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V Preface

This report is the result of a twelve week study on

the feasibility of using the method of weighted residuals

to determine approximations to the discrete Green's function

or an analog to it. The study was sponsored by Mr. Nick

Pagano, AFWAL/MLBM. Included in this report are derivations

of the methods of Galerkin, collocation, and finite differ-

ences, for the one and two-dimensional Poisson's equation.

The analytical solutions for several inhomogeneity terms are

also presented. The results are given in both tabular and

graphical form for clarity and ease of reference. Where the

results showed a significant trend or deviated from expected

values, I have attempted to provide an explanation. All of

the primary goals of the study were met. During the course

of the twelve weeks I learned much about the theory of Green's

functions and methods of numerical analysis.

I wish to acknowledge Dr. Bernard Kaplan for his sup-

port and direction. His valuable suggestions aided me to

surmount difficulties which otherwise might have hindered

the completion of this study.

I must also thank Dr. Hengehold, Lt Co1 Bailey, and

Maj Cook for their assistance.

Randolph E. Clapp
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Abstract

The purpose of this report was to determine the feas-

ibility of using the method of weighted residuals to obtain

approximations to the discrete Green's function or an ana-

log to it. The methods of Galerkin, collocation, and finite

differences were nrogrammed on a CDC 7600 computer in For-

tran IV. The resulting program was used to generate the

approximate functions for the one and two-dimensional Pois-

son's equation. The two-dimensional case was restricted to

the methods of Galerkin and finite differences on a rect-

4angular body. The approximate Green's functions and analogs

were applied to a series of inhomogeneity terms to obtain

the approximate solutions. The results were compared to the

analytical values at points of interest. The average per-

cent error of the approximate solutions is reported for each

case as the number of interior nodes of the mesh was increas-

ed. The areas of consideration were: the rate of conver-

gence of the approximate solutions toward the analytical

solution, the amount of computer-time required to execute

the methods, and the accuracy of the approximate solutions.

The results of this study indicate that the Green's func-

tions and analogs obtained are valid approximations to the

discrete Green's function itself, with the restrictions that

additional calculations may be required in the case of the

Galerkin approximations and excessive computer-time may oc-

cur for high-accuracy approximations. The finite difference

approximations were determined to be the best method to use.
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I. Introduction

Background

In many areas of scientific research one of the major

steps in the theoretical modeling of experimental data is

the solution of one or more linear differential equations.

Often these are complex, containing many derivatives and

source terms. Such equations are difficult to solve ana-

lytically. In addition, it is sometimes necessary to solve

large sets of similar equations to determine trends and re-

gions of validity for theoretical predictions. It is in

these areas where computer-aided approximations to the dif-

ferential equations are useful, for they can yield near-cor-

rect answers with only a small amount of computer-time.

Perhaps the most versatile of these approximations is

the Green's function. It allows the reduction of a set of

linear differential equations to a set of algebraic equa-

tions involving integrals. The solution set is then found

by solving the resulting matrix equation. The exact ana-

lytical expression for the Green's function is often very

difficult to determine.

In contrast, the discrete Green's function, applicable

only at specific points, can be approximated with much less

effort by using finite difference methods. The solution set

can then be obtained to the desired accuracy at these dis-

crete points on the body under examination.

" . Pu.ose

The purpose of this study is to determine the feasi-
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.i .*. bility of using the method of weighted residuals (MWR) to

obtain the discrete Green's function or a function analo-

gous to it. The methods of Galerkin and collocation will

be studied in comparison with the method of finite differ-

ences. Both one and two-dimensional problems will be exam-

ined.

Plan of Attack

The approach to this study will be as follows:

(1) To develop a computer program which uses the
methods of Galerkin, collocation, and finite
differences to obtain approximations for both

S.' the discrete Green's function, or its analog,
and the solution for the one-dimensional Pois-
son's equation. Homogeneous Dirichlet bound-
ary conditions will be assumed in all cases.

(2) To analyze the usefulness of the Green's func-
tions or analogs obtained in the previous step
when the inhomogeneity term is varied. Areas
of consideration will be: the number of calcu-

l', lations requred, computer analysis time, con-
vergence rate, and overall solution accuracy.

(3) To adapt the one-dimensional program to handle
two-dimensional problems on a rectangular body.
Only the methods of Galerkin and finite differ-
ences will be examined. Homogeneous Dirichlet
boundary conditions will again be assumed.

(4) To examine the usefulness of the Green's func-
tions or analogs obtained as in the above step.

(5) To determine the feasibility and possible di-
rections of continued research into this approx-
imation method.

VII
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II. Poisson's Equation in One Dimension

The first problem to be examined in this study is the

one-dimensional Poisson's equation. The general form of

the equation to be solved can be expressed as

LT(x) = g(x) (1)

-' where

d 2

L = The linear differential operator,

T(x) = The desired solution function

g(x) = The inhomogeneity term

with the associated homogeneous Dirichlet boundary condi-

tions

T(O) = 0 (2-a)

- T(a) = 0 (2-b)

VAnal-tical Solution

The general solution to Eq(1) can be determined by

direct integration. For the case of a constant inhomogen-

e'ity the general solution becomes

Cx 2

T(x) = -x- + Cx + C2  (3)

where C, C1 , and C2 are constants. When the boundary con-

ditions (Eq(2)) are applied, Eq(3) then becomes

*!% .j.-'* T(x) Ox2  Cax (4)

a.-.o

,/= 1, - ., " - , • • - • - ,y . . . . % - • - ••3
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The analytical solution for cases with other inhomogeneity

terms can be found in a similar manner.

Numerical Approximation

* In all of the approximation methods discussed in this

study the body under consideration is modeled by a mesh.

The method is then applied at the N interior nodal points

of the mesh. This results in a set of N simultaneous alge-

braic equations which, when solved, yields the approximate

solution to the given problem. Depending upon which method

is applied this approximation is valid for either the entire

body or the nodal points alone.

The accuracy of the approximate solution depends on

the number of nodal points in the mesh. A sample mesh for

4- the one-dimensional problem with four interior nodes is

shown in Figure 1. The nodes are numbered consecutively

from' left to right. The smaller the step size, h. the larg-

er the number of nodal points and the more accurate the ap-

proximation.

