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\ Rank-based Inference for Linear Models: Asymmetric Errors

.

'N In this paper robust, rank-based inference procedures are considered

for general linear models with (possibly) asymmetric errors. Approximating

TR R

standard errors of estimates and testing hypotheses about the model

parameters require estimating a scaling functional, and an approach is

9 developed which, unlike previous wark, does not require symmetry of the
-.t‘i underlying error distribution or replicates in the design matrix. Hence,
o important asymmetric models such as arise in life testing can now be

% handled. Further, it is shown that the asymptotic properties of the

3 inference procedures hold with simpler conditions on the design matmx

than previously required. In addition an estimate of the intercept is

developed without requiring the assumption of a symmetric error distribution
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:_' 1. Introduction In this paper robust, rank-based infere:ce proc:dures
: | are considered for general linear models with (possibly) asymmetric
: 51 errors. Approximating standard errors of estimates and testing hypotheses
.P. about the model parameters require estimating a scaling functional, and an
‘i{ approach is developed which, unlike previous work, does not require
ix symmetry of the underlying error distribution (McKean and Hettmansperger
1. ) 1976) or replicates in the design matrix (Draper 1981.). Hence, important
;:‘ ; asymmetric models such as arise in life testing can now be handled.
£ Further, it is shown that the asymptotic properties of the inference
:..:; procedures hold with simpler conditions on the design matrix than pre-
z\-; viously required. In addition an estimate of the intercept is developed
' without requiring the assumption of a symmetric error distribution.
" The models to be considered and the basic assumptions are now given.
5:; The vector of observations Y = (Yl, LOTIR CTRRTON Yn)‘ is assumed to
* satisfy either
. Yook v X 8% e
T
~ (1.2) =X B+g
where L is the n x 1 vector of ones, § is the p x 1 vector of unknown
regression coefficients, a -if it is included- is theunknown intercept,
and g = (e;, ey, ... e )" is an n x 1 vector of independent, identically
distributed random errors with continuous cumulative distribution
i function F. We will impose the following assumptions as needed:
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""\ (1.3) F has density f having finite Fisher information; that is,
i f is absolutely continuous and
2
K7s (£ °(e)/f(e))” f(elde < =.
"i: -00
’}0 . : N
(1.4 X, is a known, n x p full-rank matrix with i"" row x..

"1 o
¥, s - -1 . R

| The centered matrix Cn-xn—n %n%nxn is also full
;‘ ) rank,
v'f M 1
g\; (1.5) n 04, X1 . X1 —> A
‘: a positive definite matrix, as n —> =,
S, 1
(1.6) nClC —> I,
P < :
:}* a positive definite matrix, as n —> =,
9 We note in passing that (1,5) implies (1.6). Where possible without confusion,
" the dependence of various quantities on n will be suppressed.
'2‘ The inference procedures for § to be considered are based on a measure of

| . s .
;2. dispersion proposed by Jaeckel (1972). For an n x 1 vector y, define the
dispersion as

> (1.7) D(y) = £ a(i) v,
i YT (i)?

where vy < V() £ +.- £ V(p) are the ordered elements of y and a(l),...,a(n)

'_n

are a set of scores satisfying some regularity conditions. Consideration in

e

this paper is restricted to Wilcoxon scores,

2, (1.8) ati) = 12V2 (i/fnh1] - 1/2).

i> Thus each element of y is assigned a weight proportional to the difference
Y

S: between its rank among the n elements and the average rank. Procedures based
k)

= on these scores generalize the Mann-whitney-Wilcoxon two-sample procedure and
;;
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inherit its asymptotic efficiency.

Jaeckel proposed estimating £ by minimizing D(Y - X8) and showed the
estimate thus obtained is equivalent to an estimate previously suggested by

1/2 times the difference converges to

Jureckova (1971) in the sense that n
zero in probability. Thus the two estimates have the same limiting distri-
bution; specifically, under conditions to be weakened in this paper in the
case of Wilcoxon scores, nllz(é - B) converges in distribution to a
multivariate normal random variable with mean Q and variance-covariance
2,-1

matrix T , where

(1.9) L = 12172 r £2(e) de.

