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ABSTRACT

For rapid crack propagation in an elastic perfectly-plastic material,
explicit expressions have been obtained for the dynamic strains on the
crack line, from the moving crack tip to the moving elastic-plastic
boundary. The method of solution uses power series in the distance to
the crack line, with coefficients which depend on the distance to the
crack tip. Substitution of the expansions in the equations of motion,
the yield condition (Huber-Mises) and the stress-strain relations, yields
a system of nonlinear ordinary differential equations for the coefficients.
These equations are exactly solvable for Mode-III, and they have been
solved in an approximate manner for Mode-I plane stress. The crack-line
fields have been matched to appropriate elastic fields at the elastic-
plastic boundary. For both Mode-I1I1 and Mode-~I plane stress, the plastic
strains, which depend on the elastodynamic stress intensity factor and the
crack-tip speed, have been used in conjunction with the crack growth
criterion of critical plastic strain, to determine the relation between

the far-field stress level and the crack-tip speed.
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1. Introduction

At high crack-tip speeds the mass density of a material affects the
fields of stress and deformation in the vicinity of a propagating crack
tip. For essentially brittle fracture, near-tip dynamic effects have
been investigated extensively on the basis of linear elastic fracture
mechanics. By now, several papers have reviewed the computation of
elastodynamic stress intensity factors, and they have discussed dynamic
effects on the fracture criterion of the balance of rates of energies,
see Achenbach (1), Freund (2) and Kanninen (3). The combined effect of
plastic deformation and mass density on near-tip fields has not yet
received that much attention. This is not surprising, considering the
difficulties that are encountered in the quasi-static analysis of fields
near a growing crack in an elastic-plastic material.

For quasi-statically growing cracks the asymptotic structure of
near-tip fields in elastic perfectly-plastic solids has been analyzed in
considerable detail. A recent review by Rice (4) includes a general
formulation, and it presents detailed results for isotropic materials of the Huber-
Mises type. In general, the analytical near-tip results must be supple~
mented by numerical calculations to determine certain arbitrary functions
that appear in the asymptotically valid near-tip results.

In recent papers, Achenbach and Dunayevsky (5) and Achenbach and Li (6)

have constructed quasi-static solutions that are valid on the crack line,

from the moving crack tip up to the moving elastic-plastic boundary.




These solutions were obtained for an elastic perfectly-plastic material of
the Huber-Mises type by expanding all fields in powers of the distance,

y, to the crack line. Substitution of the expansions in the equilibrium
equations, the yield condition and the constitutive equations yields a
system of simple ordinary differential equations for the coefficients

of the expansions. As shown in (6), the resulting equations are exactly
solvable for the Mode-I1I1I case, and they are solvable for the Mode-I plane-
stress case if it is assumed that the cleavage stress is uniform on the
crack line. By matching the relevant stress components and particle
velocities to the dominant terms of appropriate elastic fields at the
elastic-plastic boundary, the plastic strains on the crack line were
computed in terms of the elastic stress intensity factor.

The literature on dynamic effects in the presence of elastic-plastic
constitutive behavior is growing. Investigations of the asymptotic
structure of the dynamic near-tip fields were presented by Slepyan (7)
and Achenbach and Dunayevsky (8). Dynamic near-tip effects for a strain-
hardening material were investigated by Achenbach and Kanninen (9) and
Achenbach, Kanninen and Popelar (10) on the basis of Jz-flow theory and
a bilinear effective stress-strain relation. For Mode-I1I crack propa-
gation in an elastic perfectly-plastic material, exact crack-line solutions
were obtained by Achenbach and Dunayevsky (11) and Freund and Douglas (12).

In the present paper the expansion technique of Achenbach and Li (6)

is extended to the dynamic formulation, for rapid crack growth in Mode-IIl

and in Mode-I plane stress. Systems of nonlinear ordinary differential




equations have been established which are valid for the transient case.
Solutions have, however, been obtained only for the steady-state dynamic
crack line fields. The equations for the Mode~II1 case can be solved
rigorously in implicit form. An approximate approach which gives
excellent results for the Mode-III case has, however, also been developed.
The equations for Mode~I plane stress cannot be solved rigorously, but
the approximate approach can be used to yield the steady-state dynamic
cleavage strain on the crack line. The plastic strains on the crack line
have been used in conjunction with the crack growth criterion of critical
plastic strain to determine a relation between the far-field stress

i level and the crack-tip speed.

3

The geometry is shown in Fig. 1. The x_,-axis of a stationary coordinate i

system is parallel to the crack front, and x, points in the direction of

1
crack growth. The position of the crack tip is defined by X = a(t).

A moving coordinate system (x,y,z) is centered at the crack tip, with its

axes parallel to the X)X and x, axes.
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2. Mode III Crack Propagation

In this Section an exact steady-state dynamic solution is derived
which is valid on the crack line in the plastic loading zone ahead
of the propagating crack tip.

In the moving coordinate system the equation of motion is

thz 9T z .
. x +_L8y = pw (2.1)

where w(x,y,t) is the anti-plane displacement, and the material time

derivative is defined as

(") = (3/3t) - a (3/3x) (2.2)

Here & = da/dt is the speed of the crack tip. The Huber-Mises yield

condition requires

K 2 + 12 =2 . (2.3)
k Xz yz

where k is the yield stress in pure shear. The strain rates are

. 1 a& o 1 aa
€ 7 3% ° € 2 3y (2.4a,b)

1 4
° - X2 M . - JE :
€ e 3 + Asz s eyz 2 + ATyz (2.5a,b)

In (2.5a,b) u is the shear modulus and A is a positive function of

time and the spatial coordinates.

