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V4W. SNK,

Preface

* The purpose of this study was to survey and use variance

reduction techniques. To achieve this, extensive literature

search was done. For each technique, the basic idea, analyt-

ical formulation, method of implementation, fields of applica-

tion, advantages, disadvantages and any other specific charac-

teristics were identified, presented and clarified. To

"I" illustrate each technique, all the above characteristics

were tabulated. Numerical examples with computer programs

were given and, finally, examples of application of the most

commonly used techniques were presented.

This work should result in better understanding of

variance reduction techniques so that one can use them more

4. ~ efficiently..

I would like to thank my thesis advisor, Professor

Albert H. Moore, and my reader, Major Joseph W. Coleman, for

their continuous patience and assistance. I also wish to

thank Ms. Sharon Gabriel for her excellent typing of this

thesis.

Mohamed Ref at Elhefny
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A~bstract

* The objective of this study was to find out about,

analyze and illustrate the characteristics of variance

reduction techniques. Extensive literature review was

done to identify the basic idea, theoretical foundation,

procedure for implementation, fields of application, and

other specific characteristics of each technique.

Examples were given to show how to implement the

commonly used techniques. Computer programs were written to

perform those examples. Results were used to compare the

efficiency of different techniques. Three studies in the

fields of inventory, queuing and computer performance

measurement were discussed where different variance reduction

technqiues were employed. Conclusions and recommendations

were given.

Vi



VARIANCE REDUCTION TECHNIQUES WITH APPLICATIONS

I. Introduction

During the early days of simulation (1940-1960), when

computer speeds were much slower, investigators found

themselves in a position where it was very expensive to

decrease the variation of estimates by increasing the sample

size. Consequently, interest grew in developing sample-

estimating procedures that could either increase the pre-

cision of estimates for a fixed sample size or, conversely,

decrease the sample size required to obtain a fixed degree

of precision. Those procedures are often referred to as

Variance Reduction Techniques (VRTs). The underlying

principle in those procedures is the utilization of knowledge

about the structure of the model and properties of the input

data to change or distort the original problem so that

special techniques can be used to obtain the desired esti-

mates at a lower cost.

Historically, most of the underlying statistical

approaches used in VRTs had been in use much earlier for

different purposes, but during the period of 1940-1960

the techniques had been refined for specific use as vari-

ance reduction techniques in computer simulation. As the

computer speeds increased, the interest in those techniques

I-1
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' 4/' declined. However, the recent increase in complexity of

computer simulation, due to handling complex models for
large problems, renewed the interest in the use and develop-

-4

ment of variance reduction techniques. In some models of

complex systems, obtaining a single sample may require a

great deal of computer time when a high speed computer is

used. In such cases, the use of variance reduction tech-

niques is vital.

Kahn was one of the first pioneers who clarified most

of the techniques. He explained and illustrated most of

them in the report published by Rand in 1956 (19). He

$presented several examples pertaining to the area of

radiation transport to demonstrate the applicability of

. .~ VRTs. Hammersley and Handscomb presented the general

-. Monte Carlo concepts and methods (11). The most compre-

hensive overview of the use of VRTs is presented in their

book and also in the book by Spanier and Gelbard (30),

where standard variance reduction techniques, along with

several applications to radiation transport problems, are

. discussed. Other books (16; 28) give less rigorous

.4 summaries of VRTs which are helpful for the understanding

of the basic ideas behind each technique. On the other

hand, many articles (7; 22; 23), reports (6; 8; 12; 13),

and studies (5; 10) h%ve been devoted to development and

application o - r Ln VRTs for a specific kind of problem.

4" 1-2
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To compare different variance reduction techniques

when they are applicable to a certain problem, efficiency

of simulation in estimating parameters is used. It is

first suggested by Hammersley and Handscomb (11) and is

defined as

Efficiency = variance X work

They also defined the relative efficiency of simulation

when applying two Monte Carlo techniques as the ratio of

their efficiencies.

This implies that a reduction in variance of estimator

is not worthwhile if the work required to achieve it is

" -" excessive. Therefore, one should take into consideration

the cost or the work required to achieve the anticipated

variance reduction. In reality, one cannot estimate the

required work or the potential variance reduction for a

given method. The analyst can use his experience and

intuition to choose the suitable method to solve his

problem. In some cases, the use of any of the techniques

is infeasible or improfitable, but if applicable and

properly used, VRTs can provide a tremendous increase in

the efficiency of the simulation.

Shannon (26) stated that variance reduction techniques

are not new, but they are not widely practiced in spite of

1-3
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the great saving of work or reduction of variance which

can be achieved when suitable VRTs are applied to certain

cases.

The lack of attention given to those techniques is

a consequence of the shortage of text books discussing

* - them and the inconvenience to analysts when using them.

This effort is devoted to treat those problems with the

hope of making VRTs more convenient to use.

In the next chapter, each of the known variance

reduction techniques is illustrated. The types of

is problems which can be handled by the techniques are

discussed.

ALAI In the third chapter, selection and implementation

5:... -of VRTs are discussed in detail, and procedure for selection

of the suitable VRT to a certain type of problem is

illustrated. A lengthy table of the characteristics of

* all the available standards is given where the description,

criteria of application, advantages, disadvantages and

fields of application of each of the techniques are

condensed to help in the selection of the suitable tech-

nique.

In Chapter Four, steps for implementation of each

technique are given in a simple form including formulae

for calculating the estimator and the variance of the

estimation. Simple examples for most of the standard

4 1-4



techniques are used to demonstrate the implementation of

the techniques.

In the fifth chapter, selected examples of real

applications of various VRTs are given. Applications in

* the fields of inventory control simulation models (6),

queuing simulation models (10), and computer performance

measurements (7) are demonstrated where the most commonly

used VRTs are applied.

-p-
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II. Variance Reduction Techniques

Classification of Variance Reduction Techniques

All VRTs are concerned with increasing the accuracy

of Monte Carlo estimates of parameters at a fixed sample

size or decreasing the sample size required to achieve a

certain degree of accuracy. In general, VRTs aim to improve

the efficiency of the simulation process when contrasted

with crude (direct or straightforward) Monte Carlo simula-

tion which attempts to create true-to-life or actual

modeling for the underlying process. In crude Monte Carlo

simulation, random sampling, flows through the model and

sampling probability distributions are chosen to reflect

.. ~* <the real situation as exactly as possible. on the other

hand, VRTs attempt to increase the effectiveness of Monte

Carlo simulation by one of the following approaches:

1. Modifying the sampling process

2. Utilization of approximate or analytical inf or-

mation

... 3. Studying the system within a different context.

According to these approaches, the known VRTs can be

classified though many of them are closely related, which

makes it difficult to completely classify them. The

suggested classification of most of the known VRTs is

given as follows (24):



Modification of the Sampling Process

Importance Sampling
Russian Roulette and Splitting
Systematic Sampling
Stratified Sampling

Use of Analytical Equivalence

Expected Values
Statistical Estimation
Correlated Sampling
History Reanalysis
Control Variates
Antithetic Variates

- Regression

* Specialized Techniques

* - Sequential Sampling
Adj oint Formulation

4, Transformation
Orthonormal Functions
Conditional Monte Carlo

* 4'4

-' Modifying the sampling process is usually achieved

by using more effective sampling techniques or altering

the sampling distributions. This approach is beneficial,

if not necessary, to handle simulation problems involving

~4/. very low probability events. In such a case, a modified

* sampling scheme is required to increase the number of

occurrences of these rare events.

* Using the analytical equivalence is another approach

for reducing the variance of estimation in the simulation

process. Since analytical procedures, if available, are

usually preferable to simulation, one should replace the

results obtained through simulation at any part of the

11-2



prcs by th avilbl anltia reslt oresiats

Inadto osmpigmdfctonadaayia

eqiaecteeaecran pcaie ehiusta

proces byas hae avilale analytchalrcests or etmates.e

S.al rnedditi toe saramplin ofetmdifiationalnro anaia

equivalencellthee are cering specializedteiqes that

canee uedhntoe ahieseve rane redctionaTs proceduryses

may incsiuetepiation of hl onelrmoo the ityao-

tehniu e vn i lee

PresntaIorofnVariacmRdctonTchiqe

Modiicatonce of thepigPos Technique s unthsmehder

thmig clas haved sevra conntoraratrtc in thatmre theyan

allnt redue thaed aianc akon esitnb staplingromutia

. prbabiit cnbdstibution differpetifro the ruelpsica

on.This illa haepmlyilstae by obevncvnsoierstmor

oteng a henceo dcesig the compuingereted and teot

Thesrne echniqe as preservef the atual tproces onyse

411-

Importnce Smplin



, S o P" -S - . . ° ,q. . . . . - . . . . .

could bias each die toward the numbers one and two in a

known fashion. The computation of the results should be

altered according to the information from the biasing

scheme to unbias the answers.

Mathematically, the importance sampling can be

illustrated by considering the Monte Carlo estimate of

parameter I where

I = E Cg(x)] = f g(x) f(x) dx (2.1)

The crude Monte Carlo procedure for estimating I would

be as follows:

1. Select a random sample xI , ...,xN from the

distribution with density function f(x)

2. Estimate I using

N
= g(x.) (2.2)N i=l

The sample variance of this estimate is given by

iN

S2 = N [ g2 (x.) - 2 (2.3)

Considering another distribution f*(x) , one can write

- g.(x)f(x) f*(x) (2.4)
f* (x)

11-4



where f*Cx) O 0 when g(x)f(x) yi 0 . If we sample

from f*(x) taking xl, .., XN randomly, a new estimator

S can be calculated as

Ng(x.)fx)4,1 -I 1 li 1f (2.5
1l N i=l f*(x i )

f(x i )

Each sample should, then, be weighed by in the., f*lx i)

final result. This variance reduction procedure will lead

to a sample variance given by

1 g(xi)f(x.)
S2 __ N ~ 1 12 -121(26

1 N i=l f*(x)

Consider the expected value EE(Ii - 1)2] that is

ER1I1 - I)2" = 1 1 1 - I)2] (2.7)
1 N i=l f*(x i )

If f*(x) = p(x)f(x) and f*(x) is non-negative, then

E-(I 1 - 3)2] = 0 which is a desirable situation that can

be achieved only if I is known and f*(x) is chosen to

be equal to I(x)f(x) Since I is always unknown, one

has to use available information about the problem to

choose f*(x) as close to g(x)f(x)as possible. If one

fails to choose a suitable f*(x) to sample from,

.. importance sampling can give a worse result than that of

11-5
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crude Monte Carlo; that is, when

Es 2 _ S ] -- g2(X)[1 - fW-
1 f*(x)

is not positive.

Importance Sampling for More than One

Variable. If the functions f and g are functions of

a vector of random variables X , one can take a random

sample 1 V 2' "' N from a selected probability

function f*( ) and estimate the parameter I as

-b- - 1
1 I - (2.8)

i=l f (i)e1

with the variance

SN1 -] (2.9)1i=l f* (X)1

Also in this case, if we select f*() = (x I thenEE(I

[(I 1 - 1)2] will be zero indicating the best selection

* of f*(x) which cannot be done without knowing I , the

parameter to be estimated. Due to multidimensionality of

the function f(x) , it is difficult to develop f*()

efficiently. Therefore, a conditional importance function

may be selected instead of f*(X). In the simplest case,

11-6
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when only two variables x,y are in the function f,g

the parameter I can be estimated as

I = f g(x,y)f(x,y)dxdy = f g(x,y)f(x)f(y/x)dxdy
xy x,y

-I" - f g(x,y)f(x) f*(x)f(y/x)dxdy (2.10)

x,y f*(x)

So one can select Xl,X2 ...,XN  randomly from a function

f*(x) and Y1 "y2""'YN from f(y/X i)f*(X i ) and estimate

las

= 1 g(xi'Y) f( x i )

1 N f((x2

4 The sample variance will be

2 N g(X.,Y.) f (X.(.2
" 2 l' -l-] 2 _ 12} (2.12)

S1 f*(Xi)

In this case

1 )2 1 If f2(x ) f g2 (x,y)f(y/x)dydx - 12}
Nx f*(x) y

(2.13)

Using the relation

11-7
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E[g 2 (x,y)/x - = f g2 (xy)f(y/x)dy (2.14)

y

jone can specify the best importance function to be

f*x) f (x) {EIg2 (x,Y)/x) (2.15)
'- If{Erg 2 (X,y)/X')'5f(X)dx

which will reduce E[(I 1 - 1)2] to be

E[(I 1 - 1)23 = {E[g2x,yl/X)}h f(xldx32- (2.16)

S.

