AD-R138 274 INVESTIGHTION OF THE NUHER!CRL HETHDD oF MOMENTS FOR
DIGITAL COMPUTER DET.. (U) RIR FORCE INST OF TECH
MRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. R E CLAPP

UNCLASSIFIED OCT 83 AFIT/GEP/PH/82D-2 F/G 12/1

“EN
Fiiweo

orc




Co N e e wg e

FEEEE

w
=
L3
-~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




—

|

INVESTIGA™ION OF THE NUMXRICAL METHOD |
OF ¥M¢ '£NTS FOR DIGITAL COMPUTER
'DETERMINATION OF GREEN'S FUNCTIONS

THESIS

AFIT/GEP/PH/83D-3 Randolph E, Clapp
1/1t USAF




)
’;> INVESTIGATION OF THE NUMERICAL METHOD
2] OF MOMENTS FOR DIGITAL COMPUTER
: DETERMINATION OF GREEN'S FUNCTIONS
THESIS
AFIT/GEP/PH/83D=3 Randolph E. Clapp
1/1¢ USAF

Approved for public release; distribution unlimited

DTIC

ELECTE
R, FEB22184

'3
ﬁ.‘
.

" ‘_\.

-

t"“l’” r. X ~ s 28l o * . -sf LSS : -4 ” '!\- wsﬂ_\- .. ~. (SCYER TN \:...-.._:. - <,.‘--,’._ " 4.3 ~, 3 \._w,, ST '-._4




INVESTIGATION OF THE NUMERICAL METHOD
OF MOMENTS FOR DIGITAL COMPUTER
DETERMINATION OF GREEN'S FUNCTIONS

THESIS

Presented to the Faculty of the Bchool of Engineering of
the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

by

Randolph E, Clapp, B.S.
1/Lt USAF

Graduate Engineering Physics
October 1983

Approved for public release; distribution unlimited




J0 Nt ANDIINY

e
R

h
1’220 3.8

Y YWY

- }-A-: A ety ‘li*‘;

N

F

-
)
o
»
b

Preface

This report is the result of a twelve week study on
the feasibility of using the method of weighted residuals
to determine approximations to the discrete Green's function
or an analog to it. The study was sponsored by Mr. Nick
Pagano, AFWAL/MLBM. Included in this report are derivations
of the methods of Galerkin, collocation, and finite differ-
ences, for the one and two-dimensional Poisson's equation.
The analytical solutions for several inhomogeneity terms are
also presented. The results are given in both tabular and
graphical form for clarity and ease of reference. Where the
results showed a significant trend or deviated from expected
values, I have attempted to provide an explanation. All of

the primary goals of the study were met. During the course

of the twelve weeks I learned much about the theory of Green's

functions and methods of numerical analysis.

I wish to acknowledge Dr. Bernard Kaplan for his sup-
port and direction. His valuable suggestions aided me to
surmount difficulties which otherwise might have hindered

the completion of this study.
I must also thank Dr. Hengehold, Lt Col Bailey, and

Maj Cook for their assistance.

Randolph E, Clapp
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é o N Abstract
: '\u -
The purpose of this report was to determine the feas-

ibility of using the method of weighted residuals to obtain

approximations to the discrete Green's function or an ana-

SRSt R 3 RIS & S 2 Vo

- log to it. The methods of Galerkin, collocation, and finite

differences were vnrogrammed on a CDC 7600 computer in For-

AN

tran IV, The resulting program was used to generate the

13

approximate functions for the one and two-dimensional Pois-
- son's equation. 7The two-dimensional case was restricted to
the methods of Galerkin and firite differences on a rect-
) angular body. The approximate Green's functions and analogs
3 were applied to a series of inhomogeneity terms to obtain
3 the approximate solutions. The results were compared to the
analytical values at points of interest. The average per-
‘ cent error of the approximate solutions is reported for each
= case as the number of interior nodes of the mesh was increas-
- ed, The areas of consideration were: the rate of conver- /
. gence of the approximate solutions toward the analytical .
' solution, the amount of coﬁﬁuter-time required to execute 5
. the methods, and the accuracy of the approximate solutions.
- The results of this study indicate that the Green's func-
tions and analogs obtéined are valid approximations to the
discrete Green's function itself, with the restrictions that
2 additional calculations may be required in the case of the
Galerkin approximations and excessive computer-time may oc-
cur for high-accuracy approximations. The finite difference

5 ' approximations were determined to be the best method to use.

ix
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A I I. Introduction
S
Background
N
:; In many areas of scientific research one of the major
'. .l
:ﬁ steps in the theoretical modeling of experimental data is
. the solution of one or more linear differential equations.
i; Often these are complex, containing many derivatives and
}-
- source terms. Such equations are difficult to solve ana-

lytically. In addition, it is sometimes necessary to solve

s

large sets of similar equations to determine trends and re-

A
P o

gions of validity for theoretical predictions., It is in

Le),
these areas where computer-aided approximations to the dif-
\
:% ferential equations are useful, for they can yield near-cor-
S
Q rect answers with only a small amount of computer-time,
. '[> Perhaps the most versatile of these approximations is
§ the Green's function. It allows the reduction of a set of
;é linear differential equations to a set of algebraic equa=-
tions involving integrals. The solution set is then found
;& by solving the resulting matrix equation. The exact ana-
Yy
o lytical expression for the Green's function is often very
- difficult to determine.
*: -
> In contrast, the discrete Green's function, applicable
\\:
e only at specific points, can be approximated with much less
o
:. effort by using finite difference methods., The solution set
§ can then be obtained to the desired accuracy at these dis-
E crete points on the body under examination.
g ose
S
N -~ The purpose of this study is to determine the feasi-
2
)
v 1
]
oy
A
Y - .-

-
E

-~ e oo ala
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bility of using the method of weighted residuals (MWR) to

obtain the discrete Green's function or a function analo-

-
[y

gous to it., The methods of Galerkin and collocation will

[
L]

YNNG

Y Py

‘..‘

be studied in comparison with the method of finite differ-

X

ences, Both one and two-dimensional problems will be exam-

Paiy ined.

o

A Plan of Attack

oY) The approach to this study will be as follows:

o (1) To develop a computer program which uses the
e methods of Galerkin, collocation, and finite

o differences to obtain approximations for both

A% the discrete Green's function, or its analog,
. and the solution for the one-dimensional Pois-

gl son's equation. Homogeneous Dirichlet bound-

N ary conditions will be assumed in all cases.

;ii (2) To analyze the usefulness of the Green's func-

95 tions or analogs obtained in the previous step
y (ip when the inhomogeneity term is varied. Areas

~r of consideration will be: the number of calcu-

e lations required, computer analysis time, con-
3 vergence rate, and overall solution accuracy.

o, v

ﬁﬁ (3) To adapt the one-dimensional program to handle
- two-dimensional problems on a rectangular body.
- Only the methods of Galerkin and finite differ-
e ences will be examined. Homogeneous Dirichlet
o boundary conditions will again be assumed.