Solution ;!g!g the crack line.

! In this paper we are interested in solutions along the crack line

[

y=0,0<x :_xp. vhere x = xp defines the elastic-plastic boundary.
Such solutions can be obtained by considering expansions with respect

to y in the region y/x << 1:
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lyZ So(xit) + Sz(x.t)y + 0()’ )

= 3
Teg rl(x,t)y + 0(y*)

w = ﬁl(x.t)y + o(y®)

A= Ko(x,t) + 1'\2(x.t)y2 +0(y"Y)

In (2.6)-(2.9) we have taken into account that Tyz and A are
symmetric with respect to y = 0, while Tz and w are antisymmetric.
Substitution of (2.6)-(2.9) into (2.1), (2.3) and (2.5a,b), and
collecting terms of the lowest orders in y yields

9T

ﬁ+252=pﬁ

2 _ 2 2
so k° Zsos2 + .31 Q
a. ‘i L] ®
1 1 _ 1 1. _
2 3x 2u + Aotl' ¥ = A%,

It follows from (2.1la) that 5, = k. Elimination of 8,y from (2.10)
and (2.11b) gives

2
9T T

1 O
x kP90

Similarly, Ao can be eliminated from (2.12a) and (2.12b) to yield

.a:]‘_-.{_];-lg',-[ = (
9x M k11

Equations (2.13) and (2.14) define two coupled nonlinear partial
differential equations. Analytical solutions to these equations,

which would give the transient fields on the crack line, have not

yet been obtained.

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11a,b)

(2.12a,b)

(2.13)

(2.14)




Equations (2.13) and (2.14) must be supplemented by conditions

3 at the elastic-plastic boundary I. These have been discussed in some

detail in Appendix A, where it was shown that for conditions which may
be assumed to hold ahead of a propagating crack tip, the stresses are
continuous at I, see Eq.(A.24a,b). From the impulse momentum relation
.; ' (A.3) it follows that the particle velocity is then also continuous.

Near the crack line at x = xp we can then write:

(fs,)1 =0, [[t;]] =0and [[w]]=0, (2.15a,b,¢|

where the notation for discontinuities is defined by Eq.(A.l).

The governing equations for the quasi-static case follow by

-t

setting p = 0. The resulting system of coupled nonlinear ordinary
differential equations can be solved. The quasi-static solution for
&1 has been given in Ref.(5).

For the steady-state case the material time derivative (2.2)

reduces to
(') = - a (d/dx) (2.16)

where 4 is now a constant crack tip speed. We define

: dw
! Y, - a;l » and hence ﬁl - - éyl . (2.17a,b)

and we note that (2.14) and (2.13) then may be written as

-0 (2.18)

dt 12 dy
1 .
i el di =0, 2.19)
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where the Mach number M is defined as
M= &/@u/o)" (2.20)
For small values of y (i.e., y/x << 1) the plastic fields in the
loading zone will be matched to the dominant terms of the elastic
fields. In polar coordinates R,J centered at point E, and for small
values of the angle y, the dominant terms of the solution on the elastic

side of the elastic-plastic boundary are taken as

- (R-)%z ¥ = sh dul (2.21)
w £ 21/) u KIII 5¥ » ¥ = shear modulus .
< b
AT U (L
"Rz =(21TR) I(‘[II ?P ’ Twz = (an) KIII (2.22a,b)

Here the elastic stress-intensity factor KIII depends on M. The
angular dependence on M enters in higher order terms of y. It should
be noted that the center of the elastic field is not taken to coincide
with the crack tip. The center is located at a moving point E. The
geometry is shown in Fig. 1.

Since Tyz is continuous at y = 0, x = xp. see Eq.(2.15a), we find

Y
__1_. = = 2 2
( 217Rp) Ry =%+ or Ry = (& )?/2nk (2.23a,b)

where R = Rp defines the radius of curvature of the elastic-plastic
boundary, at least for small values of y. Another condition is that
TRz (i.e., the shear stress in the R,} system) should be continuous
at the elastic-plastic boundary. We find by using (2.6) and (2.7)

TRz ™ Txz cosy + Tyz siny = 1334 + ky (2.24)
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Thus, by the use of (2.22a) and (2.23a)

1.y + ki = kiy (2.25)

1 2
Since y = y/Rp, we obtain at x = xp

Tl = - k/sz (2.26)
Continuity of Yl at x = xp, which follows from (2.15¢), yields

8w _Yyaw_ 1

1Y TR TRy P (2.27) |
or

Yy =< k/ZuRp (2.28)

where (2.23a) has been used. For completeness we list the condition

on the strain dw/dy at x = xP
-Y =ﬂ= w =% (2'29)

Equations (2.18) and (2.19) can be solved rigorously, as shown
in Appendix B. It is, however, of interest to note that an asymptotic
solution for small values of x can be obtained with minimal effort.