If we have more than two variables, the best importance

function can be expressed as

f*lx) -f(xl{E[g 2  Y)(2.17)

f*(x) f{EEg 2 (x, )/x3]1f(x)dx (2.17)

S The vector y stands for all the random variables except

.x The estimate of I and the variance of sample are

expressed in a way similar to that of the two dimensional

case. It should be noticed that the selection of the best

f*(x) can be done only if we know the estimator I for

which the whole simulation is made, so one can only select

a good f*(x) guided by the given formula for best f*(x)-.

,,. 11-8
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Russian Roulette and Splitting

Concepts of the Technique. Von Neumann and Ulan

first used these two techniques in particle diffusion

problems. The combination of the two techniques can be

extremely effective when some knowledge about the importance

of the regions of the distribution is available. If the

problem is structured as a series of events that can be

examined at various stages, at some of these stages, one

can tell whether a process would contribute to the desired

result or not. If the state of a certain stage is not of

interest, the process will be killed off with a known

probability. This is called Russian Roulette. On the

other hand, if the process is an interesting state, addi-

tional investigation might be conducted by increasing the

S number of simulations starting from that situation. This

is called Splitting. As mentioned, the combined technique

can be very effective in multistage problems such as random

walk, subsystems in series, etc. It could also be useful

in simulations involving a large number of discrete situa-

J tions such as queuing systems in which large numbers of

individuals are being tracked. In such systems, Russian

Roulette can be used to decrease the number of individuals

being tracked by removing an individual at a certain stage

in the problem with probability P1  . Otherwise, that

individual is allowed to continue in the system with a new

41_
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weight W = (1 - Pi)-I = l/qi (24). This can be repeated

for the other individuals and so the number of individuals

in the system can be decreased. Splitting can increase the

* number of tracked individuals in the system by replacing

an individual with weight W by n individuals; each of

them has the weight W/n . Those individuals can indepen-

dently proceed through the system keeping their assigned

1 weights.

Application of the Technique to a Two-

Stage Problem. In a two-stage proble, if X is the random

observation from the first stage and Y is that from the

4 second, the estimation of I = E[g(x,y)] can be calculated

4mtas

I g(X.,. (2.18)
ill 1 1i

where a sample of pairs of values, (XIY 2 ), (X2 ,Y2 ), ... ,..

(XN, ¥N are generated from the given distribution of

x and y . If some values of X would lead to more

interesting results than others, one can use Russian

Roulette and Splitting to divide the states in the first

stage into the two following sets:

S1 : The set of states which will be terminated

by Russian Roulette with probability P = l-q , but if the

II-10



simulation is continued for a state, the estimated parameter

will by weighted by 1/q

S 2: The set of states which will continue in

the simulation. Each will be split into n simulations

with weight H for each.n

The procedure would be repeated for N starting

simulations and the modified estimator will be

1 g(XioYi) n g(Xi,Y i )I N+ n
X iS 1  q X j= n

(2.19)

which is the unbiased estimator for I (24).

The sample variance in this case is given by

S2 N - 1 21  - 1 (2.20)
N-1 Ni=l

n

where Ii = 0 , g(Xi,Yi)/q or g(Xi,Y i) according. 1 1 1j=l

to contribution to the estimator from the history i , and

1N
I-N I. (2.21)-. i=l

Weight Standard for General Application of

the Technique. If the problem to be simulated is broken

into N regions, two weights WH. and WL will be

1I-11
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assigned to each region i .When a history enters region

i ,its current weight W will be compared to the region

weight standard using the following rules (24):

1. if W < W ,Russian Roulette is applied

as follows:

3* kill the history with P = 1 -

W A

* the history will survive with

w
p = W and its new weight will be WA.

2. If W > W H ,Splitting is applied as follows:

*find n such that W -n W < WA

*create n histories which starts from

this point, each with weight WA.

*with probability WA. 1 create

one more history starting from the same

point with weight WA.
I

3. If WL. < W < WH , let the history continue
1 1

in the simulation without any change.

The above procedure will be used under the assumption

of approximately constant importance for each region. The

* importance of a region is inversely proportional to its

average weight WA .This means that histories moving
-. ~W1

~5 11-12



into a region of higher importance (lower weight) will be

split, while those moving to a region of lower importance

j~. (higher weight) will suffer Russian Roulette. To increase

the efficiency of computer time utilization, a fixed weight

should be used for all histories in a region of constant

importance. The high and low weight standards, W H "W L

are used only to define the upper and lower limits for

triggering Russian Roulette and Splitting processes. They

-.. •'

should be used only when another VRT is used besides Russian

Roulette and Splitting (24).

Selection of the Suitable Criteria. There

are three parameters from which one should choose: weight

standards, probability of kill and number of splitted

histories. The best selection is the one which minimizes

the variance in estimate. It is difficult to perform this

optimum selection so the results from importance sampling

analysis can help where the weight standards for a given

region will be proportional to (Et~g2 (X)])-h which means

that the weight standards should be high in regions of low

Svalue and low in regions of high value.

Systematic Sampling

Concept of the Technique. Systematic

sampling is a structured modification of sampling procedure

to reduce the variance of estimation of the parameter. This

11-13
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technique always results in variance reduction without

involving any significant additional effort, so it should

be applied when that is possible, in spite of the small

improvement it provides. The technique is applicable to

- any Monte Carlo problem which has a probability distribu-

tion to characterize the initial conditions. There are

two methods to implement systematic sampling in Monte

Carlo technique to estimate the parameter I = f g(x)f(x)dx

with a reduced variance.

Method I. The range of the density function

f(x) is divided into N regions with equal areas; each
1

equals - where N is chosen between 5 and 50. It is

clear that

- f f(x)dx , i=l, ... , N (2.22)

where L is the length of the ith interval (region). If

a sample of random numbers RI, ... , R is selected from
n

U(0,1) , the following sequence of numbers will be

generated:

N-R. (j-l)
N] -- i-l,, ... , , ,...

For each value of i , this procedure assigns a value

Rij to each interval j , then a corresponding value of

11-14



the random variable Xij is determined from

X.

R.. - f(x)dx , i=l,...,n , I,...,N

The parameter I can then be estimated as

1 n

I 1 (2.23)

where

1 N

I - jI g(X..) ' i = 1,. ,n (2.24)
j=1 2.)

The sample variance in this case is

S2 n 1 2 _ (2.25)
niln i

Notice that in this case we generate only n random numbers

from U(0,1) and then generate n X N realizations on the

range of f(x) ...

Method II. This method is generally better

than the first one to perform systematic sampling. In

this case n independent samples are allocated to each of

the regions. This is done by selecting R.. , i=l,...,n I

j=l,...,N from U(0,1) , then n random numbers are

allocated to each of the N regions using the relation

11
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R. = N i~l, ...,n ,jl..N (2.26)

and the corresponding realization X..j is determined from

x..
R f0 f(x)dx (2.27)

The estimator I and the variance of the sample, S2 ,

are determined using the same formulae, Eqs. 2.23 and 2.25.

The second method will always give better variance

reduction, although it requires larger number of random

samples from U(0,1) .In the two cases, the variance

reduction is approximately proportional to N2

Stratified Sampling

Stratified sampling is similar to systematic

sampling, but better efficiency is achieved by taking more

samples from the region of larger variance. It is a way

to combine the features of systematic sampling with those

of importance sampling. It can be considered as a special

case of systematic sampling where the optimum distribution

of samples among the regions is attempted. Usually,

* systematic sampling and stratified sampling can handle the

same type of problems, but the latter is recommended when

additional information is available about region contribu-

tions to the total variance. In that case, additional

reduction in the variance can be achieved.
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Structure of Stratified Sampling Scheme.

The range of f(x) is broken up into N regions of

length LI, L2,...,LN , respectively. The length of the

jth region is selected in accordance with a specified

probability

P. = f f(x)dx , j=l,...,N (2.28)

.d.. 1

Notice that, if P. = , j=l,..,N the same sampling

structure of systematic sampling will be obtained where

N regions of equal areas are used. The rule to select

P. is to select such that the variance in g(x)f(x) is

the same in each interval. After determining the lengths

of the intervals, the numbers of samples from each interval
nj , j=l,...,N should be determined. If the total number

of samples is n where

N
n = I nj (2.29)

An unbiased (24) estimate for I is

N NP. n.

lj i=l )

N A

= P.1. (2.30)
j=l 3
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where

nj
g (X (2.31)

) nj
i 1n 1

The sample variance in this case can be estimated as

N p2 nj

S2 I -'- I [g(x. 1) ]2
j=l j i=l j) 2

N n.P. 2  nj ^2
= 1 *t: En- I g2 (Xij)- I;] (2.32)j j i=1

As in the case of systematic sampling, the stratified

4W sampling, when compared with crude Monte Carlo, has an

efficiency proportional to N2.

Selection of the optimum number of samples from each

internal n. i- a difficult task. Consider
I.I
L .

A N A

E E(I-I) 2] = E[ly P.I1-I) 2]~j=l JJ

N P. 2o. 2

(2.33)
j=1 nj

where a.2 is the variance in the j interval
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a .2 .= (-)[g(x) - I2J dx,X XjiLj P

.= nj EE(I - I)2J (2.34)

If n.'s are selected to minimize (2.33) subjected to
9J

(2.34), the nj's should be selected to satisfy

n P. a.
n. N 3 3 (2.35)) N P. a.

j- J

Notice that a. s are not known, but they can be estimated

using

njS2  I nJ Xi i3

n.-1 i=l
J

n" nj 2
= - -- '1 1- 1 g

2 (X.j) - I.] (2.36)
n - 1 j i=l 1)

a

where n samples are arbitrarily selected in each interval.
I

An iterative scheme can be structured to estimate n.

Analytical Equivalence Technique

VRTs in this group are based on using prior knowledge

of the processes involved to form analytical or approximate

11-19
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solutions to the problem being simulated. This can also

* mean that, if one can find a related process which can be

exactly solved using analytical or other low variance

techniques, he can derive the difference between the exact

* and related processes using Monte Carlo technique. Many

of the techniques under this group are very closely

related in the principles and ideas involved.

Use of Expected Value. This method is based on

.5 the fact that an analytical determination of parameter

estimator is usually preferred to the results of simulation

procedures. Since Monte Carlo estimation of a parameter

is an estimation of its expected value, the technique is

so called and it is applicable where the expected value of

portions of the model can be determined analytically with-

out losing an essential element of the simulation. Expected

value method can be used in multistage problems where the

expected value of the parameter(s) can be analytically

determined in one stage or more. For example, consider the

two stage problem where X is selected from f(x) at

the first stage and Y is selected from f(y/x) at the

second. Repeating the process N times, crude Monte

Carlo estimation of I is

1N
- N.~g(Ailxii (2.37)
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If it is possible to determine analytically f(y/x) in the

second stage for a given value X from the first stage,

the simulation process can be simplified where N samples

from f(x), X , ... ,XN are generated and the estimator for

I can be calculated as

^ 1 N
1 1 E[g(y/Xi)] (2.38)

which is an unbiased estimator of I since EEI E = I

The sample variance in this case is given by

2 N- E2[g(y/X. -I E (2.39)
N1Ni=l E

In addition to the simplification of the simulation

processes, the above technique always gives better results

compared with crude Monte Carlo.

It should be noticed that it is not always possible

to calculate the expected value of a portion of the

simulation analytically. An approximation of the expected

value obtained by another variance reduction technique may

be used. In some cases, a portion of simulation cannot be

replaced by its expected value even if it is analytically

determined. In those cases, the second and higher moments

may be important in the simulation procedures and not only

the expected value.

11-21

4; - ' " - , ' ''' ' ' ' "." ' " " -" .,"- - •" ' ' .. " - '""""" . - - """"" - '



Statistical Estimation. In this technique,

the stochastic process is not removed from the simulation,

but the expected value, rather than the simulation result,

4.a is used in the estimation.