4-4
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Method of Weighted Residuals. In the general method

of weighted residuals (MWR) the solution is approximated as

a sum of N trial functions, fn(x), weighted by undetermined

>3 factors, n . as (Ref 1:339)

N

TN(x) = anefn(x) (5)
n=1

The trial functions are chosen to be linearly independent

members of a complete set, each of which satisfy the given

boundary conditions (Eq(2)). According to Ozisik (Ref 1:

340), the trial functions for rectangular coordinates can

be chosen as products of a function, w(x), with various

powers of x, where w(x) is defined as

v(x) - (x-O)-(x-a)

. = x(x-a)

It is obvious that Eq(6) satisfies Eq(2). For all cases of

the one-dimensional problem the trial functions will be de-

fined as

f nx) . xnw(x) (7)

If Eq(5) is substituted into Eq(1) we obtain (Ref 1:

339)

L [ an fn(x , g(x) (8)

,- n
5,*=1

SJ _ P



Multiplying Eq(8) by some weighting functions, wm' and then

integrating over the limits of the body yields

Na

no (X)-Lfn(x)dx = (x)og(x)dx (9)

for

m = 1,2,9, . . * ,N

Eq(9) represents a set of N simultaneous equations with N

unknowns, ano If we now define the inner products

Irna <Wm, I fn> j ( x)Lfn(X)dx (10-a)

> = " (x).*Lxn(

g.m = <wjmg> - 1o~im(x).g(x)dx (10-b)

"Eq(9) becomes

Ean<mLfn> = <wmlg> (11)

nul

S.. or in matrix form (Ref 2:6)

-a (12)

where

, = denotes a square matrix

.' - denotes a column vector

6
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S.o

<401 Lf 1 > <W1 Lf 2 > S @<WJdN>

al

= . (Lf><',L ) W2 LNI--300 (14)

< l~g>

<w2l'g>

The weighting factors can then be determined by

,. 
(16)

Finally, the approximate solution can be written as

Sfor a method valid over the entire body, or

'NN

for a method valid only at discrete points, where

,..



f f " (19)

Ef1') 1 f ]N

TN (node 1 )

TN(Xnode 2)
T N(20)

TN(Xnode N)

£1(Xnode 1 f2(Xnode I)' " . fN(x

fl(Xnode 2)' f2(Xnode 2)' * * fN(x2) (21)

a 0 0 0 0 0

f1(Xnode N)' f2(Xnode N)' & • 09 fN(XN )

Green's Functions and Analogs. Given a differential

0equation of the form of Eq(1) and its associated boundary

conditions (Eq(2)), the analytical Green's function for the

problem can be determined. An in-depth analysis for the

case of Dirichlet boundary conditions can be found in Stack-

gold (Ref 3:1-30). Once the Green's function has been de-

termined the solution to Eq(1) with various inhomogeneity

terms gl,g 2 ,g3 , ... gi can be found by calculating the in-

tegral
a

Ti(x) = G(xlx')'gi(x)dx' (22)

where

G(xlx') = The Green's function for Eq(1) with
boundary conditions as in Eq(2)

x = The field point

8

* 5';, . ~ '* - .. '.



x' = The source point

For the discrete Green's function Eq(22) takes the matrix

form

T Nji N GN i~x hN (23)

where

N~i w Eq(20) for the inhomogeneity gi(x)

GN'jk = GN(x jIxk)

x. = The x coordinate of the jth field node
i (j = 1,2,93, ... ,N)

xk = The x coordinate of the kth source node
"-* (k = 1,2,93, ... ,N)

g,i(x) = A column vector of order N whose elements
are all equal to gi(x)

hN = The step size for N interior'nodes

The tilde has been placed over the left-hand side of Eq(23)

if'i to emphasize that the discrete Green's function solution,

N9 is not necessarily equal to the weighted residuals sol-

ution, TNo

If Eq(16) is substituted into both Eq(17) and Eq(18)

we obtain the respective equations

T N(x) f I g(4a
- ..

.. '

'I" and

T f- 24b

-SN

JILA.N e.0;9



In comparing Eq(23) and Eq(24) it should be noted that the

weighted residual approximations do not contain the factor

hN. This is because the weighted residual solutions are

" * N-term sumations whereas the discrete Green's function sol-

ution is the approximation of an integral (Eq(22)). We can

identify the analogs to the discrete Green's function in

Eq(24) as

G(25-a)

for a method valid over the entire body, and

1 (25-b)

for a method valid at only discrete points, where the no-

' - tation (t) is used to denote the analogs. The functions

in Eq(25) are termed analogs since the elements of the ma-

trix g, defined by Eq(10-b), in Eq(24) are not necessarily

equal to g(x).

Method of Galerkin. In the method of Galerkin the

weighting functions, wm, are taken to be equal to the trial

functions, fn' as defined in Eq(7). For these weighting

functions the inner products in Eq(10) take the form

* -a

I mn <fmjLfn> a fm(X)Lfn (x)dx (26-a)

10

a,. m =<frolg> = fm(X)og(x)dx (26-b)

• .-. '.'a ': aO*% ~ aa.
"10

:.'10



The resulting form of Eq(11) is then

N
a "n<f ,Lf > a <fog> (27)

n=1

Since there are no restrictions on the value of x in Eq(27)

the method of Galerkin approximations are valid over the

entire body and are given by Eq(24-a).

The appropriate form of the analog to the discrete

Green's function is that of Eq(25-a). It is clear that this

must be an analog since the elements of the inhomogeneity

matrix, g, defined by Eq(26-b), are never all equal to g(x).

This analog should be as useful as the discrete Green's

function itself with the exception that the inner products

to determine the elements of the inhomogeneity matrix must

be recalculated for each new inhomogeneity term.

Method of Collocation. In the method of collocation,

or point matching, the weighting functions, w m' are defined

as (Ref 2:10)

m 6(x-Xm) (28)

where (x) is the Dirac delta function whose properties

are given as (Ref 5:1-30)

(0 x 0)
6(x) o x 0 (29-a)

Is '0 0 not in ab

"-(x)dx = (29-b)
0 1 0 in (a,b)

I" "", r "l'" ' r ' ,''-' 
"

" ', - :r-' - . ,. q r ," . " r " ," . " . , . ,' . '. ,p. 2 .1 .".



"-6(x-x')f(x)dx = f(x') (29-c)

For these weighting functions the inner products in Eq(10)

take the form

a

Inn = <6(X-Xm)'Lfn> = (XXm)Lfn(X)dX (30-a)
0

M ILfn(x m)n

gm <6(x-xm),g> - A6(x-xm)g(x)dx (30-b)

" g(xm)

"."

where (Ref 2:10)

"ma (
~m rT' 31

The resulting form of Eq(11) is then

N

FanLn(Xm) = g(xm ) (32)

n=i

The value of x in Eq(32) is restricted to that of the collo-

cation points, xm. Therefore the collocation approximations

are valid only at these points and are given by Eq(24-b).

