
LAD-Afi8 022 SIRE: FN HUTOHIED SOFTWARE DEVELOPMENT ENVIRONMENT(U) 1/2
AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL
OF ENGINEERING D W NETTLES DEC 83 AFIT/GCS/MR/83D-5UNCLASSIFIED F/G 9/2 NL

Ehhllll~lllllE
EllllhillllllE
EIIIhlllhllllI
ElllhlllllllhE

EIIIIIIIIIIEI

,,.,

'.*1.

:i roQ ,_I'
"' ' 11,2--°

*4118

• .' - 1.2

,.%' MICROCOPY RESOLUTION TEST CHART
~NATIONAL BUREAU OF STANDARDS-1963-A

i

-!u EM 4
.p 1 1.11.1 .EM: ':: : .: .:2::: : . ::: I:-:":.-:":--: ::-::::::::" :::::i: :

,, : ,.: , , .;-.;,-.-.-,- ,::.. ...;:: :m.a.: ..

____-___________- ___ *-%. --
= '

- I *hj', .w . w b . . ii % % = . .. - . .* .

'--S. - (00

SIRE: AN AUTOMATED SOFTWARE

DEVELOPMENT ENVIRONMENT

THESIS

SAFIT/GCS/MA/83D-5 David W. Nettles

1st Lt USAF

DTIC
ELECTE

DEPARTMENT
OF THE AIR FORCE

AIR UNIVERSITY D
..- IAIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
DLMUTO STATEM~o"j, A 84 02 17T 060
Approved for public release; 8

Distribution Unlimited

. *. -:*- - *. .'; /% % *S..

.. F .0 .

AFIT/GCS/MA/83D-5

.Accession For

INTIZ GRAI
DTIC TAB "'
Unannounced
Justificatio"

Distribut ion/

Availability Codes. -Avail and/or "

-. 4,,
Dist Special

I,

SIRE: AN AUTOMATED SOFTWARE

74 DEVELOPM4ENT ENV IRONM4ENT

I. THESIS

AFIT/GCS/MA/83D-5 David W. Nettles

1st Lt USAF

DTIC
K S ECTET

A' FEB 2 11984

Approved for public release; distribution unlimited

% % ,<-V V 4 - % . . ' > ~ % .*~*~'* *%*

, ' % , . . - . -. . ./ _ . - - e . . . - ..- -. . .- , C " " - ' " -, ' .' - ' .' ." ' ,e , , . ' - ' , - . . - - - • - -. . " . • - . .

-. A~~~~-- A -J-v_ 7117 7

AFIT/GCS/MA/83D-5

SIRE: AN AUTOMATED SOFTWARE DEVELOPMENT ENVIRONMENT

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

David W. Nettles, B.S.

1st Lt USAF

Graduate Computer Science

December 1983

pv -for pr

i Approved for public release; distribution unlimited

,%'

'. Preface

'. To the memory of

Dira Anne Nettles.

The sun doesn't always shine.

.4

S...1'
U

i',

I.[,-

'P.-

Table of Contents

Preface ii

List of Figures vi

Abstract vii

Chapter 1 Introduction 1

1.1 Thesis Objective 1
1.2 Background 2

1.2.1 The Software Crisis
1.2.2 Software Engineering 4
1.2.3 Automated Environments 8

1.3 Problem Statement 12

1.4 Thesis Scope 13
1.5 Assumptions 13
1.6 Approach 14
1.7 Summary 16

Chapter 2 Requirements Definition 17

2.1 Introduction 17
2.2 Requirements Analysis 18
2.3 General Requirements 19

2.3.1 Reduction of User Burden 19
2.3.2 Reduction of Software Errors 20
2.3.3 Easy to Update 21
2.3.4 Project Management Concerns 21
2.3.5 User-friendliness 22

2.4 Specific Requirements 22

2.4.1 Automated Documentation Support 23
2.4.2 Flexibility 23
2.4.3 Integration 24
2.4.4 Language Independence 24
2.4.5 Maintainable 25
2.4.6 Open Ended 25
2.4.7 Pre-fabricated Design 26
2.4.8 Prototyping 27

4P2.4.9 Reliable 27

2.5 Requirements Model 28

..:< 2.5.1 Sire Top Level 29
2.5.2 Synthesize Software 31

- iii -

2.5.3 Define Requirements 34
S"2.5.4 Develop Preliminary Software 34

2.5.5 Develop Detailed Software 37
2.5.6 Release Software 39

2.6 Summary 41

Chapter 3 High Level Model Analysis 42

3.1 Introduction 42
3.2 Model Analysis 42

3.2.1 Analysis Guidelines 43
3.2.2 Structure Analysis 43
3.2.3 Implementation Analysis 44

3.3 Summary 45

Chapter 4 PDS Design 46

4.1 Introduction 46
4.2 Strategy 47

4.2.1 Design Representation Methodology 49

G 4.3 Design 49
, 4.3.1 Motivation 49

4.4 Design Structure Charts 51

4.5 Summary 55

Chapter 5 Implementation 58

5.1 Introduction 58
5.2 Implementation Strategy 59

5.2.1 Environment and Language 59
5.2.2 Practices 62

5.3 Summary 69

Chapter 6 Critical Analysis of Sire 70

6.1 Introduction 70
6.2 Design Analysis 71

6.2.1 Weaknesses 71
6.2.2 Strengths 71

- 6.3 Implementation 72

6.3.1 Weaknesses 72

Civ

d- -w* - : - V . -- * -v..,. .

6.3.2 Strengths 74

. ••6.4 Requirements Resolution 74
6.4.1 General Requirements 75
6.4.2 Specific Requirements 78

6.5 Lessons Learned 83
6.6 Summary 87

Chapter 7 Conclusions and Recommendations 88

7.1 Introduction 88
7.2 Conclusions About Sire 89
7.3 Recommendations 90

7.3.1 Plan to Throw One Away 90
7.3.2 Future Projects 91
7.3.3 General Sire Recommendations 92

7.4 Summary 94

Bibliography 95

Appendix A Glossary of Terms 97

Appendix B MIDAS Language Description 99

B.1 Definitional Conventions 99
B.2 Lexical Tokens 100
B.3 Syntax Description 103
B.4 Examples 106

* Appendix C System Design 109

C.1 Requirements Model 109
C.2 Structure Charts 116

Appendix D Sire User's Manual 130

D.1 General Information 130
D.2 Invoking Sire 130
D.3 Top Level Operation 131
D.4 Operation of PARS 131
D.5 Operation of RDS 131
D.6 Operation of PDS 132
D.7 Operation of DDS 133
D.8 Operation of SRS 133
D.9 Operation of Utility Tools 133

Appendix E Installation and Maintenance of Sire 135

E.1 Introduction 135
E.2 File Descriptions 135
E.3 Maintaining Sire 137
E.4 Moving Sire 138

~1*

I List of Figures

Figure Page

1. Proportional Cost of Hardware and Software 3
2. Software Life-cycle Model 6
3. Error Detection Costs 7
4. Life-cycle With Prototyping 26
5. Sire Top Level 30
6. Synthesize Software 32

i".7. Expanded Life-cycle Model 33
8. Define Requirements 35
9. Develop Preliminary Software 36

10. Develop Detailed Software 38
11. Release Software 40
12. Main PDS Chart 52
13. Edit/Compile Cycle 5414. Compile 5615. System Concept 110

16. Synthesize Software 32l
17. Define Requirements 112

.5518. Develop Preliminary Software 113

19. Develop Detailed Software 114
20. Release Software 115

i21. Exec 119
22. Menu 12023. PDS 121

24. Hierarchy 122
25. Compile Hierarchy 123

26. MID 12427. Compile MID 12528. Data 126

29. Compile Data 127
30. Utility Tools 128

i - vi-

26.. ..- .MID..... .. 124

*. .. *.% * .*.. ~

Abstract

The objective of this thesis is to perform the
preliminary design and partial development of an automated
software development environment (ASDE). This environment,
called Sire, is intended to support the design and production
of software using automated and interactive tools. Sire is to
be a system that aids the software designers and programmers
through the use of an integrated and flexible set of tools
that are intended to reduce the amount of work that is done by
humans. This reduced workload will free the system
designers/implementors for more productive work.

As part of this investigation, a partial implementation
of Sire is accomplished. This implementation allows the user
to input a system design in a specification language. Sire
will then produce a correct source program shell for the user
to use for the detailed implementation stage.

GO

.

"1L
.5. .

5.,v
i

-Chapter 1

Introduction
.aa

1.1 Thesis Objective

The objective of this thesis was to perform the

preliminary design and partial development of an automated

4' software development environment (ASDE). This environment,

called Sire, was intended to support the design and production

of software using automated and interactive tools. Sire was

conceived to be a system that aids the software designers and

programmers through the use of an integrated and flexible set

of tools. Sire was designed and implemented with all facets

of software production, use, and maintenance in mind. After

the preliminary design was completed, a portion of of the

design was chosen for implementation. The implemented portion

of Sire provides for the development of the preliminary design

and the automatic production of a preliminary programming

language source program.

'.

| -4

.4

1.*

1.2 Background

1.2.1 The Software Crisis

In recent years, the term "software crisis" has often

been used to characterize the state of the art in softw e

systems development. The roots of the software crisis, d

the key to understanding the problem, lay in the late 195 1

and early 1960's. In those days, computer software was a new

concept and people did not thoroughly understand it.

Therefore, they did not recognize the need for the proper

engineering and construction of software. Some symptoms of

this immature industry were unresponsive products, slippage of

production schedules, and difficulty in operations and

maintenance of software (Infotech, 1977: 8). Many of these

symptoms were directly attributable to the methods used to

develop software with each adding unnecessarily to the costs

of the final software product.

-. Although the cost of software development was high,

initially there was little or no motivation to do anything

about the cost. The actual computer hardware consumed the

majority of the computer system budget as can be seen in

Figure 1. Because of this, no one gave much thought to the

..- relatively small budget share allocated to software

-2-

* ' '.'' ' "-.. • . - . *. -- -.-. , - - ..-

development. Furthermore, the hardware designers believed

that the need for, and cost of, software would be greatly

reduced by the development of more advanced hardware, and

therefore more concentration was given to hardware research

and development. It was this attitude that retarded the

growth of the software industry as a science and kept it from

maturing at a rate equal to that of the hardware industry.

.

S.RELATIVE

COST

0

S160 9

YEAR

Figure 1. Proportional Cost of Hardware and Software

It soon became clear, however, that this course of events

was leading towards disaster. As larger and more complex

* .software systems were attempted, more and more software

-3-

*.<'. project failures were noted. Even those systems that worked

were often unreliable, poorly documented, inefficient, unable

to fulfill the users' needs, and in need of costly rework

(Wasserman, 1981: 16). The wonderful hardware that had been

developed was not being efficiently used due to this failure

to provide quality software. Fueled by these failures, the

cost of software development started to rise dramatically. It

was predicted that future software would soon become the

predominant factor in the cost of computer systems, accounting

for as much as 60% to 90% of computing systems costs as

illustrated in Figure 1 (Infotech 1977: 7). With the common

development failures and the predicted expense for software,

it became increasingly clear that something needed to be done

to assure better quality software at a lower cost.

1.2.2 Software Engineering

"Software design technology is a system - not a secret"

(Peters, 1981: 3). While this may be true, it seems that the

fact that there was a system was a secret until around 1968.

It was at this time that the term "software engineering" was

first used. This term was chosen to emphasize the idea that

the proper design and construction of software should be

viewed not as some mystical art, but rather as an engineering

discipline (Wasserman, 1981: 16). Development of the

discipline of software engineering was started in the early

1970's and continued mainly as academic exercises that had

-4-

*1""" " v ''" ' ''v ' ' '"' . 'i;2

- little or no affect on software development until the mid to

late 70's. As a result of these research efforts, there were

many methods and techniques developed that were intended to

-aid the production of high-quality software systems. Today,

the term software engineering is used to describe this

collection of practices, techniques, and methods.

Software engineering literally encompasses all activities

associated with producing software (Peters, 1981: 6). These

activities are generally associated with some model of the

software development process such as the software life-cycle

model depicted in Figure 2. This "waterfall model" of the

software development cycle is denoted by the neat, concise,

and logical ordering of a series of steps that occur in order

to complete and deliver a software product (Peters, 1981: 12).

Although depicted as a step by step operation, each of these

steps sometimes blur into each other during software

development. They may also take place in parallel.

Therefore, a more general model might be to break the

development cycle into three phases as follows:

1) Analys-s and Design
2) Implementation
3) Use and Maintenance

These phases encompass the waterfall model with the advantage

that it is easier to discuss generalaties with this simple

model.

REQUIRE NTS
'DEFINITION

PRELIMINARY
~DESIGN

- DETAILED
'- DESIGN

S.

' "iCODING I

T..ES

.! Figure 2. Software Life-cycle Model

•,Nearly all software engineering methodologies and

-.

techniques were developed with full support of the software

life-cycle in mind. However, the key word in the last

sentence is support." Some methods provide a greater degree

of support for one phase and less for others. Commonly,

software engineering techniques concentrate on the Design and

4Analysis phase with the belief- that proper design can

• eliminate the majority of the errors that occur in software

i systems. Studies have shown that 64% of the errors that occur

2"2 .-" in projects are introduced in the Analysis and Design stage,

a.6

-U' 6

5'". ""'""" . j..•,,.; ',. ,: . ,., ,,,: ..-. ,L.. ! -.-. . . .

.46

before the Implementation stage begins. The earlier these

errors are detected, the less it will cost to correct them, as

is shown in Figure 3. These techniques usually do little for

the Implementation phase and provide even less support for the

Use and Maintenance phase. The reason for this is that more

support provided for each phase means more work for the user

and more work means greater cost. Therefore, current software

engineering methods properly put emphasis on the Analysis and

Design phase in order to realize the greatest cost benefit.

100

50
RELATIVE
COST TO
CORRECT 20
ERROR

10

2

RQMNTS PRELIM DETAIL,, CODING TEST INSTALLATION
DESIGN DESIGN

PHASE IN WHICH ERROR IS DETECTED

Figure 3. Error Detection Costs

a' %

4%.

-7-

:A*-7:A

1.2.3 Automated Environments

As has been noted, software engineering methods and

techniques were developed to ease the software development

process by the application of proper engineering methods. The

problem with these techniques and methods is that, for proper

use, they generally require the imposition of a discipline on

the users. The discipline is necessary in order to make the

users of the method follow all the steps outlined so that the

end product will be as specified by the method. This

discipline must be imposed by management and is usually hard

to control because it generally implies a great amount of

bookkeeping, illustrating, and consistency checking, and all

these are usually an unpopular added burden to the people

responsible for the tasks. Given this, and the realization

that the methods and techniques of software engineering do not

completely support the life-cycle, a major new thrust of

software engineering research is in the field of Automated

Software Development Environments (ASDE).

