NEGATIVE-ION FORMATION FROM SURFACE SCATTERING AND THE ANDERSON CORRELATION
Negative-Ion Formation from Surface Scattering and the Anderson Correlation Energy U

by

Kai-Shue Lam, K. C. Liu and Thomas F. George

Prepared for Publication

in

Physics Letters A

Department of Chemistry
University of Rochester
Rochester, New York 14627

February 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Title: Negative-Ion Formation from Surface Scattering and the Anderson Correlation Energy U

Authors: Kai-Shue Lam, K. C. Liu and Thomas F. George

Abstract: A theoretical investigation of negative-ion formation from positive-ion-surface scattering is presented from a unified point of view. Based on the time-dependent Anderson-Newns model, the correlation energy U is seen to play an important role in the two-electron transfer process. Calculations of the probability of negative-ion formation are in good agreement with experiments on the conversion of H(D) to H(D) by scattering from a cesiated W(100) surface.
NEGATIVE-ION FORMATION FROM SURFACE SCATTERING
AND THE ANDERSON CORRELATION ENERGY U

Kai-Shue Lam*, K. C. Liu and Thomas F. George
Department of Chemistry
University of Rochester
Rochester, New York 14627

*Present address: Department of Physics
California Polytechnic State University
3801 West Temple Avenue
Pomona, California 91768
Abstract

A theoretical investigation of negative-ion formation from positive-ion-surface scattering is presented from a unified point of view. Based on the time-dependent Anderson-Newns model, the correlation energy U is seen to play an important role in the two-electron transfer process. Calculations of the probability of negative-ion formation are in good agreement with experiments on the conversion of $\text{H}^+(\text{D}^+)$ to $\text{H}^-\text{(D}^-)$ by scattering from a cesiated W(100) surface.
Charge-exchange processes arising from monoenergetic ion beams scattered from solid surfaces have recently been the subject of much experimental1-5 and theoretical6-10 interest. Most of these studies focus on the process of ion neutralization, involving the transfer of a single electron from the surface to the singly-charged ion.1-3,6-10 However, owing to the increase of applications involving the transfer of two electrons in a variety of situations, such as plasma fusion11,12 and the generation of high-energy neutral beams,11 attention has also been directed to processes of negative-ion formation.4,5,13

For ion neutralization, the majority of theoretical work has been based on the Anderson-Newns model,14 originally proposed for the explanation of localized magnetization in transition metal alloys and subsequently applied to various other problems such as chemisorption on metals15 and mixed valence in solids.16,17 In these applications of this model, the correlation energy U, arising from the Coulomb repulsion between the two electrons of opposite spin in the same discrete level, plays a crucial role. However, in studies of ion neutralization (or the reverse process of atom ionization), this important quantity is either implicitly assumed to be infinite6 or completely ignored.7-9 Such approaches are thus incapable of accounting for negative ion formation: $U = \infty$ completely supresses the transfer of a second electron, while if only single-electron transfer is considered, U is irrelevant.

Previous theoretical work13 on negative-ion formation has centered on the time-dependent width and shift of the valence level of the impact ion, where the time dependence is due to the motion of the ion. It was assumed that first neutralization occurs via a nonresonant Auger process, while the
nuclear motion of the ion can subsequently bring the valence level into resonance with a band state and thus effect the transfer of the second electron. The quantity U again does not play an important role in this theory.

In the present work, we use the Anderson-Newns model to examine the effects of U on the two-electron transfer process in relation to the dynamics of the nuclear motion of the impact ion. This represents the first time that charge-exchange processes in surface scattering have been considered from a unified point of view. We shall see that the negative-ion formation depends crucially on the finite value of U, and in fact, recent experimental results\(^5\) can be explained in terms of our theory.