The appropriate form of the analog to the discrete

'4 Green's function is that of Eq(25-b). The elements of the

12

*.*. <-?



inhomogeneity matrix, are the same as the elements of

the corresponding matrix for the discrete Green's function

as in Eq(23), but the approximate solutions, T and TN,

are not necessarily the same since GN is not necessarily

the same as the analog form, . This analog should be

as useful as the discrete Green's function itself except

that the number of terms necessary to achieve a given level

of accuracy may differ between the two methods.

Method of Finite Differences. According to Stackgold

(Ref 3:1-30) the defining relation for the Green's function

for the Laplacian operator is

d2G(xlx') . 5(x-x') (33)
.: -- dx2

with the associated boundary conditions for Eq(1) and Eq(2)

G(Ojx') = 0 (34-a)

G(alx') = 0 (34-b)

For the discrete Green's function on a mesh with step size

hN Eq(33) takes the form (Ref 4:315)

GN(xlx') 1(
- h 6(x-x') (35)

4S

The derivative term in Eq(35) can be replaced by a central

difference quotient as (Ref 5:6)

13-.5.. . .



d2 GN(xlx') GN(X+hN Ix' )-2GN(Xlx' ) GN(X-hN1 x' (-o .: i:" (36)
dx2  2

Substituting Eq(36) into Eq(h5) and multiplying by N yields

GN(x+hN Ix')-2GN(xIx')+GN(x-hN Ix') = bN6(x-x') (37)

Applying Eq(37) torether with the boundary conditions (Eq(34))

to each of the N interior nodes of the mesh results in a

set of N2 simultaneous equations expressed in matrix form as

o GN = hN IN (38)

where

0 C = The coefficient matrix

G N (Xl xj ) G N(XIIx 2 ) . . .GN(xllxN)

= G1T(x 21xI) GN(x21x2 ) . . . GN(X 2 jXN )G N = .~lN (39)

S 6 0 6 0 0 0 0 0 0

GN(xNIxl) GN(XNIX 2 ) • • - GN(XNIx N )

IN = The identity matrix of order N

The solution of Zq(38) yields the approximate discrete

Green's function matrix (Eq(39)). The solution to the one-

dimensional Poisson's equation then follows as in Eq(23).

Computer Analysis

The numerical approximations discussed in the previous
sections (Eqs(24-a),(24-b), and (23)) were programmed in For-

114
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tran IV on a CDC 7600 mainframe. The resulting computer

program is on file with the AFIT Department of Physics.

Problem Set. A series of four problems were ana-

lyzed as the number of interior nodes of the mesh was in-

creased. The areas of consideration were: convergence

rate, computer-time, and the overall solution accuracy.

The four problems analyzed were:

I) LT(x) - 10 (40-a)

2
II) LTWx - x2  (40-b) :

III) LP x 2 + 1 (40-c)

IV) LT-(x) x2 + x + I (40-d)

The Dirichlet boundary conditions for all four problems

0were taken as

T(O) = 0 (41-a)

T(2) = 0 (41-b)

The analysis was performed at x - 0.U6 and x = 1.33 for all

cases,

Exact Solution. The analytical solutions to Eqs(4O)

*ere found by direct integration to be

I) T(x) = 5x2 - 5x (42-a)
x 4 16x

II) T(x) = (42-b)

III) T(x) = 17 + (42-c)

4 3 2x x x2  56
"' .C- IV) T(x) = + g -.- (42-d)

15* . .,. * ' " **5 5

.. ... v v . ..v .". .'.. .-''.'..'' .... .".". '. va<A.,, .,,.\',,..\. 's : ': .... ' ':; i v ".% .-,s



-IIN

"'A The values of the above solutions at the points of interest

are listed in Table I.

*Average Error. The average percent error for the one-

dimensional problem is defined as

<%> . 1o IT N(06)-T(0.66)I + IT N(1 .33)-T(1''31 (3
TN  T (0. ap) s o u(1 3)

where

TN The approximate solution under consideration

Convergence Rate. The rate at which each of the three

approximate solutions (Eqs(17),(18), and (23)) converged

toward the exact values listed in Table I was examined for

problems I-IV. The average percent error in the approximate

solutions is plotted vs the number of interior nodes in the

mesh as Figures 2-5. Appendix A contains the actual values

of the approximations at the points of interest for each of

J6 .- the f our problems.

Table I

Exact Solution Values at Points of Interest

Problem Poinji PoinL2
No. x-0.66 x=1.33

I -4. -..4o1

II -0.42798 -0.62551

III -0.87243 -1.06996

IV -1.26749 -1.56379

16
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In each of the four cases the finite difference approx-

imation yielded the best initial solution. In the case of

problem I the method yielded the exact values. Average er-

rors below one percent for eight or more interior nodes were

achieved.

The method of Galerkin approximations converged at a

somewhat slower rate and did not achieve an average error

below one percent until 20 interior nodes were used. In

fact a slight increase in the error was seen at 17 nodes in

each case examined. This was followed by a decrease to be-

low one percent at 20 nodes.

The collocation approximations yielded the worst ini-

tial solutions and showed marked oscillations in the average

4D percent error. The oscillations were damped such that the

error still dropped to around one percent at the 17 node

point. The slight increase and subsequent decrease in the

Galerkin approximations mentioned above may be evidence of

a smaller amplitude oscillation there also.

The method of weighted residuals is sensitive, to the

choice of the trial functions. It may be that the oscilla-

tions in the collocation and Galerkin approximations are a

result of an inappropriate choice of trial functions for

the analysis of Poisson's equation. Babuska (Ref 6:241-245)

states that the trial functions as given in Eq(7) are numer-

ically unstable for Gaussian elimination matrix inversion.

That is, the matrix I in the weighted residual solutions is

very nearly singular creating significant errors in the cal-

21



culated inverse. Although Gaussian elimination was not used

in the direct matrix inversion routine it is reasonable to

expect that the same problem may be present in many inver-

Sion methods. A different choice of trial functions may les-

sen or eliminate the problem.

CoptrAayi ie The quantity used as a meas-

ure of the computer analysis time was the actual execution

time of the program. The time taken by compilation, input,

and output was almost constant for all computer runs. The

execution time in seconds is plotted in Figures 6-9 vs the

number of interior nodes in the mesh.

For all cases the execution time was the same for each

* approximation method at eight or less nodes. Above eight

41 nodes the execution time steadily increased. This was to

be expected since ain increased number of nodes requires ad-

ditional iterations of loops in the program.