Let us consider solutions of the general form

. = - (2.30a,b)
L 11/x s Yl z yl/x
Substitution in (2.18) and (2.19) yields
1':1 = k(1M) , ;1 =t (1M)k/uM (2.31a,b)

Since we must have Y1 < 0, we discard the solution containing the

plus signs. Hence
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> . - kQ-M . o_k1lMl

‘ T ® X ’ Yy ® M x (2.32a,b)
Since Yy = ayy/ax, we also have

;. . k1l-M

. Yy 5 T U H in(x/xp) (2.33)

- This solution is the same as the one derived earlier by Slepyan (7),
see also Achenbach and Dunayevsky (8). Note that T reduces to the

quasi-static solution as M + 0. The strain Yy has, however, not only
the wrong behavior in x, but actually becomes singular in M.

As shown in Appendix B,the solution to Eqs.(2.18) and (2.19) which
satisfies the boundary conditions (2.26) and (2.28) at x = xp is

defined by the following equations:

3 L\ /2
- 1o (1 (—ZF - 1—+ﬁ) (2.34)
# k/2R 1M (1) /2M )
' P (a-x)* (2!-‘ + =
‘- 1 M
where
%k dty
F(‘l’l) = - —x (2.35)
2 X
(t))
1
; i T dt
| v, = = = (kM) Ly (2.36)
{ 1 2 2 dx
uM T
H 1
Equation (2.34) gives F as a function of Ty Integration of (2.35)
f then yields ;
;
| X = = —k ]- —_— 4+ x (2.37)
~k/2R & F(s) P
¢
i
i
9
)
f. . ———
L o e 22 S
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Equation (2.37) yields T, as a function of x and xp. Substitution of
the result in Eq.(2.36) yields Y- By letting 1, ~ = in (2.37) we obtain

a relation between xp and Rp. From Yy = Ryylax. we finally find

X
K ] k , P
= — 4 dx = — + 2.38
L ) Yy a Yy ( )
P
The strain Yy obtained from (2.38) is the exact solution on the crack
line. This solution is equivalent to the one obtained earlier by
Dunayevsky and Achenbach (8) , and Freund and Douglas (12). It can
be shown that for small x, Eq.(2.38) reduces to (2.31b). In the
limit M > 0, (2.38) reduces to the quasi-static solution
u 1 2
= =1 - n(x/x ) + = [in(x/x (2.39)
Yy (x/x)) + 7 [in(x/x))]

An explicit analytical expression for Yy’ albeit an approximate
one, would be very useful for applications in conjunction with the
crack growth criterion of a critical plastic strain. Another reason
for an approximate approach to the Mode-III case is that the results
can be tested by comparison with exact results. The same approach
can then be used for the Mode-I plane-stress case, which is not
amenable to an exact solution.

An approximate approach is suggested by the structure of Eqs.(2.18)
and (2.19). 1f an acceptable approximation to 3y would be available
a-priori, then (2.18) would simply be a linear ordinary differential

equation for Yy A first approximation to 1, is suggested by (2.32a),

1

10
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namely, Ty = -k(1-M)/x. This expression has the correct limits at

M=0and M =1. A better result is obtained by adding a constant

term

- 1, .M
Ty = k(1 M)[x + 2xp

The second term is chosen so that (2.19) is satisfied up to order
OM) near x = xp. Figure 2 shows a comparison between (2.40) and
the exact result. Equation (2.40) can now be substituted in (2.18),
and the resulting equation can be solved rigorously for Yy- The
strain Yy = k/u + Y§ then follows from (2.38). In anticipation of
difficulties with the Mode-I case, we elect, however, to solve Yl by
using a perturbation solution which ignores terms of order O(M?).

The corresponding expression for Yy is obtained as

BoPE Ly | (LM (2-M-N?) l(z_)M_ 1 M(1-M) 5_)”“ M(1-M)
k'y xp M(2-M4M2) M xp M 2(14HM) xp 2(14M)
1-M X 1 X
- ln(g) +5AMC- - 1)

It 18 of interest that (2.41) yields (2.33) in the limit x + O,

while it yields the quasi-static solution (2.39) as M » 0,

provided that

X
M zn(xp) << 1

A comparison of (2.41) with the exact result is shown in Fig. 3.

(2.40)

(2.41)

(2.42)
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Application of the boundary condition (2.26) to the approximate
expression for Ty yields a relation between xp and Rp. Subsequent
use of (2.23b) gives

= (1. 1 2
xp = (1-M) (1+2M4) 57 (K /k)

TI1
In Ref.(12), Freund and Douglas use numerical results of a finite
element analysis to derive

= - 2
xp (0.295 - 0.5M )(KIII

5%

For arbitrary M we cannot obtain an exact analytical expression for x

as a function of KIII/k from (2.34)-(2.37). However, as M + 0, we find

= (o-fm2y Lo 2
xp (2-6M“) ZH(KIII/k)

Figure 4 shows a comparison between (2.43), (2.44) and the exact
relation, which follows from (2.34)-(2.37).

