynamic range is assumed to be equivalent to

:; requiring a larger block of memory for each object. In C this would be
N equivalent to permitting implicit conversions if

2$ sizeof(<destination_class>) > sizeof(<{source_class))

-~

:::

. Pointers and integers cannot be mixed in D, because each operator
“os can only accept operands of a single class. If a programmer wishes to
.:J

:; increment a pointer by n objects, n is converted to a pointer value, and
-4
:: then the pointer is incremented. This done by the implementation

'}; implicitly. Pointers are intimately tied to arrays in D as they are in
v

~
) c.
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Expressions (7)

Precedence of operators is deternined by the right-most operator
symbol of their name. In the BNF description of the operator symbols,
the first two symbols have the highest precedence, then the next two,
and on to the lonely '=' which has the least precedence of all. This
1list represents a modifiadle table which should be, not easily, user
accessible in an implementation defined manner.

The order of subexpression evaluation is undefined, and may be
different upon subsequent executions of an expression since it is
determined at runtime. Users define how division by zero and overflows
are handled.

A primary expression is called a <lname> (logical name) in D, which
can result in either an address (location name) on the left side of an
- equal sign, or a value an the right side. PFunction calls, class
modification symbols (# = ® in C, € = & in C, [], §) group from left to
right, as does the component selection operator ('), which operates on
structures.

There is no equivalent ( => ) operator, which combines the pointer
and selection operations, since the renaming capability serves much the
same need.

No implicit conversions are made. A name declared to reference a
funotion will never reference a pointer to that function. An array name
without brackets is the <{lname)> of an array.

Functions are called with only one argument, which may be a
structured object. The argument may be a pointer to the composite or

the composite itself.
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No types are implicitly converted unless the conversion is required
for an expression to be evaluated, and then conversions which cause the

least growth of the size of the destination class are attempted first.

All operators except (+, =), acting upon integers, must be defined
in the language by the users. The assignment operator is predefined for
all user defined types, and does perform full class checking. The
language can easily support more complex hardwired functions and
operators, but these must be described within D. With such a
description, should the hardware fail, the function would still be
available in terms of the basic hardware although it would take longer
to execute.

The tertiary conditional operator has no equivalent in D, and was
deemed redundant in the context of the other conditional execution
structures.

The comma operator would serve no purpose in D, and no

consideration was given to implementing it.

Reclarations (8)

Declarations in D always reserve storage, although not immediateiy.
Storage is reserved when the storage declaration file containing it is
copied, and when a storage file is given to the system by the editor.
Components declared within structure definitions may only reserve
storage through storage files. Declarations of formal in or gut
variables in actors do noé reserve storage until the actor is activated.

Each declaration may contain an initializer, in fact it must if a
literal (constant in C) is being declared. Structures and arrays may

only be initialized by one object «= a structure or an array of the same

108




-

ﬁ class. Such an initializing expression must be composed from availadle
-.': RN
-.’::" operators and predefined objects.

- Class modification tokens (#, []) must occur juxtaposed the name of
"3 the declared object, while the ($) token is applied to a visible object
'\

o name abstracting its class.

A While a C declaration can permit multiple arrays and levels of

E‘ indirection to be declared at once, permitting parentheses to define

- precedence, D requires that one level of indirection be declared at a
~ time. In order to efficiently, reliably and unambiguously track
;',: multiple levels of indirection and arrays there appears no better way.
>
& What this means is that what might be declared in C to be:

4 .

z int 1, ®eptr;

g =) i = ®8ptp; /% two levels of indirection #/

o

zﬂ . in D would appear

R E' int: 4, #iptr

% 2> 81 = #ptr = iptr < one level

:. $iptr: #ptr

s> i = #fptr = #iptr “* two levels

s In the C scheme, there is an implied pointer which is not available
<.

'; to the programaer. The D scheme makes this pointer explicit. This
b, elaboration also is applicable to arrays.

S Bit fields are another anachronism tied to the PDP=11 architecture
*"\

f: omitted from D, To achieve the same effect, scalar classes can be

. '

declared with the requisite number of values, and then packed into a
structure,

._: Similarly unions and the sizeof comstruction, necessitated by the
S ' PDP=11 architecture in C, contribute nothing to the D environment, and
NN bave been omitted.