The method of finite differences required the least

amount of computer time (less than 0.2 seconds in all cases)

with the weighted residual methods requiring considerably

more. It should be noted that for problems III and IV the

cdalerkin method required less time than it did for problems

I and II. This could not be explained. The increased time

required by the weighted residual methods can be explained

as the result of the additional matrix multiplication re-

quired,

Overall Solution Accuracy. All three approximation

methods yielded solutions with an average percent error of

22
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~ '. *~.about one percent when 17 or more nodes were used (taking

the minimum point of the collocation Oscillations). The

convergence trends indicate that for more than 25 nodes

the three methods should yield nearly the exact values with

average errors less than 0.1 percent.

It should be noted here that for the collocation ap-

proximation the direct matrix inversion routine used (IMSL

routine LINV2F; Ref 7) issued a warning that its accuracy

test had failed. This occured at five or more interior nodes.

Some of the oscillation in these approximations could be a

result of this round-off error.

Conclusions

From the analyses performed it seems that for approx-

imations with few terms the method of finite differences is

the best choice. Not only is it easier to apply (less cal-

culations required and less execution time) but the approx-

imate solutions are more accurate.

For approximations of more than 10 terms the trade-offsB

between calculations required and approximation accuracy make

the Galerkin and collocation methods about equal. The finite

* . difference method is better than both.
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III. Poisson's Equation in Two Dimensions

The second problem to be examined in this study is

the two-dimensional Poisson's equation. The general form

of the equation to be solved can be expressed as

.**I, T (x,y) = g (x,y) (44)

5* ..'..,

5' where

. denotes a two-dimensional function

L - The linear differential operator,
32 2

T (x,y) = The desired solution function

g (x,y) = The inhomogeneity term

with the associated homogeneous Dirichlet boundary conditions

T (0,y) = 0 (45-a)

T (a,y) = 0 (45-b)
F t

T (x,O) - 0 .(45-c)

T (x,b) - 0 (45-d)

This is Poisson's equation on a rectangular body.

Anal.itical Solution

: The analytical solution to Eq(44) with boundary con-

ditions Eq(I5) can be found by a Fourier series expansion

as (Ref 8:41-42)

'V 26
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T (x, = E E d4 d sin sin
m=l n=1 11

Im )(u/)2 + n) 2~] (esinV a sin (T 9 91 + (6

For a given inhomogeneity the integration can casily be

performed and the series solution can then be programmed

to the desired number of terms providing Eq(46) converges.

Numerical Approximation

"4 A sample mesh and node numbering scheme is shown as
. Figure 10 for the rectangular body. The x and y step sizes,

h and k respectively, control the number of nodal points

and hence the accuracy of the approximation.

0 Method of Weighted Residuals. In the two-dimensional

MWR the solution is approximated as a sum of N trial func-
"N tions, fn(x,y), weighted by undetermined factors, as

(Ref 1:339)

N

" (x,y) = f,(x,y) (47)
nu

The trial functions each satisfy the given boundary condi-

tions (Eq(45)). According to Ozisik (Ref 1:340-344), the

trial functions for rectangular coordinates can be chosen

as products of a function, w (x,y), with various powers of

x and y, where w (x,y) is defined as

w (x,y) = (x-O)o(y-O)o(x-a).(y-b) (48)
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Figure 10. Sample Mesh for a Rectangular Body

0 Eq(48) satisfies the boundary conditions as expressed in

Eq(45). For all cases of the two-dimensional problem the

trial functions will be defined as

2n-2
fn . (xy)--. w(x,y) (for nm1,4,7, .. ) (49-a)

2n+2

f x W'(x,y) (for n=2,5,8, ... ) (49-b)

2n

f W (x,y) (for n=3,6,9, .. ) (49-c)

4n

If Eq(47) is substituted into Eq(44) we obtain (Ref

1:339)

""L F, f(xy = g-( (50)
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Multiplying Eq(50) by some weighting functions, w and thenm

.integrating over the limits of the rectangle yields

N fba IbIa

w m (x L L fn(x'y)dxdy = m(X'Y) g(x,y)dxdy

n=a O 0 010 (51)

for

m = 1,2,3, . . .N

This again represents a set of N simultaneous equations

with N unknowns, an * The matrix form of Eq(51) is the same

as that for the one-dimensional analysis

=I _ I

I a =g (52)

where

<(1'L f> <wj'L f2> " W <I'L fN >
I I I I I I I I

-- !*

* -I

a2
a = . , 2 (54)

NI029
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7.4 .7. 7AT

I Q:

<"2

<

9 (55)
I I

.:.: : < Ntg >

b,a

=JI' hue Pdxdy (56)

The weighting factors can then be determined by

a=I g (57)

Finally, the approximate solution can be written as

TN(x,y) = a' (58)

for a method valid over the entire body, or

fT a (59)

for a method valid at discrete points alone, where

S. Lqf2f . . 94 (60)

TN(Xnode 1'Tnode I

_-, TN(Xnode 2'ynode 2)
TN M (61)

TN(Xnode Nynode N)
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":: ':; f"(x,971) f (xjyj)  • fN(llI l l

f1 (x2 Y2) f2 (x2,y2 ) • • • fN(x2,y2)I
i

, f =(62)
0 * 00 0 0 06 0 0 0 0

.- fI(xNyN) f2(XNYN) • • * fN(XNYN)

Green's Functions and Analogs. Given a differential

equation of the form of Eq(44) and its associated boundary

conditions (Eq(45)), the analytical Green's function for

the problem can be determined. An analysis can be found in

a previous thesis by Gallof (Ref 8:42-4 3). The two-dimen-

sional form of Eq(22) then can be written as

Ti(xy) G (x I;yly' (x,y)x dxdy' (63)0 o0

where

G (xlx';yly') = The Green's function for Eq(4)
with boundary conditions as in
Eq(.5)

x and y = The field point coordinates

x' and y' = The source point coordinates

For the discrete Green's function Eq(63) takes the matrix

form

-
TNgi =GNOegN,i(xgy)*h~ok (64)

~.: . where
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, N i = Eq(61) for the inhomogeneity gi(xy)

G G (x3 x;yI).-, GNjjk = GN(jlxklYjlyvk )

x and yj = The x and y coordinates at the jth field
node (-1,2,3, .o. ,N)

xk and Yk = The x and y coordinates at the kth source
node (k=1,2,3, ... ,N)

hR = The step size for R interior nodes along
the x-axis

kS = The step size for S interior nodes along
the y-axis

R-S = N

o The tilde has again been placed over the left-hand side of

.4 Eq(64) to emphasize that, as in the one-dimensional case
-S1

- (Eq(23)), the discrete Green's function solution, TN9 is

not necessarily equal to the weighted residuals solution,

TN•

The two-dimensional forms of Eqs(24) are the approxi-

mate solutions
S

TN(x,y) = fI g (65-a)

and

N (65-b)