—o
It is often desirable to test hypotheses about g of the form
(1.10) Hy: HB=Q versus
HA: H =0,
where H is a full-rank q x p matrix with q < p. A consistent test for (1.10)
can be based on a quadratic form in the full-model estimate of §:
(1.11) Q=2 grwmewat BTl H g,

~

. where T is some consistent estimate of T. The statistic Q has an asymptotic

Xz(q) distribution under HO' If q < p, a consistent test for (1.10) can
also be obtained by fitting both the full model and the reduced model induced
by HO' Letting 5FULL and éRED be the corresponding estimates, McKean and
Hettmansperger (1976) showed that

(1.12) D* = 2[DCY - XBopr) - DY - Ky )/

has an asymptotic Xz(q) distribution under HO and can be used as a test

statistic. Both test statistics require a consistent estimate of the scaling

functional 1. The estimates previously proposed necessitate either the

3
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assumption of a symmetric error distribution or replicate rows in X. In
Section 3 an estimate is developed without either of these assumptions.

The asymptotic theory for ,é, Q, and D* is founded on the asymptotic
linearity of the gradient of the dispersion D(X - X®) treated as a
function of . Thus the technical assumptions adopted by Jureckova (1971)
in her proof of the asymptotic linearity have been carried over by
subsequent authors, In Section 4 it is shown that this linearity property -
for the important case of Wilcoxon scores - can be obtained without scme of
the camplicated assumptions on the design matrix required by Jureckova;
specifically, her assumptions 3a, 3D, and 3¢ are eliminated. The results
of Kraft and van Eeden (1972) for linearized rank statistics should also
hold under less camplicated assumptions on the design.

Since D(Y - al - Xp) = DY ~ XB), Jaeckel's dispersion function pro-
vides no information concerning the intercept. McKean and Hettmansperger
(1978) showed that @ can be estimated by applying a one-sample signed-rank
procedure to the residuals after estimating 8, if the error distribution
is symmetric., In Section S an estimate is proposed which does not require
symnetry of F and its joint asymptotic distribution with E is stated.

2, A Preliminary Lemma The proofs of the results in this paper

rely on a lemma which is, in essence, imbedded in the proof of Theorem 3.1
of Jureckova (1969), We state the lemma here for convenient reference.
In the sections to come, we are concerned with the asymptotic behavior
~ "~
of some random variable Hn(xn, )cn), where Xn is a consistent estimate of a

parameter Y and Xn is a random vector. For simplicity the dependence on

4
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n is suppressed. In many cases it is easy to determine the behavior of
H(Y,Y), and if it can be shown that H(Y,Y) - H(Y,Y) converges to zero in
"4 ~
3 probability, the behavior of H(Y,Y) is also determined.
j For example, let W be a function of the residuals e; =Y, -0 - ;é’l B
. after fitting a linear model. Then one can think of W as H((a 877, Y),
" where H((a )", Y) is that same function of the "residuals" Y, - a - z{ k.
‘1 ’ Since H((a 87)°, ¥) is a function of the independent, indentically distri-
" buted errors e; = Y, - o - ’\5;. R, its behavior may be simple to determine.
’33 The following lemma gives sufficient conditions for H(i,)() - H(Y,Y)
*: to converge to zero in probability.
P Lemma 2.1 Suppose H(:,‘,)() = Q('%,)C) + %’(E-,x),vm Q('%,X) is monotone
AN

% in each of the components of g , perhaps nondecreasing in some,

Q by
nonincmasinginoﬁe:sandll%ll/ntﬁl(<~forsamt>0. Here 7 may
. depend on n; ||-|| is the supenorm throughout this paper. If H(g,j) -
) "‘.
Q H(Y,Y) converges to zero in probability for g = Y + Q/nt with d fixed,

N n
i then for each B, 0 < B < »,
2 aup [Hg) = HGLD)

Y v
j‘ converges to zero in probability, where the supremum is over

. {g: ntl lg - x| <3} Furthermore, if nt(x-x) is bounded in probability,
A0 " N

;-: then H(y,Y) - H(y,Y) converges to zero in probability.

e
~ 3, Scaling Functional In the one-sample setting, several authors
:‘ (Bhattacharyya and Roussas 19693 Schuster 1974; Schweder 1975; Ahmad 1976;
-l Cheng and Serfling 1981) have considered estimating =1 using window (kernel)
- density estimates, scmetimes as a particular case of more general estimation
1
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:';: problem. However, no one has treated the problem when the estimate is

, computed using cependent quantities, such as the residuals in regression.
54

E:‘:,‘ Let £ (e) be the window estimate of f(e) given by

.

