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Preface

The purpose of this study was to survey and use variance
reduction techniques. To achieve this, extensive literature
search was done. For each technicue, the basic idea, analyt-
ical formulation, method of implementation, fields of applica-
tion, advantages, disadvantages and any other specific charac-
teristics were identified, presented and clarified. To
illustrate each technique, all the above characteristics
were tabulated. Numerical examples with computer programs
were given and, finally, examples of application of the most
commonly used techniques were presented.

This work should result in better understanding of
variance reduction techniques so that one can use them more
efficiently.

I would like to thank my thesis advisor, Professor
Albert H. Moore, and my reader, Major Joseph W. Coleman, for
their continuous patience and assistance. I also wish to

thank Ms. Sharon Gabriel for her excellent typing of this

thesis.

Mohamed Refat Elhefny
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The objective of this study was to find out about,

analyze and illustrate the characteristics of variance

4 oS
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reduction techniques. Extensive literature review was

‘3 done to identify the basic idea, theoretical foundation,

i% procedure for implementation, fields of application, and

" other specific characteristics of each technique.

‘S Examples were given to show how to implement the

o commonly used techniques. Computer programs were written to
- perform those examples. Results were used to compare the

:; efficiency of different techniques. Three studies in the

:- fields of inventory, queuing and computer performance

o QES measurement were discussed where different variance reduction
;3 technqiues were employed. Conclusions and recommendations
i; were given.

A M~

o

,,

T
| G ARRAAN

ote¥a bl

LA

vi

. e " e
4 "‘AJI.JJ

S P

. - oW,
k)

WAL ALV FL N I ‘.“.'\ o NN ~" V‘-"‘ "--'\ e ‘.'-)'.‘“\ Nop v -'.n."-". .'.-‘ WNe ‘.".- "- "' } ‘l- "- :-,‘




T . G R Nl Sk A Sl Ml /et U & 0 SR RRC R I ARt D Tt e N in~ O sl 0o U il B g - Dulh Sl el G e A B A T ALOTY

...................

o

3
SN

§‘ VARIANCE REDUCTION TECHNIQUES WITH APPLICATIONS

)

3

) I. Introduction
:% During the early days of simulation (1940-1960), when
:3 computer speeds were much slower, investigators found

: themselves in a position where it was very expensive to
%% decrease the variation of estimates by increasing the sample
f% size. Consequeritly, interest grew in developing sample-
| estimating procedures that could either increase the pre-
zé cision of estimates for a fixed sample size or, conversely,
ES; decrease the sample size required to obtain a fixed degree
N -, of precision. Those procedures are often referred to as

ﬁ h Variance Reduction Techniques (VRTs). The underlying

b

.
F]

-.'i

principle in those procedures‘is the utilization of knowledge

about the structure of the model and properties of the input

.
.l" "
ata s

data to change or distort the original problem so that

L
b A

special techniques can be used to obtain the desired esti-

r mates at a lower cost. ﬁ
é‘ Historically, most of the underlying statistical

0 )‘-

a: approaches used in VRTs had been in use much earlier for

e different purposes, but during the period of 1940-1960

-:"_'

ft& the techniques had been refined for specific use as vari-
Z: ance reduction techniques in computer simulation. As the
e computer speeds increased, the interest in those techniques
y :": .S;('.
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;§ d?: declined. However, the recent increase in complexity of
.. computer simulation, due to handling complex models for
33 large problems, renewed the interest in the use and develop-
2 ment of variance reduction techniques. 1In some models of
0 complex systems, obtaining a single sample may require a
1; great deal of computer time when a high speed computer is
N used. In such cases, the use of variance reduction tech-
ﬁ niques is vital.

Li Kahn was one of the first pioneers who clarified most
iﬁ of the techniques. He explained and illustrated most of
Q them in the report published by Rand in 1956 (19). He

3 presented several examples pertaining to the area of

2 radiation transport to demonstrate the applicability of
Jﬁ 13? VRTs. Hammersley and Handscomb presented the general

,i Monte Carlo concepts and methods (11). The most compre-
N hensive overview of the use of VRTs is presented in their
5 book and also in the book by Spanier and Gelbard (30),

'g where standard variance reduction techniques, along with
a several applications to radiation transport problems, are
‘ﬁ discussed. Other books (16; 28) give less rigorous
;S summaries of VRTs which are helpful for the understanding
f: of the basic ideas behind each technique. On the other
2 hand, many articles (7; 22; 23), reports (6; 8; 12; 13),
i; and studies (5; 10) have been devoted to development and
,i application o ~=2r’ .n VRTs for a specific kind of problem.
4
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To compare different variance reduction techniques

N when they are applicable to a certain problem, efficiency

a4

. of simulation in estimating parameters is used. It is

IO
ot .

. first suggested by Hammersley and Handscomb (11) and is

:: defined as
-
a5 1
) Efficiency =
v variance X work
£
2 They also defined the relative efficiency of simulation
ff when applying two Monte Carlo techniques as the ratio of
ﬁ their efficiencies.
;é This implies that a reduction in variance of estimator
= - is not worthwhile if the work required to achieve it is
E; 2 excessive. Therefore, one should take into consideration
ﬁ the cost or the work required to achieve the anticipated
- variance reduction. 1In reality, one cannot estimate the
;S . required work or the potential variance reduction for a
% given method. The analyst can use his experience and
3 intuition to choose the suitable method to solve his
;i problem. In some cases, the use of any of the techniques
;ﬁ is infeasible or improfitable, but if applicable and
= properly used, VRTs can provide a tremendous increase in
the efficiency of the simulation.
Shannon (26) stated that variance reduction technigues
are not new, but they are not widely practiced in spite of
N




; y e the great saving of work or reduction of variance which

'IE can be achieved when suitable VRTs are applied to certain

;E cases.

- The lack of attention given to those techniques is

?j} a consequence of the shortage of text books discussing

ﬁi{ them and the inconvenience to analysts when using them.
This effort is devoted to treat those problems with the

Eé: hope of making VRTs more convenient to use.

5%& In the next chapter, each of the known variance

F;\ reduction techniques is illustrated. The types of

£§$ problems which can be handled by the technigues are

:i discussed.

o & In the third chapter, selection and implementation

‘E; e of VRTs are discussed in detail, and procedure for selection

2; of the suitable VRT to a certain type of problem is

'ﬁ. illustrated. A lengthy table of the characteristics of

Eﬁ: . all the available standards is given where the description,

;;: criteria of application, advantages, disadvantages and

- fields of application of each of the techniques are

;@ condensed to help in the selection of the suitable tech-

'Ea nique.

:f? In Chapter Four, steps for implementation of each

.g% technique are given in a simple form including formulae

li; for calculating the estimator and the variance of the

<:f estimation. Simple examples for most of the standard

=
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techniques are used to demonstrate the implementation of

e~

.
e e e

the techniques.

Sl

In the fifth chapter, selected examples of real

RN
T

applications of various VRTs are given. Applications in
nﬂ the fields of inventory control simulation models (6),
queuing simulation models (10), and computer performance

measurements (7) are demonstrated where the most commonly

2]

used VRTs are applied.
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’ II. Variance Reducticn Techniques

o

}‘:‘ Classification of Variance Reduction Techniques

3’2 All VRTs are concerned with increasing the accuracy
e of Monte Carlo estimates of parameters at a fixed sample
:.: size or decreasing the sample size required to achieve a
s certain degree of accuracy. In general, VRTs aim to improve
:: the efficiency of the simulation process when contrasted
'j- with crude (direct or straightforward) Monte Carlo simula-
":: tion which attempts to create true-to-life or actual

_'., modeling for the underlying process. In crude Monte Carlo
:"S simulation, random sampling, flows through the model and
\:.E:' sampling probability distributions are chosen to reflect
o “':";‘ the real situation as exactly as possible. On the other
Si hand, VRTs attempt to increase the effectiveness of Monte
:::" Carlo simulation by one of the following approaches:

":::: 1. Modifying the sampling process

"53 2. Utilization of approximate or analytical infor-
$ mation

f:f: 3. Studying the system within a different context.
5%5 According to these approaches, the known VRTs can be
classified though many of them are closely related, which
{és makes it difficult to completely classify them. The

!Sé suggested classification of most of the known VRTs is

1:‘ given as follows (24):

SR
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NS ‘es . .
W - Modification of the Sampling Process
e
xlﬁ _ Importance Sampling
> Russian Roulette and Splitting
o Systematic Sampling
oI, Stratified Sampling
DY Use of Analytical Equivalence
SARK
e Expected Values
P Statistical Estimation
S Correlated Sampling
. History Reanalysis
IR Control Variates
N Antithetic Variates
$§{ Regression
._N_.
e Specialized Techniques
~$} Sequential Sampling
RPN Adjoint Formulation
N Transformation
igg Orthonormal Functions
. Conditional Monte Carlo
’ Ry
;ﬁi <. Modifying the sampling process is usually achieved
:- -f.-
}3; by using more effective sampling techniques or altering
‘i* the sampling distributions. This approach is beneficial,
’iﬁ if not necessary, to handle simulation problems involving
e )
ﬁfj very low probability events. In such a case, a modified
K
— sampling scheme is required to increase the number of
X occurrences of these rare events.
Efj Using the analytical equivalence is another approach
> for reducing the variance of estimation in the simulation
:2$ process. Since analytical procedures, if available, are
Clar
L
jfﬁ usually preferable to simulation, one should replace the
— results obtained through simulation at any part of the
LI |
o II-2
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process by the available analytical results or estimates.

In addition to sampling modification and analytical
equivalence, there are certain specialized techniques that
can be used to achieve variance reduction. These procedures
may include the application of one or more of the above

techniques.

Presentation of Variance Reduction Techniques

Modification of the Sampling Process. Technigues under

this class have several common characteristics in that they
all reduce the variance of estimate by sampling from a
probability distribution different from the true physical
one. This will help by observing events of interest more
often and hence decreasing the computing time and effort.
These techniques also preserve the actual process of system
in’the simulation model, while only the probability associ-
ated with each event is altered.

Importance Sampling

Concepts of the Technique. 1In this method,

sampling is forced to concentrate in the more important
regions. In other words, probabilities of occurrence of
events are biased in a known fashion so that the resulting
bias can be adjusted when interpreting the results.

The idea can be simply illustrated by considering
tossing a pair of dice. 1If one is interested in the

occurrence of three as a sum of the two top faces, one

I1-3
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* ) could bias each die toward the numbers one and two in a
s known fashion. The computation of the results should be
% altered according to the information from the biasing
- scheme to unbias the answers.
,; Mathematically, the importance sampling <can be
%Y illustrated by considering the Monte Carlo estimate of
" 7
X parameter I where
]
% I = Eflg(x] = [ g(x) £(x) ax (2.1)
.,
Q_ The crude Monte Carlo procedure for estimating I would
N
“ be as follows:
1 l. Select a random sample Xyr ees, Xy from the
) &
a s distribution with density function £ (x)
- 2. Estimate I using
I
‘ N
& I = & I glx) (2.2)
:; i=1 1
‘\,'
- The sample variance of this estimate is given by
5 2 N 1Y 22
3 s2 = px l§ I 92(x)) - 12] (2.3)
2 i=1
ﬁ Considering another distribution £f*(x) , one can write
L 1 = [ LXVEG)  guy)ax (2.4)
~ £* (x)
"o .
P .-:_‘n
i -
'-,.
»
.2
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3N
; ) where f*(x) # 0 when g(x)f(x) # 0 . If we sample
?ﬁ from f£*(x) taking xl,..,xN randomly, a new estimator
"y il can be calculated as
!’n
R g(x.)f(x,)
ks i, = § ] ——L (2.5)
L i=l  £*(x,)
W]
d £ (x,)
Each sample should, then, be weighed by in the
N £*(x.)
A 1
Q final result. This variance reduction procedure will lead
N
™ to a sample variance given by
. 81 = s % [———— - I} (2.6)
ARSL
5 Consider the expected value E[(f1 - I)2] that is
é N g(x.)f(x,)
Eﬂil -1 = I%[(l% = 1 -12] (2.7)
v, i=1 £*(x.)
™ o h Y
Cal
2
7 £
. If f£*(x) = (x{[(x) and f*(x) is non-negative, then
N EC(I, - I)2] = 0 which is a desirable situation that can
- be achieved only if I is known and f£*(x) is chosen to
L
N be equal to (x{f(x) . Since I is always unknown, one
. has to use available information about the problem to
. choose f£f*(x) as close to (x{f(x) as possible. If one
:' fails to choose a suitable f*(x) to sample from,
3 23, importance sampling can give a worse result than that of
LA
.
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crude Monte Carlo; that is, when

E[s? - 821 = [ g2(al1 - 23] £(xyax
£*(x)

is not positive.