By using the full potential of the computer to automate

one or more of the methods or techniques of software

engineering the user can be relieved of much of the'tedious

tasks associated with the methodologies and the use of a

methodology benefits the support of the life-cycle. Also,

more support can be given to all phases of the life-cycle

-8-

since most of the work done in each phase is done by the

computer. A software development environment is a collection

and integration of software development tools that are

intended to adequately support the entire software development

life-cycle. The classic environment consists of tools such as

text editors, debuggers, compilers, and linker/loaders. The

problem with these tools is that although they are adequate

for their intended purpose, they do not utilize the full

potential of the computer in supporting the software

life-cycle. The current intent is to develop an ASDE that

will provide an environment that incorporates all the

functions of the classic environment along with integrated

support for one or more of the software engineering

methodologies. Therefore, the environment must perform the

classic functions and it must invoke the discipline of a

software engineering methodology, along with providing all the

bookkeeping support required by the method.

ASDE's can be envisioned as a three dimensional space.

The first dimension is the amount of automation that is

provided the user of the system. Here, automation refers to

the amount of work that the system takes on for the user in

order to relieve the user of unnecessary burden. The second

dimension is the amount of discipline imposed on the user of

the environment as far as the underlying software engineering

methodology is concerned. Finally, the third dimension is the

amount of integration between the tools of the system.

- 9

VS*li .-i' S-i --.

Automation is very important in an ASDE because it is

this ability of the system to do work for the user that makes

the user desire to use the automated system instead of doing

the work manually. The main feature. of an ASDE is it's

ability to assume the burden of the work in order to relieve

the user of the onerous tasks that are unrelated to the

'S solution of the problem.

"This means that he can focus on the important
issues and achieve a correct solution to his problem
more quickly. Secondly, being freed from the
responsibility of working out the details, he moves
up to a higher conceptual plane, which is closer to
the terms in which he conceives his problem" (Hammer
and Ruth, 1980: 769).

Discipline is necessary in an ASDE so that the underlying

" j methodology is adhered to. This is necessary if the ASDE is

to aid in producing quality, well engineered software. The

last dimension, integration, is also vital to this morphology

because a fully integrated environment is easier to automate.

Also, the amount of integration indicates the smoothness with

which the user will flow through the system, thus providing

less interruption of the thought processes.

At the present time, research into ASDE's is branching

into two major paths. The first path is one in which the ASDE

is a collection of tools which are defined by the system

builders in order to support a specific software engineering

method. The collection of tools is firmly fixed and can only

S.,' be changed by a new system release. The advantage of such a

- 10 -

-

* -system is that the discipline may be firmly embedded and is

hard to subvert. Also, the system is provided as one

integrated environment and is standard in every organization.

The disadvantage is that the discipline imposed may, or may

not, stifle imagination and inventiveness. Another

disadvantage is that the system may not fully meet the needs

.J of the organization and because of the inherent inflexibility,

it cannot be easily modified.

The second path of research leads to an ASDE which is

basically a "tool kit" approach. In this type of environment,

a minimum set of tools have been defined in such a manner that

it is easily extensible. The working environment will,

obviously, vary from organization to organization depending on

the needs of the organization. This approach, which is a

descendant of the classic environment, is more useful because

of the flexibility, but will also be non-standard across

implementations. Also, these types of environments tend to be

composed of many small tools and the amount of integration

will tend to be small. Therefore, the user's journey through

the system will tend to be choppy and disjoint. Another

drawback to the added flexibility is that the introduction of

new tools to the system will make it easier for the user to

subvert the discipline of the software engineering methodology

that is being used.

The great amount of difference in the two approaches

~- 11 -

i

highlights the complexity of the subject of ASDE's. This

statement is substantiated by a noted expert on the subject of

software development environments, Leon Osterweil of the

University of Colorado.

"The task of creating effective (development)
environments is so difficult because it is
tantamount to understanding the fundamental nature
of the software process" (Osterweil, 1981: 35).

In fact, the optimal environment for most applications is

found by extending the three dimensions of the software

development space as far as possible. In addition, the

environment concerns should include the concepts of

-* user-friendliness, life-cycle support, consistency,

" traceability, explicitness, documentation capabilities,

testability, and the capability of updating (Osterweil, 1981:

36-37).
4.,

1.3 Problem Statement

The Air Force software community has exhibited a great

need for any tools that help to produce quality software at a

reasonable price. Automated software development environments

that embody the concepts of software engineering and

life-cycle support are believed to be such tools. The

objective of this thesis is to define the basic framework of

an ASDE. After this basic design is completed, the key tool

-12 -

in the system is identified. This key tool is defined as the

tool around which a complete, fully integrated system can be

constructed. The final phase of this thesis is to design and

implement this key tool.

1.4 Thesis Scope

As implied in the background section of this chapter, the

specification and development of an ASDE is a complicated and

little understood process. This thesis investigation

represents an initial attempt toward the realization of such a

system. The specification and preliminary design of Sire, an

ASDE, along with the detailed design and implementation of a

key tool sets the stage and tone for the continued development
a.

of the Sire system.

1.5 Assumptions

.l

'S The implementation of.the Sire system is hosted on a VAX
.11

11/780 computer under the UNIX operating system.

S.Therefore, full use of such items as system tools and the

*.. virtual architecture is implied. This choice of operating

.5 ." 1. UNIX is a registered Trademark of Bell Laboratories, Inc.

-13-

'I.

_. . . .-.. '-

-.- ° - ~..-...

Ssystem, with resident tools, also drives the choice of the

main implementation language towards the "C" progran.iing

language because of the ease of interface with the operating

system that this language enjoys.

When implementing the key tool of the Sire system, the

major concerns of the project were correctness, usefulness,

*ease of maintenance, ease of understanding, completeness, and

on-time delivery. Therefore, such topics as optimization for

time and space were only considered when they did not

interfere with the main concerns of the project.

1.6 Approach

- . As with any software development project, or any research

project, this effort began with an extensive search and review

of current literature concerning software development. Of

particular relevance were the fields of software engineering

and software development environments. The main thrust of

this literature review was to gain a thorough understanding of

* the software development process, the methodologies used to

support the process, and to understand how the methodologies

can be supported best by automated means.

The next step after initiating the literature review was

" . to start the actual software development process for the Sire

'1

, - 14 -

... ,. ,- .. .- ° ... • -, . .- :.'..-.- .*.'- '. -.. .'-.

project. As discussed earlier, the first stage of the general

process is Analysis and Design. Refering to Figure 2, it can

be seen that the first step is to begin the identification of

* requirements that are used in the remaining portions of the

life-cycle. Many of the requirements are gathered from

lessons learned in the literature review. The requirements

analysis stage produced two important results. First, it

provided a high-level model of the system to be developed, and

it established a set of parameters and criteria against which

the Sire system could be developed and evaluated.

The next stage of the Analysis and Design phase is the

preliminary design stage. At this point, the project diverted

from the normal software development life-cycle. The first

concern during this stage was to develop a preliminary,

high-level design of an ASDE. After this design was

completed, it was evaluated to determine which part of the

design was most critical. The critical part is defined as the

part which has the most influence on the overall design of the

system. This part, if designed and implemented correctly,

will ease and drive the design and implementation of the rest

of the system. In a normal system development process, the

project would continue down the "waterfall" of the

life-cycle. However, since the stated objective of this

project is to fully develop only a portion of the Sire system

then this is as far down the waterfall as this part of the

project proceeded.

- 15 -

Instead, the next step was to start back in the Analysis

and Design so that the entire life-cycle process may restart

and the critical, or key, part of the Sire system could be

- correctly and fully developed. The dcvelopment of this part

spanned the entire life-cycle.

1.7 Summary

The software development process can be viewed as a very

complicated process that is not very easy for one person to

fully comprehend. Therefore, the use of computers is being

explored in an effort to make the development process a little

easier to use with the hope that "better", more coirect

programs are developed. The specific goals of this project

are to define, design, and develop a tool, or sub-system,

around which a full environment can be constructed. This is

attempted by applying well-defined software engineering

principles, as well as common sense, to the development of an

environment that is geared to the human-oriented support of

every phase of the life-cycle.

16

* -. 6 -

A..

Chapter 2

Requirements Definition

2.1 Introduction

Requirements analysis is the process of defining the

complete and explicit statement of the problem to be solved.

"It focuses mainly on the interface between the
tool and the people who need to use it. Other
aspects - such as time, costs, error probability,
chance of fraud or theft - must be considered among
the basic requirements before an appropriate
solution may be chosen. Requirements analysis can
help understand both the problem and the tradeoffs
among conflicting restraints, contributing thereby
to the best solution" (Zelkowitz, 1979: 3-4).

Once all requirements are identified, it is common practice to

attempt to compose a document that contains a complete,

explicit, and unambiguous statement of the system requirements

(Hadfield, 1982: 23).

This document, referred to as a Requirements Definition

Document (RDD), should contain both a textual description of

all requirements as well as a high-level model of the system.

This model, usually in some graphical form, should exhibit all

the requirements set forth in the textual description in both

- 17 -

..

- - - -.- -.- -.- -.

an explicit and implicit manner. Upon completion, the RDD

should provide a description of the system and the system's

fundamental objectives. These two should be detailed enough

to provide a set of parameters and criteria against which the

system can be developed and evaluated.

2.2 Requirements Analysis

A major portion of this project was the review of current

literature pertaining to the proper development of software.

Therefore, the knowledge gained in this review had a great

* influence on the overall project. It probably had the

i , greatest impact in the area of identifying the goals and

concerns of the Sire system since many of these were taken

from the goals and concerns of current research in similar

projects.

Most often, requirements are presented in two levels.

The first level usually consists of seven or fewer general

requirements. These requirements apply to the entire project

and are best thought of as the ideals, or inspiration, of the

project. These ideals are specified at such a high level that

no specific goals or requirements can be gleaned from them.

They provide the guidelines for the second level of

requirements.

-18 -
* ... ,-.

As implied, the second level of requirements are the

specific requirements. These are concrete enough that the

system designers can use them to drive the design of the

system and to provide detail. Note that the specific

requirements may seem to belong to two or more different

general requirements.

2.3 General Requirements

The definition and specification of general requirements

for a project is a very important starting step. Therefore,

the following requirements were carefully selected from a list

of general requirements because of their relevance to the Sire

project.

2.3.1 Reduction of User Burden

As mentioned in earlier sections, the main job of an ASDE

is to support the user in the production of quality software.

In doing this, the environment should try to aid the user by

* not only adding tools and other facilities, but it should make

4 -~it easier for the user to perform the task of software

production. "Reduction of the User Burden" is a term that

indicates that the ASDE should provide the user with greatly

expanded capabilities while making less work for the user.

- 19 -

w . .- --

2.3.2 Reduction of Software Errors

Although it is mentioned several places that the

objective of any software project is to produce "quality"

software, the term quality is never defined. It is intuitive

to most people that the amount of errors in a program reflect

negatively on the quality of the program. This is especially

apparent when the potential cost involved with software errors

is realized.

In the most extreme example, software errors may cost

lives when the software in the flight program controlling an

airplane fails. Simple software errors that occur frequently

in the development of software may be responsible for costly

. budget overruns and schedule slippage. Persistent software

errors cause operating problems for the end-user of the system

and may cause problems such as bad operating decisions when

the financial software that a company depends on fails.

Given that software errors are very costly, it should be

obvious that their elimination is desirable. However, this is

not such an easy task. One of the theorems of software

engineering is that there are an infinite number of undetected

errors in any software system. Therefore, all the developer

can hope to do is to design the system in such a manner that

all the detectable errors are discovered and corrected and

" *- " that the undetectable errors never become detectable by

- 20 -

interfering with the operation of the system. This is one of

the main reasons that software engineering methods were

, developed in the first place. Therefore, to provide the

desired reduction in software errors, the ASDE must support

good software engineering methods and practices.

2.3.3 Easy to Update

One thing that can always be counted on is the fact that

once a project is finished, someone somewhere will want to

change the software for some reason. The reason might be that

there is an error, that the system needs extensions or that it

needs to be adapted to a particular user organization to make

it more responsive. Therefore, the system should be designed

with emphasis given to the methods that must be followed to

modify the system. This modification process should be easy

to do and should require complete documentation so as to

minimize the chance of errors being made in the modification

process (Hadfield, 1982: 34).

2.3.4 Project Management Concerns

Software errors aren't the only reasons for project

overruns and slippages. Many times the management of software

projects make mistakes in scheduling, resource planning and

other management concerns that cause these problems.

Therefore, a complete ASDE should attempt to provide the

-21-

,, .*[management with some type of control over the project without

impeding the actual development process. Facilities that

estimate current resource utilization, current project

completeness, and current schedule impact are examples of some

of the controls and tools that may be useful to management.

2.3.5 User-friendliness

User-friendliness is a frequently used term that has no

concrete definition. Most people recognize the terms as

meaning that the interface between the user and the system is

natural and easy for the user to use. However, the

experienced user of a system may think that it is

user-friendly while the novice may think it is horrid.

Generally, the most user-friendly systems are those that are

easy to learn and once learned, are easy to use. Some systems

provide one at the expense of the other because it is hard to

provide both, just as it is hard to try and please everybody

all the time. Even though it is hard to provide,

user-friendliness is a worthy goal.

2.4 Specific Requirements

.2

-22

a.

2.4.1 Automated Documentation Support

"One of the predominant underlying themes of discipline

in software design and development is the need to commit all

major steps and decisions to writing." (Wasserman, 1977:

354). This documentation will be used for many tasks,

including further development, writing of user manuals, and

maintenance. Although recognized as crucial, documentation is

often overlooked because it consumes personnel resources and

it is considered very tedious work. By automating as much of

the process as possible, documentation will become less

costly, less of a user burden and much more thoroughly done.

The environment should have the capability to produce an

extensive variety of documentation. (Wasserman, 1981: 7).

This includes graphical as well as textual forms of

documentation. However, it must be realized that the

environment cannot produce all the documentation automatically

and that it can only act as an aid in some areas.

2.4.2 Flexibility

Flexibility is a key issue in the development of an

ASDE. A useful environment must appeal to a broad base of

users. This implies several things. First, the environment

must support projects of different sizes. Second, it must be

*, able to support projects of different types, such as

-23-

scientific, mathematical, real-time, etc. Finally, it must be

usable by different users with different knowledge levels.

The environment that contains the flexibility to do all this

will appeal to the most users.

* 2.4.3 Integration

One of the major themes underlying a good environment is

the support of the life-cycle concept. Usually a different

tool is developed to support each part, or stage, of that

cycle. A fundamental problem to date has been the fact that

the tools are not compatible among themselves. (Wasserman,

1981: 5). This makes it harder to use the environment to its

fullest capability. Therefore, the integration of all the

tools in the environment is a very important requirement.

2.4.4 Language Independence

In the current software development world a number of

programming languages are in use. Each language is best

suited for different types of applications and there is no

"best" language to use in all circumstances. The choice of

language will depend on such factors as application, design,

hardware environment, programmers experience, and so on.

Therefore, many times a project will not choose an

implementation language until some later stage in the

S-life-cycle. This means that the ASDE must be somewhat

- 24 -

* * * .**..-2i--*>-K- .*. .*

-K> flexible in the area of programming languages. In fact, it is

most desirable if a design can be run through the entire

life-cycle and produced in different languages by flipping a

switch. This gives the designers of the system the most

flexibility to choose the language that is best for the

circumstances.

2.4.5 Maintainable

Perhaps the key to continued success of any software

product is the degree to which the software can be

maintained. It is obviously not desirable for the system to

be designed so that is is hard to change and correct errors.