Finally, following Freund and Douglas (12) we apply the crack growth
criterion of critical plastic strain to determine the value of KIII that
would be required for crack growth at a given value of M. The crack-
growth criterion, originally proposed by McClintock and Irwin (13),
states that the crack will grow with (normalized) plastic strain
(u/k)ys =Yygat x=x.onys= 0. For plastic strain below Y 8t X = X,
the crack cannot grow. As discussed by Rice (14) the characteristic

length x.f is related to Kc, the value of the Mode III stress intensity

factor which 1s required to satisfy the fracture criterion for a stationary

crack, by the relation

12

(2.43)

(2.44)

(2.:45)
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X (Y ) = (Kc/k)z R or x. = (Kc/k)zlw(yf+1) (2.46a,b)

We can now compute Yg from (2.41) by substituting x_ for x. Subsequent

f
elimination of xp by the use of (2.43) yields

= X .P
Ye T % Yy(i) (2.47)
where the functional form of Ys is given by (2.41), and the argument
£ 1is
= 2 2
£ = 2(K /K 1)/ By 1) (1-4) (244 ] (2.48)

For three values of Yeo the relation between KIII/Kc and M given by

(2.47) has been plotted in Fig. 5, and compared with the exact relation.
The elastodynamic stress intensity factor KIII is the dynamic factor.

It is related to the corresponding quasi-static factor, see Ref.[l, p.35]

by the relation

1
- - 2
KIII = (1-M ) (KIII)qs (2.49)

Equation (2.49) implies that remote load, to attain a high crack tip
speed is actually even higher than would follow from (2.47), because the

external load is contained in (K

III)qs'




3. Mode-1 Crack Propagation in Plane Stress

We consider a state of generalized plane stress, hence 0,0 O, and

oyz vanish identically. Relative to the moving coordinate system the

equations of motion are

Box 3rx . arx 1o
= oy T eu T dy L

The Huber-Mises yield condition becomes

o2 + a2 -g o + 312 = 3K%,
X y XYy Xy

where k is as in Eq.(2.3). The strain rates are
é = -3-—£l é =ﬁ é =l(2-‘l+ﬁ)
x x ° y oy’ xy 2\3y 3x

The strain rates are related to the stresses and stress rates by

m _ 1, . 1

3% - E(ox - voy) + 3 A(20x oy)
a—v.---l-(é -v6)+£;\(20 -0.)
3y E'y X 3 y x
1730 , 3V 1+v .

2\ 3y + ax) E  'xy + ATxy ’

where E and v are Young's modulus and Poisson's ratio, respectively,

and A is a positive function of time and the spatial coordinates.

Solution along the crack line

Analogously to (2.6)-(2.9) we consider

o, = po(x,t) + pz(x,t)y2 + pa(x.t)y" + 0@y®)

14

(3.1a,b)

(3.2)

(3 .3a.b.c)

(3.4)

(3.5)

(3.6)

(3.7)

|




Uy = qo(x.t) + qz(x,t:)y2 + qa(x,t)y" + O(ys) (3.8)

Ty = 51000y + 85(x,t)y° +0(y®) (3.9)

U= d (x,t) + ﬁz(x,t)y2 + 0(y") (3.10)
Vo= ¥ L)y V()Y +0(y®) (3.11)
B=(,e) + Ay (k)7 + 0y") (3.12)

Here we have taken into account that ox, cy, u and A are symmetric with
respect to y = 0, while Txy and V are antisymmetric. Substitution of

(3.7)-(3.9) into (3.la,b) and collecting terms of the same order in y

yields
apo . apz .
e + Sy =pu , = + 333 = pu, (3.13a,b)
; asl . 333 -
: . e + 2q2 = pvl , e + l¢q4 = DV3 (3.14a,b)

Substitution of (3.7)-(3.9) into the yield condition (3.2) yields by the

same procedure

2 2 - - 2
P, t a2 -p,9, = 3k (3.15)
!
- - 2 =
(2p,-q )P, + (29 -p )q, + 3s] = O (3.16)
2 - 2 o - =
P, + (2p-q)p, + 4; + (29 -P )4, - P,d, + 68,8, = 0 (3.17)

Another 5 equations are obtained by using (2.16) and (3.7)-(3.10) in

(3.4)-(3.6). These equations have been listed as Egs.(21)-(25) by




Achenbach and Li (6), and they are not reproduced here.

At this stage we have 14 unknowns and 12 equations. Clearly, the
system cannot be solved without further simplifying assumptions. For the
quasi-static problem (i.e., p = 0),one assumption, namely that q, = constant,
suffices to produce a solvable system of equations, as shown by Achenbach

and Li (6). For reference purposes we state the coefficients for the

quasi-static stresses obtained in (6)

3k

P, k P,*-3, (3.18a,b)
X

9, = 2k , q, = 0 (3.19a,b)
_ k

S = O 'y 8 B - — (3.208,‘))
1 3 x3

An approximate solution can be obtained for the steady-state dynamic

problem, when (°) = -add/dx. Equations (3.13)-(3.14) then become

dp d%u dp d%u
3;9 +s = M2 ° <3—g + 3s3 = EM? 2 (3.21a,b)
dx? x dx?
ds d?v ds d?v
E:?l + 2q, = EM? 1 3-3 + 4q, = BY? 3 (3.22a,b)
dx? x dx?
where M is defined as
. ]

M= a/(E/p) (3.23)
The equations that can be obtained from (3.4)-(3.6) now become

d?u dp dq dA

o .Y o _ __a) 100 -
e B Y&/ TIE (2p,=q,) (3.24)
16




d*u dp dq da da
2 _ ;( 2 _ 2) 1 %0, _ 1772
o?  E\d& Vo )t T IR (1) + 3 () (3.25)
dv dq dp dA
1 _1{""0 _ o 1 o -
dx  E\dx v Ix ) + 3 dx (2q° po) (3.26)
dv dq dp dA dA
2a1(2 _2) 1 00 - 1%,
33 =i & v )3 & (29, - py) + 337 (2a, - p) (3.27)
2
du2 +‘£ d v1 i} 14v ds1 . dA° . . .28
dx 2 42 E dx dx 1 - .