3{ (4) To examine the usefulness of the Green's func-
- tions or analogs obtained as in the above step.

oy . (5) To determine the feasibility and possible di-
o rections of continued research into this approx-

i? imation method,

I

Y

«

-
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I1I. Poisson's Equation in One Dimension

The first problem to be examined in this study is the

one-dimensional Poisson's equation. The general form of

.y
4
-

o«
o ®
-,

\:\'
N the equation to be solved can be expressed as
RN IT(x) = g(x) (1)
AN
2
£ where
. 42
e L = The linear differential operator, ——s
o ax
.,-.:a‘
J:E:'f: T(x) = The desired solution function

g(x) = The inhomogeneity term

2
o
ANAY
4
4

£

ey
A -

with the associated homogeneous Dirichlet boundary condi-

5
@ tions
o
Y P(0) = O (2-a)
o m(a) = O (2-b)
) Analytical Solution
e
:ﬁ The general solution to Eq(1) can be determined by
"y
J direct integration., For the case of a constant inhomogen-
f €ity the general solution becomes
K3 ox2
T(x) = 5=+ C4x + C, (3)
e
:{:E: where C, C,, and 02 are constants, When the boundary con-
oo
ditions (Eq(2)) are applied, Eq(3) then becomes
y
44 2
AL Cx Cax
i T(x) = <5~ - 5= (4




o The analytical solution for cases with other inhomogeneity

I
Vel

e terms can be found in a similar manner.

[;§ Numerical Approximation
WY
3 In all of the approximation methods discussed in this

study the body under consideration is modeled by a mesh.

?fn The method is then applied at the N interior nodal points
A of the mesh., This results in a set of N simultaneous alge-

braic equations which, when solved, yields the approximate

%,‘ solution to the given problem, Depending upon which method
‘§;1 is applied this approximation is valid for either the entire
v.‘4
X body or the nodal points alone.
t§ The accuracy of the approximate solution depends on
20 the number of nodal points in the mesh. A sample mesh for
" .
" Q the one-dimensional problem with four interior nodes is
,ﬁv | shown in Figure 1. The nodes are numbered consecutively
$E from left to right. The smaller the step size, h, the larg-
a0n,
- er the number of nodal points and the more accurate the ap-
;;ﬁ proximation.
A
s
rié
A
o - i 2 2 &4 i 3
i 0 a
3500 I |
™ "on
X
L
N
A
‘:f Figure 1, Sample Mesh With Four Interior Nodes
\_'."
A
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-:E . Method of Weighted Residuals., In the general method

of weighted residuals (MWR) the solution is approximated as

& sum of N trial functions, fn(x), weighted by undetermined

s factors, a,, as (Ref 1:339)

0N

N

e

-\:‘ TN(x) = Zanofn(x) (5)
‘:\ n=1

The trial functions are chosen to be linearly independent

5%: members of a complete set, each of which satisfy the given
‘ boundary conditions (Eq(2)). According to Ozisik (Ref 1:
o 340), the trial functions for rectangular coordinates can
:Eﬁ be chosen as products of a function, w(x), with various

?; powers of x, where w(x) is defined as
w(x) = (x-0)e(x-a)
gl (6)
N = x(x-a)
™

: It is obvious that Eq(6) satisfies Eq(2)., For all cases of
Nl
j:% the one-dimensional problem the trial functions will be de-
'_? fined as
.:::; . fn(X) = leW(X) (7)
e

"
Eﬁ If Eq(5) is substituted into Eq(1) we obtain (Ref 1:
. 339)
o
b

N3 N

L Z,a“.fn(x) = g(x) (8)

-
LA
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Multiplying Eq(8) by some weighting functions,zum, and then

integrating over the limits of the body yields
N a
ZGns wm(x)oLfn(x)dx = rwm(x)og(x)dx (9)
n="1 0 0
for
m = 1i2a5s e o o ’N

Eq(9) represents a set of N simultaneous equations with N

unknowns, o . If we now define the inner products

a

Iy, =<wp Lf > = wm(x)OLfn(x)dx (10-a)
0
a

gm = <wm,8> - wm(x)og(x)dx (10"b)
0

~Eq(9) becomes

N .

D oK T8> = <wye8> (1)

n-"

or in matrix form (Ref 2:6)
Ia =g (12)

where

= denotes a square matrix

- denotes a column vector




;.::n . AT I I A N A M A A M A A A S At g
523
-“s- N
SRR ~ -
<¢0,1 ’Lfl‘> <w1 ’Lf2> [ o L ] <U,1 ’LfN>
N
T8 = KWy LD < ’L.f> e o o W,,Lf,>
2 I. [ S 2N (13)
! <¢I’N,Lf1> <ﬁ’N’Lf2> e o o <UN’LrNi
o - -
X aq
*-. o
o
N .
i, a
- N
.
4 7
Eﬁ <¢l’1 18>
2 <W218>
7
N © g=| (15)
V] o
'
. E:: f“’l\vgz
o The weighting factors can then be determined by
._.:
o, =
3 &= I% (16)
144 .
Finally, the approximate solution can be written as ﬂ
& )
2,(x) = Ta (17)
for a method valid over the entire body, or
od
3 = T
:'.3- TN = fa (18)
x
5 for a method valid only at discrete points, where
PR
V.




1,f2,f3, ° o -’fg

N(xnode ﬂ)
TN(xnode 2)

TN(x

node ?ﬂ

£1(0de 101 £2l¥noge 470+ ¢ -5 Iylxq)
f‘l(xnode 2)’ f2(xnode 2)’ A fN(x?.)

T1n0de W)+ £2(%noae W01 ¢ ¢ oo En(xy)

Green's Functions and Analogs. Given a differential
equation of the form of Eq(1) and its associated boundary

conditions (Eq(2)), the analytical Green's function for the
problem can be determined. An in~depth analysis for the
case of Dirichlet boundary conditions can be found in Stack-
gold (Ref 3:1-30), Once the Green's function has been de-
termined the solution to Eq(1) with various inhomogeneity
terms 31,32,53, eee 185 Can be found by calculating the in-

ﬁegral
a
Ti(x) = s G(x|x')ogi(x)dx' (22)
0]

The Green's function for Eq(1) with
boundary conditions as in Eq(2)

The field point




e x' = The source point

o For the discrete Green's function Eq(22) takes the matrix

form

3
n

Gy By,3(X) hy (23)
where
TN 4 = Ea(20) for the inhomogeneity g;(x)
?

x. = The x coordinate of the jth field node
J (j = 1’293’ -oooN)

20 x), = The x coordinate of the kth source node
(k = 1’2’3’ ...,N)

; By i(x) = A column vector of order N whose elements
@ ’ are all equal to gi(x)

The step size for N interior nodes

=

XA
XA

The tilde has been placed over the left-hand side of Eq(23)

Ay
Py _
s

ol B e

to emphasize that the discrete Green's function solution,

iN’ is not necessarily equal to the weighted residuals sol-

A Ay
20X

ution, TN.
% ) If Eq(16) is substituted into both Eq(17) and Eq(18)

Y
;53 we obtain the respective equations

53 r(x) =T 17 & (24-a)

and

(24=b)

‘.’
)
n
IR
HN

(1+1]

M I R LY 3
u LI T Y

. ot Amc = LT IR P TRIUCR S “Ayte e - .
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In comparing Eq(23) and Eq(24) it should be noted that the
weighted residual approximations do not contain the factor

h This is because the weighted residual solutions are

N.
N-term sumations whereas the discrete Green's function sol-
ution is the approximation of an integral (Eq(22))., We can
identify the analogs to the discrete Green's function in

Eq(24) as

A (25-a)
for a method wvalid over the entire body, and

= = =4

Gy =fI (25-b)

for a method valid at only discrete points, where the no-
tation (t+) is used to denote the analogs. The functions
in Eq(25) are termed analogs since the elements of the ma-
trix g, defined by Eq(10-b), in Eq(24) are not necessarily
equal to g(x)e.