If this situation occurs then the useful life of the system

will be shortened because errors will occur which, not being

fixable, will render the system useless. Therefore it is

critical that this system be designed for maintainability.

2.4.6 Open Ended

As discussed previously, an open ended environment is

desirable in that it can be easily changed to meet different
9.

needs. Therefore, the system must be able to be easily

modified without destroying integration and the underlying

methodology.

92

9°

%'

- 25 -

2.4.7 Pre-fabricated Design

Many times, people find themselves re-inventing the

wheel. In many cases this redundant effort is wasteful.

Studies have shown that in the case of software projects, it

is often the case that 40 to 60 percent of the modules being

developed are already in existence and are available for use.

* (Lanergan, 1981: 297) Therefore, the ASDE should be able to

reuse existing modules in much the same fashion that

pre-fabricated houses are built. Also, the environment should

be able to add to the base of existing modules.

.°

-°'S

,•i- May ms, people'W~4 fid temevs reivntn h

Z wh~~Ee.NITIN may css ti reudn efot i wseu.

Studi~~~~EsLaesonthtIM as fsfwrepoeti

DESIG

Figre4.Lile wihinttpn

%'l pr-arctdhue4r ul.Asteevrnetsol

be bl toad t th bseof xitig mdues

2.4.8 Prototyping

"Prototyping has proven to be a valuable technique

throughout the engineering sciences, but it has had little

impact on the mainstream of software development."

(Zelkowitz, 1982: 2). Prototyping is an approach to problem

* solving that uses the concept that the best way to see what is

needed is to design a system and produce a crude working model

4. in a very short time. This model is evaluated and the design

is updated to reflect any changes. Then a new prototype is

produced. This process goes on until the prototype is

determined to be the solution to the problem. Hopefully, by

doing this, the system designers/implementors will be able to

more accurately determine system needs.

By adding prototyping into the life-cycle, the user can

get feedback on the design so that requirements and design can

be updated and improved. Adding prototyping into the

life-cycle concept does change Figure 2 to indicate the

feedback that is taking place. One of the possible

representation of this change is shown in Figure 4.

* Prototyping also implies iterative development and

necessitates ease of updating requirements and design.

2.4.9 Reliable

- 27 -

9%

The reliability issue covers two areas. The first is

reliability of the system and the second is reliability of the

product. In both areas the reliability must be very high or

the user will be tempted to use other, more reliable,

environments or techniques. Reliability of the system means

that the ASDE must perform as expected and not break or do

unexpected things. Reliability of the product means that the

ASDE must be able to produce a product that is reliable or,

again, the user will not want to use the system to produce the

software product. It is critical to note that the reliability

of the product is partially a consequence of the design and

the ASDE is not totally responsible for this issue.

.1;

2.5 Requirements Model

The second major part of the RDD is the high level

model. This model may take several different forms, however,

graphical methods seem to be the most favored because they can

represent system architecture, design structure and software

behavior. Also, they are very flexible and easy to

understand. Understandably, some methods represent more than

others.

Perhaps one of the most widely used graphical design

methods is the data flow diagram (DFD) method. (Peters, 1980:

133).

- 28 -

"',., % "- • " "*' • "- % '' . aY " 2 ' . -. .' '' ' '• o ''''• -a' *.' _" "

"The data flow diagram is used to partition a
-*R system and is the principal tool of analysis and the

principal component of the structured
specification. A DFD is a network representation of
a system, and shows the active components of the
system and the data interfaces between them."
(Page-Jones, 1980: 51).

The DFD method is particularly useful in describing what is

going on in the system without describing how it is being

done. Also, the representation of the system presented by the

DFD is hierarchical in nature. Therefore, the high level

model will consist of several levels of detail. Because of

these reasons, the DFD method was chosen to represent the high

level model of the Sire system. The DFDs in the remainder of

this chapter are accompanied with a textual description in

order to assist the reader in understanding the breakdown of

the model.

2.5.1 Sire Top Level

The top level of the Sire system in Figure 5 represents

the user's perception of what the system is capable of doing.

In this case, the system takes "system specifications" and,

somehow, turns those specifications into a completely

functional software system that is just what was ordered.

This level of the model is purposefully vague in order to

stimulate the imagination. Further detail, drawn partly from

that imagination, is illustrated in the lower levels of the

~i. model.

- 29 -

..tt .X*~. * * ~ ** * S * S- * . .. 5~.. . ..-

• • m Q " ° " " " " " " - , -" S S ." S *, . S • . _ ,t " " °,[[t z "

'E-

-E-

4.0.

4-4

0
M CO

U;'
4,.)

E-4

Cl)

-30-

j¥ . -,o. . _. . .. *-.* . . -, f.-v . C oi ;c .J 1 V ; - - - * -• . - 0- L . ,

2.5.2 Synthesize Software

Breaking down the top level model of Figure 5 by

-"exploding" the Synthesize Software operation (operation 1.1)

gives the more detailed view of the system depicted in Figure

- "- 6. This level of the model is strongly motivated by the

modified life-cycle model of Figure 4. Easily identified from

this level are the Requirements Definition, Preliminary Design

and Detailed Design stages of the "waterfall". They

correspond directly to operations 1.1, 1.2 and 1.4. Figure 7

shows how the other steps fit into this level of the model.

This model of the life-cycle is one that was followed in

the design of the Sire system. Operation 1.3, Determine

Project Status, is the only operation which does not fit into

the life-cycle of Figure 7. It is included to help meet the

requirements of providing Project Management Concerns, as

detailed in the textual requirements defined earlier. Indeed,

at many of the other levels of this model will be operations

concerned with tracking the project status.

This representation of the system allows for designing

and implementing a system by following completely through the

software life-cycle. Also, it implies some sort of automated

documentation support because of the Requirements Definition

Document, Preliminary Design Document, and Detailed Design

Document flows exiting from operations 1.1, 1.2 and 1.4.

- 31 -

.V-4

r4 m

E- -

r4 w w

CO -cc

-. 4a4

E-44

CH4

.4,0

W4 -32-

~ *....* . -

:]: PRELIMINARY

mDES IG N

PRELIMINARY DESIGN
I. SUBSYSTEM (FDS)

PR lIMINARY
IMP LE _UNTAT ION

J(

M,;,;"'" ESTING -

DESIGN ---

DisTAILED DESIGN L_ ILED

SUBSYSTEM (DDS) . PLEW1TATION

TESTING

Nj.

,, INSTALLATION

SOFTWARE RELEASE SUBSYST:1M (SRS)

Figure 7. cxpanded Lifecycle Model

.4

.4

2.5.3 Define Requirements

As mentioned previously, the Requirements Definition

Document is composed mainly of the textual requirements and a

graphical model. Therefore, it is only fitting that the

breakdown of Define Requirements, represented in Figure 8, be

concerned with these two tasks. From the System

Specifications, textual requirements are iteratively

developed, analyzed and updated in operations 1.1.1, 1.1.2 and

1.1.3. The output from these operations are used to develop

the graphical model and the RDD. Once again, operation 1.1.7,

,1 Track Requirements Status, has been added for project

U managements concerns.

2.5.4 Develop Preliminary Software

Based on the requirements developed earlier, both textual

and graphic, the process of developing the preliminary

software, represented in Figure 9, is begun. The first part,

corresponding to operations 1.2.1, 1.2.2 and 1.2.3, is to

iteratively develop, test, and update the preliminary design.

Note that the operation of updating the prelimi'..y design

will also cause requirements updates to ripple back to

operation 1.1.

The second part is to develop the Preliminary Design

-.. Document (PDD) for inclusion in the system documentation.

*4.

-J -34 -

E-4

43

E-44

4.

>. I -)
a)

I E-
1.4 r4.E-

E-

l

4.~ -I5

ril

4E-4

4?4

1.44

0 >4

a4 00
.4 r4

z~

C I
WI t

S=E-
-PL g 5

a. A, -, -. .. -. A. . * . - -.- - , , . . . , . - -

.K "'- This documentation process should be as automated as possible

so that both human error and user burden are reduced. But

then every part of the Sire environment should be as automated

as possible.

The third part of developing the preliminary software is

to actually produce the preliminary software. The result of

the production, test and update cycle is a complete software

shell into which the detailed software can be injected. This

concept is a break from most software production theories in

*that some software is actually produced before the detailed

design has been started. Another departure from traditional

methods is that the selection of the language being used for

Mimplementation must come at this stage. The advantage of both

of these points is that the output of the preliminary stage is

a tangible software product that can be tested and evaluated.

In other words, a stubbed prototype is produced and is

available for analysis.

2.5.5 Develop Detailed Software

Based on much the same methods used in producing the

preliminary software, Figure 10 shows the production of

detailed software begins with the development of the detailed

design based on the tested preliminary software delivered from

operation 1.3 and the user inputs. After the design is

developed then the detailed specifications for the software

- 37 -

-N TI .- w * --- -. . . . ,. .. ,

0 ~

Coll,

E-4J

04 E- --cg0 E-

L0

Wa'M

-18

a.4a

0...~. a -- *. -a. .. *a. * .*~ * am
a4 .T E-4

are developed. These specifications might take the form of a

program design language or some other specification method.

After the detailed specifications are complete then they are

translated into the detailed software system.

2.5.6 Release Software

The final stage of the Sire high level model is the

Release Software operation of Figure 11. This operation

provides for the verification and validation, V&V, of the

software system developed in the earlier stages. The V&V will

provide any updates and modifications that need to be made to

the system. The validated system is then used, along with the

Requirements Definition Document, Preliminary Design Document,

and Detailed Design Document developed earlier, to produce the

system software documentation. After the system is documented
i-al

it is packaged for release. This packaging may mean a range

of things, from producing the documentation and transferring

the software to a media for exchange if the product is

commercial, to moving the system to a user area if the project

is an in-house development project. This implies that the

releasing of the software will be somewhat site/user

dependent.

-3

a' -39 -

V,4)
etc.-

E-4.

C-4,

coi

-E-

-40

******* ' ..-. -...-. '. .,*. . -.-. * . ** . .r4

L] -,,, * * * , *-i * *-.*, . - : .' .- * ,. ; . .-. Z . -* . * . +.
•

.

2.6 Summary

The Sire ASDE specified in this chapter is to be a system

. that aids the software system designer in the task of

producing software systems. The textual requirements

specified are intended to drive the design of the system in

the following stages of the life-cycle. Many of these

requirements will explicitly appear in the design while others

will be represented implicitly. Also, it is possible that not

all requirements will be fully represented in the completed

system due to possible conflicts between requirements.

-4,

".

,.

- 41 -

,, .,. -. ...% ... 'U-.,-.. ... -. *-.
•

. . . **..*....*.-. . *...*...* .***-... 'v-**.** .* .- +* / -i

A/

Chapter 3

High Level Model Analysis

3.1 Introduction
-p

With the completion of the requirements definition the

next logical step would be to start defining how the system

will work by beginning the preliminary design. However, the

scope of this project does not allow for a complete solution

to the system. Therefore, pausing from the logical

progression for a time, an analysis of the high level model

developed in the previous chapter is in order to determine

which part of the model would be designed and implemented.

This was an important step since choosing the part to be

implemented would have great influence on future work done on

the Sire system.

3.2 Model Analysis

-42 -

5 - .

' L.;~~.'

-707-7-7 U..

3.2.1 Analysis Guidelines

Choosing a part of the model to be implemented was mostly

a subjective process. However, there were several important

guidelines to be considered. The first was that the
d

implementation of the chosen part would set the standard for

the rest of the system. This was not only a standard of

quality, but also a standard of user support. However well

the implemented part supports the user will greatly influence

the amount of support the rest of the system will provide.

This means that the implementation will cause the rest of the

system to be implemented in a like manner using similar

methods for accomplishing tasks.

3.2.2 Structure Analysis

The first step in the analysis of the model was to

determine the parts of the system that were available for

implementation. These parts may be either "point" parts or

"distributed" parts. Point parts are sub-systems that exist

in only one place, or part of the system. Distributed parts,

on the other hand, are actual sub-systems that exist in a

scattered out fashion in the system.

The most obvious point sub-systems appear in the model as

operations 1.1, 1.2, 1.4 and 1.5. These parts will be known as

-2.the Requirements Definition Sub-system (RDS), the Preliminary

- 43 -

, " ~~~~~~~~~ ~~.','.-,..' ..-.. ' '.. ' ' . . '. -. '. . '- .. °....-....--.

Design Sub-system (PDS), the Detailed Design Sub-system (DDS)

and the Software Release Sub-system (SRS). In addition to

these, the only other obvious point part will be the system

driver, or Exec.

The only distributed part of the system appears to be the

status tracking part. This part appears in many of the levels

of the model and is concerned with tracking and reporting the

system status. This part of the system will be called the

Project Accounting and Reporting Sub-system (PARS).

- 3.2.3 Implementation Analysis

In examining the structure of the system, several

conclusions about the part to be implemented seemed apparent.

Stepping through these will lead to an obvious conclusion

about the part which should be implemented.

The first conclusion was that each of the point

sub-systems were completely self contained and therefore easy

to implement as a part of the system. They all promise to be

rather complex with the exception of Exec. Since Exec will,

in all probability, be just a simple driver used to tie the

parts together then it was eliminated from consideration. The

next conclusion narrowed the field even more. Since PARS is a

2.. distributed sub-systems it would probably not be feasible to

try and implement it without any of the other sub-systems

being in existence. It should be fairly obvious that it would

- 44 -

be nearly impossible to test or evaluate a distributed system

without any supporting code.

These two conclusions leave only the RDS, PDS, DDS and

. SRS parts to be considered. The SRS would appear to be in the

same boat as PARS. Since the main purpose of this sub-system

is to provide V&V and packaging, it seemed that these would be

"* hard to provide for without some kind of product. Now, of the

three remaining sub-systems it appeared that PDS is located in

the center of the other two. It seemed that it would be the

keystone of the operation since it's output drives the DDS and

since it accepts input from the RDS. Therefore, a well

"- " designed PDS would drive the design and implementation of the

rest of the system and it was the most likely candidate for

implementation.

3.3 Summary

Resuming from this pause, the next step in this project

was to narrow the scope to focus on designing and implementing

the Preliminary Design Sub-system. This part of the model,

chosen for it's central location and influence, was the object

of further design, implementation and testing in order to

provide a sound basis for further development of the Sire

system.

- 45 -

2'2 2,o'.'.2 € .'' ¢, *4-." *,". " *,. * "..-.".- . -. ''-.".°.. .:)

L

Chapter 4

PDS Design

-. 4.1 Introduction

After determining what needs to be done in the RDD

section, the next step is to lay out the framework for the

* implementation of the PDS system. In constructing this

framework, the high level model is changed from a requirements

model into a functional model that represents the first level

model of the preliminary design. There are many methods that

have been developed to do this, among them are "transform

analysis" and "transaction analysis" (Weinberg, 1978: 26).

This not only provides the starting level of detail for the

design task, it also helps assure that the requirements stated

in the RDD are embedded in the system design. The purpose of

this chapter is to briefly describe the preliminary and

detailed design. The design presented here is that of the PDS

sub-system. Appendix C contains more detailed information

about the entire Sire system design.

.46

:< - 46 -

.. .. .
." - o ." _ " .- - ," - . . .- • --- .. ,. • .- .. ' . •, ,. - " .*, -. ", ,-. -. -,* -. *.*" '.'- ,", •"

* -. T--wi' i.