'-i ﬂl n

(3.1) £ (el = (nh,) i§1 w([e-ei_]/hn),
‘\ -
f where €5 ++vy € are a random sample from a distribution having density
N f, w is a density, and h_ (n=1, 2, 3, .,.) is a sequence of constants
. ": converging to zero. Under appropriate regularity conditions, the
b estimate for 6 = T1/121/2, given by
v :
:"
(3.2) f;fn(e)d}‘n(e) ’

heY

o where Fn is the usual empirical distribution function, is strongly consistent
250

::j:: and asymptotically normal.
oy The estimate (3.2) can be written as

;\J

- (3.3) @2t T L w(le.-esI/h)

. n w(le,-e.
o G O B B S "
Y

- -1 2, -1 .
N = w(O)(nhn) + (n }\,1) f}_i] w([ei-ej]/hn).
Since the nonrandam contribution of the i=j terms is of smaller order than

¢ the random portion due to the i#j terms, for the asymptotic theory we work
% only with the latter, Thus we consider
S
'l'(-\ - 2 “l
T- (3.4) € = [n°h 17" I w([e;-e:1/h)
LA N L
G and show that 3 remains consistent for ¢ when the e; are replaced by the
? {. . ~ ~ ~ la) A .
E" dependent residuals e; = Y;-0- x/f(or e; = Y; - X;8) and h_ is replaced by
\ ‘ a random ﬁn’ under mild conditions on w, hn’ 8, and hn. In applications it
is necessary to use the data to determine the window width, in order to
\ ~
,',: obtain good performance and to make © scale equivariant. Note that in
"
pEa
6
(4
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)
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’§ this section % is not necessarily the rank estimate.

é Theorem 3,1 Suppose;

_ (i) w is asquare-integrable, strongly unimodal density, symmetric

e about zero, with finite second moment;

(ii) hn = h'rh, where 0 < < 1/2 and h is a positive constant;

j (iii) n'/2(g-g) is bounded in probability; and

; (iv) nq(ﬁ.-h) is bounded in probability for same q >0, and ﬁn = n"r'ﬁ

’ Then under assumptions (1.3), (1.4), and (1.6), for model (1.1) with

§ e = ¥; -6 - B (or for model (1.2) with e; = ¥ - XiB),

% (3.5) e = [nzh J“l 2#5.; w([e -e ]/hn) converges in probability to €
i

ke,

Proof: For arbitrary p x 1 p and k > 0 define
. 2 "1 ”, - -
(3.6) T(b;k) = [n h ] 13;2 w([Y.-§i)3-Yj+;\gjk]/[n k1)

5|
(n? hn] f;:jw([e J-(ye -;5]) (p,-g)]/k;l),

G g B e g 5
baTa sV e? 3" ol

;

! where k= n k. Then T(Bsh) is the estimate of 6 based on the independent,

; identically distributed e; and on the nonrandom window width h,; and

o [hn/hn]'r(g,h) is the estimate based on the residuals e and random window

' width h . It is now shown that T(,@,h) - T(8sh) converges to zero in

2

- probability. Since, under the conditions of the theorem, T(g; h) is easily

’3' shown to converge to 6 in probability (Aubuchon(1982) used a projection

\~ argument toc show that n”(T(,@;h) - 8) converges in distribution to a normal

e random variable under these conditions) and hn/ﬁ , converges to 1 in

probability, this implies that 6 also converges to 6 in probability.

A Although T(psk) is not of the form required by Lemma 2,1, it is
possible to split T(b;k) into two pieces, each of which is of the necessary

: 7
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form. Tothjisend, we define the following monotone functions. Let

‘(3.7) wl(z) = w(z) , 1ifz <0
= w(0) » 1if 2 > 0; and
wy(z) =0 » 1fz<0

w(z)-w(0) , if z > 9.