"'. ".'-\'
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, Parentheses within declarators are not permitted; to create

22 fg:j; multiple levels of indirection and or arrays, multiple declarations are
required. Since C does not incorporate strict type checking,

] parentheses can be used in C to approximate these effects. In D the

{ implicit intermediate variables must be explicitly declared.

% The state definition file performs all the class definitions. In

{z D, the user I/0 format of an object is tied to the object, and is not

§2 arbitrated by a format statement. The effect of a format statement may

by, be achieved by performing a class conversion before printing.

'§3 In C the memory format of the different types is described by the

;?5 implementation documentation, and can be exploited by the so motivated

#: programmer to achieve must the same effect with a library of conversion

é; routines. In D, the language and the implementation are much closer, so

i: . hooks must be explicitly put into the language to support such

‘e G flexibility. |

EB In structure definitions, component initializations may be

‘f performed. These will of course be overridden by declaration time

’ initializations.

o

A

7 Statements (9)

= Statements are generally executed in sequence in D as they are in

% C. The sequence is controlled by the structure of the compound

“é statement or block, and not with a set of conditional statements.

;: Each statement is imbedded in a line, preceded by a guard

.%2 expression and followed by a continuation. The continuation serves to

'ég send control back to the beginning of the block, or any enclosing block,

;: (similar to the C gontinue); to the end of the block, or any enclosing

2  —
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bloek, (similar to the C bregk); to the next statement regardless of the

guard value; or to the next statement with an open guard. All guards
are evaluated at the top of the block, and they are open if they
evaluate to a positive value, or the value provided by the optional
selector,

Each block is similar to a C gwitch, where the switch argument and
each of the gase values can be expressions (guards). There are no goto
statements within the language, and all sequencing must conform to this
model. Each such block is labeled, so the continuation can be put into
the context of a particular enclosing block. This is equivalent to a
compound C statement or a C block, with bells and whistles.

The power of the D notation can be seen when it is compared with
the C conditional statements. All of the capability, and then some, has
been integrated into one efficiently implementable structure.

The other three statements are essentially expression statements.

The first is analogous to the expression statement in C.

m
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o . Table II: Control Statement Comparison: C vs D
NN

v C Statement D Equivalent

-]

" if (<exprd) <stat1>; { <expr>$ <stmti>..

5 else <{stmt2>; <{stmt2>..

}

“2 while (<exprd>) <stmt); { <expr>$ <stmt>\
b % }

N do <stmt> while <expr>; { <stmt>;

<expr>$\

. }

:‘;.
E1- ' switch (<expr>) { D: <expr>

. case consti: <stmt1); { const1$ <stmt1>
A’ case const2: <stmt2>; const2$ <stmt2>

- default : {stat>; {stmt>
e, } }
4‘2.

;{ The second is called a return statement, but functions slightly
’¥ IE differently than the C return. Since the result object is explicitly
;.: = declared for each D actor, the statement "return <{expr>" assigns the
r: value of <{expr> to the result object, and then executes a actor
f‘ termination returning control to the calling actor. If the actor call
. was serviced by an accept, the servicing actor is not termincted.
;; The third incorporates the alloc function of C into the D language
"
) with a keyword of its own. The statement "new <pointer_name> = <exppr>"
8 creates a new objeoct of the type <pointer_name> points to, assigns

<
bl
*Q {pointer_name) to its address, and initializes the object to the value
3

59 of <expr>. To dispose of an object, all references to it must be
=« eliminated. Immediately after a declaration, "<pointer_name)> = null®
o

f would dispose of the new object.

.l
! The latter two statements are considered language defined
F. s functions augmenting user defined expressions. Neither function returas

L

- 7’

.: a result to the invoking task.
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External Definitions (10)

In C all files are more or less created equal. In D there are fcur
types of files: files in which passive types such as integers and
structures are defined, files in which active types such as functions
and operators are defined, and files in which all types of objects are
declared, and which are responsible for allocating storage. Then there
are files which essentially serve as libraries of other files which are
related in some way, and which are usually referenced together.