4.2 Strategy

One important aspect of this project is that the overall,

high level design of the system is entirely accomplished but

that the implementation is only partial. This implies that,

assuming the implementation will one day be completed, several

different efforts must be concentrated on this system. This

makes it important to design the system in such a way that as

many requirements as possible are reflected in the design

while not placing too many restrictions on the inventiveness

'* and design capabilities of others working on the Sire system.

Therefore, the design is kept simple and understandable.

Another benefit will be gained from this approach since

complexity is one of the major causes of unreliable software.

Two concepts that are used to combat complexity, and therefore

unreliability, are "independence" and "hierarchical structure"

(Myers, 1976: 37).

The concept of independence is one that states that the

independence of each component of the system must be

maximized. This is generally done by partitioning the system

4< in such a way that the interactions of the components is low.

Independence is beneficial since an independent module is not

influenced or controlled by others and it is not reliant on

others to perform it's internal tasks. Complete independence

- 47 -

"'_ -:.'

..-. - . . .

is not possible, however with greater independence there will

be fewer interactions and those will be of less complexity.

Hierarchical structure allows the design to be

represented as different levels. Each level represents the

depth of detail of the system. Therefore, it also represents

a level of understanding of the system. The benefit of the

hierarchical structure is that it allows the user to define

the organization and interactions without defining, or even

understanding, the internal construction. This helps the

"*: .designer work from a simple system concept to a detailed,

complex concept in small, manageable steps, postponing the

detail until more is known about the overall system design.

Independence also relates to an important concept of

ASDEs. This concept is that of the "tool kit" approach

discussed earlier. To some extent, the design of the PDS is

influenced by this since effort was given to try and integrate

proven, available tools into the system where ever possible.

Therefore, integrating these tools into the system will add to

the independence of the design since most of these tools are

stand alone tools that have standard interfaces. Where tools

are not available, effort was given to design as many parts of

the system as if they were standard tools. This approach will

increase the flexibility and ease the maintenance of the

system by making it easier to swap tools for newer tools in

much the same way that manufacturing assembly lines are

- 48 -

..

r~~vrrr w~ r~ vrv .a . .j. . C. .- <** .* . S *.. - e-

a,.

r., --'. modernized by replacing obsolete tools and machines.

4.2.1 Design Representation Methodology

In order to represent the design work, Structure Charts

are used. Structure Charts are especially useful for

representing organization and for providing detail about the

interactions shown in the DFD. Another benefit of Structure

Chart methodology is that it is complimentary to the DFD

methodology. By first representing the design of a system in

DFDs, such techniques as Transform Analysis and Transaction

Analysis are easily used to translate the DFDs into the high

level Structure Charts. Therefore, because of their

organization and ability to complement the DFDs, structure

charts will aid in making sure all requirements that have been

set forth have been met and that independence and hierarchical

structure have been maximized. (Weinberg, 1976: 29).

4.3 Design

'a 4.3.1 Motivation

"Computer programming is, in many ways, like
architecture. The programmer faced with a complex
task must, like the architect, design a large object
consisting of many parts that interact with each
other" (Abrahams, 1975: 18).

Since many software engineers accept this as a basic premise,

- 49 -

a'.-
.,a ~ a * ** * * a

then as many of the applicable methods of architecture must

also be accepted. Chief among these methods is the

blueprint. In fact, the use of the blueprint is the the very

foundation of architecture. In designing a structure,

architects use a blueprint, which is a series of

specifications detailing the design of the structure. The

blueprint is refined in successive levels until it results in

a complete specification from which a structure can be built

(Lewis, 1977: 226).

Applying this concept to software design is not very

. difficult. A specification language can be used to define the

structure of the system under development. Using a top-down

structured concept, this specification, or software blueprint,

may be used to detail each level of detail of the software

system. This leveled specification process, if implemented

correctly, would be valuable in team programming efforts since

its very structure would be useful in controlling and managing

the project. The only hangup in this whole concept is that,

to date, no single suitable specification language has been

widely accepted. This is because not one has been recognized

as being able to provide the same support to software

developmc: '! that blueprints provide to architecture.

Another benefit of specification languages is that, for

the preliminary design process, the language may be simple,

programming language independent, and may easily be translated

a - 50-

..................o.''..'''..."""" . " '"- -"-."..- % "" " " ',"% " " "
' % ""% " , ' ', .°""-

into the software shell desired in this implementation

effort. Also, specification languages are very useful in

providing a form of self-documentation for the system.

With all this in mind, the preliminary design of the PDS

was based on the software blueprint concept. The

": specification language to used, MIDAS, was specifically

designed for this project and is detailed in Appendix B.

4.4 Design Structure Charts

Although enlightening, a discussion of all the structure

charts in the PDS design would become quickly boring and, in

*1 places, quite redundant. Therefore, several charts have been

selected for their importance to the PDS implementation.

These charts will be discussed in order to give some of the

flavor of the design philosophy.

Main PDS Chart

The main thought behind the chart in Figure 12 is that,

rather than build the MIDAS language description all at once,

the description is built in stages. The three obvious stages

are hierarchy, MID (module interface description) and data

- 51 -

E--

El'4

4 Cf)

C\7,

P44

C17I

-52-

description files. This method of operation allows the user

to input the hierarchy, have it checked and then allow the

system to work on it and generate a partial MID. The MID is

then completed by the user and compiled, with the output being

a partial data description. The data description is filled

out and compiled. Then, if all conditions are right, the

compilation of the data section will cause the generation of

source code in the implementation language that has been

chosen.

Edit/Compile Cycle

The edit compile cycle illustrated in Figure 13 is used

in several places and is important to the PDS. The concept is

very simple in that the user first edits a description file,

compiles it, receives the error message and corrects the

file. This continues till.the compile function terminates

normally. Upon termination, the compiler will have generated

the next file to be edited. In this case, it will create a

partial MID file.

This is really just a traditional approach to editing and

compiling. However, tradition should not influence the manner

in which this edit/compile cycle is implemented. For example,

instead of the implementation having the tasks occur serially,

- 53 -

",.

t-i4

.r5

0.0

FA0

5%4

-it

.~CL4

5,m

.5. -54

*.~~~U
14~.V ' ~ . . - * 5 - -. .. 5> * ** *~ *~ . . .

-. .:-. they might occur in parallel. A context directed editor might

be used that compiles the information as it is entered and

gives instant error messages. It is important to remember

that structure charts describe the functions that need to take

place and do not indicate when they should take place.

Compile

The chart represented in Figure 14 is here not because of

its complexity, but because it explains what is meant by

compile. When the word "compile" is used it means that the

input file will be parsed, checked and an output file will be

generated. The difference between this compilation process

and the traditional process is that the compilers used here

deal with a very small, simple, high level language. The code

generated will also be a high level language that is not very

far removed in complexity from the input source, unlike a

traditional compiler which usually has a great complexity gap

'4 between the input and output.

4.5 Summary

The goal of any design should be to try and produce a

- 55 -

'a

E..z

0< -0

t-4

JI-

% - 56-

flexible, simple and functional design. Although this seems

obvious, it is hard to do. The principles of software

engineering should be followed and simplicity and common sense

should rule. The resultant design should appear to be obvious

and should be disappointing because it seems too simple.

Hopefully, the PDS design fits this description. It seems

simple and easy to implement. Whether this is an indication

of good design or simple-mindedness remains to be seen.

.57

5',.

_°57°

5. * * * *m~* 5.. ~ -i~. ~-.

Chapter 5

Implementation

5.1 Introduction

"There is an almost infinite number of ways to implement

and test any system. Indeed, there is an almost infinite

number of organized approaches to implementation and

testing!" (Yourdon, 1978: 376). The method of implementation

usually is driven by the requirements and special

considerations of the project. Because of the partial

implementation strategy of Sire, the approach used in this

implementation is related to the design strategy used. In

other words, it is basically a top-down approach. It is also

a depth-first, left to right approach. This means that, when

. viewing the structure charts, the implementation start on the

left side and proceed down the left branch until that left

Abranch is implemented. Then, the implementation moves to the

next branch. This scheme differs from others in that it is

top-down, but not strictly top down. Also, because of the

structure of the design, some parts of the system have been

totally implemented before the others were started.

- 58 -

This approach is beneficial because it almost eliminates

the need for a comprehensive, detailed system test plan by

replacing it with incremental testing. This incremental

testing occurs as each increment, or portion, of the design is

implemented (Yourdon, 1981: 381). This method allows for

"user-feedback" sooner in the project. This is helpful in

correcting any mistakes or deficiencies, but also makes the

implementation stage drag on longer than it would if a

traditional approach were to be used.

5.2 Implementation Strategy

Once an approach to implementation has been chosen, the

next logical step towards the implementation is to develop an

,* implementation strategy. This strategy is dependent upon the

nature of the design and the desires of the implementor(s).

In this case, the strategy was to decide first upon an

implementation environment and language, then to decide upon

which practices would be used in the implementation.

5.2.1 Environment and Language

The choice of both an environment and a language are very

important. The environment must be capable of supporting the

final implementation at a minimum. It would be more helpful

if, during the implementation, the environment actually aided

- 59 -

7S 1772 7 7

the implementor(s) in producing a quality system. Going

hand-in-hand with this concept is the implementation

language. It also must be able to support the development of

the system and should aid in the production. In addition, the

language should also be suitable in as far as maintenance and

readability are concerned. A well structured and readable

language will not only aid implementation, but will aid future

attempts at maintenance and modification.

It should be obvious that the idealistic views concerning

the choice of an environment and language need, in actual

practice, seldom be worried about. Often, there is no choice

about the environment to be used because there will only be

one available. As far as the language is concerned, there are

*often o.ily one or two suitable languages available on the

environment.

As far as the Sire system is concerned, one of the basic

assumptions set forth in the beginning was that all

implementation would be done on a VAX 11/780 with a UNIX

operating system. Therefore, with the environment chosen, the

only thing left would be to choose a suitable programming

language.

In choosing a programming language, several factors had

-.-

1. VAX 11/780 is a trademark of Digital Equipment Corporation

- 60 -

to be considered. First of all, the language must be able to

support the development of the system. Second, it must be

readable and easy to use and maintain. Third, it must support

modern software engineering practices. There are also other

minor considerations that must be weighed when making the

final choice. Chief among these is the consideration that the

implementor(s) be able to use the language to its fullest

extent without having to constantly be struggling to learn a

new language. This consideration is often overlooked as new

languages are often thrust on implementor(s), resulting in a

slow down of the implementation and a less than efficient

product.

Given these factors and considerations it was not

difficult to choose an implementation language for the Sire

project. The chosen language was "C". The main reason for

the choice is that in a UNIX environment, there are no

. languages more powerful or flexible. This is because the C

. language was used to implement the UNIX operating system. As

the system development language, there is a very close tie

between UNIX and C which makes available a great many system

tools to the C language implementor. The great amount of

operating system support given the language, the number of

tools available, the flexibility of C, and the fact that the

Sire system designer and implementor is familiar with C, made

it an ideal choice for the implementation of the PDS system.

- 61 -

5.2.2 Practices

Since one of the factors used in choosing the programming

language was the desire to use good software engineering

practices, then it is only appropriate that some of the major

practices to be used in the implementation be discussed at

this time.

Programming Methodology

ArWN 4 The programming methodology used in this implementation

has already been identified as the top-down approach. This

was important to this implementation because it not only

provided earlier testing and feedback, but it also made the

partitioning of the implementation into separate, stand alone

modules easier. This concept is very similar to that of

separate compilation, which is available in C and was heavily

used, in that different parts of the system may be implemented

without the others existing.

The major difference is that each part, when completed,

will be a completely functional software program. Therefore,

the final otep of the implementation was to just gather all

the separate parts together and make sure that they interface

- 62 -

.

and interact correctly. This approach goes back to the

tool-kit approach discussed earlier. This not only make it

easier to see results, but it will allowed for these parts to

be modified and maintained separately.

Programming Style

It is now widely recognized that if a program, or system,

is going to be used and maintained for some time, then it will

probably be read much more often than it is written

(Sommerville, 1982: 117). Therefore it is very important for

the program to be as readable as possible. Readability was

previously linked to the programming language used. However,

even if a readable language is used it is still very possible

that the resulting code will be very unreadable. Readability,

given a good language, becomes very dependent on the

programmer. The C language has been criticized because it is

very easy to produce very cryptic code. However, with care

and thought, the resulting code can be very readable. With

this ir nd, all steps possible were taken to maximize the

readability of the program code. These steps included

structured programming concepts, the use of extensive program

documentation and the selection of relevant variable and

function names.

- 63 -
.

.. --- U

.- i . o , . , - .- -. * - ..r'. q r"- - .- r % - . F- F-. . ".. - -

Programming Tools

.p.

-. "One of the most important developments in the practice

of programming has been the realization that the programming

process can be supported by a number of software tools"

(Sommerville, 1982: 128). The concept of program development

tools is widely supported by UNIX, which is recognized as

having a very extensive and varied set of tools. Sometimes

these tools aid the production of code, sometimes they produce

code (code generators), and sometimes they provide utilities

that the implementor can take advantage of, therefore
-" *relieving the implementor of the task of implementing a new

- . utility. No matter what the tool does, it has some impact on

the system.

Compiler

The most obvious tool used was the C compiler. The

compiler obviously affects the implementation since it limits

the programming language. The compiler used in this

implementation was the standard C compiler provided with UNIX

*. ,-. *version 4.1 bsd.

- 64 -

A- A A AL-~*~ ~** ***. N

AR

Another tool of importance to this project is the system

utility "AR". This utility is a file librarian. It can be

used to catalog and "shelve" files into one physical file.

This tool is not only used by the implementation to maintain

*file libraries, but it was used as a code control system to

maintain backups during the implementation process.

YACC

Besides the compiler, the tool which has the biggest

impact on the implementation is YACC (short for Yet Another

Compiler Compiler). YACC is a program that, given a simple

syntactic description, will produce a complete parser for that

syntax. It is also possible to include actions in the syntax

description that YACC will cause to happen at the correct

time. With this tool, the process of building the compilers

shown in the design was cut down significantly. This tool

added greatly to productivity, however, this increased

productivity is not without cost.

YACC, by nature, is a very complex tool that produces

complex C source code. While C can be a readable language,

-65-

YACC tends to produce cryptic code that is hard to understand

and fairly slow. Also, YACC precludes the possibility of

dealing interactively with the user. This lack of interaction

caused major problems with the user-interface that had been

planned. The system that resulted because of YACC was a

little more awkward and less user-friendly than planned.

These problems will be discussed in greater detail at a later

time.

Lex

A tool that is complementary with YACC is Lex. LeX

interfaces with YACC and is used by YACC to scan a file and

provide tokens to the parser. Again, this tool was a great

" aid to productivity since it kept the implementor from having

to write a separate lexical analyzer. The only bad effect

that Lex has is that, like YACC, it has a tendency to produce

alarge amounts of inefficient C code.

Make

Make is a system utility that helps to maintain system

configuration by maintaining the correspondence between the

" ?.l source code and the object code of the Sire system. Given a

- 66 -

list of all the dependencies in the system, Make can, when

invoked, make sure that the system is fully up to date. If it

is not up to date then Make knows how to bring it up to date.

