LRD-A13& @22 SIRE: AN ARUTOMATEL SOFTWARE DEVELOFMENT ENVIRONMENT (U 12

RIR FORCE INST OF TECH WRIGHT-PARTTERSON AFB OH SCHOOL

¥ OF ENGINEERING D W NETTLES DEC 83 AFIT/GCS/MR/83D-5
UNCLASSIFIED : F/G 9/2

=
=

.

B

X
e

- R 3

e’ s
i

])

o

——

FEEEEEE

EEEE
EEE

e |||| TN
5 | = |
;

)
O

R

"

s 1

B

1 - ; MICROCOPY RESOLUTION TEST CHART
: ‘. NATIONAL BUREAU OF STANDARDS-1963-A
-

SIRE: AN AUTOMATED SOFTWARE
DEVELOPMENT ENVIRONMENT

THESIS

AFIT/GCS/MA/83D-5 David W. Nettles

1st Lt USAF

DTIC
ELECTE
FEB 211384 .

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY D

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

[DISTRIBUTION STATEMENT A ‘ 84 02 1% 060

Approved for public release;
Distribution Unlimited

T e et e e e e e W A

» -- .'..
Nala’din "8 e " o%n "0 a"p’2 "0 ‘2’ e’

AFIT/GCS/MA/83D=-5

Accession For

RTIS GRA%I }g
DTIC TAB 0
Unannounced]
Justification

By.
| Distribution/ =~ |
Availability Codes
Avail and/or
Dist Special

il

SIRE: AN AUTOMATED SOFTWARE
DEVELOPMENT ENVIRONMENT
THESIS
AFIT/GCS/MA/83D~-5 David W. Nettles

1st Lt USAF

DTIC

ELECTE
FEB 211984 -

2,

hY
4

%

v

LS
AR

D

4 .'.'I
PN

.
s s s
"

X,

DS
e ae <

Approved for public release; distribution unlimited

]

vt“‘""‘ " 40 - - o < R IO i S RO AL B i e S-S) ‘e RS EA S ARSI I R I RS

~ AFIT/GCS/MA/83D-5

&
NN
T
; SIRE: AN AUTOMATED SOFTWARE DEVELOPMENT ENVIRONMENT
v
s THESIS
N N
2
\ Presented to the Faculty of the School of Engineering
% of the Air Force Institute of Technology
. Air University
K.
Y] . . .
K in Partial Fulfillment of the
3)
2 Requirements for the Degree of
g Master of Science

by
David W. Nettles, B.S.
1st Lt USAF
Graduate Computer Science

December 1983

Approved for public release; distribution unlimited

Preface

: ,u.n

)

P ar e

4

L :?_l&’lﬁl

poar s s2ss’s

RAARI

1

<y
f
;

ARY

a7 1K

To the memory of
Dira Anne Nettles.

The sun doesn't always shine.

v"' WYy . LN, -* \ \ V

S T T TR -..--.-_' R

Table of Contents

Preface

List of Figures
Abstract

Chapter 1 Introduction

1.1 Thesis Objective
1.2 Background

1.2.1 The Software Crisis
1.2.2 Software Engineering
1.2.3 Automated Environments

1.3 Problem Statement
1.4 Thesis Scope

1.5 Assumptions

1.6 Approach -

1.7 Summary

633 Chapter 2 Requirements Definition

2.1 Introduction
2.2 Requirements Analysis
2.3 General Requirements

2.3.1 Reduction of User Burden
2.3.2 Reduction of Software Errors
2.3.3 Easy to Update

2.3.4 Project Management Concerns
2.3.5 User-friendliness

2.4 Specific Requirements

2.4.1 Automated Documentation Support
2.4.2 Flexibility

2.4.3 Integration

2.4.4 Language Independence

2.4.5 Maintainable

2.4.6 Open Ended

2.4.7 Pre-fabricated Design

2.4.8 Prototyping

2.4.9 Reliable

2.5 Requirements Model

2.5.1 Sire Top Level
2.5.2 Synthesize Software

ii
vi

vii

0 N [S N o [ad

-~

N
A
-.;}.‘
%A
b e 2.5.3 Define Requirements 34
S pAS 2.5.4 Develop Preliminary Software 34
2.5.5 Develop Detailed Software 37
oot 2.5.6 Release Software 39
o
§" 2.6 Summary 41
wy Chapter 3 High Level Model Analysis 42
3N 3.1 Introduction 42
ii 3.2 Model Analysis 42
‘.{?_f 3.2.1 Analysis Guidelines 43
B 3.2.2 Structure Analysis 43
- 3.2.3 Implementation Analysis 44
Ll
';_:_. 3.3 Summary 45
k)
. Chapter 4 PDS Design 46
oo 4.1 Introduction 46
"zj 4.2 Strategy 47
ol
::::, 4.2.1 Design Representation Methodology 49
g
' @ 4.3 Design 49
'_f-'.) 4.3.1 Motivation 49
1
N 4.4 Design Structure Charts 51
s 4.5 Summary 55
g .. Chapter S Implementation 58
A
};§ 5.1 Introduction 58
g:}, 5.2 Implementation Strategy 59
I'\n'
5 5.2.1 Environment and Language 59
- 5.2.2 Practices 62
¥
o 5.3 Summary 69
IS . , .
Dy Chapter 6 Critical Analysis of Sire 70
6.1 Introduction ' 70
-':.:-; 6.2 Design Analysis 71
oY
‘Sﬁ;ﬁ 6.2.1 Weaknesses 71
% 6.2.2 Strengths 71
-.; el 6.3 Implementation 72
.'f: ._'-"
= 6.3.1 Weaknesses 72

-
-

-
LR
.

6.3.2 Strengths

6.4 Requirements Resolution
6.4.1 General Requirements
6.4.2 Specific Requirements

6.5 Lessons Learned
6.6 Summary

Chapter 7 Conclusions and Recommendations
7.1 Introduction
7.2 Conclusions About Sire
7.3 Recommendations
7.3.1 Plan to Throw One Away
7.3.2 Future Projects
7.3.3 General Sire Recommendations
7.4 Summary
Bibliography
Appendix A Glossary of Terms
Appendix B MIDAS Language Description
B.1 Definitional Conventions
B.2 Lexical Tokens
B.3 Syntax Description
B.4 Examples

Appendix C System Design

),\

C.1 Requirements Model
C.2 Structure Charts

A%.:::'. IY:‘

Appendix D Sire User's Manual

El D.1 General Information
Far D.2 Invoking Sire
ﬁﬁ D.3 Top Level Operation
M D.4 Operation of PARS
N D.5 Operation of RDS
D.6 Operation of PDS

. D.7 Operation of DDS
e, D.8 Operation of SRS

% D.9 Operation of Utility Tools
.

.

Appendix E Installation and Maintenance of Sire

-

. E.1l Introduction
AR E.2 File Descriptions
b E.3 Maintaining Sire
N E.4 Moving Sire

74

74
75
78

83
87

88

88
89
90

90
91
92

94
95
97
99

99

100
103
106

109

109
116

130

130
130
131
131
131
132
133
133
133

135

135
135
137
138

:-~ e ALY av, P AACR AT AL RACHAAA A A R A Y A S AL S AN R AN AR R i i e e et i . S -
N
Ay
Ls
-‘\
.,'i
. N
IS

4 RN
>} List of Figures

2
v Figure ' Page
l"

X 1. Proportional Cost of Hardware and Software 3
A 2. Software Life-cycle Model 6
.0 3. Error Detection Costs 7

4. Life-cycle With Prototyping 26
P? S. Sire Top Level 30
L 6. Synthesize Software 32
ﬁi 7. Expanded Life-cycle Model 33
3. 8. Define Requirements 35
N 9. Develop Preliminary Software 36
. 10. Develop Detailed Software 38
1 11. Release Software 40
W 12. Main PDS Chart 52
) 13. Edit/Compile Cycle 54
Ny 14. Compile 56

. - 15. System Concept 110
X Ci? 16. Synthesize Software 111
- ’ 17. Define Requirements 112
-3 18. Develop Preliminary Software 113
A 19. Develop Detailed Software 114
o 20. Release Software 115

\ 21. Exec 119
e, 22. Menu 120
-@ 23. PDS 121

. 24. Hierarchy 122
L 25. Compile Hierarchy 123
ok 26. MID 124
v 27. Compile MID 125
o 28. Data 126
~2 29. Compile Data 127
" 30. Utility Tools 128
>
o,

N
)
.
KA
.:.:c
e
s N x‘.:j
) “
Y

2
" - vi -

4.')
V)

o o _& o

ettt
L I 2

Y- JORIH .

N ‘\'_‘.‘

.\.‘

Abstract

The objective of this thesis is to perform the
preliminary design and partial development of an automated
software development environment (ASDE). This environment,
called Sire, is intended to support the design and production
of software using automated and interactive tools. Sire is to
be a system that aids the software designers and programmers
through the use of an integrated and flexible set of tools
that are intended to reduce the amount of work that is done by
humans. This reduced workload will free the system
designers/implementors for more productive work.

As part of this investigation, a partial implementation
of Sire 1is accomplished. This implementation allows the user
to input a system design in a specification language. Sire
will then produce a correct source program shell for the user
to use for the detailed implementation sgage.

|

N

~

\ ..‘ -

EREW

h

ay Chapter 1

- Introduction

‘\

e

kL 1.1 Thesis Objective

S

< The objective of this thesis was to perform the
%2 preliminary design and partial development of an automated
RS

-2 software development environment (ASDE). This environment,
)

2 ‘Eb called Sire, was intended to support the design and production
e : of software using automated and interactive tools. Sire was
43 conceived to be a system that aids the software designers and
. programmers through the use of an integrated and flexible set
-E of tools. Sire was designed and implemented with all facets
-

é. of software production, use, and maintenance in mind. After
- .':

‘ the preliminary design was completed, a portion of of the
:i design was chosen for implementation. The implemented portion
)

f} of Sire provides for the development of the preliminary design
o and the automatic production of a preliminary programming

language source program.

-
vy
XXX

.
A

QRN

¢
l.":..:‘ .

5 l.‘!. as
XXX

P
")"I

Py ;',_i' ’
AP

N

T
s
A ’Ll‘ ‘:' "“‘a .‘n’ -

3

.-
- ®

hd

1.2 Background

1.2.1 The Software Crisis

In recent years, the term "software crisis" has often
been used to characterize the state of the art in softw e
systems development. The roots of the software crisis, i
the key to understanding the problem, 1lay in the late 195
and early 1960's. In those days, computer software was a new
concept and people did not thoroughly understand it.
Therefore, they did not recognize the need for the proper
engineering and construction of software. Some symptoms of
this immature industry were unresponsive products, slippage of
production schedules, and difficulty in operations and
maintenance of software (Infotech, 1977: 8). Many of these
symptoms were directly attributable to the methods used to
develop software with each adding unnecessarily to the costs

of the final software product.

Although the cost of software development was high,
initially there was little or no motivation to do anything
about the cost. The actual computer hardware consumed the
majority of the computer system budget as can be seen in
Figure 1. Because of this, no one gave much thought to the

relatively small budget share allocated to software

‘*1_.

LMLk

-

e
27

development. Furthermore, the hardware designers believed
that the need for, and cost of, software would be greatly
reduced by the development of more advanced hardware, and
therefore more concentration was given to hardware research
and development.. It was this attitude that retarded the
growth of the software industry as a science and kept it from

maturing at a rate equal to that of the hardware industry.

RELATIVE
cosT

1960 1980

Figure 1. Proportional Cost of Hardware and Software

It soon became clear, however, that this course of events
was leading towards disaster. As larger and more complex

software systems were attempted, more and more software

project failures were noted. Even those systems that worked
were often unreliable, poorly documented, inefficient, unable
to fulfill the users' needs, and in need of costly rework
(Wasserman, 1981: 16). The wonderful hardware that had been
developed was not being efficiently used due to this failure
to provide quality software. Fueled by these failures, the
cost of software development started to rise dramatically. It
was predicted that future software would soon become the
predominant factor in the cost of computer systems, accounting
for as much as 60% to 90% of computing systems costs as
illustrated in Figure 1 (Infotech 1977: 7). With the common
development failures and the predicted expense for software,
it became increasingly clear that something needed to be done

to assure better quality software at a lower cost.

1.2.2 Software Engineering

"Software design technology is a system - not a secret"
(Peters, 1981: 3). While this may be true, it seems that the
fact that there was a system was a secret until around 1968.
It was at this time that the term "software engineering" was
first used. This term was chosen to emphasize the idea that
the proper design and construction of software should be
viewed not as some mystical art, but rather as an engineering
discipline (Wasserman, 1981: 16). Development of the
discipline of software engineering was started in the early

1970's and continued mainly as academic exercises that had

57 e
.
. a9

P
iy

'
.
L
-

little or no affect on software development until the mid to

late 70's. As a result of these research efforts, there were
many methods and techniques developed that were intended to
aid the production of high-quality software systems. Today,
the term software engineering is used to describe this

collection of practices, techniques, and methods.

Software engineering literally encompasses all activities
associated with producing software (Peters, 1981l: 6). These
activities are generally associated with some model of the
software development process such as the software 1life-cycle
model depicted in Figure 2. This "waterfall model" of the
software development cycle is denoted by the neat, concise,
and logical ordering of a series of steps that occur in order
to complete and deliver a software product (Peters, 1981: 12).
Although depicted as a step by step operation, each of these
steps sometimes blur into each other during software
development. They may also take place in parallel.
Therefore, ‘a more general model might be to break the
development cycle into three phases as follows:

1) Analysis and Design

2) Implementation

3) Use and Maintenance
These phases encompass the waterfall model with the advantage
that it is easier to discuss generalaties with this simple

model.

Y
ot
..'- 2 &

-i‘}, o at-
[S T

A A

SN

Rrd

OO

L rPsd

i AR

freELY

"|A

ety

sn
[

;-':'.:'

T A
LR DR IR -

. ’....\. \...

T

REQUIREIT=NTS

D=FINITION i
Y
PRELIMINARY
DESIGN l
DETAILED
DESIGN |

CODING

TEST

>

INSTALLATION

Figure 2. Software Life-cycle Model

Nearly all software engineering methodologies and
techniques were developed with full support of the software
life-cycle in mind. However, the key word in the last
sentence is support.” Some methods provide a greater degree
of support for one phase and 1less for others. Commonly,
software engineering techniques concentrate on the Design and
Analysis phase with the belief that proper design can
eliminate the majority of the errors that occur in software

systems. Studies have shown that 64% of the errors that occur

in projects are introduced in the Analysis and Design stage,

..........

\)

’ ¢ In“l'.l'
e

AR before the Implementation stage begins. The earlier these
S N

W T

; errors are detected, the less it will cost to correct them, as
‘Q& is shown in Figure 3. These techniques usually do little for
(e

3’ the Implementation phase and provide even less support for the

Use and Maintenance phase. The reason for this is that more
‘;i support provided for each phase means more work for the user
:ii and more work means greater cost. Therefore, current software
engineering methods properly put emphasis on the Analysis and

ig Design phase in order to realize the greatest cost benefit.

w4

o 100

3

O 50 -
N & RELATIVE

COST TO

0 CORRECT 20 _]

oy ERROR

10

7 5 — g
b

-.:v 2]
-"
N 1 _]

o RQMNTS 'PRELIM = DETAIL: CODING TEST INSTALLATION

[DESIGN DESIGN
PHASE IN WHICH ERROR IS DETZCTED

j% Figure 3. Error Detection Costs

L%
e e s \\'

:&\

38

- “I—'.' V"'A"..'.

4

PO P2 IO

L

O AN 2.)

-

(¥ W

“ 5
MO
N

w

1.2.3 Automated Environments

As has been noted, software engineering methods and
techniques were developed to ease the software development
process by the application of proper engineering methods. The
problem with these techniques and methods is that, for proper
use, they generally require the imposition of a discipline on
the users. The discipline is necessary in order to make the
users of the method follow all the steps outlined so that the
end product will be as specified by the method. This
discipline must be imposed by management and is wusually hard
to control because it generally implies a great amount of
bookkeeping, illustrating, and consistency checking, and all
these are usually an unpopular added burden to the people
responsible for the tasks. Given this, and the realization
that the methods and techniques of software engineering do not
completely support the 1life-cycle, a major new thrust of
software engineering research is in the field of Automated

Software Development Environments (ASDE).

By using the full potential of the computer to automate
one or more of the methods or techniques of software
engineering the user can be relieved of much of the tedious
tasks associated with the methodologies and the use of a
methodology benefits the support of the life-cycle. Also,

more support can be given to all phases of the 1life~cycle

-

S

3

o

.% .ég since most of the work done in each phase is done by the
F - computer. A software development environment is a collection
isé and integration of software development tools that are
ij intended to adequately support the entire software development
‘ life~-cycle. The classic environment consists of tools such as
§ text editors, debuggers, compilers, and 1linker/loaders. The
53 problem with these tools is that although they are adequate
i. for their intended purpose, they do not utilize the full
;E potential of the computer in supporting the software
‘;S life-cycle. The current intent is to develop an ASDE that
f will provide an environment that incorporates all the
ﬁ’ functions of the classic environment along with integrated
:5 .. support for one or more of the software engineering
- ‘E? methodologies. Therefore, the environment must perform the
ia classic functions and it must invoke the discipline of a
tg software engineering methodology, along with providing all the
. bookkeeping support required by the method.