In most cases, D objects are defined and declared externally. That
is, one file established a link between a name and a storage location
(declaration), another file determipes how to interpret the value stored
(state definition), and yet a third file determires how actors
manipulate static objects -~ or how names are manipulated within an
algorithm. In C, most objects are either declared in the same file they
are used, or labeled extern causing the compiler to link the name with a
declaration in another file. The concept is the same, but D has
extended and regularized it.

For a particular algorithm, all the state definitions need not be
in one file, nor the actor definitions, nor the declarations -~ hence
the motivation for the library, or bundle, files to organize the
otherwise intractable plethora of little files.

Much of the power of D is a consequence of the ability of the links
between these files to be forged at what conventionally is called
"runtime”., The modularity which provides C with much of its capability
to support large software projects has been conceptually extended to a
higher level of abstraction in D, permitting user defined objects to

enjoy the support of language defined objects: free use of operators,
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simplified 1/0, and object transparent actors (algorithms written in
terms of formal actors and formal passive objects which are object

independent); to name three important features.

Scope Rules (11)

Lexical scope rules are similar to those of C, except that object
declarations are introduced indirectly by linking to declaration files,
or bundles naming declaration files,

As previously mentioned, most object names are by default extern in
the C sense, the exceptions being definitions defined and used in the
same file, and initialization expressions composed of variables also
declared and initialized ir the same declaration file. |

Privacy from other files can be obtained by copying, which obtains
a private copy of the file and all the objects declared within it. If
the variable is subsequently referenced by an object in a file disjoint
from both the declaration file and the acting file, its life becomes
independent of the two. This construction meets the needs served by C's
static variables.

The alternative method of obtaining access, sharing, serves the
purpose of of providing a communal set of objects accessible to several

functions. This meets the needs served by C's external variables.

Compiler Control Linea (12)

Comments have been made in several instances that features of D
have been ocaitted because, if desired, they could be implemented in a
macroprocessor. Compiler control lines are an obvious example of such
features, and are deemed to be outside the scope of the D language.

This does not mean that such a tool would not be part of the D
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,f:j: - development environment, only that it is not part of the language.
;:“ '}f‘-f:'.\ An accurate analogy would be between the instruction set of a
; f.: microprocessor and the capabilities of the software designed to support
‘: program developmeat upon it.

g

' Implicit Declarationa (13)
| {-‘ There are no implicit declarations in D.

S

N Iypea Bevisited (14)
h > Unlike C, structures in D are equivalent to other types and no
‘ limitations of any kind are imposed upon them.

.‘,': The implementation hints provided in this section (of the "C

:,d_ Reference Manual®™) are not relevant to the D programming model because D
y :E does not sacrifice conceptual clarity for implementation efficiency.

::: . The motivation is tq use VLSI to pay for a corceptually elegant
. m programming model.

2

5 Constant Expresaions (15)

. The concept of a constant expression arises whea the compiler must
‘:j be able to determine values of expressions. In D this is not a problem
SE since all expression evaluation occurs at runtime.
o

}: Portability considerations (16)

’ Historically, languages have tended to have a much longer lifetime
:% than coaputer architectures. The philosophy motivating D has dbeen to
.‘ let the architecture of the language drive the hardware (within the

‘:: limits of VLSI). Consequently, by design, no. consideration was given to
.:: portability of D to conventional architectures. Such an exercise is left
__ "_ as an exercise for the reader, to be accomplished after using structural
Y
v
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o\ induction to formally prove that D is both necessary and sufficient in