Make is used not only to maintain the implementation

configuration, but is used by the system itself in keeping the

PDS produced code up to date.

,.

Program portability

Program portability is an important topic. It is

important because the more portable a program is, the more

widely it will be used, therefore resulting in greater profits

and benefits. The UNIX system offers a large amount of

portability between different types of computers, especially

for any C source code. However, this portability is not

"* guaranteed just because UNIX and C are used, instead, the

implementor must work hard, and long, to maintain this

portability. Because of time constraints, portability was not

a topic of consideration in implementing this project. Even

so, the resulting system should be fairly portable with only

one thing possibly getting in the way. That thing is the

amount of dependence that the system has on the machine

architecture.

- 67 -

m- . .. o . .. - - . . .- , - .- , -. . .- .. - .- , °-. ,. , - .- . ;.. -- ..: - -. ° .
-- ." .-* ",* " 4 .."..' , ".,':-*1 *-"-"-"- . -_, - V - -- *" ,"- r: ":: , - " - . _:-_ " ',

Machine Architecture Dependencies

Although good design techniques do not usually take

machine architecture into account, the implementation must.

The machine that underlies the operating system may impose

limits on aspects such as memory used, processing time, file

space or other resources. The implementor must therefore take

these into consideration. To provide portability, the

implementor must look at all possible target systems and work

with those in mind.
.

Since it has been stated that portability is not a topic,

the system was implemented with the VAX architecture in mind.

Of particular importance is the virtual memory scheme used by

the VAX. The PDS implementation does all calculations and

builds all structures in memory without consideration for

size. This means that, if this implementation was transferred

2
to a PDP-11 running UNIX, it is entirely possible that the

PDP-11 would not have a large enough memory allocation scheme

to support it.

2. PDP-11 is a trademark of Digital Equipment Corp.

- 68 -

5.3 Summary

The implementation of PDS can best be described as

top-down and very structured. As discussed previously, the

implementation followed good software engineering rules in

general and the tool-kit approach to software environments in

particular. Particular attention was given to making the

system as maintainable as possible.

6

7.

.

* 4..-.

"" - 69 -

. .

-Uo.,

Chapter 6

Critical Analysis of Sire

6.1 Introduction

After a project is near completion it is useful to step

back and take an objective look at what has been accomplished

(if possible!). This analysis should concentrate on the

strengths and weaknesses of both the design and the

implementation. Also, the analysis should take place at a

fairly high, conceptual, level and avoid the nitty-gritty.

This analysis process is helpful in producing conclusions and

recommendations about the subject matter.

This analysis will be broken down into three major

parts. The first part will be an analysis of the design.

Secondly will be an analysis of the prototype PDS system as

implemented. Finally will come a section on how both the

design and implementation helped fulfill the requirements set

forth in the beginning of the project. After this part will

come a summary, or list of some of the lessons that have been

learned during this project.

-70

6.2 Design Analysis

6.2.1 Weaknesses
'4

The major weaknesses of the design of Sire seem to be

' sins of omission and lack of detail in some critical areas.

These omissions and sketchy detail cause decisions to be made

that may be detrimental to the overall quality of the system.

specifically, detail is lacking in the PARS subsystem, the RDS

subsystem and in the description and design of the system

databases and data tables.

For example, the PARS subsystem is a distributed

subsystem that will eventually have parts of itself spread out

through the whole system. This is necessary for it to gain

accounting and status information. However, there is no

description of how it will do this, or even any description of

the information that is needed. This leads to the rest of the

subsystems being designed without the PARS modules in mind.

This is questionable practice at best and will probably end up

in conflicts when the PARS subsystem is to be implemented.

This kind of thing often leads to what is known as a kludge.

6.2.2 Strengths

- 71 -

.

The strongest asset of the design is the inherent

flexibility and top-down nature. Care was taken to use good

software engineering techniques in building up the design.

Therefore it proved to be very flexible and easy to use.

Another benefit is that the design is very simple and easy to

understand. This is really about all that can be asked for

out of a design.

6.3 Implementation

6.3.1 Weaknesses

-- It often turns out to be the case that the biggest

critics of a software system are the designers and

implementors. This may be true because they know all the

problems that exist in the system. The implementation of the

PDS subsystem is one of those software programs. Although the

basis of the implementation is sound, there are several

problems that detract from its usefulness. These problems

deal with the databases, the efficiency and the

edit/compilation cycle.

As discussed before, the databases and datatables were

not considered thoroughly in the design phase. Therefore, the

implementation phase saw the willy-nilly creation and use of

databases. The problem with this is that it probably caused

- 72 -

• "" - --'- --, " - " -•- --'4 .-. -: - - t

. °extra, redundant work since a thorough definition would have

led to a single management scheme instead of the five or so

that ended up in existence. Also, it is probable that instead

of several small data stores, a single, formal database could

have been defined that would have been of greater benefit to

the whole Sire project.

The efficiency of the implementation has been discussed

briefly in several places. Suffice it to say that the methods

used were chosen for their convenience in implementation and

not their efficiency. This led to the implementation being

much too slow in several critical places. The most noticeable

of these places is in the presentation of menus and error

messages. Inefficiency in these places negatively affected

the user-friendliness that was desired of the system.

Another, unfriendly, awkward part of the implementation

is the edit/compile cycle. The user of the system finds it

necessary to edit the source file, then compile the source,

view the error message, look at the error listing and proceed

as needed. This is very awkward since is is not the least

interactive. This is mostly due to the use of YACC to produce

the compiler sections and the use of a relatively

unsophisticated editor. Ideally the best way to handle this

would be to use a context sensitive editing system that

compiled the source as it is being entered. This would

provide for instant feedback and would save much time since

- 73 -

. ". ..

W- -

the four separate steps would be collapsed into one.

6.3.2 Strengths

The biggest strength of the implementation is that it is

faithful to the design and that it correctly does what it was

planned to do. That is, itprovides a demonstration of the

specification concept and how it can be used for automatic

documentation and automatic generation of well designed source

code.
3.

6.4 Requirements Resolution

In the beginning of this project, it was necessary to

decide what requirements were important. These requirements

were put into two classes, the general and the specific. One

way of measuring the success, or completeness, of this project

is to decide how the requirements were resolved. This will

lead to yet other insights as to how the design and

implementation may be improved in the future.

It is important to realize that many of these

requirements cannot be connected with any specific chart from

the design structure charts or any piece of code in the

implementation. Rather, some of the requirements are resolved

4 - by the general nature and procedures of Sire. Also, since the

- 74 -

". ."

.. design wasn't taken to it's lowest levels everywhere and since

the implementation is not complete, all that can be done is to

* describe in which section the requirements should be met.

6.4.1 General Requirements

As noted above, the following general requirements, since

they are general in nature, are more related to the philosophy

and nature of Sire than they are to any specific part. The

discussion of these requirements resolutions is not intended

to be thorough, rather it is intended to give the basic flavor

of the way in which certain requirements have been met (or not

met, as the case may be).

"" Reduction of User Burden

The philosophy of Sire is that the user should only have

to input information that the system itself cannot ascertain.

For example, in the PDS section the user is still required to

do some "coding" but, it is also true that much of the MIDAS

description is filled out by the system itself, thus

minimizing the amount of work for the user. Other major areas

*" of user support are the automated documentation features and

"" the ability of Sire to translate the MIDAS description into a

source program shell for the user.

- 75 -

./

Reduction of Software Errors

The resolution to this requirement is hard to pinpoint

and quantify with Sire being unfinished. However, it should

be apparent that the desire of Sire to minimize the amount of

work that the user must do will help reduce the amount of

errors. Sire will probably be best at reducing syntax and

coding errors, thus leading to faster production of software.

Sire also intends to reduce logic and design errors through

the use of rapid prototyping and the use of pre-fabricated

software modules.

G E

It is questionable whether Sire can claim to meet this

requirement or not. At this point in the implementation it

does not seem that any solid evidence can be presented to show

how Sire does, or will, meet this requirement. In fact, it is

estimated that the structure and discipline of Sire may prove

to make the system produced by Sire harder to update.

- 76 -

Project Management Concerns

This topic has already been discussed as a weakness of

Sire. It seems that not enough attention was applied to this

requirement in the design stage, therefore, there is no

evidence, other than a vague design section, as to how Sire

will support management concerns. This resolution of this

requirement certainly warrants future investigation.

User-Friendliness

-°

This requiremtent, though very vague in nature, was

attacked by trying to be as nice and informative to the Sire

user as is possible. Some examples of this are the use of

menu-driven software, informative error messages, and use of

screen attributes to present information to the user. After

us4ng Sire, it also becomes apparent that the friendliness

could be improved through the use of more communication with

the user. At times it seems that Sire just sits there going

about it's tasks without informing the user of what is

happening.

- 77 -

S

6.4.2 Specific Requirements

The following specific requirements are more specific in

nature than those presented above, and in many cases they have

evolved from the general requirements. Again, the discussion

-. of the method of resolution for any requirement is not

intended to be detailed.

Automated Documentation Support

The support of automated documentation is readily seen in

the design structure charts. It is also apparent in the

implementation of the PDS subsystem. The implementation

automatically produces documentation that can be used as

module description both in the source code and in the

documents describing the code. In fact, the PDS system was

used to produce some of the module documentation that appears

in Appendix C. This is just one small example of how Sire can

support documentation. Had the amount of time for

implementation been greater such features as automated

production of structure charts, automated data dictionaries

" and automated production of a preliminary design document

could, and would, have been easily implemented in the PDS

subsystem since almost all the necessary information is

already available.

- 78 -

k. .

Flexibility

At this stage of development, Sire remains a very

flexible system. There is nothing that would limit it to one

type of project or another. This designed in flexibility may

prove the undoing of Sire because in trying to be all things

to all people, it may become unusable or undesirable to use.

The key to this flexibility will be in the hands of the future

Sire implementors since it will be easy for them to turn Sire

to a different direction.

Integration

The lack of integration in Sire has already been

discussed earlier when it was said that the edit/compile cycle

in Sire tended to be awkward. This awkwardness is caused from

trying to integrate poorly designed tools into Sire. They are

poorly designed in the sense that they are not designed to

blend with the rest of the tools in Sire. This lack of

.integration was an implementation decision caused by time

constraints and is not caused by poor design or lack of

foresight. It was decided to use as many available tools as

possible in order to get a more complete implementation.

4*

L~a- 79 -

Language Independence

Although the present partial implementation is not

language independent, it is only so because time was not

available to produce more translation modules for the PDS

subsystem. The basic design and philosoph' of Sire provide

for specification and design of a software system in a

language independent manner. Then Sire takes over and, using

translation modules, translates the design into working

software. The only restriction on this independence is the

number of translation modules that are available.

Maintainable

The subject of designing software for maintainability is

not very well defined at this point in time. The best that

can be done is to use good software engineering techniques and

provide extensive documentation of the source code. This

project was undertaken with this in mind. As a result, Sire

is a relatively well documented software system that has been

implemented in a readable high-level language.

- 80 -

-,- ,""

Open Ended

Basically, Sire consists of two parts, the basic

environment and the utility tools. The basic environment may

be thought of as the PARS, RDS, PDS, DDS and SRS subsystems.

These parts form the basic environment and do not meet the

. requirement of open endedness very well. Granted, the basic

environment is very modular and can be modified by swapping

modules in and out, however, the basic environment is limited

to the task set forth in the design of Sire.

The utility tools, on the other hand, are very open

ended. There are no specific design limitations on the tools

and no specific requirements for them. Therefore, the tool

list can be added to and taken from as need be. This concept

of a separate tool kit allows the overall Sire environment to

be tailored to fit the task. Also, the utility tools

subsystem is extremely modular and easy to modify, thus making

it even easier to tailor the tool kit.

Pre-fabricated Design

This requirement is resolved in the design of Sire. The

design calls for a database of pre-programmed software modules

- 81 -

.4

to be available. This database is also required to be

extendable so that the database can be updated and added to if

necessary. Although the design of the PDS called for an

interface with this database of pre-fabricated modules, this

feature was not implemented because of time constraints.

Prototyping

Protot~ping is handled in Sire by the ability of the

environment to rapidly produce, through translation, a

skeleton software system at any time. This prototyping is not

built in Sire as a menu feature, but must be managed by the

system users. For example, the users could decide that they

need a prototype system and they would proceed to specify and

produce that system using Sire. Since Sire is designed to aid

in the rapid development of software, they could turn out a

prototype in short order. Then, after experimentation, they

might go back into Sire and extend their specification. This

can be done over and over again until the Sire users are

satisfied. This prototyping can also be done within the

different subsystems of Sire, such as the PDS subsystem, in

order to make sure that the output of each stage is correct.

8

.1

| - 82 -

.- p2

Reliable

It is very hard to determine if the implementation is

reliable or not. At least it is hard to determine reliability

in any short period of time. It seems that although Sire has

been well designed, reliability can only be determined after

heavy usage. The partial implementation of Sire has been used

and it appears that so far it runs reliably and that the

produced software is what has been expected.

6.5 Lessons Learned

.,

1. The use of menus is a very useful concept, however, it

can be detrimental. Menus are usually bothersome and a

waste of time to the experienced user. An alternative

to the full time menu might be some kind of toggle in

which the user, or the system, can set the level of

detail in which the menus are presented. This toggle

concept can be expanded to all of a project. For

example, all system messages could have two levels of

detail controlled by this toggle.

2. An on-line help facility is a necessity. Again, this is

a facility that is more likely to be used by the

- 83 -

p

-RIT 7, -r- 4 W

beginner, but may sometimes be used by the expert.

3. One major objective of a user friendly environment

p.- should be to strive to do as much as possible in a

background mode. The user should not have to wait on

tasks to finish if it isn't necessary.

4. Going along with the previous lesson is the observation

that the environment should take full advantage of

multi-processing capabilities. This would enhance speed

and user friendliness by combining several steps that

had happened in serial into parallel tasks. An example

of this might be that a background task is compiling the

MIDAS specification while the user is using the editor

to enter it, thus reducing the serial nature of the

edit/compile cycle and providing for faster feedback.
2n.

5. Something very critical to the user interface is the

determination as to how much should be told to the

user. There are times when tasks are taking place and

there is no action required from the user. The question

is, what should the system be telling the user to keep

user interest up without telling the user unnecessary

information? The user must be informed enough to know

what errors were made, but the user doesn't need to know

about internal processing events that are of no help in

debugging user errors.

- 84 -
: - --. .. *.*2- * - -.. . *- 5 .-

" . .. " 6. A high degree of integration is hard to achieve without

a high degree of concentration on that goal.

7. The use of pre-existing system tools can be more harm

than help. In using these tools, the integrator must

fully understand how the tool works in order to lessen

the chance that the integration of the tool will have

strange side effects on the system.

8. There needs to be some sort of graphical tools

integrated into a software environment. The most

appropriate area for these tools would be in the

presentation of information to the user. For example,

after the MIDAS has been correctly specified in a level

of the PDS, a graphical tool might produce structure

charts to depict the MIDAS structure. Also, graphical

tools are very useful in the documentation that Sire

must produce.

9. The environment should include a built in pretty-printer

that automatically formats all source files into the

format accepted at the using installation. This implies

that the pretty-printer must be able to accept user

input that will alter the configuration of the formatted

output.