Then w(z) = w(2) + w,(2). Also, let the 2p x 1 vector

(x: )"

3. .o = s I

(3.8) Q;LJ ((¥1.¥]) ) ,

where (§1-§j)+ is the vector of positive parts of (¥i"\5j) and (’Gi'REj)- is
the vectar of negative parts, so that (Kfi"\:«j) s ('Kfi"?\‘.j)*' + (’\51"5:'))-; recall
th

thatx{isthei row of the design. letting (for 2px 1 §)

e )
(3.9) THCEI) <[, 17 I w(lee5-Ri3 4= 1/ky)

we have T*(§;k) = T(h,k) when §°= (§§). Finally, note TH(§3l) = Tf(gsl) + T3(gsk),

where
R | . s
(3.10) Tatgo = I 17 IE [ioyCe; ey R ¢ (g))]/kn)

~(-1)™6(0) gi’jq-(g))]
form = 1, 2.
The following lemma establishes conditions under which
T#($3K) - TH( (8” 87)73h) converges to zero in probability form=1, 2. The
sroof of the lemma involves lengthy calculations and is deferred to Appendix
A. The linear term subtracted in T and added in T plays a crucial role

in the proof.
Lemma 3.1 Form = 1, 2, under the conditions of Theorem 3.1,

2
ELTA(E310 - T = 0
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as n + « JER - 172
» where § = (587" + g/n and k = h + a/n? for any fixed g and a.

Note that ,
(3.11) TE(83k) - Tfﬁ((g) ;h)
- 2 -1
= [n°h 177 22w ([e.-e.-p (6-
o™ 22 (Lo o5 Ry (4 (g))lxkn) - up(le;-e51/m )]

~(-1)M{n%n 171 -

Mn’h ] I (o) }eij('é‘(g) y.
]

The first summation is monotone in the components of §, while

2, 4-1 v, 172 M. =l max -1 2 2 ..
|1Cn*h_] iz#zj gij|,/n <2m*n ) N n iiltlmﬂ( 1, which is bounded.
Since n?(8-8) is assumed to be bounded in probability, Lemma 2.1 (with t=1/2)
implies that "é
(3.12) T#(() 3k) = T#((F);h)
m Je m

converges to zero in probability form = 1, 2 and k = h+ a/n®. Furthermore,
T,ﬁ(('g) sk) - T”n‘l( (g) sh) is monotone in k. Since nd(h-h) is assumed to be

R
bounded in probability, it follows from Lemma 2.1 that

~

R

(3.13) TG i - Tcchm

converges to zero in probability form = 1, 2.

Recalling that
(3.14) T(gsh) - T(B;h)

B A .
T*((2)3h) - T*((%);h)
fég £

T OGO 3R) - Ty

+ Tz’s(('g) ;;1) - T.z"‘( (g)';h) s
B8

this yields the desired result.
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Example For applications, we consider a modified form of (3.3):

(3.15) % = (nh)~L + [n(n-1)h_1"% 2% w(le.-e.1/h ),
n i3 i3 "n
where h is a constant, and we take hn z n'l/zh. The authors (1984, Secticn )

1

show that, in the iid case, the bias is then of order n™~. If the underlying

error distribution has density f(y,$) = 6'lfl(6'ly) , then

(3.16) h = [2"l J [fi‘(y)]2 dy r u2 w(u) du]-]'/3
- -
will make the first - order terms in the bias vanish.
If we take fl to be the normal density with interquartile range

equal to 1, § the sample interquartile range (defining }:) » and w the uni‘orm
density on (-1/2, 1/2), then by Theorem 3.1,

. . 8.-8, Y
(3.171) 8% = (4.11n L + (4.11nY 2(n-1)8)"L 17 w [ —Ed—
i3 \u.11n"1/2 §

is a consistent estimator of 8,

4. Linearity of the Gradient of the Dispersion In this section, it

is shown that, for Wilcoxon scores, the asymptotic linearity property of
the gradient of the dispersion, first proved by Jureckova (1971), holds
under simpler conditions on the design matrix. Thus the work of subsequent
authors in developing the asymptotic properties of é, Q, and D*, which
relied on the linearity, also is valid under simpler assumptions.

The dispersion of ¥ - X b may be written as

n
B a(R(Yi—g'i}a) ) (Yi-g'ila)

(4.1) D(X—X)a)
i=1

n
12 1/2 B RO/ (D) = 1/20CY;3R),
p R

10
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where ¢. is the it row of the centered design matrix C (1.5) and R(Yi-g'ile)
is the rank of Yi-Q;Q among Yl-gik, .+v» Y = R. Then the gradient of

D(X—X )a) , taken as a function of B> exists except on a set of Lebesque

th

measure zero in RP. When it exists, the negative of the element of ]
1

this gradient is

n
21/2 L c.