Importance Sampling for More than One

Variable. If the functions f and g are functions of

. >
a vector of random variables X , one can take a random

sample il'ﬁz' oo X from a selected probability

N
function f£*(X) and estimate the parameter I as

> >
- 1 N g(xi)f(xi)
I, = § 1 — (2.8)
i=1 £(X.)
i
with the variance
> >
. g(x')f(x-) ~
Si = ﬁ%f{:-l I [———212 - Ii} (2.9)
i=1 f*(xi)

Also in this case, if we select f£*(X) = gji%gjil » then
E[(i1 - I)2] will be zero indicating the best selection
of f£*(X) which cannot be done without knowing I , the
parameter to be estimated. Due to multidimensionality of
the function £(X) , it is difficult to develop £*(X)
efficiently. Therefore, a conditional importance function

may be selected instead of £*(X). 1In the simplest case,

II-6
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when only two variables x,y are in the function f£f,g ,

the parameter I can be estimated as

I = [ glx,y)f(x,y)dxdy = [ g(x,y)£f(x)£f(y/x)dxdy
X,y X,y
= [ 9WIEE)  fu(x) £ (y/x) axdy (2.10)
x,y £*(x)

So one can select xl,xz,...,x randomly from a function

N

f*(x) and Yl,Yz,...,Y from f(y/xi)f*(xi) and estimate

N
I as

~ g(X,,Y.)E(X.)
I, = % £ 1* i i (2.11)
£ (Xi)

The sample variance will be

g(X, ,Y)£(X
£*(X;)

s2 = X
1 N-T

.)
L3y L Ii} (2.12)

In this case

~ 2
El1, - 1)2] = % {f £ 1 g2(x,y)E(y/x)dyax - 12}

x f*(x) y
(2.13)
Using the relation
11-7
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E[g2(x,y)/x] = [ g2(x,y)f(y/x)dy (2.14)

Yy

one can specify the best importance function to be

2 ]
£*(x) = f(x){E[gf(x,y{lz} (2.15)
J{ECg?(x,y)/x]}*£f(x)ax
which will reduce E[(;1 - I)2] to be
EL(I, ~ D21 = & {fE[q? (x,y)/x)}* £(x)ax]2} (2.16)
If we have more than two variables, the best importance
function can be expressed as
> X

[{ECg? (x,¥) /x]} *f (x) ax

The vector ; stands for all the random variables except
X . The estimate of I and the variance of sample are
expressed in a way similar to that of the two dimensional
case. It should be noticed that the selection of the best
f*(x) can be done only if we know the estimator I for
which the whole simulation is made, so one can only select

a good f*(x) guided by the given formula for best f£*(x)
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Russian Roulette and Splitting

Concepts of the Technique. Von Neumann and Ulan

first used these two techniques in particle diffusion
problems. The combination of the two techniques can be
extremely effective when some knowledge about the importance
of the regions of the distribution is available. If the
problem is structured as a series of events that can be
examined at various stages, at some of these stages, one
can tell whether a process would contribute to the desired
result or not. If the state of a certain stage is not of
interest, the process will be killed off with a known
probability. This is called Russian Roulette. On the
other hand, if the process is an interesting state, addi-
tional investigation might be conducted by increasing the
number of simulations starting from that situation. This
is called Splitting. As mentioned, the combined technique
can be very effective in multistage problems such as random
walk, subsystems in series, etc. It could also be useful
in simulations involving a large number of discrete situa-
tions suchas queuing systems in which large numbers of
individuals are being tracked. 1In such systems, Russian
Roulette can be used to decrease the number of individuals
being tracked by removing an individual at a certain stage
in the problem with probability P, . Otherwise, that

individual is allowed to continue in the system with a new

II1-9
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b2 - weight W= (1 - Pi) = 1/qi (24) . This can be repeated
LS for the other individuals and so the number of individuals
4
t in the system can be decreased. Splitting can increase the
x
. number of tracked individuals in the system by replacing
N an individual with weight W by n individuals; each of
e
N them has the weight W/n . Those individuals can indepen-
E dently proceed through the system keeping their assigned
N weights.
2
Q‘
o Application of the Technigue to a Two-

Stage Problem. 1In a two-stage proble, if X is the random
? observation from the first stage and Y is that from the
y second, the estimation of I = E[g(x,y)] can be calculated
g as
o T
. - lg
: I = § g(X,,Y,) (2.18)

N i=1 i"71
-,
A
o where a sample of pairs of values, (xl'Yz)' (XZ'YZ)’ cee
7 (xN, YN) are generated from the given distribution of
)4 x and y . If some values of X would lead to more
w
- interesting results than others, one can use Russian
» Roulette and Splitting to divide the states in the first
3 stage into the two following sets:
4
» S1 : The set of states which will be terminated
= by Russian Roulette with probability P = 1-q , but if the
f‘ o 7o
" ..4...-
. A
f
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2,

- simulation is continued for a state, the estimated parameter

;:: will by weighted by 1/q .

RS

N

D S, : The set of states which will continue in

the simulation. Each will be split into n simulations

= . . W

< with weight = o for each.

f% The procedure would be repeated for N starting

simulations and the modified estimator will be

~

& _o1oq M) o et

h " N q L n

~ (2.19)

- Y

= which is the unbiased estimator for I (24).

5 A The sample variance in this case is given by

0

i~

al 2 ~

3 s2 = iz I 15 -1 (2.20)
i=1

-, . n s
ik where I, =0 , g(X;,¥;)/q or jzlg(xi,Yi) according
to contribution to the estimator from the history i , and

..

Yy N 1 ?

- I = = I. (2.21)
:':: N i=1 ?

»

o Weight Standard for General Application of

25 the Technique. If the problem to be simulated is broken

.

B into N regions, two weights Wy and WL will be

X . i i

o
.
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assigned to each region i . When a history enters region
i , its current weight W will be compared to the region

weight standard using the following rules (24):

1. If W< WL » Russian Roulette is applied

i
as follows:
* kill the history with P = 1 - ﬁﬂ-
A,
i

* the history will survive with

P=_-"_ and its new weight will be W

w A
Ai 1
2. If w~> WH. s Splitting is applied as follows:
i

* find n such that W - n wA < WA
i i

* create n histories which starts from

this point, each with weight W
A.
W-nw i
A,
i
w [4
A.
i

* with probability create

one more history starting from the same

point with weight WA
i

3. If wL < W< WH , let the history continue
i i
in the simulation without any change.
The above procedure will be used under the assumption
of approximately constant importance for each region. The
importance of a region is inversely proportional to its

average weight WA . This means that histories moving
i

II-12
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into a region of higher importance (lower weight) will be
split, while those moving to a region of lower importance
(higher weight) will suffer Russian Roulette. To increase
the efficiency of computer time utilization, a fixed weight
should be used for all histories in a region of constant
importance. The high and low weight standards, wH ’ wL ’
are used only to define the upper and lower limits for
triggering Russian Roulette and Splitting processes. They

should be used only when another VRT is used besides Russian

Roulette and Splitting (24).

Selection of the Suitable Criteria. There

are three parameters from which one should choose: weight
standards, probability of kill and number of splitted
histories. The best selection is the one which minimizes
the variance in estimate. It is difficult to perform this
optimum selection so the results from importance sampling
analysis can help where the weight standards for a given
region will be proportional to (E:[:gz(x)])_';5 which means
that the weight standards should be high in regions of low

value and low in regions of high value.

Systematic Sampling

Concept of the Technigue. Systematic

sampling is a structured modification of sampling procedure

to reduce the variance of estimation of the parameter. This

I1-13
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technique always results in variance reduction without

involving any significant additional effort, so it should
be applied when that is possible, in spite of the small
improvement it provides. The technique is applicable to
any Monte Carlo problem which has a probability distribu-
tion to characterize the initial conditions. There are
two methods to implement systematic sampling in Monte

[}

Carlo technique to estimate the parameter I = f g(x)f(x)dx

- 00

with a reduced variance.

Method I. The range of the density function
f(x) 4is divided into N regions with equal areas; each
equals 1 where N is chosen between 5 and 50. It is

N
clear that

= [ f(x)dx , i=1l, ..., N (2.22)
XeLi

2 -
[

where Li is the length of the ith interval (region). If
a sample of random numbers Rl' ese g Rn is selected from
U(0,1) , the following sequence of numbers will be
generated:

R,

= X
Rij = R +

(3-1)
N 14

i=1,2,...,n , j=1,...,N

For each value of i , this procedure assigns a value

Rij to each interval j , then a corresponding value of

I1-14
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the random variable Xij is determined .from

X, .
ij
Ry = / f(x)dx , i=1l,...,n , 3=1,...,N

=00

The parameter I can then be estimated as

n .
I = 2§ 1, : (2.23)
- mi=1
where
R N
I, = & 7 owx i=1,- ,n (2.24)
i CIFEIE R S o -

PR O (2.25)

Notice that in this case we generate only n random numbers
from U(0,1) and then generate n X N realizations on the

range of f(x)

Method II. This method is generally better
than the first one to perform systematic sampling. 1In
this case n independent samples are allocated to each of
the regions. This is done by selecting Rij ‘ i=1,..;,n ’

j=1,...,N from U(0,1l) , then n random numbers are

allocated to each of the N regions using the relation

II-15
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= _-'—ll r i=l'.o-'n ' j=l,..o,N (2-26)

and the corresponding realization Xij is determined from

i
S

i3 2 f(x)dx (2.27)

A

The estimator I and the variance of the sample, S2 |,

are determined using the same formulae, Egs. 2.23 and 2.25.

The second method will always give better variance
reduction, although it requires larger number of random
W, samples from U(0,1) . In the two cases, the variance

reduction is approximately proportional to N2 .

Stratified Sampling

=f Stratified sampling is similar to systematic
| sampling, but better efficiency is achieved by taking more
; : samples from the region of larger variance. It is a way
'f to combine the features of systematic sampling with those
of importance sampling. It can be considered as a special
case of systematic sampling where the optimum distribution
of samples among the regions is attempted. Usually,
systematic sampling and stratified sampling can handle the
iy same type of problems, but the latter is recommended when
additional information is available about region contribu-
tions to the total variance. In that case, additional

o reduction in the variance can be achieved.

N II-16
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Structure of Stratified Sampling Scheme.

;;ff The range of £(x) is broken up into N regions of

Y

e length L,, L,,...,L, , respectively. The length of the
> jth region is selected in accordance with a specified

N probability

)

2

p. = [ f(x)ax , j=1,...,N (2.28)
B} ] XeL,
" 3

5 1
N Notice that, if Pj =5 j=1,...,N , the same sampling
) a
L structure of systematic sampling will be obtained where

.' N regions of equal areas are used. The rule to select
.:‘:
™ Pj is to select such that the variance in g(x)£f(x) is

' the same in each interval. After determining the lengths

A
5 e of the intervals, the numbers of samples from each interval
-'_:

e n. , j=1,...,N should be determined. If the total number
A J

of samples is n where

v N

n = J n, (2.29)
n'i j=1 J
»

o

}'} An unbiased (24) estimate for I is

.‘4

; - N p, Pj
= I = Z I_ll [ g(xlj)]

; 3=1 "y i=1

¥ N R

i = P- I (2.30)
g . ) j£1 J 3

- s

x 11-17

v

~

h 'e V"‘.-’. " "v‘ ‘, v...-«. AR ..r “p -‘. -'_.-._.-'..-.. AR RPN ..._ «a® ". .-._.... .._‘.' ...‘_‘...‘.“\:'\. ... -..'.'_. .t ‘.




A
Lol G S

SRS

n’ , " ;-‘-. -l

-~ .-

e

MOSENONN. -

e P

X

\'
Lo
Il
o
'l

s

where
n L ’?
I. = — g(X,.) (2.31)
] Py i=1 ~ 1)
The sample variance in this case can be estimated as
N P2 Mj n
s2 = ] —iy ] [g(x ) - 1.]2
j=1 M3 i=1 +J 3
? n,p_.2 [l r? \ np
= -—J—Jr- — g (X..) - I.] (2.32)
5=1 ™3 ! H )

As in the case of systematic sampling, the stratified

ﬂg: sampling, when compared with crude Monte Carlo, has an
efficiency proportional to N2 .
Selection of the optimum number of samples from each
internal nj iz a difficult task. Consider
~ N ~
E[(1-1)%] = E[(] P, I.-1I)2]
i=1 J 3
]
N P.2%0,?2
- ) J 1 (2.33)
. n,
i=1 j
where oi2 is the variance in the 3j interval

II-18
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:Ei g, = / -f—ix—)[g(x) - 1.]%ax
: ] X.eL, T35 j
N
N
4
o = n, E[(I, - 1,)?2 2.34
" ny EL(I5 = 1507 (2.34)
If nj's are selected to minimize (2.33) subjected to
1l
“ (2.34), the nj's should be selected to satisfy
o«
v
e
R ; n P, o,
~ nj = TJ—-J—- (2.35)
o ] P. o
N : j=1 J J
-
o Notice that cj' s are not known, but they can be estimated
Vo e .
’ using
-r‘:.
o nj
sz = 1 I [owxgy) - 1,02
e ni-1 i=1 ]
<
o~ N
iy n, 1 nj ~y
= 0= I ¢*x; -1,] (2.36)
~ nj-l j i=1 J J
'~
~)
b
' where n;.‘ samples are arbitrarily selected in each interval.
.:, An iterative scheme can be structured to estimate ny -
% .
s."; Analytical Equivalence Technique
g VRTs in this group are based on using prior knowledge
"3: ';Z::-j of the processes involved to form analytical or approximate
S II-19




solutions to the problem being simulated. This can also
mean that, if one can find a related process which can be
exactly solved using analytical or other low variance
techniques, he can derive the difference between the exact
and related processes using Monte Carlo technique. Many
of the techniques under this group are very closely

related in the principles and ideas involved.

Use of Expected Value. This method is based on

the fact that an analytical determination of parameter
estimator is usually preferred to the results of simulation
procedures. Since Monte Carlo estimation of a parameter

is an estimation of its expected value, the technique is

so called and it is applicable where the expected value of
portions of the model can be determined analytically with-
out losing an essential element of the simulation. Expected
value method can be used in multistage problems where the
expected value of the parameter(s) can be analytically
determined in one stage or more. For example, consider the
two stage problem where X 1is selected from f(x) at

the first stage and Y is selected from f(y/x) at the

second. Repeating the process N times, crude Monte

Carlo estimation of I is

(2.37)




o
.
D

RRLS
S

2 |
}:j.\

KY
'::-'? ’.‘:1'.
> ) If it is possible to determine analytically f£(y/x) in the
c% second stage for a given value X from the first stage,
20 the simulation process can be simplified where N samples
)

i from f(x), xl,...,xN are generated and the estimator for
';\ I can be calculated as
N
ol
AN R , N
’ I. = § ) E[g(y/xi)] (2.38)
. i=1
i which is an unbiased estimator of I since E[I ] =1 .
BN The sample variance in this case is given by
-

"

Y

Cud

‘.
L sz = -N_i ’f E¥g(y/x - 123 (2.39)
-0 N-1 “N .t g i E .

X i=1l

>
’ In addition to the simplification of the simulation
processes, the above technique always gives better results
compared with crude Monte Carlo.

‘:§ . It should be noticed that it is not always possible
L:ﬁ to calculate the expected value of a portion of the

g simulation analytically. An approximation of the expected
fﬁ value obtained by another variance reduction technique may
.;,?
oy be used. 1In some cases, a portion of simulation cannot be
..'.\
T replaced by its expected value even if it is analytically
i?ﬁ determined. In those cases, the second and higher moments
-.',’
s

:$ may be important in the simulation procedures and not only
I, the expected value.

o
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Statistical Estimation. 1In this technique,

o

\'. .
-

the stochastic process is not removed from the simulation,

but the expected value, rather than the simulation result,

is used in the estimation.

If one step in a simulation is a random choice between
reaching some final outcome or continuing in the simulation
process, then Statistical Estimation can be used. 1In crude
Monte Carlo, a random number R would be generated at this
step and if R < P(Yf/i) , then the history would be
terminated with score 1. If R > P(Yf/i) , then the
history would continue with no score being made. After
N histories, the estimate for probability of reaching
Ye would be

~

Pc(Yf) =

)

(2.40)

where n is the number of histories terminated at Ye .
In statistical estimation, the same simulation process
is used, but the estimation technique is changed. Every
time the particular step is encountered, a contribution of
P(Yf/x) is added to the estimate, regardless of the actual

outcome of the simulation. The final estimate is then

given by

_ 1
PSE(Yf) = F z P(Yf/xij) (2.41)

13

Ne12

i
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where the second summation runs over all occurrences of
the possibly final step in the course of jth simulation.