10. Related to the last lesson is the concept that most of

* .the system tools must be configurable by the users at

a. - 85 -

.. . ..-

the using installation. This concept must be designed

in from the very beginning and should have been an

objective of Sire.

11. Interaction with the system should be maximized in order

to minimize batch, or serial, actions. In PDS

edit/cycles, for example, the user must exit one tool,

enter another, make the correction, then go back to the

first tool in a repetitious manner until the problem is

solved. With proper interaction, these wasted action

• . could be reduced. However, interaction should be used

only when necessary. It should not be used just to give

the user a sense of usefulness.

12. The user needs to be able to set some actions running in

an unattended fashic Many of the tasks that the

system performs do not need the user. Therefore, the

user should be able to go away and do more productive

tasks than staring at the screen. It might also be

useful to consider letting the user schedule tasks for

some future time and date.

13. The integration of a code control system is a

"" necessity. In such a system, all out of date work is

archived in case something happens to the working copy

so that the user can easily retrieve older code and will

not have to duplicate past actions. A good example of

such a system is the UNIX Source Code Control System

- 86 -

7:7:

(SCCS)

6.6 Summary

In any project there are things that are done right and

things that are done wrong. It is usually easy to identify

those that are done wrong as the weaknesses of the system.

However, identifying the things that are done right with the

strengths is often overlooked. It is not very satisfying to

say that the strengths of a system are that the implementation

and design turned out as expected. Because of this, the

analysis of Sire takes on a decidedly negative tone. It

8- should be stressed however, that this project has met and

-' exceeded all the expectations that were set forth in the start

of the project.

With this in mind, one must be very careful in deciding

about the quality of a system when performing an analysis. In

this chapter several seemingly disastrous flaws have been

discussed. It should be pointed out that most of these flaws

could have been worked out given more time.

S87

Of 4b" ' %

7 b -IbHl8 022 SIRE: IN UUTOMHIED SFITWRE DEVELOPMENT ENVIRONMENT(U) 2/2,
AIR FORCE INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL

"N I- -2 OF ENGINEERING D W NETTLES DEC 83 RFIT/GCS/MB/83D-5UNCLASSIFIED F/G 9/2 NL

ElilIIIhlhlIIhlIE
EIIIIIIIIIIIIE
ElllIhlllllllll

A' Z-8 Q5r-

cJL

a-,6

'"01 m1111E

111 1. 1 11_L

MICRCOP RESOUTIO TESTIIHAR
NAIOA BUREA OFSTNARS-I96-

Y.*1 1.5 14 1__
S.111111

_%I - 111= ___

4k

Chapter 7

Conclusions and Recommendations

7.1 Introduction

The purpose of this project has been to investigate

automated software development environments (ASDE). Occurring

somewhat in parallel with this investigation was an effort to

specify, design and partially implement an ASDE, building on

lessons learned from the investigation. The Sire system, as

designed and implemented, has strengths and weaknesses as

discussed previously. It appears that this partial design and

implementation should not be a basis for continued

development. This is because of the fact that the time

limitations under which this project was implemented forced an
implementation that could be greatly improved upon in such

.' areas as efficiency and user interaction. Using this

implementation as a basis for future projects would cause more

" problems than it would be worth. Instead, it should be used

as a learning tool and technology demonstrator.

- 88 -

-1. o . % C . . . °*. ". ** * . . . o W-

"!
P 7-

7.2 Conclusions About Sire

Several things seem immediately obvious when reflecting

on this project. The first is that, to design and implement a

useful ASDE is an extremely complicated and long-term task.

It is so complicated because an ASDE not only has to deal with

software engineering, efficiency, implementation of an

algorithm and performance as most software projects do, it

also has to deal very heavily with ergonomics, and the

problems of integrating diversity.

A1 Integrating diversity is a troublesome problem that

became apparent from the very start of this project. This

problem deals with having to integrate several very diverse

functions into one system and having the system be easy to use

and "smooth" to use. This problem is not apparent in most

software projects because the majority of these projects deal

with only a limited set of closely related functions. One

good example of a software system that has to integrate

diverse functions is the operating system. It should be easy

to see that those that integrate these functions are easy to

use, while those that don't handle it well are not. For
U.

example, the UNIX operating system tries to handle everything

as files. As a result, UNIX presents a very easy to work with

". .'w. interface. This is not to say that UNIX is simple to use or

- 9 -

., . . .

* [. *.> understand, for it performs the purpose it was designed for

very well.

This brings up another conclusion, that of properly

targeting the user level. It is important to decide what

level of user will be dealing with the system and design the

user interface for that level. Trying to be all things to all

people will increase the complexity of the project by orders

of magnitude. Therefore, it seems to be very important to not

try and "design down" to the less experienced user if that

user is below the targeted level.

The analysis performed in the previous chapter seems to

indicate that the Sire implementation is about typical of any

project that is in its infancy, as Sire is. There are

problems and strengths. Many of the problems are easy (now)

to attribute to the discussion above. An ASDE is a very large

concept, and the complexity of the project, at times,

overwhelmed the design and the implementation. Expediency

took over and the design consequently suffered.

7.3 Recommendations

7.3.1 Plan to Throw One Away

4%

It is often said in the software world that "you should

plan to throw the first one away." This proverb seems to fit

- 90 -

%.*. . ..- b~

Sire very well. Sire is successful in that it has been useful

as a learning project and technology demonstrator. However,

as a basis for future implementation, it probably 1,ould be

more of a hindrance that a help. It is recommended that the

design and implementation be used as a learning tool in order

to see what problems can occur in this type of project and to

help define requirements for another ASDE.

7.3.2 Future Projects

In making recommendations about projects to develop

software environments it is probably wise to try and limit the

scope to something smaller than the scope covered in this

project. ASDEs, being large and complicated, are hard for one

person to totally design and do justice to, not to mention

attempting a partial implementation. Therefore, the author

can define several projects that are natural outgrowths of

Sire.

The first project would be to do an in-depth requirements

analysis to add to the requirements already stated for Sire.

After that analysis is completed, the high level requirements

model of Sire should be adjusted to meet the new

requirements. The basic flavor of the current model should

not be changed because it represents a generalized attempt to

define requirements for an environment that supports good

*. software engineering methods. After re-modeling the system,

- 91 -

. '5 € . .".".e ' ' .'/...•.- "-" . .. '.','..'. , e "" Z' .Z 2':

)-J6 an analysis should be performed in order to determine what

data base management capabilities are needed. Also, a data

base schema should be designed so that all. the data needs of

all the sub-systems are fully met.

After the model has been adjusted and the data base

provided, the functional design of Sire should be

reaccomplished, taking into account the lessons learned in the

current functional design. This design should emphasize the

proper definitiun and functioning of the PARS system and the

relationship of the RDS, PDS and DDS. The PARS is

particularly important since it is a distributed system and

it's requirements affect the design of all the other parts of

S Sire.

The remaining projects fall into line with the design of

Sire as it stands now. The projects would include the design

and implementation of the RDS, PDS, DDS, and SRS. These

design should be full and specific, but the implementations

should only provide the core of each system. The remainder

should be provided as projects done by other students.

7.3.3 General Sire Recommendations

The first recommendation is that the use of a software

specification language be retained as it proved to be very

useful in this project and should be investigated in greater

depth. MIDAS proved valuable because it allowed for simple

- 92 -

description of the program structure and provided a very

valuable base of knowledge that, with the use of the

computer's power, can be used for driving such tools as

automatic documentation devices, automatic structure chart

generators, and, obviously, translators. However, MIDAS in

its present form is not complete enough for a production

system. It needs to be expanded to cover advanced concepts

such as tasking, generic instantiation and packaging. A

comparison of the Ada programming language and MIDAS would

provide the necessary areas in which MIDAS needs to be

expanded. Also, it seems probable that the data section of

MIDAS could be reworked to provide the user with an easier

method of specifying the data blueprint.

Sr Although no feelings or ideas about the form of parts of

Sire other than the PDS have been provided, it does seem that

a very interesting area of investigation could form the basis

for the PARS and RDS systems. It seems that Data Flow

Diagrams (DFDs) bear a strong relationship to the Critical

Path Method (CPM) used in project scheduling. This would be

useful because the Sire might use this relationship in the

following manner. The user would enter preliminary project

information into the PARS system and then proceed to the RDS

system. Here the user would complete the requirements

definition, including the DFD requirements model which is

stored by Sire.

- 93 -

.1

After the RDS is finished, the user proceeds to the PDS

system and uses the DFD model to specify the preliminary

design. This would then give Sire information about the

relationship between the module structure of the project and

the DFDs. Now, using the scheduling information, the PARS

would automatically calculate a preliminary CPM schedule for

the project. Every time another module is defined in either

the PDS or DDS, PARS would add more detail to the CPM

schedule. Now, since PARS is distributed throughout SIRE, it

can monitor the progress of each module in the project, thus

providing the capability to always know the status of the

system and how the project stands in relation to the initial

schedule.

7.4 Summary

This project winds up leaving both good and bad

impressions. The good impressions have to do with the

successes that the project has met with. The bad impressions

deal with the things that needed to be done, but could not be

..done because of the lack of time. Much was learned about

0software environments and, especially, the complexity that

large projects can bring about.

494

- 94 -

" .,2".

m.,

Bibliography

Abrahams, P. "Structured Programming: Considered Harmful,"
SIGPLAN Notices, Vol 10, No. 4. New York: Association of
Computing Machinery, Inc., (April 1975), pp 13-27.

ANSI. IEEE Standard Pascal Computer Programming Language.
New York: IEEE, Inc., 1983.

Barrett, William A. and John D. Couch. Compiler Construction:
Theory and Practice. Chicago: Science Research
Associates, 1979.

Dijkstra, Edsger W. "The Humble Programmer," Communications of
the ACM, Vol 15, No. 10. New York: Association of
Computing Machinery, Inc., (October 1972), pp 859-866.

DoD. Ada Reference Manual. Department of Defense, 1980.

. Gane, Chris and Trish Sarson. Structured Systems Analysis.
New York: Yourdon Press inc., 1978.

Gutz, Steve, Michael J. Spier and Anthony I. Wasserman. The
ergonomics of Software Engineering - Description of the
Problem Space" Software Engineering Environments. edited
by Hunke Horst. New York: North Holland Publ., 1981.

Hammer, Michael and Gregory Ruth. Research Directions in
Software Engineering. edited by Peter Wegner.

4. Cambridge, Mass: MIT Press, 1980.

Infotech International Limited. Software Engineering
Techniques, Vols 1. Maidenhead, Berkshire, England:
Infotech International Limited, 1977.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming
Language. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.

Lanergan, Robert G. and Dennis K. Dugan. "Software
Engineering With Reusable Designs and Code" IEEE COMPCONFALL. (1981).

Myers, Glenford J. Software Reliability. New York: John Wiley
and Sons, Inc., 1976.

- 95 -

S ~- I-- 7- '...-

V %

Peters, Lawrence J. Software Design: Methods and Techniques.
. ::.*. New York: Yourdon Press Inc., 1981.

Wasserman, Anthony I and Peter Freeman. Interface Workshop on
Software Engineering Education. New York:
Springer-Verlag Inc., 1976.

Wasserman, Anthony I. "on the Meaning of Discipline in
Software Design and Development" Software Engineering
Techniques, Vol. 2. Maidenhead, Berkshire, England:
Infotech International Limited, (1977).

Wasserman, Anthony I. Tutorial: Software Development
Environments, edited by Anthony I. Wasserman. New York:

-iIEEE Computer Society Press, 1981.

Weinberg, Victor. Structured Analysis. New York : Yourdon
Press, 1978.

Yourdon, Edward Techniques of Program Structure and Design.
Englewood Cliffs, New Jersey: Prentice-Hall, inc., 1975.

Yourdon, Edward and Larry L Constantine. Structured Design,
2nd Ed. New York, New York: Yourdon Press, 1978.

Zelkowitz, Martin V. Princieles of Software Engineering and
Design. Englewood Cliffs, New -Jersey: Prentice-Hall,
inc., 1979.

Zelkowitz, Martin V. "Rapid Prototyping Woprkshop: Overview"
Software Engineering Notes, Vol. 7, No. 5. New York:
Association of Computing Machinery, Inc., (December,
1982), p2.

1199

-96-

q * ~ . * . 7 . . U* - - - . - - r U' r w z' 4 7 4 ° , o . * 4 " . - . . -- . . - - • •. .

Appendix A

Glossary of Terms

I Backus Naur Form (BNF)
A means of formally describing the syntax of a

BNFlanguage.

BNF Backus Naur Form.

Code Generator Tools that assist in the production by
automatically translating from one form to
another target form.

Detailed Design
A specific statement of the methods that will
be used in the implementation of the software.

Detailed Design Document

A formal document describing the detailed
*' design.

DFD Data Flow Diagrams. A graphical method for
* representing the flow of information in a

system. Often used to state the requirements
of a system.

Implementation
IThe stage of the project in which the design isWcoded in some implementation language.

Interface Checkers
Tools that automatically check and verify the
interface between different modules.

Linkers Tools that merge and join separate modules,
usually object modules.

Maintenance/Operation
The stage of the project when the software is
being used and changes are being made to

-.- correct errors or make changes.

-97-

Preliminary Design
A description, usually graphical, of the
structure of the system.

Preliminary Design Document

A formal description of the preliminary
design.

Software Engineering
A discipline that tries to develop proper
engineering method- by which quality software
may be produced.

Source Code Human readable rep3 oentation of the software.

Structure Charts
A graphical method representing the design
of software systems by showing the hierarchical
structure and the flow of information and
control.

Structured Code
Source code that is created using rigid, formal

-'*. methods in the hopes of constructing quality
software. Usually having to do with program
layout and using single entrance points and
single exits.

Syntax-Directed Editors
Interactive automated tools that check the
syntax of the source code as it is entered in
the computer by comparing the code with the
syntax description for the language.

Test Plans A formal statement of the methods, strategies
and test cases that will be used to validate
the software system.

Text Editors Interactive tools that allow the input and
modification of text into computer files.

Textual Requirements
* -A formal statement of the requirements of the

system in english, or an english-like
language.

Tool Kit Approach
An approach to developing software that
emphasizes the use of many small software

*- components integrated into a single system.

- 98 -

.> .- .'- -... .*.'*.'.'" .-.. ,.-.... ' . ". . ' .' - "'.

Appendix B

MIDAS Language Description

(Modular Interface Definition And Specification)

B.1 Definitional Conventions

'4

The mealanguage useu in this description of the MIDAS

61syntax is based on Backus-Naur Form (BNF). It has been

modified to permit greater convenience of description. The

meanings of the various metasymbols are given below.

• ,Metalanguage Symbols

Metasymbol Meaning

-* :=shall be defined to be

*i I alternatively
.4 end of definition
ix] 0 or 1 instances of x
(x] 0 or more instances of x
(xly) grouping: either x or y
xyz terminal symbol xyz

S)xyz) also terminal symbol xyz
<meta-identifier> nonterminal symbol

3. - 99 -

-a

B.2 Lexical Tokens

Special Symbols

<letter> ::= a lb IJc I c I d I~ g Ihi ii j
kI 1 I n 10o I q I rI sJ t u vlw Ix I yI z
I A B I C I D IE I F IG I HI I J I K IL IM INI0
P PQ IR ISITIUIVIWIxIYI Z I .