Method of Galerkin. In the method of Galerkin the

weighting functions, w , are taken to be equal to the trial

functions, f , as defined in Eq(?7). For these weighting

functions the inner products in Eq(10) take the form

o8
I = <fm,Lfn> = fm(x)oLfn(x)dx (26-a)
0

.8
8y, = <f»8> = fm(x)og(x)dx (26-b)
0

10

- ._:. . :. .
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The resulting form of Eq(11) is then

N
Zan<fm,Lfn> = <f,8> (27)

Since there are no restrictions on the value of x in Eq(27)
the method of Galerkin approximations are valid over the
entire body and are given by Eq(24-a).

The appropriate form of the analog to the discrete
Green's function is that of Eq(25-a). It is clear that this
must be an analog since the elements of the inhomogeneity
matrix, g, defined by Eq(26-~b), are never all equal to g(x).
This analog should be as useful as the discrete Green's
function itself with the exception that the inner products
to determine the elements of the inhomogeneity matrix must
be recalculated for each new inhomogeneity term,

Method of Collocation. In the method of collocation,

or point matching, the weighting functions, W, are defined

as (Ref 2:10)

wy = 8(x-x_ ) (28)

m

-

where (x) is the Dirac delta function whose properties

are given as (Ref 3:1-30)

0 0
8x) = { * ! } (29-a)
W X = o
a O O not in (a,b)
8(x)dx = { } (29-v)
SO 1 0 in (a,b)

11
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]l 8(x-x")f(x)dx = £(x') (29-¢)

For these weighting functions the inner products in Eq(10)

take the form

a
s J(x-xm)Lfn(x)dx (30-a)
0

Imn = <6(x-xm),Lfd>

Lf (x,)

a
gy = <6(x-x;),8> j 6(x-x Jg(x)ax  (30-b)
0

g(xy)
where (Ref 2:10)
x, = EE:QT (31)

The resulting form of Eq(11) is then

N
. D a1 (x) = &lxy) (32)

n=1

The value of x in Eq(32) is restricted to that of the collo-

cation points, x_. Therefore the collocation approximations

m
are valid only at these points and are given by Eq(24-b).
The appropriate form of the analog to the discrete

Green's function is that of Eq(25-b). The elements of the

12




inhomogeneity matrix, g, are the same as the elements of

the corresponding matrix for the discrete Green's function
as in Eq(23), but the approximate solutions,'iN and ﬁN’
are not necessarily the same since EN is not necessarily
the same as the analog form, % ?’1. This analog should be
as useful as the discrete Green's function itself except
that the number of terms necessary to achieve a given level
of accuracy may differ between the two methods.

Method of Finite Differences. According to Stackgold
(Ref 3:1-30) the defining relation for the Green's function

for the Laplacian operator is

26 (x 1"
e6(xix') . g(x-x') (33)

dx
with the associated boundary conditions for Eq(1) and Eq(2)

G(Olx') = O (34-a)

G(alx') = O (34=b)

For the discrete Green's function on a mesh with step size

hy Eq(33) takes the form (Ref 4:315)

2
d<G '
gizlx ). hﬁﬂa(x-x') (35)

The derivative term in Eq(35) can be replaced by a central

difference quotient as (Ref 5:6)
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d2GN(x|x') i GN(x+hN|x')-2GN(x!x')+GN(x-hN|x')
2

ax? ng

(36)

Substituting Eq(36) into Eq(35) and multiplying by ho yields
GN(x+hN|x')-2GN(x|x')+GN(x-hNIx') = hyd(x-x') (37)

Applying Eq(37) together with the boundary conditions (Eq(34))
to each of the N interior nodes of the mesh results in a
set of N2 simultaneous equations expressed in matrix form as

c GN = hy IN (38)

where

= The coefficient matrix

Qn

’_GN(X,”X,]) G‘N(x1| x2) o o o GN(quxNT

G (sl Xa) Gu(Xa)l Xs) o o o Gyl )
N Xl Xq) Gyixo) X5 N Xol Xy (39)

@it

Gy (a1 %) Gy(xglxs) o o & GN(XNIXNZ

I, = The identity matrix of order N

The solution of Eq(38) yields the approximate discrete
Green's function matrix (Eq(39)). The solution to the one-
dimensional Poisson's equation then follows as in Eq(23).

Computer Analysis

The numerical approximations discussed in the previous

sections (Eqs(24-a),(24-b), and (23)) were programmed in For-
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tran IV on a CDC 7600 mainframe. The resulting computer
program is on file with the AFIT Department of Physics,
Problem Set., A series of four problems were ana-
lyzed as the number of interior nodes of the mesh was in-
creased, The areas of consideration were: convergence
rate, computer-time, and the overall solution accuracye.

The four problems analyzed were:

I) IT(x) = 10 (40-a)
II) IT(x) = x° (40=b)
III) I1Ir(x) = x2 + 1 (40-¢)
IV) IP(x) = x° + x + 1 (40-d)

The Dirichlet boundary conditions for all four problems

were taken as

0 (41-a)
0 (41-b)

T(0)
T(2)

The analysis was performed at X = 0.66 and x = 1.33 for all

cases, :
Exact Solution. The analytical solutions to Eqs(40)
Wwere found by direct integration to be

I) T(x) = 5%° - 5x (42-a)
4
II) T(x) = ¥ - 28X (42-b)
5 2
III) T(x) = ¥5 + 5= - % (42-c)
4 2
Iv) T(x)=§§+§2+§--g§’-§ (42-4)
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:2& 2 The values of the above solutions at the points of interest
T S
are listed in Table I.

W
A Average Error. The average percent error for the one-
.“\:

e dimensional problem is defined as
NS

o > o 200 |7y (0.88)-2(0.88)] [y (1.53)-2(1.53)) 43)
< 2 T(0.66) T(1.33)
where

2
o
.3h TN = The approximate solution under consideration
e

; Convergence Rate. The rate at which each of the three
AN
.58 approximate solutions (Eqs(17),(18), and (23)) converged
S
L) toward the exact values listed in Table I was examined for
- cib problems I-IV, The average percent error in the approximate
£g§ solutions is plotted vs the number of interior nodes in the
fjﬁz mesh as Figures 2-5. Appendix A contains the actual valyes
‘;, of the approximations at the points of interest for each of
e
% the four problems.

i Table I
‘Bﬁ . Exact Solution Values at Points of Interest
A
NN : .
0y Problem Poing 1 Poing 2
——— NO. 180066 x'1 .33
By
o I <4 1l -4, 04
5

:_-3:; II -0,42798 | -0.62551

4%
RN v -1.26749 | -1.56379
..‘-‘ AN
7
R
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In each of the four cases the finite difference approx-
imation yielded the best initial solution. In the case of
problem I the method yielded the exact values, Average er-
rors below one percent for eight or more interior nodes were
achieved.

The method of Galerkin approximations converged at a
somewhat slower rate and did not achieve an average error
below one percent until 20 interior nodes were used. In
fact a slight increase in the error was seen at ‘17 nodes in
each case examined. This was followed by a decrease to be-
low one percent at 20 nodes,

The collocation approximations yielded the worst ini-
tial solutions and showed marked oscillations in the average
percent error. The oscillations were damped such that the
error still dropped to around one percent at the 17 node
point. The slight increase and subsequent decrease in the
Galerkin approximations mentioned above may be evidence of :
a smaller amplitude oscillation there also,

The method of weighted residuals is sensitive to the
choice of the trial functions. It may be that the oscilla-
tions in the collocation and Galerkin approximations are a
result of an inappropriate choice of trial functions for
the analysis of Poisson's equation. Babuska (Ref 6:241-245)
states that the trial functions as given in Eq(?7) are numer-
ically unstable for Gaussian elimination matrix inversion.