An estimate of the variance may be calculated from
- PSE(Yf)] (2.42)
where

(2.43)

The use of statistical estimation will always improve the
variance of estimation, but it can be particularly useful
if the probability of reaching the desired end point is
small in all intermediate stages. It becomes essential
when the probability of the end point becomes vanishingly
small. If there were many intermediate stages which
could, with very low probability, reach the desired end
point, then statistical estimation might calculate the

desired result with good accuracy.

Correlated Sampling

Concept of the Technique. Correlated

sampling can be one of the most powerful VRTs due to the
wide applicability of the technique, as well as the large

efficiency gains which can be obtained. If the primary

I1-23
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objective of a simulation is to determine the effect of

. a small change in the system, crude Monte Carlo approach
would make two independent runs, with and without the
change in the system, then subtract the results obtained.
';: Usually, the difference will be smaller than either of the

. two outputs, but the variance of the difference will be

the sum of the variances in the two runs. In such cases,
\j the use of correlated sampling can be essential to obtain
A statistically significant results. If the two simulations
use a common random number at comparable stages in the
3{ computation, the correlation in results in the case of
correlated sampling will reduce the variance of estimation

much more. Another way of viewing correlated sampling

i - through random number control is to realize that the use

.ﬁ of the same random numbers will generate identical histories
N in those parts of the system which are the same, so that

% _ the difference in results will be due to the difference

in the two systems. This will increase the efficiency

compared to uncorrelated cases. Correlated sampling can

:EE be utilized in the following types of simulations:

‘E. * calculation of the effect of small change

j in the system

;& * difference in parameter in two or more

if similar cases is of more interest than its absolute values
T in them

ng o
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' * performance of parametric study of several
; similar problems
o * the answers to unknown problems is to be
[ estimated using the known answer of a similar problem.
25 Analytical Formulation of Correlated
~
" Sampling. Let the integrals Il ’ 12 characterize two
| different but related problems.
I, = [ f(x) g,(x)ax (2.44)
3 and
3,
%'
™~ I, = f £,(y) g,(y)dy (2.45)
o)
‘\. .j_:.
5
N If the main interest is the difference
i A = I, - I2 (2.46)
&
- crude Monte Carlo approach will perform two separate
- simulations where, in the first, the estimator of I, is
; calculated as
-,
- ] ?
I = = g, (X.) (2.47)
1 N i=1 174
using a sample xl,...,xn selected randomly from fl(x),

I1-25

> LA A —1‘ :. - .:.J‘.l ..-" t‘" ‘h CRREATAA ‘a‘ "~




e

f and I, is estimated as

=

:\:‘ A 1 N

-, i=1

;i using a sample Yl,...,YN selected randomly from f2(y).
<.

o The difference is then estimated as

;__. ~ - ~ _ ~

= A I, I, (2.49)
- >

¥

'y The variance in this case is

o“(a) = ol(Il) + 0 (12) 2 Cov(Ilplz) (2.50)

s
¢

}i where

..
.
S

LR

LAY

A

I

2 ~
0y (1) E[(Il-11)2] (2.51)

ﬁ}#pﬁ%ﬁ‘

2 A A
02(12) = E[(12-12)2] (2.52)

B 1

and

X

LA N BT W A

cov(I,,I,) = E[(Il-Il)(Iz-Iz)]

Yy

E[(Il,Iz)] - 1,1, (2.53)

X4 v 7 Ll
PL
>

-
>

Now if I are positively correlated, then

>\
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Cov (11,12) 2 0 (2.54)

and the variance in the correlated case will be less than

that realized with no correlation.

History Reanalysis

Concept of the Technique. History reanalysis

is essentially a form of correlated sampling, except that
one does not actually run a second simulation using the
same random numbers as in the first. Instead, the results
of the first simulation are reanalyzed to calculate the
answer for the second process (24). This technique reduces
the variance due to correlation and cuts down the computa-
ticnal time involved since the second simulation is not
actually performed. The technique can handle the same
types of problems listed in the correlated sampling case
with the condition that the differences in the systems
being simulated must be expressible as a difference in
probability distribution or in the scoring function.

Analytical Formulation. Assume that there

are two problems which involve estimating Il’ 12 as
given by Egs. (2.44) and (2.45). Assume also that a random
sample xl,...,xN has been obtained from fl(x) . The

estimator for I1 is as usual

I11-27
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3 I, = & I g.(x) (2.55)
P i=1
; Since
N g, (x) £, (x)
_ _ 2 2
IZ = f fZ(X) gz(X)dX = f fl(X) TTX—T—— dx
2.56)
A
35 an estimator for I2 can be obtained using
™
1, = Nl_ ) 92(’21);%"‘1) (2.57)
D i=1 1'7i
f&. where fl(xi) # 0 whenever gz(xi)f2(xi) # 0 . The
o ) sample variance of I, is
X )£ (X,) .
2 N 1l gz(xl) 271" 42 2

s, = — {5 I [ - 1,} (2.58)
- 2 N-1 'N i1 flTxi) 2
..'
,& To calculate the effect of correlation, it is necessary to

estimate the variance of the difference directly. That is,

N
~ if
N
[~ g, (X.,)f,(X.)
. ~ _ 21771772
oS 174
>
N, is the difference in the ith history and
Yo
N. pt
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is the average difference, then the sample variance is

82 = ._I\l._[

2
o7 - 4%] (2.61)

Zi=

I} e~

Control Variates

Concept of the Technique. In many simulation

problems, there exist simplifications or approximations to
the problem having analytic or closed form solutions. 1In
these cases, the analytic information can be used to reduce
variance by what is referred to as control variates. 1In
this technique, the difference between the problem of
interest and some analytical models approximating it is
simulated. The gain in variance reduction or estimating
accuracy is proportional to the degree of correlation

between the true process and the analytical model used.

This approach has a wide range of applicability and it is
very useful when analytical representations of simplified
models exist (24).

Analytical Formulation. Consider the

integral

-}

I = [ g(x)f(x)dx (2.62)

- 00
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...................
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Assume that it is possible to get a function h(x) whose
expected value is known or can be analytically determined,
and which approximates g(x) . If the value of the
integral

oo

8 = [ hx£f(x)dx (2.63)

-Q0
is known, then the integral I can be expressed as

+c0 [

I = [ hx)fxdx + [ [g(x) - h(x)If(x)dx
= 0+ [ [g(x) -h(x)] f(x)dx = ¢ + I (2.64)

1

- 00

The function h(x) is called the control variate for
g(x) . Since 6 is known or can be calculated analyt-
ically, simulation is needed for estimation of I, k

©0

I, = [ [g(x) - h(x)] £(x)ax (2.65)

This can be performed using crude Monte Carlo by selecting

a sample xl"“'xN from f(x) and using

e b »
I = = g(X;,) - = h(X,)
1l N i=1 i N i=1 i
N
l A
N i=1 i
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where

A, = g(Xy) - h(x,) (2.67)

An estimate of the sample variance is

N A A
2
s? = ot {% I A; - &%) (2.68)
i=1
where
A = = A (2.69)
Nth

The efficiency of the control variates technique depends

on the degree of similarity between g(x) , h(x) .

Antithetic Variates

Concept of the Technique. This technique is

similar to the control variates approach, except that a
negatively correlated function is chosen. This negative
correlation is used to reduce the variance of estimation.
Another difference between control variates and antithetic
variates is that the expectation of the chosen function
need not be known. Antithetic variates approach can be
implemented in several methods. Two of these methods are

discussed here.
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s - Method I. 1If the parameter I where
)
ot ®
7 I = [ g(x)f(x)dx (2.70)
" ®
.
. is to be estimated using antithetic approach, an unbiased
b estimator I,
- 1 N
" I, = ﬁizlg(xi) (2.71)
is found using crude sampling. A second unbiased estimator
&: I, for I is selected such that I, » I, are negatively
EZ correlated. Linear combination of Il ’ 12 is a third
-
™ unbiased estimator for I which can be, for example
-.:: e
5. ~ A ~
v, = -
! 6 = a Il + (1 a) 12 (2.72)
.d" l
- In this method, w is chosen to be simply 3 then
>3
-
'..- A 1 ~ ~
. 6 = 5 (I1 + 12) (2.73)
1
Lo
e
:j will be an unbiased estimator for I with a variance
-
\ given by
;:
- 02(8) = LI +:o2i) +Lc (,,1) (2.79)
L 3 1 [y 2 2 Tov'Tl'T2 *
*: ‘l
SR
3 II-32
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A

12 is chosen to be negatively correlated with I, ,

1

COV'(Il,Iz) o0 (2.75)

A

This could make the variance of the combined estimator ©

smaller than the variance of either of the two estimators

Il r 12 -

A convenient way to accomplish this method is to
generate a set of random numbers Rl""'RN from U(0,1)

and two negatively correlated sets of random variables

-

N
set of random numbers where, for each selected random

xl,...,xN and xi,...,x are obtained using the same

number R, , the corresponding Xi ’ xi are calculated

from
X.
1
R, = [ f(x)dx (2.76)
and
X3
1
1 -R, = [ f(x)ax (2.77)

The negative correlation between each pair of values

xi ’ X; is clear; then the two estimators Il and 12

will be negatively correlated. Defining
6. = 3 [g(X,) + g(x})] (2.78)
i 7 L9l%y i .
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o the estimator of I wusing antithetic variates will be
;1
s
\; ~ 1 N 1 N
6 = = J 8, = = 7 [gx,) +gix})] (2.79)
:i N jo1 1 2N i=1 i i
o
f: The sample variance is given by
%
N N N
"“ 2 = _.N_ .1_' 2 - "2
s%(8) -t § I e, - ¢%} (2.80)
. i=1
>3
»
11 Method II. 1In this method of implementing
el the antithetic approach, we try to find the value of «
o>
T which best improves the estimation efficiency. This
X
ff approach can be viewed as a combination of antithetic
o variates and stratified sampling where the range of f(x)
A -
~ is divided into two strata, -« < x < xM and XM < X < ®»
j: If a random number Ri is selected from U(0,1) , a pair
"1
of values xi ’ x; can be calculated from
T
o
>
N
> X
- aR, = [ f(x)ax (2.81)
. o
and x*
: i
. a+(l - a)R, = [ f£(x)dx (2.82)
~° -00
\.'.';
L which means that X. is selected from the range
‘;: -0 < X < XM and Xi from xM < X < » ., Also, Xi ' Xi
R are negatively correlated. 1In this case, the combined
1 variable will be
RS,
2 5
”, I1-34
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s
A
'\Q 8; = ag(X;) + (1 - a) g(X]) (2.83)
.l.-::
- and the new unbiased estimator for I is
i N 1 N 1 N
3 6 = § 1 8 = § .1l [logxp) + (1-a)g(x))]  (2.84)
. i=1 i=1
e
~ with the sample variance
N
-.‘.
i N 1 ¥ 2 -
2 - N 1 _ a2
: s* = g i I o -¢%} (2.85)
| i=1
)
1
o If o is properly selected, this method can give much
R
g better results than the first simple one. Selection of
1 - .  ees .
ST a is a difficult task, but a rule of thumb is to select
]
1 a such that
L |
I = -
o . g(XM) ] g(XL) + (1 a)g(xU) (2.86)
R
b,
- where XU and XL are the upper and lower limits of the
Qﬁ range f£(x) . Alternatively, a can be determined using
b
> a trial and error method to obtain the optimum efficiency.
o
o Regression. Regression techniques can be applied
S
N to a wide variety of Monte Carlo simulations to produce
3
. unbiased estimators for a set of parameters (integrals) when

correlation between them is known to exist. Regression

I1-35
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O
o ) technique will make use of this correlation to reduce the

{

- variance of estimation.

."n

f:I;

2y Analytical Formulation. If a set of

- integrals Il,...,Ip are to be estimated, regression

- can be applied to determine the minimum variance unbiased
;g estimators by a set of estimates Byrcccsb (n 2 P) such
ey that

)

YN

3 5.) = I, + + 1 j=1 (2.87)
" E( j - aji 1 LRCIC Y a.jp p ’ ]— seeenl .
\:

i: where aji . j=1,...,n and i=1,...,P 1is a set of known
i constant. If the coefficients aji in Eq (2.87) is
‘QJ - represented in matrix form,
‘.‘: ’

L _ -
,1-_"

..4 all . . . oalp

) <>

?:..). A = 321 L3 L . azp (2.88)
‘i a . . . a p
=

. and a sample consisting of N independent sets of simulated
$$ values for Gj , then one calculates

NI

N

‘ - .

.'_. e. = 3 e-- ’ i=1,-..,n (2.89)
o J N 4= 43

X

o R

> to construct the column matrix
T

W
[~% I1-36
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Now, an estimate for the set of integral

->
I =
fh
*
is given by I ,
->
1 = @ATVLlR
where

o

D >

D>

D> e
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where

(2.90)

(2.91)

(2.92)
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<

21 * ' ) 2n

<>
V = . 3 . . .

nl nn

A ~

is the covariance matrix for 61,...,en and A is the

transposition of A . That is,

vij = E IZ{ei - E(Oi)} {ej - E(ej)}J

o i=l,oa-'n r j=l,...,n

which could be estimated as

<>

]
12

ij k

i=l,o'o’n ’ j=1,...,n

A

where Gi is calculated from Eq (2.90), and

(2.93)

T

(2.94)

(2.95)




V11 . . . 1n
- Voy - - . Voo
<,
o -It . - . . .
. v - (2.96)
;;. . . . . .
y i VN]. . . . Vnn J

LR W on WY -

The new unbiased estimator is

Al

A

2 > +
* = @ATvla 1T

<
D>

(2.97)

YN

% 4

fone! Generally, it is difficult to formulate the estimators

el,...,en . This limits the applicability of the method

x
s A‘J‘} P

in real situations.

Specialized Techniques

This group of VRTs includes those techniques

.".“.-ln .

which are useful to a specific kins of problem. Some of

those techniques are not well developed or extremely

specialized. However, some of those techniques are the

o S
[ S R T Y SR N

only way to get a considerable variance reduction in

"2

certain cases. 1In this section, the most common tech-

X

niques of the above characteristics will be discussed.