<digit> :=0 I1 I2 I3 I4 I5 I6 I7 I8 9.

.'I

<symbol> :=+ -I* =I< I>I[I I* I' :

<special_symbol> :=<symbol> I<word-symbol>.

is <word-symbol> :=SYSTEM I SUB-SYSTEM I SPECIFICATION I

<hierarchy_word-symbol> I<mid word-symbol>
<data-word-symbol>.

It is important to note here that <word_symbol> varies

depending on which section of MIDAS is currently active. The

implication here is that there will be a different set of

reserved words in the hierarchy section, mid section and the

data section. This will be discussed in greater depth at a

later time.

It is important to note that the syntax of MIDAS is, at

times, very restrictive and demanding. The reason for this is

".* -o-."

that most of the MIDAS description is not intended to be

-100-

'

,',

J'

Special Symbols~~ **~ *.*~ *-.*-~*

,-.- -. w .,- . , - , i - ° - - - " .

filled out by the user, instead it will be filled out by the

<hierarchy word symbol> ::= STAND ALONE separate I
LEVEL I NOT IS I DEFINED I AS I SYSTEM I HIERARCHY
DESCRIPTION I COMPLETELY I DESCRIBED I SUB.

<mid word symbol> ::= PURPOSE j ALIAS I AS I BLOCK I BY
CALLS I CASE I- CALLED j COMMENT I COMPLETELY I CREATED

CREATOR I DEFINED I DESCRIBED I DESCRIPTION ELSEWHERE
EMPTY I END U FAN FAN I IN I INTERFACE I IS MODULE I NAMEI NOT OUT I USER .A

<data word symbol> ::= CASE ARRAY I AS BLUEPRINT
BOOLEAN I -CHARACTER I CONSTANT I COMPLETELY DATA I DELTA
DESCRIBED END FILE I INTEGER I LENGTH NOT OF
OTHERWISE NULL POINTER I RANGE I REAL I RECORD I STRING
TO I TYPE WHEN WITH

Identifiers

Identifiers may be of any length. All characters of an
identifier are significant in distinguishing between
identifiers. Any <word_symbol> is required to be in all
capital letters. Therefore, an identifier with the same
spelling but with different case is separate distinguishable
from the <wordsymbol>. In other words, case is significant.
The reason for this is for flexibliity. Sometimes an
identifier may be used in one place and the user may wish to
refer to it later in the comment section. This gives the
flexibility necessary to accomplish this.

EXAMPLE:
SPECIFICATION

is not the same as Specification
or SPECification

but Specification
is the same as SPECification

- 101 -

Numbers

An unsigned integer shall denote in decimal notation a
value of integer type. An unsigned real shall denote in
decimal notation a value or real type (float type).

<signednumber> ::= <signed-integer> I <signedreal>.

<signedreal> ::= [<sign>] <unsignedreal>.

<signed-integer> ::= [<sign>] <unsigned-integer>.

<sign> ::= + I --

<unsigned real> ::= <unsigned-integer> '' <fractionalpart>.

<unsignedinteger> ::= <digitsequence>.

<digitsequence> ::= <digit> (<digit>].

<fractionalpart> ::= <unsignedinteger>.

Character Strings

A character string containing a single string element

shall denote a value of character type. A character string

containing more than one string element shall denote a value

of string type.

<character string> ::= '"'<stringelement>'"'
'"r<stringelement>(<stringelement>'"'.

* 5..,,. <stringelement> ::= <letter> I <space>.
6
•

- 102 -

p0.

EXAMPLES:

Character types 'A' ' ' 'P
String types "A" " " "this is a legal string type" "\"".

Note that the \ character is used as an escape to allow the

placement of the " character (quote character) into a string.

B.3 Syntax Description

The following is BNF description of the MIDAS

specification language.

<midas> ::= MIDAS <system identifier> SPECIFICATION IS
<hierarchy description>
<data blueprint>
<module_interfacedescription>.

This is the MIDAS header which describes the relationship

between the three principle parts of MIDAS.

<systemidentifier> ::- <identifier>.

<hierarchydescription> ::- HIERARCHY DESCRIPTION IS
[NOT] COMPLETELY DESCRIBED [AS <hierarchy>]W;'.

<hierarchy> ::- "(" <system level> <system-identifier>
IS <leveldescription> ")" (<levelbreakdown>)

<systemlevel> ::- SYSTEM I SUB-SYSTEM.

The level of the system is used in describing whether or
not the part being described is the system or just part of the
system.

<leveldescription> ::= <module-name> (<modulename>).

<modulename> ::= <identifier>.

<level breakdown> :: '(' <modulename> IS <level option> ')'

-103-

% .- ~*- . :-*'~~> .K:.~:::.~.:::: -r

o r .r . .-

.. ... The <level breakdown> describes the level's makeup.

<leveloption> ::= (SEPARATE (STAND ALONE] LEVEL)
I <level description>.

If a level is specified as separate then it means that
the level will be completely described in another hierarchy
description. The stand alone option indicates whether or not
the separate level will be a stand alone, operational system,
or whether it is a collection of modules.

This completes the syntax description of the hierarchy
part of MIDAS. The next description will be for the mid part
of MIDAS.

-. <module-interface description> ::= MODULE INTERFACE DESCRIPTION
i-b -IS [NOT] COMPLETELY DESCRIBED AS (<repeateddescription>].

<repeated description> ::- [<system level>] MODULE <identifier>
IS [NOT] COMPLETELY DEFINED <wheredefined>";".

<where-defined> ::= (AS <description> END MODULE
<identifier>) I ELSEWHERE.

Either a module is defined here, in this mid description,
Sor it is described in another mid description.

<description> ::- <interface> <commentblock>.

<interface> ::- (INTERFACE IS <interfacedescription>";") EMPTY';'

<interfacedescription> ::- (<identifier> (, <identifier>] : [<mode)
<typeidentifier>';'3.

<mode> ::- IN I OUT I IN OUT.

- <comment block> ::-
/* MODULE COMMENT BLOCK *

MODULE NAME a> <identifier>
MODULE ALIAS => (<identifier> I none)
MODULE CREATED -> <date>
MODULE CREATOR -> <creator identifier>

" MODULE FANOUT -> <number>
MODULE FANIN -> <number>
MODULE CALLED BY -> (<identifier> (, <identifier>]]
MODULE CALLS -> [<identifier> (, <identifier>]]
MODULE PURPOSE -> '"' <moduledescriptor> '"'

<date> ::=

S'" "- r <creatoridentifier> ::- <identifier>.

.9

- 104 -

* - * .* - *. -. * . - . . • " - . . , . . . , - . . • • . / • - " ,-"% % ,"% .•% '

Vi. 1.7W ,: 7-%7 . 7.-

*4

<module descriptor> ::= ((<letters> <wordsymbol> j <special symbol
- <number>)]

This completes the syntax description of the mid part of
MIDAS. The next description will be for the data part of
MIDAS.

<datablueprint> ::= DATA BLUEPRINT IS [NOT] COMPLETELY DESCRIBED
AS <datacompletion>.

<datacompletion> ::= [<constant section (constant section]]
K. typedescription (type_description).

<constant-section> ::= CONSTANT <identifier> IS <constants> '-'

<constants> ::= <signednumber>
<character string>

' <character> ''.

<typesection> ::= TYPE <identifier> IS <type_denoter> ';I.

<typedenoter> ::= <typename> <new type>.

<new type> ::= <pointertype>i - <enumeration_type>

<array._type>
<file type>
<recordtype>

-q <subrangetype>.

<type_name> ::= <identifier>
REAL
INTEGER
BOOLEAN
CHARACTER
<stringtype>.

<pointertype> ::= POINTER TO <typename>.

<enumerationtype> ::= '(identifier list ')'
I '(' character list ')'.

<identifierlist> ::= <identifier> C, <identifier>).

<character list> ::= '(' <letter>j<digit>j<symbol>
-, <letter>j<digit>j<symbol> <letter>j<digit>j<symbol>3) 1.

<arraytype> ::= ARRAY '[' index selector '1' OF <typename>.

<index-selector> ::= <ordinaltype> (, <ordinaltype>].

- 105 -

<ordinal type> ::= <typename>S<enumeration type>
S<integer_subrange>.

<filetype> ::= FILE OF <type-name>.

4' <subrange_type> ::= <integersubrange> j <real_subrange>.

<integersubrange> ::= INTEGER RANGE <signednumber> ".."

<signednumber>.

<realsubrange> ::= REAL RANGE <signed-real> ".." <signedreal>
[WITH DELTA <unsignedreal>].

<stringtype> ::= STRING [LENGTH <unsignedinteger> ".."
<unsignedinteger>].

<record-type> ::= RECORD <component list> END RECORD.

<componentlist> ::= [<fixed_part> I [<variant-part]

<fixed_part> ::= <fixedcomponent> [<fixed_component>] I NULL.

<fixed-component> ::= <identifier-list> ':' <type denoter> ';'.

<variantpart> ::= CASE <typename> IS <when_part> [<when_part I
[<default>] END CASE ';'.

<when_part> ::= WHEN <constantlist> "=>" <componentlist>.
.9

<constant-list> ::= <repeatedconstant_part> I <identifier-list>.

<repeatedconstant_part> ::= <constants> (, <constants> 3.

<default> ::= OTHERWISE "=>" <component-list>.

<string> ::= <identifier>.

<identifier> ::= <letter> C ' ' I <letter> I <digit> 3.

," B.4 Examples

***** SAMPLE HIERARCHY DESCRIPTION ****

HIERARCHY DESCRIPTION IS COMPLETELY DESCRIBED AS

- 106 -

.1.'*, - -"- .- - - '- -- - " - . .. , ." . . - , ". -.. ,. . ,,. . .

N-. K.-K7W7 -77. . ;

SYSTEM sire IS pars rds pds dds srs utility_tools reporterror

pds IS menu editor hierarchy mid data utility_tools report errol
(hierarchy IS reporterror compile hierar)
(compile hierar IS resolve module Install lookup attach new hier

genmiddesc report error)
(gen middesc IS enter module check_swap
Senter module IS load swap)
mid IS compilemid re-porterror)

(compilemid IS resolvemodule make datadesc report-error)
(make data desc IS check known)
data-IS write table make release d load-table enter check for n
perform tab se enumeration en check table fu reporterror releas

V (load ta~le YS enter)
enter IS resolve confli
enumeration en IS enter
utilitytools IS menu list_projects list project 1 list lib modi
list undef mod remove_proj rem_proj_level rem mods query_errno

query language setlanguage);

***SAMPLE MODULE INTERFACE DESCRIPTION

4.

- - MODULE INTERFACE DESCRIPTION IS COMPLETELY DESCRIBED AS

q MODULE compilehierar IS COMPLETELY DEFINED AS

INTERFACE IS
one, two, three : IN STRING,
four : IN OUT REAL,
five : IN newpointer;

/* MODULE COMMENT BLOCK
MODULE NAME => compilehierar
MODULE ALIAS => none

* MODULE CREATED => Thu Nov 10 12:56:54 1983
MODULE CREATOR => USER = nettles
MODULE FAN-OUT => 7
MODULE FAN-IN -> 1
MODULE CALLED BY -> hierarchy
MODULE CALLS -> resolve module, install, lookup, attach,
new hier desc, genmiddesc, report error

MODULE PURPOSE -> "The purpose of this module is
to act as a handout for the briefing on SIRE."

END MODULE compile hierar;

MODULE list_project_1 IS COMPLETELY DEFINED AS

- INTERFACE IS
EMPTY;

- 107-

-o ~ p'
1 '% 4 ~ ~ *~ . . . ? . .- ** ~ * : *

4%,

/* MODULE COMMENT BLOCK

MODULE NAME => list_project_1
MODULE ALIAS => none
MODULE CREATED => Thu Nov 10 12:56:55 1983
MODULE CREATOR => USER = nettles
MODULE FAN-OUT => 0
MODULE FAN-IN => 1
MODULE CALLED BY => utilitytools
MODULE CALLS => none
MODULE PURPOSE => "The purpose of this module is"

END MODULE list_project_1;

•**** SAMPLE DATA DEFINITION SECTION *

DATA BLUEPRINT IS COMPLETELY DESCRIBED AS

CONSTANT stringexample IS "HELLO there my name is sire";
CONSTANT int_example IS 3;
CONSTANT realexample is 3.0;

TYPE new_pointer IS DEFINED AS POINTER TO INTEGER;
TYPE argument pointer IS DEFINED AS POINTER TO STRING;
TYPE argument-vector IS DEFINED AS ARRAY [] OF argument_pointer;

1.

~- 108 -

o' ' V . E 3. . -o. '.%. " -. •... .- - •. .< , . .,, . . . ' . " . . . , .-.-. L

Appendix C

System Design

C.1 Requirements Model

Data Node List

- 1 SYSTEM CONCEPT

0-- 1.0 SYNTHESIZE SOFTWARE

-- 1.1 DEFINE REQUIREMENTS

-- 1.2 DEVELOP PRELIMINARY SOFTWARE

-- 1.4 DEVELOP DETAILED SOFTWARE

d -- 1.5 RELEASE SOFTWARE

1

~- 109 -

::'- ;- ..':;:; ; 0 ,.. SL, , _-..,,.. * -.. .,-........ , ..V".. .

rr

.*~

4-.

in

P4

~ 0

% N,- U

r2n

. 0
FU-'

MI
'p 0

- 110-

"61.

-E-

E-4 C.

(t) II

!n
4

E- Cf M

E-4-

El' (D
'64 CO

4%E-i

4--

.4.4
-- -fn

I-.,4

Fat

4 E-4

z 402

E-44

-. 44

pH,

InI
-044

re.I

.E-

%,~..4*-;%.4~; *4* .. *.- ~ ...

~*, C~**.~ -~.-4'~~**'~ ~ ~~ ~ -** -.

- 4--- 4 P.