That is, the matrix f in the weighted residual solutions is

very nearly singular creating significant errors in the cal-

‘w
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N
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culated inverse. Although Gaussian elimination was not used
in the direct matrix inversion routine it is reasonable to
expect that the same problem may be present in many inver-
sion methods., A different choice of trial functions may les-
sen or eliminate the problem,

Computer Analysis Time., The quantity used as a meas-
ure of the computer analysis time was the actual execution
time of the program. The time taken by compilation, input,
and output was almost constant for all computer runs., The
execution time in seconds is plotted in Figures 6-9 vs the
number of interior nodes in the mesh,

For all cases the execution time was the same for each
approximation method at eight or less nodes. Above eight
nodes the execution time steadily increased. This was to
be expected since an increased number of nodes requires ad-
ditional iterations of loops in the progranm,

The method of finite differences required the least
amount of computer time (less than 0.2 seconds in all cases)
with the weighted residual methods requiring considerably
more., It should be noted that for problems III and IV the
Galerkin method required less time than it did for problems
I and II. This could not be explained. The increased time
required by the weighted residual methods can be explained
as the result of the additional matrix multiplication re-
quired,

Overall Solution Accuracy. All three approximation

methods yielded solutions with an average percent error of

22
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about one percent when 17 or more nodes were used (taking
the minimum point of the collocation oscillations). The
convergence trends indicate that for more than 25 nodes

the three methods should yield nearly the exact values with
average errors less than 0.1 percent.

It should be noted here that for the collocation ap-
proximation the direct matrix inversion routine used (IMSL
routine LINV2F; Ref 7) issued a warning that its accuracy
test had failed. This occured at five or more interior nodes,
Some of the oscillation in these approximations could be a
result of this round-off error.

Conclusions

From the analyses performed it seems that for approx-
imations with few terms the method of finite differences is
the best choice. Not only is it easier to apply (less cal-
culations required and less execution time) but the approx-
imate solutions are more accurate,

Por approximations of more than 10 terms the trade-offs
between calculations required and approximation accuracy make
the Galerkin and collocation methods about equal. The finite
difference method is better than both.
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:f R III. Poisson's Equation in Two Dimensions

The second problem to be examined in this study is

’.
\:\_:
“»

..“..
‘._-

the two-dimensional Poisson's equation. The general form

Q; of the equation to be solved can be expressed as

o ' e '
WS LT (x,5) = 8 (x,3) (44)
A

Co where
;}ﬂ
5 ' denotes a two-dimensional function

N L' = The linear differential operator,

; 32 a2

BSY +

N e oyt

35 T'(x,y) = The desired solution function

S

(jp g'(x,y) = The inhomogeneity term

-r‘j

3% with the associated homogeneous Dirichlet boundary conditions
% ,

! T (0,y) = O (45-2)
Te ]

0 T (a,y) = O (45-b)
N
::;l_' T'(x’O) = 0 (45=¢)
P

A ]
— T (x4b) = O (45-4)

This is Poisson's equation on a rectangular body.

Analytical Solution
The analytical solution to Eq(44) with boundary con-

o il
o'

P,
-
-

s

[ |

S
1
)

[
ol

ditions Eq(45) can be found by a Fourier series expansion
oy as (Ref 8:41-42)

<
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For a given inhomogeneity the integration can casily be

(46)

performed and the series solution can then be programmed
to the desired number of terms providing Eq(46) converges.
Numerical Approximation

A sample mesh and node numbering scheme is shown as
Figure 10 for the rectangular body. The x and y step sizes,
h and k respectively, control the number of nodal points
and hence the accuracy of the approximation,

Method of Weighted Residuals. In the two-dimensional
MWR the solution is approximated as a sum of N trial func-
tions, f;(x,y), weighted by undetermined factors, a;, as

(Ref 1:339)

N
Dy (%y3) = z;a; £)(x,3) D)
N=

The trial functions each satisfy the given boundary condi-
tions (Eq(45)). According to Ozisik (Ref 1:340-344), the
trial functions for rectangular coordinates can be chosen
as products of a function, w'(x,y), with various powers of

x and y, where w'(x,y) is defined as

w (x,7) = (x=0)e(y-0)e(x-a)e(y-b) (48)

2?7
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]

_G Eq(48) satisfies the boundary conditions as expressed in

:l:j: Eq(45)., PFor all cases of the two-dimensional problem the
~h
'} trial functions will be defined as
My . 2n-2
19401 ]
'i.: fn = (xy) 5 oW (x’y) (fOI‘ n.1’4’7’ noo) (49-3.)
S
W 2n+2

- > ' '

n £, =X 3 o w (x,5) (for n=2,5,8, «e.) (49=b)
:Z;Z: °
‘_':.E: ' '2_% '
:‘ fn = Y o VW (X,y) (fOI‘ n=5’6g9, ooo) (49-0)
oy
bl
g If Eq(47) is substituted into Eq(44) we obtain (Ref
® ot

o 1:339)

a,
=

LX)
.

y o A DILRENCIO) FNCHS (50)
:3:: n="1
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T
N
»l
\-,
N DR Multiplying Eq(50) by some weighting functions, wl;, and then
e integrating over the limits of the rectangle yields
-
\."":
2 N o (o2 L bea
o ' '
o 2 :anj Sum(x,y) L £ (x,y)dxdy = s s w (x,5) g (x,y)dxdy
=1
. n 0 0 O 0 (5,1)
._:4.
" 3N
35::; for
) m=1’2,5’ooo’N
l~ This again represents a set of N simultaneous equations

with N unknowns, ar'l. The matrix form of Eq(51) is the same

as that for the one-dimensional analysis

e e e e
R I

-1 _1 P, |

I a =¢g (52)
N ' where
N
,:; B o v v ]
:’q (Uq,L f1> <w;|’L f2> o o o <“’1’L fN>
) R N BN N B
- = <W,,L £> <W,, L £> ¢ o o <@, ,,L £,>
2 S 27 N (53)
[,
‘F-‘ L ] L) » [ J L ] ® ® [ ] L ] [ ] ® ®
O R R R IRE
::::: . —d'—
e
N 1
'
a,
S '
:::_" a =|. (54)
:
n::‘n
s '
- aN




(1]
[}

' '
<UN,3>

e —d

b,.a

<HUY> = [ Suwdxdy
0J0

The weighting factors can then be determined by

‘_’u - il_’] -1

Finally, the approximate solution can be written as

] =

for a method valid over the entire body, or

-1 — P
TN = f a

for a method valid at discrete points alone, where

?0 ™ 1 1
= fq’f29f39 o o o ofN
— ' ———
TN(xnode 1'Jnode 1)
!
Tn(Xnode 297node 2
N " .
1 ®
TN(xnode N’ynodo N)

= —

“o g &" A % .-\ .\;.\'.‘.'."-'."-..\~
~ - o

(55)

(56)

(57)

(58)

(59)

(60)

(61)




. -

Zy(x9434)
]

fN(xgoyz)

] ]
fq(x49Yq) fz(x1OY1)

] ]
' fq(x2,32) f2(x2,y2)

IR
"

(62)

. o f&(xN,yN)

' '
fq(xNoyN) fz(styN)

Green's Functions and Analogs. Given a differential
equation of the form of Eq(44) and its associated boundary

conditions (Eq(45)), the analytical Green's function for
the problem can be determined. An analysis can be found in
a previous thesis by Gallof (Ref 8:42-43), The two-dimen-

sional form of Eq(22) then can be written as
b.a

T;(X.y) = s S G'(XIX';yIY')-s;(x,y)dX'dy' (63)
oJo

where

The Green's function for Eq(44)

]
G (x|x';y|¥") ; \
with boundary conditions as in

Eq(45)
x and y = The field point coordinates
* x' and y' = The source point coordinates