_é ASDE's can be envisioned as a three dimensional space.
> The first dimension is the amount of automation that is
.d_ provided the user of the system. Here, automation refers to
:é the amount of work that the system takes on for the user in
s order to relieve the user of unnecessary burden. The second
? dimension is the amount of discipline imposed on the user of
-i the environment as far as the underlying software engineering
;; — methodology is concerned. Finally, the third dimension is the
; ¢¥& amount of integration between the tools of the system.

... .‘,

-
]
0
)

T BB T R LR E T B R R L

P A

WYY

-

s 8 A .4

Automation is very important in an ASDE because it 1is

this ability of the system to do work for the user that makes
the user desire to use the automated system instead of doing
the work manually. The main feature of an ASDE is it's
ability to assume the burden of the work in order to relieve
the user of the onerous tasks that are unrelated to the
solution of the problem.
"This means that he can focus on the important

issues and achieve a correct solution to his problem

more quickly. Secondly, being freed from the

responsibility of working out the details, he moves

up to a higher conceptual plane, which is closer to

the terms in which he conceives his problem" (Hammer

and Ruth, 1980: 769).
Discipline is necessary in an ASDE so that the underlying
methodology is adhered to. This is necessary if the ASDE is
to aid in producing gquality, well engineered software. The
last dimension, integration, is also vital to this morphology
because a fully integrated environment is easier to automate.
Also, the amount of integration indicates the smoothness with

which the user will flow through the system, thus providing

less interruption of the thought processes.

At the present time, research into ASDE's is branching
into two major paths. The first path is one in which the ASDE
is a collection of tools which are defined by the system
builders in order to support a specific software engineering
method. The collection of tools is firmly fixed and can only

be changed by a new system release. The advantage of such a

- 10 -

. \-.\ ; .\.}V\.\‘_‘. IO M '.',;ﬂ'-'.ﬁ -‘,‘-'¢\---:.-\.f 'q’_:f\'_-.-.-‘*.:\.‘_.-:..-;S-‘\f_‘- \.'x‘;-\q \-.__:. . ..__:.\-.‘.‘:‘._'..._-’

LN \ “ \.'A L3 ..“l .' " .l

X O Y YIS

’
Y

PSS

2
-

‘- ‘. 'l

(AN {7

Nl

system is that the discipline may be firmly embedded and is

hard to subvert. Also, the system 1is provided as one
integrated environment and is standard in every organization.
The disadvantage is that the discipline imposed may, or may
not, stifle imagination and inventiveness. Another
disadvantage is that the system may not fully meet the needs
of the organization and because of the inherent inflexibility,

it cannot be easily modified.

The second path of research leads to an ASDE which is
basically a "tool kit" approach. 1In this type of environment,
a minimum set of tools have been defined in such a manner that
it 1is easily extensible. The working environment will,
obviously, vary from organization to organization depending on
the needs of the organization. This approach, which is a
descendant of the classic environment, is more useful because
of the flexibility, but will also be non-standard across
implementations. Also, these types of environments tend to be
composed of many small tools and the amount of integration
will tend to be small. Therefore, the user's journey through
the system will tend to be choppy and disjoint. Another
drawback to the added flexibility is that the introduction of
new tools to the system will make it easier for the user to
subvert the discipline of the software engineering methodology

that is being used.

The great -amount of difference in the two approaches

- 11 -

~‘-..'t..'-¢‘.' '.'-..:--.. BARNERAT I - :v..'t'. q.-"..w’_'-.,'~ ..:.v_:-_.: ‘.: ..;"‘. - f‘ - _.:' . -.."'p.‘_. .g-‘..- BRSNS R

o et

EAIINNY

a

LYY
B 4
PN

Oy

» Ry
.:'-‘ ..’..l' Pl ".'

A A

e

[

P .-.'.v‘ o

[} o & oRBLY »
LTINS '-4'.-' ’

¢ -t
: .' ..'. Ly

highlights the complexity of the subject of ASDE's. This

statement is substantiated by a noted expert on the subject of
software development environments, Leon Osterweil of the
University of Colorado.

"The task of creating effective (development)
environments is so difficult because it is
tantamount to understanding the fundamental nature
of the software process" (Osterweil, 1981: 35).

In fact, the optimal environment for most applications is
found by extending the three dimensions of the software
development space as far as possible. In addition, the
environment concerns should include the concepts of
user-friendliness, life-cycle support, consistency,
traceability, explicitness, documentation capabilities,
testability, and the capability of updating (Osterweil, 1981:
36=-37).

1.3 Problem Statement

The Air Force software community has exhibited a great
need for any tools that help to produce quality software at a
reasonable price. Automated software development environments
that embody the concepts of software engineering and
life~-cycle support are believed to be such tools. The
objective of this thesis is to define the basic framework of

an ASDE. After this basic design is completed, the key tool

- 12 -

&

in the system is identified. This key tool is defined as the
tool around which a complete, fully integrated system can be
constructed. The final phase of this thesis is to design and

implement this key tool.

1.4 Thesis Scope

As implied in the background section of this chapter, the
specification and development of an ASDE is a complicated and
little understood process. This thesis investigation
represents an initial attempt toward the realization of such a
system. The specification and preliminary design of Sire, an
ASDE, along with the detailed design and implementation of a

key tool sets the stage and tone for the continued development

of the Sire system.

1.5 Assumptions

The implementation of .the Sire system is hosted on a VAX

1
11/780 computer under the UNIX operating system.

Therefore, full use of such items as system tools and the

virtual architecture is implied. This choice of operating

1. UNIX is a registered Trademark of Bell Laboratories, Inc.

- 14 -

o
L]
5
\} ff? system, with resident tools, also drives the choice of the
AN .
{ main implementation language towards the "C" program.ing
¢
;lﬁ language because of the ease of interface with the operating
,’".
}; system that this language enjoys.
N When implementing the key tool of the Sire system, the
".
-3 major concerns of the project were correctness, usefulness,
- ease of maintenance, ease of understanding, completeness, and
A on-time delivery. Therefore, such topics as optimization for
v\
ﬁ& time and space were only considered when they did not
'
A
iﬂ interfere with the main concerns of the project.
5%, J"
) \’
i8)
| L
')
S
. t:? 1.6 Approach
_U
e I
b ~. .
qﬁ As with any software development project, or any research
'? project, this effort began with an extensive search and review
;2 of current literature concerning software development. of
“ﬁ particular relevance were the fields of software engineering
- and software development environments. The main thrust of
:ﬂ this literature review was to gain a thorough understanding of
\ .
Q} the software development process, the methodologies used to
f4 support the process, and to understand how the methodologies
‘:ﬁ can be supported best by automated means.
3
Ay
"’ '3 .
Y The next step after initiating the literature review was
SO to start the actual software development process for the Sire
--’: .-'. .‘4' .
¥
.."
N

.\‘- o o". et T T N . e

- . ST T N DRI -t
S D S G Bl WP U Gt TV Y Tl T ol Wil Wl Sl it SV Tl SPILID G OIP U W/ A atasat o™

project. As discussed earlier, the first stage of the general
process is Analysis and Design. Refering to Figure 2, it can
be seen that the first step is to begin the identification of
requirements that are used in the remaining portions of the
life-cycle. Many of the requirements are gathered from
lessons learned in the 1literature review. The requirements
analysis stage produced two important results. First, it
provided a high-level model of the system to be developed, and
it established a set of parameters and criteria against which

the Sire system could be developed and evaluated.

The next stage of the Analysis and Design phase is the
preliminary design stage. At this point, the project diverted
from the normal software development life-cycle. The first
concern during this stage was to develop a preliminary,
high-level design of an ASDE. After this design was
completed, it was evaluated to determine which part of the
design was most critical. The critical part is defined as the
part which has the most influence on the overall design of the
system. This part, if designed and implemented correctly,
will ease and drive the design and implementation of the rest
of the system. In a normal system development process, the
project would continue down the "waterfall"” of the
life-cycle. However, since the stated objective of this
project is to fully develop only a portion of the Sire system
then this is as far down the waterfall as this part of the

project proceeded.

A -
‘.:\'
I
.‘-.l
- .
-.‘- " .
- -‘- -
{
- >‘.
‘
N
O
-"'
-
. “
-..'l
. o
Ve
,"-
~ .n
-
\
N
-\"-
-.I
Q
{
-‘
I‘. .
- -_
~
-\ §
o
.
3
-
)
.
- ".
o
%
)
B
- .‘
M)
.
..
.
-
[N
- -
..
.. ..A
- .-n
S
.,
W
~
.« "‘- ".v
PR =0
L~
.-
\\:
K-
"
L

Instead, the next step was to start back in the Analysis
and Design so that the entire life-cycle process may restart
and the critical, or key, part of the Sire system could be
correctly and fully developed. The cd~velopment of this part

spanned the entire life-cycle.

1.7 Summary

The software development process can be viewed as a very
complicated process that is not very easy for one person to
fully comprehend. Therefore, the use of computers is being
explored in an effort to make the development process a little
easier to use with *%the hope that "better", more co.rect
programs are developed. The specific goals of this project
are to define, design, and develop a tool, or sub-system,
around which a full environment can be constructed. This 1is
attempted by applying well-defined software engineering
principles, as well as common sense, to the development of an

environment that is geared to the human-oriented support of

every phase of the life-cycle.

LA A A i A AR S At it ST A A AT

..............

e
NRo
Chapter 2
Requirements Definition
: 2.1 Introduction
7
' Requirements analysis 1is the process of defining the
complete and explicit statement of the problem to be solved.
)
é; "It focuses mainly on the interface between the
R tool and the people who need to use it. Other
- Are aspects - such as time, costs, error probability,
G:? chance of fraud or theft - must be considered among

U the basic requirements before an appropriate
T solution may be chosen. Requirements analysis can
A help understand both the problem and the tradeoffs
e among conflicting restraints, contributing thereby
‘ to the best solution" (Zelkowitz, 1979: 3-4).

‘a
l% Once all requirements are identified, it is common practice to
EE attempt to compose a document that contains a complete,
‘f explicit, and unambiguous statement of the system requirements
3;5 (Hadfield, 1982: 23).
2 This document, referred to as a Requirements Definition
: Document (RDD), should contain both a textual description of
Eég all requirements as well as a high-level model of the system.
o~ This model, usually in some graphical form, should exhibit all
-
f; ?;f the requirements set forth in the textual description in both
R
:

-17 -

T T T e L ." R
4 m > '.L;“-.Aﬂ_l_. LI LIA.‘;A;A'A

an explicit and implicit manner. Upon completion, the RDD

should provide a description of the system and the system's
fundamental objectives. These two should be detailed enough
to provide a set of parameters and criteria against which the

system can be developed and evaluated.

2.2 Requirements Analysis

A major portion of this project was the review of current
literature pertaining to the proper development of software.
Therefore, the knowledge gained in this review had a great
influence on the overall project. It probably had the
greatest impact in the area of identifying the goals and
concerns of the Sire system since many of these were taken
from the goals and concerns of current research in similar

projects.

Most often, requirements are presented in two levels.
The first level usually consists of seven or fewer general
requirements. These requirements apply to the entire project
and are best thought of as the ideals, or inspiration, of the
project. These ideals are specified at such a high level that
no specific goals or requirements can be gleaned from them.

They provide the guidelines for the second level of

requirements.

N "
XA

E - As implied, the second level of requirements are the
f 1 specific requirements. These are concrete enough that the
system designers can use them to drive the design of the
system and to provide detail. Note that the specific

requirements may seem to belong to two or more different

indicates that the ASDE should provide the user with greatly

N2 general requirements.

NS

R

-~ 2.3 General Requirements

4 (-.'

o

iy

tﬁ The definition and specification of general requirements
;% for a project is a very important starting step. Therefore,
! .

.

*3; the following requirements were carefully selected from a list
) \ -.' .

(‘]F of general requirements because of their relevance to the Sire
*ﬁ: project.

- 2.3.1 Reduction of User Burden

- As mentioned in earlier sections, the main job of an ASDE

is to support the user in the production of quality software.

,{ In doing this, the environment should try to aid the user by

iﬁ not only adding tools and other facilities, but it should make

I‘ it easier for the user to perform the task of software
)

.Sj production. "Reduction of the User Burden" is a term that

,:%

expanded capabilities while making less work for the user.

v
&y

RS Y it]

2.3.2 Reduction of Software Errors

Although it is mentioned several places that the
objective of any software project is to produce "quality"
software, the term quality is never defined. It is intuitive
to most people that the amount of errors in a program reflect
negatively on the quality of the program. This is especially
apparent when the potential cost involved with software errors

is realized.

In the most extreme example, software errors may cost
lives when the software in the flight program controlling an
airplane fails. Simple software errors that occur frequently
in the development of software may be responsible for costly
budget overruns and schedule slippage. Persistent software
errors cause operating problems for the end-user of the system
and may cause problems such as bad operating decisions when

the financial software that a company depends on fails.

Given that software errors are very costly, it should be
obvious that their elimiﬁation is desirable. However, this is
not such an easy task. One of the theorems of software
engineering is that there are an infinite number of undetected
errors in any software system. Therefore, all the developer
can hope to do is to design the system in such a manner that i
all the detectable errors are discovered and corrected and

that the undetectable errors never become detectable by

2

P’
'..A“-l {:

' g

. . s 8
AR

B l. ".' * ‘l

YN X

interfering with the operation of the system. This is one of

the main reasons that software engineering methods were
developed in the first place. Therefore, to provide the
desired reduction in software errors, the ASDE must support

good software engineering methods and practices.

2.3.3 Easy to Update

One thing that can always be counted on is the fact that
once a project is finished, someone somewhere will want to
change the software for some reason. The reason might be that
there is an error, that the system needs extensions or that it
needs to be adapted to a particular user organization to make
it more responsive. Therefore, the system should be designed
with emphasis given to the methods that must be followed to
modify the system. This modification process should be easy
to do and should require compléte documentation so as to
minimize the chance of errors being made in the modification

process (Hadfield, 1982: 34).

2.3.4 Project Management Concerns

Software errors aren't the only reasons for project
overruns and slippages. Many times the management of software
projects make mistakes in scheduling, resource planning and
other management concerns that cause these problems.

Therefore, a complete ASDE should attempt to provide the

- 21 -

AN 2 B e B It dhre SarAg iR e AL D gl G I A Sl R ke "R R AL MRS ST) <o oaiiig e T R A e SA T S0 RN Al P A A el Al Sl Al) "T

management with some type of control over the project without
impeding the actual development process. Facilities that
estimate current resource utilization, current project
completeness, and current schedule impact are examples of some

of the controls and tools that may be useful to management.

2.3.5 User-friendliness

User-friendliness is a frequently used term that has no
concrete definition. Most people recognize the terms as
meaning that the interface between the user and the system is
natural and easy for the wuser to use. However, the
experienced user of a system may think that it is
user-friendly while the novice may think it is horrid.
Generally, the most user-friendly systems are those that are
easy to learn and once learned, are easy to use. Some systems
provide one at the expense of the other because it is hard to
provide both, Jjust as it is hard to try and please everybody
all the time. Even though it is hard to provide,

user-friendliness is a worthy goal.

2.4 Specific Requirements

pa e o N

AR OUSACAS, -

2.4.1 Automated Documentation Support

"One of the predominant underlying themes of discipline
in software design and development is the need to commit all
major steps and decisions to writing." (Wasserman, 1977:
354). This documentation will be used for many tasks,
including further development, writing of user manuals, and
maintenance. Although recognized as crucial, documentation is
often overlooked because it consumes personnel resources and
it is considered very tedious work. By automating as much of
the process as possible, documentation will become less

costly, less of a user burden and much more thoroughly done.

The environment should have the capability to produce an
extensive variety of documentation. (Wasserman, 1981: 7).
This includes graphical as well as textual forms of
documentation. However, it must be realized that the
environment cannot produce all the documentation automatically

and that it can only act as an aid in some areas.

2.4.2 Flexibility

Flexibility is a key issue in the development of an
ASDE. A useful environment must appeal to a broad base of
users. This implies several things. First, the environment
must support projects of different sizes. Second, it must be

able to support projects of different types, such as

- 23 -

A R T L
L

LA]

scientific, mathematical, real-time, etc. Finally, it must be

usable by different users with different knowledge levels.
The environment that contains the flexibility to do all this

will appeal to the most users.

2.4.3 Integration

One of the major themes underlying a good environment is
the support of the 1life-cycle concept. Usually a different
tool is developed to support each part, or stage, of that
cycle. A fundamental problem to date has been the fact that
the tools are not compatible among themselves. (Wasserman,
1981: 5). This makes it harder to use the environment to its
fullest capability. Therefore, the integration of all the

tools in the environment is a very important requirement.