1/2
n ik

1 [R(Y;-g3R)/(n+l) - 1/2]

(4.2) Sk(Ja) L
]_::
1/2 -1 2 .
= 12 (n+1,‘ Z cik R(Yi-pvik).
i=1

Since the ranks in (4,2) are translation invariant, Sk()e) can be further

rowritten:
L 1720172 -1 0 .
(4.3) S R) = 127 “[n™ “(n*1)] iil i Rlej-¢ (b-g)),

noting that e, = Yi - 0 - 'ﬁé' (or e; = Y; - ?\Eiﬁ)'
Theorem 4.1 For model (1.1) or model (1.2), under assumptions (1.3),
(1.4), and (1.68), and for Sk(]e) defined by (4.2),

(4.4) sup| S, (R) - S8 + T g5t () |

converges to zero in probability as n + », where the supremum is over

nt/2 |1g-gIl < B <=, and g, is the k™" colum of £, the limit of n~l¢C.

Proof Slutsky's Theorem implies that (n+l)-ng(k)), where g1y is the

kth colum of C, may be substituted for g(k) since (n+l)'lC'C +Zas n -+,
Define '
(4.5) T, (0) = S .(b) + L (CEpy) nt/? (p=g)/(n+1)

: kR = SR (%) k-8 -

Again we cannot directly apply Lemma 2.1 to Tk()e) but must split the

11




quantity into two pieces. As before (3.8) let

o (4.6) Ri: = (Qﬁi%ﬂ) ) - <(€i"€j)+>
R 2\ Gyy)T (€585

) Letting

n
2 (4.7) T @ = 12720 2e1? 1l
&Y i=1

I, Tege < R34}

o IR 1] os o |

N _1 1y1-l 1/2, & o+ .
‘ e R R <g)) and
Ty n n

4 12, 12, ,y1-1 D - )

i Tt = 1 eI L CGy T Tege; < Rj; o 1)

‘ n
X - a2 3
i=

n
| , Cic IR (6§
'r for any 2p x 1 §, we have
» )‘ - - - o~

= (4.8) T (R) = Ty () + T,p(8) when § = (K™

e ' The following lemma establishes that Ty ($)-Ty ((8 “877) converges to
f::: zero in probability for m = 1, 2 when § = (8" 8"~ + g/nl/z. The proof

e of the lemma involves lengthy calculations and is left to Appendix B.

Y Lemma 4.1 For m = 1, 2, under the conditions of Theorem 4.1,

' - o ary oyl

SO E[Tkm(é) Tim (B8N » 0

as n >« where §= (8" 87"+ ;"yrx]'/2 for any fixed d. Now the first

QO
k) |.| n';l.;;

portions of Tkl(,é) and Tkz(,é) are monotone in the components of §. Futher,

[ ]
g M)

At
Pd

n A n
M 3/2 -1.1/2 -
Cix jfl Rssll and [1n* 21T a2 3 ¢y I Ryl

. n
e, I1tn3 21y 1720172 5 ik
i i1 1k §a

=1
0 are bounded. Thus Lemma 2.1 implies that

(4.9) sup| T, (§)-T, (B" 81|

12

o <, b
\"\"s"s'\'.\ >

25
._J'

e 8t

>

Y
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converges to zero in probability, where the supremum is over

(6: nM2 [16- (8" 87|l <B}. Nowa={§: n/2[[§- (8 g)|| <B

and §° = (" b} is a subset of this set. Thus (4.9) still converges to |
zero in probability when the supremum is taken over A. This, along with ‘
(4.8), yields the desired result, since the supremum of a sum is less than

or equal to the sum of the suprema.

5. Intercept A simple estimate a of the intercept for model (1.1)
is given by the median of Yl-ﬁ’_,é, veey Y n"ﬁ;%' Using a proof similar to
that of Theorem 4.2 (c) in McKean and Hettmansperger (1978), it is possible
to show that ni/2((a-0) (é—,@) “)° converges in distribution to a multi-

variate normal random varible with mean Q and variance-covariance matrix

2,0l L 2 . = 2 . -1
ooyt A sy, -l s
V-
-Tzz-]‘ux Tzz-l ,

where I is the limit of n -

C°C and K, is the limit of X, the p x 1 vector
of column means of X. The conditions needed are (1.3), (1.u4), and (1.5);

See Aubuchon (1982) for the details.
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Appendix A: Proof of Lemma 3.1

Before proceeding with the proof, same preliminary consequences of

AEL NS S

the assumptions of Theorem 3.1 are stated without proof.

lemma A. 1 For any d of length 2p, Da{j ;;/nl/2 + 0 uniformly in i, j

ane+x,

Lemma A. 2 f is bounded.

