MODIFIED KOLMOGOROY- SHIRNDV ANDERSON-DARL ING AND
CRAMER-YON MISES TESTS F.. (U) AIR FORCE INST OF TECH

WRIGHT~PATTERSON AFB OH SCHOOL OF ENGI.
16 DEC 83 AFIT/GOR/ENC/83D-7

J D YODER
F/G 1271




-
-

k¢
- e,

AN

ST LT,

-
L)

1.6

i

14

Mz

NATIONAL BURLAU OF STANDARDS-1963-A

—
@
<C
=
(]
—
7]
il
=
4
<]
=
=1
-
[«
7]
i
-3
>
a
Q
o
[}
&
<
=

WYLV

s ® Y
-\ﬁﬁuuf..-ld -+




R % . R s
ﬁ_'r'!".*‘ ' ‘_l" 3

,.
A
St

DA138098

T DISTRIBUTION STATEMENT A ELECTE
A od for public releasej |
L P Diatibution Unlimited 42, FEB2 21984
DEPARTMENT OF THE AIR FORCE ] B
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

84 02 21 .u!




KA AL

ry

[ 4 a L)
n ﬂ.l."“l L]

AFIT/GOR/ENC/83D-7

O
A AL
&

A
[T

A

ll'
o

" ROSCLCRAA, - . DR

-

MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING
AND CRAMER-VON MISES TESTS FOR THE

h
*»
s

” LOGISTIC DISTRIBUTION WITH UNKNOWN
e LOCATION AND SCALE PARAMETERS

o THESIS

<o,

- John D. Yoder
S First Lieutenant, USAF

<~ AFI1T/GOR/ENC/83D~7 DTl—c
. ELECTE
L FEB2 21984

R | B

.
(4
L S

.l .‘.

4

Approved for public release; distribution unlimited

%
co

2
..L

-
DS

AN
B

* e
.
-




=y s, ¢

LT YT T
N |'-.' "‘
[N

»

‘
‘u

%

)
P

. Y/
l"- (]

4

s
B

g

AFIT/GOR/ENC/83D-7

MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING
AND CRAMER-VON MISES TESTS FOR THE
LOGISTIC DISTRIBUTION WITH UNKNOWN

LOCATION AND SCALE PARAMETERS

THES1S

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfiliment of the
Requirements for the Degree of

Master of Science in Operations Research

John D. Yoder, B.S.

First Lieutenant, USAF

December 1983

Approved for public release; distribution unlimited




. (A -v' A

- B

Preface

Goodness-of-fit tests are developed for the Logistic
distribution when the location and scale parameters are un-
Known . The Kolmogorov-Smirnov, Anderson-Darling and Cramer-
von Mises statistics are used to develop tables of critical
values to be used in goodness—of-fit hypothesis testing. A
power study is conducted to compare the Kolmogorov-Smirnov,
Anderson-Darling and Cramer-von Mises goodness-of-fit tests.

I would like to thank my advisor, Capt. Brian Woodruff,
whose continual help and encouragement were instrumental to the
successful completion of my thesis.

In addition, I would like to thank my readers, Dr. Albert H.
Moore and Dr. James'Dunne; their advice and guidance was very
helpful.

Finally, I would 1like to express my appreciation to my
classmates in general, and Lt. Jim Keffer in particular, for

their help and encouragement during the preparation of my thesis.
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o Abstract

- The method of maximum likelihood is used to determine
- invariant estimates of the unknown location and scale para-
P

meters of a sample from the Logistic distribution. The par-—
> ) tial derivatives of the likelihood function can not be solved
explicitly, therefore the Secant method is used to iteratively
determine the roots of the partial derivatives. Using these
estimates, modified Kolmogorov-Smirnov, Anderson-Darling and
Cramer-von Mises statistics are calculated for a given sample.
This procedure is repeated 5000 times for sample sizes of
n= 5(5)>30. The 80th, 85th, ?0th, 95th and ?9th percentiles of

the distribution of each statistic, for each sample size, is

then calculated. These values are then used to generate

. - ~." [ .'_ .'i"\ ‘-_ .

e

tables of critical values for the Logistic distribution with

unknown location and scale parameters. A power comparison

between the three tests is performed using samples +from wva-

E; rious distributions.

k The Secant method requires "good” initial estimates of
the rparameters in order to converge. This thesis uses the
sample mean and standard deviation as initial estimates. In
four of the total 30,000 samples used, these initial estimates

.: : did not allow convergence. While discarding these samples

biases the theoretical results, it was determined that discar-

ding these samples would not biases the numerical results,

This does however place a constraint on wusing the Secant
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me thod with respect to obtaining maximum 1iKelihood estimates
of the parameters. The power of these tests for non-symmetri-
cally convex distributions is very good. However, for symmet-
E rically convex distributions, the power ranges from moderate to

only slightly more than the significance level.
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MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING AND
CRAMER-VON MISES TESTS FOR THE LOGISTIC DISTRIBUTION
WITH UNKNOWN LOCATION AND SCALE PARAMETERS

1. INTRODUCTION

The Air Force is highly interested in the reliability and
maintainability of proposed systems, When no historical data
exits, statistical and probabilistic measures are often the
only approaches possible in gathering meaningful information
to aid the decision maker. The mean time to failure and the
failure rate of a proposed systen are usually unknown but
important considerations in the decision makKing process.

Various methods can be used to collect, for example, time
to failure data from a experimental or prototype system. The
data can then be compared to a theoretical probability distri-
bution. How well the distribution of the experimental data
matchs the theoretical distribution is known as a "“goodness-
of-fit test". If such tests show that the distribution of
the experimental data "fits" the theoretical distribution
well, the hypothesized theoretical distribution can be used in
simutation modeling, for example, to predict the failure rate
of the proposed system. The Gamma distribution has often been
used in such studies, and its hazard function approaches a
constant value. The hazard function of the Logistic distribu-
tion also approaches a constant wvalue, as time approachs

infinity, and is therefore a useful alternative in some relia-

bility and life-testing situations.
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BACKGROUND
- There are several classical goodness-of-fit tests, such
- as the Chi—-Square test, the Kolmogorov-Smirnov test (KS), the

Anderson-Darling test mz), and the Cramer-von Mises test <w2>

:} Of these tests, the two most popular are the Chi-Square and
E the Kolmogorov-Smirnov tests. The Chi-square test compares
(j the observed frequencies of the empirical distribution to the
:? expected frequencies of the hypothesized distribution. How-
gﬁ ever, because it groups observations (with a minimum of five
;_ observations per cell) it is restricted to larger samples
i (2:73), The KS test, on the other hand, has no such restric-
ﬁ tion. This test uses as a measure of fit the absolute differ-
(. ence between the empirical distribution and the hypothesized
i; distribution. Because of this, no grouping of data is re-
EZ quired and smaller samples sizes can be accommodated. The

'u classical KS goodness-of-fit test is valid to test whether a
5 set of observations comes from a completely specified distribu-
tion.

: However, in practical applications the distribution is
;2 seldom fully specified. 1In cases where the parameters must be
:5 estimated from the sample, the Chi-square test is easily adjusted
.i by reducing the number of degrees of freedom by the number of
ES parameters estimated. The KS test can also be modified to
; consider the case where the parameters are estimated from the

»

sample data. H.W, Lilliefors developed a modified KS goodness-

of-fit test for the Normal distribution (30) in 1947 and for

...................................
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the Exponential distribution (31) in 194%. R. Cortes deve-
loped a modified KS test in 1980 (18) to be used with the

Gamma and Weibull dis.ibutions. J.G. Bush, in 1981, developed

modified A? ng Wl tests to be used with the Weibull distribu-
tion (13>. In 1982 P.J. Viviano developed modified KS, A2
and w2 tests for the Gamma distribution (42). The KS test,

as well as the A2 and wz tests, were modified for the Uniform,
Normal, Laplace, Exponential and Cauchy distributions by Green
and Hegazy (18) in 1976. In 1981, Koutrouvelis and Keller-
meier developed a goodness—-of-fit test based on the empirical
characteristic §unc£ion when the characteristic function is a
member of a specified parametric family of such <functions
(28). Masaaki, Hiroshi and Shigeo, in 1980, developed a

goodness—of—fit test for the extreme value distribution based

on the entropy of the sample data (32).

EMPIRICAL DISTRIBUTION FUNCTION

A class of statistics based on a comparison between the
theoretical cumulative distribution function F{(x)> and the
sample cumulative distribution function S{(x)> is generally
called empirical distribution function (EDF) statistics. His-
torically, EDF statistics are used in cases were parameters

are estimated <from the sample observations. The EDF of a

random sample is defined as




PR RENES

NOMNRS ~

{

number of values ¢ x

S(x) =

total number of values
When there are n observations in the sample, S(x) is a step
function with 1/n jumps at each order statistic of the sample
(19:73). When the n observations are arranged in ascending
order, S(x) is defined by Eq (2)
0 x § x
1
S(x)= i/n X, & x g X o1 i=1,2,...n-1 (2
1 x ¥ x

Since S(x) yields the proportion of the sample less than or
equal to x, it is a good estimate of the hypothesized cumula-
tive distribution function F(x). It should be noted that
because the cumulative distribution is not <fully specified
this thesis uses a modified form of the EDF statistic. An
estimated distribution function is used whose parameters are

derived from the observed sample.

1
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o In general, EDF testes are valid whenever the hypothesized
distribution is +fully specified. The probability integral

transformation converts the values of a completely specified

Sﬁ . cumulative distribution to ordered values from a uniform dis—
3§E tribution over the interval zero to one (17:184). However in
; practice the distribution is seldom fully specified. Hence,
éz the probability integral transform, by itself, is not enocugh
Ei help. David and Johnson (17> have however shown that when

location and scale are the parameters being estimated, the

'b cumulative distribution of EDF statistics depends on the func-
"(

$ tional form of the distribution rather than the estimated
{ parameters. This allows the probability integral transform to

remain wvalid in certain cases when the distribution is not
,x completely specified. It is this quality, coupled with in-

| variant estimates of the parameters, that allows the gene-
ration of valid critical value tables dependent only on n and

the significance level (a).

a .
L
B

()
LI
&

:3 THE K ROV-SMI RN TATISTIC

A The Kolmogorov-Smirnov statistic is defined as the abso-
;i lute difference between F(x) and S(x). Yet, since we are
E; interested in the greatest discrepancy between the distribu-
¥ tions, our test statistic is

o




KS = sup | F(x) - S(x)
x

In effect, this measures the superium of the absolute vertical
discrepancy between the hypothesized distribution and the

empirical distribution (15:344).

THE _ANDERSON-DARLING STATISTIC

Goodness—of-fit tests based on the difference between
empirical and hypothesized distributions almost always have
smaller discrepancies in the taile of the distribution (40).
To overcome this, several things can be done. The most popu-
lar is to weight the squared differences between distribu-

tions. The Al statistic is an example of such an approach.