2.4.4 Language Independence

In the current software development world a number of
programming languages are in use. Each language is best
suited for different types of applications and there is no
"best" language to use in all circumstances. The choice of
language will depend on such factors as application, design,
hardware environment, programmers experience, and so on.
Therefore, many times a project will not choose an
implementation language until some later stage in the

life-cycle. This means that the ASDE must be somewhat

- 24 -

.............

R

ShAK

'

e
oy |

Y >.‘ o f_,,,‘l

('

i+ I

NN A .‘ <,

-
_'ﬁ' . .

S

flexible in the area of programming languages. In fact, it is
most desirable if a design can be run through the entire
life-cycle and produced in different languages by flipping a
switch. This gives the designers of the system the most
flexibility to choose the 1language that is best for the

circumstances.

2.4.5 Maintainable

Perhaps the key to continued success of any software
product is the degree to which the software can be
maintained. It is obviously not desirable for the system to
be designed so that is is hard to change and correct errors.
If this situation occurs then the useful life of the system
will be shortened because errors will occur which, not being
fixable, will render the system useless. Therefore it is

critical that this system be designed for maintainability.

2.4.6 Open Ended

As discussed previously, an open ended environment is
desirable in that it can be easily changed to meet different
needs. Therefore, the system must be able to be easily
modified without destroying integration and the underlying

methodology.

-y .""."-'l.'~'

.\. 1',,.«.‘,.1.,‘-‘._'\\'. .-‘A ".‘.'.{:'.

o

$TeVTE 0
Cira}
P

. X
Fa

2.4.7 Pre-fabricated Design

Many times, people find themselves re-inventing the
wheel. In many cases this redundant effort is wasteful.
Studies have shown that in the case of software projects, it
is often the case that 40 to 60 percent of the modules being
developed are already in existence and are available for use.
(Lanergan, 1981: 297) Therefore, the ASDE should be able to
reuse existing modules in much the same fashion that
pre-fabricated houses are built. Also, the environment should

be able to add to the base of existing modules.

RQMNTS
DEFINITION

PRELIM
DESIGN '——1
| DETAILED

DESIGN 7
| CODING

| TESTING
t———- INSTALL

Figure 4. Life-cycle with Prototyping

2.4.8 Prototyping

- "Prototyping has proven to be a valuable technique
throughout the engineering sciences, but it has had 1little

- impact on the mainstream of software development."

LN

(Zelkowitz, 1982: 2). Prototyping is an approach to problem

s
2 & A

solving that uses the concept that the best way to see what is

needed is to design a system and produce a crude working model

‘é in a very short time. This model is evaluated and the design
< is updated to reflect any changes. Then a new prototype is
% produced. This process goes on until the prototype is
; determined to be the solution to the problem. Hopefully, by
: i:} doing this, the system designers/implementors will be able to
ﬁ more accurately determine system needs.
g By adding prototyping into the life-cycle, the user can
get feedback on the design so that requirements and design can
; be updated and improved. Adding prototyping into the

life-cycle concept does change Figure 2 to indicate the
feedback that is taking place. One of the possible
representation of this change is shown in Figure 4.
. Prototyping also implies iterative development and

necessitates ease of updating requirements and design.

2.4.9 Reliable

W ¢ AL A

- 27 -

4 7

N .
AR S S e e N e e T LT T e e T e TN T R e e L e

RN

The reliability issue covers two areas. The first is

{ reliability of the system and the second is reliability of the
E; product. In both areas the reliability must be very high or
E the user will be tempted to use other, more reliable,
environments or techniques. Reliability of the system means
that the ASDE must perform as expected and not break or do
unexpected things. Reliability of the product méans that the

ASDE must be able to produce a product that is reliable or,

‘s

¢

again, the user will not want to use the system to produce the

a0

S

&

software product. It is critical to note that the reliability

‘\"v}‘-

of the product 1is partially a consequence of the design and

DY
A
PR A Y]

the ASDE is not totally responsible for this issue.

a
»
a

X 2.5 Requirements Model

. The second major part of the RDD is the high level
:; model. This model may take several different forms, however,
E graphical methods seem to be the most favored because they can
represent system architecture, design structure and software
behavior. Also, they are very flexible and easy to
understand. Understandabiy, some methods represent more than

- others.

j' Perhaps one of the most widely used graphical design
o

methods is the data flow diagram (DFD) method. (Peters, 1980:

‘.-{"' 133) .

"The data flow diagram is used to partition a
system and is the principal tool of analysis and the
principal component of the structured
specification. A DFD is a network representation of
a system, and shows the active components of the
system and the data interfaces between them."
(Page-Jones, 1980: 51).

The DFD method is particularly useful in describing what 1is
going on in the system without describing how it 1is being
done. Also, the representation of the system presented by the
DFD is hierarchical in nature. Therefore, the high level

model will consist of several levels of detail. Because of
these reasons, the DFD method was chosen to represent the high
level model of the Sire system. The DFDs in the remainder of
this chapter are accompanied with a textual description in
order to assist the reader in understanding the breakdown of

the model.

2.5.1 Sire Top Level

The top level of the Sire system in Figure 5 represents
the user's perception of what the system is capable of doing.
In this case, the system takes "system specifications" and,
somehow, turns those specifications into a completely
functional software system that is just what was ordered.
This level of the model is purposefully vague in orxder to
stimulate the imagination. Further detail, drawn partly from

that imagination, is illustrated in the lower levels of the

model.

- v
E »'_w

A Tt T Rt i

[9aa] dog, axT1s G sandtg

l

-
WHLSXS dYVMIIOS QuSVuTAY

HYVMILA0S
HZISITHINAS

NOILVOIAIDEdS WHLSAS

BB Sl i

R
e,

“«* -

-t e
.

.. i .;';\'; . -..

-
v
AW WY

PR

et At ietnt
’l"l"'l""A -

f D% %

B s
[T T S

2.5.2 Synthesize Software

Breaking down the top 1level model of Figure 5 by
"exploding" the Synthesize Software operation (operation 1.1)
gives the more detailed view of the system depicted in Figure
6. This 1level of the model is strongly motivated by the
modified life-cycle model of Figure 4. Easily identified from
this level are the Requirements Definition, Preliminary Design
and Detailed Design stages of the "waterfall". They
correspond directly to operations 1.1, 1.2 and 1.4. Figure 7

shows how the other steps fit into this level of the model.

This model of the life-cycle is one that was followed in
the design of the Sire system. Operation 1.3, Determine
Project Status, is the only operation which does not fit into
the life-cycle of Figure 7. It is included to help meet the
requirements of providing Project Management Concerns, as
detailed in the textual requirements defined earlier. Indeed,
at many of the other levels of this model will be operations

concerned with tracking the project status.

This representation of the system allows for designing
and implementing a system by following completely through the
software life-cycle. Also, it implies some sort of automated
documentation support because of the Requirements Definition
Document, Preliminary Design Document, and Detailed Design

Document flows exiting from operations 1.1, 1.2 and 1.4.

- 31 -

aaem} Jog 9zTsayjuls °*9 aandtd
: L0000 NDISHE QETIVIMG — 4ad
g IN-HMNOOT NDISHEA AMVNIWITSHA - Qad
% I NG00 ND1SIA SINAWAHINtME — Qad -
g L
- SNLVIS
a. - 4O Lodd
’ CNIVIS INZHHNO ANTWHA T S
SOLVIS
. S ol I !
’ M4 LSAS Gt 7 '
. TV IA0S N
: - Tiovatay | T oavnLd0S SNLVIS LN AWAE TODAY - X
, T e WALSAE
] JEVATHY IR (ofs '
XHYNINIE
ALVLS
0 C
RLYIdN e SN b
I VT - Thva
Y YMIIOS
QETIVIN SINAWIHINDEY
ve L S4,Vadn 2e 1
ayMIAs \ AHVNIWIT=Yd TUMIAS
qATIVIEQ - WITEHd

dO TV AHA TUYMIIOS AQTHAR

aqq AUVNIWTTHEA
aadqd

.\..\ -.-... .4~ -~.. . .-.- u.. {.f-v. .v. ~. ... A J. \..-' .q.. .-. D) R . 41!.<..,. 8 LN o
il ...-. o ¥ nm-.f%.ﬂ N M A A N -.. ~...~q....)-...) N g NN .ﬂ X %f-\'-io.f 8

el RTAUIRTILNTS
RS

JERPAR
DIFINITICN

_..;J |

PRELIMINARY
t DESIGN

Rt Aainne

ZQUIRDMENTS D-FINITICH SUZSY3TI (RIS

PRELIMINARY D=SIGN
SUBSYSTEM (FPDS3)

PROLIMINARY

| IMPLEMENTATICN

DiTAILED DuSIGN
SUBSYSTEM (DDS)

LT

SN

SCFTWARZ RZLZASE

- TLAL AL |- |

]
) gl
)
.

Figure T.

:

SUB3YST:M (SRS)

L.‘]
i A
I TESTING
| DTTAILED
} Dr3IGN

. |

[DETAILZD
| IMPLEMNTATICN

________ i
INSTALLATICN

L]

“xpanded Lifecycle Model

-
)
M
-
-,

kmﬁauaauﬁAmﬂhnnA“A-u"gun-

.......
...................

U

........
- .

2.5.3 Define Requirements

As mentioned previously, the Requirements Definition
Document is composed mainly of the textual requirements and a
graphical model. Therefore, it is only fitting that the
breakdown of Define Requirements, represented in Figure 8, be
concerned with these two tasks. From the System
Specifications, textual requirements are iteratively
developed, analyzed and updated in operations 1.1.1, 1.1.2 and
1.1.3. The outbut from these operations are used to develop
the graphical model and the RDD. Once again, operation 1.1.7,
Track Requirements Status, has been added for project

managements concerns.

2.5.4 Develop Preliminary Software

Based on the requirements developed earlier, both textual
and graphic, the process of developing the preliminary
software, represented in Figure 9, is begun. The first part,
corresponding to operations 1.2.1, 1.2.2 and 1.2.3, is to
iteratively develop, test, and update the preliminary design.
Note that the operation of updating the prelimivr. y design
will also cause requirements updates to ripple back to

operation 1.1.

The second part is to develop the Preliminary Design

Document (PDD) for inclusion in the system documentation.

sjuemaxinbay surjoq °g oandTg
- .\<

... N~ * P * P -...-
! — SLVIS o
SOIVIS SINTWAYINDIY SINWBEY

xoza j .«-.

¢l
SINDTY
TYALXAL

]
g
. \

A : SNLVLS day

SHLVAdN 5

Y sonewmyindoy

)

; ¥
2 aqy oy
. '
: o
g " :

3 .
g | TAAOW SNIYLS : e
= SOTHAVED AZXTNY g
2 AN B
. THTON o

G L1 SINWDFY

QoW DIHAVED dOTAAAT
O)
ALVISNVY o
SINHOR

quwﬁHg No Fo F .-..-

SINHbAY TVALXAL o

TYALXAE “

SINWDHY QAZATYNY HZRTVRY)

X

lf‘.

N

9 [<

RS g % s TR s Y VY AR i TR BRI S e, e 2PN, ,..........

LA Cny

LA
"~

e DY

L)
-

v
(S

axem} Jog Axeutuyiaxd dorsasq °6 aandtd

SHOUUH
NDISEq zozL
KUVNIWITYud NOISHT
WITIYd NOISHA
ANWLIOS SOLVIS AZQ WITAYd ISHL CIIvadn
qILSH Lez°1 mmmsmmmm
HUVMLIOS iy
AYYNINITAUd -
| S #ONAOYUd
TN — NDISEC
TR LV THVALAOS NDISHA mmwmwm KUVNWITIUd
WITAYd ©
SALYIJg
1*2°1
g2t SININTYINBFY
TUVMIIOS NOISHd
KUVNIWITEYd
WITRYd dOTIARQ
~ ALvadn
N SALYadn
beect
KUYNIWITHEd
- aad SNIVIS
aad dOTZAAA B TET
{I1a4d
SNLVIS aad

G*g°t

SALVLS
WITH4d

-
SALVIS AYVNIWITHYd HJOVUL

<

SINWDZY

SaANINT
uren

\.ﬂm\.\.-u-s.-_\m\,. LT

c] WA

- 36 =

;‘l'l' n‘A l’"n'. M

3
s

DTN | (5
Y t o

)y *.

a

This documentation process should be as automated as possible
so that both human error and user burden are reduced. But
then every part of the Sire environment should be as automated

as possible.

The third part of developing the preliminary software is
to actually produce the preliminary software. The result of
the production, test and update cycle is a complete software
shell into which the detailed software can be injected. This
concept is a break from most software production theories in
that some software is actually produced before the detailed
design has been started. Another departure from traditional
methods is that the selection of the language being used for
implementation must come at this stage. The advantage of both
of these points is that the output of the preliminary stage is
a tangible software product that can be tested and evaluated.
In other words, a stubbed prototype is produced and is

available for analysis.

2.5.5 Develop Detailed Software

Based on much the same methods used in producing the
preliminary software, Figure 10 shows the production of
detailed software begins with the development of the detailed
design based on the tested preliminary software delivered from

operation 1.3 and the wuser inputs. After the design 1is

developed then the detailed specifications for the software

i -

axem}Jos payrejsq doyessq

*0l exndtg

SALVLS THVMLJIOS UTIVLIQ

Loyt

w L) ? . P
SNLVLS
CITIVLAT

AOVHL

]

aaa
aaa R00A0Yd
SNLVIS
NDISEQ
AUVMIIOS mpwwwm CIIVIAT
0E1LIVIAT TIVIAQ SINANT
SOIVIS "Bidua e
G peL CATIVLEC xR
TUVALIOS NOZLONAOHd JOTINAQ é_‘mﬁ.mmm '
< — - CETIVIHT 1344 |
TAVALOS QA1IVIAC CALSHT Lo — TATSIT
o,
o aETIVIZA
SHOHMH HUVMIAOS QA'TIV SOHdS
QETIVIAG
ol JOTMASQ
__ TIVIMT
9°b*L ATVadn 5ads
THVMIIOS gy QETIVIEa
v QETIVIEa SHIVAAn AL
TIVAdN s
. CITIVIAT
UVNIWITANd ODaOHS
. o .m“mr...
* o PRSI DOCMMNNS AASRARA - k) S % e I S v MM - CAPCARRICAC k1 L A AR A

N

o g ~

A

rigis

L L P N R A A J_r«w';r\v- T 4 N A w oA

URlS R |

:a if; are developed. These specifications might take the form of a
{’ i program design language or some other specification method.
:ff After the detailed specifications are complete then they are
;EE translated into the detailed software system.

ii 2.5.6 Release Software

2

-t

o The final stage of the Sire high 1level model is the
> Release Software operation of Figure 11. This operation
-:\

N provides for the verification and validation, V&V, of the
%‘ software system developed in the earlier stages. The V&V will
) provide any updates and modifications that need to be made to
.f the system. The validated system is then used, along with the
'(-

’ ‘ﬁ? Requirements Definition Document, Preliminary Design Document,
¥§ and Detailed Design Document developed earlier, to produce the
:j system software documentation. After the system is documented |
- |
- it is packaged for release. This packaging may mean a range
'ﬁ of things, from producing the documentation and transferring
§ the software to a media for exchange if the product is
Xl

: commercial, to moving the system to a user area if the project
ﬁ is an in-house development project. This implies that the
i releasing of the software will be somewhat site/user
2,

" dependent.
j

A

K]

)

~

o4 ._:-'_

SRS

aa

- 39 -

N L - Cm vt T4 e w ., A - - =, M T
-.-_-.n.,' - \:,\- -.‘-.\ ~° -.'_\:.\'_-. e o5 ~.__-."-._f:.'_\.;.~_ N AT IR RS - O TSR I R 1% T3 (__-'.. »a

AL RS |
» '\'.\\"-' .

axem}1Jog asealay °|i °andiy
VQ m L] —4 .H-.

SOLVIS | v o

SOLVIS ASVITAH HSVATIY

AOVHL Sl

el

snivigoviovd - /snavis b
SENTWNO0T \ e

|

v

MLEXS 9°6*1 SIHOOT 6°G6*t LSS
HUMIAOS WALSAS mrchs [SENWA0OT } ooty WALSAS FYVAILIOS . L
— : WAISXS - CXTIVIAQ o

Qs vaTag HOVHOVd wONGOHA T o
* AT THIA e B
' . ’X
aaa NgLIVOTATHAA
aq - SOLVIS €6t
aLvadn WALSKS
asvadn
aad -
S44vadn qaTIVIAQ

e @ e, v v m v e W v . P e v e e - e =
CRECRITRS NN R -) .q-........~ FNCRP AT
p?.-- .-- -.- \n\ Iy .<|—n.. l.‘b.q ... e e % -.Pa\ ., 8 4G

| O

’ -"‘u:;.’}‘,

!
v
.

B A A

.........