ARy,

I1-39
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Conditional Monte Carlo. In some cases,

is is hard to estimate the parameter

LA 0 iy N ]

6 = E [¢(a)] (2.98)

where a 1is a random vector distributed over a space

VA /l‘.l "4'.‘

A with a probability density function £f(a) . This may

- ."

be due to the complexity of f(a) . One way to deal

= with such a problem is to embed the space A in a

product space C = A x B where B 1is suitably chosen.

Each point in C can be expressed as
c = (a,b) (2.99)

“ and a can be considered as a function of ¢ which
maps the points of C to A . If we sample a random
vector Yy = (a,B) from C with a probability density
function h(c) , a mapping of Yy to a 1is obtained
which is a random vector of A . 1In general, a will
;ﬁ not have the desired density function £f , so an appro-
priate weighting function should be used to compensate

. for that.

. If we choose g(c) = g(a,b) , an arbitrary real

function defined on C such that

g
LA

I1-40
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G(a)

[ gta,b) db # 0 for any (a,b) (2.100)
B

and

h(c) # 0 for any (c) (2.101)

a suitable weighting function could be

w(c) = £f(a)g(c)Jd(c) / G(a)h(c) (2.102)

where J(c) 1is the Jacobian of the transformation

c=(a,b) which can be written as

Jd(c) = J(a,b) = gggg (2.103)
“n
Since a is the first coordinate of ¢ , the following
identity holds (11)
(a) f (a)
[ ¢(a) f(a)da = [ da Q——T—T—— g(a,b)db
A A Gla ig
= ¢(a)f(a)g(c)
sy T GlaIR(e) - h(e)dadb
dadb
= h
é ¢ (a)w(c) (C)J(c)
[ ¢(a)w(c)b(c)d(c) (2.104)
= C
A

I1-41
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{. This shows that, if a 1is the first coordinate of a
random vector Yy sampled from C with density function

.fﬁ h(c) , then
>3 t = ¢(a) W(Y) (2.105)

is an unbiased estimator of 6 . Here B , h are
f}: chosen arbitrarily to simplify the sampling procedure.
The function g acts as an importance function which

should be selected to minimize the variation in t ,

J and hence increase the precision of estimation.
.“,:
gq Conditional Monte Carlo is a special case of the
(_ | & above theory where h(c) is a given distribution on
o T .
s C=AxB and f(a) = f(a,bo) is the conditional
LAk S
Gi. distribution of h(c) given that b = b, we have

'!
55
- h(c)d(c) = £(a,b) ¥(b) dadb (2.106)
e

" £
a
42

where Y (b) is the probability density function of B

l: [

and y = (a,B) has the density function h(c) . 1In

I'. " . l..‘ J'

this case

AN
ol

I

J(c) = h(c) / f£(a,b) P(b) (2.107)

.HHR;}E

o and for a given b,

I11-42
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= J(a,by) = h(a,b)) / £(a) ¥(b,) (2.108)
;g ‘
Eliminating £f(a) from the weight function, we get
h(a,b )J(a,b)g(a,b)

--"

'Q

X This leads to the following rule. Let y = (a,B)

'f be distributed over C with probability density

23y function

“

<

\

e h(c) = h(a,b) (2.110)
vy -

SR

'b"

x Then

e t = ¢(a)w(y) (2.11)
2

’ where w(y) is given by Eq (2.111) as an unbiased estimator

;i of the conditional expression of ¢(a) given that B = b .

fﬁ It is clear that this approach requires neither sampling
s

=) from space A which may be awkward, nor evaluation of the

L

. possibly complicated function f . Besides, we can

achieve variance reduction in the estimation if g is

= suitably selected.
A

'
O-'
e
'P:
a/
N
Y]
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{u - Sequential Sampling. This is not a 1
?: specific variance technique, but rather a general approach
Y

S to the use of other techniques. It is useful to apply

" this technique when there is little or no apriori infor-
;% mation about the expected results of the simulation. In
‘E this technique, a series of sequential simulation runs

N is performed to reduce the variance of estimated para-

S; meters. In the first run, little or no reduction variance
E; is achieved. 1In the second run, parameters estimated in
:J the first one are used for applying other VRTs such as

}ﬁ importance sampling, Russina Roulette, splitting, or

ké stratified sampling. A third run can then be made using
;; Y the improved sampling parameters and this "self-learning"
:; - process can be carried out repeatedly with the efficiency
g of sampling improving at each stage. 1In spite of the

N simplicity of this approach, little work on sequential

'3 sampling has been done (24). Considering this technique
;E& a trade-off must be done between the required extensive

+ computation and the efficiency gain from improved sampling.
g The sequential nature of this techngiue may lead to more
'Ej underbiased or overbiased estimation, if the initial

;' choice of the parameter is biased.

i

:: Orthonormal Functions. This VRT can be

fi very useful when applied to multidimensional problems.
. In this method, a set of orthogonal functions over a
VRN .

o II-44
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region of multiple integration is defined, then a

A sampling scheme is structured to permit efficient

‘ sampling over this region from a joint probability density
s function. The procedures to implement this technique are
not well developed, but the potential gain when applying

”
- it is still high.

Adjoint Method. Frequently, when building

59 a simulation model, one can find a set of mathematical
equations which is adjoint or inverted with respect to

the original set. In such cases, a solution for one set

)
1hg of equations will give the solution for the second set.
o
- The basic idea in applying the adjoint method as a VRT
. LA is to simulate the adjoint set of equations which does

not represent any real process, but is easier or more

0~ { efficient to simulate. It would give a solution which
helps in estimating the original parameter direclty or
in applying another VRT. 1In some cases, one can divide
the problem into two parts; in one of them, the adjoint

method is applied while direct simulation is applied in

.l‘.l
P

the second part.

,- -

ﬁ: The adjoint method has been exploited very success-
o

a fully in radiation transport problems because of the

S precise formulation of this problem as a linear integral
?J equation for which an adjoint formulation can be obtained
A (24).

:' N

n" 3;{'

\l
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This technique needs more investigation and further

. development to be generally applicable in simulation.

Transformations. This method is a special

form of importance sampling which is characterized by

. formulating the priori information about the process in
N a parametric, closed form representation. That informa-
tion can be used to alter the sampling procedure by
transformation. This method has been largely employed

in radiation transport calculations where the function of

interest have an approximately exponential form (24).
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{ II1I. Selection of Variance Reduction Techniques

In the preceding chapter, basic concepts of different
VRTs were discussed. Those techniques are not equally
efficient when applied to a specific problem. The selection
_E: of a promising technique for a particular problem can cause
' considerable difficulty dué to the large number of possibil-
o ities available. This chapter is devoted to set general
rules for selection of the appropriate technique(s) for a

certain situation or, in other words, to show where each

N technique can generally be used. 'To achieve this goal, a
L~ summary of properties and concepts of most of the known
- VRTs is given in a tabular form to help in selecting the
I suitable technique(s).
e For the analyst to select and implement an appropriate
variance reduction technigue or techniques, the following
N systematic procedure should be applied:
.
L ‘.l
1. Definition of the problem information that can be
ii used as a basis to select an appropriate technigue(s).
-
7 2. Selection of specific technique(s) that should
- be considered for a given problem.
5
Dy 3. Setting of basic guidelines to implement the
A
; selected procedure.
.
1 These aspects are described in the following three
0% .
[ A sections.
5 III-1
)
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x! Definition of Problem Information

The efficiency of a variance reduction technique is
strongly related to the efficiency of the use of the
known information about the problem. Primarily, it is
essential to characterize the aspects of the problem that
can help to indicate the fruitful variance reduction
tedhnique for this problem. Helpful information items
: are organized in the following table. These items are
- the basic items needed for most of the techniques.

- Table 3.1 presents the required useful information

that should be known prior to the selection and implemen-

N tation of the suitable variance reduction technique.
o, Selection of Variance Reduction Technigue (s)

The most difficult step in utilization of variance
reduction techniques is the selection of the suitable
\ technique(s) that would £it the problem of interest and
give an effective variance reduction or reduce the required
N sample size for a given degree of accuracy. This diffi-
; culty can be reduced by preparing and utilizing the

information about the problem listed in Table 3.1 and

understanding the characteristics of different available
variance reduction techniques. For that reason, a compre-
hensive summary of variance reduction techniques is
presented in this section. Having the information about

the problem under investigation in mind, and understanding

I1I-2
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CAY
N
=N

NS

NCNID TABLE 3.1
{ PROBLEM INFORMATION
ey NEEDED FOR SELECTION OF SUITABLE TECHNIQUE
o

:_-.:‘_ 1. Definition of nature of the problem relative to:

N

i expected values (means, variances, etc.) to be estimated

’,.'}; ® sensitivities or variations of parameters of interest
*.-J L] » » 3 3
R\ e possible mathematical formulations (integral equations,
::,:: expected values, etc.)

- ® any sequential characteristics, such as independent path;
A outcames depend on intermediate step
- ® input conditions which are randam variables to be sampled.
j 2. Identification of portions of protlem or parameter to be

S estimated that can be:
-~
- ® expressed in an analytical form such as single integral,
-,.:;-I multiple integral, differential and/or integral equations
A
:'.: ® solved analytically, such as expected values, variances,
s probabilities, etc.

5

¢ represented by approximate, simplified positively correlated

I o ~ analytical expressions
-, L)
'_‘,-Ij ot represented by appraximate, simplified negatively correlated

v analytical expressions
o ® established as relatively not important to final outcomes
N campared to other aspects of the problem.
f-.*_j 3. Identification of variables in the problem which:

.:\

a:? .areveryinportanttotheexpectedwtcane

1 ® are not expected to significantly impact the results

- ® are strongly correlated with other variables.
..
< 4. Location of final events or outcames of the problem which:
- ® have very small probabilities
oy ® have very large probabilities
-:_ ® have outcames relatively insensitive to problem parameters
\,, ® have known probabilities of occurrence from intermediate
Nt stages in the problem
. ® are linear cambinations of other events or randam variables
. x ® have known correlation with other events or outcomes.
:, III-3
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the basic idea of each available variance reduction tech-

nique, one can use the following summary of the character-
istics of different techniques to select the techniques
that could fit his problem. With the revision of the problem
information and selected technique(s) characteristics, the
most suitable technique(s) could be identified.

The following summary of variance reduction techniques'
characteristics includes description, supposed criteria of
application, advantages and disadvantages of each technique
(24). It also includes the typical area of application of

each technique. It should be noted that, in many cases,

more than one technique can be separately applied to
problem, but each of them will deal with the problem
in some cases more than

different approaches. Also,

technique may be applied to solve one problem in the

the
in
one

sSame

time. Each of these techniques will be used in one stage
of the problem.

The most important point to keep in mind when selecting
and implementing one or more of the variance reduction
techniques for a certain problem is that the applied tech-
nique(s) will reduce the variance of only one parameter or
aspect of the problem being simulated. Using variance
reduction techniques designed for one parameter will
usually reduce the effectiveness of the simulation to
it is very important

estimate other parameters. Therefore,

III-4
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;" to determine all of the results which will be desired from
é the simulation before searching for a suitable variance

4 reduction technique. When more than one quantity is to be
: estimated, the chosen technique(s) should not degrade the

efficiency of any of the estimations. In many situations,
- it may be advisable to implement a different variance

reduction technique for each parameter.
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IV. Implementation of Variance Reduction Technigues

Once the suitable VRT is selected to be applied for

a specific simulation problem, a plan for implementing the
selected technigue should be made. In many cases, the
theory given in the literature cannot be directly used to
implement the selected technique. In this chapter, general
guidelines to implement the more important VRTs are given
in the form of a step-by-step procedure. Simple examples,
to show how to apply these steps, are presented for the
most commonly used techniques. Computer programs were
written in FORTRAN V to accomplish those examples. These

examples would give better insight of the implementation

-
Enh and the efficiency of the techniques.
Importance Sampling
Guidelines for Implementation. The general guidelines
that could be followed to implement importance sampling
are as follow:
N 1. Express, if possible, the expected value being
; estimated as
S
X
P I = [g(x)f(x)dx (4.1)
2 where x 1is the random variable of importance

sampling and £(x) is its density function.
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x

f' X 2. Determine the functional form of g(x) analytiéally
; or by selecting values of x and estimating the

E corresponding g(x) .

:‘ 3. Select an importance function £*(x) which

;3 approximates f(x)g(x) .

} 4. Select a random sample Xl""’xN from £*(x)

. using a set of random numbers from U(0,1) .

Eg 5. Estimate I using (2.5).

;: 6. The estimator for the sample variance can be

:. calculated using (2.6).

zé Example. If it is required to estimate the probability
- P(x £ 1) when f£f(x) is given by

5

; £(x) = .0l exp(-.01x) (4.2)
% the crude Monte Carlo will reguire hundreds of sample

E values from f(x) to accurately determine P(l) . This

- is due to the fact that x will be less than 1 in approx-

ﬁ imately 1/100 of the sample values. Applying importance

:g sampling method could reduce the required sample size for

:; a given degree of accuracy. Following the above guidelines
ji to implement importance sampling, the value of P(1l) can
?g be estimated as follows:

ff l. Express the required integral as

o

_’ e
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7.

The above steps were coded in a computer program using

I = [ £(x)ax (4.3)

where f(x) is given by (4.2).

Let f*(x) be
f*(x) = exp(-x) (4.4)

The selected importance function f*(x) will
give the opportunity for x to take values less
than or equal to 1 more frequently.

Select a random number R, from U(0,1) , then

determine the corresponding xi using

X, = F*‘l(Ri) = %0g_(1/(1-R;)) (4.5)

Determine the values of f(Xi) ’ f*(xi) .
Repeat steps 3 and 4 for N times where N is
the chosen sample size.

Determine the estimator for P(l) as
P() = ] 1_ , X $1 (4.6)

Determine the sample variance using (2.6).
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FORTRAN V. The code and the results are given in Appendix
A. The results are given for N = 20 . This small sample
size gave an accurate estimation of P(l) as .01015 (the
theoretical value is .00995 ). The sample variance was
.0252 ., 1If crude Monte Carlo were used, it would recuire

hundreds of sample values to give the same accuracy.

Russian Roulette and Splitting

Guidelines for Implementation. To apply Russian

Roulette and Splitting, the following general steps can
be followed:

1. Determine stages of the problem in which possible
conditions can be divided into N regions where
each of them contains points of roughly the same
importance.

2. For each region choose average weight standards,
WAi » i=1 , N . This weight should be inversely
proportional to the importance of the region.