If one step in a simulation is a random choice between

reaching some final outcome or continuing in the simulation

process, then Statistical Estimation can be used. In crude

Monte Carlo, a random number R would be generated at this

step and if R < P(Y f/A) , then the history would be

terminated with score 1. If R > P(Y f/A) , then the

history would continue with no score being made. After

4 N histories, the estimate for probability of reaching

Yfwould be

P n Yf j (2.40)

where n is the number of histories terminated at Y f

* In statistical estimation, the same simulation process

is used, but the estimation technique is changed. Every

time the particular step is encountered, a contribution of

P(Yf/X) is added to the estimate, regardless of the actual

outcome of the simulation. The final estimate is then

given by

A N

P SE (Yl f NYf/ (2.41)
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where the second summation runs over all occurrences of

the possibly final step in the course of jth simulation.

An estimate of the variance may be calculated from

= N 1 N 2 ^
S2i -Ns[If (2.42)

i=l1

where

A

P = P(Yf/Xij) (2.43)

P'"

The use of statistical estimation will always improve the

variance of estimation, but it can be particularly useful

4if the probability of reaching the desired end point is

small in all intermediate stages. It becomes essential

when the probability of the end point becomes vanishingly

small. If there were many intermediate stages which

could, with very low probability, reach the desired end

point, then statistical estimation might calculate the

desired result with good accuracy.

Correlated Sampling

Concept of the Technique. Correlated

sampling can be one of the most powerful VRTs due to the

wide applicability of the technique, as well as the large

efficiency gains which can be obtained. If the primary

11-23
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objective of a simulation is to determine the effect of

a small change in the system, crude Monte Carlo approach

would make two independent runs, with and without the

change in the system, then subtract the results obtained.

Usually, the difference will be smaller than either of the

two outputs, but the variance of the difference will be

the sum of the variances in the two runs. In such cases,

the use of correlated sampling can be essential to obtain

statistically significant results. If the two simulations

use a common random number at comparable stages in the

computation, the correlation in results in the case of

correlated sampling will reduce the variance of estimation

. much more. Another way of viewing correlated sampling

through random number control is to realize that the use

of the same random numbers will generate identical histories

in those parts of the system which are the same, so that

the difference in results will be due to the difference
-

in the two systems. This will increase the efficiency

compared to uncorrelated cases. Correlated sampling can

,* be utilized in the following types of simulations:

" * calculation of the effect of small change

in the system
5'

. * difference in parameter in two or more

similar cases is of more interest than its absolute values

in them

. ' I1-24
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* performance of parametric study of several

similar problems

* the answers to unknown problems is to be

estimated using the known answer of a similar problem.

Analytical Formulation of Correlated

Sampling. Let the integrals I1 , 12 characterize two

different but related problems.

I = f f(x) gl(x)dx (2.44)

.4

and

12 = f f2 (y) g2 (y)dy (2.45)

If the main interest is the difference

1A = I I  12 (2.46)

crude Monte Carlo approach will perform two separate

simulations where, in the first, the estimator of I1  is

calculated as

i = r N gl(Xi) (2.47)

, using a sample X1 ,...,X n  selected randomly from fl(X),
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and 12 is estimated as

1 2 g2(Yi) (2.48)

using a sample YI'' ''YN selected randomly from f2 (y).

The difference is then estimated as

A = I1 - 12 (2.49)

The variance in this case is

O21A) = C 12 + 02(12) - 2 Cov(II,1) (2.50)

where

2 2
y 1(I) = E[ (Il-Il) 2] (2.51)

2 2

a 2(1 2) =E[(1 2 - 1 2 ) (2.52)

and

Cov(IiI 2) = EE(1i-1 I) (I2-12)]

- EE(III 2)3 - 112 (2.53)

Now if II  1 2 are positively correlated, then
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Coy (1112) 0 (2.54)

and the variance in the correlated case will be less than

* that realized with no correlation.

History Reanalyi

Concept of the Technique. History reanalysis

is essentially a form of correlated sampling, except that

one does not actually run a second simulation using the

same random numbers as in the first. Instead, the results

of the first simulation are reanalyzed to calculate the

answer for the second process (24). This technique reduces

__ the variance due to correlation and cuts down the computa-

tional time involved since the second simulation is not

actually performed. The technique can handle the same

types of problems listed in the correlated sampling case

* with the condition that the differences in the systems

V being simulated must be expressible as a difference in

probability distribution or in the scoring function.

Analytical Formulation. Assume that there

* are two problems which involve estimating IV 12 as

given by Eqs. (2.44) and (2.45). Assume also that a random

sample Xhas been obtained from f (X) .The

estimator for I is as usual
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91 N X (2.55)

Since

12 = 2 (X) g2 (x)dx I 1 x) 2 x f (x dx

(2.56)

an estimator for 1 2 can be obtained using

2 - 2 (Xi)f 2 (Xi)

i=1 f(x~)(2.57)

-s.where f 1(Xi ) yi 0 whenever 92 (Xi)f2 (Xi) /0 .The

*sample variance of 12 is

S2 N-1 I f (X. 1 2 1 (2.58)

To calculate the effect of correlation, it is necessary to

estimate the variance of the difference directly. That is,

if

92 (X i)f2 (X i) -g(X)2.9

-f 1(X .) r(i)2.9

* is the difference in the ith history and
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S 1 N (2.60)
.[.[ N i= 1

is the average difference, then the sample variance is

S 2  N 1 A A2] (2.61)
W1 i= 1

Control Variates

Concept of the Technique. In many simulation

problems, there exist simplifications or approximations to

the problem having analytic or closed form solutions. In

* these cases, the analytic information can be used to reduce

variance by what is referred to as control variates. In

this technique, the difference between the problem of

interest and some analytical models approximating it is

simulated. The gain in variance reduction or estimating

accuracy is proportional to the degree of correlation

between the true process and the analytical model used.

This approach has a wide range of applicability and it is

very useful when analytical representations of simplified

models exist (24).

Analytical Formulation. Consider the

integral

I = f g(x)f(x)dx (2.62)
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Assume that it is possible to get a function h(x) whose

expected value is known or can be analytically determined,

and which approximates g(x) .If the value of the

integral

f. h(x)f(x)dx (2.63)
-00

is known, then the integral I can be expressed as

+00 O0

I-f h(x)f(x)dx + f [g(x) - h(x)]f(x)dx
-00 -00

Go

- + f [g(x) - h(x)] f(x)dx = + 1~ (2.64)
-00

* The function h(x) is called the control variate for

g(x) . Since 0 is known or can be calculated analyt-

ically, simulation is needed for estimation of I.

00

1=f [g x) - h (x)]I f (x) dx (2.65)

This can be performed using crude Monte Carlo by selecting

a sample 1 O.XN from f(x) and using

-~.~N 1 N
= . g(X)- h (X.

i~l (2.66)
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. .where

A. = glX i) - h(X) (2.67)

An estimate of the sample variance is

N1 N i (2.68)

where

A 1 N
A = ff A. (2.69)

The efficiency of the control variates technique depends

on the degree of similarity between g(x) , h(x)

Antithetic Variates

Concept of the Technique. This technique is

similar to the control variates approach, except that a

negatively correlated function is chosen. This negative

correlation is used to reduce the variance of estimation.

Another difference between control variates and antithetic

variates is that the expectation of the chosen function

need not be known. Antithetic variates approach can be

implemented in several methods. Two of these methods are

discussed here.
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Method I. If the parameter I where

,%O5.-"

I = f g(x)f(x)dx (2. 70)
SGo

is to be estimated using antithetic approach, an unbiased

estimator I
^ 1 N

I  = jg(Xi) (2.71)

is found using crude sampling. A second unbiased estimator

12 for I is selected such that I1 , 12 are negatively

correlated. Linear combination of I1 , 12 is a third

unbiased estimator for I which can be, for example

'laa a^

" = 1 + (1 - a) 12 (2.72)

In this method, v is chosen to be simply 1 then

6 = (11 + Y (2.73)

will be an unbiased estimator for I with a variance

given by

( +4 '1' + (I 2 ) + Cov(1l12) (2.74)
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Since 12 is chosen to be negatively correlated with I ,

then

A A

Cov (IiI2) S 0 (2.75)

This could make the variance of the combined estimator 0

smaller than the variance of either of the two estimators

I1  12

A convenient way to accomplish this method is to

generate a set of random number& RI...,RN from U(0,1)

and two negatively correlated sets of random variables

XI. XN and X.,... XN  are obtained using the same

set of random numbers where, for each selected random

number Ri  , the corresponding X1 , X' are calculated
11

from

II

R.X.

1

R. = f f(x)dx (2.76)

-00

and
x"

1
1 -R. f f(x)dx (2.77)

The negative correlation between each pair of values

X, X' is clear; then the two estimators I and 12

will be negatively correlated. Defining

8 i := [ [g(X ) + g(Xp] (2.78)
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the estimator of I using antithetic variates will be

V ~N 1 Ne =N = 2Ni~ Eg(xi) + g(Xi)] (2.79)

The sample variance is given by

;, ^ N

S 2 (6) N NY 2)( . 0

N- i=l 1

Method II. In this method of implementing

the antithetic approach, we try to find the value of a

which best improves the estimation efficiency. This

approach can be viewed as a combination of antithetic

variates and stratified sampling where the range of f(x)

is divided into two strata, - < x < XM  and XM < x <

.. If a random number Ri  is selected from U(0,1) , a pair

of values Xi ' Xi can be calculated from

xi

'tRi =-f f(x)dx (2.81)

and X"
1

a+(1 - a)R. = f(x)dx (2.82)
01 0

which means that X. is selected from the range

-- < x < XM and X from X < x < 0 . Also, X i , X
2 .

3.

are negatively correlated. In this case, the combined

variable will be
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8. a g(X.) + (1- a) g(Xi) (2.83)

and the new unbiased estimator for I is

^ 1 N i N
. = - [ag(xi ) + (1-a)g(X)3 (2.84)i~li N =

Si.l

with the sample variance

N 1 N 2
N-i N - ) (2.85)i=l

If a is properly selected, this method can give much

9better results than the first simple one. Selection of

"~-a is a difficult task, but a rule of thumb is to select

a such that

g(X M) = a g(XL ) + (I-a)g(x U) (2.86)

where XU and XL are the upper and lower limits of the

range f(x) . Alternatively, a can be determined using

a trial and error method to obtain the optimum efficiency.

Regression. Regression techniques can be applied
to a wide variety of Monte Carlo simulations to produce

• .unbiased estimators for a set of parameters (integrals) when

correlation between them is known to exist. Regression
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technique will make use of this correlation to reduce the

variance of estimation.
.-.

Analytical Formulation. If a set of

integrals I 1,.. ., are to be estimated, regression

-' can be applied to determine the minimum variance unbiased

estimators by a set of estimates 1 n....., (n Z P) such

that

E1 = aj I1 + .... + ajp Ip , j=l,...,n (2.87)

' wer ai1' j  ' j.. p

where a , j2l,...,n and i=l,...,P is a set of known

constant. If the coefficients aji in Eq (2.87) is

!. represented in matrix form,

'.

•1 ° . .-

a a]
A a a21  a . 2P] (2.88)L anl nP

and a sample consisting of N independent sets of simulated

values for 8. , then one calculates

1 N
8. = 8.. , i=l,...,n (2.89)v.. 3 N i= 1  .

to construct the column matrix

111-36

..-

p-



'%' -AF'-y

(290

n

,* - " 0 2

0 -(2.90)

-

NOW, an estimate for the set of integral I where

q'4

'p

~is given by I

4 (T ,4-1 R)-1 4T ,*-1 e(2.92)

where

"'.
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V2 1  . . . v2 n

. (2.93)

v nl . nn.

is the coainematrix for ,e and A isth

transposition of A .That is,

V. = E Ff0. - E(e .)1 fe.6 E(e.} (2.94)

which could be estimated as

A N
V. =j k~ (0i Y . (0k - . (2.95)

where 0. is calculated from Eq (2.90), and
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V2 1  2n. .

22

-9"t . .