It is based on a nonnegative, weighted average of the squared

discrepancy. That is

Al = p f"’ [S¢x)-F(x)120LF(x)1dx ¢

where

OLF(x)] = LCF(x))CI-F(x))1 "

In computational form

4

3)




| n

A= -0 - __ T(2j-1>[In Fix Y+I1n(1-F(x )] (&)
n J=1 ) -

In effect, this accentuates the difference between F(x)> and

S(x) in the tails of the distribution (40).

THE _CRAMER-VON MISES STATISTIC

Another example of this approach is the Cramer-von Mises
statistic., In this case the weighting function ©[F(x)] equals

one. This defines the statistic as

) 2
W = j [S(x)-F(x)] dx (7)
- 00

with a computational form of

2 1 n 2
W = ___ + X IF(x) - ((2j-1)>/2n) 1 (8)
12n i=1 )

In effect, this equally accentuates the differences between

F(x)> and S(x) <40).
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Application of a particular distribution to a problem
; often is hampered in one of two ways. Either there is a lack
| of Knowledge about the parameters of a specific distribution
or there is not a method to easily test if a set of observa
tions are a random sample from a specific distribution. The
former problem is overcome by theoretical investigations of
the parameters and characteristics of the distribution. The
latter problem is overcome, generally, by development of a

general test statistic or a table of critical values used in

goodness—-of-fit hypothesis testing for various sample sizes
and specific parameters.

Numerous investigations of the parameters of the Logistic
distribution have been accomplished. These investigations have
" used wvarious methods. For example, least squares, maximum
' likelihood and best linear unbiased estimates of the parame-
ters have all been accomplished. Based on asymptotic distri-
bution theory, Stephens has developed critical values to apply
the logistic distribution to goodness-of-fit hypothesis testing
(41). However, his test statistics are highly modified for the
asymptotic theory to hold true. No kKnown effort has been
done, based on finite distribution theory, to easily apply the
Logistic distribution to goodness-of-fit hypothesis testing.
o Because of its applicability in reliability, there is a need
to develop such a set of critical values tables for various

A sample sizes when the location and scale parameters are esti-




A 2L SL Sn LU At et & A LAT S I ST MO S AL A A R

0
Y
o

o
\
)
‘
”

mated from the sample.

TIV

This thesis has the following objectives:

1. Based on finite distribution theory, generate and
document modified Kolmogorov-Smirnov, Anderson-Darling, and
Cramer-von Mises rejection tables for the two parameter Logis-
tic distribution where the location and scale parameters are
unknown .

2. Conduct a power comparison between the Kolmogorov-
Smirnov, Anderson-Darling and Cramer-von Mises goodness-of-fit

tests.
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I11. THE LOGISTIC DISTRIBUTION

History and Development

Although the name might imply it, the logistic distribu-
tion does not have any special association with the fields of
supply and maintenance or the function of logistical support.
The distribution initially was used in a study of population
growth by Verhulst in 1845, In 1920, Pearl and Reed renewed
interst in the distribution with their use of it in a study of
population growth in the United States (33). In the mid-
1940‘s Dr. Berkson began using the distribution with respect
to studies in the biological sciences (95). He established
applications for the distribution in the study of autocataly-
sis, electro~chemical reactions and biochemistry. Reed and
Berkson used the logistic distribution in physiochemical phe-
nomena studies in 1929 (34). Bicassay applications were est-
ablished by Wilson and Worchester (43> in 1943 and by Berkson
be tween 1944 and 1957 (3,4,7). In 1958, Birnbaum used the
distribution in a study of mental ability (10). Recently, in
1981, Leach (29) used the logistic distribution in a study on
the original subject of population growth.

The logistic distribution was introduced to the reliabi-
lity and maintainability field when Plackett used it in a
study of life-test data (34)., Shah, in 1963, showed its
applicability in psychometrics, a field of interest to the
reliability engineer (39), Bain (4) showed that, like the

gamma distribution, the hazard function of the logistic dis-

10
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tribution approaches a constant and is therefore a useful

alternative in reliability and life testing situations.

Much work has also been done with respect to estimation
of the parameters of the logistic distribution. Pear! and
Reed (33>, Schultz (38> and Berkson (5) all obtained 1least
square estimates of the parameters. Maximum likelihood esti-
mation of the parameters has been done by Wilson and Worchester
(43>, Berkson (?7), and Harter and Moore (24). Berkson and
Hodges developed a minimax estimator (8). The minimum chi-
square technique was also used by Berkson to estimate the
parameters. Plackett (34>, Kjelsberg (27> and Gupta, Qureishi
and Shah (21> have all developed best linear unbiased esti-
mates for complete and censored samples, while Plackett deve-
loped linear estimates from censored data (35). Beyer inves-—
tigated the conditional estimation of the scale parameter
using selected order statistics in 1966 (9). Also wusing
selected order statistics, Richardson investigated simulta-
neous linear estimation of the location and scale parameters
(37).

Exact moments of the order statistics of the 1logistic
distribution have also been developed. Birnbaum (10>, Birnbaum
and Dudman (11), Plackett (34>, and Gupta and Shah (22) have
all worked on the exact moments of the distribution. Shah has
tabled variances and covariances of logistic order statistics
for sample sizes up to 10 (39). Gupta, Qureishi and Shah

extended this through a sample size of 25 (21), Harter and

Moore established the asymptotic variances and covariances of
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" the maximum 1likelihood estimators in 1967 (24> and Bain <¢4)
[{
. presented tabled percentage points for the maximum 1likelihood
estimators.
The Logistic Distribution
g The shape of the logistic distribution is convex and
I symmetric about the mean and similar to that of the normal
.3 distribution. The notable difference is that the tails are
_\
{ relatively thick, more like that of the exponential distribu-
T tion, The location parameter or mean (K) relates the point
. of symmetry, the median and the mode of the logistic density
function. The standard deviation (O) measures the relative
i dispersion of the distribution along the axis of the indepen-
dent variable.
The logistic distribution with mean B and standard
deviation ¢ is defined as
- F(x)= [14»exp[-‘[(x—ll)/ouf-:é']]'l (9>
"
" with the scale parameter defined as oJ3/x.
Y The density function is expressed as
o
. Aexpl~N(x—1) /03]
.. fix)= 10)
< o{3l1+expl-Kix-1) /03112
12
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The location parameter M indicates the value of x at which
failures are most likely to begin occuring.
The moments of the logistic distribution can be found

using

K
ECxKyo J"" X xexpl -X(x-1)/cf31]

(o301 +expl-A(x-1) /0311 21 lax (11)

or more easily by the moment generating function (mg+>

@®
E(explxtl)= j explxtlNexpl-X(x-1)/cJ3]
)

to-.fér1+expt—x<x—u>/0'4'§11'21"dx (12>

From the reduced variant, y= (x-#)/0, Gumbel (29> has

shown that the mgf can be expressed as

13
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Mx(t)= F{l+t/adfCL- t/70) (13>

which is a Beta function were c= ¥ /J3.

APPLICATION OF THE LOGISTIC DENSITY FUNCTION

If a random variable represents the lifetime or time to
failure of a unit, then the study of that variable is said to
be in the area of life—testing or reliability theory. The
probability that a unit survives until time x is called the
reliability of that unit at time x and denoted as R(x)= {-F(x).
On the other hand, the hazard function of the unit may be
interpreted as the instantaneous failure rate of the unit
(4:42), It is often more informative to consider the hazard
function of a model than to look at the shape of the pdf or
cdf directly. A typical hazard function in the area of 1life

testing is a U-shaped or bathtub shaped curve (Fig 1),

14
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Figure 1
Normall,, when a wunit is placed in service it first goes

through a per1od where the frequency of failures is decrea-
sIng. That 15, ac manufacturing defects are overcome, the
reliabilirty of the unit improves with age. The unit then goes
through a periocd where failures are more or less random at a
constant rate. As the unit begins to wear out or deteriorate
the +ailurec become more frequent and the failure rate in-

creases.

The hazard function for the logicstic distribution is

15




expressed as

hi{x) = ______ = (14)

h(x) is an increasing function of x and it is easy to see that
h{x) approachs X/0{3 as x+=. This property may be well suited
to the analysis of certain systems. For example, the hazard
function of a system may not be characterized by the normal
bath—tub curve. When placed in operation, the system may
almost immediately begin to wear out with an increasing fail-
ure rate. The failure rate may than approach a constant, and

continue thus for quite some time. In situations such as this

the logistic function can be used to advantage.




111. METHODOLOGY

This thesis presents tabled critical values of the modi-
fied Kolmogorov-Smirnov, Anderson-Darling and Cramer-von Mises
goodness—of-fit tests for the logistic distribution with un-
Known location and scale parameters. This chapter discusses
the procedures used in this thesis. First, an outline and
flow chart of the Monte Carlo method is presented. Next,
there is a description of the steps followed in this method.
Finally, the chapter concludes with a discussion of the power

study between these test statistics.

STEPS IN THE MONTE CARLO METHOD

The following eight steps outline the Monte Carlo method
used to calculate the critical values for the modified KS,
al and w2 goodness-of-fit tests. The flow chart in Figure 2
illustrates this method.

1. For a fixed sample size n, random deviates from the
logistic distribution are generated using a computer subrou-
tine.

2. Estimates of the location and scale parameters are
calculated using the method of maximum 1likelihood. The
MLE estimates are calculated iteratively using the Secant
me thod.

3. The random deviates obtained in step one are arranged

in ascending order using a computer subroutine.

17
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4. The estimated parameters are used to calculate the
hypothesized distribution F(x),

S. The KS statistic is calculated using Eq (4>, the

Al ctatistic using Eq (&) and the W using Eq (8).

6. The above steps are repeated 5000 times. As a result,

5000 independent KS, Az and w2 statistics are generated.

7. Each group of 5000 statistics are ordered. Using
plotting positions, discussed later, the 80th, 85th, ¢90th,
?5th, and ?9th percentiles of the distribution of each statis-
tic are calculated by linear interpolation.

8. Steps 1| to 7 are repeated for samples sizes, equal to

S5, 10, 15, 20, 235 and 30.

Generation of random logistic deviates

There is no Known available computer routine to generate
random deviates from the logistic distribution. However, tieo
probablity integral transform insures that a random variable
from any distribution can be transformed to a random variable
distributed uniformly on the interval zero to one. Further,
this transformation is independent of the location and scale
parameters of the distribution (17). Because of this, the
concept «can be reversed to generate random deviates for the
logistic distribution by transforming random deviates distri-
buted uniformly on the interval zero to one. That is, if RN

is a pseudo-random deviate distributed uniformly (0,1), it can

19
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be set equal! to the logistic cdf

RN=  [1+expl-X(x-k)/0§3117} (15)

and solving for x yields

x= B - (od3CInl¢1-RN)/RN1)1/X (16)

However, this still 1leaves the problem of generating

- pseudo-random deviates distributed uniformly (0,1). The ran-
fj dom wuniform deviates for this thesis are obtained on the
N Control Data Corporation (CDC) 4400 computer using the Inter-
} national Mathematical and Statistics Library (IMSL) subroutine
N GGUBFS (25:Ch G).

.