3. If no other VRTs are used, set high and low weight

standards, WH ' wL , equal to WA ; other-
i i i
wise, WH ’ WL should be sufficiently spaced
i i
above and below wA . The spacing should pre-
i

vent any unnecessary Russian Roulette or Splitting
and assign approximately eaual weights to histories

of roughly the same importance.

ff \' B '.*.'.‘.‘.\" l..' -\‘ ,.n‘.',.-‘-.A' .t ._;“ -.....-"\.'-\.-...‘.-' N T AN e e L . , R A
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NI 4. When a history arrives at a particular stage in

{

;2 region Ri with weight W , carry out the suit-
)

- able action according to the following cases:

-:\

!

a. If w« WL r apply Russian Roulette by
i
killing the history with probability 1 - —

or letting it continue in simulation with

probability W/WA carrying a new weight
i
N W .

Ay

_% b. 1If WL < W< WH + let the history continue
‘:' i i
- with weight W .

. c. If wW> Wh r carry out splitting as follows:
- i

o (i) Determine n such that

_,._ f‘. 0 £W-n WA. < WA.
% i i
f (ii) sSplit the history into n "daughter"
g4
1 histories, starting in that point with
- weight W, .
:- ) i Vi-n WAi
p (iii) With probability ———— ¢ Create one
. Ay
ol more daughter history with weight WA .
‘- A i
EE 5. Form estimate I, for each history i
- >
I. = e w 4.7
i Iatx) w (4.7)

p, daughter of i

&
' el
LN
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6. The final estimate of I is given by

>

H
il
2|
e

-t >

where N 1is the number of starting histories.

7. The variance of the sample is given by (2.20).

(4.8)

Example of Using Russian Roulette in System Reliability.

Rice and Moore introduced a Monte carlo technique for
estimating lower confidence limits on system reliability
(26). The algorithm which they gave to accomplish crude
Monte Carlo requires a generation of total 3000 random
variates from the normal distribution N(0,1) . Russian
Roulette can be applied to reduce the number of sample
values generated from N(0,l1) when using {his algorithm.

Case l: Series Connection of Subsystems. Consider

a system of three subsystems connected in series. The
reliability of each subsystem Pi is calculated using

pass or fail test as

where Pi is the number of failures in N trials. One

can roughly say that

(4.9)




,
- .
( -

v r, = Pl P2 P3 (4.10)
X

) where ry is the system reliability. In fact, each Pi

) is a random variable which can be considered asymptotically

N
-j normal (26), accordingly RS will be a random variable

X

: depending on Pl ' P2 and P3 . If it is required to deter-

\ mine P(r_ S R) or P(r_ 2 R)) , amodified algorithm

» s x s X

li using Russian Roulette can be carried out as follows:

\0

R 1. Using the data from pass-fail tests, the first

; estimate of reliability of each subsystem can

‘.

>, be calculated as

N

- P = -

3 RN Pi 1 Fi/ni (4.11)
e

\n
Y the asymptotic variance is

.’n A o)

= P; 9

T v, = o (4.12)
- i

. where q; = 1 - Pi . being the number of

- pass-fail tests of the subsystem i .

;: 2. Draw a random variable X, from N(O,1) .

. 3. Calculate the second estimate Pi as

% Pi = Pi + Vi X Xi . i=1 (4.13)
L s

“ ".;?.

:5. 1v-7

1

-

p

S v . “, -, B} P A N - R U T L T S e - PR -y e
e e L e T e P N e I IO I, :.\ LN \'\.;;!_.\j




4. 1If Pl < Rx » skip steps 5 through 8.

{

gt R

N 5. Calculate P2 as in steps 2 and 3 where i=2

o

:§ 6. Calculate Ryo
14

< = 12> 1:> 4.14
X2 12 - 1 B (4.14)
;.

) < .

If ri, =R skip steps 7 and 2.

- A

T 7. Calculate P3 as in steps 2 and 3, where i=3 .
-

32 8. Calculate r_ as

St
e A A 2

::E. rs = Pl ° P2 . P3 (4.15)
bt

i <
; - If rg < Rx , then

SN 9. Add 1 to the number of trials where r_ < R_ .
L .

RN

AN 10. Start a new trial at step 2 and repeat for

: 1000 trials.
4“‘
'ff . Notice that the application of Russian Roulette
S
™ reduces the number of generated normal random variates
; to one in some trials and two in other trials. In some

g%} trials, we have to generate three random variates from

T normal as in the original algorithm. The total number of
‘} reductions depends on the values of P1 ’ P2 ' P3 and Rx .
Qf The above algorithms have been coded to a computer

s

T program in FORTRAN V which is attached, along with the
ﬂ{ results, in Appendix B. The attached results are obtained
<o
O _
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t, T when pl , p2 and P3 are .7, .8 and .8, respectively.

and Rx runs from .3 to .75. The number of reductions

increases with the increase of Rx .  When Rx is .75,
a total of 1654 out of 3000 generations from normal

- N(0,1) were saved.

s Case 2: Parallel Connection of Subsystems. The

above algorithm can be used to handle systems consisting

ti of parallel subsystems with some modifications. Suppose
:3 that we have a system with three parallel subsystems which
-
Y were examined using pass-fail tests. If it is required to
ZE calculate P(rs 2 Rx) , one can use the same algorithm
}j given for the series case to apply Russian Roulette to
7
- 4 simulation with the following modifications:
= a. In step 4, we skip to 9 if P, 2 R,
ff b. In step 6, r,, is calculated as I
:& ¥y, = 1 -(1 - Pl)(l - Pz) (4.16)
s . . >
_ and we skip to step 9 if ry, 2 Rx
%; c. In step 8, r_ will be calculated as
~d r, = l1 - (1= Pl)(l - Pz)(l - P3) (4.17)
> . >
. and we check if ry - Rx
. V-9
SN
b
"

e e e e

y '.'s'.-. ROAY -‘.' . _n.'-_- .'-.\-s

P o "



d. In step 9, we add 1 to the number of trials

>
where rg = Rx .

The computer program for the parallel case is presented

in Appendix C, along with the results for ;i equal to

.7, i=1,2,3 and Rx runs from .905 to .950 . The results
showed that the number of reductions decreases when R,
increases. When Rx was .905, a total of 573 reductions
in the number of generated random variates from N(0,l) out
of a total 3000. In another experiment, more reduction

was achieved as Rx was decreased.

Systematic Sampling

Systematic sampling can be implemented using the
following steps:
1. Determine the cumulative function for f(x) .
Divide its range into N intervals, each of
width 1/N . N should be between 5 and 50.
2, Generate n sets of N random numbers, each
from U(0,1) . Denote them by R

117 Ry 7

R21,...,R2N : Rnl,...,RnN .

3. Allocate the generated random numbers into the
corresponding intervals using

R, 5
Ry, = J

ij __N_"—' izl,...,n

j=1,...,N (4.

18)
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4. Determine Xij corresponding to each R;j from

i3
Rij = _i f(x)dx (4.19)
5. Estimate the integral I wusing (2.23) and (2.24).
6. Estimate the sample variance using (2.25).
Example. Suppose it is required to estimate the value

of the integral

1 X -1
I = é --e——-i— dx (4.20)

using Monte Carlo techniques. In fact, the value of this

integral can be easily calculated, but it will be used to

demonstrate how to implement several VRTs. Let the

integrand of (4.20) be

X

The crude Monte Carlo procedure to estimate I requires
the generation of N random numbers from U(0,1) , then
determination of the values of f(x) at these points.
That is because the range of integration runs between 0
and 1. If the number of generated random numbers N is
small, crude Monte Carlo will give an inaccurate estimate

of I with a large variance of sample. However, one can

Iv-11
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improve the accuracy of estimation and reduce the sample
variance by using one of the VRTs. Systematic sampling

can be applied to estimate I as follows:

1. Divide the range of integration (0-1]) to N
intervals each of width .25

2. Generate n random numbers from U(0,1) for
each interval, then allocate them inside that
interval using (4.18). Determine the value of
f(x) at this point.

3. The estimator of I is calculated using (2.23)
and (2.24).

4. The sample variance 82 is calculated using

(2.25).

A computer program in FORTRAN V was written to estimate
the integral I given by (4.20) using crude Monte Carlo,
systematic sampling and stratified sampling. The purpose
of that is to demonstrate the implementation of the three
techniques and to compare the results when the same sample
size and the same random number stream are used. The
results for the three methods are attached, along with the
program code, at Appendix D. These results will be dis-

cussed in the next section.

Stratified Sampling

Stratified sampling can be implemented using the

s following steps:

IV-12
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1. Divide the range of the variable being simulated

into N intervals of length Ll""'L . N

N
should be between 5 and 50. Lj can be selected
so that the variation of integrand is approximately
the same inside the interval j .
2., Determine Pj , the probability that x will
be in L. as

1

p. = [ fx)ax , j=1,...,N (4.22)
xeLj

3. Determine the number of sample values, nj ’
j=1 , N taken from each interval using (2.34)
and (2.35).
- 4, For each interval Jj , select a set of nj random
numbers Rij , i=1 , nj from U(0,1) . Allocate
these random numbers in the specific interval j
and calculate the corresponding values of X..

1]
using

j=1 i3
+ p =/ £ (x) dx (4.23)

5. Estimate I using (2.30) and (2.31).

6. Calculate 82 using (2.32).

Example. It is required to estimate the value of the

integral given by (4.20) using stratified sampling. The

e IV-13




A above steps can be used to implement the technique as

S follows.
'Ei 1. The range of integration (0-1) was divided into
- N = 4 intervals.

:; 2. The length of each interval L. was chosen to

% have the same variation of f(x) 1in each interval.
S The intervals turn out to be (0-.36) , (.36-.62) ,
- (.62-.83) , (.83-1) .
5?; 3. For each interval, four random numbers were
lil generated from U(0,1) and allocated inside the
ii interval. The value of £f(x) corresponding to
E? each random number was calculated.
fh 4. The estimator of I inside each interval 3 was
‘Ei {:5 calculated using (2.31).
;3 5. The final estimator of I was calculated using
U}

: (2.30).
?; 6. The variance of estimation was calculated using
(2.32).
. The computer program in Appendix D performs these steps
;;; to implement stratified sampling. However, it also per-
i;ﬁ forms systematic sampling and crude Monte Carlo as stated
g? before. Results for the three methods are also given in
'E: Appendix D. From these results, it is clear that the
ii stratified sampling method gives the best estimation among
.? the three methods. The estimator of I (= .4153) is the
2
?:;3 1v-14
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nearest to the exact value of I (= .418) . Also, the

method gives the lowest sample variance (.0174) . 1In fact,
the estimations of I given by crude Monte Carlo, systematic
sampling and stratified sampling were .3834, .4396, .4153 and
the sample variances were .1198, .0220, .0174, respectively.
These results give an idea about the efficiency of each of
the three methods, taking into consideration the additional

computational effort done in the last two methods.

Expected Value

When expected value technique is applicable to a certain
simulation problem, the procedure to implement the techniacue
will differ according to the role of the random process,
which can be replaced by its expected value, in the overall
simulation. In fact, one of the following cases will fit
the problem under consideration. For each possible case,
guidelines to use the technique are given.

1. If the process to be replaced by its expected

value is a selection of a random variable y from

a density function f£f(y) , set

y = E [f(y)] (4.24)

and continue the simulation.

2, 1If the process represents a decision between

terminating or not terminating the history, let

IV-15




- - « v R A R

T T e, e e W T TR T YTTTEYR M - '-"‘ M
ARG Al A L ol el i DA S AN LSRN NG A e R E AR AR S N A A ‘ AT -"ﬁ"""jﬂ
A
.
Y
.

‘the history continue in simulation carrying a

weight Woe given by

W

W = W « P (4.25)

where Ps is the probability of survival of the

ld and Wnew

are the weights of the history before and after

history at the decision point and W,

the replaced random process. For any parameter
being calculated, an estimate for each history can

be made by summing the contributions from that

history; that is,

“ R
~ . = V. . .
I, ; “13 g(xij) (4.26)
where Wij is the weight of the ith history at
the time of the jth contribution to the final
result. The final estimate for the parameter is
given by
~ 1 ?
I = —_ I (4.27)
N j=1 1
and the sample variance is given by
s?2 = N If 12 - 1% (4.28)
N-1 "N .& i *
e i=1
E: AP
.
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When the contributions to a parameter from a

—~

N history come from the terminations in the replaced
o process, the loss of weight at each step is the

o

tﬁ proper measure for the expected termination; in
O this case Ii for the ith history will be

;f

A

¢ ~

e _ - .

- I, = g wold’ij (1-P,) g(xij) (4.29)
S

ﬁ: where Jj denotes the jth occurrence of the

1{1 ~

ﬁ' replaced event in the ith history. I and 52

VS, are calculated as before using (4.27) and (4.28).
Ei 3. If the replaced process represents a decision

- between two branch points, the history must be

.§; ﬁﬂ? split and followed from this point as two separate
P

fj histories, one at each branch carrying a weight
:‘:.,

. equal to the branching probability. To estimate
1‘ I and 82 , formulas identical to (4.26), (4.27)
“ .

i; and (4.28) can be used where the contributions

v from all daughter histories are considered.

o

EI Statistical Estimation

f; Statistical estimation can be implemented when

al

‘ applicable using the following steps.

7

o 1. Identify the stochastic process in the simulation
o.+;
5)

% which has the desired final outcome as one possible
£
1. alternative.

i .

.\-' --"

N : .
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When the process of interest is encountered in
simulating a history, score the following

contribution
> >
g(X,Y.) £(Y/X)

where gGE,y) is the function being integrated

by the simulation, Yf is the desired final outcome
of the process, X denotes the current state of
all other variables in the system, and f(Yf/ﬁ) is
the conditional probability of obtaining outcome

Ye given X as the status of the system.

The simulation should not be modified, but the
stochastic process of interest is modeled by
selecting Y from (y/X) .

If the outcome of step 3 is Yf , no additional
scoring is to be made. The contribution of ‘this
step remains g(§i,Yf) f(Yf/ii) .

Estimate the total contribution of history i , as

H >

= % g(X; 4, Ye) £(Ye/X;) (4.30)

where j runs over all occurrences of the particu-

lar process being estimated in the ith history.
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6. The estimation of I and 52 can be calculated

using (4.27) and (4.28).

Correlated Sampling

If there are two similar simulations involving only

a single random variable and it is desired to estimate

A = Il - 12 (4.31)

where
I, = _i g, (x) £, (x)ax (4.32)
I, = _i g, (¥) £, (y)dy (4.33)

- then correlated sampling can be implemented in this case
as follows.
l. Generate N random numbers Rl""'RN from U(0,1) .