V = (2.96)

IV

nnL 1

The new unbiased estimator is

T* (TV-i )- 'T (2.97)

Generally, it is difficult to formulate the estimators

el,...,en . This limits the applicability of the method

in real situations.

* Specialized Techniques

This group of VRTs includes those techniques

which are useful to a specific kins of problem. Some of

those techniques are not well developed or extremely

specialized. However, some of those techniques are the

only way to get a considerable variance reduction in

certain cases. In this section, the most common tech-

niques of the above characteristics will be discussed.

S'1...
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Conditional Monte Carlo. In some cases,

is is hard to estimate the parameter

e = E [¢(a)] (2.98)

where a is a random vector distributed over a space

A with a probability density function f(a) . This may

be due to the complexity of f(a) One way to deal

with such a problem is to embed the space A in a

product space C = A x B where B is suitably chosen.

Each point in C can be expressed as

c = (a,b) (2.99)

-9

and a can be considered as a function of c which

maps the points of C to A . If we sample a random

vector Y = (a,8) from C with a probability density

function h(c) , a mapping of y to a is obtained

which is a random vector of A . In general, a will

not have the desired density function f , so an appro-

priate weighting function should be used to compensate

for that.

If we choose g(c) = g(a,b) , an arbitrary real

function defined on C such that
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G(a) =f g(a,b) db ~'0 for any (a,b) (2.100)

and

h(c) 0 for any (c) (2.101)

a suitable weighting function could be

w(c) =f(a)g(c)j(c) /G(a)h(c) (2.102)

where J(c) is the Jacobian of the transformation

c=(a,b) which can be written as

J(c) =J(a,b) - dad (2.103)

Since a is the first coordinate of c ,the following

identity holds (11)

f O(a) f(a)da =f da -Ga-- f g (a,b) db
A A B

f OTa~faTgTc h( c)dadb
AxB

f J (a)w(c)h(c) dadb
c J(c)

f 0(a)w(c)b(c)d(c) (2.104)
- C
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This shows that, if a is the first coordinate of a

random vector y sampled from C with density function

h(c) , then

t = 0(a) W(Y) (2.105)

is an unbiased estimator of 6 . Here B , h are

chosen arbitrarily to simplify the sampling procedure.

The function g acts as an importance function which

should be selected to minimize the variation in t ,

and hence increase the precision of estimation.

Conditional Monte Carlo is a special case of the

AF^ above theory where h(c) is a given distribution on

C = A x B and f(a) = f(a,b ) is the conditional

distribution of h(c) given that b = b0 we have

h(c)d(c) = f(a,b) ip(b) dadb (2.106)

where *(b) is the probability density function of B

*. . and Y = (a,$) has the density function h(c) . In

this case

J(c) - h(c) / f(a,b) P(b) (2.107)

and for a given b0
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J(a,bo) = h(a,b o) / f(a) (b (2.108)
0 00

Eliminating f(a) from the weight function, we get

h(abo) J (ab) g (ab)
W(C) =-(2.109)

h (a,b) J (ao) ip (b0 )G(a)

* This leads to the following rule. Let y = (a,)

be distributed over C with probability density

function

h(c) = h(a,b) (2.110)

Then

"* t = *(c)w(y) (2.11)

where w(y) is given by Eq (2.111) as an unbiased estimator

of the conditional expression of O(a) given that B = b

It is clear that this approach requires neither sampling

from space A which may be awkward, nor evaluation of the

possibly complicated function f . Besides, we can

achieve variance reduction in the estimation if g is

- suitably selected.
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Sequential Sampling. This is not a

specific variance technique, but rather a general approach

to the use of other techniques. It is useful to apply

this technique when there is little or no apriori infor-

mation about the expected results of the simulation. In

this technique, a series of sequential simulation runs

is performed to reduce the variance of estimated para-

meters. In the first run, little or no reduction variance

*" is achieved. In the second run, parameters estimated in

the first one are used for applying other VRTs such as

importance sampling, Russina Roulette, splitting, or

stratified sampling. A third run can then be made using

/ !the improved sampling parameters and this "self-learning"

process can be carried out repeatedly with the efficiency

- of sampling improving at each stage. In spite of the

simplicity of this approach, little work on sequential

sampling has been done (2'). Considering this technique

a trade-off must be done between the required extensive

computation and the efficiency gain from improved sampling.

The sequential nature of this technqiue may lead to more

underbiased or overbiased estimation, if the initial

choice of the parameter is biased.

Orthonormal Functions. This VRT can be

"V very useful when applied to multidimensional problems.

In this method, a set of orthogonal functions over a
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region of multiple integration is defined, then a

sampling scheme is structured to permit efficient

sampling over this region from a joint probability density

function. The procedures to implement this technique are

not well developed, but the potential gain when applying

it is still high.

Adjoint Method. Frequently, when building

a simulation model, one can find a set of mathematical

I
,

equations which is adjoint or inverted with respect to

the original set. In such cases, a solution for one set

4 of equations will give the solution for the second set.

.

-4 The basic idea in applying the adjoint method as a VRT

is to simulate the adjoint set of equations which does

not represent any real process, but is easier or more

efficient to simulate. It would give a solution which

helps in estimating the original parameter direcity or

""in applying another VRT. In some cases, one can divide

the problem into two parts; in one of them, the adjoint

method is applied while direct simulation is applied in

the second part.

The adjoint method has been exploited very success-

fully in radiation transport problems because of the

precise formulation of this problem as a linear integral

equation for which an adjoint formulation can be obtained

(24).

11-45

.'
"4Sh ai dai plig h don ehda R

is~4 a to siult th- don e feutoswihde

".-* no represen. any .................. ...is easier or more



This technique needs more investigation and further

development to be generally applicable in simulation.

* Transformations. This method is a special

form of importance sampling which is characterized by

formulating the priori information about the process in

a parametric, closed form representation. That informa-

tion can be used to alter the sampling procedure by

transformation. This method has been largely employed

in radiation transport calculations where the function of

interest have an approximately exponential form (24).
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III. Selection of Variance Reduction Techniques

In the preceding chapter, basic concepts of different

VRTs were discussed. Those techniques are not equally

efficient when applied to a specific problem. The selection

of a promising technique for a particular problem can cause

considerable difficulty due to the large number of possibil-

ities available. This chapter is devoted to set general

rules for selection of the appropriate technique(s) for a

certain situation or, in other words, to show where each

C. technique can generally be used. To achieve this goal, a

summary of properties and concepts of most of the known

VRTs is given in a tabular form to help in selecting the

suitable technique(s).

For the analyst to select and implement an appropriate

variance reduction technique or techniques, the following

systematic procedure should be applied:

1. Definition of the problem information that can be

used as a basis to select an appropriate technique(s).

2. Selection of specific technique(s) that should

be considered for a given problem.

3. Setting of basic guidelines to implement the

selected procedure.

These aspects are described in the following three
is-

S. sections.

i" III-1
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" - " Definition of Problem Information

The efficiency of a variance reduction technique is
I

* strongly related to the efficiency of the use of the

known information about the problem. Primarily, it is

essential to characterize the aspects of the problem that

can help to indicate the fruitful variance reduction

technique for this problem. Helpful information items

are organized in the following table. These items are

the basic items needed for most of the techniques.

Table 3.1 presents the required useful information

that should be known prior to the selection and implemen-

tation of the suitable variance reduction technique.

n .Selection of Variance Reduction Technique(s)

The most difficult step in utilization of variance

reduction techniques is the selection of the suitable

4, technique(s) that would fit the problem of interest and

*give an effective variance reduction or reduce the required

sample size for a given degree of accuracy. This diffi-

culty can be reduced by preparing and utilizing the

information about the problem listed in Table 3.1 and

understanding the characteristics of different available

variance reduction techniques. For that reason, a compre-

hensive summary of variance reduction techniques is

presented in this section. Having the information about

the problem under investigation in mind, and understanding

111-2

- '. * 4 * .* .

-.. .. 4.. *4 . .. ... * - . . . ' . . - " . " *%' *. . .- - . -. --. ,.. . .* -. - . -° ,



TABLE 3.1

PROBLEM INFORMATION

NEEDED FOR SELECTION OF SUITABLE TECHNIQUE

1. Definition of nature of the problem relative to:

expected values (means, variances, etc.) to be estimated

sensitivities or variations of parameters of interest

possible mathematical formulations (integral equations,
expected values, etc.)

0 any sequential characteristics, such as independent path;
outcomes depend on intermediate step

input conditions which are random variables to be sampled.
2. Identification of portions of problem or parameter to be

S".estimated that can be:

0 expressed in an analytical form such as single integral,

multiple integral, differential and/or integral equations
. solved analytically, such as expected values, variances,

probabilities, etc.
- represented by apprcximate, simplified positively correlated

analytical expressions

represented by approximate, simplified negatively correlated
analytical expressions

established as relatively not important to final outomes
compared to other aspects of the problem.

Identification of variables in the problem which:

0 are very important to the expected outcome
0 are not expected to significantly impact the results
0 are strongly correlated with other variables.

4. "Location of final events or outcomes of the problem which:

;'have very sall probabilities

have very large probabilities

have outcomes relatively insensitive to problen parameters
have known probabilities of occurrence fron intermediate
stages in the problem

are linear combinations of other events or random variables

have known correlation with other events or outcomes.
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the basic idea of each available variance reduction tech-

nique, one can use the following summary of the character-

istics of different techniques to select the techniques

that could fit his problem. With the revision of the problem

information and selected technique(s) characteristics, the

most suitable technique(s) could be identified.

The following summary of variance reduction techniques'

characteristics includes description, supposed criteria of
4.

application, advantages and disadvantages of each technique
°,

(24). It also includes the typical area of application of

each technique. It should be noted that, in many cases,

more than one technique can be separately applied to the

t' problem, but each of them will deal with the problem in

different approaches. Also, in some cases more than one

technique may be applied to solve one problem in the same

time. Each of these techniques will be used in one stage

of the problem.

The most important point to keep in mind when selecting

and implementing one or more of the variance reduction

techniques for a certain problem is that the applied tech-

nique(s) will reduce the variance of only one parameter or
aspect of the problem being simulated. Using variance

reduction techniques designed for one parameter will

usually reduce the effectiveness of the simulation to

di estimate other parameters. Therefore, it is very important

111-4
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to determine all of the results which will be desired from

the simulation before searching for a suitable variance

reduction technique . When more than one quantity is to be

estimated, the chosen technique(s) should not degrade the

efficiency of any of the estimations. In many situations,

it may be advisable to implement a different variance

reduction technique for each parameter.

111-
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IV. Implementation of Variance Reduction Techniques

Once the suitable VRT is selected to be applied for

a specific simulation problem, a plan for implementing the

* selected technique should be made. In many cases, the

theory given in the literature cannot be directly used to

implement the selected technique. In this chapter, general

* guidelines to implement the more important VRTs are given

in the form of a step-by-step proced~ure. Simple examples,

to show how to apply these steps, are presented for the

most commonly used techniques. Computer programs were

written in FORTRAN V to accomplish those examples. These

P examples would give better insight of the implementation

* -- and the efficiency of the techniques.

Importance Sampling

Guidelines for Implementation. The general guidelines

that could be followed to implement importance sampling

are as follow:

1. Express, if possible, the expected value being

estimated as

I =fg(x)f(x)dx (4.1)

where x is the random variable of importance

sampling and f(x) is its density function.
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°

* 9.

2. Determine the functional form of g(x) analytically

or by selecting values of x and estimating the

corresponding g(x)

3. Select an importance function f*(x) which

approximates f(x)g(x) .

4. Select a random sample XI,...,XN from f*(x)

using a set of random numbers from U(0,1)

5. Estimate I using (2.5).

" 6. The estimator for the sample variance can be

calculated using (2.6).

Example. If it is required to estimate the probability

P(x - 1) when f(x) is given by

f(x) = .01 exp(-.Olx) (4.2)

the crude Monte Carlo will require hundreds of sample
values from f(x) to accurately determine P(l) . This

is due to the fact that x will be less than 1 in approx-

imately 1/100 of the sample values. Applying importance

sampling method could reduce the required sample size for

a given degree of accuracy. Following the above guidelines

to implement importance sampling, the value of P(l) can

be estimated as follows:

1. Express the required integral as

• .IV-2

, p



I = f f(x)dx (4.3)
0

where f(x) is given by (4.2).