To determine a solution teo Eqs.(3.15)-(3.17), (3.21)-(3.22) and
(3.24)-(3.28), we start by making the same assumption as for the quasi-
static case, namely, that q, = constant. A second assumption is that
2p° -9, =& where € = ¢(M), but € << k. It then follows from (3.15)

that

= = 2 - = =
P k + 0(g), q, 2k + 0(e%), 2q° P, 3k + 0(e), 2p°—q° 0(e) (3.29a,b,c,d)

Since both P, and q, are constant, Eq.(3.26) implies that dAo/dx =
(l/k)dvlldx + 0(e), and it subsequently follows from (3.24) that

dzuO/dx2 ~ 0(e). Substitution of these results in (3.21la) gives s, = 0(eM?),
while (3.22a) gives q, = 0(M?). Next, we conclude from (3.16) that

ep, + Jkq, + 0(e2M"*) = 0, which implies that ¢ = O(M?). Application of the
preceding results to (3.17) gives q, = —(1/3k)p; + 0(M?). Substitution of
the latter result in (3.22b), and then in (3.21b) yields

2 k]

__+.3p; - BM2—2 + o(M?) (3.30)
dx? dx?




Note that the inertia term has not been neglected in this equation,
since it provides a coupling with equations for uye Substitution of

= 0(eM?) = O(M*) into (3.28) yields

51
du d?v
—2+i_ 1.0 (3.31)
dx 2 2
dx

Finally, by using (3.31), as well as (3.29) and dAO/dx = (l/k)dvlldx,
Eq.(3.25) gives

3
1 d v1 1 dp2 2 dv

1
dxg +de+3kdx

P, = oM2) (3.32)

N

In a further reduction we ignore the terms of O(Mz), and we eliminate

u, by the use of (3.31), to obtain

3

42 d
?2 M % Py + % pe —1x . (3.33)
dx‘ dx3 -
d?v dp
L __lx, 2 12,
2 2 2V teEm 0 (3.34)
where
Vig = dvy/dx (3.35)

Equations (3.33)-(3.34) will be used to analyze the Mode-I plane-stress
fields.

The solutions for Vix and P, must satisfy certain conditions at the
elastic plastic boundary I. In Appendix A it was shown that for conditions
wvhich may be assumed to hold ahead of a propagating crack tip, the
stresses are continuous at I , see Eq.(A.31). From the impulse momentum

relation (A.3) it then follows that the particle velocity is also continuous

at I,




For y/x << 1 the plastic fields in the loading zone will now be
matched to the dominant terms of the elastic field. In polar coordinates

R,¥, centered at point E, the elastic field for small values of ¢ is taken

as
b n 7 _9n .2
% = G KA T - G- v (3.36)
o = 1!’1({(1+ )+(- LRS! (3.37)
vy = Sy 16R .
= i)t K, ( ”)\v (3.38)
xy 27R 4R *
R %1 n 1 n
u o= G Kk -1+ ) + 365 -k - W) (3.39)
v (R 5L g -1+ (3.40)
U1 2RV *

where « = (3-v)/(l4v). This elastic field has one more parameter, namely n,

than the usual elastic crack-tip field. Equations (3.36) - (3.40)

actually correspond to the field for a notch with %n

of curvature, see Creager and Paris (15). The elastic stress-intensity

as its tip~radius

' factor KI depends on M, but the angular dependence on M enters in higher
order terms of Y. The center of the elastic field is located at the moving
point E.

Since the stresses Oy and °y are continuous at ¢y = 0, we find from

(3.29a,b) and (3.36)-(3.37)

1.% n 1 %
G KA R e G K 4 = %k
P |34 [ p

et TN
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where R = Rp defines the radius of curvature of the elastic-plastic
boundary, at least for small values of ¢. From (3.4la,b) we obtain

n/RP = 2/3. Substitution of this result in (3.41a) yields

(ziap);! K = %“ » or R = (4/9) (R /k)?/2n (3.42a,b)

For small values of y/x and ¥ we next consider the continuity of

TRw and oR. We use ‘
- 2, _oin2
Tgw (cos“y -sin‘y) oxy + (oy-ox)sinWCosw (3.43)
= 2 2
op = 20xysinWCosw + g cos Y + oysin {7 (3.44)

in conjunction with (3.36)-(3.38) and the stresses in the plastic zone.

It may be verified that t is continuous to first order in y . The stress

Ry
% is continuous to order unity by virtue of Eq.(3.42). Collecting terms
to order y? and y* yields the relation
x=x: p, = - (3.45)
P 4R;

Next, we consider the continuity of the particle velocity at small

values of ¥. We use

6¢ = vcosy - usiny (3.46)

= ysiny + Gcosy (3.47)

Yr




Since [ﬁ¢] = 0 and [ﬁR] =0 , we find from (3.46)~(3.47)