The time-dependent Anderson-Newns Hamiltonian including the correlation energy term is given as

$$H(t) = H_0 + V(t),$$

where

$$H_0 = \sum_{\sigma_0} c_{d_0}^{\dagger} c_{d_0} + \sum_{k_0} c_{k_0}^{\dagger} c_{k_0} + U n_{d_0} n_{d,-\sigma}$$

$$V(t) = \sum_{k_0}[V_{kd}(t)c_{d_0}^{\dagger} c_{k_0} + V_{kd}(t)c_{k_0}^{\dagger} c_{d_0}].$$

The indices d and k denote the valence state of the impact ion and the conduction band states of the solid, respectively, σ is the spin index and $n_{d_0} = c_{d_0}^{\dagger} c_{d_0}$. The interaction Hamiltonian, $V(t)$, responsible for the electron transfer between the band and valence states, is the only explicitly time-dependent part. The motion of the projectile ion can be phenomenologically
taken into account by using the specific form

\[V_{kd}(t) = V_{kd} e^{-\lambda |t|}, \quad (4) \]

where \(\lambda \), the sole dynamical parameter in our model, is directly proportional to the normal impact velocity. Hence \(\lambda \) controls the duration of the bound-continuum interaction, while \(V_{kd} \) (time-independent) determines its strength.

To lowest order, the perturbative solution for the time-evolution operator \(\tilde{T} \) in the interaction picture, which contributes to the S-matrix for negative-ion formation, is given as

\[\tilde{T}(2)(t,-\infty) = (-i)^2 \int_{-\infty}^{t} \! dt' \tilde{V}(t') \int_{-\infty}^{t} \! dt'' \tilde{V}(t''), \quad (5) \]

where

\[\tilde{V}(t) = e^{iH_0 t} \tilde{v}(t) e^{-iH_0 t} \quad (6) \]

is \(V(t) \) expressed in the interaction picture. At \(t = -\infty \), the ion is taken to be infinitely far from the surface, and \(t = 0 \) is the instant of impact.

It is apparent from Eq. (3) that, since negative-ion formation involves ultimately the transfer of two electrons, only terms of even powers in \(\tilde{V} \) in the expansion of \(\tilde{T} \) contribute to the S-matrix.

Figure 1 illustrates schematically the electron-transfer process to lowest, i.e., second, order as contained in Eq. (5). Physically, every factor of \(\tilde{V}(t) \) corresponds to the transfer of one electron from the band level \(\epsilon_k \) to the \(\epsilon_d \) level of the ion, or the conjugate process of electron transfer from \(\epsilon_d \) to \(\epsilon_k \). Therefore, the contribution to the S-matrix from
higher-order terms of \tilde{T} can be diagrammatically generated in a straightforward manner. Such terms (neglected in this work), however, may involve those final states in which the solid becomes electronically excited, with levels higher than the Fermi level occupied. In general, low-ordered processes are favored by high impact velocities (large λ).

To lowest order, the time-dependent probability for negative-ion formation is then given as

$$P(t) = \int_0^{c_F} \int_{c_L}^{c_F} d\epsilon_d c(\epsilon) |c_k', c'_l, \tilde{T}(t, -\omega)|^2,$$

where c_F and c_L are the Fermi energy and conduction band edge of the solid, respectively, $c(\epsilon)$ is the density of states of the band, and the initial and final states, $|I>$ and $|k, k'>$ respectively, are described in Fig. 1. The matrix element in Eq. (7) can be evaluated by using Eqs. (2)-(6) to give the result

$$<k, k' | \tilde{T}(t, -\omega) | I> = -\frac{\nu^2}{2} \frac{1}{\lambda + 1(\epsilon - \epsilon')} \frac{1}{\lambda - 1(\epsilon - \epsilon')} e^{[2\lambda + 1(\epsilon - \epsilon')]t} \left(\frac{1}{\lambda - 1\epsilon} + \frac{1}{\lambda - 1\epsilon'}\right),$$

$$t \leq 0 \quad (8a)$$

$$= -\frac{\nu^2}{2} \frac{1}{\lambda + 1(\epsilon - \epsilon')} \left[\frac{1}{\lambda - 1\epsilon} + \frac{1}{\lambda - 1\epsilon'}\right] - \frac{\nu^2}{2} \frac{1}{\lambda - 1(\epsilon - \epsilon')}$$

$$\times \left[\frac{1}{\lambda - 1\epsilon} + \frac{1}{\lambda - 1\epsilon'}\right] e^{-[2\lambda + 1(\epsilon - \epsilon')]t}$$