2. Let f*(x) be

f*(x) = exp(-x) (4.4)

The selected importance function f*(x) will

give the opportunity for x to take values less

than or equal to 1 more frequently.

3. Select a random number Ri from U(0,1) , then

determine the corresponding X. using

X F* (Ri) = oge (/(l-R i )) (4.5)

4. Determine the values of f(Xi ) , f*(X i)

5. Repeat steps 3 and 4 for N times where N is

the chosen sample size.

6. Determine the estimator for P(l) as

N f(Xi)
P(l) = f(X , x 1 (4.6)

x 1

7. Determine the sample variance using (2.6).

The above steps were coded in a computer program using

'a

IV-3
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FORTRAN V. The code and the results are given in Appendix

A. The results are given for N = 20 .This small sample

* - size gave an accurate estimation of P(l) as .01015 (the

theoretical value is .00995 ).The sample variance was

.0252 .If crude Monte Carlo were used, it would require

* * hundreds of sample values to give the same accuracy.

Russian Roulette and Splitting

Guidelines for Implementation. To apply Russian

Roulette and Splitting, the following general steps can

be followed:

1. Determine stages of the problem in which possible

* conditions can be divided into N regions where

- *- each of them contains points of roughly the same

importance.

2. For each region choose average weight standards,

1 WA. , i=1 , N . This weight should be inversely

proportional to the importance of the region.

3. If no other VRTs are used, set high and low weight

d.standards, WH. W L. ,equal to WA. ; other-
1

wise, WH WL should be sufficiently spaced
H L

above and below W A .The spacing should pre-

vent any unnecessary Russian Roulette or Splitting

and assign approximately equal weights to histories

of roughly the same importance.
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'"* -. 4. When a history arrives at a particular stage in

region Ri with weight W , carry out the suit-

able action according to the following cases:

a. If W < WL , apply Russian Roulette by

killing the history with probability 1 -
A.

1
or letting it continue in simulation with

probability W/WA. carrying a new weight
1

WAwA.

b. If WL. < W < WH. , let the history continue
1 1

with weight W

c. If W > Wh. ,carry out splitting as follows:

(i) Determine n such that

r. ,. .S W - n i <-W
1 1

(ii) Split the history into n "daughter"

histories, starting in that point with

weight WA..
1t i W-n WAi

(iii) With probability WA , create one

1

more daughter history with weight WA.

5. Form estimate I. for each history i

I. = [ g(x-) W (4.7)

p, daughter of i

IV-5



6. The final estimate of I is given by

I = I.(4.8)

where N is the number of starting histories.

7. The variance of the sample is given by (2.20).

Example of Using Russian Roulette in System Reliability.

*Rice and Moore introduced a Monte carlo technique for

estimating lower confidence limits on system reliability

(26). The algorithm which they gave to accomplish crude

Monte Carlo requires a generation of total 3000 random

variates from the normal distribution N(0,1) .Russian

* Roulette can be applied to reduce the number of sample

values generated from N(0,1) when using "Ais algorithm.

Case 1: Series Connection of Subsystems. Consider

a system of three subsystems connected in series. The

reliability of each subsystem P.i is calculated using

pass or fail test as

1 -F.
- p.= (4.9)

1 N

where P. is the number of failures in N trials. One

can roughly say that
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r = P1 P 2 P3  (4.10)

where rs is the system reliability. In fact, each P.

is a random variable which can be considered asymptotically

normal (26), accordingly R5 will be a random variable

depending on P1 , P2 and P3 * If it is required to deter-

mine P(rs 
< R ) or P(r s _ Rx ) , a modified algorithm

* using Russian Roulette can be carried out as follows:

1. Using the data from pass-fail tests, the first

estimate of reliability of each subsystem can

be calculated as

P = 1 - Fi/n i  (4.11)

p.

the asymptotic variance is

::' P. q.

V. - 1 (4.12)
1 ni

where q= 1 - P ni being the number of

pass-fail tests of the subsystem i

2. Draw a random variable Xi from N(0,1)

3. Calculate the second estimate P. as

p. = P. + V. x X. i=l (4.13)
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4. If P1  R Rx skip steps 5 through 8.

5. Calculate P2 as in steps 2 and 3 where i=2
-.9

6. Calculate

r = P1 P  (4.14)

If r1 2 < Rx  , skip steps 7 and 9.

7. Calculate P3 as in steps 2 and 3, where i=3

8. Calculate rs as

r = P1 "P 2 "P 3  (4.15)

If r < R then

. 9. Add 1 to the number of trials where r 5  R

10. Start a new trial at step 2 and repeat for

1000 trials.

" Notice that the application of Russian Roulette

--. reduces the number of generated normal random variates

to one in some trials and two in other trials. In some

trials, we have to generate three random variates from

normal as in the original algorithm. The total number of

reductions depends on the values of P1 F P2 ' P3 and Rx

The above algorithms have been coded to a computer

program in FORTRAN V which is attached, along with the

*results, in Appendix B. The attached results are obtained
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"' when P1 ' P2 and P3 are .7, .8 and .8, respectively.

and R runs from .3 to .75. The number of reductions

increases with the increase of R . When R is .75,x x

a total of 1654 out of 3000 generations from normal

N(0,1) were saved.

Case 2: Parallel Connection of Subsystems. The

above algorithm can be used to handle systems consisting

of parallel subsystems with some modifications. Suppose

:9 that we have a system with three parallel subsystems which

were examined using pass-fail tests. If it is required to

calculate P(r _ Rx ) , one can use the same algorithm
S X

given for the series case to apply Russian Roulette to

simulation with the following modifications:

a. In step 4, we skip to 9 if P 1 R

b. In step 6, r1 2  is calculated as

A Aa

r = 1 - (U - PHi- P2 (4.16)

and we skip to step 9 if r1 2  R

c. In step 8, rs will be calculated as

r = 1- (I = PI)(i - P)(i - P3) (4.17)

and we check if r _ R

"-" IV-9
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d. In step 9, we add 1 to the number of trials

where rs Rs x

The computer program for the parallel case is presented

in Appendix C, along with the results for Pi equal to

.7, i=1,2,3 and Rx  runs from .905 to .950 . The results

xxshowed that the number of reductions decreases when R

increases. When Rx was .905, a total of 573 reductions

in the number of generated random variates from N(0,1) out

of a total 3000. In another experiment, more reduction

was achieved as R was decreased.

Systematic Sampling

Systematic sampling can be implemented using the

following steps:

1. Determine the cumulative function for f(x)

Divide its range into N intervals, each of

width 1/N N should be between 5 and 50.

2. Generate n sets of N random numbers, each

from U(0,1) . Denote them by RIl,...,RIN 1

R2 1,...,R 2N Rnl,--,R nN *

3. Allocate the generated random numbers into the

corresponding intervals using

j - R..." 13.',R . =, i=l,... ,nR N

l j=I,...,N (4.18)

IV-10
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4. Determine Xij corresponding to each Rj from

x..
R = f(x)dx (4.19)

5. Estimate the integral I using (2.23) and (2.24).

6. Estimate the sample variance using (2.25).

Example. Suppose it is required to estimate the value

of the integral

-'. 1 1
e- dx (4.20)

0

using Monte Carlo techniques. In fact, the value of this

integral can be easily calculated, but it will be used to

demonstrate how to implement several VRTs. Let the

integrand of (4.20) be

f(x) = e-1 (4.21)f-,x) e - 1-T

The crude Monte Carlo procedure to estimate I requires

the generation of N random numbers from U(0,1) , then

determination of the values of f(x) at these points.

That is because the range of integration runs between 0

and 1. If the number of generated random numbers N is

small, crude Monte Carlo will give an inaccurate estimate

of I with a large variance of sample. However, one can

IV-11
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improve the accuracy of estimation and reduce the sample

variance by using one of the VRTs. Systematic sampling

can be applied to estimate I as follows:

1. Divide the range of integration (0-1) to N

intervals each of width .25

2. Generate n random numbers from U(0,1) for

each interval, then allocate them inside that

interval using (4.18). Determine the value of

f(x) at this point.

3. The estimator of I is calculated using (2.23)

and (2.24).

4. The sample variance S 2is calculated using

(2.25).

A computer program in FORTRAN V was written to estimate

the integral I given by (4.20) using crude Monte Carlo,

systematic sampling and stratified sampling. The purpose

* of that is to demonstrate the implementation of the three

techniques and to compare the results when the same sample

size and the same random number stream are used. The

results for the three methods are attached, along with the

r program code, at Appendix D. These results will be dis-

cussed in the next section.

Stratified Sampling

Stratified sampling can be implemented using the

- . following steps:

IV-12
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1. Divide the range of the variable being simulated

into N intervals of length LI , ...,L N N

should be between 5 and 50. L. can be selected
J

so that the variation of integrand is approximately

the same inside the interval j

2. Determine P. , the probability that x willb q J

be in Li as

P. = f f(x)dx , j=l,...,N (4.22)
3 xEL.

3

3. Determine the number of sample values, n.

j=l , N taken from each interval using (2.34)

and (2.35).

4. For each interval j , select a set of nj random

numbers R.. , i=l , n. from U(0,1) . Allocate

these random numbers in the specific interval j

and calculate the corresponding values of X..
13

using

j-i Xij
R. .P. + 7 P = f f(x)dx (4.23)

1] 3 p=I = -0

5. Estimate I using (2.30) and (2.31).

26. Calculate S using (2.32).

Example. It is required to estimate the value of the

integral given by (4.20) using stratified sampling. The

IV-13
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above steps can be used to implement the technique as

follows.

1. The range of integration (0-1) was divided into

N = 4 intervals.

2. The length of each interval Li was chosen to

have the same variation of f(x) in each interval.

The intervals turn out to be (0-.36) , (.36-.62) ,

(.62-.83) , (.83-1)

3. For each interval, four random numbers were
generated from U(0,1) and allocated inside the

interval. The value of f(x) corresponding to

each random number was calculated.

4. The estimator of I inside each interval j was

calculated using (2.31).

5. The final estimator of I was calculated using

(2.30).

6. The variance of estimation was calculated using

(2.32).

The computer program in Appendix D performs these steps

to implement stratified sampling. However, it also per-

forms systematic sampling and crude Monte Carlo as stated

before. Results for the three methods are also given in

Appendix D. From these results, it is clear that the

stratified sampling method gives the best estimation among

the three methods. The estimator of I (= .4153) is" the

IV-14
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nearest to the exact value of I1( .418) .Also, the

method gives the lowest sample variance (.0174) .In fact,

the estimations of I given by crude Monte Carlo, systematic

sampling and stratified sampling were .3834, .4396, .4153 and

the sample variances were .1198, .0220, .0174, respectively.

These results give an idea about the efficiency of each of

the three methods, taking into consideration the additional

computational effort done in the last two methods.

Expected Value

When expected value technique is applicable to a certain

simulation problem, the procedure to implement the technique

will differ according to the role of the random process,

which can be replaced by its expected value, in the overall

simulation. In fact, one of the following cases will fit

the problem under consideration. For each possible case,

guidelines to use the technique are given.

1. If the process to be replaced by its expected

value is a selection of a random variable y from

a density function f(y) ,set

y =E [f(y)] (4.24)

and continue the simulation.

2. If the process represents a decision between

terminating or not terminating the history, let

IV -15



*the history continue in simulation carrying a

weight Wnew given by

Wnew = Wold s (4.25)

where P is the probability of survival of the• S

history at the decision point and Wold and Wnew

are the weights of the history before and after

the replaced random process. For any parameter

being calculated, an estimate for each history can

be made by summing the contributions from that

history; that is,

A"

I = Wj g(x) (4.26)
Si. j ) )

where Wij is the weight of the ith history at

the time of the jth contribution to the final

result. The final estimate for the parameter is

given by

1 N
I -- - I. (4.27)

and the sample variance is given by

S2  N N 12 A

2 -1N L - 2  (4.28)R---1. i=l 1
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When the contributions to a parameter from a

history come from the terminations in the replaced

process, the loss of weight at each step is the

proper measure for the expected termination; in

this case I.i for the ith history will be

I. = old,ij (1-P) S g(x. .) (4.29)

where j denotes the jth occurrence of the
A 2

replaced event in the ith history. I and S

are calculated as before using (4.27) and (4.28).