2.6 Summary

The Sire ASDE specified in this chapter is to be a system
that aids the software system designer in the task of
producing software systems. The textual requirements
specified are intended to drive the design of the system in
the following stages of the life-cycle. Many of these
requirements will explicitly appear in the design while others
will be represented implicitly. Also, it is possible that not
all requirements will be fully represented in the completed

system due to possible conflicts between requirements.

- 41 -

Ha%h

Y.

3
S
L Y AR I

—~

e T

R R R RN [N

AAAAN

s Tt A

AR

Chapter 3

High Level Model Analysis

3.1 Introduction

With the completion of the requirements definition the
next logical step would be to start defining how the system
will work by beginning the preliminary design. However, the
scope of this project does not allow for a complete solution
to the system. Therefore, pausing from the logical
progression for a time, an analysis of the high level model
developed in the previous chapter is in order to determine
which part of the model would be designed and implemented.
This was an important step since choosing the part to be
implemented would have great influence on future work done on

the Sire system.

3.2 Model Analysis

o ‘_‘:__.'_..;...‘._‘..'__."".','-'\."" ,\«'__.'_-,'\’-'.;-’..-:\.:\':_..:_..;._.'_.'\.'__.*_..-._.'__.',_.' _______________ O T - "
L) .

A » . " - A ARG W . AR

-+ O
.

A % i S

L R R W

LNAVLNE WL SRR -

Tt 28D

s
0
#

3.2.1 Analysis Guidelines

Choosing a part of the model to be implemented was mostly
a subjective process. However, there were several important
guidelines to be considered. The first was that the
implementation of the chosen part would set the standard for
the rest of the system. This was not only a standard of
quality, but also a standard of user support. However well
the implemented part supports the user will greatly influence
the amount of support the rest of the system will provide.
This means that the implementation will cause the rest of the
system to be implemented in a 1like manner using similar

methods for accomplishing tasks.

3.2.2 Structure Analysis

The first step 'in the analysis of the model was to
determine the parts of the system that were available for
implementation. These parts may be either "point" parts or
"distributed" parts. Point parts are sub-systems that exist
in only one place, or part of the system. Distributed parts,
on the other hand, are actual sub-systems that exist in a

scattered out fashion in the system.

The most obvious point sub-systems appear in the model as
operations 1.1, 1.2, 1.4 and 1.5. These parts will be known as

the Requirements Definition Sub-system (RDS), the Preliminary

- 43 -

...................

Design Sub-system (PDS), the Detailed Design Sub-system (DDS)
and the Software Release Sub-system (SRS). In addition to
these, the only other obvious point part will be the system

driver, or Exec.

The only distributed part of the system appears to be the
status tracking part. This part appears in many of the levels
of the model and is concerned with tracking and reporting the
system status. This part of the system will be called the

Project Accounting and Reporting Sub-system (PARS).

3.2.3 Implementation Analysis

In examining the structure of the system, several
conclusions about the part to be implemented seemed apparent.
Stepping through these will lead to an obvious conclusion

about the part which should be implemented.

The first conclusion was that each of the point
sub-systems were completely self contained and therefore easy
to implement as a part of the system. They all promise to be
rather complex with the exception of Exec. Since Exec will,
in all probability, be just a simple driver used to tie the
parts together then it was eliminated from consideration. The
next conclusion narrowed the field even more. Since PARS is a
distributed sub-systems it would probably not be feasible to

try and implement it without any of the other sub-systems

being in existence. It should be fairly obvious that it would

S e v i i o S s MR e i Al A b A e B Aad an b Sl Aadb el telh Sl Al i Sl Sy

Ty

........

DAERERERE TS ~~ S
R AR
.f._l‘l L l_l'_ e , » . - PR SN

.
P >

be nearly impossible to test or evaluate a distributed system

without any supporting code.

These two conclusions leave only the RDS, PDS, DDS and
SRS parts to be considered. The SRS would appear to be in the’
same boat as PARS. Since the main purpose of this sub-system
is to provide V&V and packaging, it seemed that these would be
hard to provide for without some kind of product. Now, of the
three remaining sub-systems it appeared that PDS is located in
the center of the other two. It seemed that it would be the
keystone of the operation since it's output drives the DDS and
since it accepts input from the RDS. Therefore, a well
designed PDS would drive the design and implementation of the
rest of the system and it was the most 1likely candidate for

implementation.

3.3 Summary

Resuming from this pause, the next step in this project
was to narrow the scope to focus on designing and implementing
the Preliminary Design Sub-system. This part of the model,
chosen for it's central location and influence, was the object
of further design, implementation and testing in order to

provide a sound basis for further development of the Sire

system.

k)

e
2
L

Chapter 4

PDS Design

4.1 Introduction

After determining what needs to be done in the RDD
section, the next step 1is to 1lay out the framework for the
implementation of the PDS system. In constructing this
framework, the high level model is changed from a requirements
model into a functional model that represents the first level
model of the preliminary design. There are many methods that
have been developed to do this, among them are "transform
analysis™ and "transaction analysis" (Weinberg, 1978: 26).
This not only provides the starting level of detail for the
design task, it also helps assure that the requirements stated
in the RDD are embedded in the cystem design. The purpose of
this chapter is to briefly describe the preliminary and
detailed design. The design presented here is that of the PDS
sub-system. Appendix C contains more detailed information

about the entire Sire system design.

T
RN
L B I S

.‘I
.
’.

4.2 Strategy

One important aspect of this project is that the overall,
high level design of the system is entirely accomplished but
that the implementation is only partial. This implies that,
assuming the implementation will one day be completed, several
different efforts must be concentrated on this system. This
makes it important to design the system in such a way that as
many requirements as possible are reflected in the design
while not placing too many restrictions on the inventiveness
and design capabilities of others working on the Sire system.
Therefore, the design is kept simple and understandable.
Another benefit will be gained from this approach since
complexity is one of the major causes of unreliable software.
Two concepts that are used to combat complexity, and therefore
unreliability, are "independence" and "hierarchical structure"

(Myers, 1976: 37).

The concept of independence is one that states that the
independence of each component of the system must be
maximized. This is generally done by partitioning the system
in such a way that the interactions of the components is low.
Independence is beneficial since an independent module is not
influenced or controlled by others and it is not reliant on

others to perform it's internal tasks. Complete independence

- 47 -

R A" S A A N AN

SN

is not possible, however with greater independence there will

be fewer interactions and those will be of less complexity.

Hierarchical structure allows the design to be
represented as different levels. Each 1level represents the
depth of detail of the system. Therefore, it also represents

a level of understanding of the system. The benefit of the

hierarchical structure is that it allows the user to define
o the organization and interactions without defining, or even

;n_ understanding, the internal construction. This helps the

- designer work from a simple system concept to a detailed,
. complex concept in small, manageable steps, postponing the

oY detail until more is known about the overall system design.

C;? Independence also relates to an important concept of
ﬁv ASDEs. This concept 1is that of the "tool kit" approach
NN discussed earlier. To some extent, the design of the PDS is
] influenced by this since effort was given to try and integrate
proven, available tools into the system where ever possible.
Therefore, integrating these tools into the system will add to
the independence of the design since most of these tools are
stand alone tools that have standard interfaces. Where tools

. are not available, effort was given to design as many parts of

the system as if they were standard tools. This approach will
increase the flexibility and ease the maintenance of the

system by making it easier to swap tools for newer tools in

- much the same way that manufacturing assembly lines are

oy P Sharih i I g

» _;
3: e modernized by replacing obsolete tools and machines.

" 4.2.1 Design Representation Methodology

X

‘; In order to represent the design work, Structure Charts
- are used. Structure Charts are especially useful for
o representing organization and for providing detail about the
- interactions shown in the DFD. Another benefit of Structure
2 Chart methodology is that it is complimentary to the DFD
e

;; methodology. By first representing the design of a system in
- DFDs, such techniques as Transform Analysis and Transaction
:ﬁ Analysis are easily used to translate the DFDs into the high
IE level Structure Charts. Therefore, because of their
’.

o G:E organization and ability to complement the DFDs, structure
'i:) charts will aid in making sure all requirements that have been
Eﬁ set forth have been met and that independence and hierarchical

structure have been maximized. (Weinberg, 1976: 29).

X

\1

RS

By

4.3 Design

4.3.1 Motivation

"Computer programming is, in many ways, like
architecture. The programmer faced with a complex
task must, like the architect, design a large object
consisting of many parts that interact with each
other" (Abrahams, 1975: 18).

Since many software engineers accept this as a basic premise,

then as many of the applicable methods of architecture must

also be accepted. Chief among these methods 1is the
blueprint. 1In fact, the use of the blueprint is the the very
foundation of architecture. In designing a structure,
architects use a blueprint, which is a series of
specifications detailing the design of the structure. The
blueprint is refined in successive levels until it results in

a complete specification from which a structure can be built

(Lewis, 1977: 226).

Applying this concept to software design is not very
difficult. A specification language can be used to define the
structure of the system under development. Using a top-down
structured concept, this specification, or software blueprint,
may be used to detail each 1level of detail of the software
system. This leveled specification process, if implemented
correctly, would be valuable in team programming efforts since
its very structure would be useful in controlling and managing
the project. The only hangup in this whole concept is that,
to date, no single suitable specification language has been
widely accepted. This is because not one has been recognized
as being able to provide the same support to software

developme. * that blueprints provide to architecture.

Another benefit of specification languages is that, for
the preliminary design process, the language may be simple,

programming language independent, and may easily be translated

- 50 -

. S into the software shell desired in this implementation
(') effort. Also, specification languages are very useful in
fS providing a form of self-documentation for the system.

N

o With all this in mind, the preliminary design of the PDS
o was based on the software blueprint concept. The
<"

» specification 1language to used, MIDAS, was specifically
- designed for this project and is detailed in Appendix B.

S

? 4.4 Design Structure Charts

:

ﬁ Although enlightening, a discussion of all the structure
o 'E; charts in the PDS design would become quickly boring and, in
i

y ‘ places, quite redundant. Therefore, several charts have been
d

~ selected for their importance to the PDS implementation.
X These charts will be discussed in order to give some of the
'2 flavor of the design philosophy.

N

o

3

“

., Main PDS Chart

ol

; The main thought behind the chart in Figure 12 is that,
? rather than build the MIDAS language description all at once,
} the description is built in stages. The three obvious stages

are hierarchy, MID (module interface description) and data

- §] -

el

O

3aeYD SUd UTEW °2l oandty

81l €°G*1 FAL] 1°G6° i 2%l
1005 ALTTLIN VI va aIn MDY VHH IH ANFIH

tm

v

0
-

CT KL T
e D FRING W

Y

-52 -
N

B PN A
AXAREAL

., 4 2
LI Y

T s ¢
1
i

description files. This method of operation allows the user
to input the hierarchy, have it checked and then allow the
system to work on it and generate a partial MID. The MID is
then completed by the user and compiled, with the output being
a partial data description. The data description is filled
out and compiled. Then, if all conditions are right, the
compilation of the data section will cause the generation of

source code in the implementation language that has been

chosen.

Edit/Compile Cycle

The edit compile cycle illustrated in Figure 13 is used
in several places and is important to the PDS. The concept is
very simple in that the wuser first edits a description file,
compiles it, receives the error message and corrects the
file. This continues till the compile function terminates
normally. Upon termination, the compiler will have generated
the next file to be edited. In this case, it will create a

partial MID file.

This is really just a traditional approach to editing and
compiling. However, tradition should not influence the manner
in which this edit/compile cycle is implemented. For example,

instead of the implementation having the tasks occur serially,

.........
.....

.....
......

e
CHOHYA MIIA

81oAp arrdmod/3TpE ¢ aandty

ge1t6ttL
SOIVES L¥0ANY

AL
0IJdI¥OSHA VIVA
STIAW0D

L°§¢°G°L

714 Vavad LICH

they might occur in parallel. A context directed editor might
be used that compiles the information as it is entered and
gives instant error messages. It 1is important to remember
that structure charts describe the functions that need to take

place and do not indicate when they should take place.

Compile

The chart represented in Figure 14 is here not because of
its complexity, but because it explains what is meant by
compile. When the word "compile" is used it means that the
input file will be parsed, checked and an output file will be
generated. The difference between this compilation process
and the traditional process is that the compilers used here
deal with a very small, simple, high level language. The code
generated will also be a high level language that is not very
far removed in complexity from the input source, unlike a
traditional compiler which usually has a great complexity gap

between the input and output.

4.5 Summary

The goal of any design should be to try and produce a

.

A

i S RaRAced

R A

errdwop *y| eandtg .

ﬁz B 2PN _ ¢reargeGeL 2°2°¢°6* 1°2°¢°G"1 s

NOITdIJOSEA B
100 40¥AOS ! ASYATHY NOTId THOSAA . SOTVLS =
_ 5 LYHANID HTLVHINAD VIVL HSHVA e HSVEATAY NOTHO 0

-~ 56 =

2L6'qy

NOILJ THOSAA 3
VIVA ATIdH0D g

AR

LIS e i A S AR A S St AT At S T L

flexible, simple and functional design. Although this seems
obvious, it 1is hard to do. The principles of software
engineering should be followed and simplicity and common sense
should rule. The resultant design should appear to be obvious
and should be disappointing because it seems too simple.
Hopefully, the PDS design fits this description. It seems
simple and easy to implement. Whether this is an indication

of good design or simple-mindedness remains to be seen.

- 57 -

F.‘(‘i_"{v(_ﬂ_"-"."" WA
.

Pl i)
TR R B |

|]

Chapter 5

Implementation

5.1 Introduction

"There is an almost infinite number of ways to implement
and test any system. 1Indeed, there is an almost infinite
number of organized approaches to implementation and
testing!" (Yourdon, 1978: 376). The method of implementation
usually is driven by the requirements and special
considerations of the project. Because of the partial
implementation strategy of Sire, the approach used in this
implementation is related to the design strategy used. In
other words, it is basically a top-down approach. It is also
a depth-first, left to right approach. This means that, when
viewing the structure charts, the implementation start on the
left side and proceed down the left branch until that left
branch is implemented. Then, the implementation moves to the
next branch. This scheme differs from others in that it is
top-down, but not strictly top down. Also, because of the
structure of the design, some parts of the system have been

totally implemented before the others were started.

- 58 -

This approach is beneficial because it almost eliminates

the need for a comprehensive, detailed system test plan b¥
replacing it with incremental testing. This incremental
testing occurs as each increment, or portion, of the design is
implemented (Yourdon, 1981: 381). This method allows for
"user-feedback" sooner in the project. This 1is helpful in
correcting any mistakes or deficiencies, but also makes the
implementation stage drag on 1longer than it would if a

traditional approach were to be used.

5.2 Implementation Strategy

Once an approach to implementation has been chosen, the
next logical step towards the implementation is to develop an
implementation strategy. This strategy is dependent upon the
nature of the design and the desires of the implementor(s).
In this case, the strategy was to decide first upon an
implementation environment and language, then to decide upon

which practices would be used in the implementation.

5.2.1 Environment and Language

The choice of both an environment and a language are very
important. The environment must be capable of supporting the
final implementation at a minimum. It would be more helpful

if, during the implementation, the environment actually aided

- 59 -

"
AT
. 5a",

I}
i)

Ay,
R D S

"
T

the implementor(s) in producing a quality system. Going

hand-in-hand with this concept is the implementation
language. It also must be able to support the development of
the system and should aid in the production. 1In addition, the
language should also be suitable in as far as maintenance and
readability are concerned. A well structured and readable
language will not only aid implementation, but will aid future

attempts at maintenance and modification.

It should be obvious that the idealistic views concerning
the choice of an environment and language need, in actual
practice, seldom be worried about. Often, there is no choice
about the environment to be used because there will only be
one available. As far as the language is concerned, there are
often ci1ly one or two suitable languages available on the

environment.

As far as the Sire system is concerned, one of the basic
assumptions set forth in the beginning was that all

1
implementation would be done on a VAX 11/780 with a UNIX

operating system. Therefore, with the environment chosen, the
only thing left would be to choose a suitable programming

language.
In choosing a programming language, several factors had

1. VAX 11/780 is a trademark of Digital Equipment Corporation

- 60 -

.........
.......................

TN to be considered. First of all, the language must be able to
support the development of the system. Second, it must Dbe
readable and easy to use and maintain. Third, it must support

f modern software engineering practices. There are also other

minor considerations that must be weighed when making the

final choice. Chief among these is the consideration that the
implementor(s) be able to use the language to its fullest

extent without having to constantly be struggling to 1learn a

new language. This consideration is often overlooked as new

languages are often thrust on implementor(s), resulting in a

slow down of the implementation and a 1less than efficient

product.

d{; Given these factors and considerations it was not
difficult to choose an implementation language for the Sire
project. The chosen language was "C". The main reason for
the choice 1is that in a UNIX environment, there are no
languages more powerful or flexible. This is because the C
language was used to implement the UNIX operating system. As
the system development language, there is a very close tie
between UNIX and C which makes available a great many system
tools to the C language implementor. The great amount of
operating system support given the 1language, the number of
tools available, the flexibility of C, and the fact that the
Sire system designer and implementor is familiar with C, made

it an ideal choice for the implementation of the PDS system.