Lemma A. 3 If G is the cumulative distribution function of e - ey,
where e and e, are independent and have c.d.f. F, then
(i) the density of G,

00

glz) = I f(e+z)f(e)de,
- -]
is bounded and absolutely continuous;

(ii) the derivative of g(z),
g (z) = r £ (e+2)f(e)de,

is bounded and absolutely continuous; and
(iii) g"(z), the derivative of g'(z), is bounded.
Lemma A. 4 For any ¢ of length 2p, n‘z.):#z. (QJ-_'jci)2 is bounded.
1#]

lemma 3.1 Form=1, 2,
ELTA(§5Kk) - T;;;«g) ;1% - 0,
where 'é z (,é' ,@')' + g/nl 2and kzh+a/nd, as n + », for any fixed d and a.
Proof Consider the case of m = 1. Reférring back to (3.10),
. oo 2
(A.1) E[Tf(,g;k) - THE™ )75 h)]

oy -2 - . 172 . 172
= n uhn f;.'.] szft:.[[w(ei-ej-laijg/n ]/kn)I{ei_<_e3+QijQ/n }

e - w( tei-ej ]/}ln)I{eiiej }

1y




F e .
o S50 0 o

-

.
A

L

_‘,
e

1/2} 1/2)]

+ w(O)(I{ei>ej +Q£j;é/n -I {ei>e:.| }+GQ£j,3/n

. 1/2 - 1/2
x[w( [es-et-QstQ/n ]/kn)I {e s-<-et+QijQ/“ }

~w([e e, )/ )I{e <e,}
+(0) (I{es>et+Qth/nl/ 2)-I{e e, 1+  /nt 1]

Partition the terms in this quadruple sum into three groups:

(A.2) Group Description Count
Gl ~ Two matching pairs of subscripts 2n(n-1)
G2 One matching pair un(n-1)(n-2)
G3 No matching pair n(n-1) (n-2)(n-3)
TOTAL n®(n-1)°

and deal with each group separately.

Consider the terms in group Gl; they are uniformly bounded (using
Lenma A.1), so their sum is 2n(n-1)n""h_~20(1) = (nh)™20(1) » 0
as n+=, where 0(1) is bounded.

Among the terms in group G2 consider, for example, the sum of those

with j = t:
-2
(A.3) n z r M:: x M_. f(e;) de;
o™, S| Mig x Mgy fley) desl,
j=t
-4 =2
< n z r [M:s| x |Mos| £(e;) gde.
< n7'n, e Jw i3 s] M
=t
T
z s .
i n hn G2 supIMlJI supIMle’
j=t
where

15
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'3 . ., 1/2
s ej *Qijg/n

(A.4) M.

1/2
i3 ° n w([ei-ej-;eijgl/n ]/kn) f(ei)dei

e.
]

“. ‘
L8, a».‘l.-J.—
-8 8- 2

]

+

. 1/2 - 1/2
w(O)J:o[I{ei>ej+QijQ/n }-I{ei>ej}+GQijg/n ]f(ei)dei

.. ]

and the suprema are over all i, j, s, and e;- Now if supIMijI +~ 0 and

. supIMsj|-> 0 as n =+ =, then the sum of terms in group G2 with j = t
)
S coverges to zero, since there are 0(n3) terms in the sum and (nhg_)"l is
o'
B bounded.
N [ - » 1/2 K3 . .
; But letting u = [ei-ej-)aij;é/n Y k, in the first integral and
u = [ei-ej]/hn in the second,
(A.5) Ms] = |k ° (w) fle.+k_utD 1/2)du
A . 13 n wlu) (e, K Qij;é/n
3
4

0
-hn j -aw(u)f (ej +hnu)du

1/2\ .an” 1/2
W(O)[F(ej)-F(engjQ/n 3+0R:5//n " 71|

Artriehy &%

S(l(n+hn) sgp(f)/z i

a

% +w(0)Ee+sup(f)]/,|Qi’jg/nl’ 2| 49
?l
% uniformly in i and j.

Similar arguments hold for the other cases: i =s, i =t, and

j = s.