K

B Maximum likelihood estimates of the logistic parameters

o A procedure to derive the maximum 1likelihood estimates
i (MLE) for location and scale (#E and OE) of the logistic dis-
R

o

tribution was developed by Harter and Moore (23). This proce-
dure iteratively solved the first partial derivatives of the

:; likelihood function after initial estimates have been chosen.

et PP P W 3P P R




@ e e &
e

. l"‘!- “

ey XA

Iterative linear interpolation was applied at each step wuntil

the results of successive steps agree to within some assigned

tolerance. A procedure similar to this is used in this thesis.
The maximum l1ikelihood method of estimation is one of the

most commonly used methods of parameter estimation when using

EDF statistics. Some of the reasons for this are that MLE’s
are consistent and, more importantly, they are invariant
(24:239). The method of maximum likelihood, in essence, se-

lects as estimates of the unknown parameters those values for
which the observed sample would have most 1likely occured
(3:83). That is, this method selects as estimates those
values that maximize the probability of the occurance of the
sample results (24:236).

The likelihood function is defined in the following way,
if

xl,x,...xn are sample observations on X, then the likeli-

2
hood function (L) is defined to be the joint density function

evaluated at XpaXgpeeoX o The likelihood function can be repre-

sented by

n
L="TI Hxi:u,c) a»
i=1

The procedure to determine the MLEs HE and 0} is:
1. Take the partial derivatives of L with respect to

each parameter.

21
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2., Set these equations equal to zero and solve simultan-

eously for the values of the parameter estimates.

:ﬁ; Quite often this procedure is easier to implement if the
KR natural logarithms of L are taken first. Doing this and using
D
:’ Eqs (10> and (17) the likelihood function for the logistic
o distribution can be written as
AT
(| n Kexp[-A(x -4y /03]
L= Tl : ) (18)
N i=1  of3(1+texpl—X(x —p)/cf31)
Balli '
o
vt'.:t
S
o and if z= uxi—m/aﬁ then
{
TN
--.-:- R
.;] x n expl-z 1
. L= _ ! 2 19>
' o3 i=t  (l+expi-z 1)
> I
ST but since there are n! permutations of the realizations on the
| random variables we have
T "
7
.:}_4 x n expl-z)
N L= LRI N e L, (20)
-3 o3 i=t (1+expl-z 1)
e i
3
,{i The natural logarithm of L is then
N
o
]
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Secant method.
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T
(. n n
38 InCL)= InCnHD+n1nC/0d3 - X 2 42 ¥ 1nC1/1+expl-2 1) <21)
:.‘ i=1 jmy !
Taking the partial derivatives of 1n(L) with respect to #
.. and O yields
_:i; O IncL) x expl~z 1]
o — = n -2% ! (22
ou o3 t+expl-z )
oty i
j::;:
BN AL 1 zZ exp(-z)
{ -—_ = — Ez_-2X '~ -n 23
oc o ! 1+oxp[—zil
:l'.‘:"
[}
,}: These equations, when set equal to zero, can not be solved
‘ﬁ; explicitly. However, the roots of these equations can be
Oy found using iterative methods on a computer.
The Secant Method
Lo
a: The Secant method <for finding a root of f(x)=0 is a
%ﬁ slight wvariation of Newton’s method (12:39). Therefore, a
?— brief discussion of Newton’s method will preceed that of the

23




b s g At A aes s S A AL D N S A SO A

Suppose that the function f is twice continuously differ-
entiable on the interval [a,b]. Let x° be an element of the
set of real numbers bracketed by [a,bl. Then x‘ is an approx-
imation of the root p of the equation f(x)=0 if £ (x’) is
not equal to zero and if the absolute difference between x~’
and p is “"small*“. Consider the second-degree Taylor polyno-

mial for f(x)> expanded about x‘

FOX) = FXI+(x=x" £ (x I+ LCx=%x" I 01677 pex)) (24)

where P(x) lies between x and x~“

Since €(p)=0 if x=p Eq. (24) becomes

0= f(x’)+(p-x’)f’(x’)+[(p—x’)2/2]f"(ﬁ(x)) (29)

Since ip-x’! is assumed to be small, (p-—x’)2 is smaller.

2
I¥f (p—x’) is considered negligible then the third term in
Eq (25> can be dropped. Solving for p then yields approxima-

tely

p = x"-[f{x")/$7(x")1] (28)

24
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However, with respect to the logistic function, we want to
determine the roots of the first derivative instead of the
likelihood function itself. That is, Eq (24) becomes
p = x’-IL (x"3/L"7(x7’)] 27
and this would require iteratively evaluating both the first
and second derivatives of the likelihood function. To circum-—
vent the cumbersome calculations of the second derivative the
Secant method can be used. It is a variation of Newton’s
method and derived as follows:
By definition
f(x)—f(pnl)
f’(pnq) = 1lim (28
X X -
pn- pn-l
if x=p _ then
n-2
f¢ T X4 )
pn-2 pn%
£¢p ) = (2%
-l _
n-2 pn-l
25
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and Newton‘s formula becomes

fp_HK(p -p
p = p - -1 n-1 n-2 ¢30)

" 2
€< Y-f¢
pn-l pn-2)

or in the case of the likelihood function for the logistic

distribution

L’Cp ><p ~p
p - p - n'l ”'l n‘2 (31 )

n a-1 L’¢ -L~
Pat? TH P

thus eliminating the need for second derivatives.

One requirement of both Newton’s and the Secant method is
that a good initial approximation be chosen. Otherwige the
me thod may diverge. In this thesis the sample mean and stan-

dard deviation will be used as initial approximations.

Ordering the Deviates

The random logistic deviates are arranged in ascending

order using the IMSL subroutine VSRTA (25:Ch V).
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The Hypothesized Distribution function

Oy The location and standard deviation maximum 1!likelihood
S
- ' estimates (B

- g and 0}) and the n ordered logistic deviates (xR

are used to calculate the hypothesized distribution function

F(x) by

Fix )= 1/C1rexpl-K(x —4 /0B 32>
- Using the hypothesized and sample distributions the KS, Az

ﬁi and U2 statistics are calculated. This is done 5000

{ times, once for each of the 5000 samples of size n.

‘i;

;x Determining the critical values of the qoodness-of-fit tests

'53 The 5000 statistics for each of the three tests, for each
¢

- sample size, are ordered before determining the critical wva-

i; lues. Using plotting positions and linear interpolation the

;ﬁ 80th, 85Sth, 90th, ?5th, and ?9th percentiles of the distribu-
;;i tion of each test statistic are found. These percentiles are
- the critical values for the KS, Az and w2 goodness-of-fit tests.

_:f Given a series of ordered values, the plotting position
- of each event is its cumulative probabiltity ((22:5. There-

f}: fore, the wuse of plotting positions to determine critical

‘%; values requiress a careful enumeration of the cumulative prob-
'.s 27
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abilities on the ordinate axis. This enumeration is compli-

cated by the lack of probabilistic values for the end points
. of the order statistics. For example, it can not be said
that the first order statistic occurs with probability zero.
LiKewise, the probability of the last order statistic is not

s one since one more realization of the random wvariable may

yield a higher valued statistic. Because of this, it s
necessary to consider the ordinate value of each statistic as
a function of its relative position.

Three plotting positions for each point are considered.

These are the middle of the interval between the i/nth and

f' (i-1)/nth points, the median ranks plotting position and the
- mean position. The first plotting position can be expressed
s as
(i~=.3)/n (33)

This is the value midway through the jump from (i—-1)/n to i-n

\ .

:3 and was first proposed by Hazen in 1914 (22:1). The second
?f plotting position can be very closely approximated by

9

(i-0.3> / (n-0.4 (34>

28




This value is essentially the median value of the distribution

of the ith order statistic and was proposed by Johnson in 1951
(22:1). The third plotting position is the mean position and

is expressed as

i/ (n+1) (35

)
This value is the expected value of the cdf pepulation at the
ith order statistic. It was propocsed by Weibull in 1939
(22:1).

2
The KS, A% 14 4 ordered statistics form the basis

of the abscissa axis. The associated ordered plotting posi-
tions form the basis of the ordinate axis. The last entry |is
added to these ordered values making up the 5001 valres on the
abscissa and ordinate axes. The S000 ordered KS (A2 or Nz)
statistics Form the i1st to S5000th positions on the abscissa
axis. The last position is calculated by linearly extrapo-
lating from the 4999th and S5000th entries. The calculation of
the 5001ist entry is not subject to a maximum value. The 5000
ordered plotting positions form the 1st to S000th positions on
the ordinate axis. The interval is completed by entering a
one in the S001st position. The addition of these "extra®
values on each axis allows an easier determination of the ith
and ¢(i-1)th points.

The critical values are calculated by linear interpola-

tion between the ordered statistics and the corresponding

29
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plotting positions. For example, the plotting position just
larger and just smaller than .90 are determined. These become
the ith and (i—-1)>th points. The ratio of the difference
between the desired percentage point and the (i-1)st point is
then calculated. This ratio is then applied to the difference
between the ith and (i-1>th test statistics to yield the
desired percentile, Figure 3 shows this procedure graphical-
ly. At 5000 repeitions there is no difference in the third

2

significant digit in calculating the KS, A° o wz statistics

for the three plotting positions. For simplicity, the plot-

ting position described by Eq (33) is used.

30

N R -
- DA M o . . Lt e
oot L . - > TP T T Y Y W 3 LW h]




- AR g S v o i i ¥ .
v T T T T R e
PasCRuiCi Sl " e e I M I L . N B . e

.,

O

@ o4 0 4

5001 T =1

5060 - 5
X = ,80th percentile

»

St

,
D 4

B By . o

n
«

LI Y
|
—

Plotting
Posi tion

“\{{{JJJ.

Ay Ty
PR Iy

T ¥ L) LI Bl Bl

N 1 2 3 =1 x 5000 5001

KS, A2 or u2 Statistics

Figure 3

Plotting Position vs. Statistics




Power comparison

In this thesis a comparison of the power of the mod: fied
2 2
KS, A and W tests is made. The power of each test i1s com-
pared for several different distributions. The hrpothesis

being tested is

H: the sample values follow a logistic distribution.

H: the sample values do not follow a logistic distribution.

Using IMSL subroutines on the CDC 4800, random deviates from
different distributions of sample size n are generated. The
test statistics KS, Az and wz are calculated under the null hy-
pothesis. These test statistics are then compared to the
respective critical values developed in this thesis. This
procedure is repeated 1000 times for each sample size. The
number of times the test statistic exceeds the critical wvalue
is counted. Exceeding the critical value results in a rejec-
tion of Ho' The power of the test for a given sample size
is the number of rejections divided by the total number of
tests, 1000.

The different distributions considered in this power
study are:

1. Uniform

2. Exponential

3. Weibull(shape=3)

4. Gamma (shape=3)

32
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S. Gamma (shape=§)
4. Gamma (shape=9)
7. Gamma (shape=135)
8. Gamma (shape=30)
?. Normal

10. Logistic

The gaxmma distribution is often used in reliability and

maintainability theory. 1Its density function is expressed as

K-1
X "expl-x1

fix3= (386>
rdK?

where K = shape parameter

A graph of the gamma distribution for various values of K is

shown in Figures 4a and 4b.