: .y In comparing Eq(64) and Eq(65) it should be noted that the

weighted residual approximations do not contain the factors

32
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hR and kS. This is because the weighted residual solutions

are N-term summations whereas the discrete Green's function

solution is the approximation of an integral (Eq(63)), We

can identify the discrete Green's function analogs in two

dimensions as

G11 I (66-a)

for a method valid over the entire body, and

= - (66-b)

for a method valid at discrete points only. These func-
tions are termed analogs since the elements of the matrix

% %.

g in the weighted residuals solutions are not necessarily

equal to the inhomogeneity, g (x,y). I

Method of Galerkin. The weighting functions, w are

again taken to be equal to the trial functions, fnq as de-

fined in Eq(49). The resulting form of Eq(51) is

.:..,N ,b a fbia ,
""- jJLfm xd(x,y)dxxdyn1 1O0O f.f If0 (l 0(lydd

(67)

for

m = 1,2,3, ... ,N

There are no restrictions on the value of x or y in Eq(67).
Therefore the Galerkin approximations are valid over the

' .- entire rectangle and are given by Eq(65-a).

33
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t-."-" -The appropriate form of the discrete Green's function

analog in two dimensions is that of Eq(66-a). This analog

should be as useful as the two-dimensional discrete Green's

function itself except that the double integrals must be re-

calculated for each new inhomogeneity matrix.

Method of Collocation. In the two-dimensional method

"- of collocation the weighting functions, w are taken as

(Ref 2:10)

"." I

--* Wi 6(X-Xm)6(y-y m)  (68)

where 6(x) is the Dirac delta function whose properties are

4~ given in Eq(29). The coordinates xm and ym are defined as

xm = The x coordinate of the mth interior (69-a)
node

y= The y coordinate of the mth interior (69-b)• node

. For these weighting functions

Iron - 6(xxm) (y-ym)L'fn(xy)dxdy (70-a)
0 O0

= ..'.,

- iXm ,ym )

g;= (x-xm ) '(y- m (xy)dxdy (70-b)

. g (XmY m )
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SThe resulting form of Eq(51)'is then

N

nL fn(XmYm) = g (Xm,Y m ) (71)

The values of x and y in Eq(71) are restricted to the coor-

dinates of the collocation points. Therefore the two-dim-

ensional collocation approximations are valid at the collo-

cation points alone and are given by Eq(65-b).

The appropriate form of the discrete Green's function

analog is that of ,;q(66-b). As in the one-dimensional case

these analogs should be as useful as the discrete Green's

function itself except the convergence rate may differ be-

. tween the two methods.

Method of Finite Differences. The defining relation

for the Green's function for the two-dimensional Laplacian

-. : operator is (Ref 3:1-30)

62G'(xjxI.IyI' 2'
2 + t2G (xlx' 2 LI')= 6(x-x')6(y-y') (72)

tx y

- With the associated boundary conditions for Eq(44) and Eq(45)

G (Olx';yjy) = 0 (73-a)

G (alx';yly) = 0 (73-b)

G (xlx';Oly') = 0 (73-c)

* ".- G (xlx';bly') = 0 (73-d)
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For the discrete Green's function on a mesh with step sizes

hR and k. Eq(72) takes the form (Ref 4:315)

-. 9 ?GN(xlx';Yyy) + N2G(xlx';Yly')
(x2

h R-I ks-1 6(x-x')6(y-y') (74)

The derivative terms in Eq(7I) can be replaced by central

difference quotients as (Ref 5:6)

2a'.l l yl l 

( 5 a22

cGN(xlx';yly') (75-a)

V9 . G - (xlhx;y~yv)-2GN(xtxl;ylyl)+GN(xlhRx;y~y')

ki

* ~Substituting Eqs(75) into Eq(74) and multiplying by h R 2 2

yields

kS 2GN(x+hRx' ;yly' )-2(hR2+cS2 )G (xlx' ;yly')

~ hRGxl'l-sy,) - bhR kS6-x')6(y-Y') (76)
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. .. Applying Eq(76) together with the boundary conditions

(Eq(73)) at each of the N interior nodes of the mesh results

. in a set of N2 simultaneous equations expressed in matrix

form as

CGN = hRkS IN (77)

where

C =The coefficient matrix

GN(X Ixl ;yl I Yl) * * GN(X1IN;Y11YN)

.GN(xmlX-1;y21y1) • . . GN(x 2 1xN;y 2 1yN)

G N - (78)

* i . .

GN(xlxl;YNlY.J) " GN(xNIxN;YNIYN)

IN = The identity matrix of order N

The solution of Eq(77) yields the approximate discrete

Green's function matrix (Eq(78)). The solution to Poisson's

equation in two dimensions then follows as in Eq(64).

Computer AnalTsis

The one dimensional computer program was adapted to

handle the two-dimensional Galerkin and finite difference

approximations on a rectangular body. The equations pro-

grammed were Eq(65-a) and Eq(64). The resulting computer

program is on file with the AFIT Department of Physics.

Problem Set. A series of four problems were analyzed

,, as the number of interior nodes of the mesh was increased.
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The areas of consideration were: convergence rate, computer

time, and the overall solution accuracy. The four problems

analyzed were:

I) L T(x,y) = 10 (79-a)

II) L'T(x,y) = x2(79-b)

III) L T(x,y) = x2+ y 2  (79-c)

IV) L'T(x,y) = x+ y2 + x (79.-d)

The Dirichiet boundary conditions for all four problems

were taken as

NT (09y) = 0 (80-a)

T (29y) =0 (80-b)

T xI 0(00

T (x,2) = 0 (80-c)

The analysis was performed at the following four points for

all cases:

Point I (x = 0. 6, y - 0696)

Point 2 (x = 1.33, y - 0~

Point 3 (x = 0.66, Y - ,3

Point 4 (x =-33 Y - 1.33)
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Exact Solutions. The analytical solutions to Eqs(79)

were found by integrating Eq(46) with the respective inho-

mogeneity terms. The analytical solutions are presented

as a single function where the inhomogeneity is taken as

g'(x,y) =ax + Py + x + 6y + (81)

where a, , y, 0, and e are constants. The solution is

then

TO(xy) - 4. m n[[sin( )sin(n) (.)2 ()2]

3  a ((_ , )- 2aI b (_, )

The alue omteaov ou ion 7o tprlesiEq9)

U~~3 I

nn/ Ir (m)

+ - 1)(2bl b-I -~ 2 ~)( ( 2)

* lni mnl

The values of the above solution, for the problems in Eq(79),

at the points of interest are listed in Table II. Each lis-

ted value was obtained using 100 summation terms.