SRS
?: oy the context of a conventiopal architecture. (It is admitted that "the
{ ice is thin here®.)
N Aoachroniama (17)
J To be determined by future users,
Syntax Sunmary (18)
- The syntax summary provided in the appendix of this thesis should
’g provide a basis, with very few exceptions, for implementing the
- language.
" Eeaturea pot included in C
i Learning should be in the context of computer programming, and it
5 should not impose a burden. The language itself should facilitate the
Zﬁ organization and comprebension of concepts and data.
f:' The flaws in C, and in all of the widely used "higher order
E languages®, are that only limited abstract concepts, types, are
” effectively supported, and generic algorithas are not supported at all.
E Similarly, there is no support within the language for exploiting
-S special hardware. While C aficionados may produce code which supports
) either of these objectives, they are in effect programming outside the
.; language.
;j D does explicitly support genmeric functions and operators. In
5 fact, because passive and dynamic obJjects are defined in separate files,
% all algorithms are basically generic. This is not a consequence of an
§ added feature, dbut is a characteristic of the D language model. The
% . apparent user benefit is that user defined types and operators are as
R
2
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E; o easy to use, in terms of efficiency and syntax, as those built into C.
?i; N In addition, special purpose VLSI hardwired functions can be easily
Sjﬁ linked to user defined operators.
%;? The second major extension concerns real time support beyond bit
u:; manipulation. The basic control structure has a real time flavor in
:Q: which the guard vector may consist of expressions containing the
;§§ language defined accept function. Control is passed to the statement
;:5 following the first (in time) open guard, regardless of its position in
:, the block. While this structure might not always minimize interrupt
:Ei response time while a background task is executing, it is fast, it is
A
ff: reliable, and it is a structure very much a part of the language model.
'Ek. At this point it should be aéparent that D is a functional superset
. . (iE’ of C, and that there are solid reasons for Qeeking to extend C.
E;E Although C is a widely used language which currently defines the
»3? contemporary programming enviromment (circa 1984), it should be clear
=. from this section that future technologies currently becoming available
}2: to implement computer architectures permit beneficial extensions to C,
‘33 as described above, to be envisaged.
s %y
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e . YII. CONCLUSICHNS

The basic motivation for this thesis has been to explore the

optimality of current information processing systems in the context of

current processing needs and current implementation technologies. This
- has been accomplished by proposing a superior method of employing
T; automation.
:: Three topics need to be discussed to conclude this discussion: 1)
oy what is the best path to a functional demonstration of the proposed
’E system; 2) what other work is required before the full potential of the
,: architecture is realized; and 3) what is the curreant motivation to

continue with the effort.

ol

Eunctiopnal DRemonstration
ﬁ The user format of the language has been defined, and is described

»
Ly
-a.A A

in this thesis. The storage and execution formats have not yet been

T W %

~ defined, and must be before the language and hardware are finally

S defined. These tasks consist of creating tables to represent the four
. file types in storage, and creating transformations which represent

oo

}: action in the language. Generating these tables may require a final

Y

A

. iteration of the language, and will suggest a complete hardware

‘:1 configuration.

‘0

% This task may be facilitated by creating a D compiler and support
> .

b tools for a conventional architecture, and then using this software for
i sisulation and testing. Another alternative would be to breadboard, with
‘: TTL and microprocessors, a kernel with hooks onto a standard bdus (e.g.
= S=100, Multibus, Q-bus, or the IBM-PC bus).
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;éi Using a conventicnal microcomputer system to handle the basic
sz ' i housekeeping chores, and a special purpose hardware unit to interpret
iéﬁ the language and interface with some representative special purpose
'f%- hardware would maximize the utility function for the greatest number of
3f~ potential users. The language would be executed quickly, and the
incremental cost of a language system would be low;

: The reliability of the architecture needs to be put on a firm
_EE basis, and methods of object referencing need to be developed.
ﬁg& Reliability can only be assured if a firm axiomatic base is
};7 provided for the language and if hardware failures can be effectively

‘% contained by the architecture. Structural induction and denotational
, £ semantics [Stoy 77] may provide an approach to establishing an axiomatic

i m base. Fault secure hardware design techniques predicated on forcing the

;é interpretive portions of the architecture to fail safely, that is to
iEE provide no meaningful result before a result which could be
.; misconstrued, offer hope that hardware failures can be contained.
Ag Object referencing should be handled as object manipulation has
:ﬁ been; as an application dependent part of the language. A logical name l
- is analogous to an expression.

; Gurrent Motivation

:: It bas been cliarly established by this thesis that current

;ﬂ computer programming methods are cumbersome and unreliable. New F
;5 directions have alsc been described which may result in a new generation

;S of computer architectures enabling a revolution in the capabilities of
'%; :32; information processing systeams.