Gamma distribution: K=3,6,9

Figure 4a
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The Weibull distribution is also often used in

conjunc-
- tion with reliability and maintainability studies. 1Its density
e function is expressed as
,}
= kot K
FOO= Kxexpr-x1 (37)

where K holds the same notation as in Eq (27). A graph of

"y the Weibull distribution is shown in Figure S.

i; As can be seen, the gamma and weibull distributions are

?i generally symmetrically convex for the correct parameter values.
;: The normal and exponential distributions are well known and need

- not be discussed here.

w Computer programs

3 Computer programs wused in this thesis are presented in

. Appendix E.
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1V. USE OF TABLES

This chapter discusses the use of the tabled critical
values of the two parameter Logistic distribution for the

modified Ks, Al and W’ statistics generated in this thesis.

An example follows, with an explanation of the basic procedure
to utilize the table.

For all three goodness-of-fit tests, a theoretical dis-
tribution F(x) is compared to an empirical, observed distribu-
tion S(x). The KS, Az, or wz statistic is calculated using the
appropriate equation (Eq (4>, Eq (&) or Eg (8)). If the value
of the statistic exceeds the tabled critical value, the theore-
tical distribution is rejected. The steps in applying this
procedure are:

1. Determine the sample size n and the level of signi-
ficance. The significance level is the probability of rejec-
ting the null hypothesis that the sample is from the Logistic
distribution when the null hypothesis is true.

2. Select, in a random manner, the n observations from
the population to be tested and order them from smallest to
largest.

3. Estimate the unknown location and scale parameters
from the observed sample using the method of maximum 1liKeli-
hood.

4. Completely specify the hypothesized distribution F(x)

38
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using the estimated location and scale parameters. Determine
the values of the empirical distribution just prior to and
after each of the 1/n jumps.

S. Determine the value of the KS, Az, or uz test statistics
by using Eq (4>, Eq (&) and Eq (8).

. Find the intersection of the significance column and
the <sample size row in the table of wvalues. This is the
critical value to be compared to the test statistic.

7. Reject the null hypothesis if the value of the test
statistic exceeds the critical wvalue. I1¥ the test statistic
does not exceed the critical value, we fail to reject the null
hypothesis and conclude there is insufficient evidence to say

the observed sample does not follow the logistic distribution.

EXAMPLE

The following example illustrates this procedure for the
modified Kolmogorov—-Smirnov test. For a sample size of five
the following numbers are obtained: 104.9829, 81.1517,
87.2204, 113.3512, and 41.5415., For this sample, The maximum
likelihood estimate subroutine used in this thesis yields
location and standard deviation parameter estimates of: HE =
?0.0986 and O} = 20.1107. The scale parameter is calculated
using O'Eﬁ/t, yielding a wvalue of 11.0874. Using these
values the hypothesized distribution is calculated for each
sample value wusing Eq (?). The significance level is ,05.

The hypothesis tested is:
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*%: sample data is from a Logistic distribution

. HA= cample dati 1s not from a Logistic distribution

1

-ﬁ The calculations for this test are shown in Table I.

.

T

.: Table 1

:f Example Calculations

- - +

- X Fi{x) S(x ) S(x ) KS

29
{, 64.5415 .071 o .2 . 129

v 81.1517 .309 .2 .4 .109
x 87.2204 .436 .4 .6 .144

N 104.982¢9 . 793 .6 .8 .193

- 113.5512 .892 .8 1.0 .108

.,

ff where S(x ) s Just prior to the jump 1n the empirical distribution
4

% S(x') is Just after the yump 1n the empirical distribution
.

~
= Using Eq (4), the KS statistic equais .193. The critical
~ .
- value from Table U with a signiticance level of .05 and n = 5§
- 40
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is .309. Since .193 is less than .309, we fail to reject

the null hypothesis that the sample comes from a Logistic

distribution.
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V. DISCUSSION OF RESULTS

This chapter discusses the results obtained in this the-

sis as they pertain to the objectives set forth in Chapter I.

PRESENTATION OF THE TABLE OF CRITICAL VALUES

The tabled critical values (for sample sizes of S5, 10,

1S, 20, 25, and 30) for the modified kS, A? . 4 W Joodness-

of—fit tests are presented in Appendancies A, B and C respec-—
tively. Each table is valid for the Logistic distribution
when the location and scale parameters are estimated from the
sample using the method of maximum likelihood presented in
this thesis.

However, the Secant method used in this thesis has cer-
tain properties that require explaination. As stated earlier,
the Secant method converges only when the initial estimates of
the parameters are "good”". In this thesis the sample mean and
standard deviation are wused as initial estimates of the
unkKnown parameters,. In all but four of the 30,000 samples
used in this thesis, the sample mean and standard deviation
allowed convergence using the Secant method. The four cases
of non-convergence occured when the sample was very tightly
grouped, thus yielding a very small sample standard deviation.

This occured two times in a sample cize of five and once each
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in the sample sizes of 10 and 15. Discarding these non-converg-
ent samples and obtaining a new sample theoretically biases
the resulting calculations. However, it was felt that such a
small number of samples could be discarded without meaningfully
biasing the pnumerical results of this thesis.

This conclusion is reached for the +following reason.

Discarding samples, within a single sample size, changes the

relative positions of some of the KS, Al and wz statistics cal-

culated +for that sample size. That is, if five samples are
taken and five KS statistics obtained, they will have a speci-
fic ascending order. However, if the third sample is discard-
ed and a "new" sample and KS statistic obtained, the order of
some of the five KS statistics might be changed. The “new” KS
statistic may not fit in the third ordered position.

The most severe case of discarding samples in this thesis
is two out of 5,000. This occured with a sample size of
five. This effectively means that any calculated statistic
would be, at most, two "positions" out of order. The statis-
tics calculated in this thesis, when ordered, generaly
increment in the the fourth digit. Additionaly, a statistical
value two positions out of order would cause an error of

*+.04%. That is, for S000 repetitions, if a statistical value

is two positions out of order, then a critical value based
on this ordering is at most =*.04X in error. For sample
sizes of 10 and 15, the critical values reported would be in
error by at most *.024. It seems unlikely that any change

in the three significant digits reported occured due to the
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paolicy chosen.

However, this property of norn—-convergence in some cases
represents a constraint on using the Secant method when finding
the maximum 1likelihood estimates of the unknown parameters.

It is not unreasonable to expect some cases of live data to

truely have a small standard deviation. The program used for
this thesis to estimate the unknown parameters of the Logistic
distribution may therefore be inappropriate in some cases. A
gradient search method, such as that presented by Wingo

(44:91), may overcome this problem.

ANALYSIS OF CRITICAL VALUE TABLES

Analysis of the tabled critical values generated by this

thesis and the distributions of the KS, A! ,nq w! ctatistics

reveal the following results.

In the case of the KS tabled critical wvalues, analysis
relative to the significance levels and sample size reveal
that a concave pattern is relatively constant. The change in

:' significance level simply shifts this curve upward (Fig &>.

[N SR S VS EEN




L} . . .
St .
‘e IR T

[
o et
.

A " Ty
SA
X
.
a

el N
R I
Pl

AT S

LI BNV E L
PPN .
P [

[

.35 <«

.30 W

.25 <

.15 y

.10 W

.05 ~

T Y Y T T

10 15 20 25 30

<

sample size

Figure 6. KS critical vaules by sample size




fwﬁﬁ?ﬁﬁwﬁﬁfﬂrﬁ?VVTTJT?T?f7rr’ﬁw¢ﬁhﬁﬁu'-“rwtﬁ‘ﬁjjﬂﬂjﬁn.}ﬁ
?,
s 2 , _ ‘
o For the A" tinied critical values, a similar analysis shows
that the tirst three significance levels have a smooth, slightly
1
;Q increasing, monntaric trend. The lacst two significance levels

v show an increasing trend, but the transition between sample

sizes 1< not a: smooth or as concstant (Fig 7).
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2 Results of the analysis of the W tabled critical wvalues are
E] .
- ) 2 . .
T: very similtar to those of the A statistic. However, instead
S} of a smooth, slightly increasing, trend for the first three
A
bf signifitcance levels there appears to be a generally constant
e horizontal trend (Fig 8). At the .05 significance level the

change between sample sizes becomes more erratic and possibly

¢§3 increasing. At the .01 significance level the change between
{- samples is generally increasing with an upward Jjump between
N sample sizes of 10 and 1S.
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the distributions of the k3, Al L .4
developed 1n thic thesis reveal the following
recsul t. For all sample sizes, the distribution

of all three
ztaticst:

1

spprosimately follow: a Gompertz curve (Fig 9).
For each <tatist this curve is clightly modified by sample
si1ze.,

Probability

statistic

Lensratl diretribution

shape ot test statistics

Figure ¢
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VALIDATION OF COMPUTER PROGRAM

The computer program used to generate the critical values
obtained in this thesis is validated by comparing the criti-
A cal wvalues obtained in this thesis to those obtained by M.A.
Stephens and by hand calculations. The hand calcutlations

validate that the computer program generates numbers correct-

L 1y, while the comparison to Stephens values validates that
{

N the wvalues of this thesis are acceptable. In 1979 Stephens
e c e 2

- SR calculated modified KS, A" apg w2 statistics for the Logistic
e distribution based on asymptotic distribution theory. This
. _ 2

;ﬁ. thesis calcutated KS, A and w2 statistics based on finite
S

ff} distribution theory. If the two sets of statistics are compar-
-~

é“‘ able this implies the computer program generates valid results,
\{ This comparison was done in the following manner. The
'i critical values obtained in this thesis are modified according

‘;f to the appropriate formula presented in Stephens paper
M

N (14:14,18). The result is then compared to the tabled values
:J: presented by Stephens. For example, with a sample size of 20
R
) and an alpha level of .05, the AL statistic obtained in

- this thesis is .655. This value was then modified by equa-
o tion 38.

LA
- 2

o A (1.0+€0.25/n)) (38
S

. '.‘-‘

-

N

e The result (.6463) is then compared to 0.660, the value presented
o\

W~
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by Stephens.
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comparisons.

Such

are generally good.

comparisons for all

Tables 11,
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values obtained

in this

Il and IV show these

Table 11

Kolmogorov-Smirnov (KS) Comparison

KSJ{n Stephens
1« n n
S 10 20 5 10 20
.90 .633 8677 L4698 .643  .4679 .698
.95 L 691 .727 .760 679  .730 .755
.99 .754 .813 .836 .751 .823 .854
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Table 111

Anderson-Darling (Az) Comparison

A2(1+.25/n) Stephens
1 -« n Critical
5 10 20 values
.90 .570 . 962 . 944 . 563
.99 . 691 . 656 . 6563 . 660
.29 . 821 .874 .887 204
Table 1V
Crameron Mises <w2) Comparison
(nwz—0.0S)/(n—l) Stephens
1o n Critical
5 10 20 values
.081
.098
.136

., « "
_______
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An assumption requiring validation is with respect to the
MLE estimates generated. Maximum likelihood theory specifies that
MLE estimates are invariant. The invariant property is critical
with respect to this thesis since the validity of the tabled
critica?l! values depends on it. This assumption is examined with
the MLE estimates of a logistic(1,4) and a logistic(4,16&). In
order to be invariant the MLE estimates of the logistic(1,4)
should be equal to the MLE estimates of the logistic(4,16) after
multiplication by a factor of four. These estimates were ob-
tained on separate computer runs for sample sizes of 5, 15 and
25. Hand calculations show that when multiplied by a factor of
four the logistic(1,4> MLEs differed from those of the logis-
tic(4,16) by generally 0.000001. This small difference is attri-

buted to computer round-off.