- 61 -

...... e e . m e e e

<, - . P S oL P T LI i S o e T co N - . K
AR AR R R S T R [e T U S T T .
F T L P L I L Mt . s P R A P T T PR P P P G e s T RN
ARAERIEAE AT IAIENT AL TN AN AV I AOATPY TP o0 S i PP v R o S P U S SO N AP

.......... P

r,,
S

%
(]

% {3

C o S0 PR A
Ay .
["’f"’""

’
4
2
]

5.2.2 Practices

Since one of the factors used in choosing the programming

SONRICH
a2 .l

language was the desire to use good software engineering
practices, then it is only appropriate that some of the major
practices to be used in the implementation be discussed at

this time.

Programming Methodology

The programming methodology used in this implementation
has already been identified as the top-down approach. This
was important to this implementation because it not only
provided earlier testing and feedback, but it also made the
partitioning of the implementation into separate, stand alone

modules easier. This concept is very similar to that of

separate compilation, which is available in C and was heavily
used, in that different parts of the system may be implemented

without the others existing.

The major difference is that each part, when completed,

will be a completely functional software program. Therefore,
the firal step of the implementation was to just gather all

the separate parts together and make sure that they interface

- 62 -

SaNCAC A AL SR SO T RACHA VA e DA S A S A i S A N S S & A SA QS A S S

RN i)

and interact correctly. This approach goes back to the
tool~-kit approach discussed earlier. This not only make it
easier to see results, but it will allowed for these parts to

be modified and maintained separately.

Programming Style

It is now widely recognized that if a program, or system,
is going to be used and maintained for some time, then it will
probably be read much more often than it is written
(Sommerville, 1982: 117). Therefore it is very important for
the program to be as readable as possible. Readability was
previously linked to the programming language used. However,
even if a readable language is used it is still very possible
that the resulting code will be very unreadable. Readability,
given a good language, becomes very dependent on the
programmer. The C language has been criticized because it 1is
very easy to produce very cryptic code. However, with care
and thought, the resulting code can be very readable. With
this ir nd, all steps possible were taken to maximize the
readability of the program code. These steps included
structured programming concepts, the use of extensive program
documentation and the selection of relevant variable and

function names.

- 63 -

e Programming Tools

"One of the most important developments in the practice
NN of programming has been the realization that the programming

process can be supported by a number of software tools"
o (Sommerville, 1982: 128). The concept of program development
,: tools is widely supported by UNIX, which is recognized as

having a very extensive and varied set of tools. Sometimes

j? these tools aid the production of code, sometimes they produce
gi code (code generators), and sometimes they provide wutilities
‘ . Ci? that the implementor can take advantage of, therefore
25 relieving the implementor of the task of implementing a new
gi utility. No matter what the tool does, it has some impact on
*' the system.

R

%

:; Compiler

¥ The most obvious tool used was the C compiler. The
&; compiler obviously affects the implementation since it limits
§§ the programming language. The compiler used in this
52 implementation was the standard C compiler provided with UNIX
I version 4.1 bsd.

1

AN
. l“ .‘ ’

- 64 -

I..
“
)

- g e e a e e - - L . e e . T T N e TN e e e N e e e L N St
*\"-'.'\.'\{“,,N'-‘-'_ﬂ' PRI " q."'\, RS ..',‘._..~_-.-_ N -{s__ __'h‘_ ‘.‘\'_ SR T e S T R B R e R

...............

?)
)
.
.
.
(4
(4
»
*
3
.
-
s
D
a
x

.................

o s,
R

:Ef AR

N

.. Another tool of importance to this project is the system
_g utility "AR". This utility is a file librarian. It can be
'g used to catalog and "shelve" files into one physical file.
o This tool is not only used by the implementation to maintain
‘é file libraries, but it was used as a code control system to

) maintain backups during the implementation process.

YACC

Besides the compiler, the tool which has the biggest

- impact on the implementation is YACC (short for Yet Another

L Compiler Compiler). YACC is a program that, given a simple
}i syntactic description, will produce a complete parser for that
iz syntax. It is also possible to include actions in the syntax
Vg description that YACC will cause to happen at the correct

time. With this tool, the process of building the compilers
shown in the design was cut down significantly. This tool
added greatly to productivity, however, this increased

productivity is not without cost.

YACC, by nature, is a very complex tool that produces

T complex C source code. While C can be a readable language,

- 65 -

..... ael sl el el .y o, - D B o m T te T et e N et
.......... e e e . JTe e e 3 ™ e e R e N Y S . . *
..... IR R EACEAERC AN R - e e A e T T e) R R R TR S e

ROV PR P VDA AR ALY

YACC tends to produce cryptic code that is hard to understand

and fairly slow. Also, YACC precludes the possibility of
dealing interactively with the user. This lack of interaction
caused major problems with the user-interface that had been
planned. The system that resulted because of YACC was a
little more awkward and less user-friendly than planned.
These problems will be discussed in greater detail at a later

time.

Lex

A tool that is complementary with YACC is Lex. Lex
interfaces with YACC and is used by YACC to scan a file and
provide tokens to the parser. Again, this tool was a great
aid to productivity since it kept the implementor from having
to write a separate lexical analyzer. The only bad effect
that Lex has is that, like YACC, it has a tendency to produce

large amounts of inefficient C code.

Make

Make is a system utility that helps to maintain system
configuration by maintaining the correspondence between the

source code and the object code of the Sire system. Given a

- 66 =

R A A il Sl T Al AN A e AR SRR '-1

:§}' list of all the dependencies in the system, Make can, when
o invoked, make sure that the system is fully up to date. 1If it
is not up to date then Make knows how to bring it up to date.

Make is used not only to maintain the implementation
configuration, but is used by the system itself in keeping the

PDS produced code up to date.

Program portability

Program portability is an important topic. It is
important because the more portable a program 1is, the more
'E; widely it will be used, therefore resulting in greater profits
and benefits. The UNIX system offers a large amount of
portability between different types of computers, especially
for any C source code. However, this portability is not
guaranteed just because UNIX and C are used, instead, the
implementor must work hard, and 1long, to maintain this
portability. Because of time constraints, portability was not
a topic of consideration in implementing this project. Even
so, the resulting system should be fairly portable with only
one thing possibly getting in the way. That thing is the
amount of dependence that the system has on the machine

architecture.

......................................
..
.........................

..........................
...........

Machine Architecture Dependencies

Although good design techniques do not usually take
machine architecture into account, the implementation must.
The machine that underlies the operating system may impose
limits on aspects such as memory used, processing time, file
space or other resources. The implementor must therefore take
these into consideration. To provide portability, the

implementor must look at all possible target systems and work

with those in mind.

Since it has been stated that portability is not a topic,
the system was implemented with the VAX architecture in mind.
Of particular importance is the virtual memory scheme used by
the VAX. The PDS implementation does all calculations and
builds all structures in memory without consideration for

size. This means that, if this implementation was transferred

2
to a PDP-11 running UNIX, it 1is entirely possible that the

PDP-11 would not have a large enough memory allocation scheme

to support it.

2. PDP-11 is a trademark of Digital Equipment Corp.

- 68 -

I

5.3 Summary

The implementation of PDS can best be described as
top-down and very structured. As discussed previously, the
implementation followed good software engineering rules 1in
general and the tool-kit approach to software environments in
particular. Particular attention was given to making the

system as maintainable as possible.

- - - R < el -
(- [N - ‘-.-.-

Py e) -° .. J
mm .‘ M PV S ‘\‘LA'_‘LI‘.LAMAJL!JLA{L ,\.M#L-‘ AN -A“.A

~’-‘-'-

A A A e R e e LAY D A FARJal IS MBS SEMAE S AL AR CUEREL R SRS
N
o
P
L
et .
s
'

Y

fﬁ Chapter 6

A7 Critical Analysis of Sire

2
.

. '

l\--

Y

:? 6.1 Introduction

NS

S .

\.-

- After a project is near completion it is useful to step
- back and take an objective look at what has been accomplished
f (if possible!). This analysis should concentrate on the
o (ﬁ? strengths and weaknesses of both the design and the
£
_$j implementation. Also, the analysis should take place at a
3: fairly high, conceptual, level and avoid the nitty-gritty.
e
e This analysis process is helpful in producing conclusions and

recommendations about the subject matter.
This analysis will be broken down into three major

- parts. The first part will be an analysis of the design.
N Secondly will be an analysis of the prototype PDS system as

ﬁ; implemented. Finally will come a section on how both the
Q' design and implementation helped fulfill the requirements set
Eﬁ; forth in the beginning of the project. After this part will
i come a summary, or list of some of the lessons that have been
N T learned during this project.

s NS

o - 70 -

Cd

L

o
‘h}‘l..'n‘."...‘ AN I s '.".:." '-\;l‘:n',:-'.:fxf‘;q'-"'.\'-. AT T A -.:.\. (RN

............

. - 6.2 Design Analysis

6.2.1 Weaknesses

The major weaknesses of the design of Sire seem to be
- sins of omission and 1lack of detail in some critical areas.
- These omissions and sketchy detail cause decisions to be made
that may be detrimental to the overall quality of the system.
specifically, detail is lacking in the PARS subsystem, the RDS
- subsystem and in the description and design of the system

databases and data tables.

i '£3 For example, the PARS subsystem is a distributed
Ei subsystem that will eventually have parts of itself spread out
. through the whole system. This is necessary for it to gain
accounting and status information. However, there is no
- description of how it will do this, or even any description of
the information that is needed. This leads to the rest of the
subsystems being designed without the PARS modules in mind.
This is questionable practice at best and will probably end up
- in conflicts when the PARS subsystem is to be implemepted.

This kind of thing often leads to what is known as a kludge.

v 6.2.2 Strengths

p - 71 -

The strongest asset of the design 1is the inherent
flexibility and top-down nature. Care was taken to use good
software engineering techniques in building up the design.
Therefore it proved to be very flexible and easy to use.
Another benefit is that the design is very simple and easy to
understand. This 1is really about all that can be asked for

out of a design.

6.3 Implementation

6.3.1 Weaknesses

It often turns out to be the case that the biggest
critics of a software system are the designers and
implementors. This may be true because they know all the
problems that exist in the system. The implementation of the
PDS subsystem is one of those software programs. Although the
basis of the implementation is sound, there are several
problems that detract from its usefulness. These problems
deal with the databases, the efficiency and the

edit/compilation cycle.

As discussed before, the databases and datatables were
not considered thoroughly in the design phase. Therefore, the
implementation phase saw the willy-nilly creation and use of

databases. The problem with this is that it probably caused

'''''''''

since

extra, redundant work

led to a single management scheme instead of the

that ended up in existence.

of several small data stores, a single, formal database

have been defined that would have

the whole Sire project.

a thorough definition would have

five or so

Also, it is probable that instead

could

been of greater benefit to

The efficiency of the implementation has been discussed

briefly in several places. Suffice
used were chosen for

not their efficiency. This

much too slow in several critical places.

of these places is in the

messages. Inefficiency in these

led to

presentation of menus and

it to say that the methods

their convenience in implementation and

the implementation being

The most noticeable

the user-friendliness that was desired of the system.

Another, unfriendly, awkward part of the

is the edit/compile cycle.

necessary to edit the source file, then

view the error message, look at the

as needed. This 1is very awkward

interactive. This is mostly due to

the compiler sections and the
unsophisticated editor.
would be to use a context

compiled the source as it 1is

provide for instant feedback and would save

Ideally the
sensitive

being

error
places negatively affected
ipplementation

The user of the system finds it

compile the source,

error listing and proceed
since is is not the least
the use of YACC to produce
use of a relatively
best way to handle this
that

editing system

entered. This would

much time since

Chaic) ')."'."&'-‘-""‘f‘-"u"i‘.“-‘v‘-'-—‘-—'.".'.“.".T
T P P R . B

T the four separate steps would be collapsed into one.

x 6.3.2 Strengths

3

-.‘ .

- The biggest strength of the implementation is that it is
O faithful to the design and that it correctly does what it was
"o planned to do. That is, it provides a demonstration of the
>

if’ specification concept and how it can be used for automatic
{

- documentation and automatic generation of well designed source
ol code.

) }:

=

:‘ 6.4 Requirements Resolution

- .

1 s

‘- In the beginning of this project, it was necessary to
fi decide what requirements were important. These requirements

b were put into two classes, the general and the specific. One
o way of measuring the success, or completeness, of this project
‘}ﬁ is to decide how the requirements were resolved. This will
po lead to yet other insights as to how the design and

implementation may be improved in the future.

It is important to realize that many of these

requirements cannot be connected with any specific chart from

ala
4
NN T

the design structure charts or any piece of code in the

-
/%

implementation. Rather, some of the requirements are resolved

T S

by the general nature and procedures of Sire. Also, since the

design wasn't taken to it's lowest levels everywhere and since

the implementation is not complete, all that can be done is to

describe in which section the requirements should be met.

6.4.1 General Requirements

As noted above, the following general requirements, since
they are general in nature, are more related to the philosophy

and nature of Sire than they are to any specific part. The

discussion of these requirements resolutions is not intended
to be thorough, rather it is intended to give the basic flavor
of the way in which certain requirements have been met (or not

met, as the case may be).

Reduction of User Burden

The philosophy of Sire is that the user should only have

to input information that the system itself cannot ascertain.

For example, in the PDS section the user is still required to

do some "coding" but, it is also true that much of the MIDAS

description is filled out by the system itself, thus

minimizing the amount of work for the user. Other major areas
of user support are the automated documentation features and
the ability of Sire to translate the MIDAS description into a

source program shell for the user.

- 75 =

DA Nl DA g T ',i_:w\

s R N T S

Reduction of Software Errors

-l The resolution to this requirement is hard to pinpoint
gf and quantify with Sire being unfinished. However, it should

3; be apparent that the desire of Sire to minimize the amount of

!! work that the user must do will help reduce the amount of
Eﬁ errors. Sire will probably be best at reducing syntax and
E; coding errors, thus leading to faster production of software.
ii Sire also intends to reduce logic and design errors through
ii the use of rapid prototyping and the wuse of pre-fabricated

software modules.

e Easy to Update

It is questionable whether Sire can claim to meet this
..~ requirement or not. At this point in the implementation it
-~ does not seem that any solid evidence can be presented to show
: how Sire does, or will, meet this requirement. 1In fact, it is
estimated that the structure and discipline of Sire may prove

to make the system produced by Sire harder to update.

- 76 =

Project Management Concerns

This topic has already been discussed as a weakness of
Sire. It seems that not enough attention was applied.-to this

requirement in the design stage, therefore, there is no
evidence, other than a vague design section, as to how Sire
will support management concerns. This resolution of this

requirement certainly warrants future investigation.

User-Friendliness

This requirement, though very vague in nature, was
attacked by trying to be as nice and informative to the Sire

possible. Some examples of this are the use of
of

user as is

menu-driven software, informative error messages, and use

screen attributes to present information to the user. After

using Sire, it also becomes apparent that the friendliness

could be improved through the use of more communication with

the user. At times it seems that Sire just sits there going

about it's tasks without informing the user of what is

happening.

N N T e S T N T Lt e
LANR T AT e Ty T T

oy

- e
T; | 6.4.2 Specific Requirements

lg: The following specific requirements are more specific in
o nature than those presented above, and in many cases they have
;; evolved from the general requirements. Again, the discussion
%; of the method of resolution for any requirement is not .
L intended to be detailed.

-

5

\

i Automated Documentation Support

;f The support of automated documentation is readily seen in
;- c;3 the design structure charts. It is also apparent in the
;?: . implementation of the PDS subsystem. The implementation
?ﬁ automatically produces documentation that can be used as
u? module description both in the source code and in the
EE documents describing the code. 1In fact, the PDS system was
Qif used to produce some of the module documentation that appears
\f in Appendix C. This is just one small example of how Sire can
‘ii support documentation. Had the amount of time for
i& implementation been greater such features as automated
“,

if production of structure charts, automated data dictionaries
ESZ and automated production of a preliminary design document
fgl could, and would, have been easily implemented in the PDS
“ subsystem since almost all the necessary information is
E% f&i‘ already available.

e e e e A A . T T IR S I T T TRE PO
e T e T e e T T A T e e e T RSP RS ERSC T S 6 Rt A C N e
IR I D AR A SRR I SIS S I ISP S S TP A W TR P N YR PRI

T T S T Y W W W T 0w

- Flexibility

At this stage of development, Sire remains a very
flexible system. There is nothing that would limit it to one
type of project or another. This designed in flexibility may
prove the undoing of Sire because in trying to be all things

to all people, it may become unusable or undesirable to use.