00

CC,

rr

p.. *..~M)

V...4

-11r-

p.o

- . .4 - . 4 - -. -

rr

0

E-4-

1-42

. E-4 -- 0J-

43

en2 0

r-4

E-4-0

3--

14 (14 a-114-

-E-

* * .. *- * . '*'. **~

* *--*., - - ... ***-..4
~~~t w 2 _



~~ .. w.

fa. Liz

C..

0

02
rf0)

.E-4

'U-

WI~ 1 ->4" )i

E-4 lD~UU**



C.2 Structure Charts

Structure List

1.0 EXEC.

-- 1.2 MENU.

-- 1.5 PDS.

--- 1.5.2 HIERARCHY.

---- 1.5.2.2 COMPILE HIERARCHY.

--- 1.5.3 MID.

--- 1.5.3.2 COMPILE MID.

--- 1.5.4 DATA.

-- 1.5.4.2 COMPILE DATA.

-- 1.8 UTILITY TOOLS.

11

%J

.J

- 116 -

to * .* * . . .. . * - % °~5*5 '

. .. . . . • . . .*~ *-.- -. -* -e . '.- . 5-, .- * - . . . . . .- € - . . , ' - . -- -.'- " *"-' . ' . ,



Data Item List

1. PROJECT NAME

THE NAME OF THE CURRENTLY SPECIFIED PROJECT

2. LEVEL NAME THE NAME OF THE CURRENTLY SPECIFIED LEVEL

3. MENU CHOICES
THE ACTION CHOICES THAT THE USER HAS

4. MENU CHOICE
THE MENU CHOICE CHOSEN BY THE USER

5. VALID CHOICE
FLAG INDICATING THAT THE CHOICE WAS VALID

6. ERROR STATUS
THE ERROR STATUS OF THE SYSTEM

* gm ~ 7. CURRENTLY ACTIVE SUBSYSTEM
THE SUBSYSTEM (PARS, RDS,PDS,DDS,SRS) THAT IS
CURRENTLY ACTIVE

8. SWAP LOCATION
THE LOCATION OF THE SWAP FILE, PROJECT
DEPENDANT

9. HIERARCHY LOCATION
THE LOCATION OF .HE HIERARCHY DESCRIPTION

10. HIERARCHY TREE
THE DATA STRUCTURE THAT THE HIERARCHY COMPILER
BUILDS IN MEMORY

11. SWAP FILE THE SWAP FILE
fP.

- 12. MID LOCATION
THE LOCATION OF THE MID DESCRIPTION

13. MID TREE THE TREE BUILT IN MEMORY BY THE MID COMPILER

14. LEVEL TABLE
THE TABLE OF ALL THE LEVELS OF THE PROJECT

15. RELEASE STATUS
THE STATUS THAT DETERMINES W1-ETHER THE LEVEL

- - 117-



-U CAN GENERATE ANY CODE AT THE CURRENT TIME

16. DATA DESCRIPTION
THE DESCRIPTION FILE FOR THE DATA BLUEPRINT

17. DATA LIST THE DATA LISTING FILE

"" 18. IMPLEMENTATION LANGUAGE
THE LANGUAGE INTO WHICH MIDAS IS TRANSLATED

19. TOOL LIST LIST OF ALL TOOLS

20. TOOL CHOICE
THE TOOL CHOOSEN

dl - 118 -

4b'



-jl E-40

B C9

M -n

- p

0

0*0

E119



C

C%,

.E-

120

i.

S.'

'4.

-'.



1-4

CY

1I-.

C17.

C\1

-1.4

4.-4

-121 -



0 :

1-4 4

'p

UA)

00-

N4o



C~~i

E-4 i

5C%

55a

1123



4E-

-E-4

0

U;-

C,4

U'0

0 Nz

-E-

-124 -



LV

-E-
4 .

E-44

00
CC.,

CC.

'-4

'4-4

60

4,12



a-4

/ E-

'i,

-a-N

E-4.

126.



Q ..
C-,

E-4, r4

9 Lr'%

H 0

4.4

W127
.. ,~. ..-. ..- . -

* . P - * * *-. --- ,*.~. S 5-. - -



CD

C'\J

E-1 0

4)

E-4I

2P E

-129-



rr 4 g. -. r7r~w~r.. ~ r* v-* '. - . -' - . u7rrr.~ru7rr '7 UT

$4r -~

- -
'4,.

.4.

'C.
I~~

S

* 'p."

~2%

.4 *1'

C

'I.

V:.

ci,
1*
0

ha

r
'At'

"4%'
-129-

*

- te - - -
.3. - - --.. '---4-..-.., - -, -

- ;,.vX-. . "C *'..-'t.-x"\' UK



Appendix D

Sire User's Manual

D.1 General Information

Sire is a menu driven software environment. Because of
this, it is easy to use the system without having had any
experience with it. Therefore, this user's manual will not be
a detailed explanation of the use of this system, rather, it
will be geared more toward a tutorial type of manual. Several
assumptions are made about the user's knowledge at this

. point. The first is that the user is familiar with the MIDAS
language. Secondly, it is assumed that the user is familiar
with the VI editor currently being used in Sire. Finally, and
least important, is the assumption that the use have some
small working knowledge of UNIX.

D.2 Invoking Sire

Sire may be invoked in one of two ways. The first is to
simply issue the UNIX command - sire <project name>
<user name>. If Sire recognizes <projectname> as being a
valid project, it will start up with the currently defined
level being the default, main. If <projectname> is not
recognized then sire will assume ask whether a new project is
being started or whether a mistake has been made. If a new
project is specified then action will be taken to initialize a
new project, otherwise ore will terminate.

The second method used to start Sire is basically the
same, however Sire allows the specification of the project
level at this time. If the project level is invalid then Sire
will default to the main level. In any case, it is necessary
to enter the name of the user as the last argument on the
command line.

-130-



.... .. .. . . . . . . . . . . .. ..

Examples of Sire invocation:

" sire nettles -- the basic method

sire projectl nettles -- specifying a project name

sire projectl levell nettles -- specifying a project and level

D.3 Top Level Operation

After Sire has been invoked, the user will be presented
with a menu of choices. At the top of the menu will be a

*. message specifying the currently active project and level.
The choices correspond to the different sections of Sire, with
the exception of two. These two are the utility_tools and the
level name change choice. The utility tools are all easy to
understand from their menu name, therefore it is easier to use
them than to read about them. The name change choice lets the
user change the level currently active (obviously).

All the user has to do at this level is to choose which
section of Sire is needed. This will vary with the stage that

- Othe project is in, but it should proceed from the first
section, pars, to the last, srs.

4.

* D.4 Operation of PARS
4

TBD.

1D.5 Operation of RDS

.4.

-.

- 131 -



C..

D.6 Operation of PDS

Starting PDS

After having specified the PDS menu choice in the top
level of Sire, the next thing that will happen will be the
appearance of the PDS menu. The operation of the PDS, like
all parts of Sire, is driven completely by the menu. The next
section will describe the menu and how the PDS works. The
description is only the recommended course of actions. After
familiarity has been gained, the user may want to vary the
actions in any manner suitable to the task.

The Menu

The basic parts of the menu are the edit/compile cycles
and the tools. The edit/compile cycles are responsible for
building up the complete description needed by PDS in order to
function correctly. The first cycle is the "hierarchy"
cycle. In this cycle the user will start the editor and enter
the hierarchy description that is needed. After entering the
description and leaving the editor, the next action will be to
compile that description. If any error messages occur, the
user must look at the listing file and determine what errors
were committed. Then, the user should go back to the
beginning of the cycle and correct the errors.

The next action, after successful completion of the
hierarchy edit/compile cycle, is to enter the "mid"
edit/compile cycle. The same course of actions will be
followed here as were followed in the previous cycle. The one
big, noticeable difference is that a partial mid description
will already exist. This is so because the hierarchy
compilation process was able to glean enough information from
the hierarchy description to fill out parts of the mid
description. One useful thing to know is that any information

" .. entered in the mid cycle will not be lost. Successive

- 132 -

5 ' ' ' ' " "" : " ' '" '*" .""' '" ''



i~ ~ ~ ~~- Ts%.. , e....+ -

recompilations will save the data entered in the first
,j attempt. This service is provided to keep the user from
- having to enter the information more than one time.

Obviously, if the information changes, the user must update
the description.

After successfully leaving the mid cycle, the next cycle
is the data, or release, cycle. In this part, the user must
enter the descriptions of all the data that the mid
compilation couldn't figure out. The purpose of this cycle is
twofold, first it is supposed to compile the data
description. Second, it is responsible for the translation of
the MIDAS into the implementation language.

The translation will only take place if certain
conditions have been met. The first is that all the three

* cycles have been successfully completed. The second is thati an implementation lantiage has been chosen. If the currently
active level is not the main level, then the translation will
take place. If the level is the main level then translation
will only take place if all the separate levels have been
taken care of first.

A sample project has been included in Sire to demonstrate
its use. The project name is "Sample" and the levels are
main, first and first sub one. A quick perusal of this
project will be useful to the first time user.

*D.7 Operation of DDS

TBD.

.* D.8 Operation of SRS

- 'a" TBD.

D.9 Operation of Utility Tools

It is hard to fully describe all the Utility Tools that
are built into Sire since, by nature, Utility Tools is very

Sflexible and intended to change. It should be sufficient to

- 133 -



say that all the tools presently included in Sire are very,
• , very simple in nature and should be easy to understand from

* .,." just reading the title.

4-3

-'o

q.

4F.

".1

4"

o .*



Appendix E

Installation and Maintenance of Sire

24- E.1 Introduction

Sire is fairly easy to install on a VAX/UNIX system that
is running version 4.1 bsd. The rest of this appendix
contains a list of the files needed for Sire and a brief
description of those files. Also, instructions are given on
how to move and install Sire.

E.2 File Descriptions

Currently all files listed below exist under
/en/gcs83d/nettles/thesis/sire, on the AFIT SSC VAX.

bin The location of all executable parts of Sire.

bin/data The data compiler of the PDS tool.

bin/mid The mid compiler of the PDS tool.

bin/utility_tools
The utility tools that can be used by every
part of Sire.

bin/hierarchy The hierarchy compiler of the PDS tool.

bin/pds The PDS tool of Sire.

bin/sire The Sire system driver.

exec The directory that contains the source code to
4the Sire driver.

exec/Makefile The make program that maintains the
* . configuration of the directory.

- 135 -

. .. . . . . . . . . . .. ... .. -. ... .



exec/main.c The source code of the Sire driver.

pds The directory that contains the PDS tool source
code.

pds/Makefile The PDS directory make program that maintains
PDS configuration.

pds/data.y The YACC input file that contains all the
source for the data compiler.

pds/datatable.c
The source for the data table code used in the
data compiler.

pds/hash.c The hash source for the hashing functions used
by hierarchy and mid compilers.

pds/hierarchy.y
The YACC input source used for the hierarchy
compiler.

pds/main.c The main driver source of the PDS.

pds/mid.y The Yacc input source used for the mid
compiler.

pds/midasall.l
The Lex input source used for the release
compiler's lexical analyzer.

pds/midasdata.l

The Lex input source used for the data
compiler's lexical analyzer.

pds/midashier.1
The Lex input source used for the hierarchy
compiler's lexical analyzer.

pds/midasmid.l
The Lex input source used for the mid
compiler's lexical analyzer.

pds/moduletable.c
The module table source used by the hierarchy
compiler.

pds/release.y The YACC input source used for the release
system that is triggered by the data compiler.

pds/tree.c The tree builder source used by the hierarchy
compiler.

- 136 -

4.q



* projects The directory under which all the projects
exist.

projects/.globals.h
The file which contains the global header file
that is used by the translation module that
generates C source code.

globals The directory which contains things of global
importance.

globals/Makefile
The global make file configuration maintainer.

globals/errors.h
The error definition header file.

globals/globals.h
The global definition header file.

globals/screen.c
The source file which contains both menu() and
reporterrors().

globals/struct.h
The structure and definition header file.

globals/utilities.c
The source file for many small utility programs
of global use.

tools The directory containing the utility tools.

tools/Makefile
The directory configuration maintenance file.

tools/utl tools.c
The source code for the utility tools.

E.3 Maintaining Sire

Sire was developed in many small parts for the purpose of
easy development and maintenance. Also, the design of Sire
was run through the PDS system in order to produce
documentation for the implemented parts of the design. This
provides for a fairly good level of documentation. It is hard
to describe the proper method for maintenance of Sire since
the recommendations given earlier in the main body of the

* *** thesis call for the redesign and reimplementation of the

- 137 -

M li ' '%°% 2 ' "- . 1 1 J - "- "-. . " .'-"""'. ." " ' ' " "''" ' ° ' """'""' °



-- - -- . - .. . b - *.

entire system. However, should some hardy soul wish to wade
through the code and fix the system, the maintainer should
become thoroughly familiar with the C language, YACC, and LEX
for this is where the complexity of the system lies.

The majority of the source code is very simple and is
broken into small modules. Also, there is seldom any occasion
in which the calling level ever goes past three or four
functions at a time. This means that the tracing of the
system flow will be fairly easy.

*, E.4 Moving Sire

Moving Sire should prove to be a fairly easy exercise.
All that need be done is to move the directory "sire", which
currently exists under /en/gcs83d/nettles/thesis, to whatever
final location is desired. Then, the definition of HOME in
the globals/struct.h file must be changed to reflect the new
location. Finally, the makefile in the sire directory must be
invoked by giving the following command, "make sire >& serr
&<CR>". This will remake the whole system in background mode
and put any errors in the file "serr". There shouldn't be any
errors.

13

'a?'

a°,

.o'-

o."

",,

.°

" --

~- 138 -

a . ,. . . . * . a. % . a - a,% . . ., -.,, . . . a . . . . . a • a *. a -% a -



7 

.

SECURITY CLASSIFICATION OF THIS PAGE

K REPORT DOCUMENTATION PAGE

--. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

-~UNCLASSIFIED

2s EUIYCLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSI FICAT ION/OOWNG RA DING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

* AFIT/GCS/XA/83D-5

GNAME OF PERFORMING ORGANIZATION lb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

* School Of Engineering IAFIT/ENC
Ge. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP doda)

* Air Force Institute of Technology

Tvright-Patterson AFB, Ohio 45433

ft NAME OF FUNOING/SPONSORING lab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

* ORGANIZATION j(it applicable)

ftG ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)

* see box 19______________________

&PERSONAL 
AUTHOR(S)

avid W. TNettles, B.S., 11t. UStF
1&TYPE OF REPORT 13b6 TIME COVERED 14. DATE OF REPORT (Yr., MWo.. Day) 15. PAGE COUNT

FROM ____ TO ____147

1G. SUPPLEMENTARY NOTATION A vz .'A. Q?

Lf- A:,-: UU1

17. COSATI CODES 1S. SUBJECT TERMS (Continua on reversae
'Wght-cltieraon AF B Oki 4 qjj

FIELD GROUP SUB. GR. Software Development, Software Enginqering,
9 2 Automatic Program Generation

1. ABSTRACT (Continue on reverse it necessary and iden lify by bl0ck number)

Title: SIRE: AN AUTOMATIC SOFTWARE DEVEOKPENT ENiVIRON0MNT

Thesis Chairperson: Patricia K. Lawlis, Captain, USAF

a .. D.,ISTRIUTO/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

S UE4CLASIP IE/UNLI MITE j SAME AS RPT. C3 OTIC USERS [3 UNCLASSIFIED

22a NAME OP RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBO0L
doApa CodejPatricia K. Lawlis, Captain, USAF 513-'!55-3636 AFIT/ENC

SDID FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UCLASSIFIED)
SECURITY CLASSIFICATION OF THIS PAGE

!V- .4. %.*~- . -~Kj-* .'



.~~W V. W. . . . . .

SECURITY CLASSIFICATION OF THIS PAGE

ABSTRACT:

The objective of this thesis is to perform the preliminary design and partial develop-

ment of an automated software development environment (ASDE). This environment, called

Sire, is intended to support the design and production of software using automated and
interactive tools. Sire is to be a system that aids the software designers and programners
through the use of an integrated and flexible set of tools that are intended to reduce the
amount of work that is done by humans. This reduced workload will free the system
designers/implementors for more productive work.

As part of this investigation, a partial implementation of Sire is aecomplished.
This implementation allows the user to input a system design in a specification language.
Sire will then produce a correct source program shell for the user to use for detailed
design and implementation.

.I

€' SECUIlTY CLASSIFICATION OF THIS PAGE



1. 71

RAW'

I *,

V 1,, t

vt~

r~ 104

If~g4-

,lp

Alp

o.,4