%S S
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The basic motivation to continue with the develcpment of this
e architecture is primarily to achieve the promised nirvana. A secondary,
and perhaps even greater motivation, is to become more familiar with the
enormous impact that architectural structures have upon reliability and
efficiency.
The literature abounds with innovative new hardware architectures
(including data flow, systolic arrays, operating system configurable
architectures and heterogeneous element processors [Dennis 80, Foster
80, Kartashev 78, Smith 78]) and proposed programming languages
(including VAL, Edison, Occam and Modula-2 [Ackerman 78, Hansen 83,
Taylor 82, McCormack 83]) which carnot be ignored because they contain
innovations which have merit. Some of the hardware has been developed
in conjunction with software. VAL was'designed for the data flow
m architecture; Occam in being designed in conjunction with a
*transputer”; a bit-slice machine has been constructed to efficiently
implement Modula-2, and so on.

Why then should the proposed architectural development be
continued? Because the new languages can be efficiently implemented
upon it, and because the new hardware can be used to efficiently
instantiate compute bound functions. The D language, and supporting
architecture, is a catalyst for new languages and application specific
hardware architectures, and a structure which facilitates the reliable
exploitation of the languages and bardware once they are developed.

It can serve as the foundation for a great many things.
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The D Language Syntax

388808 FILES: Sasass

<state_file>
<{storage_file>
<actor_file>

<bundle_file)>

o a
A,
\,‘;:,
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82888 STATE DEFINITIONS: *easss

<state_file> ::=

state <state_file_named><lterm)

<linkage>

(#

<scalar_definition> |
<{structure_definition)

#)

<{scalar_definition) ::s

<{scalar_name> :: <int>$..<int>$ <ltermd

<structure_definition) ::=

<struct_name)> :: {#<comp><lterm)#

}<iterm)
{comp> ::=
<object_decl> I
$($ (#<psymbol> | . #) $)3 H
$(3) |
($)$
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SR #29489 LCTIVE DEFINITICNS: vassse

<actor_filed> ::=
3 f‘:: actor <actor_file_name><lterm>
T4 <{linkage>
(#

Z_:.‘ ( <op_decl> |
<funct_decl> )

=N <block><lterm)

‘)o

<op_decl) ::=

\ 4 <op_name):: in <eclass): (

o <{declarator>, <declarator) |
‘.j <{declarator> H
20 s<declarator)

g )<lterm>

@ out <class>: <declarator>{lterm>

<funct_decl) ::=
= {funct_named>:: $ia <classd: <declarator><lterm>$

$out <class>: <declarator><ltermd>$
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‘\. l
-:. sansd® STORAGE DECLASRATIONS: ##sass !
N |
b > <storage_file> ::=
'( storage <storage_file_name><lterm>
e <1linkage>
el
) #<object_decl><lterm>#
§j <object_decl)> ::=
.-A
b <class>: ($#<declaration),#$) <declaration>
'f:f <class)> ::=
‘_...
2 <object_class> !
N <file_class)
, {obJject_class> ::=
-,
! :E; <{scalar_pane> |
8 <structure_name> [
2, <op_name> ]
6 : <funct_pame) |
. $<lname>
) {file_class> ::=
' state |
‘ actor |
ey storage }
\ bundle
Y
%)
2\ <declaration) ::=
. <declarator> $z <expr>$
<declaratory ::=
' :I: <object_name> |
#<pointer_name> !
: <array_name>{$<int>$] |
= <op_pame> <class> |
- {funct_name> <{class> |
o
R
) o
2
"l
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%& S88388 BLOCKS: 283888
LS

) T

g <block> ::=

X

f?. $<header>$
v : {<1inkage>

#<1line>#

*1

3-“i :

_é <header> ::s

. <label)>: $<selector><lterm>$
"

<selector)> ::=

N ?
5 <expr> |
‘ ?<expr>

-."-
;; <line> ::=
N3
N $<guard>$<statement>$<contin>$<itern>
A0 ..