Average Error. The average percent error for the two-

"-. dimensional problem is defined as

tf9
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Table II
</: q' Exact Solution Values for the Two-Dimensional

Problem Set at Points of Interest

Problem Point I Point 2 Point 3 Point 4

No.

I -2.41384 -2.41384 -2.41384 -2.41384

II -0.20168 -0.36879 -0.20168 -0.36879

iii -0.40336 -0.57047 -0.57047 -0.73759
I

IV -0.60297 -0.85364 -0.77008 -1.02075

00 = 1 ±ITN(point i) - T '(point i)lI

<E; T'(point i) '~(83)

where

TN ; The approximate solution under considera-
tion

Convergence Rate. The rate at which each of the two

approximate solutions (Eqs(65-a) and (64)) converged toward

the exact values listed in Table II was examined for prob-

lems I -IV . The average percent error in the approximate

solutions is plotted vs the number of interior nodes in the

mesh as Figures 11-14. Appendix B contains the actual val-

ues of the approximations at the points of interest for

each of the four problems.

In each of the four cases the Galerkin approximations

i'4
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** yielded the best initial solution. Initial average errors

of between one and two percent were noted. In contrast,

the initial averar ,e errors for the finite difference approx-

imations ranged from 18 to 27 percent.

The Galerkin approximations yielded average errors be-

low one percent for 16 or more interior nodes. The finite

difference approximations never had an average error small-

er than four percent. Both methods converged at the same

rate for 10 or more interior nodes.

The above trends are inconsistent with the one-dimen-

sional cases where the finite difference approximations were

consistently better 'than the Galerkin approximations. The

general trends should be the same for both one and two di-

mensions. The two-dimensional finite difference approxima-

tions seem to converge rapidly but toward a value well above

the exact solutions. It is suspected that there is a minor

error in the programming of the finite difference method

which could explain this discrepancy.

No oscillations comparable to the one-dimensional co-

llocation cases were noted except for a slight increase in

iverage error for the Galerkin in problem I with 22 nodes

and for the finite differences in problem II with 22 nodes.

Computer Analysis Time. The quantity used as a meas-

ure of the computer analysis time was the actual execution

time of the program. The time taken by compilation, input,

and output was almost constant for all computer runs. The

execution time in seconds is plotted in Figures 15-18 vs
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legend
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Figure 15. Execution Time vs Node Number
for z (x.v) = 10
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.--V Figure 16. Execution Time vs Node Number

for g(xy) =
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Figure 17. Execution Time vs Node Number'3 ' 2 y2
l for g (x,y) -x + 2

legend
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Figure 18. Execution Time vs Node Number
fr g' x2 y2forg(x,y)=- +y + x
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the number of interior nodes in the mesh.

In all cases the Galerkin approximations took more

time to execute than did the finite difference approxima-

tions. This is due to the additional matrix multiplication

required in the Galerkin method.

The trends in Figures 15-18 indicate that for more

than 28 interior nodes the Galerkin approximations will re-

quire more than one second of computer time while the fi-

nite difference approximations will require only about 0.5

seconds. This is an important trend when a high-accuracy,

many-term approximation is desired.

Overall Solution Accuracy. The convergence trends

indicate that both the Galerkin and finite difference ap-

proximations are slowly converging and will not reach an

average error less than 0.1 percent unless a large number

(>60) of interior nodes are used. The Galerkin method will

yield better accuracy.

Conclusions

From the analyses performed it seems that neither of

the two approximation methods will yield very accurate an-

Dwers when few interior nodes are used. At least 16 nodes

are required before the Galerkin method will yield average

errors less than one percent. The finite difference approx-

imations never reach that level of accuracy.

For a large number of interior nodes (between 50 and

100) the two methods are about equal. The accuracy limita-

-' tions of the finite difference approximations trade-off
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against the large execution time requirements of the Gal-

erkin approximations. If the suspected programming error

~::: in the finite difference method is located and corrected

then, as in the one-dimensional case, the method should be

the best choice to use.
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.;? IV. Conclusions and Recommendations

0Conclusions

Three points may be made regarding the use of the me-

thod of weighted residuals to determine approximations to

the discrete Green's function. First, the Galerkin and co-

llocation methods both yield analogs which are as useful as

the discrete Green's function itself. They allowed the sol-

ution of Poisson's equation in one and two dimensions (only

the one-dimensional case was verified for collocation) with

four different inhomogeneity terms. The accuracy of these

approximate solutions was limited to the accuracies of the

methods themselves. That is, the solutions were the same

as those obtained if the methods were applied to each prob-

lem without incorporating Green's functions or analogs. The

I only major limitation to the method of Galerkin is that the

inhomogeneity matrix must be recalculated for each respect-
ive inhomogeneity term.

The second point is the apparent sensitivity of the

weighted residual approximations to the choice of the trial

functions. The one-dimensional collocation approximations

displayed a damped oscillation not present in the finite
difference approximations. Although this may be a result

of the round-off error (indicated by the failure of the di-

rect matrix inversion routine's accuracy test) in the ma-

trix inversion, the fact that convergence was still fairly

~ -. rapid tends to say it is not. The more likely cause is an

inappropriate choice of the trial functions for the problems
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* examined.

Finally, the method of weighted residuals requires

more computer time than does the method of finite differ-

ences. This does not become important until large numbers

of interior nodes are used. In the two-dimensional analy-

sis it was seen that a large number ( 100) of interior

nodes was necessary to insure an average error of less

than 0.1 percent. In these cases the execution time anal-

ysis indicated a rapid growth in the time required to the

extent that it may become prohibitive in terms of computer

resources. A large part of this problem might be eliminated

by the streamlining of the existing computer program and

.4;. using more efficient routines where applicable.

0 Recommendations

4 Three areas from this study warrant further work.

The first is a study of the two-dimensional method of co-

llocation. This should be the initial task before any new

work is undertaken. This will allow a full comparison be-

tween the current analysis and any new additions. The me-

thods of least-squares and subsectional basing (Ref 2:11-14)

'I might also be examined.

The second area is the analysis of different trial

functions to see if they affect the accuracy of the result-

ing solutions. A possible choice would be the eigenfunc-

tions of the Laplacian operator (Ref 6:241-245). Particu-

lar attention should be paid to the oscillation in the co-

.4. llocation approximations.
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* - The last area for further work is the aforementioned

streamlining of the existing computer program. Included

in this would also be the location and correction of any

errors already present. The matrix inversion program is

the routine considered the most time consuming. It can pro-

bably be replaced by a more efficient routine while still

maintaining the desired degree of accuracy. If a lower

accuracy routine is incorporated attention should be paid

to any induced round-off errors*
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S..Appendix A

Numerical Approximations for the One-Dimensional

Problem Set

This Appendix contains the values of the Galerkin,

collocation, and finite difference approximations to Eqs(IO).