.“': vt hbh S 1

nol The key to this flexibility will be in the hands of the future
. Sire implementors since it will be easy for them to turn Sire

to a different direction.

g Integration

- The lack of integration in Sire has already been
Eé discussed earlier when it was said that the edit/compile cycle
-ﬁ in Sire tended to be awkward. This awkwardness is caused from
- trying to integrate poorly designed tools into Sire. They are
; poorly designed in the sense that they are not designed to
‘f: blend with the rest of the tools in Sire. This 1lack of
;: integration was an implementation decision caused by time
EE constraints and is not caused by poor design or lack of
‘i' foresight. It was decided to wuse as many available tools as
:; JTE' possible in order to get a more complete implementation.

y 23 -

X
»

- 79 =

W it -t ataliaee 4 oy
_'-__v_..\r._.—..m._ - "'—‘-.ﬁr.rr'r;_‘r.-..'t?'_.'r_-;-_'._~ N A A P Y N o Lt S Sl St S i e s s Sl

Language Independence

Although the present partial implementation is not
language independent, it is only so because time was not
available to produce more translation modules for the PDS
subsystem. The basic design and philosophy of Sire provide
for specification and design of a software system in a
language independent manner. Then Sire takes over and, using
translation modules, translates the design into working
software. The only restriction on this independence is the

number of translation modules that are available.

Maintainable

The subject of designing software for maintainability is
not very well defined at this point in time. The best that
can be done is to use good software engineering techniques and
provide extensive documentation of the source code. This
project was undertaken with this in mind. As a result, Sire
is a relatively well documented software system that has been

implemented in a readable high-level language.

- 80 -

.................................
...........................
...........

DA b R . v T . s A
R I N R R R RO RNCR A AR A RasyaCRt e Jashee A SaCHAT e J0 ASNCACLICIIS ANUCILON 6

Open Ended

Basically, Sire consists of two parts, the basic

environment and the utility tools. The basic environment may
be thought of as the PARS, RDS, PDS, DDS and SRS subsystems.
These parts form the basic environment and do not meet the
requirement of open endedness very well. Granted, the basic
environment is very modular and can be modified by swapping
modules in and out, however, the basic environment is limited

to the task set forth in the design of Sire.

‘ta The utility tools, on the other hand, are very open

ended. There are no specific design limitations on the tools
- and no specific requirements for them. Therefore, the tool
: list can be added to and taken from as need be. This concept
of a separate tool kit allows the overall Sire environment to
- be tailored to fit the task. Also, the utility tools
: subsystem is extremely modular and easy to modify, thus making

it even easier to tailor the tool kit.

Pre-fabricated Design

This requirement is resolved in the design of Sire. The

design calls for a database of pre-programmed software modules

.............
.............

s" N

to be available. This database 1is also required to be

extendable so that the database can be updated and added to if
necessary. Although the design of the PDS called for an
interface with this database of pre-fabricated modules, this

feature was not implemented because of time constraints.

Prototyping

Prototyping is handled in Sire by the ability of the
environment to rapidly produce, through translation, a
skeleton software system at any time. This prototyping is not
built in Sire as a menu feature, but must be managed by the
system users. For example, the users could decide that they
need a prototype system and they would proceed to specify and
produce that system using Sire. Since Sire is designed to aid
in the rapid development of software, they could turn out a
prototype in short order. Then, after experimentation, they
might go back into Sire and extend their specification. This
can be done over and over again until the Sire users are
satisfied. This prototyping can also be done within the
different subsystems of Sire, such as the PDS subsystem, in

order to make sure that the output of each stage is correct.

- 82 -

Reliable

It is very hard to determine if the implementation is
reliable or not. At least it is hard to determine reliability
in any short period of time. It seems that although Sire has
been well designed, reliability can only be determined after
heavy usage. The partial implementation of Sire has been used
and it appears that so far it runs reliably and that the

produced software is what has been expected.

6.5 Lessons Learned

1. The use of menus is a very useful concept, however, it
can be detrimental. Menus are usually bothersome and a
waste of time to the experienced user. An alternative
to the full time menu might be some kind of toggle in
which the user, or the system, can set the 1level of
detail in which the menus are presented. This toggle
concept can be expanded to all of a project. For
example, all system messages could have two levels of

detail controlled by this toggle.

2. An on-line help facility is a necessity. Again, this is

a facility that is more likely to be wused by the

- 83 -

..............

........

“ -
................... R JRCIAL R
LAY _ﬁ-‘n ' l.) A.L.\A)&_‘hl. L} A\ .&'_L'li ;u'}_;;. .A\‘A)‘A\.‘ TS VRO

beginner, but may sometimes be used by the expert.

3. One major objective of a user friendly environment
) should be to strive to do as much as possible in a
background mode. The user should not have to wait on

tasks to finish if it isn't necessary.

4. Going along with the previous lesson is the observation
that the environment should take full advantage of
multi-processing capabilities. This would enhance speed

> and user friendliness by c¢ombining several steps that

had happened in serial into parallel tasks. An example

;3 of this might be that a background task is compiling the

- MIDAS specification while the user is using the editor

‘jﬁ to enter it, thus reducing the serial nature of the

edit/compile cycle and providing for faster feedback.

5. Something very critical to the wuser interface is the
determination as to how much should be told to the
user. There are times when tasks are taking place and
there is no action required from the user. The question
is, what should the system be telling the user to keep
user interest up without telling the user unnecessary
information? The user must be informed enough to know
what errors were made, but the user doesn't need to know
about internal processing events that are of no help in

debugging user errors.

o e e e e e T et e LR PRI I e ST T e AP et .--‘..‘..‘."..‘-\.‘ e .'-.' PR “
W ._._,..J.J._L...!L,l A .“1A;‘w_4-,.‘;¢-1 [PR WL W

6.

10.

A high degree of integration is hard to achieve without

a high degree of concentration on that goal.

The use of pre-existing system tools can be more harm
than help. 1In using these tools, the integrator must
fully understand how the tool works in order to lessen
the chance that the integration of the tool will have

strange side effects on the system.

There needs to be some sort of graphical tools
integrated into a software environment. The most
appropriate area for these tools would be in the
presentation of information to the user. For example,
after the MIDAS has been correctly specified in a level
of the PDS, a graphical tool might produce structure
charts to depict the MIDAS structure. Also, graphical
tools are very useful in the documentation that Sire

must produce.

The environment should include a built in pretty-printer
that automatically formats all source files into the
format accepted at the using installation. This implies
that the pretty-printer must be able to accept user
input that will alter the configuration of the formatted

output.

Related to the last lesson is the concept that most of

the system tools must be configurable by the users at

- 85 =

the using installation. This concept must be designed
in from the very beginning and should have been an

objective of Sire.

Interaction with the system should be maximized in order
to minimize batch, or serial, actions. In PDS
edit/cycles, for example, the user must exit one tool,
enter another, make the correction, then go back to the
first tool in a repetitious manner until the problem is
solved. With proper interaction, these wasted action
could be reduced. However, interaction should be used

only when necessary. It should not be used just to give

the user a sense of usefulness.

The user needs to be able to set some actions running in
an unattended fashic . Many of the tasks that the

system performs do not need the user. Therefore, the

user should be able to go away and do more productive
tasks than staring at the screen. It might also be
useful to consider 1letting the user schedule tasks for

some future time and date.

The integration of a code control system is a
necessity. In such a system, all out of date work is
archived in case something happens to the working copy
so that the user can easily retrieve older code and will
not have to duplicate past actions. A good example of

such a system is the UNIX Source Code Control System

e
------ S < e e T,

. . . - e e - . -
I RN o . B SR . .
B A P RN S A T T) o RARER
ECIC TN S NI S S N A RTINS o S P I S S A DR P S G ‘_A._.."J

(SCCs) .

6.6 Summary

In any project there are things that are done right and
things that are done wrong. It is usually easy to identify
those that are done wrong as the weaknesses of the system.
However, identifying the things that are done right with the
strengths is often overlooked. It is not very satisfying to
say that the strengths of a system are that the implementation
and design turned out as expected. Because of this, the
analysis of Sire takes on a decidedly negative tone. It
should be stressed however, that this project has met and
exceeded all the expectations that were set forth in the start

of the project.

With this in mind, one must be very careful in deciding
about the quality of a system when performing an analysis. 1In
this chapter several seemingly disastrous flaws have been
discussed. It should be pointed out that most of these flaws

could have been worked out given more time.

- 87 -

- nb-R138 B22

UNCLRSSIFIED

SIRE: AN AUTOMATED SOF TWARE DEVELUFMENT ENVIRONMENT (U 2/2.
AIR FORCE INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL
OF ENGINEERING D W NETTLES DEC 83 RFI1T/GCS/MA/83D-S

F/G 9/2

a. a_ s e, Wy g -
¥ ST LN JC TR Sl Py AL 5.0 SR S0 S SO

f

v 2 R B

FEEER
EEEE
N
N

—
.
|
EFFEE
Fr
———1

N
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

R

- a
-

CRE I
SRS
DAL AN

-
- Y

o

\ e R ‘-""c

.

»)"._- o

AN

%Y
“~
-\'.

/ W W, v T,
Y rf\ » .

Chapter 7

Conclusions and Recommendations

7.1 Introduction

The purpose of this project has been to investigate
automated software development environments (ASDE). Occurring
somewhat in parallel with this investigation was an effort to
specify, design and partially implement an ASDE, building on
lessons learned from the investigation. The Sire system, as
designed and implemented, has strengths and weaknesses as
discussed previously. It appe;rs that this partial design and
implementation should not be a basis for continued
development. This is because of the fact that the time
limitations under which this project was implemented forced an
implementation that could be greatly improved upon in such
areas as efficiency and user interaction. Using this
implementation as a basis for future projects would cause more
problems than it would be worth. Instead, it should be used

as a learning tool and technology demonstrator.

- 88 -

LY £ 0 B A £ A I S € L SN AT A S

e 7.2 Conclusions About Sire

Several things seem immediately obvious when reflecting

on this project. The first is that, to design and implement a
Y useful ASDE is an extremely complicated and long-term task.
It is so complicated because an ASDE not only has to deal with

;5 software engineering, efficiency, implementation of an
19 algorithm and performance as most software projects do, it
also has to deal very heavily with ergonomics, and the

problems of integrating diversity.

‘ﬁb Integrating diversity is a troublesome problem that

: : became apparent from the very start of this project. This
a problem deals with having to integrate several very diverse
5 functions into one system and having the system.be easy to use
! and "smooth" to use. This problem is not apparent in most
§ software projects because the majority of these projects deal
with only a limited set of closely related functions. One

good example of a software system that has to integrate

4 diverse functions is the operating system. It should be easy
to see that those that integrate these functions are easy to

use, while those that don't handle it well are not. For

example, the UNIX operating system tries to handle everything

as files. As a result, UNIX presents a very easy to work with

interface. This is not to say that UNIX is simple to use or

-
o
« -

- 89 -

- aWa¥ r - A R ot SR R A Y S R i _P.-.‘.'.-.--'-F-‘.-...'.'--.--' P e e e Rt R
*l
.3
=
T
N iﬁﬁh understand, for it performs the purpose it was designed for
> o
, very well.
2
fﬁ This brings up another conclusion, that of properly
N
N targeting the user level. It is important to decide what
W level of user will be dealing with the system and design the
;; user interface for that level. Trying to be all things to all
¥ people will increase the complexity of the project by orders
ﬂ: of magnitude. Therefore, it seems to be very important to not
-? try and "design down" to the less experienced user if that
- user is below the targeted level.
4 The analysis performed in the previous chapter seems to
-
7 indicate that the Sire implementation is about typical of any
- ‘:b project that is in its infancy, as Sire is. There are
.-.: .
;; problems and strengths. Many of the problems are easy (now)
'ﬁ to attribute to the discussion above. An ASDE is a very large
I concept, and the complexity of the project, at times,
:S overwhelmed the design and the implementation. Expediency
,5 took over and the design consequently suffered.
__\
'_\
-_“
3
'ﬂ
v 7.3 Recommendations
~
RS
N 7.3.1 Plan to Throw One Away
= It is often said in the software world that "you should
TN
W .
? ARt plan to throw the first one away." This proverb seems to fit
2
-"
A - 90 -
N

T R

4y o oyepd

S % %
2

-s I'.

A Sire very well. Sire is successful in that it has been useful

)

as a learning project and technology demonstrator. However,

o

as a basis for future implementation, it probably tould be

0 2V A P

o, & 4

more of a hindrance that a help. It is recommended that the

design and implementation be used as a learning tool in order

O

to see what problems can occur in this type of project and to

help define requiremeﬂts for another ASDE.

by~
o'

*
- 7.3.2 Future Projects
L
'

In making recommendations about projects to develop
- software environments it is probably wise to try and limit the
N scope to something smaller than the scope covered in this
‘ja project. ASDEs, being large and complicated, are hard for one

person to totally design and do justice to, not to mention

a

y I’J“o’

attempting a partial implementation. Therefore, the author

r i h %
» .

can define several projects that are natural outgrowths of

Sire.

¢
a1 4

ALY

The first project would be to do an in-depth requirements
analysis to add to the requirements already stated for Sire.
After that analysis is completed, the high level requirements
- model of Sire should be adjusted to meet the new
requirements. The basic flavor of the current model should

not be changed because it represents a generalized attempt to

% a e
ol 4o 8,
.- - a 0 4

o define requirements for an environment that supports good

%G 4

-
A A a

f‘b software engineering methods. After re-modeling the system,

e

LEPUREP o« % g e, e . . e . e et e - ot et T et AT et AT A L Mt N S ny - .. “e"e"ntac"
\ e, ""’ (\'.a L '-'-. \"."‘“'-- ~'...' ’:.' -’ Te T ', .’ °, N '.-'\ N. oy o™ |' "o S, ‘.-\.J ‘f,f‘ \.- .‘\) !.‘\.. y "b-. v

e 2% B A A e Wa' el il ael Al inedp W prll aPi AR gl e A oY AT AT TATRATE T T AT AT TR AR RN i.‘."“.‘.‘.-...--.T

YN

iik an analysis should be performed in order to determine what
b

AN

data base management capabilities are needed. Also, a data
base schema should be designed so that all the data needs of

all the sub-systems are fully met.

«ta¥al

After the model has been édjusted and the data base
provided, the functional design of Sire should be
reaccomplished, taking into account the lessons learned in the

current functional design. This design should emphasize the

»

proper definition and functioning of the PARS system and the

F R R

relationship of the RDS, PDS and DDS. The PARS is

particularly important since it is a distributed system and

D S N M)

! it's requirements affect the design of all the other parts of

ﬁ Sire.

The remaining projects fall into line with the design of

TR v PP T

Sire as it stands now. The projects would include the design
and implementation of the RDS, PDS, DDS, and SRS. These
design should be full and specific, but the implementations
- should only provide the core of each system. The remainder

should be provided as projects done by other students.

8 e a"a?

7.3.3 General Sire Recommendations

The first recommendation is that the use of a software

a8 s A L a

specification language be retained as it proved to be very

+

useful in this project and should be investigated in greater

.t depth. MIDAS proved valuable because it allowed for simple

T T N T
M YRR YRR LSRR Lt

description of the program structure and provided a very
valuable base of knowledge that, with the use of the
computer's power, can be used for driving such tools as
automatic documentation devices, automatic structure chart
generators, and, obviously, translators. However, MIDAS in
its present form is not complete enough for a production
system. It needs to be expanded to cover advanced concepts
such as tasking, generic instantiation and packaging. A
comparison of the Ada programming language and MIDAS would
provide the necessary areas in which MIDAS needs to be
expanded. Also, it seems probable that the data section of
MIDAS could be reworked to provide the user with an easier

method of specifying the data blueprint.

.Although no feelings or ideas about the form of parts of
Sire other than the PDS have been provided, it does seem that
a very interesting area of investigation could form the basis
for the PARS and RDS systems. It seems that Data Flow
Diagrams (DFDs) bear a strong relationship to the Critical
Path Method (CPM) used in project scheduling. This would be
useful because the Sire might use this relationship in the
following manner. The user would enter preliminary project
information into the PARS system and then proceed to the RDS
system. Here the user would complete the requirements
definition, including the DFD requirements model which is

stored by Sire.

.......

3
\:'2

3

N o er

':Q uﬁit After the RDS is finished, the user proceeds to the PDS
f, - system and uses the DFD model to specify the preliminary
?? design. This would then give Sire information about the
%é relationship between the module structure of the project and
i the DFDs. Now, using the scheduling information, the PARS
:i? would automatically calculate a preliminary CPM schedule for
:g the project. Every time another module is defined in either
g the PDS or DDS, PARS would add more detail to the CPM
:ﬁ schedule. Now, since PARS is distributed throughout SIRE, it
Iﬁ can monitor the progress of each module in the project, thus

providing the capability to always know the status of the
system and how the project stands in relation to the initial

schedule.

o

fae

N

:q 7.4 Summary

fﬁ This project winds up leaving both good and bad
b .S

2

. impressions. The good impressions have to do with the
" successes that the project has met with. The bad impressions
o deal with the things that needed to be done, but could not be
» done because of the lack of time. Much was learned about
;: software environments and, especially, the complexity that
lil large projects can bring about.

L

i <

¥

v 7
AR

[t
L |

"l l"" ‘(I “at

B
1S
e

Bibliography

Abrahams, P. "Structured Programming: Considered Harmful,"
SIGPLAN Notices, Vol 10, No. 4. New York: Association of
Computing Machinery, Inc., (April 1975), pp 13-27.