2. Generate a random sample Xl,...,X from fl(x)

N

and another sample of the same size Yl,Y revesY

2 N
from fz(y) using
Xy Y
R, = i £,(x)dx = _i f£,(y)dy
i=1,...N (4.34)

Estimate

.........................
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4 A 1 N
A= 5 I (4.35)
i=1
where
4. Estimate the sample variance using
s = Nk ’f 2% - 8%y (4.37)
N-1 Ni=1 i .

Notice that the variance will be greatly reduced
if fl(x) is similar to fz(y) and gl(x) is

553 similar to gz(y) , that is because the two
random samples xl""’xN and Yl,...,YN will
be highly correlated.

Control Variates

Control variates technigque can be implemented using
the following steps to evaluate the integral I=fg(x)f(x)dx .
1. Express the parameter(s) to be estimated in
integral form.
2. Obtain an approximate function h(x) for each
parameter I . The expected value of 8 of
h(x) should be known.

3. Estimate the integral Il '

Iv-20
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I, = [ [9(x) - h(x)] £(x)dx (4.38)
oo
as
~ 1 N
I, = § .l [9x)) - nhx)] (4.39)
i=1
where xl,...,xN are a random sample generated
from £(x) .
4. Calculate the final estimator of I as
I = ¢+ I1 (4.40)
5. The variance of estimation can be calculated as
a
2 _ N 1 _ 2 _ 22
s* = 1§ izllg(xi) h(x))] 7} (4.41)
Example. The above steps were used to estimate the
value of the integral given by (4.20). Again, the same
integral is used to compare different techniques. The
approximate function was chosen to be
hix) = x (4.42)

which has a mean value .5 at the range of integration

(0-1) . The steps were coded in a computer program written

Iv-21
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1

;u - in FORTRAN V which is attached, with the results, in
5; Appendix E. This method estimated the integral I given
. by (4.20) as .4255 with sample variance .0016 when the sample
size was 20. It should be noted that the accuracy of esti-

mation depends on how far the approximate function h(x)

- b
A e,

‘ mimics £(x) .
:
= Antithetic Variates
o To implement this technique, one should find two
ﬁ: ne3atively correlated estimators for the parameter of
.z interest. A linear combination of these two estimators
f can form a third estimator which would have a smaller
.. variance than the variance of either of the original
4
( . . . . .
. fﬁ‘ estimators. Steps to implement antithetic variates
35’ technique can be as follows:
1. Put the parameter to be estimated in integral

= form as
%‘
29
:: o0
'~ I = [ g(x) £f(x)dx (4.43)

= OO
ﬁi
}ﬁ 2. Select a value for the parameter o between 0,l.
- 3. Generate a set of N random numbers from U(0,1) .
L
;: denote them Rl'Rz""'RN .
e 4. For each R, , calculate two negatively correlated
- i
:3 random variates xi ' X; . This can be accom-
- X plished using
e T

iv-22
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~ . 1
T a R, = [ f(x)dx (4.44)
- l —w

E X’

- i

- 1 -aR, = [ f(x)dx (4.45)
-': 1 —

EI 5. Calculate the values of the new random variable,
-
_‘ 8; = a g(Xy) + (l~a)g(X]) , i=1l,...,N (4.46)
[ 6. Estimate I using

N n N .
3 8 = x I 6 (4.47)
' i=1
N
{
L 1%? 7. The variance of estimation is
s2 - N1 Y 32_ 32, (4.48
- N-T '® L. % +48)
i=1
. Notice that o can be simply taken egual to 1/2 or an
. iterative process can be used to determine the optimum
value of a which gives the minimum sample variance.
7
- Example. Considering again the evaluation of the

-
-
a
)
.
[
‘Y

integral I given by (4.20), one can use the above steps

to implement antithetic variates technique as follows:

Iv-23
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Y .
b ’ 1 x
[ 1. 1 = [ &1 ax (4.49)
. e -1
i~ 0
= X
g _ e -1
o 2. g(x) = -1 (4.50)
~
'ﬁs 3. Leta = 1/2 initially
L 4. Generate R, from U(0,1)
N
-_- 5. Xl = Ri (4.51)
._':: 6. X, = l_Ri (4.52)
o
{ AR~ 7 8 = a g(X,) + (1-a) g(X:) (4.53)
N RS i EARS] -
o 8. Repeat steps 4 through 7 for N times
| ]
5?: 9. Estimate I as
o
e n 1 N oA
o 6 = 5 16, (4.54)
, . i
- i=1
f%; The above steps were coded in a computer program
S
L which is attached in Appendix F. The value of o was
:ﬁ changed in the range (.5-.95). The results are attached,
~
> also in Appendix F. From these results the accuracy of
estimation appeared to be sensitive to the change of a
S
.::f
l:’
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Among the chosen values of a , the initial value,

a =1/2 , gives the minimum variance equal to .0004 which
indicates that this method can achieve a great gain in the
efficiency of estimation when compared with crude Monte
Carlo with small additional computational effort. Notice
that minimum variance is the criteria of accuracy of

estimation in this case since the estimates resulting

from using antithetic variates approach are unbiased.
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V. Application of Variance Reduction Techniques

The earliest applications of VRTs were found in particle
and radiation transport problems where very low probabilities
are involved (20) during the 1940s and 1950s. 1In those days,
the objective of applying VRTs was to compensate for the low
speeds of computers which were frustrating when dealing with
such problems (28). In the past two decades, computer speed
has increased tremendously. This decreased the attention
given to the development and appiication of VRTs for a while,
then an increased demand for applying VRTs appeared due to
the increasing complexity of problem simulations which would
consume a great amount of computer time or result in reduced
estimation accuracy if none of the VRTs were employed.

Recently, VRTs have found a wide appiication in almost
all simulation areas: inventory simulation (6), queuing models
simulation (10), network analysis (8), reliability studies,
stationary (13) and non-stationary (14) simulation models,
population growth, and simulation of Markov process (12).

In this chapter, examples of these applications in the fields
of inventory simulation, queuing simulation and computer
performance measurement are presented. The aim of presenting
these examples is to show how VRTs can be applied in such

fields.
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Application of Variance Reduction Technique for

Inventory Simulation

Stockout in inventory control systems should be rare
events. Therefore, variance reduction is an important
experimental design issue to estimate accurately the mean
values of those rare events in a simulation model.

Many VRTs are applicable to inventory models. Control
variates, antithetic variates and conditional Monte Carlo
methods are among those suitable techniques (6).

Ehrhardt (6) studied the use of each of those three
techniques to reduce the variance in estimating the para-
meters of an inventory model. He combined two of them to
achieve more reduction in variance of estimation. He
concluded that conditional Monte Carlo is the best sole
technique in reducing the variance when applied to the
underlying inventory model. He also concluded that combin-
ing conditional Monte Carlo with either of the two other
techniques would improve the variance reduction attained by
the sole technique. Those conclusions were drawn from

experimentation with the following inventory model.

The Inventory Model. A multi-item inventory system which

is observable at discrete intervals of time was studied.
Each of its items has an (iid) demand from one period to
another. An order, when placed, is delivered after a fixed
number of time periods L , and any unfulfilled demand in
a period is backlogged to be satisfied later.

V-2
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c: The inventory cost in the model consists of a fixed
set up cost per order k , a holding cost per unit per

period h , and a penalty cost per backlogged unit per

period P .

Only partial knowledge of the demand distribution is '
available to the decision maker. Two policies, containing
different degrees of information, were considered. Each of

the two policies is of (s,S) type where s is the lower

inventory replenishment level, and S is the upper inventory
level.

The first policy, called the Empirical Normal Approxi-
. mation policy, requires the knowledge of only the mean and
the variance of the, assumed, normally distributed demand,
M and o2 . This policy can also be called the constant

policy since s and § are considered constant in this

case. In fact, expected values of the operating character-

igtics of the system can be calculated directly without
simulation in this case using an analytical approach, but

the author (6) used simulation only to compare this policy

[P POV

with the second policy.

e

The second policy considered is called Statistical
Normal Approximation policy. In this case, only sample
statistics of demand are available. The decision maker has
to revise his policy periodically since he would not know

that the demand distribution is stationary. During each

revision interval, the sample mean and the variance of

R I DIE W e
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demand are computed. These statistics are substituted for
the actual mean and variance of the demand distribution to
give an (s,S8) policy to be used in the next interval where
new statistics are collected. It was required to develop
efficient simulation technigues to evaluate that policy.

The simulation experiment was designed to estimate mean
values of the following five operating characteristics of the
system.

1. Holding Quantity: the average number of units

on hand at the end of a period.

2. Stockout Quantity: the average number of units

backlogged at the end of a period.

3. Stockout Frequency: the fraction of periods in

which demand is backlogged.

4. Ordering Frequency: the fraction of periods in

which an order is placed.

5. Total Cost: the average total cost per period.

The objective of the study was to identify the suitable VRTs
thét yield low variance estimate of the expected values of
the five operating characteristics for a given cost of

computation.

Simulation Techniques. To estimate the expected values

of the five operating characteristics, four simulation
techniques were used; crude Monte Carlo (direct simulation),
antithetic sampling, control variates and conditional Monte

Carlo. When using each of these techniques, the vector

T Tt b IR o, S
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X = {xi, i=1,2,...,N} represents the stochastic process of
output of an N-period simulation of an operating character-
istic. For any of the five operating characteristics, the

expected value will be

u = limit = J X, (5.1)

o)

Using the simulation method, j will estimate p as My

for N periods.

Direct Simulation (Method 1l). Using crude Monte Carlo

the actual realizations are collected as simulated and

is estimated as
1
u = 5 .1 X (5.2)

the variance of this statistic is

(1) N 1 N N
Var u = = Jvarx; +—= 1 ] . Cov(X,,X.)  (5.3)
N N2 j=1 N2 i=1 j=1,J#1 )

Antithetic Sampling (Method 2). To apply the antithetic

variates in this study, direct simulation was applied to the
first N/2 periods, then the simulation was restarted where
the antithetic variates were used to the second N/2 periods.
That is, if the set U of uniform deviates, {Ui, i=1,2,...,N/2}
is used to generate the first N/2 demands, then

{(1-U1), i=1,2,...,N/2} is the set of deviates used to

V=5
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generate the second N/2 demands. The estimate of is

1 Nfz
H = = X, + X} (5.4)
N Nij=y +002

where x} is the operating characteristic output when using

the antithetic stream of deviates. The variance is given by

(2) 2 N/2 .
var uN = ;? &y [var x; + Cov(xi,xi)]
2 N/2 N/2
+ = 7 ) [Covx;,x.) + Cov(x;,x})] (5.5)
N? i=1 j=1 ] ]

i)

To achieve a reduction of the variance, the covariance terms

in (5.5) should be sufficiently negative to make Varéz) <

Varél) Which is not always true.

Control Variates (Methods 3a and 3b). To apply control

variates approach, an approximate model should be simulated
along with the model of interest. For a given operating

characteristic x* = {x;, i=1,...N} denotes the stochastic

process of output for the approximate model simulation, and

% (5.6)

He2Z

1
® = -
u Lin N

N+

*
j=1 1

is the expected value of this output. u* is assumed to be

known exactly. The control variates approach estimates u as

R |
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(3) 1 N
" = = Z T. (5.7)
N N = 1
where
Pi = x; - B(xz - u¥*) (5.8)
(2)
and B is a constant. The variance of u is given by
N
(3) N ,
= — K - *
Var uN - izl [var x; + B* Var x¥ - 28 Cov(xi,xi)]
1 N N
+ = ) )) [cov(ix.,x.) + B? Cov(x*,x*)
N? i=1 j=1,3#i 173 i’
- B Cov(x;,xj) - B Cov(xi,xg)] (5.9)

This variance depends on the chosen value of the constant g .
It is difficult to determine the value of 8 that will
minimize Var u(3) . The study used two common approaches
for the choice gf 8 . Method 3a uses the regression
estimate of B* while B is set to be one in Method 3b.

In both cases, the expected values of the operating charac-
teristics from the Empirical Normal Approximation are control

variates for the statistical policy simulation.

V=7
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Conditional Monte Carlo (Methods 4a, 4b, 4c and 44).

To apply the conditional Monte Carlo technique to the
considered inventory model, the following notationg have

been used. Let w = {w,, i=l,...,N} be a secuence of

ll
vectors specifying the state of the simulation at each
period. Let v = {vi, i=1,...,N} be a sequence of condi-

tional expectations

v, = E(xi/wi) (5.10)

The estimate of u is given in this case by

(4) 1 ?
M = = v (5.11) ,
N N oj=op 2
with a variance of estimation given by
(4) 1 N 1 N N
var u = = ] vVarv, + = ] )) Cov(v,,v.)(5.12)
N N?  i=1 N2 i=1 j=1,i#j 3

The estimate of u and the variance given by (5.11) and
(5.12) can be used for each of the five operating character-
istics considering the following notations. Let D and
D*(L+1) be the demand in one period and in (L+l) periods.
Let Y, denote inventory on hand and on order in period i
and let s; be the value of reorder policy in period i .

Finally, let (a+) be the max of a and 0 . Using those

notations, the conditional expectation for the holding

v-8
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quantity is

(1 _ _ e (L41) 4+
vy = E[(Yi D* ) ]

and for stockout guantity

(2 _ (L+1) +
Vs = E[D* - Y) ]

for stockout frequency

vi3 = pr (px(I*D)

i > ¥,)

for ordering frequency
v
i

= Pr (D > (Yi - si))

and for total cost

vés) = h vil) +pvi? s xv

i

The functions given by (5.13) through (5.16) were calculated
before simulation for a feasible range of arguments and then

used appropriately in each simulation period as the condi-

tional estimates.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

Four variations of conditional Monte Carlo were examined

in the study (6):

P




Dt

AT .

Method 4a: Conditional statistics are collected for all
operating characteristics.

Method 4b: Conditional statistics are collected for all
operating characteristics except ordering
frequency which is simulated directly.

Method 4c: Conditional statistics are collected for
operating characteristics except holding
gquantity which is simulated directly.

Method 4d: Conditional statistics are collected for
only stockout gquantity and stockout

frequency.

In each of the above cases, total cost is taken as the
weighted sum of the other characteristics.

Combined Methods (Methods 5a and 5b). When the results

of Methods 1 through 4 were available, the author combined

~atithetic sampling and conditional Monte Carlo to get two

mixed methods:
Method 5a: Method 4a with antithetic sampling

Method 5b: Method 4b with antithetic sampling

Summary of the Results

When simulation was performed for all mentioned methods,
variance reductions gained by applying different VRTs com-
pared with crude Monte Carlo technique were calculated.
Antithetic sampling and control variates were found to yield

meager results, while conditional Monte Carlo technigue gave

v-10




i superior performance. It reduced the variance of stockout
guantity estimates by factors ranging from 1.0 to 7.6 for
the statistical policy and from 5.4 to 740 for the constant
policy. When conditional Monte Carlo was combined with
antithetic variates method, the corresponding variance reduc-
tion ranges are 1.4 to 12 and 3.8 to 460, respectively. The
power of the applied VRTs was also significant for estimates
of the aggregate total cost. Specifically, conditional
Monte Carlo reduced the variance of total cost by factors
ranging from 2.1 to 14 for the statistical policy and from
2.3 to 480 for constant policy. When combined with antithetic
sampling, the corresponding variance reduction ranges are
4.8 to 20 and 2.0 to 1300, respectively.