' 5."“\N

Now turn to the sum of terms in group G3.
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(A.6) n‘“hn"" E OE[(-)()]
G3

=n% "2 ¢ EC-1EL-],
N a3

since the multiplicands are independent when no subscripts match.
Consider one of the expectations:

. 1/2 - 1/2

‘W([ei'ej]/hnn{ei'ej < a}

- 1/2
W(O)(I{ei-ej >Qijg/n }-I{ei-ej > 0}
. 1/2
+ eleijg/n )]

- 1/2
. n
= [ Q:Jq/ w( [z-]a;jg/nl/zl/kn)g (z)dz

0
- f w(z/h g(2)dz

(0 [6(0)-G(RY/n™ D) + eRfsa/m™ 21,

recalling that G is the cdf of e -e. with density g, when i#j. Letting

]
u = [z-g{jg/nl/zl/kn in the first integral and u = z/h in the second,

this expectation is

(A.8) (0 w(u)g( + p7.d/n ' Dau
: kn - gkpu 'Qijm

d -

0
-h - J.%w(u)g(hh u)du

1/2)2 o
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- 1/2
where In‘;ijl < I}eij;a/n [,

expansion of g(+) about zero in each integral, further reexpress the

recalling that 6 = G"(0). Making a Taylor

expectation:
0
/ g' a
(A.9) kn[ w(w (g 01+ urRisd/n® D 0+ (e Rl sd/nt H2g" (¢ 5)/21au

s n [ we)CgCorn_ug” @14 2u2g"(6)/2TumiC0) Y/ D2 . )72
;::f nj ., giori ug Wit ug Qij‘é ij
&

w where IC l < |k u+,QlJ;g/nl/2] and |¢] < lk ul Now g"(0) = 0 and g"(*)
?‘ - 0 0 ‘

- is bounded (Lemma A.3). Further, I w(u)du = 1/2, f [u]w(u)du<e, and

—00 -

. 0 2 .

! f u“w(u)du<». Thus we can write

% ©

-

034 -2, -1

< (A.10) n"‘h ~* £z |EC.]|

N | i#]

% $ 2y -l; 3 I

: 07 i"#%j Ik, -hy [8€0)/2+ K | S0+ |Bij53’“l/2|°(1)
‘.-'
>

-

- 1/2,2 3 - 1/2,2

+ Ikn (Qijg/n ) |0(l)'*'l'5_l 0(l)+(Bijg/n Y'o(WI -0

)_-

o

1o
4% . 3 2, .2 1/2

as n+, since [k -hy|/h, + 0, [k |*/h + 0, k,“/h  + o,ljeijq/n | +0

o uniformly in i, 3, n"2 IZ (R5:)” is bounded (Lemma A.4) and (rh )~

- i#j
g

* -
e But [n™*h 2z EC-JEC]| ¢ "t oz (EC-D(02 s 0 s

e " oe3 i#3

f-ff n+o, Therefore the sum of terms in group G3 converges to zero. A similar
‘-" argument holds for Tg(,é;k) - Tg((g) 3h), and the proof of the lemma is

complete.
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Appendix B: Proof of Lemma 4.1

Before proceeding with the proof, a preliminary lemma which follows
fram the conditions of Thecrem 4.1 is stated without proof.

lemaB.1 0% max [, | +0 asnew, fork:1,2,...,0p.

1<i<n
Lerma 4.1 For m = 1, 2, under the conditions of Theorem 4.1,
» L, 2
E[Tkm(,é) - Tim((8" ) )]+ 0
as n + =, where § = (8”87 " + g@/n:l'/2 for any fixed ¢.

Proof For simpler notation, the factar (n+l) in Tkm(,é) is replaced by

n; see (4.7).

Proof': Calculating the expectation form = 1,
» LI 2

(B.1) E[Tkl(,é) - Tkl((g £771

n n
- -3 + . 1/2
= 12n E[iﬁlc g jEl[I{ej-ei < jS g/n™ }

- - - 1/2
I{ej-e:.L < 0} egjig/n

n n
+ - 1/2
i s}z:l Sk 1:‘31[1{%-es < Res A7 }

. 1/2
-I{et-es <0} - G)Qts g/n™" 411

+ +

=127 Iz oIz cix Cax

i#j s#t

Et(‘)(')]s

since D'u'. z 0. The terms in this quadruple summation can be partitioned

into two groups:

(B . 2 )
Group Description Count
Gl Some matching subscripts un(n-1)(n-2) +2n(n-1)
G2 No matches n({n-1)(n-2)(n-3)
TOTAL n®(n-1)*
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Consider the sum of terms in the first group:

(B.3) 12n73 Gzl Sl Cex ELC)(4)]

- -3 + + . 1/2

= 12n Gzl Sk Cek E([I{ej-ei ini q/n~" <}

- I{e.-e. < 0}] x (I{e,-e_ <D’ Q/nl/z}-I{e -e_ < 0}]1]
J 1 - t °s —Q«ts t s -
=3 + o+ €N~ - 1/2

. 1/24,.1/2
- I{et-es < 0}- eplts;g/n I/n
2 .
- % (R3iR) Reed)/n]
= Ql + Q2.
Now
(B.4)

19y ¢ 1273 é:lc;kc;k EC} -] x |2

-3 + o+ 11172
1n G):zcj_kcsk (E|-| x E|+|1"°%,

<

by the Cauchy - Schwarz inequality, noting that |I{-} - I{.}| is equal
to its own square. TFurthermore,

(B.5) E|I{e;-¢; < ;gj'ig/nl/ 41 {e5-e; < 0}
= |GR; ;MY - 6o
- 1p- amlf2) g-
= IRyi/m™ 7l €765,
where || < IRjs/n/?|. But G~ is bounded (Lemma A.3), and

lggig/nl/2| converges to zero uniformly in (i,j) as n += (Lemma A.l).
Further,
20
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-3 + 4+
(B.6) n"t c. ¢
Gl ik sk
n n n
< nl oz (c;;k)2 +n? 1 c;.'_k C+k
izl izl s=1 s
n n
-1 2 -1 2
< n L ¢4, +[n L e ]
j=1 K iz K77
n n
< b o c§k+ [1+nl = c]?_k]2
i=1 i=1

which is bounded since nt

C°C converges. Thus the right-hand side
of (B.4) converges to zero as n + ®, and Ql does also.

Now consider:

(8.7 Q, = 1217 L i o [-RRIGREAMTD

-6 - et Amt? - PGz (i /nd
+ + 0 -

2,0
where [§.__| < lp,’ts;g/nl/zl, recalling that G (0) = r fl(e)de = 6 .

-0

3 1/2)2 1/2)

= 12n G" (Ets)/(Zn

3 5

Gl
and ljaj’ig/nl/2| + 0 uniformly in (i,j), we have Q2 + 0 also. Referring

Since G" is bounded (Lemma A.3), n~ is bounded (B.6),

ot
Cix Csk
back to (B.3), the contribution of terms in group 1 converges to zero
as n + »,

Finally, turn to the second group. These terms must go to zero

1

faster than n"—, since there are 0(n*) of them and the divisor in front

is only n3. Since no subscripts match, the multiplicands are independent

and the expectation factors:
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+ o+
Cik sk

(B.8) 1273 1

E[C-)(4)]

_ -3 + o+ .
= 12n GZ2 ik Csk EC-] EC-].

Consider one of these expectations:

1/2

(B.9) E[I{ej-ei < Q}ig/n }= I{:‘ej-ei < 0}

- 1/2
‘erifé’“ ]

1]

SR /0D - 60 - 67(0) R/t

¢ 22 an

where Igjil < llaj' i;g/nl/ 2| . Thus the absclute value of the summation in
(B.8) is:

-3 + 4 . 2
(B.10) |12n (':3:2 Cik Csk [(jS;,‘},) a" (Eji)/(?n)]

X [(g;sg)z 6" (€, )/ (2]

sup 2 r -1/2 max 2 =4 2 N2 in” ay2
< 3%,°Ie"@) |1 [n 1 leql1®n Gz2 ({19 Reed)

But G" is bounded (Lemma A.3), and n~1/2 m?xlcj_kl converges to zero
(Lemtma B.1). And

-4 e 2 sme 32
(B.11) n G>:2 @ Ry
2 n 292
< [n T I DA,
- i=1 j=1 Riif

which is bounded (Lemma A.4). Taking this into account, the right-hand

side of (B.1Q) converges to zero as n + <,
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Thus by showing that the sum over terms in each of the two groups
converges to zero, we have shown that the expectation on the left-hand
side of (B.l) converges to zero. This establishes the lemma for m = 1.

The proof for m = 2 is analogous.
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