SENSITIVITY ANALYSIS OF PROGRAM

A condition required by the Secant method is that for conve-
rgence the initial estimates must be "good". Since in a few
cases the Secant method used in this thesis did not converge, an
examination of what "gocd®” means is conducted. This is done by
systematicly changing the population standard deviation used to
generate the logistic deviates, and generating 2000 samples for
each sample size. Each time the Secant method used in this

thesis does not converge, the sample mean and standard deviation
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are printed out. By comparing results it becomes apparent that
when the sample is tightly grouped about the population mean, the
sample standard deviation becomes very small. When the sample
standard deviation is generally less than 25-30% of the popula-

tion standard deviation, the method fails to converge.

PRESENTATION OF THE POWER STUDY

A comparison of the relative power of the modified Kolmo-
gorov-Smirnov, Anderson-Darling and Cramer-Von Mises goodness—
of-fit tests developed in this thesis is made. For distribu-

tions with non-symmetrical convex patterns the power of the

KS, A and w2 tests is wvery good. For distributions with

symmetric convex patterns, the power is much lower. The
distributions wused in this power study are listed in Chapter
I11. For each of these distributions 1000 samples, for each
sample size, are obtained. For each sample a KS, Az, and w2

statistic is calculated using Eq (4, Eq (4> or Eq (8). Each
statistic is compared tc the appropriate tabled critical value
in table V, VI or VII. This comparison is done at the 0.05
significance level. For each sample size, the number of times
the calculated statistic exceeds the tabled critical value, an
index variable is incremented by one. This index wvariable is
then divided by 1000 to yield the percent of time the null
hypothesis (that the sample came from a logistic distribution)

is rejected.

When the sample comes from a uniform or an exponential
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distribution the power of the modified KS, Az and uz tests
is very good (Tables IIX through XIII). The shape of the pdf

;;{ of these distributions is decidedly not symmetrically convex.
This undoubtedly is the reason the tests presented in this
thesis are so powerful when testing samples from these distri-
- butions.
- However, when the sample comes from a distribution with a
symmetric convex pattern the power of the tests presented in
EQC this thesis is much lower. This is due primarily to the diffi-
;¥i culty of distinguishing between similar, yet different, symme-
trical convex patterns. The distributions tested in this cate-
:uf gory are the Normal, Weibull, and various Gamma distributions.
In the case of the Weibull and Normal distributions, as well
as the Gamma with higher shape parameter values, the power of
the modified KS, Al and w2 tests is little more than the
- significance level. Only when the symmetric convex pattern of
the Gamma distribution becomes skewed does the power of these
tests begin to noticeably exceed the significance level.

The modified tests presented in this thesis generally
ii reject the null hypothesis of a logistic distribution when the
S sample comes from a Gamma distribution. Yet, they have only
-
< moderate power for lower shape parameter wvalues, when the
symmetric convex pattern is skewed. For higher shape parameter
éy values thier rejection power is only slightly above the signi-
ficance level. This shows how difficult it is for these tests
- to distinquish between other symmetric convex patterns and the

R symmetric convex pattern of the logistic distribution.
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The Normal distribution is symmetrically convex and very
close in shape to that of the Logistic distribution. All
three modified tests have considerably more difficulty rejec-
ting the null hypothesis in this case. Each test, generally,
reports a different power for each sample size. The power is
simetimes slightly above the significance level and at other
times slightly below it. There does not appear to be any
consistent pattern in rejecting the null hypothesis.

When applied to the Logistic distribution, all tests
generally failed to reject the null hypothesis that the sample
came from a logistic distribution. Yet, in this case, the
rejection percentage is not always equal to the significance
level as might be expected. This variability is primarily a
function of the Monte Carlo method and the 1000 repetitions
upon which the study is based. For example, the expected
number of times the power of these tests should be between .04
and .08 based on 1000 repetitions is approximately three. In
actuality, this occured four times. 1In most cases, the rejec-
tion percentage, when the sample comes from the Logistic
distribution, is between .048 and .032.

In summary, all three tests are better at rejecting the
null hypothesis of a logistic distribution when the sample
distribution is not from a Normal distribution, than when it
is from a Normal distribution. When the sample distribution

is not a Normal distribution, the w? test is slightly

better than the A’ or KS tests. When the sample is from

a Normal distribution the N2 test is generally better than
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2
the KS test and A tests. Yet, rejecting the null hypo-
thesis of a logistic distribution when the sample has a symme-
tric convex pattern is generally not possible. All  percen-—

tages used in these comparisons are presented in Appendix D.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Based on results obtained in this thesis, the following

conclusions are noted:

1. The Kolmogorov-Smirnov, Anderson-Darling and Cramzr-
von Mises critical wvalues for the two parameter Jlogistic
distribution are valid.

2. The power comparison study based on the ten different
distributions listed in Chapter III shows that for non-symme-

trical convex distributions all three tests exceed the claimed

level of signitficance. For skewed symmetrical convex distri-
butions all three tests approximate or exceed the level of
significance claimed. For symmetric convex distributions all

three tests wvery <closely approximate the claimed 1level of
significance. This indicates a goodness—of-fit test for a

sample from a symmetrical convex distribution is not practi-

cal. The Wl toct is generally more powerful than the

A2 or KS tests.

Recommendations

The following recommendations are suggested for further
investigation:

1. Determine if ancther method for determining initial
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estimates significantly affects the critical values and power
presented in this thesis.

2. Reduce the variability in the significance level when
the null hypothesis of a logistic distribution is true by
employing a method other than the Monte Carlo method, or
increase the number of repetitions used in the power study.

3. Employ some other method to determine the <critical
values for the logistic distribution.

4. Using Stephens wvalues and formuli perform a power
study and compare those results to the results of this thesis
to determine which method is more powerful.

5. Develop a test to distinquish between symmetrical

convex distributions.
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TABLE VI

CRITICAL VALUES OF THE ANDERSON-DARLING
STATISTIC FOR THE LOGISTIC DISTRIBUTION
WITH UNKNOWN LOCATION AND S8CALE PARAMETERS

Sample Level of Significance

size
n .20 13 «-10 .08 .01
S .443 .484 343 620 .849
10 436 494 349 . 640 .8353
19 461 498 . 394 « 663 . 882
20 456 499 3-1-Y4 638 826
23 «4953 493 . 353 843 918
30 436 .302 .532 . 649 . 888
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TABLE VI1
CRITICAL VALUES OF THE CRAMER-VON MISES
STATISTIC FOR THE LOGISTIC DISTRIBUTION
WITH UNKNOWN LOCATION AND SCALE PARAMETERS
Sample Leve! of Significance
size
n «20 13 .10 .03 .01
3 066 072 .081 098 .124
10 063 .072 .081 093 .124
13 .063 .072 .082 .098 .130
20 .064 .072 .082 .09?7 .131
25 045 .072 .081 .098 .139
30 063 .072 .082 .098 .132
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Appendix D
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ig! TABLE 11X

»
b~
25
[ COMPARISON OF KOLMOGOROU-SMIRNOV, ANDERSON-DARLING
. AND CRAMER-VON MISES STATISTICS FOR
SaMPLE SIZE OF 5, AND SIGNIFICANCE LEVEL OF .05
PERCENT OF TIME NULL HYPOTHESIS REJECTED
KS Al W
Uniform .208 119 .148
Exponential .237 119 .178
Weibull(3) .023 .027 .039
Gamma(3) 089 .109 069
Gamma( 6> .050 .079 .099
Gamma(9) .040 069 .069
Gamma(15) .099 .079 .089
Gamma (30) .059 069 .059
Normal .059 .050 .039
Logistic .031 .049 .049
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TABLE IX
COMPARISON OF KOLMOGOROV-SMIRNOV, ANDERSON-DARL ING
AND CRAMER-VON MISES STATISTICS FOR
SAMPLE SIZE OF 10, AND SIGNIFICANCE LEVEL OF .0%
PERCENT OF TIME NULL HYPOTHESIS REJECTED
KS Az hﬁ
Uniform .287 -198 . 267
Exponential . 935 . 493 . 564
Weibull(3) .046 .049 .937
Gamma(3) .089 .129 .109
Gammacé) .030 .059 .040
Gamma(?) .079 .069 069
Gamma(1®) .050 .050 .079
Gamma (30) .047 .050 .033
Normal .040 .059 .089
Logistic .049% .032 061
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TABLE X

COMPARISON OF KOLMOGOROV-SMIRNOV, ANDERSON-DARLING
AND CRAMER-VON MISES S8TATISTICS -
FOR SAMPLE SIZE OF 135, AND SIGNIFICANCE LEVEL OF .09

PERCENT OF TIME NULL HYPOTHESIS REJECTED

KS Al uz

Unifor .317 .277 .337

Exponent .633 .703 . 782

Weibull (3 .049 .091 059

Gamma(3) .129 .218 . 1598

Gammacés) 119 -129 .139

] Gamma(¥®) .079 .089 .089

*‘ Gamma(135) .079 . 069 .069

E: Gamma (30) .049 .040 .069

E. Normal .050 .020 .030
) Logistic
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TABLE X1

COMPARISON OF KOLMOGOROV-SMIRNOV, ANDERSON-DARL ING
AND CRAMER-VON MISES STATISTICS
FOR SAMPLE SIZE OF 20, AND SIGNIFICANCE LEVEL OF .09

PERCENT OF TIME NULL HYPOTHESIS REJECTED

K8 A2 U2
Uni form -463 . 928 .528
Exponential .812 . 851 . 881
Weibull1¢3) .058 .039 .039
Gamma(3) 099 .178 149
Gamma(é) .099 -.129 .149
Gamma(9) .049 . 129 .109
Gamma(13) .059 .089 .089
Gamma(30) .069 069 .069
Normal .118 069 .109
Logistic .041 ) .048 .050
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= TABLE XII

: .