‘Zi) <guard> ::s=

s,
B
s <stateaent)> ::=

<

<expr> |

e return $<expr>$ |
N <block> I
n new <pointer_name> $= <expr>$
e,
N <{contin> ::=

- $<label>$\ |
s $<label>$.. |
o $<label>$; |
;f $<label>$
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= ‘
'-: sssads EYPRESSIONS & LOGICAL NAMES: #susas
v e
. Ag.
; <expr> ::=
'.n‘
» <literal) ] |
3
2 <qliteral) !
"
€<lname> |
I N
> <lname> !
N
N <expr><op_pame> !
' $<expr>$<op_name><expr> !
" (<expr>) !
X <{funct_npame>$<expr>$ |
N
N
: accept <funct_pame> i
:':.‘ null
I~
.."-
%
@ <lname) ::=
o
2 <object_pame> |
x} ’
~ $#$<lnane> |
“
| <lname>$[ ($<int>$)]1$ |
Ca
:_':: <file_name> !
e
o,
E:: <lname)'<lname>
:"‘.
")
N
" ~;
o
~
K
s,
g PSAY
e ‘a
f‘ ‘q:{:r'
’
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#43888 CCOPERATIVE FILES: ##iass

<bundle_file> ::=

bundle <bundle_file_name><{lterm)
<linkage>

#{file_name><lterm>¢

<file_name> ::=

<linkage

D I B e N e

Cstate_file_name> |
<actor_file_name> |
<storage_file_name) {
<bundle_rile_name>

#882888 [ INKAGE: tsdsas

$share ($#<{file_name>, #3$)<file_name><{lterm>$

$copy ($#<file_name)>, #§$)<file_name><lterm>$

$rename #( <lname)> ]
<object_class> ) <name><{lterm>#$
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38888 TORENS: #%48as

R

L]
.

.
£,
\‘-.l

<comment) ::= “<$i#<psymbol>#s{itern>

<int> ::s (#<digit> | _ #) |
{scalar_expression>

[y

[}

* d . ‘l‘
YA YOI

<qliteral) ::= *<symbol>" }
ba? *3<{symbol >#"

<obJject_name)> ::=z <{name> |
<literal>

%.2 <{name)> ::z <alpha>$#<char>#$

N <literal> ::= (<digit> |
- ) $#<char>#$

<label_pame> |
.- <funct_pame> |}
: Y <{scalar_name)> |
@ <struct_pame> |
L o <pointer_pame)> |
i <array_pame)> |
- <file_name> $tz <name>

<op_name> iz $<oper>$scoper>$<oper>

‘e

A &
\—\.l.‘l

0

| | NS

PP
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e
&
%

L
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. ‘!-“'\I
AN
e
b {symbol)> ::= <punct> |
' {oper> J
o8 <char> |
; {format>
E <psymbol) ::s <punct> |
. <oper> !
<char> }
: {wspace)
) <punct)> ::=
' O I T T O T O G N N A S B N g |
. el 28 N
<.
’l
- <oper> ::=z
tl1Lc18 /71~ 1sltel=f&t 1 <i>) =
%
s <char> ::= <digit> |
. <alpha> {
s -
- Y
c <digit> ::a olt11213iu4}lsi6lt7t81}9
S
0 <alpha> ::a
g AI/B|ICIDIE|PIG!BIIIJIK|L|M]
R NJ]O|PIQIRISIT{UO}!V]IW!X!IY]|Z]
= aldbleldlelflglhlil]lJlkil!|a}
Q alolplaqirisitiulvivwizxlylz
; <format)> ::= {wspace> |
~ {fterm> |
- <lterm>
{wWspace> ::= <HT> |
! <SP>
y <lterm> ::= <LP> I
bt <FP> ]
i <>
. {fterm)> ::s .
l
: oﬁ\
1“. o~
b
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#3384% KEYWORDS: S#3sss

<keywords> ::=

accept | “~ace 1 1 =« =« « actor def
actor | “~act 2 « 1 « = file type
bundle | ““dbua 3 . 2 .

copy ) “~eop ] « « 1 = 1linkage
in ! ““in 5 2 . .

new | ““new 6 3 . .

null | ~“aul 7 4y . .

out ! ““out 8 5 . .

rename | ““ren 9 . .2

return | ““ret 10 6 . .

share | ~*sha 11 e o« 3

state | ““sta 12 . 3 .

storage | “~sto 13 . 8 .