ANSI. IEEE Standard Pascal Computer Programming Langﬁage.
New York: IEEE, Inc., 1983.

Barrett, William A. and John D. Couch. Compiler Construction:
Theory and Practice. Chicago: Science Research
Associates, 1979.

Dijkstra, Edsger W. "The Humble Programmer," Communications of
the ACM, Vol 15, No. 10. New York: Association of
Computing Machinery, Inc., (October 1972), pp 859-866.

DoD. Ada Reference Manual. Department of Defense, 1980.

Gane, Chris and Trish Sarson. Structured Systems Analysis.
New York: Yourdon Press inc., 1978.

Gutz, Steve, Michael J. Spier and Anthony I. Wasserman. The
ergonomics of Software Engineering -~ Description of the
Problem Space" Software Engineering Environments. edited
by Hunke Horst. New York: North Holland Publ., 1981.

Hammer, Michael and Gregory Ruth. Research Directions in
Software Engineering. edited by Peter Wegner.
Cambridge, Mass: MIT Press, 1980.

Infotech International Limited. Software Engineering
Techniques, Vols 1. Maidenhead, Berkshire, England:
Infotech International Limited, 1977.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming
Language. Englewood Cliffs, New Jersey: Prentice-Hall,
inc., 1978.

Lanergan, Robert G. and Dennis K. Dugan. "Software
Engineering With Reusable Designs and Code" IEEE COMPCON
FALL. (1981).

Myers, Glenford J. Software Reliability. New York: John Wiley
and Sons, Inc., 1976.

- 95 =

1
°
{

N
A
B
v
..o.‘.d
sgs Peters, Lawrence J. Software Design: Methods and Techniques.
A A New York: Yourdon Press Inc., 1981.
DR

Wasserman, Anthony I and Peter Freeman. Interface Workshop on
A0 Software Engineering Education. New York:
e e Springer-Verlag Inc., 1976.
P?f Wasserman, Anthony 1I. "On the Meaning of Discipline in
. Software Design and Development” Software Engineering

Techniques, Vol. 2. Maidenhead, Berkshire, England:

N Infotech International Limited, (1977).

Wasserman, Anthony I. Tutorial: Software Development
Environments. edited by Anthony I. Wasserman. New York:
IEEE Computer Society Press, 1981.

; Weinberg, Victor. Structured Analysis. New York : Yourdon
S Press, 1978.

Yourdon, Edward Techniques of Program Structure and Design.
Englewood Cliffs, New Jersey: Prentice-Hall, inc., 1975.

Yourdon, Edward and Larry L Constantine. Structured Design,
Yy 2nd Ed. New York, New York: Yourdon Press, 1978.

Zelkowitz, Martin V. Principles of Software Engineering and
GB Design. Englewood Cliffs, New - Jersey: Prentice-Hall,
inc., 1979.

< Zelkowitz, Martin V. "Rapid Prototyping Woprkshop: Overview"
N Software Engineering Notes, Vol. 7, No. 5. New York:
Association of Computing Machinery, 1Inc., (December,
1982), pa2.

| GRS

AT)

222 r

Appendix A

4 ey e
24 YA AN

Glossary of Terms

Backus Naur Form (BNF)
A means of formally describing the syntax of a
language.

BNF Backus Naur Form.

Code Generator
Tools that assist in the production by
automatically translating from one form to
another target form.

Detailed Design
A specific statement of the methods that will
be used in the implementation of the software.

Detailed Design Document
A formal document describing the detailed
design.

DFD Data Flow Diagrams. A graphical method for
representing the flow of information in a
system. Often used to state the requirements
of a systenm.

Implementation
The stage of the project in which the design is
coded in some implementation language.

N
o

w
'l

v
D‘l

Interface Checkers
Tools that automatically check and verify the
interface between different modules.

L]
(]

»
*

Linkers Tools that merge and 3join separate modules,
usually object modules.

Maintenance/Operation
The stage of the project when the software is
being used and changes are being made to
correct errors or make changes.

»

% % ' %)
e s

APARMMNOEN
‘I'.‘.""~

7

o

@ &

VT N

Preliminary Design

A description, wusually graphical, of the
structure of the system.

Preliminary Design Document

e A formal description of the preliminary
‘s design.
] Software Engineering
- A discipline that tries to develop proper
- engineering method- by which quality software
5 may be produced.
l: Source Code Human readable rep; oentation of the software.
) Structure Charts
: A graphical method ° representing the design
B of software systems by showing the hierarchical
structure and the flow of information and
control.
o Structured Code
- Source code that is created using rigid, formal
Y methods in the hopes of constructing quality
> software. Usually having to do with program
- - layout and using single entrance points and
¢ w single exits.
\.':
3» Syntax-Directed Editors
! Interactive automated tools that check the
e syntax of the source code as it is entered in
oy the computer by comparing the code with the
syntax description for the language.
L,
:2 Test Plans A formal statement of the methods, strategies
- and test cases that will be used to validate
- the software system.
Text Editors Interactive tools that allow the input and
e modification of text into computer files.
'§ Textual Requirements
= A formal statement of the requirements of the
! system in english, or an english-1like
L. language.
v:\-
2 Tool Kit Approach
> An approach to developing software that
o emphasizes the use of many small software
N components integrated into a single system.
1 -
A
.
- 98 -
‘o
‘s
N S e e e L T e T AN T AT T e T e e T T e

« %
oo

Appendix B

MIDAS Language Description

(Modular Interface Definition And Specification)

B.l Definitional Conventions

The metalanguage used in this description of the MIDAS

syntax is based on Backus-Naur Form (BNF). It has been

modified to permit greater convenience of description. The

meanings of the various metasymbols are given below.

Metalanguage Symbols

Metasymbol

<meta-identifier>

Meaning

shall be defined to be
alternatively

end of definition

0 or 1 instances of x

0 or more instances of x
grouping: either x or y
terminal symbol xyz

also terminal symbol xyz
nonterminal symbol

- 99 -

J'- -—. .‘._'__T
_“'
..:I
RS
.'.\ '.-'_
{
v B.2 Lexical Tokens
W
f; Special Symbols
- <letter> ::=a | b|lc|lc|d]e| £]|g]| h]|i]| |
- k|]l|m|n]Jo|p|lalr|s]| tlu|v]|w]x]|y]|sz=z
A |Aa|B|C|D|E|F|[G|H]|]I |J|K|L|M|N]|O|
- P|Q|R]|S]|T|]U|V|W|X]|]Y]|]2Z2]|"".
- <digit> ::= 0 | 1 | 2| 3| 4| 5]|6] 7] 8]09.
)
i <symbol> ::= + | = | * | ='| L I T I O T I O R
’ 200 I O O T T A R I T IR
= m <special_symbol> ::= <symbol> | <word_symbol>.
:) <word_symbol> ::= SYSTEM | SUB-SYSTEM | SPECIFICATION |
IS
<hierarchy_word_symbol> | <mid_word_symbol> |
<data_word_symbol>.
f
- It is important to note here that <word_symbol> varies
f
" depending on which section of MIDAS is currently active. The
implication here is that there will be a different set of
reserved words in the hierarchy section, mid section and the
: data section. This will be discussed in greater depth at a
e later time.
.
. It is important to note that the syntax of MIDAS is, at
T times, very restrictive and demanding. The reason for this is :
> - that most of the MIDAS description 1is not intended to be
Ry
:-
g - 100 -
) J
L4
3 T S 1y T T T T TR P et A A I A R N N A R A R

RO R LR T RN S R IR e . I e N R LN
A . e .

filled out by the user, instead it will be filled out by the
system.

<hierarchy word symbol> ::= STAND | ALONE | separate
LEVEL | NOT | IS | DEFINED | AS | SYSTEM | HIERARCHY
DESCRIPTION | COMPLETELY | DESCRIBED | SUB.

<mid_word_symbol> ::= PURPOSE | ALIAS | AS | BLOCK | BY
CALLS | CASE |~ CALLED | COMMENT | COMPLETELY | CREATED
CREATOR | DEFINED | DESCRIBED | DESCRIPTION ELSEWHERE
EMPTY | END | FAN | FAN | IN | INTERFACE | IS | MODULE | NAME

| NOT | OUT | USER |.
<data_word_symbol> ::= CASE | ARRAY | AS | BLUEPRINT
BOOLEAN | CHARACTER | CONSTANT | COMPLETELY | DATA | DELTA
DESCRIBED | END | FILE | INTEGER | LENGTH NOT | OF
OTHERWISE | NULL | POINTER | RANGE | REAL | RECORD | STRING
TO | TYPE | WHEN | WITH .
Identifiers

Identifiers may be of any length. All characters of an
identifier are significant in distinguishing between
identifiers. Any <word symbol> is required to be in all
capital letters. Therefore, an identifier with the same
spelling but with different case is separate distinguishable
from the <word symbol>. In other words, case is significant.
The reason for this 1is for flexibliity. Sometimes an
identifier may be used in one place and the user may wish to
refer to it later in the comment section. This gives the
flexibility necessary to accomplish this.

EXAMPLE:
SPECIFICATION
is not the same as Specification
or SPECification

but Specification
is the same as SPECification

o))

[
REREY -.\‘.i

.. N

R RN A R A R Ny

Numbers

An unsigned integer shall denote in decimal notation a
value of integer type. An unsigned real shall denote in
decimal notation a value or real type (float type).
<signed number> ::= <signed_integer> | <signed_real>.
<signed_real> ::= [<sign>] <unsigned_real>.
<signed_integer> ::= [<sign>] <unsigned_integer>.
<sign> ::= + | =,
<unsigned_real> ::= <unsigned_integer> '.' <fractional_part>.
<unsigned_integer> ::= <digit_sequence>.
<digit_sequence> ::= <digit> {<digit>]}.

<fractional_part> ::= <unsigned_integer>.

Character Strings

A character string containing a single string element
shall denote a value of character type. A character string

containing more than one string element shall denote a value

of string type.
<character_string> ::= '"'<string_element>'"’
'"T¢string_element>{<string_element>'"'.

<string_element> ::= <letter> | <space>.

- 102 -

N S AL AN N AN Iy e e e e e T S e e e O

EXAMPLES:
Character types ‘'a*' ' ' ‘';' ")

String types "A" " " "this is a legal string type" "\"".
Note that the \ character is used as an escape to allow the

placement of the " character (quote character) into a string.

Ay

B.3 Syntax Description

The following is BNF description of the MIDAS
specification language.
<midas> ::= MIDAS <system_identifier> SPECIFICATION IS
<hierarchy_description>
<data bluepr1nt>
<modu1e interface_description>.

This is the MIDAS header which describes the relationship
between the three principle parts of MIDAS.

<system_identifier> ::= <identifier>.

<hierarchy_description> ::= HIERARCHY DESCRIPTION IS
[NOT] COMPLETELY DESCRIBED ([AS <hierarchy>]';'.

<hierarchy> ::= " (" <system_ level> <system_identifier>
IS <level descr1ption> ")" {<level breakdown>}

<system_level> ::= SYSTEM | SUB-SYSTEM.

The level of the system is used in describing whether or
not the part being described is the system or just part of the
system.
<level_description> ::= <module_name> {<module_name>]}.

<modu1e;name> ::= <identifier>.

<level breakdown> ::= '(' <module_name> IS <level_option> ')'.

Y
4-’
‘e

B s oatten
; ”

v e e s
LA

LY

The <level_breakdown> describes the level's makeup.

<level_option> ::= (SEPARATE [STAND ALONE] LEVEL)
| <level_description>.

If a level 1is specified as separate then it means that
the level will be completely described in another hierarchy
description. The stand alone option indicates whether or not
the separate level will be a stand alone, operational system,
or whether it is a collection of modules.

This completes the syntax description of the hierarchy
part of MIDAS. The next description will be for the mid part
of MIDAS.)

<module_interface_description> ::= MODULE INTERFACE DESCRIPTION
IS [NOT] COMPLETELY DESCRIBED AS ({<repeated_description>}.

{repeated_description> ::= [<system level>] MODULE <identifier>
IS [NOT] COMPLETELY DEFINED <where_defined>";".

<where_defined> ::= (AS <description> END MODULE
<identifier>) | ELSEWHERE.

Either a module is defined here, in this mid description,
or it is described in another mid description.

<description> ::= <interface> <{comment_block>.
<interface> ::= (INTERFACE IS <interface_description>";") | EMPTY';'

<interface_description> ::= {<identifier> {, <identifier>} : [<mode>
<type_identifier>';'}.

<mode> ::= IN | OUT | IN OUT.

<{comment block> ::=
/* MODULE COMMENT BLOCK ***®kkhkhkhhhkhkhhhkhhkhkhhk
MODULE NAME => <identifier>
MODULE ALIAS => (<identifier> | none)
MODULE CREATED => <date>
MODULE CREATOR => <creator_identifier>
MODULE FANOUT => <number>
MODULE FANIN => <number>
MODULE CALLED BY => [<identifier> (, <identifier>}]
MODULE CALLS => (<identifier> {, <identifier>}]

MODULE PURPOSE => '"' <module_descriptor> '"'
*****************i***************************/

<date> ::=

<creator_ identifier> ::= <identifier>.

l..: s

<module_descriptor> ::= {(<letters> | <word_symbol> | <special_symbol
<number>) }

This completes the syntax description of the mid part of
MIDAS. The next description will be for the data part of
MIDAS.

<data_blueprint> ::= DATA BLUEPRINT IS (NOT] COMPLETELY DESCRIBED
AS <data_completion>.

<data_completion> ::= (<constant section {constant sectionl}]
type_description {type_description}.

<constant_section> ::= CONSTANT <identifier> IS <constants> ';'.

<constants> ::= <signed_number)>
'"! <character_string> '"!'
''' <character> '''.

<type_section> ::= TYPE <identifier> IS <type_denoter> ';'.
<type_denoter> ::= <type_name> | <new_type>.

<new_type> ::= <pointer_type>
<enumeration_type>
<array_type>
<file_type>
<record_type>
<subrange_type>.

<type_name> ::= <identifier>
REAL

INTEGER

BOOLEAN

CHARACTER
<string_type>.

<pointer_type> ::= POINTER TO <type name>.

<enumeration_type> ::= '(' identifier_list ')'
‘(' character_list ')°.

<identifier 1list> ::= <identifier> {, <identifier> }.

<character_list> ::= '(' <letter>|<digit>|<symbol>
{, <letter>]|<digitd>|<symbol> <letter>|<digit>|<symbol>} ')'.

<array_type> ::= ARRAY '[' index_selector ']' OF <type name>.

<index_selector> ::= <ordinal_type> {, <ordinal_type> }.

|

X <ordinal type> ::= <type_ name>
o, <enumeration_type>

P :"ﬁ._‘\

b <integer_subrange>.
N <file_type> ::= FILE OF <type_name>.
S <subrange_type> ::= <integer_subrange> | <real_subrange>.
~ <integer_subrange> ::= INTEGER RANGE <signed number> ".."
. <signed_number>.
E: <real_subrange> ::= REAL RANGE <signed_real> ".." <signed_real>
- [WITH DELTA <unsigned_real)].
. <string_type> ::= STRING [LENGTH <unsigned_integer> ".."
o <unsigned_integer>].
I~
> <record_type> ::= RECORD <component_list> END RECORD.
™~
Fe <component_list> ::= [<fixed part>] [<variant_part].
. <fixed part> ::= <fixed component> {<fixed component>} | NULL.
o
Y <fixed_component> ::= <identifier_list> ':' <type_denoter> ';'.
)
y i <variant_part> ::= CASE <type name> IS <when_part> { <when_part }
G [<default>] END CASE ';'.
; ' <when_part> ::= WHEN <constant_list> "=>" <component_list>.
N <constant_list> ::= <repeated_constant_part> | <identifier_ list>.
<repeated_constant_part> ::= <constants> {, <constants> }.
2 <default> ::= OTHERWISE "=>" <component_list>.
i‘J
ﬂ <string> ::= <identifier>.
¥
<identifier> ::= <letter> { '_' | <letter> | <digit> }.
o
%
e B.4 Examples
4
A
N **%x** SAMPLE HIERARCHY DESCRIPTION *#***
>
b
. PN HIERARCHY DESCRIPTION IS COMPLETELY DESCRIBED AS
NG
¢
-
»
g - 106 -
”.
'

A SR I G LR S AT, AR S

(3

..