N COMPARISON OF KOLMOGOROU-SMIRNOV, ANDERSON-DARLING
[ AND CRAMER-VON MISES STATISTICS

" FOR SAMPLE SIZE OF 25, AND SIGNIFICANCE LEVEL OF .0S
Jf PERCENT OF TIME NULL HYPOTHESIS REJECTED
=

2 KS Al Wl
2

N
i: Uniform .545 .584 .434
;? Exponential .832 .891 .891
ﬁ Weibull1(¢(3) .058 .049 .078
e Gamma(3) .099 .208 .139
ﬁ Bamma(é) 129 .139 129
{ Gamma(9) .109 129 .129
A? Gamma(15) .089 .139 .109
'fz Gamma(30) .089 .069 .089
Ef Norma) .040 .020 .040
- Logistic .050 .039 .039
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.
-, TABLE X111
R COMPARISON OF KOLMOBGOROV-SMIRNOV, ANDERSON-DARLING
{ AND CRAMER-VON MISES STATISTICS
- FOR SAMPLE SIZE OF 30, AND SIGNIFICANCE LEVEL OF .0S
.:{
- PERCENT OF TIME NULL HYPOTHESIS REJECTED
‘\‘ 2
- KS A w?
i::
(“ Uniform .604 .673 .624
o Exponential . 931 . 9680 . 980 |
- Weibull(3) .048 046 .079
i Gamma( 3) .218 .386 .317
- Gamma(é) .109 .248 .198
"
o Gamma(9) .099 119 .10¢9
Gamma(15) .069 109 .089
o Gamma(30) .19 .079 .107
N
o Normal -040 -050 -05%
‘; _ Logistic .050 .050 .051
3
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*

*

101

?995

511

XRXXXXXXXNXXX®RNE INITIALIZATION 33396365 % 3 3 96 3 3 3 3 % % %% %%

PROGRAM UALUES
63636 96 9636 3 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 96 96 96 36 96 36 36 36 36 36 3636 36 96 9696 96 36 36 36 96 36 36 6 36 3636 36 36 o6 26 36 ¢

*
*
*
*
*
*
¥*
*
¥*
¥*
¥*
*
*
t. *
*
¥*
¥*
¥*
*
*
*
¥*
*
*
%*
*

9636 3 I I I I I6 3 e W I I I I I I W I I I I IE W I I I I I I I I IE I I} I I I I I IE I I I I I I I I I KX
*

DEFINITION OF VARIABLES IN MAIN PROGRAM

PURPOSE: GENERATE A SAMPLE FROM THE LOGISTIC DISTRIBUTION,
OBTAIN THE MLE ESTIMATES OF THE LOCATION AND SCALE,
DETERMINE THE HYPOTHETICAL AND EMPIRICAL DISTRIBUTION
OF THE SAMPLE, AND CALCULATE THE KOLMOGOROU-SMIRNOV,
ANDERSON-DARLING & CRAMER-UON MISES STATISTICS FOR THE
SAMPLE. REPEATE THIS OPERATION 5000 TIMES FOR EACH SAMPL
SIZE OF 5,10,15,20,25, & 30

MM= SAMPLE MEAN

S§S= SAMPLE STANDARD DEVIATION

M2= ITERATIVE EST OF MEAN RETURNED BY MLE

Sb2= ITERATIVE EST OF STANDARD DEVIATION RETURNED BY MLE
N= # IN SAMPLE

X(J)y)= ARRAY OF LOGISTIC DEVIATES

2(J)= ARRAY OF STANDARDIZED DEVIATES

PIE= ARITHMATIC VALUE

CONST= ARITHMATIC VALUE

SEED= INITIAL VALUE FOR RANDOM NUMBER GENERATOR

GGUBFS= PSUEDORANDOM NUMBER GENERATOR (IMSL)
VUSRTA= SORT ROUTINE (IMSL)

FX= HYPOTHETICAL SAMPLE DISTRIBUTION
SX= EMPIRCIAL SAMPLE DISTRIBUTION

REAL KS,AZ,W2,AA,WW,BB,550,X¢30),2(30),FX(30),8X(30)
REAL XXKS(S001) ,XXAZ2(5001) ,XXW2¢(S001),YY(5001)

REAL M2,SD2,MM,SS,SUMI,SUM2,PIE,CONST,DIFF(30)
INTEGER N,I1ER,LOOP,REP

DOUBLE PRECISION SEED

EXTERNAL GGUBFS, USRTA

COMMON N,CONST,PIE,LOOP

OPEN(3,FILE="VALOUT” ,STATUS="NEW~’ , FORM="UNFORMATTED ">
WRITE(3,101)
FORMAT(2X,” CRITICAL VALUES FOR LOGISTIC(100,4625) FOR JOHNS )

SEED=45348%9621.D0
CONST=3.%x0.5
PIE=3.141592465358
N=0
N=N+5
IF(N.GT.30)G0OTO 9999
WRITE(3,511)>N
FORMAT(////2X,’ SAMPLE SIZE= “,15)
PO 5 I=1,N

X{Iy=0,
CONTINUE
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*
xnxnxNxNxnx%%® START MAJOR DO LOOP OF S000 REPS *xxxxxxx
*
REP=5000
0O 4 I=1,REP
XXKS(1)=0.
XXAaz2<l1>)=0.
XXW2¢(1)=0.
q CONT INUE
*
D0 10 LOOP=1,REP
*
xxmxxnxxxxkxxx START MINOR DO LOOPS BASED ON N ®*%XX%XXNXXE
%
*
xexxxexxnxxxx®x CALCULATE LOGISTIC DEVIATES
*
RN=0.
A&A=0.
COUNT=0
2000 DO 20 J=1,N
RN=GGUBFS(SEED>
AA=L0G( (1 .~-RN)/RN)
X(I)=100.0-(((25.0%CONST) *AA>/PI1E)
20 CONTINUE
*

wxxxxxxxrxxx INITIAL ESTIMATES USING SAMPLE MEAN & STD DEV
*

SuUM1i=0.
sSumM2=0.
DO 30 J=1,N
SUMI=SUMI +X{(JD
30 CONTINUE

MM=0.
MM=SUM1./N

BB=0.

DO 40 J=1,N
BB=(X(J)-MM) %x%2,
SuM2=sUMZ+BB

40 CONTINUE

SSG=0.

S8=0,

SSE=SUM2/(N-1)

S5=SS0*%0.5
*
ExexxaeEEXEXX%X% CALL MLE SUBROUTINE
»*

CALL MLE(X,MM,SS,M2,SD2,1ER)
509 FORMAT(/2X,’ REP= *,15)

IFC(IER.EQ.1)THEN

COUNT=COUNT + 1

o WRITE(3,509)L00P

a7

- v_'?v
(SRS
et Yl s
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o WRITE(3,520)
7 520 FORMAT(2X,’ MLE COULD NOT CONVERGE, TRYING NEW SAMPLE *)
< GOTO 2000
ENDIF
o COUNT1=0

IF(IER.EQ.3)>THEN
COUNT1=COUNT1+1

- WRITE(3,509)L00P

- WRITE(3,522)

- 522 FORMAT(2X,’ MLE EST OF S.D. LE 0.1 )
e GOTO 2000

t.::j ENDIF

*

¥xxxxxxxxerrxx®® CALCULATE F(X) AND SCXD
*

CALL VSRTA(X,N)

.. *

v DO 88 K=1,N

- FX(K)>=0.
2¢K)=0.

88 CONTINUE

DO SO0 J=1,N
2(=(PIE*(X(J)-M2) )/ (SD2%CONST)
FX(JI)=C1,/(1 +EXP{=-2(J))))

50 CONTINUE
¥*

*ruxgexexxkn®® CALCULATE KS, A(SA & WS
*
CALL STATS(DIFF,FX,A2,W2,KS)
XXKS(LOOP)Y=KS
XXAZ2(LOOP)=A2
XXW2(LOOP)=W2
*
EAXEEEEXREXXEXREX%XXXE END OF MAJOR LOOP
- *
e 10 CONTINUE
*
CALL VSRTA(XXKS,REP)
CAaLL VUSRTA(XXAZ,REP)
CALL VSRTA(XXW2,REP)

YY(REP+1)=1.0
DO 90 K=1,REP
YY(K)=(K-.5) /REP
CONT INUE

A R
N REPTOR R B¢

y
0
=1

o CALL ENDPT(REP,XXKS,YY,POINT)
: XXKS(REP+1)=POINT

CALL ENDPT(REP,XXA2,YY ,POINT)
XXAZ(REP+1)>=POINT

CALL ENDPT(REP ,XXW2,YY,POINT)
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XXW2(REP+1)=POINT

*
CALL CU(REP ,XXKS,YY)
CALL CV(REP,XXA2,YY)
CALL CV(REP,XXW2,YY)
* ]
60TO 9995
9999 ENDFILE(3)
CLOSE(3)

END
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*

* DEFINITION OF VARIABLES IN SUBROUTINE MLE
*

* PURPOSE: TO FIND A SOLUTION TO L/ (X)>=0 GIVEN INITIAL
* APPROXIMATIONS M2 & SD2

*

* MM= SAMPLE MEAN

* S8= SAMPLE STD DEV

* Mi= OLD ITERATIVE EST MEAN

* M2= NEW ITERATIVE EST MEAN

* M3= CANDIDATE EST MEAN

* SD1= OLD ITERATIVE EST STD DEV

* SD2= NEW ITERATIVE EST STD DEV

* SD3= CANDIDATE EST STD DEV

* PIE= ARITHMATIC VALUE

* CONST= ARITHMATIC VALUE

* X{NO= ARRAY OF DEVIATES

* TOL= TOLERANCE FOR 9 SIGNIFICANT DIGITS
* Q)= L7(M1) SD2 KNOWN

* Q(2>= L (M2) SD2 KNOWN

* (= L ¢SD1)> M2 KNOWN

* Q(4)>= L7¢(SD2) M2 KNOUN

* AE1&2= ABSOLUTE ERRORS

* N= SAMPLE SIZE

* IER= CONVERGENCE ERROR

*

3636 3 3 I I I I6 6 IE I I I I I I IE I I I I I I I I I I I I I IE I I I K I I I I I I I I I I I I IE I I I I I I I I XK

*
SUBROUTINE MLZ(X,MM,SS,M2,5D2,1ER)
REAL MM,SS,M1,M2,M3,SD1,5D2,5D3,PIE,X(N),TOL,CONST
REAL CC,DD,EE,GG,HH,Q(4),SUM(&) ,AE1 ,AE2
INTEGER N, IER
COMMON N,CONST,PIE,LOOP
*
xxxxnxxxxnx® INITIAL VALUES
*
TOL=0.000005
M1=0.
M2=MM
M3=0.
SD3=0.
SD2=SS
SD1=502+0.5
*
xxxxxxxx® START SECANT MTHD
*
*
DO 5 K=1,50
*
SUM(1)>=0,
SUMC2)=0.
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10
*

DD=0.
EE=0.

DO 10 I=1,N
DD=¢(X(1)>-M1)*PIE)/(SD2%CONST>
EE=((X(1)-M2)*PIE)/(SD2%¥CONST)
SUM(1)>=SUM( 1)+ (EXP(-DD)/ (1+EXP(-DD))>)
SUM(2)=SUM(2) + (EXP(-EE) /(1 +EXP(-EE)))

CONT INUE

REREXEXXXEXEERRRER® 1ST DERIVATIVE VALUES FOR MEAN

*

20
*

cc=0.
CC=PIE/ (SD2*CONST)>

Q(1)>=0.
Qc2>=0,
QCI)=CCx(N-C(2,0%SUMC1)))
Q(2)=CCx(N—-(2.0%5UM(C2)))>

M3=MZ2-(QR(2)®#((M2-M1)/(Q(2)-Q(1)) )
AE1=ABS(M3-M2)

M1=M2
M2=M3

SUM(3>=0,
SUM(4)=0.
SuM({5>=0.
SUMZ &)=0,
GG=0.
HH=0.