6 4 3 =13
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Richard Jennings came to AFIT from a four year tour at the Air
Force Wright Aeronautical Laboratories, where he was assigned
to the Microelectronics Branch of the Electronic Technology
Division of the Avionies Laboratory. There he managed
contracts with industry to design, fabricate, and test
integrated circuits as well as contracts to design
architectures which would effectively leverage this technology
into a decisive battlefield advantage. Cver the first two
years of his tour in the Microelectronics Branch, it became
clear to him that the full capability of the emerging
technological capability cannot be fully exploited with out

anything less than a complete and fundamental reconsideration

of how computers are put together and used. While at the Lab,

other work prevented the maturation of a cogent argument to
substantiate these claims. This thesis documents his efforts,
while at AFIT, on this problen.

Permanent Address: Belfast, ME 04915




- .r-'.l ...... > e % . e m, e, ) ata v A [ i ", A -y -, ® -
S
-._;..
-:'_:»: SECURITY CLASSIFICATION OF THIS PAGE
R | REPORT DOCUMENTATION PAGE
- :-“. '-_ REPOAT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
WAL IFIED
( 28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
O APPROVED FOR PUBLIC RELEASE;
o 2. DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
o
:::‘-: 4. PERFOAMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
i AFIT/GA/EE/83D-1
.'-_;'- Ga. NAME OF PERFOAMING ORGANIZATION b. OFBICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
.‘\-_.' (1f applicable)
- School of Engineering AFIT/ENA
:t-.'_‘. 6c. ADDRESS (Cily. State and ZIP Cade) 75. ADDRESS (City, State and ZIP Code)
o Alr Force Institute of Technology
) Wright Patterson AFB, Ohio 45433
::":: 8. NAME OF FUNDING/SPONSORMING 8b. OFFICE SYMBOL. 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ]
o, ORGANIZATION (f applicebie)
e
'.'-:"‘ 8c. ADORESS (City, State and ZIP Code) 10. SOUACE OF FUNDING NOS. d
D PROGRAM PROJECT TASK WORK UNIT
A ELEMENT NO. NoO. NO. NO
‘.:::“
_:\t‘ 11. TITLE /Include Security Classification)
".:'_'. e
L) - <
rog
S a TYPE OF AEPORT 130. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day, 18. PAGE COUNT
.{f} MS Thesis FAOM TO 1983, December 143
N 16. SUPPLEMENTARY NOTATION - ) e T R
T, Bpptoscs oot R
b Y st oot
:.:-:. ') i B l‘:'cn and Professional Devel
- COSATI CODES 18. SUBJECT TERMS (Cantinue an reverse if necessarhankPiaeni@ry sy
. GroUP sus. an. Computer Architecture, Direct WIRWYER, VLSI,
o o4 Language Design, D.
G
':::‘_’. 19. ABSTRACT (Continue on reverse if necessary and identify by block number) J
(2= Conventional computer architectures are obsolete. They are performance limited,
= unreliable and hard to program. In addition, they are able to make very inefficient
s use of the currently available microelectronic technology.
j;: This state is perpetuated by the attempt to seek new languages, new operating
b systems, and new hardwvare jndependentlyv; the desire to maintain compatibility with
< existing systems; and the desire to design with integrated circuits (VLSI) as tiny
e TTL. This mold is broken by the description of an architecture in which the
= language, software, and hardware are all designed synergistically, constrained only
}; by the characteristics of the users of automation: people.
gaj A candidate language is described and compared with C. Some characteristics of
-f}: a program support environment are suggested. The hardware structures implied by the
e proposed architecture are described. Finally, two examples are provided which
}\1 demonstrate the language.
jai.
T, 20. OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
KYX) AR
:::-: S NCLASSIFIEO/UNLIMITEO K SAME AS AT, O oTic usens [ UNCLASSIFIED
:::: 22s. NAME OF AESPONSIBLS INDIVIDUAL 22b. TELEPHONE NUMBER 22¢c. OFFICE SYMBOL
Harold C. Carter, Lt Col USAF (Include Ares Code) AFIT/EY
A

0D FORM 1473, 83 APR

EOITION OF 1 JAN 73 1S OBSOLETE,

x *v.v LY -.-. .‘..-. A

SASNSAS AN




7o

N ..xw
ek

Y,
A2

Al

®. .
‘e . - . + Aw - 0y
g !h . - . hl'L n-I‘l I.

PR DR DL YV )