3. If the replaced process represents a decision

between two branch points, the history must be

split and followed from this point as two separate

histories, one at each branch carrying a weight

equal to the branching probability. To estimate

I and S 2  , formulas identical to (4.26), (4.27)

and (4.28) can be used where the contributions

from all daughter histories are considered.

Statistical Estimation

Statistical estimation can be implemented when

applicable using the following steps.

* . 1. Identify the stochastic process in the simulation

1/ which has the desired final outcome as one possible

alternative.
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2. When the process of interest is encountered in

simulating a history, score the following

contribution

• ..

.- g(X , Yf ) f (Yf/X)

" _jwhere g x,y) is the function being integrated

by the simulation, Y f is the desired final outcome

of the process, X denotes the current state of

all other variables in the system, and f(Yf/x) is

the conditional probability of obtaining outcome

Yf given X as the status of the system.

3. The simulation should not be modified, but the

stochastic process of interest is modeled by

selecting Y from (y/X)

4. If the outcome of step 3 is Yf ,no additional

scoring is to be made. The contribution of this

step remains g(xiYf) f(Yf/Xi)

5. Estimate the total contribution of history i as

I.= ,g(X, 'Y )f(Y/. (4.30)

i i f f/i)

where j runs over all occurrences of the particu-

'S'

lar process being estimated in the ith history.
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6. The estimation of I and S2 can be calculated

using (4.27) and (4.28).

Correlated Sampling

., If there are two similar simulations involving only

a single random variable and it is desired to estimate

= 1 - 12 (4.31)

where

I1 = f gl(x)f 1 (x)dx (4.32)

12 = f g2 (y)f2 (y)dy (4.33)

then correlated sampling can be implemented in this case

as follows.

1. Generate N random numbers Rl,...,RN from U(0,1)

2. Generate a random sample X1 ,...,XN from fl(x)

and another sample of the same size Y ,Y2,..YN

from f2 (y) using

, X 1 Y 1
R = f f 1 (x)dx = f f2 (y)dy

i-l, ..N (4.34)

3. Estimate A using

1 IV-19

0 7



1 N
A = N A. (4.35)

where

= (Xi) - g 2 (Yi) (4.36)

4. Estimate the sample variance using

VN

2 _ N 2 2
4. S -! A. _ A 1 (4.37)

i=l 1

Notice that the variance will be greatly reduced

if f 1 (x) is similar to f2 (y) and gl(x) is

similar to g2 (y) , that is because the two

random samples XI , ...,XN and YI' *" 'N will

be highly correlated.

Control Variates

Control variates technique can be implemented using

the following steps to evaluate the integral I=fg(x)f(x)dx

1. Express the parameter(s) to be estimated in

integral form.

2. Obtain an approximate function h(x) for each

parameter I . The expected value of e of

h(x) should be known.

3. Estimate the integral I1

IV-20

4. - . ," ." *." . -.. ." ". . . . .



P.

00

= [g(x) - h(x)] f(x)dx (4.38)
0o

as
N

Ni = N [g(X i ) - h(Xi)] (4.39)

where Xl,...,X N  are a random sample generated

from f(x)

4. Calculate the final estimator of I as

I = 0 + (4.40)

5. The variance of estimation can be calculated as

2 N 1 2 ^2=NX [g(X) - h(X1 )] } (4.41)Ni= 1

Example. The above steps were used to estimate the

value of the integral given by (4.20). Again, the same

integral is used to compare different techniques. The

approximate function was chosen to be

h(x) = x (4.42)

which has a mean value .5 at the range of integration

(0-1) . The steps were coded in a computer program written
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in FORTRAN V which is attached, with the results, in

Appendix E. This method estimated the integral I given

by (4.20) as .4255 with sample variance .0016 when the sample

size was 20. It should be noted that the accuracy of esti-

mation depends on how far the approximate function h(x)

mimics f(x)

Antithetic Variates

To implement this technique, one should find two

ne3atively correlated estimators for the parameter of

interest. A linear combination of these two estimators

can form a third estimator which would have a smaller

variance than the variance of either of the original

- . estimators. Steps to implement antithetic variates

* technique can be as follows:

1. Put the parameter to be estimated in integral

form as

I-= f g(x) f(x)dx (4.43)

.°°0

2. Select a value for the parameter -x between 0,1.

3. Generate a set of N random numbers from U(0,1)

denote them RR 2 ?...OR

4. For each R , calculate two negatively correlated

random variates Xi , X This can be accom-1 1 •

plished using

IV-22
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x.
a f f(x) dx (4.44)

.- o

1- a R. f dx (4.45)
1 " f~dx

5. Calculate the values of the new random variable,

0i = a g(X.) + (l-a)g(X ) , i=l,...,N (4.46)

6. Estimate I using

,, 1 N0[ = N ~ x[8 (4.47)

a. 7. The variance of estimation is

: N.- s 4 1 2 "2
{-I 1 6. - 2  (4.48)

Notice that a can be simply taken equal to 1/2 or an

iterative process can be used to determine the optimum

value of a which gives the minimum sample variance.

Example. Considering again the evaluation of the

integral I given by (4.20), one can use the above steps

to implement antithetic variates technique as follows:

.



e x
1. I = e- 1dx (4.49)

2. g(x) = e -1 (4.50)
e-

3. Let a= 1/2 initially

4. Generate Ri  from 11(0,1)

5. X. = Ro (4.51)

1 1
6. X' - R, (4.52)

:- 7 e. = a g(X.) + (1-a) g(X') (4.53)

8. Repeat steps 4 through 7 for N times

9. Estimate I as

A^ 1 N^
.. - 8 e(4.54)

The above steps were coded in a computer program

which is attached in Appendix F. The value of a was

changed in the range (.5-.95). The results are attached,

also in Appendix F. From these results the accuracy of

estimation appeared to be sensitive to the change of a
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Among the chosen values of a ,the initial value,

a = 1/2 ,gives the minimum variance equal to .0004 which

indicates that this method can achieve a great gain in the

efficiency of estimation when compared with crude Monte

Carlo with small additional computational effort. Notice

that minimum variance is the criteria of accuracy of

estimation in this case since the estimates resulting

from using antithetic variates approach are unbiased.
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V. Application of Variance Reduction Techniques

The earliest applications of VRTs were found in particle

and radiation transport problems where very low probabilities

are involved (20) during the 1940s and 1950s. In those days,

the objective of applying VRTs was to compensate for the low

speeds of computers which were frustrating when dealing with

such problems (28). In the past two decades, computer speed

has increased tremendously. This decreased the attention

given to the development and application of VRTs for a while,

then an increased demand for applying VRTs appeared due to

the increasing complexity of problem simulations which would

consume a great amount of computer time or result in reduced

estimation accuracy if none of the VRTs were employed.

Recently, VRTs have found a wide appiication in almost

all simulation areas: inventory simulation (6), queuing models

simulation (10), network analysis (8), reliability studies,

stationary (13) and non-stationary (14) simulation models,

population growth, and simulation of Markov process (12).

In this chapter, examples of these applications in the fields

of inventory simulation, queuing simulation and computer

performance measurement are presented. The aim of presenting

these examples is to show how VRTs can be applied in such

fields.
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Application of Variance Reduction Technique for

Inventory Simulation

Stockout in inventory control systems should be rare

events. Therefore, variance reduction is an important

experimental design issue to estimate accurately the mean

values of those rare events in a simulation model.

Many VRTs are applicable to inventory models. Control

variates, antithetic variates and conditional Monte Carlo

methods are among those suitable techniques (6).

Ehrhardt (6) studied the use of each of those three

techniques to reduce the variance in estimating the para-

meters of an inventory model. He combined two of them to

achieve more reduction in variance of estimation. He

concluded that conditional Monte Carlo is the best sole

technique in reducing the variance when applied to the

underlying inventory model. He also concluded that combin-)

ing conditional Monte Carlo with either of the two other

techniques would improve the variance reduction attained by

the sole technique. Those conclusions were drawn from

experimentation with the following inventory model.

The Inventory Model. A multi-item inventory system which

is observable at discrete intervals of time was studied.

Each of its items has an (iid) demand from one period to

another. An order, when placed, is delivered after a fixed

number of time periods L ,and any unfulfilled demand in

a period is backlogged to be satisfied later.0
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The inventory cost in the model consists of a fixed

set up cost per order k ,a holding cost per unit per

period h ,and a penalty cost per backlogged unit per

period P

Only partial knowledge of the demand distribution is

available to the decision maker. Two policies, containing

different degrees of information, were considered. Each of

the two policies is of (s,S) type where s is the lower

inventory replenishment level, and S is the upper inventory

level.

The first policy, called the Empirical Normal Approxi-

mation policy, requires the knowledge of only the mean and

the variance of the, assumed, normally distributed demand,

Hand c2 .This policy can also be called the constant

policy since s and S are considered constant in this

case. In fact, expected values of the operating character-

istics of the system can be calculated directly without

simulation in this case using an analytical approach, but

the author (6) used simulation only to compare this policy

with the second policy.

The second policy considered is called Statistical

Normal Approximation policy. In this case, only sample

statistics of demand are available. The decision maker has

to revise his policy periodically since he would not know

that the demand distribution is stationary. During each

revision interval, the sample mean and the variance of
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I demand are computed. These statistics are substituted for

the actual mean and variance of the demand distribution to

give an (s,S) policy to be used in the next interval where

new statistics are collected. It was required to develop

efficient simulation techniques to evaluate that policy.

The simulation experiment was designed to estimate mean

values of the following five operating characteristics of the

system.

1. Holding Quantity: the average number of units

on hand at the end of a period.

2. Stockout Quantity: the average number of units

backlogged at the end of a period.

3. Stockout Frequency: the fraction of periods in

which demand is backlogged.

4. Ordering Frequency: the fraction of periods in

which an order is placed.

5. Total Cost: the average total cost per period.

The objective of the study was to identify the suitable VRTs

that yield low variance estimate of the expected values of

the five operating characteristics for a given cost of

computation.

Simulation Techniques. To estimate the expected values

of the five operating characteristics, four simulation

techniques were used; crude Monte Carlo (direct simulation),

antithetic sampling, control variates and conditional Monte

Carlo. When using each of these techniques, the vector
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(I X = {xi, i=l,2,...,N} represents the stochastic process of

output of an N-period simulation of an operating character-

istic. For any of the five operating characteristics, the

expected value will be

1N
= limit 1x. (5.1)

N )-C Ni=l i

Using the simulation method, j will estimate p as N

for N periods.

Direct Simulation (Method 1). Using crude Monte Carlo

the actual realizations are collected as simulated and

is estimated as N

I X (5.2)
N i=1

the variance of this statistic is

(1) 1 N 1 N N
Var U - I Var Xi + - I I Cov(Xi,X.) (5.3)

N N2 i=l N i=lj=l,J1

Antithetic Sampling (Method 2). To apply the antithetic

variates in this study, direct simulation was applied to the

first N/2 periods, then the simulation was restarted where

the antithetic variates were used to the second N/2 periods.