DO 20 J=1,N
BG=C¢ (X¢J)-M2) *PIE)/(SD1*CONST)
HH=( (X(J)-M2) *P1E) /( SD2*CONST)
SUM(3)=SUM(3)+GC
SUM(4)=SUM( 4) +HH
SUM(5)=SUM(5) + ( (GGXEXP(-GG))>/¢1.+EXP(~GG) )
SUM(8)=SUM( &)+ (HH*EXP ( —HH) ) /{1 . +EXP( ~HH) ))
CONT INUE

xexxxxxxxxxxxxx 15T DERIVATIVE VALUES FOR STD DEV

*

QR(3)=0.
Q2{(4>=0,
Q(3)=(1./5D1)%(SUM(3)—(2,0%SUM(S) ) -N)
QC(4)=(1./8D2)#(SUM(4)~(2.0%SUM(&>)~-N>

SD3=8SD2-(Q(4)%((SD2-SD1)>/(Q(4)>-Q<3>)))
AE2=ABS(SD3-5SD2)

IF(SD3.LE.O0.1)>THEN
IER=3

]
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o GOTO 1200
ENDIF

a SD1=5D2
g SD2=5D3

IF(AEL .LT.TOL.AND.AEZ2.LT.TOL>GOTC 1000
S CONTINUE

IF(K.GE.S0.AND.AE!1 .GT.TOL.OR.AE2.GT.TOL) THEN
1ER=1
< GOTO 1200
- ENDIF
’ 1000 IER=0

1200 RETURN

- END

h.--
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KS= KOLMOGOROV-SMIRNDY STATISTIC
AZ= ANDERSON-DARLING STATISTIC
W2= CRAMER-VON MISES STATISTIC

*

* DEFINITION OF VARIABLES IN SUBROUTINE STATS

*

* PURPOSE: TO CALCULATE KOLMOGOROV-SMIRNOV, ANDERSON-
* DARLING, & CRAMER-VON MISES STATISTICS FOR A GIVEN SAMPLE
*

* N= # IN SAMPLE

* FX= HYPOQTHETICAL DISB OF SAMPLE

* SX= EMPIRICAL DISB OF SAMPLE

*

*

*

*

3 36 36 36 36 I I I I I I I I I I I I I I F I I I I I I I I I I I I I IE I I I I I I I K I I I I I K K I I I I I X XN
*

SUBROUTINE STATS(DIFF,FX,A2,W2,KS)

REAL A2,KS,W2,FX(N) ,DIFF(N) ,ONE, TWO

INTEGER N

COMMON N,CONST,PIE,LOOP

*
xxxxxxx®%%x CALCULATE KS STATISTIC
*
DO 2 I=1,N
DIFFCI)=0.
2 CONT INUE
»*
DO 10 I=1,N
ONE=0.
TWO=0.
O=1%1
QE=C(Q-1>/N
QeG=0/N
ONE=ABS(FX(1)-GQ)
TWO=ABS(FX(1)-QQQ>
IFCONE.GT.TWO)> THEN
DIFF(I)Y=0NE
ELSE
DIFF(1)>=TIO
ENDIF
10 CONT INUE
*
KS=0.
DO 20 I=1,N
IF(DIFF(I).BT.KSYKS=DIFF(I)>
20 CONT INUE
*
xxxxxxx%%% CALCULATE ACSQ) STATISTIC
*
SUM=0.
DO 30 I=1,N
SUM=SUM+ ¢ (2, %10 =1 .3 %< (LOGCFX( I+ (LOGCL . ~FX(N+1=1))))
30 CONT INUE
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A2=0.
A2=(-N) -(SUM/N)

*

» #exxxxxxx CALCULSTE W(SQ@) STATISTIC
*
- SuM=0.

DO 40 I=1,N

SUM=SUM+ (FXCI)=((2.%1)=1.)/7(2.%N) ) %2,
. 40 CONTINUE

o *
W2=0.
~ W2=(1./7012.%N))>+SUM
: *

RETURN

END

----------------------------
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SUBROUTINE ENDPT: PURPOSE; TO DETERMINE THE LAST POINT
IN A GIVEN SERIES OF STATISTICS

'l ‘l 'l ""\%.‘4.|.l

P)
o‘.

REP= # OF POINTS IN THE SERIES
M= SLOPE
B= INTERCEPT

_.'..

* % % %k %k K &k kK

36 36 I 36 I& 36 I6 I 36 I I 36 IE I IE IE I IE IE I IE IE I I IE I6 I I I I IE I 6 I IE I IE I I IE I IE I6 I I IE IE I IE I I I I I I IE I I IE I 6 I K
*

SUBROUT INE ENDPT(REP ,XX,YY,POINT)

REAL XX(REP),YY(REP) ,POINT,M,B

INTEGER REP

M=0.
M=(YY(REP)-YY(REP-1))/{(XX(REP)-XX(REP-1})
B=0.

B=YY{(REP-1)-(M¥XX(REP-13)

POINT=(1.-B)/M

el = o . .
LS R

N - . A

- RETURN
- END

36 36 36 36 I8 36 36 36 IE I I 6 6 36 36 36 IE IE IE I IE I IE IE I6 I I I6 I I IE I I I I I I IE I6 I IE I I IE I I I I IE I I I I I IE I I I I IE I I I I I ¢
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SUBROUTINE CV: PURPOSE; TO DETERMINE THE 80,85,90,95,99TH
PERCENTILES OF THE DISTRIBUTION OF
THE GIVBEN STATISTIC

REP= # OF POINTS IN SERIES
M= SLOPE

B= INTERCEPT

PER= PERCENTILE

% % ok k ok XK ok K k Xk

p 36 I 36 36 6 IE I6 I IE I I I6 I & IE IE 3 IE I I IE IE I IE I I IE I I IE IE IE IE IE I IE I W I I I I I I I I I I IE I I 6 I I IE I I I I ¢ ¢
5 x

- SUBROUTINE CV(REP,XX,YY)

REAL PER,YY(REP+1) ,XX(REP+1),M,B,P80,P85,P90,P95,P9?
INTEGER REP

> P80=0.
- P85=0.
- P90=0.
: P95=0.
5 DO 10 J=80,95,5
.. DO 20 K=2,REP
IFCYY(K) .GE.(J/100,))THEN
: M=0.
- B=0.
PER=0.
- M= CYY CKD) =YY (K=1) )/ (XXCK) =XX(K=1))
, B=YY (K-1)—(M®XX(K-1))
5 PER=((J/100.)-B)/M
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20
864

30

7?7

800
802
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GOTO 466
ENDIF

CONTINUE
IF(J.EQ.80)P80=PER
IF(J.EQ.85)P85=PER
IF(J.EQ.?0)P?0=PER
IF(J.EQ.95)P95=PER
CONTINUE

P99=0,
DO 30 K=2,REP
IFCYY(K) .GE.0.99) THEN
M=0.
B=0.
M=CYY (KD =YY CK=1) /(XKD -XX(K=1))
B=YY (K—1)—(MEXX(K—1))
PER=(0.99-B)/M
6OTO 777
ENDIF
CONTINUE

P99=PER

WRITE(3,800)
FORMAT(///2X,’ 80,85,90,95,99 PERCENTILES *)
WRITE(3,802)P80,P85,P90 ,P95,P99
FORMAT(2X,S5(F10.7,2X))

RETURN
END
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PROGRAM POWER
REAL KS,A2,W2,AA,WW,BB,SSQ,X(30),2¢(30),FX(30),Y(30)
REAL M2,SD2,MM,SS,SUM1 ,SUMZ2,PIE,CONST ,DIFF(30>
REAL KS?5(48) ,A295(4) ,W295(&)
INTEGER N, IER,LOOP,REP
DOUBLE PRECISION SEED
EXTERNAL GGUBFS,VSRTA,GGEXN ,GGNGF
COMMON N,CONST,PIE,LOOP
*
MMM NNNNNNNNNNE INITIALIZATION 36363 3 36 3 3 36 36 36 3 3 36 3 3 3 3 3 3 3¢
*
OPEN(3,FILE="NORMOUT’ ,STATUS="NEW’ ,FORM="UNFORMATTED )
WRITE(3,101)
101 FORMAT(2X,’ CRITICAL VALUES FOR NORMAL ‘)

SEED=4534894621 .D0
CONST=3.%%0.5
PIE=3.14159265358
N=0
9995  N=N+S
IF(N.GT.30)GOTO 9999
WRITE(3,511)N
511 FORMAT(////2X,’ SAMPLE SIZE= /,15)
DO 5 I=1,N
X(1)=0.
Y(1)=0.
2¢1>=0.
s CONT INUE
DO & I=1,6
KS9S¢1)>=0.
A295¢1)=0.
W295(1)=0.
CONTINUE

x O

REP=1000

DO 10 LOOP=1,REP
*
2000 DO 20 J=1,N
Y (¢ 1)=6GGNQF ¢ SEED)
XCII=CYCII %2, 41 .
20 CONTINUE
*
sunnnnnnnnnn INITIAL ESTIMATES USING SAMPLE MEAN & STD DEV
»*
SUM1=0.
SUM2=0 .
DO 30 J=1,N
SUM1--SUM1 +X(J)
30 CONT INUE

MM=0 ,
MM=SUMI /N

B8B=0.

8%
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*

DO 40 J=1,N
BB=(X(J)-MM)%»2,
SUM2=5UM2+BB

CONT INUE

§8G=0.

§S=0.
SSA=SUM2/(N-1)
8§6=55Q#%0.5

Rxpnnnenxxnntn CALL MLE SUBROUTINE

*

*

CALL MLE(X,MM,SS,M2,SD2,IER)
IFCIER.EQ.1)GOTO 2000
IFC1ER.EQ.3)GOTO 2000

WHIHMHENNRNNXXENF CALCULATE F(X) AND S(X?

*

*

85
»*
»*

CALL VSRTA(X,N)

DO 85 J=1,N
2¢I>=(PIE*(X(J)-M2) )/ (SD2%CONST)
FX(IY=C1./¢1 . 4EXP(=2¢J))))

CONT INUE

xxxuxexNnninnx® CALCULATE KS, A(SA) & W(SH)

%*

*
»

CALL STATS(DIFF,FX,A2,W2,KS)
IF(N.EQ.5.AND.KS.GT.0.30?)KS?5(1)=KS?5(1)+1
IF(N.EQ.5.AND.A2.GT.0.620)A295(1)=A295(1) +1
IF(N.EQ.S5.AND.W2.GT.0.098)W295(1)=295(1)+1
IF(N.EQ.10.AND.KS.GT.0.230)KS?5(2)=KSP?5(2)+1
IF(N.EQ.10.AND.A2.6T.0.640)A295(2)=A295(2)+1
IF(N.EQ.10.AND.W2.GT.0.095)W295(2)=W295(2) +1
IF(N.EQ.15.AND.KS.GT.0.1921)KS?5(3)=KSP5(3)+1
IF(N.EQ.15.AND.A2.GT.0.8485)A295(3)=8295(3) +1
IF(N.EQ.15.AND.W2.6T.0.098)W295(3)=W295(3) +1
IF(N.EQ.20.AND.KS.GT.0.170)KS?5(4)=KSP5(4) +1
IF(N.EQ.20.AND.A2.6GT.0.663)A295(4)=A295(4) +1
IF(N.EQ.20.AND.W2.GT.0.097)W295(4)=W295(4) +1
IF(N.EG.25.AND.KS.GT.0.63935)KS?5(5)=KSP3(35) +1
IF(N.EQ.25.AND.A2.GT.0.6483)A295(35)=A295(S) +1
IF(N.EQ.25.AND.W2.6T.0.098)W293(5)=W295(5)+1
IF(N.EQ.30.AND.KS.GT.0.141)KSP?5(8)=KSP5(&) +1
IF(N.EQ.30.AND.A2.GT.0.849)A295(8)=A295(4) +1
IF(N.EQ.30.AND.W2.GT.0.098)W295¢(8)=W295(&) +1

RERRRERRNARERERRRRNRE END OF MAJOR LOOP

*

10
»

R '.:_s‘ YR R

CONTINUE

DO 89 K=1,6
A=Q,

90

"
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B=0.

c=0.