I The author pointed out that the cost of computation was

. nearly the same for all variance reduction schemes, because

{ the computational effort was dominated by updating the state

| of the system and by output analysis in this study. This

means that the above given variance reduction factors can be

a direct measure of the efficiency of corresponding VRT

relative to crude Monte Carlo.

B PO

Application of VRTs in Queuing Problems

Another example of the fields of application of VRTs is
the simulation of queuing problems. Many studies have been

accomplished concerning the application of VRTs in this field.

One of these studies (10) was done by Gaver where different : 5

ot b

(f, Monte Carlo techniques were discussed and then applied to
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queuing examples. The bases for straightforward Monte Carlo,

antithetic variables, stratification, control variates, and

concomitant variables methods were summarized in the paper
The basis for the last method is worth mentioning since it
has not been discussed before.

Concomitant Variables

Suppose that realizations of the random variables

X (inter-arrival times, service times, etc.) are used to

create the realization of W (waiting time of an individual

in the queue), where

Commonly, W(J) and x{J) are monotonically related and

then
Cov [w"’,xi”] = c
where cy is either positive or negative. In fact,
elx{371 = Elx,]
i i
since X is a given specified input. When sampling only
k times, the realized X -values will deviate from their

means. Then a linear correction to simple average will be

needed

v-12
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(5.19)
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W+
i

[N L]

E[w]c Y, (xi - E[Xi]) (5.21)

1 1
where Y; can be estimated in terms of the covariance of
W and xi , and the resulting estimate is unbiased and

consistent asymptotically as the sample size increases.

Queuing Examples ' '

The VRTs mentioned before were well illustrated by

consideration of a very simple queuing problem. The waiting
time, W of the n-th arrival to a single-server facility

can be written as

w, = max Cw,_p - B, *+ S .4 0] (5.22)

where An is the inter-arrival period elapsing between the

(n-1)th and n-th arrivals to the queue, and S is the

service time of the n-th customer. If {An} and {Sn} are

mutually independent seqguences of (iid) random variables : i

]

with E[An] E[A] > E[Sn] = E[8] , and if other moments

S

oo

- exist as required, then a stationary distribution for Wo

C e

exists as n +» » ., The behavior of the system depends on
the relation between E[A] and E[S8] ; also, it depends on
the number of arrivals n . The following cases were dis-

cussed by Gaver (10).




1. when E[A] is little larger than E[S] , the
gueue tends to be long aeveloping "heavy traffic”
situation. 1In this case, approximate solution of
the system based on diffusion equation solution
is available.

2. When E[A] < E[s] the queue tends to grow and

little information is available. In this case, |

(5.22) will be simply
- A + 8, (5.23)

where w; will be approximately normal if An
and Sn have finite variances. The mean of W,

in this case is \

E[wn] = (n-1)(E[s] - E[A]) , w, =0 (5.24)

[

For small and moderate values of n , the variances
of A and S may not be finite, then one would

have to use simulation to estimate E[wnJ .

The author (10) applied various VRTs to estimate E[wn] for

selected values of n , focusing on control variates and

© e RN D St ‘.ﬂ, Iadl %20

concomitant variables approaches. The following numerical
example was used to display the effect of selected VRTs on

the accuracy of estimation.
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Numerical Example. In a single server queuing system,

service times are taken to be exponentially distributed
(with mean p~1 = 10/q) and the interarrival times of
customers are taken to be constant (regular arrivals) or
exponentially distributed (poisson fashion arrivals), with
unity mean in both cases.

In spite of the apparent simplicity of such a systenm,
its transient response is not easily characterized mathemat-
ically. Simulation should be used to estimate the parameters
of the system or, alternatively, the diffusion approximation
would be used. Results of applying the selected VRTs and
diffusion approximation are tabulated in Tables 5.1 and 5.2
for the regular and poisson arrival cases. Discussion of the
results in those tables is given below.

Discussion of Results

Rows (1) and (2) of Tables 5.1 and 5.2 show the
results obtained when 25 independent realizations were
averaged to estimate E[wn] . The same random numbers were
used to apply antithetic variates approach to estimate
Gh(a) and its variance, rows (3) and (4). Comparison of
variances in rows (2) and (4) indicates that antithetic
variates approach has produced an improvement even after
considering the additional computational effort when simu-
lating a total of 50 realizations. The improvement in
Table 5.2 is smaller than that in Table 5.1 due to the added

variability contributed by the random arrivals.

V=15




The simple control variable technique, rows (6) and (7),
gave better improvement for large values of n than anti-
thetic variates approach. This appears clearly in Table 5.2.
Rows (8) and (9) display the effect of adjusting the straight-
forward estimate in accordance with the concomitant variable
that equals the sum of the first n service times in
Table 5.1, while Table 5.2 considers both service and arrival
times as concomitant variables. The behavior of the concomitant
variables technique was similar to the control variables and
antithetic variables. Rows (9) and (10) display the results
of applying concomitant variables to the components of the
antithetic estimate of (3) and (4). Results in this case are
better than any of the above cases. Rows (12) and (13)
indicate the value of regression-adjusted control procedure
where regression was used to determine the value of Qo

used in the modified estimator of the mean waiting time.
Efw] = &+ B (#* ~ E[w*]) (5.25)

Row (4) shows the estimation of the mean of v when
diffusion approximation was used. The results in row (14)
agree quite closely with control variables, row (6), and
regression-adjusted estimates, rows (8) and (10), for large

n .
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Application of VRTs in Computer System Performance Measurement

Another example of fields of applications of VRTs is
computer system performance measurement. A study in this
field (7) was performed where the antithetic variates approach
was employed to reduce the variance of estimation.

Performance evaluation of a computer system is very
important in both design and utilization phases. 1In the
second case, the most important and difficult problem in the
design of a measurement experiment is the determination of its
time duration since the increase of this duration increases
the cost of the experiment. On the other hand, the time
duration of the measurement experiment should be long enough
to yield a good estimate of the unknown parameters. This
contradiction is similar to that which arises in the simulation
problems where the sample size utilized should be large enough
to obtain a good estimate of the unknown population means
and, at the same time, this sample size should be small enough
to keep the simulation cost feasible.

The above problem was solved in simulation by utilization
of the suitable VRTs which, when applicable, give the required
precision using a small sample size. This fact encourages
the use of such techniques in the field of computer performance
measurement. To examine the profitability of applying VRT
in this field, an experiment with an existing synthetic job
generator (described later) for the computer system was

designed and performed using antithetic variates as a VRT.

V=19
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The Synthetic Job Generator

The synthetic job generator used in this experiment was
designed to model the I/0 (Input/Output) behavior of user
jobs in a CDC 6400 computer system. The values of the
parameters of this generator were measured by employing a

trace technique which records a complete history of CPU

(central processing unit) containing the time switched between

user jobs and a history of the two disks. The synthetic job
generator was designed according to the information obtained
from tracing the real system for a period of eight hours of
normal production processing. Then the designed synthetic

job generator was used to perform the following experiment.

The Experiment. A single performance measure for the

system, namely the mean job elapsed time (i.e., the mean
time a job generated by the synthetic job generator spends
in the system) was used. The population is composed of the
elapsed times of all possible jobs the generator may produce.
Its mean is to be estimated using a small sample size. Let
Eh be the mean of a sample of size n . If many samples
of the same size were drawn from the population, then Eh
will be a random variable with a mean denoted by E(Eh) and
a variance denoted by Var(Eﬁ) . 7To use the method of
antithetic variates, two samples of N/2 jobs each are used.
Let E&/z be the mean of the first, and Eﬁ/z be the mean
of the second. The antithetic estimator of the population

mean ig

v=-20




+ (1 -aq) t°

n/2 ns2 * 0 <acx<l (5.26)

= ot

t
=R

and the variance of E: is given by

— 2 — 2 -—
Var(t;) o Var(tn/z) + (1 - a) Var(tn/z)

+

20(1l = o) Cov(tn/z,t;/z) (5.27)

To establish the negative correlation between the random
variable realizations in the two samples, the random variable
values in the first sample is generated using a sequence of
random numbers Rl,Rz,...,R.n/2 from U(0,1) and those of

the second sample are generated using (l-Rl),(l-Rz),...(l-RN) .
In this experiment, n was chosen to be 80 jobs, 40 jobs

for each sample, and a was chosen to be 1/2. When the
obtained results were analyzed, the authors drew the following

conclusions.

Conclusions. The authors concluded that their experiment

to demonstrate the feasibility of applying antithetic variates
method was not completely successful, but they also concluded
that this lack of success was due to the instability of the
devised synthetic job generator they used. It is the opinion
of the authors that stochastic job generators can be designed
which have all the properties required to make the method

of antithetic variables very effective in reducing the

V=21
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variance of an estimator and, hence, for a given confidence
interval and a given confidence level, in decreasing the
minimum duration of a measurement run. The authors also
stated that better results would have been obtained if values

less than 1/2 had been chosen for a .

Comment. It is clear from the authors' conclusions
that the application of the antithetic variates method in
their experiment was not completely successful for the
reasons given above. It would be better if they tried to
use other values of a to minimize the variance for a given
status of the experiment. They could also have obtained
better results if their synthetic job generator was more
stable and had the features suitable for applying antithetic
variates approach. Another possibility would be to try other

applicable VRTs.
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VI. Conclusions and Recommendations

VRTs were investigated, clarified, contrasted and
illustrated in the former chapters. From the extensive
literature review and the computed numerical examples, it
was found that none of the known VRTs is generally superior
to the others. In other words, there is no single technique
which is the most suitable technique for every simulation
problem. The condensed table (Table 3.2) of VRTs' charac-
teristics identified the fields of application of each
technique. It is clear that various techniques can be
applied to the same problem in certain fields. 1In this case,
one can compare the efficiency of various techniques. The
most efficient technique is the one which utilizes most
of the available information about the underlying simulation
process and gives the most accurate estimation of the para-
meters (minimizes the sample variance) with minimum computa-
tional effort. In many cases, these three extreme objectives
cannot be achieved simultaneously by one of the VRTs. Only
the involved analyst can weigh them to choose the optimal
technique suitable for his simulation problem, objectives,
and available resources. It is not practical that an analyst,
handling a real world problem, will apply several applicable
VRTs to his problem and then compare them to choose the
optimal technique. A study like this and other studies
devoted to the application of VRTs to the specific kinds of

vVi-1
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problems can help the analyst select a profitable VRT. The

degree of profitability will then depend on how successfully

the technique is implemented.

A possible useful extension of this work is an organized
collection of real world problems in different fields of

applications.

vI-2




Bibliography

1. Brown, Mark, Herbert Solomon, and Michael A. Stephens.
*variance Reduction in Monte Carlo Simulation," Technical
Report TR-274, Stanford University, California (June 1979).

2. Clark, Charles E. "“"Importance Sampling in Monte Carlo
Analysis," Operations Research (Sep-Oct 1961).

3. Cochran, William G. Sampling Techniques. New York:
John Wiley and Sons, Inc., 1953.

4. Cochran, William G. and Gertrude M. Cox. Experimental
Design (Second Edition). WNew York: John Wiley and Sons,
Tnc.. 1957. ’

5. Eakle, Jan D. "Regenerative Simulation Using Internal
Controls, "™ PhD Dissertation, The University of Texas,
Austin TX, Dec 1982.

6. Ehrhardt, Richard. "Variance Reduction Techniques for an
Inventory Simulation," Technicul Report TR-4, Yale
University, (1975).

7. Ferrari, Domenico, David 8. Lindsay and Patricia M. Peak.
"vVariance Reduction Techniques in Computer System
Performance Measurement,” International Computer Sympo-
sium, Amsterdam: North-Holland Publishing Co. (1975).

8. Fishman, George S. "Variance Reduction in the Simulation
- of Stochastic Activity Networks," Technical Report
TR-8217, Curriculum in Operations Research and Systems |
Analysis, University of North Carolina, Chapel Hill (1983).

9. Fishman, George S. and Baosheng D. Huang. "Antithetic
Variates Revisited," Technical Report TR-80-4, University
of North Carolina, Chapel Hill (1980).

10. Gaver, Donald P., Jr. "Statistical Method for Improving
Simulation Efficiency," Management Sciences Research
Report No. 169. Carnegie-Mellon University, Pittsburgh ;
PA (Aug 1969).

11. Hammersley, J.M. and D.C. Handscomb, Monte Carlo Methods.
London: Methuen and Co. Ltd., 1964.

12. Heidelberger, Philip, "Variance Reduction Techniques
for the Simulation of Markov Processes, I. Multiple
Estimates," IBM Journal of Research and Development,
24(5) (sep 1980).

i BIB-1

——— - oy - - e ——————— -




i 1 13.

14.

15,

ie6.

17.

18.

19.

20.

21.

22.

23.

----- . "Variance Reduction Techniques for the

Simulation of Markov Processes, II. Matrix Iterative
Methods," Technical Report TR-44, Stanford University,
Department of Operations Research, Stanford CA (1978).

----- . "Variance Reduction Technigues for the
Simulation of Markov Processes, III. Increasing the
Frequency of Regenerations," Technical Report TR-45,
Stanford University, Department of Operations Research,
Stanford CA (1978).

Heidelberger, Philip and Donald L. Iglehart. "Comparing
Stochastic Systems Using Regenerative Simulation with
Common Random Numbers," Technical Report TR-47, Stanford
University, Department of Operations Resea ch, Stanford
CA (1978).

Hillier, Frederick S. and Gerald J. Lieberman. Intro-
duction to Operations Research (Third Edition). San
Francisco: Holden-Day, Inc, 1980.

Iglehart, Donald L. "“Simulating Stable Stochastic
Systems, VI. Quantile Estimation," Journal of the ACM,
23(2) (1976) pp. 347-360.

Iglehart, Donald L. and Peter A.W. Lewis. "“Variance
Reduction for Regenerative Simulation, Internal Control
and Stratified Sampling for Queues," Technical Report
No. 86-22, Control Analysis Corporation, Palo Alto CaA
(1976).