That is, if the set U of uniform deviates, U.,i i=1,2,...,N/2)

is used to generate the first N/2 demands, then

{(l-Ui), i-l,2,...,N/2) is the set of deviates used to

V-5
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* generate the second N/2 demands. The estimate of is

(2) - N/2 +

P - NL x. + x. (5.4)
N N i= 1 i 1i

where x is the operating characteristic output when using

the antithetic stream of deviates. The variance is given by

(2) 2 N/2
Vart - [var xi + Cov(xi,x')]

N N2 i=l

2N12 N12
+ 2 I I [Cov(xixj) + Cov(x.'x )] (5.5)

N2 i1l j=l1 1)

ij

To achieve a reduction of the variance, the covariance terms

.1 (2)in (5.5) should be sufficiently negative to make VarN <

Var(l) Which is not always true.
N
Control Variates (Methods 3a and 3b). To apply control

variates approach, an approximate model should be simulated

along with the model of interest. For a given operating

characteristic x* = {xt, i=l,...N} denotes the stochastic

process of output for the approximate model simulation, and

1 N
*= Lin X (5.6)

N i

is the expected value of this output. V* is assumed to be

known exactly. The control variates approach estimates i as
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(3) 1 N
= 1  X ri  (5.7)

N i1

where

ri = xi -8(x -W *) (5.8)

(2)
and 8 is a constant. The variance of p is given by

N
(3) 1 N

Var = E [Var x. + 82 Var x# - 2$ Cov(xi.,x)3
N N2 i1 1 1

1 N N
+ N Ecov(,x) + 82 Cov(xj'X)

N2 i=l j=l,jxj 1x)

- Cov(x.,x.) - a Cov(xi,xt)J (5.9)

This variance depends on the chosen value of the constant 8

It is difficult to determine the value of 8 that will
(3)

minimize Var V . The study used two common approaches
N

for the choice of 8 • Method 3a uses the regression

estimate of 8" while 8 is set to be one in Method 3b.

In both cases, the expected values of the operating charac-

teristics from the Empirical Normal Approximation are control

variates for the statistical policy simulation.
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Conditional Monte Carlo (Methods 4a, 4b, 4c and 4d).

To apply the conditional Monte Carlo technique to the

considered inventory model, the following notations have

been used. Let w = {w1 , i=l,...,N} be a seauence of

vectors specifying the state of the simulation at each

period. Let v = {vi , i=l,...,N} be a sequence of condi-

tional expectations

vi = E(xi/w i ) (5.10)

The estimate of v is given in this case by

(4) N= 1 v i  (5.11)

N i l

with a variance of estimation given by

(4) 1 N N N
Var p = - Var v. + Cov(vi V )(5.12)

N N2 i=l 1 N 2 i=l j=l,i~j ,vj

The estimate of V and the variance given by (5.11) and

(5.12) can be used for each of the five operating character-

istics considering the following notations. Let D and

D*(L+l) be the demand in one period and in (L+l) periods.

Let Yi denote inventory on hand and on order in period i

and let si be the value of reorder policy in period i

Finally, let (a ) be the max of a and 0 . Using those

notations, the conditional expectation for the holding
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quantity is

V = EE(Y i - D*(L+l))+3 (5.13)

and for stockout quantity

= EED*(L+l) i3 (5.14)Vi

for stockout frequency

V ( 3 )= Pr (D*(L+l) > y) (5.15)

for ordering frequency

V!4) Pr (D > (Y -s (5.16)

and for total cost

= h V ( ) + P 2 ) + k V 4  (5.17)i i i i

The functions given by (5.13) through (5.16) were calculated

before simulation for a feasible range of arguments and then

used appropriately in each simulation period as the condi-

tional estimates.

Four variations of conditional Monte Carlo were examined

in the study (6):
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Method 4a: Conditional statistics are collected for all

operating characteristics.

Method 4b: Conditional statistics are collected for all

operating characteristics except ordering

frequency which is simulated directly.

Method 4c: Conditional statistics are collected for

operating characteristics except holding

quantity which is simulated directly.

Method 4d: Conditional statistics are collected for

only stockout quantity and stockout

frequency.

In each of the above cases, total cost is taken as the

weighted sum of the other characteristics.

Combined Methods (Methods 5a and 5b). When the results

of Methods 1 through 4 were available, the author combined

-..tithetic sampling and conditional Monte Carlo to get two

mixed methods:

Method 5a: Method 4a with antithetic sampling

Method 5b: Method 4b with antithetic sampling

Summary of the Results

When simulation was performed for all mentioned methods,

variance reductions gained by applying different VRTs com-

pared with crude Monte Carlo technique were calculated.

Antithetic sampling and control variates were found to yield

meager results, while conditional Monte Carlo technique gave
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superior performance. It reduced the variance of stockout

quantity estimates by factors ranging from 1.0 to 7.6 for

the statistical policy and from 5.4 to 740 for the constant

policy. When conditional Monte Carlo was combined with

antithetic variates method, the corresponding variance reduc-

tion ranges are 1.4 to 12 and 3.8 to 460, respectively. The

power of the applied VRTs was also significant for estimates

of the aggregate total cost. Specifically, conditional

Monte Carlo reduced the variance of total cost by factors

ranging from 2.1 to 14 for the statistical policy and from

2.3 to 480 for constant policy. When combined with antithetic

sampling, the corresponding variance reduction ranges are

4.8 to 20 and 2.0 to 1300, respectively.

The author pointed out that the cost of computation was

nearly the same for all variance reduction schemes, because

the computational effort was dominated by updating the state

of the system and by output analysis in this study. This

means that the above given variance reduction factors can be

a direct measure of the efficiency of corresponding VRT

relative to crude Monte Carlo.

Application of VRTs in Queuing Problems

Another example of the fields of application of VRTs is

the simulation of queuing problems. Many studies have been

accomplished concerning the application of VRTs in this field.

one of these studies (10) was done by Gayer where different

Monte Carlo techniques were discussed and then applied to
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queuing examples. The bases for straightforward Monte Carlo,

antithetic variables, stratification, control variates, and

concomitant variables methods were summarized in the paper

The basis for the last method is worth mentioning since it

has not been discussed before.

Concomitant Variables

Suppose that realizations of the random variables

X (inter-arrival times, service times, etc.) are used to

create the realization of W (waiting time of an individual

in the queue), where

w f(x(J) (5.18)

Commonly, WOl) and X!j ) are monotonically related and

then

Cov NO )  ()] = c. (5.19)

where ci is either positive or negative. In fact,

EExJ) 3 = E[Xi] (5.20)
2. 1

since X is a given specified input. When sampling only

k times, the realized X -values will deviate from their

means. Then a linear correction to simple average will be

needed
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EEIWc = W + Y Yi (X - E[XiJ) (5.21)
i=1

where yi can be estimated in terms of the covariance of

W and Xi  , and the resulting estimate is unbiased end

consistent asymptotically as the sample size increases.

Queuing Examples

The VRTs mentioned before were well illustrated by

consideration of a very simple queuing problem. The waiting

time, wn  , of the n-th arrival to a single-server facility

can be written as

wn = max [wn - An +SnI , 0] (5.22)

where A is the inter-arrival period elapsing between then

(n-l)th and n-th arrivals to the queue, and Sn is the

service time of the n-th customer. If {An } and {SnI are
)

mutually independent sequences of (iid) random variables

with E[An] = E[A] > ES nI = EES3 , and if other moments

exist as required, then a stationary distribution for wn

exists as n * . The behavior of the system depends on

the relation between E[A] and E[S] J also, it depends on

the number of arrivals n . The following cases were dis-

cussed by Gaver (10).
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1. When EEA3 is little larger than EES3 , the

queue tends to be long developing "heavy traffic"

situation. In this case, approximate solution of

the system based on diffusion equation solution

is available.

2. When EFA3 < EES] the queue tends to grow and

little information is available. In this case,

(5.22) will be simply

wn = W A + S (5.23)

where wn will be approximately normal if A
wn n

and Sn have finite variances. The mean of w

( in this case is

E[wn3 = (n-l)(E[S] - EFA3) , wI = 0 (5.24)
n

For small and moderate values of n ,the variances

of A and S may not be finite, then one would

have to use simulation to estimate Efw .

The author (10) applied various VRTs to estimate Ew n 3 for

selected values of n ,focusing on control variates and

concomitant variables approaches. The following numerical

example was used to display the effect of selected VRTs on

the accuracy of estimation.
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Numerical Example. In a single server queuing system,

service times are taken to be exponentially distributed

(with mean P-= 10/%) and the interarrival times of

customers are taken to be constant (regular arrivals) or

exponentially distributed (poisson fashion arrivals), with

unity mean in both cases.

In spite of the apparent simplicity of such a system,

its transient response is not easily characterized mathemat-

ically. Simulation should be used to estimate the parameters

of the system or, alternatively, the diffusion approximation

would be used. Results of applying the selected VRTs and

diffusion approximation are tabulated in Tables 5.1 and 5.2

for the regular and poisson arrival cases. Discussion of the

(results in those tables is given below.

Discussion of Results

Rows (1) and (2) of Tables 5.1 and 5.2 show the

results obtained when 25 independent realizations were

averaged to estimate EEw n . The same random numbers were

used to apply antithetic variates approach to estimate

i--(a) and its variance, rows (3) and (4). Comparison of

variances in rows (2) and (4) indicates that antithetic

variates approach has produced an improvement even after

considering the additional computational effort when simu-

lating a total of 50 realizations. The improvement in

Table 5.2 is smaller than that in Table 5.1 due to the added

variability contributed by the random arrivals.
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t The simple control variable technique, rows (6) and (7),

gave better improvement for large values of n than anti-

thetic variates approach. This appears clearly in Table 5.2.

Rows (8) and (9) display the effect of adjusting the straight-

forward estimate in accordance with the concomitant variable

that equals the sum of the first n service times in

Table 5.1, while Table 5.2 considers both service and arrival

times as concomitant variables. The behavior of the concomitant

variables technique was similar to the control variables and

antithetic variables. Rows (9) and (10) display the results

of applying concomitant variables to the components of the

antithetic estimate of (3) and (4). Results in this case are

better than any of the above cases. Rows (12) and (13)

indicate the value of regression-adjusted control procedure

where regression was used to determine the value ofB0

used in the modified estimator of the mean waiting time.

E~wJ + wB 0i .. E~w*3) (5.25)

Row (4) shows the estimation of the mean of wn when

diffusion approximation was used. The results in row (14)

agree quite closely with control variables, row (6), and

regression-adjusted estimates, rows (8) and (10), for large

n
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Application of VRTB in Computer System Performance measurement

Another example of fields of applications of VRTs is

computer system performance measurement. A study in this

field (7) was performed where the antithetic variates approach

was employed to reduce the variance of estimation.

Performance evaluation of a computer system is very

important in both design and utilization phases. In the

second case, the most important and difficult problem in the

design of a measurement experiment is the determination of its

time duration since the increase of this duration increases

the cost of the experiment. On the other hand, the time

duration of the measurement experiment should be long enough

to yield a good estimate of the unknown parameters. This

( contradiction is similar to that which arises in the simulation

problems where the sample size utilized should be large enough

to obtain a good estimate of the unknown population means

and, at the same time, this sample size should be small enough

to keep the simulation cost feasible.

The above problem was solved in simulation by utilization

of the suitable VETs which, when applicable, give the required

precision using a small sample size. This fact encourages

the use of such techniques in the field of computer performance

measurement. To examine the profitability of applying VET

in this field, an experiment with an existing synthetic job

generator (described later) for the computer system was

'c. designed and performed using antithetic variates as a VET.
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t The Synthetic Job Generator

The synthetic job generator used in this experiment was

designed to model the 1/0 (Input/Output) behavior of user

jobs in a CDC 6400 computer system. The values of the

parameters of this generator were measured by employing a

trace technique which records a complete history of CPU

(central processing unit) containing the time switched between

user jobs and a history of the two disks. The synthetic job

generator was designed according to the information obtained

from tracing the re~dl system for a period of eight hours of

normal production processing. Then the designed synthetic

job generator was used to perform the following experiment.

The Experiment. A single performance measure for the

system, namely the mean job elapsed time (i.e., the mean

time a job generated by the synthetic job generator spends

in the system) was used. The population is composed of the

elapsed times of all possible jobs the generator may produce.

Its mean is to be estimated using a small sample size. Let

t nbe the mean of a sample of size n *If many samples

of the same size were drawn from the population, then

will be a random variable with a mean denoted by E(T ) and

a variance denoted by Var(tn To use the method of

antithetic variates, two samples of N/2 jobs each are used.

Let tN2be the mean of the first, and E' be the meanFN/2 N/2

of the second. The antithetic estimator of the population

0 mean is
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= a tn/ 2 + (1 -a), 2  0 < < 1 (5.26)

and the variance of * is given byn

Var fn)  a 2 Var(E 2) + (1 - a) 2Var( E/
na(* n/2 ( n/2

+ 2a(l = a) Cov( %/2En/ 2 ) (5.27)

To establish the negative correlation between the random

variable realizations in the two samples, the random variable

values in the first sample is generated using a sequence of

random numbers RIR 2 ,...,Rn/2 from U(0,1) and those of

the second sample are generated using (1-R1),(l-R2 ),...(1-).