[V]cosy - [u]lsiny = O (3.48)
E [V]siny + [d]cosy = O (3.49)
Substitution of (3.11)-(3.12) into (3.48)-(3.49) and collecting terms of

the same order in y yields

[é,j1 =0, (¥l=0 ([a]=0 (3.SOa,b.J

By the use of (3.39)-(3.40), we then obtain

x=x_ v, - 22; B, - 32tk L (3.51a,b)
P P 8ER;

where (2.16) has been used. For the steady-state problem (3.5la,b) imply:

dle

dx

X=X 3 v, = -3k/2ERp,

;| . Ix = 3(2+v)k/4ER; (3.52a,b)

It appears to be difficult to solve (3.33) and (3.34) rigorously. Just

as for the Mode-III case, an asymptotic solution for small values of x can,

however, easily be obtained by considering solutions of the form

= 2 > i
P, ® P2/x s Vig F lelx (3.53a,b)

f The appropriate constants follow from (3.33)-(3.34) as

P2 = - (3k/2)(1-M), le = (-3k/E)(1-M)/M (3.54a,b)

The corresponding strain ey is

J | . _ak 1-M 2.3
: | ey = -3'E' m R.n(;‘-) (3.55)




In the limit M » O, P, reduces to the quasi-static solution given by
Eq.(3.18b), but ey becomes singular.

The similarities in the structure of the equations for the Mode-III
and Mode-1 plane stress cases suggests an approximate approach to
(3.33)-(3.34) similar to the one used for solving (2.18) and (2.19). Thus,
if an acceptable approximation to P, would be available a-priori, then

(3.34) would be a linear ordinary differential equation for v A first

1x°
approximation to Py is provided by the asymptotic expression (3.52a). This
expression has the correct limits at M = 0 (quasi-static case) and M = 1.

It may, however, be expected that a better approximation will be obtained

by adding a constant term, and use

P = - Sk(1-M) [L_ + L] (3.56)
2 2 )2 2
X 2xp

The second term is chosen so that (3.33) is satisfied up to order O(M)
near x = xp. It is noted that (3.56) is completely analogous to (2.40).

Substitution of (3.56) into (3.34) yields

d?v
1__1x (1-M) 1 + M)y .- 3k(M (3.57)
2 dx* 1x Ex’

X 2x2
P

An expression for xp is obtained by enforcing the condition (3.45) on Pyt
xp = [(1-M)(2+H)];’Rp (3.58)

A solution to (3.57) 1s obtained by using a perturbation solution which

neglects terms of order O(M2?). By integrating the result, the strain

€ = v, is obtained as
y 1




P - - .59a.
+ ey(x/xp.M), where (ey)PB = (k/E) (2-v) (3.59a,b)

e 1'% 1
A 3+ 2
2 1 /x 2 2 2 3(1-M) x , M/, x
+ -2 Ay 2a )+ (= 1)) - 284 o8& O\ 6.
3 [1+a2(x ) 3+a2( ) )] M [“(x 4((xp )” 60)
Also
1
a, = %[1 + (807, a, = %{1 - (9-8w)") (3.61)
o M(1-M) ___ MQAM)

B, = T By =g (3.62a,b)

2[2+(9-8M) ] 2[2-(9~-8M)*]

2
X X
A = l[i-—L—l‘M (2-M) _ ER] (@, +a,8,+28,)+ -:25-[(1'“) (244) _ Q""’)(il)] (148,) (3.63)

; 1 2 M M 2
; P
i
. .2 .
.U 3[a-mee 2+ Tp ] _ g[gl-uz(z-mz _ _2]
s, = - 3[4 7 &) (#-3 M R )@+ B +26)  (3.64)
P P
8 = (a,~0a,) (1+8,+6,+8,8,) + 2(B,-6,) (3.65)
Here xp/Rp is given by (3.58)
' Equation (3.60) reduces to the quasi-static solution, which has been

; ‘ given by Achenbach and Li (6,Eq.(64), provided that Mzn(x/xp) << 1. 1In

the limit x + 0, (3.59) reduces to (3.55).

[ —

Numerical results for ey as given by (3.59) are shown in Fig. 6, for

v=0.3andM=0.1, 0.3, 0.5. The quasi-static solution has also been

shown in Fig. 6.
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Finally, just as for the Mode-III case, we apply the crack growth
criterion of critical plastic strain to determine the value of KI that
would be required for crack growth at a given value of M. For a

‘} stationary crack the quasi-static plastic strain follows from the results

of Refs.(5) and (6) as

! P Y PP N S SN
: i) = K, - 3 6 - Fem) . (3.66)
‘i where
: B, - %g [(c45) + (x+1)v2] (E/n) (3.67)
)

C, = T [=(c45) + (c+1)2/21(E/w) (3.68)

The constant « is defined as k = (3-v)/(1+v). Note that cs properly
']

] ; vanishes at the elastic-plastic boundary.

Now suppose that the normalized critical strain

- (P
| eg = (€0) /(e )y (3.69)

is reached at x = Xes for a value of KI = KIc' The corresponding value of

xp is given by Ref.(6,Eq.(57)) as
2v2

xpc =T

ERI

(xIc/k)2 (3.70)

A cubic equation for xf/xpc follows from (3.66). The relevant real-
valued root is

xf/xpc = S (3.71)

# where




ey o O w1 o

1/3 3
S = (B2/C2+A) - (A—lecz)
1
1=v + (E/k)e. /33 %
2 f
A= {(132/c2)2 +[ - ]}

2
Next we turn to (3.60), and we compute es(x/xp,M) at § = xf/xp. Since

xp is given by (3.58) we have

Sv2
S el P

(1-M) “(2+4)

where (3.42b) has also been used. The crack growth criterion now yields

eg = ep M)/ (e dpy »

£

where the function form of 63 is given by (3.60). Equation (3.75) has

been used to plot KI/KIc versus M for three values of €¢ in Fig. 7.