For the discrete Green's function Eq(63) takes the matrix

form

Ty,i = a&’gg,i(x’7)°hn°ks (64)

where
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Eq(61) for the inhomogeneity g;(x,y)

N, gk = On(X51%37 51 7y)

Xy and y. = The x and y coordinates at the jth field
J node (384’2,3’ oo ’N)

X and i = The x and y coordinates at the kth source
node (k=",2,3’ XY} ,N)

hp = The step size for R interior nodes along
the x-axis

kg = The step size for S interior nodes along
the y-axis

ReS = N

The tilde has sgain been placed over the left-hand side of
Eq(64) to emphasize that, as in the one-dimensional case
(Eq(23)), the discrete Green's function solution, 5&, is
not necessarily equal to the weighted residuals solution,
T

The two-dimensional forms of Eqs(24) are the approxi-

mate solutions

I g (65-a)

and

(65-b)

In comparing Eq(64) and Eq(65) it should be noted that the
weighted residual approximations do not contain the factors
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hR and ks. This is because the weighted residual solutions
are N-term summations whereas the discrete Green's function
solution is the approximation of an integral (Eq(63)). We
can identify the discrete Green's function analogs in two

dimensions as

oy | 1= o

GN =T I' 1 (66-a)
for a method valid over the entire body, and

G =1 (66-b)

for a method valid at discrete points only. These func-
tions are termed analogs since the elements of the matrix
E' in the weighted residuals solutions are not necessarily
equal to the inhomogeneity, s‘(x,y).

Method of Galerkin. The weighting functions, w;,
again taken to be equal to the trial functions, f;, as de-

fined in Eq(49). The resulting form of Eq(51) is

are

N L} b a [} | I | b a [} ] .
Zans s £,(x,3)L £ (x,y)dxdy = I s £,(x,7)8 (x,y)dxdy
for

m = 1’2’5’ ees ,N

There are no restrictions on the value of x or y in Eq(67).

Therefore the Galerkin approximations are valid over the

entire rectangle and are given by Eq(65-a).

.......




The appropriate form of the discrete Green's function
analog in two dimensions is that of Eq(66-a). This analog
should be as useful as the two-dimensional discrete Green's
function itself except that the double integrals must be re-~
calculated for each new inhomogeneity matrix.

Method of Collocation. In the two-dimensional method

of collocation the weighting functions, w

n? are taken as
(Ref 2:10)

“’1;1 = 0(x~x_)*8(y=y,) (68)

where é(x) is the Dirac delta function whose properties are

given in Eq(29). The coordinates x and y, are defined as

x. = The x coordinate of the mth interior (69-a)
m node

¥, = The y coordinate of the mth interior (69-b)
node

For these weighting functions

b .a
mn j s 6(x-xm)6(?-7&)L'f;(x,y)dxdy (70-a)
0J0

-
n

L'f, (x507,)

"

b ca
S S a(x-xm)a(y-ym)s'(x.y)dxdy (?70-b)
0Jo

s'(xm,ym)
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'::._'\
&é; The resulting form of Eq(51) is then
anc N
-_:_‘-_:, | I I | _ ]
B Z;anL £ (XaTg) = & (Xp03,) (7)
.:'—\' n=
D The values of x and y in Eq(?71) are restricted to the coor-
R
Zﬁﬁ dinates of the collocation points. Therefore the two-dim-
H
‘ﬁ& ensional collocation approximations are valid at the collo-
o cation points alone and are given by Eq(65-b).
s
véﬂ The appropriate form of the discrete Green's function
RS
'?b analog is that of .q(66-b)., As in the one-dimensional case
ot these analogs should be as useful as the discrete Green's
.-,:'{
ﬁy function itself except the convergence rate may differ be-
'f-‘ﬂ:
AT tween the two methods.
- Gi’ Method of Finite Differences., The defining relation
f&; for the Green's function for the two-dimensional Laplacian
My operator is (Ref 3:1-30)
-."\'
- 2" 2."
~ W | IS ] 1, ]
\:_: a_G_(X_“c_éLLL). + &.Q-Lx'_xéllu = 6(x_x')6(y_y') (72)
-.f,% ax 3;7 .
\.f‘-
With the associated boundary conditions for Eq(44) and Eq(45)
::f':: '
3o G (01x';y|y') = O (73-a)
.
G (aix';y15') = O (73-b)
N
N :: ! ' 1
a G (x|x';0ly') = O (73=-c)
e
. '
e G (xIx'sbly') = 0 (73-4)
57::
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B
o
e
e Por the discrete Green's function on a mesh with step sizes
i hp and kg Eq(72) takes the form (Ref 4:315)
i
L (] '
;_:f:; aZGN(XIX';ny') + azGN(JcIX';yly')
A1 8x2 ay?
?; = by~ 8(x—x") 8(y-3*) (74)
N
The derivative terms in Eq(74) can be replaced by central
= difference quotients as (Ref 5:6)
2
ag)
55 azG{,(xlx';yly')
;} 2 (75"&)
,:3'. X
N
% ' ' ! ' ' ! ' '
% = Gy(x+hplx ;yly')-ZGN(xg 3717 )+Gy(x=hplx*';7|3")
- o bg
N
30y
122 2."
F G (x|x';313')
.‘ N - é (75-b)
X
o
'. ‘ ' ' ) ] ! |} )
: = Gy (xIx'57+kgl ¥’ )=-2Gy(x|x" ;7 |¥" )+Cy(xIx' ;5-Kg|¥')
W 2
J'.
¥ ¥ 2, 2
:’Z:; Substituting Eqs(?75) into Eq(?74) and multiplying by hp"kg
b7
o yields
ey ' '
o kg 2Gy (x+ho | X' 3371 7" )-2(hp 41eg® )y (x1 X 571 3*)
!
g::l 2(;'( h |x" l)+ 2G'(x x' s va ‘)
+kg Gy (x~hpl x* ;7|3 J+hp Gy (x)x* i3+ ¥
[T oo 26" (x|x"s " §(x-x")é(y-y*)  (76)
j;. * +hp G (xIx' ;7-Kg|¥') = hpkg y-y
)




Applying Eq(76) together with the boundary conditions
(Eq(?73)) at each of the N interior nodes of the mesh results

in a set of N2 simultaneous equations expressed in matrix
form as

=1 -

C Gy = hpkg Iy (77)
where

-t
C = The coefficient matrix

GN(X’l 1x4 379131y ,

—
GN(X'I lxN3y1 'yN)

. G (x51%4375154) Gy (X5 1%y 375 | Ty)
N~ (78)

L] [ 4 L J [ J L] L ] L L 4 L J [ ]

121]]

. GN(lexN;yNWN)

-

GN(lex1 ;yN' y’l)
L
Tﬁ = The identity matrix of order N

The solution of Eq(77) yields the approximate discrete
Green's function matrix (Eq(78)). The solution to Poisson's

equation in two dimensions then follows as in Eq(64).