In this experiment, n was chosen to be 80 jobs, 40 jobs

for each sample, and a was chosen to be 1/2. When the

obtained results were analyzed, the authors drew the following

conclusions.

Conclusions. The authors concluded that their experiment

to demonstrate the feasibility of applying antithetic variates

method was not completely successful, but they also concluded

that this lack of success was due to the instability of the

devised synthetic job generator they used. It is the opinion

of the authors that stochastic job generators can be designed

which have all the properties required to make the method

of antithetic variables very effective in reducing the
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LI variance of an estimator and, hence, for a given confidence

interval and a given confidence level, in decreasing the

minimum duration of a measurement run. The authors also

stated that better results would have been obtained if values

less than 1/2 had been chosen f or a

Conmment. It is clear from the authors' conclusions

that the application of the antithetic variates method in

their experiment was not completely successful for the

reasons given above. It would be better if they tried to

use other values of a to minimize the variance for a given

status of the experiment. They could also have obtained

better results if their synthetic job generator was more

stable and had the features suitable for applying antithetic

t,. variates approach. Another possibility would be to try other

applicable VRTs.
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t VI. Conclusions and Recommendations

VRTs were investigated, clarified, contrasted and

illustrated in the former chapters. From the extensive

literature review and the computed numerical examples, it

was found that none of the known VRTs is generally superior

to the others. In other words, there is no single technique

which is the most suitable technique for every simulation

problem. The condensed table (Table 3.2) of VRTs' charac-

teristics identified the fields of application of each

technique. It is clear that various techniques can be

applied to the same problem in certain fields. In this case,

one can compare the efficiency of various techniques. The

most efficient technique is the one which utilizes most

of the available information about the underlying simulation

process and gives the most accurate estimation of the para-

meters (minimizes the sample variance) with minimum computa-

tional effort. In many cases, these three extreme objectives

cannot be achieved simultaneously by one of the VRTs. Only

the involved analyst can weigh them to choose the optimal

technique suitable for his simulation problem, objectives,

and available resources. It is not practical that an analyst,

handling a real world problem, will apply several applicable

VRTs to his problem and then compare them to choose the

optimal technique. A study like this and other studies

devoted to the application of VRTs to the specific kinds of

VI-l



problems can help the analyst select a profitable VRT. The

degree of profitability will then depend on how successfully

the technique is implemented.

A possible useful extension of this work is an organized

collection of real world problems in different fields of

applications.
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APPENIDIX A

Computer Program Listing with the
Results for the Importance Sampling Example
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APPENDIY B

Computer Program Listing with the

Results for Russian Roulette Example, Case 1
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APPENDIX C

Computer Program Listing with the
Results for Russian Roulette Example, Case 2
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APPENDIX D

Computer Program Listing with the
Results for the Examples of

Systematic Sampling and Stratified Sampling
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a~~~~~'. * i. 's 1A j~cu C t L TrJ ).
STRrTIr.i"ET. £AM.L TI'NG

I T Ft
4 *A14 ****** )&* ~4 )*1*k.))['4, ~ *~**~**

f 7 120 9 9 2 0 -0 -- 1 , 0 4 5 6 9 ',

1 2 0 02, r, 4 -. . 0 - 005352'
1 :s ; ():5& /;0 925 *01'-... .) .8 2 .

A . . *j..:I. 2 .03.;,3297 * 0092.3? .0,?927-'

" 1 ,402926 .4647,1 344373
92 92.. ,51414 .392023

" "* 38668' #,60537 .34046&
4. 5 9444 ! . 4 -5 79 1672

0 95 4, 5 0 , 69 0
3 1 .69 .' 192 7.- 8 ..;'..') .669187
3 2 .755606 77P677 .686024

Z ~~~~~ 9 2, 1-.! 9 " 4 , -:,. 9 7) 4 0 G') 4

3 4 .7202.7 771260 .6766

4 1 5 o., '5 9 "3 .,., 9B3776
Ai 2' 901946 , .3.31 9740C) 8
4 3 • 933105 .98 6 8 982 2 7'' '

4 4 962E 16 .99367 9-, 0194
1,7036 .41.5363

ESTIMATE OF 'AR - .415363 VARIANIC'N' .017465
**** * * * " * *:*t T*'* ****l*** 0** 1** )kS****N ~
EN D M A S T E H
1.,300 MAXIMLIM EXE-CUTIl4 FL.
0.044 CFR SECONDS EXECUTION TIME,

FI'. QUOTA E.XCEE:'..!:.
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APPENDIX E

Computer Program Listing with the
Results for the Example of Control Variates

2.,')A 7-"

1 2 0 = i 1 i ' S F i:. 0 ,- tg : L: L E, C D N 7' F C., L r -T." 7 'i , '' J , ."

140.--:: J NrT ,F : T 5, !,,
R': :: R tr L TEF:" , T F K ., Rl '-7 S . S MT'I- A X, FU.N".

160= ,'l P: N T " 0,
170-- S.' *. 0
:E3. 80= ' -2 (::, (2
190 ,M T3 ....'0

ii C) 0

20 20 FO. F, t% T D>T E RN: T, 2 C,.
A : W F, 1 T E * (

TI' . 00 "
260= CfLI. F,:,NI:" (FN.
27 0' IT" MI F LNC ( F I4

C. T1. -"S.. M 1 TZFM1.
TER M 2:.FPX (Fi)

1(y r T E R MTER * =: ( TF R M 1 - fI 2 ) I R- W 2

32 0-: WRITE (*, 50)RA, TERM1. , TERM2, TEY7
3....0 = FI F: PAT ( 5X , 4 ( 4X, F9 .6)
330: T T3:: T 3. TER R M 3
340= 100 SMT2rFT2 TE-"M '2.... ' T'2,...:.-T'b .* 7EI M
50= T I =S' t I/,

_260- T2=SMT2/N
370:- FMEAN-TI-T2+F I
380= V A H = ( SMT-N (T-" 2) )/( N- )
390-: bWFTE(*,10)
40(0= WRIT' ( *, 109)
4.0 109 FORMAT( lIX, 'Ti ",7X. 'T2'" ,7X, ,'FMAN' ,'VAR')
420= t.' E ( , 0 )
430-': WF;ITE(*r,.') T1,T2,FMEAN,VAF.;
440 1.10 FO FMf:T' ( -7X, 4 ( I.X, F9 S.
4 ... WRITE (*, J0.)
460 ::: S T [' F'
47 0= END
4 i ,' FLJNCT I :4 F .:C ( Y)
4 0::. REA. FY Y

: F ) N :.-. (. E F ( Y)-1 / ,.7 .

520 R, 17 T 'r.: N

;4 . ,. : A _0 ""50= REAL R,S,XMTU= T EB{E:R .I ?; E-

E-1

L Iu ..... .,..



-s

$7(:: TA Tf ' Y YM 3 -37S. 132 3 5 534 7~
5?0 ... I .- :
59: It.S

620= fX 1T L!-'*,

61,q0:: j: LI 5; ,.i :r o" 0 Ffl ::
6 '5 0 -'. F-f" X=}

F + 0- EQ6.

IN7170 -T'0 ,) N Fr.i X
.. ..17 + 3 4 6 ,.: ',..3 4 "S 7:: ;1. '7 0 # , l ., .'3 r,

* ; " v . ' + ' (22 0..r 4 97'.) . t7034 6'
.3.3 .t 511232) .630365 .014 1"3

0 .185740 .'7695' .009319
.2 2 1I3 .149157 . 2'32 0

.024 1.J 6 . 01 4208: .024 16 (.) 2 , 0000;.9.

.009957 .00 Y5 .009957 .000017

.3 5. 9 , 243 3 4 9r98 ./ 011237
.03125.. 4 .054 .000494

. 7. . 006 . , 6 9 90 , 731 006 . 010819F
+ 1 01 , 0 .7 76 1-0, 2 .00341 4
. ........... .43 0., 5 9',_ + 4332,,5 .01 3,32.
*90856.' + 61113 . 908567 .02177
S8362.5 .27442.4 3 S6255 .012506
.'43985 .160S41 .243985 .006913

7 F ()79153 .047945 .07 915 3 .000974
.334626 .23 .326 .334626 .0106*71

' :...97 .6 2049 .7 5 97 .0 110-2
.,704083 .594873 .704C8. 01 19.7
.96214 97850 1 .9P6214 .000059

T T2 FMEAN VAR
*** ****~ ********lc***: *I *') *Y M*****) *144'Y

*3561494- .4301.'59 *4"25;364 .0016,658

61.300 CM EZORAGE LISED,
0.130 CF' SECONDS COMFILATION TIME.

15100 MIAXIMLUM EXECUTION FL.

0.05, CF SF CONDS EXECUTIC.N T1. F
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APPENDIX F

Computer Program Listing with the
Results for the Example of Antithetic Variates

L_ P

1 00) F'RAORM 6, THTC

120C THIS Pli:;OGRAM, IE AN EXAMPLE OF USINC2'I.TT 1 VA:IAJL.US AS
13R:C
140=r: *:*k:** **** * i:**:**:** :* ***** * ,: .-4 , * ,* ****** * *.* W* *k*
150... Al..F'HtA=. 45

1v I TE ," , - "
1 0 ::S r.. t 1 L: 0 0

27 ::0: 1.0 1 L I I CN
240= "~, EF.,r; 1 0 0"N ,.

2"2'N1 r)

26 0 = T E R. F2 A

0= TEF M 3AL.FAlA* I f I EF'iA 1 4 C 1-.PH r I( TF:K ..
2 .AO . ,,SUM 1 =SLt ].? f TE: R M'

290- 100 SUM2=SJM -f TE-M3*1 2

-F= EI2=EI**:2
'.) () .= S Uh2- N * .':' N )

W F!',E(*,20) EI,S2, AL.FPHA
340= 200 FORMAT C!. OX THE ESTIMTE ',F6.' 7,3X 'THIE V ARIC .t..= A:N

3 1 ,F4.2)
360= WFITE (*,300)
370= 300 FORMAT (1OX,5( ": ))
380= 1 CONTINUE
3 9 E -NE 1'
400= FUNCTION FUNC(Y). 41J 0= F U N C= ( F7.XP ( Y ) --.1. . 0 )1. 7 1 S2 F3I

420- RETURN
4 0= E N r.
440= FIJNC'TION FAX(X)4s--,' 0= r- ,X-zX
460= RETURN

40: RENri
• 13!0: ,.. EUTJ . I NF. flANLI R)

4 90 DATA S, XM /, 23"7,2 * 5: ,"
500::: S=SX
51 0= I ; S.

20= R=S"-I S

540:%... RFTLRN :,
E-:'

F-i



F':UN *FT N 5

6130CM ST11 OF ACE.UEli
0.121 CF, SECND C'0tPLA.T ION TIME.

THE ESTITVlTE *4427392 THE YAl16NuE= .000421S A 5 C,

THE r E> 7 T'7E A,432 31 36 mHE Vf)lIANCE:: :0016324 A .'5

THL £7I.MA'TE . 425,1094 THE' er VAINj o. 005 9 42 A .60

THE. ET I MA TE .41 7304 THE VoRsIANCE-00952O6. Al 6-5

TI : [ S T IM A T 4r .2 64 S372C THE[' VAS1'(,NCEI.r .01J1 :32 A *

THE:' ESETIMATE Z .4180123 T HE YVA IANV(CE:;. 0'257 59 6 A

r*** *4*** *** *****#.*.**4***** *'*.** *'. $A:* I44444**44*

T HE- ESTIf ATE .403091.1 THEr-Vt 'fI A N CE .04 032116- A .3

F. IP7> AF 3 37' I:8F3 TH11E V fr-TfNUCFmE-.,0416 0'- A .90

TH FE ES*I 'MAT E *4E3 4 9 THE VAFIANC=,0717330 A T5

ENDAN7THTC
15'100 fAX7IUM EXECLJTION F!.
0.'067 CI- SECONPES EXECUTION L'IME.

F-
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