$$+ \frac{2\nu^2\lambda}{(\lambda^2 + \epsilon^2)\epsilon} \frac{1}{\lambda - 1(\epsilon - \epsilon')} e^{-[\lambda - 1(\epsilon - \epsilon')]t}$$

$$+ \frac{1}{(\lambda^2 + \epsilon^2)\epsilon} \left[e^{-[\lambda - 1(\epsilon - \epsilon')]t - 1}\right] \quad t > 0 \quad (8b)$$
where $c = c_k - c_d$ and $c' = c_k' - c_d$ with c_d set as the zero of energy, and $V = V_kd$ is assumed to be independent of energy. As a first approximation, we have also assumed that U and c_d are constant within the collision region. This latter assumption is not expected to affect the results qualitatively.

We now turn to calculations of the probability $P(t)$ of negative-ion formation and its limiting value at $t \rightarrow \infty$, $P(\infty)$, for various choices of the parameters U and λ. $P(\infty)$ represents the experimental observation of outgoing negative ions after the scattering event is complete, and $P(t)$ reflects the behavior of the transient states. The following fixed numerical values were adopted: $c_L = -10$ eV, $c_F = -0.06$ eV and $\zeta = \zeta V^2 = 0.43$ eV, where we have assumed the band to have no important structure so that the density of states ρ can be taken as constant in the integration over the band in Eq. (7). Although the last two numbers have been used previously in a study of charge transfer in the Na/W(100) system, they have no special significance in our present work, which is to investigate in general the effects of the variation of λ and U, especially the latter.

Intuitively, we expect the probability $P(\infty)$ to be small when the repulsive correlation energy U is large. However, $P(\infty)$ also depends on λ, i.e., on the velocity of the impact ion. As shown in Fig. 2, there is a peak for $P(\infty)$ at a small value of λ for each U. The explanation for this is that since small λ implies a long duration of interaction whereby from the uncertainty principle the resonance requirement is stringent, it is impossible for the second electron in the solid to overcome the barrier U. On the other hand, large λ can ease the resonance requirement -- energy conservation can be violated for short-duration processes -- but it also limits the actual time available for electron transfer, resulting in a small $P(\infty)$. As a consequence, for each U there exists an optimal value of
for which the probability attains a maximum. Moreover, λ_m increases as U is increased, due to the fact that a shorter interaction time is favorable for the second electron to transfer non-resonantly as U becomes larger.

The close relationship between resonant electron transfer and the ion velocity becomes obvious when we look at the time evolution of the probability of negative-ion formation. Figure 3 displays $P(t)$ for various values of U with fixed λ. Each probability curve has a peak at very short time t_m (- 0.2 femtoseconds). We see that t_m is smaller for larger U, in accordance with the arguments given above. In addition, the degree of transient negative-ion formation, measured by the ratio $P(t_m)/P(\infty)$, is more pronounced for larger U. Figure 4 provides yet another manifestation of the striking transient behavior; namely, although there is an optimal λ_m at each U for the limiting value of the probability, $P(\infty)$, this is not necessarily the case in the transient region.

To test our theory, we shall compare it with measurements on the conversion of $H^+(D^+)$ to $H^- (D^-)$ by scattering from a cesiated W(100) surface at different grazing angles θ. For this purpose, we identify λ as $v \cos \theta$, where v is the magnitude of the velocity, and phenomenologically introduce a velocity-dependent interaction, $\Delta = 0.43 \exp(-0.01v)$ (in the unit of eV), to account for the loss of particles due to penetration into the surface. The variation of θ is thus equivalent to the variation of the normal impact velocity λ. Our results, given in Fig. 5, are in qualitative agreement with the experimental ones, where for all incident energies the conversion probability goes
through a maximum. Quantitative comparisons have not been attempted since precise information on critical parameters, especially Δ, is still lacking. For the cesiated W(100) surface, among other complications leading to unreliable data for parameters is the theoretical evidence of a lowering of the work function by multiple dipole formation.18,19