Computer Analysis

-

The one dimensional computer program was adapted to
handle the two-dimensional Galerkin and finite difference
approximations on a rectangular body. The equations pro-
grammed were Eq(65-a) and Eq(64). The resulting computer
program is on file with the AFIT Department of Physics,

Problem Set. A series of four problems were analyzed

as the number of interior nodes of the mesh was increased,
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s The areas of consideration were: convergence rate, computer

time, and the overall solution accuracy.

analyzed were:

1) 1't (x,3) = 10
I1) L'T'(x,y) = x2
III1) 1’7 (x,y) = x° + 3°

IV) LT (x,y) = %% + 3% + x

The four problems

(79-a)
(79-b)
(79-¢)

(79-4)

The Dirichlet boundary conditions for all four problems

were taken as

R 7' (0,3) = 0 (80-a)
R T'(2,5) = 0 (80-b)
£ 7' (x,0) = O (80-¢)
- T'(x,2) = 0 (80-d)
:
- The analysis was performed at the following four points for
o
all cases:
T : _ _
o’ Point 1 (x = 0.66, y = 0.66)
,0
f_ Point 2 (x = 1,33, y = 0.66)
? Point 3 (x = 0.33, ¥ = 1.33)
N _ _
1 Point 4 (x = 1,33, y = 1.33)
RS
3 R
:d
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! '1?'_7.‘ Exact Solutions. The analytical solutions to Eqs(79)
y were found by integrating Eq(46) with the respective inho- 1
' .
;f: mogeneity terms., The analytical solutions are presented
(-I
N as a single function where the inhomogeneity is taken as
.- '
< ' 2 2 )
8 (X,5) =ax“ + By + yx + 8y + € (81)

2 where @, 8, 7, 8, and € are constants, The solution is

< then

) T (x.y) = - T Z Z [sin( )s:m( ) [() (%) ]]
X
» 2a7 a’ n } b n
2 ol - =) (-1 -] (1 = (1))

Y] [ {(m " mﬂ) nm

% ;
2 > pd n a m :
. 2b

% +pilS=z% - =) (D =)0 - (N ;
b ﬂ{(n ™ mr) } (nm) ;
2 22b(=1)" n baa 1) m \
: - (RN - )Py -p(RalR N a - SRR

" mnan

< . + c( D )((-’1)“I - - - ’l)] (82) :
2 mnr :
¥ -
A y
- .
¥ The values of the above solution, for the problems in Eq(79), )
-

- at the points of interest are listed in Table II. Each lis-
»

- ted value was obtained using 100 summation terms.
Average Error. The average percent error for the two-
i

G dimensional problem is defined as

¥
< 39 y
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Table II

Exact Solution Values for the Two-Dimensional

Problem Set at Points of Interest

Problem Point 1 Point 2 Point 3 Point 4
No.
1’ ~2.41384 | —2.41384 | -2.41384 | -2.41384
11’ -0.20168 | -0.36879 | -0.20168 | -0.36879
L}
III ~0.40336 =0,57047 =0,57047 -0.73759
v’ -0.60297 | -0.85364 | -0.77008 | -1.02075
' 100 | |Ty(point 1) - ' (point i)
<Ep = 2N — (83)
o T (point i)
where

T& = The approximate solution under considera-
tion
Convergence Rate, The rate at which each of the two
approximate solutions (Eqs(65-a) and (64)) converged toward
the exact values listed in Table II was examined for prob-
lems I'-IV'. The average percent error in the approximate
solutions is plotted vs the number of interior nodes in the
mesh as Figures 11-14, Appendix B contains the actual val-
ues of the approximations at the points of interest for

each of the four problems,

In each of the four cases the Galerkin approximations




for g'(x,y) = 10
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for g'(x,y) = x
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yielded the best initial solution. Initial average errors

of between one and two percent were noted. In contrast,
the initial averare errors for the finite difference approx-
imations ranged from 18 to 27 percent.

The Galerkin approximations yielded average errors be-
low one percent for 16 or more interior nodes, The finite
difference approximations never had an average error small-
er than four percent., Both methods converged at the same
rate for 10 or more interior nodes.,

The above trends are inconsistent with the one-dimen-
sional cases where the finite difference approximations were
consistently better than the Galerkin approximations. The
general trends should be the same for both one and two di-
mensions. The two-dimensional finite difference approxima-
tions seem to converge rapidly but toward a value well above
the exact solutions. It is suspected that there is a minor
error in the programming of the finite difference method
which could explain this discrepancy.

No oscillations comparable to the one-dimensional co-
llocation cases were noted except for a slight increase in
average error for the Galerkin in problem I with 22 nodes
and for the finite differences in problem II with 22 nodes.

Computer Analysis Time. The quantity used as a meas-

ure of the computer analysis time was the actual execution
time of the progran. The time taken by compilation, input,

and output was almost constant for all computer runs. The

execution time in seconds is plotted in Figures 15-18 vs
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for g'(X,y) = x> + y° + x
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the number of interior nodes in the mesh.

..
1

A,
<A

In all cases the Galerkin approximations took more
time to execute than did the finite difference approxima-
tions. This is due to the additional matrix multiplication
required in the Galerkin method.

The trends in Figures 15-18 indicate that for more
than 28 interior nodes the Galerkin approximations will re-
quire more than one second of computer time while the fi-
nite difference approximations will require only about 0.5
seconds., This is an important trend when a high-accuracy,
many-term approximation is desired,

Overall Solution Accuracy. The convergence trends
indicate that both the Galerkin and finite difference ap-

‘]i proximations are slowly converging and will not reach an
average error less than 0,1 percent unless a large numbef
(>60) of interior nodes are used. The Galerkin method will
yield better accuracy.
Conclusions

From the analyses performed it seems that neither of
the two approximation methods will yield very accurate an-
8wers when few interior nodes are used. At least 16 nodes
are required before the Galerkin method will yield average
errors less than one percent., The finite difference approx-
imations never reach that level of accuracye.

For a large number of interior nodes (between 50 and
100) the two methods are about equal. The accuracy limita-

tions of the finite difference approximations trade-off

.....
-----




against the large execution time requirements of the Gal-
{ erkin approximations, If the suspected programming error
PR in the finite difference method is located and corrected

: then, as in the one-dimensional case, the method should be

the best choice to use.
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Eé .;§. IV. Conclusions and Recommendations ;
é} Conclusions !
?é Three points may be made regarding the use of the me- E
é\ thod of weighted residuals to determine approximations to §
- the discrete Green's function. First, the Galerkin and co- g
gi llocation methods both yield analogs which are as useful as i
- the discrete Green's function itself. They allowed the sol- é
L ution of Poisson's equation in one and two dimensions (only 5
ﬁ the one-dimensional case was verified for collocation) with i
3 four different inhomogeneity terms. The accuracy of these g
J; approximate solutions was limited to the accuracies of the 1
fi methods themselves., That is, the solutions were the same 1
: ]

as those obtained if the methods were applied to each prob-
lem without incorporating Green's functions or analogs. The
> only major limitation to the method of Galerkin is that the

inhomogeneity matrix must be recalculated for each respect-

'$ ive inhomogeneity term,

;g The second point is the apparent sensitivity of the
X weighted residual approximations to the choice of the trial
ﬁ functions, The one-dimensional collocation approximations
§' displayed a damped oscillation not present in the finite

% difference approximations. Although this may be a result
t— of the round-off error (indicated by the failure of the di-
f% rect matrix inversion routine's accuracy test) in the ma-
:: trix inversion, the fact that convergence was still fairly
ég N rapid tends to say it is not. The more likely cause is an
;3 . inappropriate choice of the trial functions for the problems
)
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examined,

Finally, the method of weighted residuals requires
more computer time than does the method of finite differ-
ences, This does not become important until large numbers
of interior nodes arc used. In the two-dimensional analy-
sis it was seen that a large number ( 100) of interior
nodes was necessary to insure an average error of less w
than 0.1 percent. In these cases the execution time anal-
ysis indicated a rapid growth in the time required to the
extent that it may become prohibitive in terms of computer
resources, A large part of this problem might be eliminated
by the streamlining of the existing computer program and
using more efficient routines where applicable,

‘3? Recommendationg

Three areas from this study warrant further work.