A=KS9S(K)/1000.

B8=A295(K)/1000.

C=5295(K>/1000.

W=K S

WRITE(3,511)W

WRITE(3,888)A,B,C
888 FORMAT(//2X,’ KSY/= ’,F6.3,” A2Y= ’,F6.3,’ W2/= ’,F6.3)
89 CONTINUE

GOTO 9995
9999 ENDFILE(3)
CLOSE(3)
END
?1
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e SUBROUTINE MLE(X,MM,SS,M2,SD2,IER)

REAL MM,SS,Mi,M2,M3,5D1,SD2,SD3,PIE,X(N),TOL,CONST

REAL CC,DD,EE,GG,HH,Q(4),SUM(&) ,AE1 ,AE2

e INTEGER N, IER

o COMMON N,CONST,PIE,LOOP

SR *
wxxennnxns INITIAL VALUES
> *

. TOL=0.000005

D M1=0.

R M2=MM

> M3=0.

- SD3=0.
SD2=SS
SD1=SD2+0.5

*

= #xNuN¥NN%% START SECANT MTHD

*

L *

DO 5 K=1,50

%

o SUMC(1)=0.

o SUM(2)=0.

DD=0.

EE=0.

L) 5 .,
ey

¢
*

DO 10 I=1,N
DD=¢ (X(1)>~M1)*PI1E)/(SD2%CONST)
EE=¢ (X(1)-M2)%*P1E)/{SD2%CONST)
SUMC1)=SUM( 1)+ (EXP(-DD)/(1+EXP(-DD)>))
SUM( 2)=8UM(2) + (EXP(~EE)/(1+EXP(-EE)))
10 CONT INUE
*

336 6 9036 36 36 36 96 36 36 36 96 36 1ST DERIVATIVE FUNCTIONAL VALUES FOR MEAN
*
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CC=0.
CC=PIE/(SD2%CONST>

OO
RRARAREY

Q¢1)=0.
. Q(2)=0.
Q(1)=CCH(N-(2.0%#SUM(1)))
Q(2)=CC%(N-(2.0%SUM(2)))

e re
PRI

s M3=M2-(Q(2) #((M2-M1)>/(Q(2)-Q(1>)))
i - AE1=ABS(M3-M2)

M1=M2
M2=M3

[t ) L Ry
» '.l - s ¢
A
-

SUM(3)=0,
SUM(4)=0.
SUM(3)=0.
SUM(6)=0.
GG=0.
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1000

1200
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HH=0 .

DO 20 J=1,N
B6=( (X(J)>~M2) *P1E)/(SD1 *CONST)
HH= ¢ (X(J) -M2) *P1E) /( SD2%#CONST)
SUM( 3)=SUM( 3) + GG
SUM( 4)=SUM(4) +HH
SUM(S)=SUM(S) + ( (GBXEXP(-GB) ) /(1 . +EXP(-GB) ) )
SUM( 8)=SUM( &) + ( (HH®EXP ( ~HH) )/ (1 . +EXP(—HH) )
CONT INUE

Q(3)=0.
ac4)=0.
Q(3)=(1./SD1)*¥(SUM(3)-(2.0%SUM(3) )N
Q(4)=(1./9D2) % (SUM(4)~(2.0%SUM(4) )N

SD3=SD2-(Q(4) #((SD2-SD1)/(Q(4>-Q(3))))
AE2=ABS(SD3-SD2)

IF(SD3.LE.0.1)THEN
IER=3
GOTO 1200

ENDIF

SD1=SD2
SD2=SD3

IF(AEL1 .LT.TOL.AND.AE2.LT.TOL >GOTO 1000
CONTINUE

IF(K.GE.S0.AND.AE1 .GT.TOL.OR.AE2.GT.TOL)>THEN
IER=1
GOTO 1200

ENDIF

IER=0

RETURN

END
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*

SUBROUTINE STATS(DIFF,FX,A2,W2,KS)

REAL A2,KS,W2,FX(N) ,DIFF(N) ,ONE,TWO

INTEGER N

COMMON N,CONST,PIE,LOOP
*

sxxxxuxn®x CALCULATE KS STATISTIC
*
DO 2 I=1,N
DIFF(1)>=0.
2 CONTINUE

DO 10 I=1,N
ONE=0.
TWO=0.
@=0.
QG=0.
QQe=0.
G=I%t
QE=(Q-1>/N
QQG=a/N
ONE=ABS(FX(I1)>-Q@)
TWO=ABS(FX (1) -QQ1)
IFC(ONE.GT . TWO) THEN
DIFF(I)>=0NE
ELSE
DIFF(I)=TWO
ENDIF
10 CONT INUE

KS=0.
po 20 I=1,N
IF(DIFF(I) 6T .KSYKS=DIFF(I)
20 CONTINUE
*

*rexxxxnxxx CALCULATE A(SQ)> STATISTIC
*
SUM=0.
DO 30 I=1i,N
SUM=SUM+((2.%I)=1.)%( LOG(FXC(I)>))+(LOG(1.-FX{(N+1-I>>))
30 CONTINUE

*
A2=0.
AZ=(-N)-(SUM/N)
*
xnxnnnnxx CALCULSTE W(SQ) STATISTIC
%

SUM=0 .
DO 40 I=1,N
SUM=SUM+ (FX(I)=C(2.%1)-1.)/(2.%N) ) #%2,
40 CONT INUE

W2=0.
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W2=(1./¢12.%N))+SUM

RETURN
END

)

O

D
P ARMEN
.

° ﬁ#

‘l

PN AN
e 8y -.

B

2 a s e T
(RN B D]

S - |
o

XX

ol

.
e
PR

el

»

4 ."t' (l‘ Cht e




T Tyt yTT v,

John D. Yoder was born on 1| February 1950, in Portland,
Oregon. After graduating from high school, he enlisted in the
U.S. Air Force. He spent eight years in the communications
service and eventually became a Base Communications Center
Supervisor. He seperated from the Air Force in 1976 in order
to pursue his goal of a college degree. He stained a
Bachelor of Science degree in the Physical & nces from
Portland State University in 1979. He received } commision
as a 2nd Lieutenant upon graduation and entered t... Air Force
again in January of 1980. His assigrment prior to entering
the Air Force Institute of Technology in June of 1982 was to
the 3244th Test Wing, Eglin AFB where he was placed in charge

of the Wings’ Management Information System.

Permanent Address: 1355 Evergreen N.E.
Salem, Oregon 27301




UlClx fled

SECURITV CLAbbnMLATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

S RI:POPI SECURITY CLASSIFICATION 1b. RESTRICTIVE MARK INGS
. da'LASGLIRTED

28 SECURITY CLASSIFICATION AUTHQORITY 3. DISTRIBUTION/AVAIL ABILITY OF REPORT

e v 3 N ~ .
26 DECLASSIFICATION/DOWNGRADING SCHEDULE AP proyed i,‘OI ’)ub]_‘l? releuse;
distribution unlimited
« & PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
IR .
arIT/ 50/ ENC/83D=7

’ 68 NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORIMNG ORGANIZATION

1 licab.
aknool of kngineering (If applicable)

‘ ; APITV & ‘
i1 Morce Institute of Technology / EN
6¢c. ADDRESS (( itly. State and ZIP Code) 7b. ADDRESS (Clty. State .nd ZIP Code}

wrisht-Patterson AR, Onio 45433

B8 NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicable)

8¢ ADDRESS ((ity. State and ZIP Code) 10. SOURCE OF FUNDIN:, NOS.

PROGRAM PHHOJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11 TITLE duciude securtty Classtfication)

sev Lo 13
12. PEASONAL AUTHORIS) )
. John D. .oder, 1Lt., USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (}r. Mo., Day) 15. PAGE COUNT
I Theoi.. FROM TO 83/12/16 107

16 SUPPLEMENTARY NQTATION

sl TRV

S-S DT T FIPETT e —

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neuugm mqe;gggq(y y(j;oc;ﬁ rlén‘wﬂ'
F1€10 GROUP SUB. GR. Statistical Functions, Probabi:ity Distribution Functions,
12 01
Statistical Analysis Theory

19 ABSTRACT (Cuntinue on reverse if necessary and identify by block number)

Uol Lo Kuli.QGOKOV-3MIRNOV, ANDERSON-DARLING /4 o CRAMER-VON MISES
Tooy ) »Oh 'He LOSILTIC DIoTnIBUTlON WITH UNKNOw.. LOCATION AND
Stalin VARAW LTRSS

Co t. srian woodraflf
20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURIT  JLASSIFICATION
) UN(.LASSIFIEOIUNUMITEDH same as RpT. (J oric users O UNCLASSIF] o
ﬁ. NaME osvaespioNSu?uig INDIVIDUAL 22b. '\;’5‘55::’?:5 NuMB: R 22c. OFF ICE SYMBOL
AL PR ressor 5533 AFLT/ENG
DD FORM 1473 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. I

URITY CLASSIFICATION OF THIS PA

A T A .. R Ay e .- - - R A et e . L P - c L. .
BRI DR A .. e e N e T e L T T, W WS e

- - . - - - - - . - . - - ) . ~ . - Y - - - . - -t - -
e e e e e e e e a i at e taatat et atalatacatnlalalaaoasatalnlotosas




A MO e ey .‘r..- _."‘.w’..r..r\‘i R ZNNE SMIEAA S AP SR g s oA - A S AR S A i i ‘."_'ﬁ

m U eliaooi s liD

SECURITY CLASSIFICATION OF THIS PAGE

]
A ..'

y Y Y
'

ﬁ..'."
0

The ' ou of m:xinum likelihood is used to det: ':ine invariant
¢ty Gtes of the unwnown location and scale par octers of a

Stple Trom the Logistic distribution. The part. al derivatives
o tne likelihood furction can not be solved ex. . icitly, there-

g

i for L. gecant metnod is used to iteratively u. crmine the roots
SO of tne partial derivotives. Using these estima: 5 modified
O .0l w0 arov-=smirnov, anderson-Darling and Cramer on Mises statistices
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