Kahn, H. "Applications of Monte Carlo." The Rand
Corporation Report RM-1237-AECU, Santa Monica CA
(Apr 1954).

Kahn, H. "Use of Different Monte Carlo Sampling
Techniques." Symposium on Monte Carlo Methods, edited
by H.A. Meyer. New York: John Wiley and Sons, Inc.,
1956.

Kahn, H. and A.W. Marshall. "Methods of Reducing Sample

Size in Monte Carlo Computation,” Operations Research, 15

(Sep-Oct 1953).

Loulou, Richard and Thomas Beale. "A Comparison of
Variance Reducing Techniques in PERT Simulations."
Information, 3 (Oct 1976).

Lux, I. "Systematic Study of Some Standard Variance
Reduction Techniques," Nuclear Science and Engineering,
67 (1978).

BIB~2




.l _.;L:;.A___A [ S

2 o

24,

25,

26.

27.

28.

29.

30.

McGrath, Elgie J. and David C. Irving. "Techniques
for Efficient Monte Carlo Simulation. Volume III:
Variance Reduction," Science Applications, Inc.,
distributed by National Technical Information Service,
Springfield VA (March 1973).

Mulvery, John M. "Multivariate Stratified Sampling by
Optimization," Management Science, 29(6) (June 1983).

Rice, Roy E. and Altert H. Moore. "A Monte Carlo
Technique for Estimating Lower Confidence Limits on
System Reliability Using Pass-Fail Data," IEEE Trans-
actions on Reliability, R-32(3) (Oct 1983).

Scharl, Ronny A. "“The Antithetic Variates as a Variance
Reduction Technique," American Institute for Decision
Sciences Eleventh Annual Meeting, New Orleans LA

(Nov 1979).

Shannon, Robert E. "Simulation: A Survey with Research
Suggestions,” AIIE Transactions, 7(3) (Sep 1975).

Snedecor, George W. and William G. Cochran. Statistical

Methods (Sixth Edition). BAmes, Iowa: Iowa State
University Press, 1969.

Spanier, Jerome and Ely M. Gelbard. Monte Carlo
Principle and Neutron Transport Problems. Menlo Park
CA: Addison-Wesley, 1969.

BIB-3




a..

"y © oThe o

APPENDIY A

Computer Program Listing with the
Results for the Importance Sampling Example

S L

(: (] FZ’

KES1ES IR ny'-

LIRE
ek VAR

FUNETION FaXiY?
EAYm OFREYF - O] ¥Y )

RETURN

CTTOM FAGY)
[ '\{' 3

ﬁ”T]fF L AU B

e pn ety e a e
SRPTL QTR mialQy

‘uwv&?wwwxwmwwwwwxwa
) .

Ef7l METIEED Pal o _,’i.

r-,n_«
LN ANY FNF SN

’

¥ O
Y

Uk T aNCE

"$x» PR R LS IP R 35 2
' TANCE DA
EOR W N N A

Foll ow 1 NG

bR A0 S 3 54

bR A ARS8 51

Reproduced from
besl available copy.

PAGE’S




- __‘.\'__A.‘. L T,

P S

G SR S W KK K O KV MR R O R R Y W Y
A Fi P TERM.
SO O R RO W R WO KR O W W R R R M R W e
SAD2REED SO0 cDIDET0 LOIGEED
117243 ¢ DORTON LIRS
GG T4 LG O0 I ey
NG 01

N UALE
PEATAN A
LTRSS
DO
,O0awi
LT 27
Ll
DUPPLE
U0 T
PRSI AL
L0

(R Ry ]
T A

-

KR R eLAF
158200
LA RTIOE
L3 q‘..’)‘aﬁ :

e e

- st

s
Qoo

ey Y

LR

TOL0RE

Mo

4 ‘4 > .
: COLETE CEYAG L
FFEEEE R A ERWI A PMFEIFIXFEF G SV FEE I H SRy
= L101801 VARIAHNLCE = DIGeA0

RSN VRN

EXECUTION

- C et




A

Pl e I

i Frn JF

APPENDIY B

Computer Program Listing with the

Results for Russian Roulette Example, Case 1
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APPENDIX C

Computer Program Listing with the
Results for Russian Roulette Example, Case 2
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L0 WEITE oy 180

TRO= 19 FORNAT L e LOX,T00 %7

AR AES VHRITE (4,200 NRDC,TI

L0 QL TETMAT (IO, TND . OV REDUITIOGE o LIT LT, 0E RS 0T OPXY Y =1, 3,
Féedd

610= 200 WRITE d,1%)

G- EriLs

&30= SULRTUTINE NORM(EN)

640= A=0.0

450 = Cl=, 030890704

GEO Cos  20RTLESLE
&7 0= o= S42912 ,

[}

&8 Cdm 257408784

&8 e TEel 040401328

FOm Lo 4 T=1,12

710= CALL FANDIR:

720 4 A=f+K

FAO= Fx={A-dH,) 4

FLED= SEENEY & S5 4

750 EN=( (L (CIRN2H0DIRRIFUIIMR2ICH4IERRIICTIIRX

7EO= RETURRN

770:= END

780:= SURROUTINE RANI(R)

790= FEALF Gy XM

800= INTEGER 18

810= LATA S, XM/ 23978,823.53478/ \
820~
830=
Ba40=
BL0= S=fd RBZIL4ELT
B0 FETURR

870= END
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APPENDIX D

Computer Program Listing with the
Results for the Examples of
Systematic Sampling and Stratified Sampling

FROGRAY MATTEFR

3 3R K SR o ko 3k SO Sk s JOK 3 3 oROR KRR OKOK SRR b R ROKE KKK R 3 b 5 A0k Ok AOR SORORAROE N A

THIS PROGRAN 16 AN L XAHF

SYSTIMATIO
STRATIFIE

- e
ITOoALR0 PR

SRR AT W

T USING,
PPLTHE,
AMELING AL VT, TE,

CHUDE MONTD CARL O TECHXTLUE 70 COMPARE

THE ROSULTS OF THE THREY METHODE,

LR SRS ST SN 55 S S

NOTE 3
METHOD = 3

IFTEGER  IydyKyNyR

ok Ok O 7R ROE O OE RO K KO R OK Y o A R A

CRUDD MONTI CARLE
SYETEMATIC SAMIMLIRG
STRATIFIED SAMMLING
SC10) yMETHAD

Al P 10 e ALCITOd o AT L0 o X Yy U e TERM, EMF , 1S, FUNE
DETA N yw METHOD A14 y 4 T 2/

-

() ¢ O
W1 i=1,E0
Cali. Resl (R
IF(K ER1THEX
WRITE(F,32)
FORMAT (20X " CRUDE
NS (1 )=H

GO 10 1¢

ENDT IF

OATE (NCCA) yd=1,470
N

IMAMETHOLLEQ. 25 THE
WRITE(X,5)

MG

X

TE CaARLD )

/4’4,4,4/”

FORMAT (20X, SYETENATIC SAMFLING %)

Lo TR 10
CLSE
WEITE(k 6

FORMAT (20X, "STRATT

IATAIAECS) pJ=1,4)
DAaTa(AL D) yd=1,4)
GO 70 110

ENDOIF

ns=1,0/K

Lo 100 J=1,K

fi- () =0Kn0E

Abh gy =Aal (D -NS

G 120 J=14K
AECY=AL L) AR
WETTE (k130
FORMAT(E X007 % 7))
UWRITECH,140)
FGRM&T(&X"J’,ZX,'

FIED SAMPLING
/00())' 03\‘&-’ &y B2/
L e36y b2y B3y 107

T O Xy 10N, Yy LUX Y g A TR, T,
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LWIRITE (o p 13000
SHMI=0,0
BMI1=0,0
ZM2=0.0
o 208 d=1,1
SMi=0,0
Lo 200 I=1,N80.D
180 OALL RANTU (fis
ITF (RNGGT ALY ORGENJLE a0y THIN
a0 T OIRS
CNDAT
eI R
VAR A0 D) R
FY=FURC (Y.
GMI=0MI4TT
FYZ=FYRks
WRITE R 1A0 Sy T e Xy Y, Y
140 FURMAT (3Y,214,3(FR.&,3%X0)
00 EMI=DMIGFYD
TERM=AC(JIXEML /NG ()
FM=Fu+TERM
WRITECKy 201 TERMyFM
201 TORMAT (LAY, 2B &L IXDD
2085 TERMI=(OMI3ATCIIRN2-NE(DIFTERMERZ2)Y JaREC1) )
FaR=FM
VYeR=TERMY
WRITE(R, 130
WRITER,220) Fary YR
220 FURMATLIX, ‘ESTIMATE OF FPEF =/ o T8 G S0 F UnRIANCL =7, Fh, 42
WRITE (%, 130
END
FUNCTION FUNC(Y)
REAL FYy,Y
FUNC=(EXF(V)~1.03/1.718
FY=FUNC
RETURK
END
SURROQUTINE RANDC(R?
REAL RSy XN
INTEGER 15
LATA S.XM /,23978,823.53478/

~16
SRl ETBA6LT
RETURN

END
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APPEMDIX E
. Computer Program Listing with the
1 Results for the Example of Control Variates
i
}
Lyd
FROGSAM T T
ok KA O N AR R KRR KR AF R AN AR FA AN KA AT K ER R RN RN Y \
THIS FROGHA LOES CONTROL VARIATE &0 Uk, 7T,
O8RS KRR % 0K ROk X KK A R o K 3R O SR KO ORS00 R Rk S KOk ok b b O RNk
THTEGEE T .0 !
FEal TERMIZTERMIZEMTLEMT I FAX  FUND }
BETE NPT 70 W0/
. T TN Y i

(d, 200
FORMAT L0, TRy 220y A TERNL © v 7Yy PTERMD (8%, " TE

WHITE(F 10D

OO0 Ts iR

CHLl RAND(REND

TERMI=FLNCORK)

SMT 4 TERMI

FaX (RN \
TERMZ= (TERMI-TIERM2)X¥2 ‘
WRITE (X, 30)RN, TERMI, TERM2, TERNME

FOFMATIEX,, S (44X, F9,60) L
EMTI=EMTIE TERHE

~q
Hal
e
ol

SMTZ=SMT2I TERME
Ti=8MTLI/N
T2=0MT2/N

?
|
70w FMEAN=T1-T24F I ‘
|

380= VAR= (SMTI~N9 (T1-72)%2) / (N=1)
290 WRITE (3,100
i 400= WRITE (F,109)
4505 109 FORMAT (11X, T17 47X 2 T2 37X, FHEANY « 75, VAR ) ;
430= VETTE (100 ; |
430 WRITE(H,110) T1,72.FMEAN, VAR ‘ ‘
440= 110 FORMAT (7X.4¢1X,F9.0)) i
450 WRITE (%, 10)
460 aTOE
470 ENT
450 FUNCTION FURCLY)
450 REAL FY,Y
00 FUNC=(EXF(Y)=1,00 /14716
mg0n FYsF U
520 RETURHN
530 ENT
Yo SURROUTIHE RAMNICR)
O €50 FEAL F,Gy XM
560 THTCGER 16
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SOTEEAY
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.704083 LS5P4873 704033 Q11927
6214 £ 978501 FEED14 +O000Q5S
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T1 T2 FMEAN VAR
O KKK F K O 3K SKOK Ok K 3 3K 3K O F 0 38 ok ok Ko R AR RO R R N
ILE1494T LAT0L1209 LA2EETLEY L 00148458
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1300 CM CSTORAGE USED,
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APPENDIX F

Computer Program Listing with the
Results for the Example of Antithetic Variates

100 FEOGRAM ANTHTC
1io=C KK 3K b K 3K 3k 2 3 KKk % K b K K R SR N 0K 0 K KR K K K R 3 K R e ok Kk
120=C THIGC PROGRAM I8 At EXAMPLE OF USING ANTITRLTIC VARIARLES AS
0= VeR. T

33K O 3K KR o o KK 38R b ok o 3K ORS00k 3R ok 383k Kb 0K KK ok 3% ok O K SR K KO KOROK
ALFPHMA=, 45
WRITE (%, 30

N‘z

hLFHﬁmﬁ;FHﬁ..OE

; i .Lyr'
xup (el

=EUNCCRT)

’60*

270= A
200= GUMl= UN}% EFM,

290= 100 SU.;WQUszTEhM3*»2

KV ES Er=aliM] N

Zi0= FIQ=ETI*¥2

320= G (BUMI2-N¥TI27/(N-1)
I20= WRITE(H,200) EI,S82,ALFHA
IA0= 200 FORHAT(JOX. THE ESTIMATE = /,FE.7.3X THE VARIANCT =", FE.7y "
TEQ= 1 yF4.2)

T4H0= WETTE (K, 200)

370= 300 FORMATIOXN,SEB( %))

280= I CONTINUE

290w END

400 = FUNCTION FUNC(Y)

4310= FUNC=(EXP(Y)=-1,0)/1.7182818&

420 FETURN

450= El

440 FURNCTION FAX(X)

AT )= Fexd=X

4650= RETURN

47 0= ENI

A400: CURROUTTNLD RANDCR?}

490 LATA Gy XM /23970,823.5347L5L 7

SO0 GvS*XM

©10= TG

SEHA (TERMID

200 Reg-1E
570 Q=lit, 2024617

540= RETURI
0 END
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FUNSFTNG
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Lo
l

130

13

O O 8TORAGL USEDL
ICF QEUONDT COMFILATION TIME.

R R A 3 HOR SK SRR OR300 SO AR KK O KSOK 3K 0K R AR 3 o
THE ESTIFATE = , 4427392  THE UARIANCE=.0004215 @& = .50
SRR R 8RR R KR 3Kk s 3K 8K 3K 33K KKK KK 00 o
= . ALRIOI6  THE UARTANCE=.0016324 A = 55
SRR KR ok 8 40
: L 4001094 THE URRIAND 025942 A = LAD
e N AT e P Y
SBTIMATE = 4817204  THE UARIANCE=.009520&4 A = L 45

A7 SR 2 O 00k S KOF. oK KK 4 KA Rk OROR K KO8 38 A S A RO ROK R R AR
HE ESTIMATE = 4264858 THE VARIANCE=,.0111232 A = 70
KK R OF e K 3K R K ROR b Ak KO S KOROk K ORO X b ‘Xﬂ#x#**»x#¥$#*

L025759¢ i W AU
HE NN AN KA MRS
&= B

THE ESTIMATE = 4180123 THE VUARIANCE
o A7 K SRR K 5K 5k 0k K KOKF OB KSR R OR %  RR L
THE ESTIMATE = ,4486817 THE VaRTARS
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