The first is a study of the two-dimensional method of co-
llocation. This should be the initial task before any new
work is undertaken. This will allow a full comparison be-
tween the current analysis and any new additions. The me-
thods of least-squares and subsectional basing (Ref 2:11-14)
ﬁight also be examined.

The second area is the analysis of different trial
functions to see if they affect the accuracy of the result-
ing solutions, A possible choice would be the eigenfunc-
tions of the Laplacian operator (Ref 6:241-245), Particu-
lar attention should be paid to the oscillation in the co-

llocation approximations.
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Y The last area for further work is the aforementioned |
: streamlining of the existing computer program. Included
S
o in this would also be the location and correction of any
f{; errors already present. The matrix inversion program is
s

] the routine considered the most time consuming., It can pro-
=§ﬁ bably be replaced by a more efficient routine while still
Ej maintaining the desired degree of accuracy. If a lower

accuracy routine is incorporated attention should be paid

~

ﬁa to any induced round-off errors,
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Appendix A
Numerical Approximations for the One-Dimensional

Problem Set

This Appendix contains the values of the Galerkin,
collocation, and finite difference approximations to Eqs(40).
The values are the output of the computer analysis and are
tabulated according to inhomogeneity and the number of int-
erior nodes, The average percent error is also listed for
each set of values,

Note: The notation (*) indicates that for the given
number of interior nodes the direct matrix inversion program
used indicated that its accuracy test had failed.

The notation (") indicates a repeated value from the

line above it.




Table III
\ Galerkin Approximations for g(x) = 10
'b\.s:
e Number Point 1 | Point 2 | Average
2 of _ — Error
i"} Interior | x = 0.66 | x = 1,33 (%)
’ Nodes
N 2 -3,29218| -4,27984] 14,81469
N ’
3 ?_; 5 -4,17238| ~4,38043%| 3,78079
8 -4,33062| -4.40286| 1.74825
}_-; 11 -4.35919| =4,37570] 1.732%9
fg 4 ~4.34807 | -4.39567| 1.63283
Ay 17 -4,35842| -4.35400| 1.98518
j’: 20 -4,35830| -4.41338{ 1,31850
S
3
S )
:_._3 Table IV
:SSI Galerkin Approximations for g(x) = x2
‘f Number Point 1 Point 2| Average
: of — — Error
A Interior| x = 0.66 | x = 1,33 (%)
*' A Nodes
N0
£2 2 =0.35117| =0,61454| 9,85043
- 5 -0.,40985| =-0.62125( 2,45861
8 =0,42040 | =0,62274| 1.,10697
1 -0,42200| -0,62087| 1.06953
14 -0.42096| -0.,62235| 1,07273%
17 «0.,42157 | =-0,62019| 1.17412
20 -0.42347{ =0,62817| 0,31427

AT I T O S N S e e e e




O l'
RAN N AN

41 l' \,‘,

3
4
s

RA A
T XN

e

u
8

‘o

”.

AR

--------------

------

..........

Table V
Galerkin Approximations for g(x) = x2 + 1
Number Point 1 Point 2 | Average
of . Error
Interior | x - 0.66 |x = 1,33 (%)
Nodes
2 -0,68038 | -1,04252| 12,28890
> -0,82708 | =1,05229| 3,42479
8 =0.85%346 | «1,0630% 1.41104
17 -0.,85741| =1,05559| 1.53233
20 ~0.85930 | =1.06951| 0.77352
Table VI
Galerkin Approximations for g(x) = x2 + x4+ 1
Number Point 1| Point 2| Average
of —_— — Error
Interior| x = 0,66 | x = 1.3%3 (%)
Nodes
2 ~0499863 | =1.52538 | 11,8341
5 —'] .20401 "’" .54885 2.98‘l 85
8 =1.24093 | ~1.55408 | 1.35820
" =1.24716 | ~1,55766 | 1.56347
14 =1.24413 | -1.55252 | 1.28185
17 | -1.24642 | <1,54370 | 1.49352
20 =1,24919 | ~1,56343 | 0.73341
56




Table VII

Collocation Approximations for g(x) = 10
Number Point 1 Point 2 Azerage
Inggiigr X = 0.66 |x = 1.33 bfigr

2 -2,96296 | -2,96296| 33.33%333

5 |T-#.19151|"-4.69738| 5.69104

8  1"-3.99101|"-3.97101| 10.65219

1 "on.z20u1 T4, 56448 | 2.70079

14 *_u,17154 |*~4,17153|  6.14048

17 |"-u,36832|"-4.52071| 1.71439

20 |"-s.25132|"-4.23779| 4.u97s2

Table VIIT

Collocation Approximations for g(x) = X2
Number Point 1 Point 2| Average

Inggiigr X = 0,66 x = 1.33 Ef;gr
2 -0.32922 | -0,52675| 19.43228

5 | -0.41112| -0.64238| 3.31822

8 | -0.39642| -0.59395| 6.20983

Y ~0.41998 | =0.63352| 1.57490

14 *=0,40979 |*=0,60732| 3.57911

19 |*=0.42291]*-0.63060| 0499919

20 | *-0.41511|*=0.61152| 2.62186
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Table IX
Collocation Approximations for g(x) = x2 + 1
Number Point 1 Point 2 | Average
of — — Error
Interior | x = 0.66 |X = 1,33 (%)
Nodes
2 -0,62551| -0,82305| 25,68956
5 *-0083027 ‘-1011211 4.38594
8 *~0.79352|*-0,99105| 8.,20995
11 *~0.,85242 |*-1,08996 208141
14 *w0,82694 | *=1,02447 4,73%287
17 *—~0,85974 | *-1,08267 132123
Table X
Collocation Approximations for g(x) = X+ x + 1
Number Point 1 Point 2| Average
of —_— — Error
Interior| x = 0,66 | x = 1.33 (%)
Nodes
2 =0,92181| -1,21811| 24,68903%
5 *=1,20847 |*=1,62280 6654321
8 *21,15702|*%=1,45332| 7.88995
11 *21,23948(*=1,59179 2.,00020
14 *.1,20%811*=1,50011 4,54813
19 *=1,24973]*=1,58158 1.26941
20 *=1,22243%1%*=1,51511]  3,33400
58
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Table XI

Finite Difference Approximations for g(x) = 10

Number Point 1 Point 2 | Average
of — __ Error
Interior | ¥ =~ 0,66 | x = 1,33 (%)
Nodes
2 <4440l | 4 4u4444 | 0,00000
5 1" " "
8 " 11 "
1 ,] " " 11
14 L] " "
1 7 " " "
20 1" 1" "
Table XII
Finite Difference Approximations for g(x) = x2
Number Point 1 Point 2| Average
of — — Error
Interior| x = 0.66 | x = 1.33 (%)
Nodes
2 =0439506| =0,59259| 6.47743
5 -0,41976| -0,61728| 1.61819
8 -0.42433 | «0,62186| 0,71818
1 -0.42593| ~0.62436( 0.40336
14 =0,42667| =0,62420| 0.,25776
17? -0,42707| =-0,62460| 0,17905
20 -0,42731| -0,62484| 0,13183
&
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Table XIII
Finite Difference Approximations for g(x) = x2 + 1
Number Point 1 Point 2| Average
Intgiior X = 0.66 [x = 1.33 Eﬁigr
Nodes
2 ~-0.83951 | =1,03704 | 3.,42506
> -0.86420 | =1.,06173 | 0.85626
8 -0.86877 | =1.06630 | 0,38079
11 -0,87037 | =1.06790 | 0.2143%3
14 -0.87111 | =1,06864 | 0.,13734
17 -0,87151 | =1,06904 | 0,09572
20 -0,87176 | =1,06929 | 0,06971
Table XIV
Finite Difference Approximations for g(x) = x2 + X+ 1
Number Point 1 Point 2| Average
of - — Error
Interior | x = 0.66 | x = 1.33 (%)
Nodes
2 =1e23456 | =1,53086 | 2,35191
5 ~-1425926 | =-1.55556 | 0,78504
8 =1.26383 | =1,56013| 0.26140
1 =1,26543 | =1,56173 | 0,14713
14 =1,26617 | =1,56247 | 0,09428
17 -1,26658 | -1,56287 | 0.,05585
20 -~1,26682 | -1.56311| 0,04817
60
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Appendix B
Numerical Approximations for the Two-Dimensional
Problem Set

This Appendix contains the values of the Galerkin and
finite difference approximations to Eqs(79)., The values
are the output of the computer analysis and are tabulated
according to inhomogeneity and the number of interior nodes.
The average percent error is also listed for each set of
values,

Note: The notation (**) indicates that for the given
number of interior nodes the direct matrix inversion program
indicated that the matrix f' was algorithmically singular,

The resulting solution values were discarded as being invalid.