The values are the output of the computer analysis and are

tabulated according to inhomogeneity and the number of int-

erior nodes. The average percent error is also listed for

each set of values.

Note: The notation (*) indicates that for the given

number of interior nodes the direct matrix inversion program

used indicated that it6 accuracy test had failed.

* The notation (") indicates a repeated value from the

line above it.

.-.
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Table III

Galerkin Approximations for g(x) = 10

Number Point I Point 2 Average
of _ Error

Interior x = 0.66 x = 1.33 (%)
Nodes

2 -3.29218 -4.27984 14.81469

5 -4.17238 -4.38043 3.78079

8 -4.33062 -4.40286 1.74825

11 -4.35919 -4.37570 1.73239

14 -4.34807 -4.39567 1.63283

17 -4.35842 -4.35400 1.98518

F 20 -4.35830 -4.41338 1.31850

'; -Table IV

.Galerkin 
Approximations for g(x) = x

2

Number Point I Point 2 Average
of Error

Interior x - 0.66 X - 1.33 (%)
Nodes

2 -0.35117 -0.61454 9.85043

5 -0.40985 -0.62125 2.45861

8 -0.42040 -0.62274 1.10697

11 -0.42200 -0.62087 1.06953

14 -0.42096 -0.62235 1.07273

17 -0.42157 -0.62019 1.17412
'.>

20 -0.42347 -0.62817 0.31427
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* "-Table V

Galerkin Approximations for g(x) = x2 + I
L- Number Point I Point 2 Averageof Error

Interior x -: 0.6 x 1.3 M
I' Nodes

2 -0.68038 -1.04252 12.28890

5 -0.82708 -1.05229 3.42479

8 -0.85346 -1.06303 1.41104

11 -0.85791 -1.05844 1.37050

14 -0.85577 -1.06191 1.33099

17 -0.85741 -1.05559 1.53233

20 -0.85930 -1.06951 0.77352

-.- Table VI

Galerkin Approximations for g(x) = x2 + x + 

Number Point 1 Point 2 Average
of - Error

Interior x = 0.66 x = 1.33 (M)
Nodes

2 -0.99863 -1.52538 11.83411

5 -1.2o001 -1.54885 2.98185

8 -1.24093 -1.55408 1.35820

11 -1.24716 -1.55766 1.56347

14 -1.24413 -1.55252 1.28185

17 -1.24642 -1.54370 1.47352

20 -1.24919 1-1.56343 0.73341

.%.6
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Table VII

Collocation Approximations for g(x) = 10

Number Point I Point 2 Average
of Error

Interior x 0.66 x = 1.33 (%)
Nodes

2 -2.96296 -2.96296 33.33333

5 -4.19151 *-4.69738 5.69104

8 .*-5.97101 -3.97101 10.65219
11 * *

11 *-4.32441 .-4.564-48 .70079
1- * *

I1l *-4.17154 -4.17153 6.14048

17 -4.36832 -4.52071 1.71439

20 -4.25132 -4.23779 4.49742

a
Table VIII

Collocation Approximations for g(x) = x2

Number Point I Point 2 Average
of Error

Interior x = 0.66 x = 1.3 (%)
Nodes

2 -0.32922 -0.52675 19.43228

5 -0.41112 -0.64238 3.31822

8 -0.39642 -0.59395 6.20983.

11 -0.41998 -0.63352 1.57490

14 *-o.4979 *-0.60732 3.57911

17 *-0.42291 *-o.o63060 0.99919

20 *-0.41511 *-0.61152 2.62186

57



Table IX

Collocation Approximations for g(x) = x2 + 1

Number Point 1 Point 2 Average
of Error

Interior > - 0.66 x = 1.T3 (%)
Nodes

2 -0.62551 -0.82305 25.68956
5 *-0.83027 *-1.11211 4.38594

8 *-0.79352 *-0.99105 8.20995

11 *-0.85242 *-1.08996 2.08141

14 *-0.82694 *-.02447 4.73287

17 *-0.85974 *1-1.08267 1.32123

20 *-0.84024 *-1.03530 3.46453

Table X

Collocation Approximations for g(x) = 2 + x +
Number Point I Point 2 Average

of - - Error
Interior x = 0.66 x = 1 33 (%)

Nodes

2 -0.92181 -1.21811 24.68903

5 *-.20847 *-1.62280 6.54321

8 *-1.15702 *-'1.45332 7.88995

11 *-1.23948 *-1.59179 2.00020

14 *•-. 20381 * -1. 50011 4.54813

17 *-1.24973 *-1.58158 1.26941

20 *-1.222431 *-'1.51511 3.33400
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Table XI

Finite Difference Approximations for g(x) - 10

Number Point I Point 2 Average
of Error

Interior x = 0.66 x = 1.3 (%)
Nodes

2 -4.4 .L 0.00000

5III I

8 HI8II II II

11"""

14 "

17 " "

20 "t "

Table XII

Finite Difference Approximations for g(x) = 2

Number Point I Point 2 Average
of - - Error

Interior x = 0.66 x - 1.53 (%)
Nodes

2 -0.39506 -0.59259 6.47743

5 -0.41976 -0.61728 1.61819

8 -0.42433 -0,62186 0.71818

11 -0.42593 -0.62436 0.40336

14 -0.42667 -0.62420 0.25776

17 -0.42707 -0.62460 0.17905

20 -0.42731 -0.62484 0.13183
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Table XIII

Finite Difference Approximations for g(x) = x2 + I

Number Point I Point 2 Average
of Error

Interior x - 0.66 x = 1.33 (%)
Nodes

2 -0.83951 -1.03704 3.42506

5 -0.86420 -1.06173 0.85626

8 -0.86877 -1.06630 0.38079

11 -0.87037 -1.06790 0.21433

14 -0.87111 -1.06864 0.13734

17 -0.87151 -1.06904 0.09572

20 -0.87176 -1.06929 0.06971

0
Table XIV

Finite Difference Approximations for g(x) x2 + x +1

Number Point 1 Point 2 Average
of Error

Interior x = 0.66 1.3 (%)
Nodes
2 -1.23456 -1.53086 2.35191

5 -1.25926 -1.55556 0.78504

8 -1.26383 -1.56013 0.26140

11 -1.26543 -1.56173 0.14713

14 -1.26617 -1.56247 0.09428

17 -1.26658 -1.56287 0.05585

20 -1.26682 -1.56311 0.04817

60
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Appendix B

Numerical Approximations for the Two-Dimensional

Problem Set

This Appendix contains the values of the Galerkin and

finite difference approximations to Eqs(79). The values

* are the output of the computer analysis and are tabulated

according to inhomogeneity and the number of interior nodes.