(3.72)

(3.73)

(3.74)

(3.75)




Appendix A

Conditions at a Fast-Moving Surface of Strong Discontinuity

In a recent paper Drugan and Rice (16 ) have shown that all stress
components are continuous across a quasi-statically moving surface of
strong discontinuity in an elastic-plastic solid. They also showed that
the only components of strain which may suffer discontinuities across
such a surface are the plastic components which do not deform elements
in the plane of the surface, and these strains may be discontinuous only
if the stress state at the moving surface meets specific conditionms.

In this Appendix we attempt to extend some of the results of (16),
to the case that the surface moves so fast that dynamic effects must be
taken into account. The results will serve to establish the conditions
at the leading edge of the elastic~plastic boundary of the plastic
loading zone ahead of a rapidly propagating crack tip, particularly in
the immediate vicinity of the crack line.

The propagating elastic-plastic boundary is denoted by I, see
Fig. 1. The surface propagates with velocity V in the direction of
the normal 51. The coordinate system El’ gz. 53 moves with the surface
L. A discontinuity of a field quantity, say g(gl,iz. 53,t) is denoted

in the usual manner by

(gl =g* -g (A.1)

where

+ _ lim -
8 = A_’o 8(€1I£2'€3Dta + A) (AoZ)




[

.~

O P

where A > 0, and t_ is the time at which [ arrives at a particular
material point. In the sequel Latin indices i,j,k have range 1,2,3.
Greek indices a,B have range 2,3 only and thus refer to tensor com-
ponents in planes parallel to planes that are tangential to L.

The impulse-momentum relation yields across I:

[loy;11 = - oV [[ﬁj]] (a.3)

olj
where p is the mass density. By virtue of displacement continuity we
have

[[u;1]1 =0 (A.4)

It follows from (A.4) that, see e.g. Hill (17),

[[3u;/3g 1] =0 (A.5)

[[ﬁj]] = - V[[3uj

By combining (A.3) and (A.6) there results

138,11 (4.6)

“"1j” = oV2[[8uj/8£1]] (A.7)

Equations (A.5) - (A.7) have some implications for discontinuities

1
in the components of the small-strain tensor, eij = E(aui/agj + auj/agi).
We find
[le;,]] = [[3uy/08,1] = [[oy,11/eV? (A.8)

[Le, 1] = 3 [[ou /26,11 = 3l(0) 1)/oV? (A.9)




[[caB]] =0 (A.10)

O EARTTER e

The total strain is taken to be the sum of elastic and plastic

R et

parts

= P
Eij = eij + Eij , (A.11)

where

e .1
Eij =5 GiJ E( kk)6 ij (A.12)

By combining (A.8)-(A.10) with (A.11)-(A.12) we find

(e 11 '(pvz £) o311 + 3(Llo,)1 + [log D) (A.13)
(GRS —( - §) ey (A.14)

p L v %
[eP1) = - 5 o 11+ F Loy, 116, @i

Plastic deformation is assumed to obey the maximum plastic work

inequality

(o o )de > (A.16)

4y " Oapdeyy 2

where oij is the stress state (at yield) corresponding to the plastic
P o

strain increment deij, and oij

below yield. Following (16) we integrate (A.16) for a material point

is any other stress state which is at or

during passage of the discontinuity surface I to obtain

p-
f13

P deP
-£+ ij ij

£13




e .

where ogj is understood to be a stress state at or below yield for all
states along the strain path from §+ to g-. In the inequality (A.17),
WP is the plastic work accumulated discontinuously at a material point

due to the passage of i:

eP~

p . P

W :f 0y4d¢5, (A.18)
P+
ij

Subsequent considerations are for the special cases of anti-plane

shear and generalized plane stress.

Anti-plane shear. This case is defined by u3=u3(§1,£2,t)# 0, up =y, 0.

The relevant relations between the strain and stress increments across

¥ follow from (A.14) and (A.15) as

P _ 1( 1 1)

det, = — - =)do (A.19)
13 2 ovyz M 13
P . _1

d€23 o d,oz3 (A.20)

Substitution of (A.19) and (A.20) into (A.18) yields

P _ _ + - p _ + - P
W= (013 + 013)[[813]] (0,53 + 053) [{ey4]] (A.21)
o
For cij we now choose
0 - o +
013 93 023 = 023 . (A.22)

The inequality (A.17) then yields

1 1 1 2
-3 (57~ et -

3 Uyl 20 (A.23)




If we restrict our attention to the sub-sonic case, for which

oV2/u < 1, it is evident that (A.23) can be satisfied only by

[[0131] = 0 and [[023]] =0 (A.24a,b)
It remains to verify that the stress state (A.22a,b) is sub-yield.

We should have (013)2 + (023)Z < k?. Since the yield condition is

satisfied at the - side of £ , we do have (oIs)2 + (023)2 = k?. By
eliminating (013)2. the requirement that the stress state (A.22a,b) is

sub~yield may then be written as

(054)% = (0,)% < 0 (A.25)

For example, (A.25) is satisfied if

. >0and oo, > of (A.26)

°+
23 23 — 23

23700

This is the case that generally applies at an elastic-plastic boundary

ahead of a crack tip propagating in Mode-III.