Table XV

Galerkin Approximations for g'(x,y) = 10

Number | Point 1| i'oint 2| Point 3| Point 4| Average
of — _ _ __ | Error
Interior|x = 0.66 1y = 1,33[x = 0,66[x = 1,33 (%)
Nodes |y = 0.GClv = O, ¥y = 1.53ly = 1.3
4 -2.,40852 ~2.,46212] -2,46212| -2.52302| 2.18594 |
10 -2.45819] -2,43633 ~2,43633 -2,38168|1.25826
16 —2.,410%8| -2.,43064] -2,43064 -2.,40911]| 0,43282
22 -2.39171) -2.41861| -2.41861| -2.39383| 0.53525
28 —2.30441] =2,42812 ~2,42393 -2,40121] 0,54301
b1 s . . *n
40 * % * % * %
Table XVI
Galerkin Approximations for g'(x,y) = x°
Number | Point 1| Point 2| Point 3| Point 4| Average
of Error
Interior|x = 0.66|x = 1.32 x = 0.66|x = 1,33 (%)
Nodes |y = 0.56|y = O. Yy = 133y = 1.53
% | -0.19932 -0.37004 -0.20008 -0.38251| 1,50636
10 | _5,19916 -0.37799 -0.20014 -0.26458| 1.41233
16 | _5,19877 -0.3734d -0.20259 -0.36642 0.94309
22 | _9,19927 -0.37229 -0.20148 -0.36654 0.71061
28 | -0.19957 -0.37219 -0.20159 -0.36652 0.6620%
34 %% *% L B ® %

40
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Table

XVII

Galerkin Approximations for g'(x,y) = X2 4 y2
Number | Point 1| t'oint 2| Point %| Point 4 | Average
Intgiior X = 0.66(x = 1,33|x = 0,86|x = E€§§r
Nodes |y = 0.60 |y = O.Gg ¥y = 1.3y = 1 %%

4 -0,39863| -0,57013] =0.57013| -0,76502|1,25049
10 -0.398%1! -0,57813| -0.57813{ -0.72917|1,27232
16 =0.39755| ~0457597] =0.57597| =0.73285( 097297
22 | .0,39854| -0,57373| ~0.57372| -0.73308|0,73910
28 | _.0,39905| -0,57264{ -0,57361| -0,73304 | 0,70008
34 . . e .

40 . .t . .o
Table XVIII
Galerkin Approximations for g'(x,y) = x4 y2 + X
Number | Point 1| Toint 2| Point 3| Point 4| Average
of — — | Error
Intecior|x - O-Gel I 0B s B(r 1B P

* 1 _0.59706| -0.85163| -0.77124] -1.05504] 1.18138
10 | _o,59666| —0.86734 -0.77552 —1.01021 1.09759
16 | _5.59570| -0.86129| -0.77607 -1.01482| 0.86809
22 | _0,59694| =0,85854 =0.77330 =1.01512] 0.63594
28 -0,59761| -0,85842 =0,77328 =1.01507| 0,64254
34 .o xe . ‘e
40 s . .e .




Table XIX

. ". ,n‘Al 3
Yy

Finite Difference Approximations for g.(x ) = 10
Nugger Point-j Foint‘f Point_f Point_f Agiggge
S ol b= e 4 bl o] el
4 1-2,05128 |-1.62393 |-2,13675 |[-2.05128 [18.56088
10 |=2.26123 |-2.18765 |~2.27367 |-2.25634 | 7.03412
16 |-2.2938% 1-2,26968 |-2,29771 |-2.29182 | 5.20250
22  [-2.30374 [=2.29305 |-2,30543 |-2,30279 | 4,66425
28 -2.30786_-2.50225 -2.30877 |-2,30737 | 4.44396
34 ~2430998 |-2,30665 |=2.31050 |~2,30967 | 4.33500
40  |-2.31116 12.30905 [-2.31150 |-2,31097 | 4.27410
Table XX
Finite Difference Approximations for g'(x,y) = x2
Number | Point 1| Point 2| Point 3| Point 4| Average
of . — — _ Error
e r st I g P
& 0.14815 L0.23457 |-0.16049 }0.29630 | 25.75409
10 [0.18346 }0.32431 |0,18583 }0.33749 | 9.36034
16 L0.19016 }0.34152 }0.19096 }0.34612 | 6.14224
22 10,19232 }+0,34689 [0.,19269 }0.37858 | 6.48503
28 0.19326 +0.34912 0.19345 L0.35025 | 4.65414
3% 10419373 £0.35022 £0.19385 }0,35089 | 4.42834
40 0,19401 }0.35083 }-0,19408 }0,35127 | 4,29801]




Table XXI

2

Finite Difference Approximations for g'(x,y) = x2 +y

Number | Point 1| ‘oint 2| Point 3| Point 4| Average
Intgzior X = 0.66(x = 1,33|x = 0.66|x = 1.33 E€§§r
Nodes |y = 0.66|y = 0.66|y = 1.33|y = 1.33
. 4  [-0.,2963%0 |-0.32099 }0.46914 [-0.59259 |26.92389
ig 10 |-0.35657 [-0.48655 |-0.51500 |-0.66410 |11.,49946
If 16 [-0.36691 0.51467 [-0.52383 [-0.67811 | 8.76445
& 22  |-0,37013 |-0,52310 }-0.52676 }-0.68267 | 7.91249
;g 28 [-0.37149 [-0.52650 |-0.52805 |-0.68463 | 7.55623
i 34 [-0.37217 F0.52816 [0.52871 |-0.68564 | 7.37818
'f% 40 |-0.37256 +0.52907 }-0,52911 |-0,68621 | 7.27728
B G Table XXIT
,Q? Finite Difference Approximations for g'(x,y) = x2 + y2 + X
iJ? Number | Point 1| Point 2| Point 3| Point 4| Average
: of __ _ _ Error
& el e O - s 1
4
% b L0,46154 |0,51045 |0.64435 [0.83191 | 2462142
;. 10 L0.54301 }0,74068 |~0,70309 |-0,92738 | 10,25579
o 1 16 lo0.55685 [-0.77945 |-0.71430 |-0.94595 | 7.72779
:Zig 22 [0.56112 0.79102 |<0.71799 [-0.95196 | 6.94492
28 [0.56291 |-0.79568 [-0.71959 |-0.95453 | 6.61934
% 3 1.0.56381 |-0.79793 [-0.72042 [-0.95584 | 6.45710)
% %0 |0.56431 [-0.79917 |-0.72091 |-0.95659 | 6.36578
&g -7
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