The average percent error is also listed for each set of

values.

Note: The notation (**) indicates that for the given

number of interior nodes the direct matrix inversion program

indicated that the matrix I was algorithmically singular.

The resulting solution values were discarded as being invalid.

,%6
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-.. .- Table XV

Galerkin Approximations for g (x,y) = 10

Number Point 1 'oint 2 Point 3 Point 4 Average
of Error

Interior x = 0.6( = 1.X 3 x = 0.66 x = 1.3 (M)
Nodes y = 0 . . y = 3y .

4 -2.40852 -2.46212 -2.46212 -2.52302 2.18594

10 -2.45819! -2.43633 -2.4563 -2.38168 1.25826

16 - 2 . 4 10 3 8 -2.43064 -2.4506 -2.40911 0.43282

22 -2.39171 -2.41861 -2.41861 -2.39383 0.53525

28 -2. 3 94.1 -2.42412 -2.42393 -2.40121 0.54301

: - :: j , **__ __ **___ _ _ __ _

40******

Table XVI

2
Galerkin Approximations for g (xy) =X

Number Point J Point 2 Point 3 Point 4 Average
of Error

Interior x -x O. x= x = 0.6x=1.33 M
Nodes y=0. 6 y = O y -1.33Y=.3

4 -0.19932 -0.3700 -0.2000 -0.38251 1.50636

10 -0.19916 -0.3779 -0.2001 -0.36458 1.41233

16 -0.1987? -0.3734 -0.20251 -0.36642 0.94309

22 -0.19927 -0.3722 -0.2014- -0.36654 0.71061

28 -0.19952 -0.,372"1 -0.2015! -0.36652 0.66203

34,, ** , ,,

,4
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-'-4 -Table XVII
; ' ' 2  y2Galerkin Approximations for g (x,y) x +

Number Point "I oint 2 Point 3 Point 4 Average
of Error

Interior x = O.66 = 1. X = 0. x = 1 (%)
Nodes y = yJ r = 0.66 y = 1.73 y =1A

_ _4 -0.39863 -0.57013 -0.57013 -0.76502 1.25049

10 -0.39831 -0.57813 -0.57813 -0.72917 1.27232

• 16 -0.39755 -0.57597 -0.57597 -0.73285 0.97297

22 -0.39854 -0.57373 -0.57372 -0.73308 0.73910

28 -0.39905 -0.57364 -0.57361 -0.73304 0.70008

V.. ** ** ** **

i 40 ** ** ** ** -..

.34 440

Table XVIII

Galerkin Approximations for g'(x,y) = + Y2 + x

Number Point I Point 2 Point 3 Point 4 Average
of Error

Interior x = 0.66 x =1 x 0.6x=.3 M
Nodes y - 0T y = OA y 1.33 y = 1.33

-0.59706 -0.85163 -0.77124 -1.05504 1.18138
10 -0.59666 -0.86734 -0.77552 -1.01021 1.09759

16 -0.59570 -0.86139 -0.77607 -1.01482 0.86809

22 -0.9694 -088 -0.7330 -1.01512 0.63594

28 -0.59761 -0.85842 -0,77328 -1.01507 0.64254

34 **

40 , ** ., ,.
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-. Table XIX

Finite Difference Approximations for g (xv) = 10

Number Point "' <oint 2 Point 3 Point 4 Average
of Error

Interior x = 0.66 x = 1.3 x = 0.66 x = 1.B (%)
Nodes y = O.j y =O.6 y = 1.7 y =l1.33

4 -2.05128 -1.62393 -2.13675 -2.05128 i8.56088

10 -2.26123 -2.18765 -2.27367 -2.25634 7.03412

-16 -2.29383 -2.26968 -2.29771 -2.29182 5.20250

22 -2.30374 -2.29305 -2.30543 -2.30279 4.66425

28 -2.30789 -2.30225 -2.30877 -2.30737 4.44396

34 -2.30998 -2.30665 -2.31050 -2.30967 4.33500

40 -2.31116 -2.30905 -2.31150 -2.31097 4.27410

Table XX

Finite Difference Approximations for g'(x,y) =

Number Point I Point 2 Point 3 Point 4 Average
of -Error

Nodes -0.?76 y = O. y 3. Y =13;

4 -0.14815 0.23457 -0.16049 -0.29630 25.75409

10 -0.18346 -0.32431 -0.18583 -0.33749 9.36034

16 -0.19016 -0.34152 -0.19096 -0.34612 6.14224

22 -0.19232 -0.34689 -0.19269 -0.32858 6.48503

28 -0.19326 -0.34912 -0.19345 -0.35025 4.65414

34 -0.19373 -0.-35022 -0.19385 -0.35089 4.42834

40 -0.19401 0.35083 !-0.19408 -0.35127 4,29801
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Table XXI
e2 2

Finite Difference Approximations for g (x,y) x 2 + y2

Number Point 1 loint 2 Point 3 Point 4 Average
of Error

Interior x =0.-6 x = 1.M x = 0.66 x = 1.M M
Nodes y 0.66 y = 0.66 y 1.33 y = 1.33

4 -0.29630 -0.32099 -0.46914 -0.59259 26.92389

10 -0.35657 -0.48655 -0.51500 -0.66410 11.49946

16 -0.36691 -0.51467 -0.52383 -0.67811 8.76445

22 -0.37015 -0.52310 -0.52676 -0.68267 7.91249

28 -037149 -0.52650 -0.52805 -0.68463 7.55623

34 -0.37217 -. 52816 -0.52871 -0.68564 7.37818

40 -0.37256 -0.52907 -0.52911 -0.68621 7.27728

0Table XXII
°i'' 2 y2

Finite Difference Approximations for g (x,y) - x + y + x

Number Point " Point 2 Point 3 Point 4 Average
of Error

Interior x = 0.66 x = IX. = 0 X =133 M
Nodes y -0.9-6= y -0:- w1.33 y l1.375

4 0-46154 -0-51045 -0.64435 -0.83191 24.62142

10 -0.54301 -. 74068 -0.70309 -0.92738 10.25579

16 -0.55685 -0.77945 -0.71430 -0.94595 7.72779

-4, 22 -0.56112 -0.79102 -0.71799 -0.95196 6.94492

28 -0.56291 -0.79568 -0.71959 -0.95453 6.61934

34 -0.56381 -. 79793 -0.72042 -0.95584 6.45710

40 -0.56431 -0.79917 -0.72091 -0.95659 6.36578
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