Y3 = OI3 = 0, and, the expression for wp given

by (A.21) simplifies to WP - (o;3
(] +

953 = Tp3 (which is by definition sub-yield), we then obtain that

-(1/2u)[[023]]z > 0, which implies that on the crack line

On the crack line o

- P
+ 023)[[923]]. By taking

[[023]] = 0 ] (A'27)
without additional conditions.

Generalized plane stress. This case is defined by

033 = 09 022(61052!t) * ol oll(gl'EZ’t) * 0’ 012 = OZI(EI'EZ't) * o'

The relevant relations between the strain and stress increments follow

from (A.13) and (A.14) as




aeP. = &— --) do

AY)
= do (A.28)
n- 11t E 99,
ge? = -Ldo +2 4o (A.29)
22 g 995, + g 4oy
p _1 .1 _1 30
dey, =3 ¢ 2 999, (4.30)

Substitution of (A.28) - (A.30) into (A.18) yields

WP o= - 2o ror ) LB 1] = 3(op %0 IR 1 = (T4 N IER,11 (a3

o
For ¢ we choose

i]

o - o] + (o] -
= = = . 2
%1 T %1° %2 % %2 %127 % (4.32)

The inequality (A.1l7) then yields

- 2 - Dt 117 - 3 FHl6,,112 - 2 = -

1 2
=[0le,,11° >0 (A.33)
2 ov2 ov2 u 12

If we restrict our attention to oVZ/u < 1, then (A.33) can be satisfied

only if

[[o,31) =0, [[0,,]1 =0 and [[o,,]]1 =0 (A.3%a,by

The results (A.34a,b,c) hold if the stress state (A.32) is indeed

S\Ib-yield, ioe .y if

(o i+ (c )i -0 + 3(0{2)2 < 3k? (A.35)

-d+
11722

Since the stress state o, 11’ 0., and OIZ satisfies the yield condition,

22

2 2
(011) + 3(012) can be expressed in terms of (o ) and 011 22

Substitution of that result into (A.35), reduces that condition to




+

(0y, + 0,5y = cll)[[czzll <0 (A.36)

This equation is satisfied if either

- + -
[[022]]‘5 0 and 9 5_022 + 959 (A.37a,b)

or

- +
[[022]] >0 and 017 2 Oy + 0y, (A.38a,b)

Of interest in the present paper are discontinuities across the
elastic-plastic boundary near the crack line, for Mode-~I crack propa-
gation in generalized plane stress. For that case we have near the

+ - - -
crack line Gpp > 0 and Typ > 0. We also have o™ k and Tpp v 2k.
Hence (A.37b) is satisfied. We will generally also have that
+ -
9yp £ Ty hence [[022]] £ 0, and (A.37a) is satisfied. Thus, (A.32)
is an acceptable sub-yield stress state, and the results (A.34a,b,c)

are valid. Note that on the crack line o.,, = 0, and only [[oll]] = 0

12

and [[022]] = (§ are relevant.




éggen&ix B

Exact Solution to Eqs.(2.18) and (2.19)

First we introduct new variables

T = "Tl/(k/ZRp) ’ r = Yll(k/NRp): X = x,RP (B-layboc)

From Eq.(2.18) we then obtain

r =L [a-M)F + %] (B.2)
Mz
where
F = (1/T?)dT/dX (B.3)

Substitution of (B.2) into the dimensionless form of (2.19) yields by

the use of (B.3)

2(1-M2)(F%+T%) +2%§-+%r2=o (B.4)

Equation (B.4) can be rewritten as

4. L SN .. ) dF
d T 1 1
F+ogmn FYIam

Integration of (B.5) gives

-M 1

1
1
2MenT = in {cle + 75l /|2F + —

1+M‘
T |

where C is an integration constant.

At X = xp/Rp (the elastic-plastic boundary) we have

v B TP A g - 7 B T

T=1




Since T =—% at x = xp, it follows from (B.2) that at x = xp

F = FP = - (M%) /2(1M%) (B.8)

By using (B.7) and (B.8) in (B.6) it then follows that

M

1- M?
C = iﬁM (——z) (B.9)
1-M

Substitution of C in (B.6) gives

oo (1)
T

M [~2F-1/ Q) T/

(1-M2)%  [2F+1/(1-M)] (HHD/2M

(B.10)
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For rapid crack propagation in an elastic perfectly-plastic material,
explicit expressions have been obtained for the dynamic strains on the
crack line, from the moving crack tip to the moving elastic-plastic
. boundary. The method of solution uses power series in the distance to the
crack line, with coefficients which depend on the distance to the crack
tip. Substitution of the expansions in the equations of motion, the
yield condition (Huber-Mises) and the stress-strain relations, yields
] a system of nonlinear ordinary differential equations for the coefficjents,
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These equations are exactly solvable for Mode-III, and they have been solvéﬁ |
in an approximate manner for Mode-I plane stress. The crack-line fields have 1

Ty

been matched to appropriate elastic fields at the elastic-plastic boundary.
For both Mode-III and Mode-I plane stress, the plastic strains, which depend
on the elastodynamic stress intensity factor and the crack-tip speed, have
been used in conjunction with the crack growth criterion of critical plastic
strain, to determine the relation between the far-field stress level and the
crack-tip speed.
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