In this work we have demonstrated, through varying the dynamical conditions of the impact ion, the significance of the correlation energy U in negative-ion formation from positive-ion-surface scattering. Though U in general decreases the probability for negative-ion formation, one can always exploit the experimentally controllable dynamical conditions (varying v and θ) to achieve an optimal result for a given system. Moreover, there may even be the possibility of exploiting the characteristic transient behavior of $P(t)$, since for finite U, $P(t_m)$ is always larger than $P(\infty)$ except for very large λ. For very small λ, on the other hand, our perturbation approach may not yield correct results, since the long interaction times then allowed may require higher-order processes than the second-order one to be considered. Our results have been shown to be in good qualitative agreement with experiments. A more elaborate calculation is needed which takes into account the lowering of the valence level of the ion near the surface18,19 is needed for quantitative comparison with experiments.

Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research (AFSC), United States Air Force, under Grant AFOSR-82-0046, and the Office of Naval Research. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. TFG acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1975-84) and the John Simon Guggenheim Foundation for a Fellowship (1983-84).
References

Figure Captions

Fig. 1. Schematic diagram of electron transfer in negative-ion formation. ε_U is the upper and ε_L the lower edge of the band. (a) Initial state $|\Gamma\rangle$: valence state ε_d empty, band filled up to the Fermi level ε_F. (b) Intermediate states $|k\rangle$ and $|k\rangle$: states corresponding to the neutralized atom; one electron transferred from the ε_k or ε_k level to the ε_d level. The arrows denote the spin states of the electrons, and the solid and hollow circles represent electrons and holes, respectively. (c) Final states $|k,k\rangle$: negative-ion states; two electrons transferred to the ε_d level.

Fig. 2. $P(\omega)$ vs λ for various values of U. Energy is in the unit of eV.

Fig. 3. $P(t)$ vs t for various values of U with fixed λ. As U increases, the characteristic short-time behavior becomes more pronounced. Energy is in the unit of eV, and time is in the unit of 6.59×10^{-16} sec (\hbar)

Fig. 4. $P(t)$ vs t for various values of λ with fixed U. The units are the same as in Fig. 3.

Fig. 5. $P(\omega)$ vs θ, the incident angle of impact. $\nu_1 < \nu_2 < \nu_3 < \nu_4$.
Fig. 1
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Naval Ocean Systems Center</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>San Diego, California 92152</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Dean William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Monterey, California 93940</td>
<td></td>
</tr>
<tr>
<td>Superintendent Chemistry Division, Code 6100</td>
<td>1</td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Mr. Vincent Schaper</td>
<td>1</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>DTNSRDC Code 2830</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Annapolis, Maryland 21402</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
<td>Mr. A. M. Anzalone</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>Administrative Librarian</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
<td>PLASTEC/ARRADCOM</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
<td>Bldg 3401</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td></td>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
<tr>
<td>Chemistry Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. J. Murday
Naval Research Laboratory
Surface Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Theodore E. Maday
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Chia-wei Woo
Department of Physics
Northwestern University
Evanston, Illinois 60201

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Robert M. Hexter
Department of Chemistry
University of Minnesota
Minneapolis, Minnesota

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60201

Dr. Theodore E. Maday
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Robert M. Hexter
Department of Chemistry
University of Minnesota
Minneapolis, Minnesota

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Adolph B. Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. S. L. Bernasek
Princeton University
Department of Chemistry
Princeton, New Jersey 08544
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. F. Carter
Code 6132
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Colton
Code 6112
Naval Research Laboratory
Washington, D.C. 20375

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. K. C. Janda
California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, California 91125

Professor R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Professor E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 12301

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 E11s Avenue
Chicago, Illinois 60637

Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton SO9 5NH
Hampshire, England

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853

Dr. Paul Schoen
Code 5570
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Smardzewski
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. P. Hansma
Physics Department
University of California
Santa Barbara, California 93106

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Professor T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
"B"M
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Professor Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Captain Lee Myers
AFOSR/NC
Bolling AFB
Washington, D.C. 20332

Professor Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Professor D. Hercules
University Pittsburgh
Chemistry Department
Pittsburgh, Pennsylvania 15260

Professor N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201

Professor A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. David Squire
Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709