A
‘f‘ I’ {l

[..'t

'

‘r‘ 'r')
P ARaF

(SYSTEM sire IS pars rds pds dds srs utility_tools report_error)

L

D v
P 2 e .
L%
e .
——

N

4
fitets
o«
—

pds IS menu editor hierarchy mid data utility_ tools report_errojy
hierarchy IS report_error compile hierar)

compile_hierar IS resolve _module install lookup attach new_ h1er
gen_| mld desc report_. error)

gen_| mid desc IS enter_module check_swap)

enter module IS load swap)

mid IS compile_mid report error)

compile_mid IS resolve module make _data_desc report_error)
make data desc 1S check known)

data IS wrlte table make _release_d load_table enter check for n
perform_tab_se enumeration_en check_ table_fu report_error relea:
load_table IS enter)
enter IS resolve_confli)
enumeration_en IS enter)
utility tools IS menu list prOJects list project_1 list_lib_mody
list undef mod remove_proj rem proj_ level rem_ mods query errno

query_ ~language set language)

S Sy g g pu— g~

— g~ po—

***** SAMPLE MODULE INTERFACE DESCRIPTION ***%*

MODULE INTERFACE DESCRIPTION IS COMPLETELY DESCRIBED AS
‘jp MODULE compile hierar IS COMPLETELY DEFINED AS

INTERFACE 1S
one, two, three : IN STRING,
four : IN OUT REAL,
five : IN new_pointer;

/* MODULE COMMENT BLOCK #*%*kkkkkhkkhhhhhkhhkhrhidd
MODULE NAME => compile_hierar
MODULE ALIAS => none
MODULE CREATED => Thu Nov 10 12:56:54 1983
MODULE CREATOR => USER = nettles
MODULE FAN-OUT => 7
MODULE FAN-IN => 1

,J MODULE CALLED BY => hierarchy
\d MODULE CALLS => resolve_module, install, lookup, attach,
3, new_hier_desc, gen_ mid _desc, report_error
= MODULE PURPOSE => "The purpose of this module is
to act as a handout for the briefing on SIRE."
. ***/
e END MODULE compile hierar;
< MODULE list_project_1 IS COMPLETELY DEFINED AS
T INTERFACE IS
. T EMPTY;

a - 107 -

/* MODULE COMMENT BLOCK ***kkkkkkkkkkkkhkhkhhkkk
MODULE NAME => list_project_1

MODULE ALIAS => none

MODULE CREATED => Thu Nov 10 12:56:55 1983
MODULE CREATOR => USER = nettles

MODULE FAN-OUT => 0

MODULE FAN-IN => 1

MODULE CALLED BY => wutility tools

MODULE CALLS => none

MODULE PURPOSE => "The purpose of this module is"
***/

END MODULE list project 1;

*k*x* SAMPLE DATA DEFINITION SECTION ***%%*

DATA BLUEPRINT IS COMPLETELY DESCRIBED AS

CONSTANT string_example IS "HELLO there my name is sire";
CONSTANT int_example IS 3;

CONSTANT real_example is 3.0;

TYPE new_pointer IS DEFINED AS POINTER TO INTEGER;
TYPE argument pointer IS DEFINED AS POINTER TO STRING;

TYPE arqument_vector IS DEFINED AS ARRAY (] OF argument_pointer;

A4 ‘l.‘l Y

RARAMNNI S,

WIRIT IS

A

P l".’. e -".

LN

[W W

ettt el

!t i

F

i LA ~".'~‘K‘-l§"."

-

g S T el L S L L L S S
PR LI IR N - FOLE R I L LI IR A T L e Y] . . .

o
Appendix C
System Design
C.l Requirements Model
Data Node List
. - 1 SYSTEM CONCEPT
n -= 1.0 SYNTHESIZE SOFTWARE
-= 1.1 DEFINE REQUIREMENTS
== 1.2 DEVELOP PRELIMINARY SOFTWARE
-= 1.4 DEVELOP DETAILED SOFTWARE
-= 1.5 RELEASE SOFTWARE
._-:::}
Sose
- 109 -
N A A R T O I O N R SRy L RN

)
N 3daouo) weysfs °G| aandtd f

b ’
r.. N
° .~ (3
-.. Lot
= oY
X g
b D

4
JYVMIIO0S
HZISTHINAS

g -
WILSXS FYWMIJOS qISV-13Y

NOILYOIJIOZdS WEISAS

- 110 =

g N AT S
.
-

Tat N

LIk

S Le e Yy

OTAOT. oY SNNNTNh SARRA DLINMNY WA PRIIRET) OOATIIR| - RRRARRR), « ADROLAL |, T

. . axem} Jog azTsayjuls °9| mh.smﬁ.m

e INTROO0A NDISHE QHIIVIAG - Qaq

. IN-WOCT NDISEQ KMVNIWITIM - aad

: INZWNO0T NOISIA SINEWIMINDHY = Qay o

g SOLV;
LOTroud

ENIHEF LEQ

A -

SNLVILS IN3YHND

JTACIHOE ILITIXE

¥ w=Isks /0 61
IO 1 cuymzdos

. qas et ISVATHY

SELVTAN

NG TIViLAT C=1Iviag

: B Y YMIIOS

: QETIVL Y SIN-WEHINYEY
: vy S.avadn z2°l

’ “HMIAS) AUVHNIMITEH ZHMIAS

. TATIVLAG STTEH

dor

e
it

THYRTIANE A XTEARG
XUVNIWITAEd

. A e
. a

~

WILSXE

T

.
i
t
' Yy
: M
-n-l v e s e LI I R NN RARLE
S AR e a0y , e &ty .n-.-f ..---n... " .n.{no Tl b, S
SO DT . SOOIl NGRS LRI |

* Y fy @ = - — A A - Fid

- 111 =

e

-
-

)

ChAnd

AN <o SauTiie g

B

LA

Ml N A

hoP Pl S Shdt St

Cadii e g

Lt iAo

AUt A i

W VN

ACAAS A NS DA ML LA A,

[¥

aaqy

-

sjuswaaTnbay aurJas(q

SOLYIS SINIWIYINOIY

TITOW
SOIHdVHD

G Lt
TOW OIHAVHD

oL
ALVISNVY

SALVILS Qay

ettt s I ¢f

*LL sandtyg

CSLNYBEY
T Fvadn

A T |

AL (4TR

TR D

SEXIVNY /

SELvadan

¥z

<

DLVIS
13A:Q

TVALYEL
d0TZA30

SIMN-MFYINDA

oAt

<

AZICRE

- 112 =

e

-
2 Ca

.~y
VA I
VN)

o

Py

v '.\

.2 N

-
-

v'.‘l' .."..-. “
3 al s

t et B

P
i‘(h

- R

PO

."‘_4"

Lo

.
D dalh,

Aand,

-
o

e e e e e

UL A e R

AR

e P TITRTNENTNTNTL TR

LIS A i S-Sy

b S et S AR S s
RN - e .

‘1

R

axem} jog Lxeutuiyaxd doraasq °gt aaInITd
T sHouuH
NOISAQ 20271
q XYYNINITZUd NOISHA
WITEHd NDISEQ
ARLIOS SOLVIS AZQ WITIHd ISdd, CLvadn
(GCRASC] Lozt G2t
SYVMIAOS mmst_%%w
XYVNIWITAEd EONToud
Isd) =
FIVMIIO0S
~— NOISAA
WITIYd syouud :
CELVI0 THVMLIOS NOISEQ %wﬁ.& 4 XUYNWITTUd
WIT34d =
STILVadg '
AL
g°z°1 THEY INDE M
. e CONIHEHINOEY NOISEQ \ conteu | T
JUYMIIOS ge2et =
WITZHL XYVNINITEHd 1
{ ALV40 NDISEQ dOTENEY o0 oer
N o cild SELVadn —
AN 1ok
* KYVNIWITEYd -~
- aad Q Q
aad (Sm\,mq S o
11=ud
SNLVIS aad
G*col
CALYIS
- - ConTieMd P
SNLYIS KUV¥NIWIT:HJ TOVME -
,(\ Y/
(A .‘.‘.N“w
SEY IO . RNV EXN S i, ARSI) - ARSI vl 1 AP ALSACN l-- (PR

axemyjog partersq dorassq *61 eandtd

i WOVD—«
L SNLVLS FUVMIAO0S TITIVIAA SOLVLS AMHH~

CITIVLEA
A0VHL

Ly
aaa
Ionaoud

aaa

SOLVIS
SOLYIS NOISIT

i o
NAdS CETIVIEA
TIVESA

WS 1dsa
CITIVIZA
JOTEAAT

NOZLONTOUd

ISEL A {
NIC R ARG |

t SHYMIJ0S QITIVIAA QILSHL

SHOUYE FUVMIAOS qITIV:

TIVLIQ
dLvadn

£o1ds
qdTIVLEd

9°p°L
JUYMII0S

qET1913a
zlvadn

g Ivadn HUVM LIS

TETIvIEa
3G1(159). 81

N\

AYVNINIT-Hd

SILNdNI
yzen
JUYMIIOG

WITEHd
TELCEL

- 114 =

L, % Y L R AT BTN - ANRPORR - WS L P [N gy % -W..l.....- TS - DAL

RN

WZLEAE
HJUMIA0S

ticiag o ich|

axemj Jog 98e9Tay

9°G*|
WSISXS
EOVACYd

*0Z aandtg

~7TN

1 1
sabe v

IRETRENNCHEA UGN ICY

SNLVLY IDVASVL

SLNGRWNO0A

G°G*1

WHLSXS

\\ -
[/
CALVIE
\ LEYITTE

ADVYL

"WALSAS
QALVAITVA

WALSAS

A ILIYIA

JYVMIL0S
CTTIVLIA

(UCAASCH

.,,GBOQ

=

NAILVOIATHEA

aad —
SALVIdN T1IVIZA

PPN D SOIIAROKN *. IEATAATY < SRS
oY ~ ARSI AN ,........!.:..,..v SN

yl«r-aha DRAFABILY — AR 1 PR

g

il ek PN S GG EIRANE PN A el LD gl A SN A
A

CEE ST AP) NI W ek

.

r/ XA

')
.

o
L4
‘l
M
v L
.~ ..\. -
. A
MEERNN

v ohun e

. C.2 Structure Charts

Structure List

.‘: l L] 0 EXEC .

s

- 102

A,

== 1.5

AEZRNY N MORMNNIRS -

-- 1.8

RN,

l'l‘fl.l"
Jdtala

s a

2 .
. .
AR W R A

vl

[
D
L

Y
by
>
>
.,

.'.\;‘.' ‘.:_'-:"-' " o’

- o e e ™ LY “ . .
'« \..‘1* -) AP T =) ". ".\'. .-

MENU.

PDS.

1.5.2 HIERARCHY.
-=== 1.5.2.2 COMPILE
1.5.3 MID.

«=== 1.5.3.2 COMPILE
1.5.4 DATA.

HIERARCHY.

MID.

~-=- 1.5.4.2 COMPILE DATA.

UTILITY TOOLS.

- 116 -

COP)
-.-l~

‘('.\."‘

LR IR ARSI JEPL SV S P o a Rl PN TR AN
-'.'-,\"-."\.. RO W R) Y \-\‘-\ et e te e

2.
3.

9.

10.

Data Item List

PROJECT NAME
THE NAME OF THE CURRENTLY SPECIFIED PROJECT

LEVEL NAME THE NAME OF THE CURRENTLY SPECIFIED LEVEL

MENU CHOICES
THE ACTION CHOICES THAT THE USER HAS

MENU CHOICE
THE MENU CHOICE CHOSEN BY THE USER

VALID CHOICE
FLAG INDICATING THAT THE CHOICE WAS VALID

ERROR STATUS
THE ERROR STATUS OF THE SYSTEM

CURRENTLY ACTIVE SUBSYSTEM
THE SUBSYSTEM (PARS, RDS,PDS,DDS,SRS) THAT
CURRENTLY ACTIVE

SWAP LOCATION

IS

THE LOCATION OF THE SWAP FILE, PROJECT

DEPENDANT

HIERARCHY LOCATION
THE LOCATION OF THE HIERARCHY DESCRIPTION

HIERARCHY TREE

THE DATA STRUCTURE THAT THE HIERARCHY COMPILER

BUILDS IN MEMORY

11. SWAP FILE THE SWAP FILE

12.

13. MID TREE THE TREE BUILT IN MEMORY BY THE MID COMPILER

MID LOCATION
THE LOCATION OF THE MID DESCRIPTION

14. LEVEL TABLE

THE TABLE OF ALL THE LEVELS OF THE PROJECT

15. RELEASE STATUS
THE STATUS THAT DETERMINES WLETHER THE LEVEL

A ar g h s ol I o ol BN oL S Tl Tt N B Sl e T R A T IR S L S o
Lt 500 mt vu 4 ma cade e Jon Iee_dra i Bea lre i SR ot LRt et B ir e AR AR ARSI S SRS RIDINE A AS R TS . B

o,
e
e _:I

J"'J‘Js St

R

.- (') Y
K iy

':.'- RN

« e e e ™

-\"

N-.

16.

17.
18.

19.
20.

4 ~."'.\‘,‘.' S S S TR Y

CAN GENERATE ANY CODE AT THE CURRENT TIME

DATA DESCRIPTION
THE DESCRIPTION FILE FOR THE DATA BLUEPRINT

DATA LIST THE DATA LISTING FILE

IMPLEMENTATION LANGUAGE
THE LANGUAGE INTO WHICH MIDAS IS TRANSLATED

TOOL LIST LIST OF ALL TOOLS

TOOL CHOICE
THE TOOL CHOOSEN

- 118 -

QO—‘ w.—. v.F NQF
ST00d
ALITILO saa

t°t ’

JZITVILINI

€, vy

P ER LA

1AfAd!
MOIOHD
SLVAITVA

¢°ct

#DIOHD avay

nusy *2g saudtd

ARAN

ANERW AV1dSIQ

¢t
NNAW

(ANt

HZITVILINT

B

- 120 =

O N R O

M IR R

1

ERdE i)

-

v

«Tew

PR A T

-

-,V

'T @
.
-

Tl ALiTILN

.

EVH TS

RIS I S hencpariiee e g S I gn ke

IR AN

IR A Sk

)

WY W N T e T

ot

. - o e -
R YU OIS
T PN Tl AP

Tat e Na
‘l. : ‘Q *
PSR Tt N

.
o~

Lyoxexaty °t2 eanItd

peLeGget ¢o1°G°L AN B ! Le1°G*1

SOLVLS AHOBVUHTH AHOUVHITH
SHOYYHE MHEIA JUOSHY ATIdWOD ALK

-122 -

L°G°1
AHDYVUAETH

- v
. A.. ot ~G P-a'll-c.
oo A

..... SARRIRRF| - BERRARML | LAY)

% e % % Yo ‘o v 1:-\... ...r. PP _...-.. .\. .\ .\ .\ .\.- - A-a\-ﬂ\ -- -. .-\ <. -\.ﬁ.— \-A-\N ' 'R. Jh- z ﬁwqav-\. .nu l\ -n- ,\W.-\:-ﬁlNo

o H . "

Lyoxexsty arrdmo) °*Gz 2andtyd

_ ARAR R A1 _ g2 1°G*y 2°2°1°G*1 L°2°1°G°t
: SETId JHOUVYIIH
i JYMS MAN JLIUM AIN AIYHANID asyvd JTId dVMS aQvOT

| _

- 123 =

4/0: ol

216t
KHOUVUATH
TTIINOD

. . c......
....'. v , P-u-nﬂ...
. ...- 0 \-‘.

Y YN S S Y Y S AN - AR R RIRE: P b - AR R XM - SR P
\-\..\..-ﬁbh\iv\.w“\ { \\“-\ ..“- ‘...‘\s--.f.-.‘.-.-) .-..-\ *\f.ﬁf 14 ”\ b ...-’f (N .r.- 4 N % [N MOSAN .
Ll " - . - R 3

A

.

¥ wWTwLw

P

Fo N T e

e T
..

LS

€°2°G*1

SHOHYHE MITA

» - L A RS K AR Sl el g
A SO A MR MR

¢o1°6%y

SNLVLS LYHOdMY

qIn

*92 san3rty

AR AR !

QIN JTIJWOD

2°6°i
aIn

1°2°G"1

LIAH

" r
»

.
Wﬂ

,

»

t

\

,

:

-.

A

A AR

. et

-\ -. .

. f

! 1 A

° . M Ty 2 Tw ‘ ¢ v v
N P CHRRR . QAP

- 124 -

PTW ayTdwmo)p

*L2 sandtyg

- 125 =

AR AR AL IR ATAS]
*IJIYOSHT VILVd TIn
ALVYANTD qsuvd
¢ \
_ o 21
O ¢y
rARAL !
aiw
FTIJNO0D
N
f....f
UNRSRY | SOICROGAICA,| - BANATOROA, VY

W

3 ByRQ °gg AT

g HSEA ce gy A oG 1
. SHOUYY MEFIA . SNLYLE JHOdHH OILdIYISHA VIva
ZIIdW0D d11d Vava LIQE

,\.

-‘

% '

o, O

< N

: \ -

- 1

b,

wwa

f.-

.

.

s

’

s viva

h

I»

.. -‘-

4 ..l.“.... \G

g

(]\
TS ey 0y " % e .J-.,. “» "o °w WO N R PRI LA [N T U PP i R -4. « (R Tk] 2 v e et ae” A « .-¢...-
..‘-\ \-\A -\s--n\\\ \ ,,\ \ \ \. ”W <, <.’1vl~ % -M.ﬂ-!\- h -.\.\fﬁ-..-\- L A SIS .\ \.r. h .-a- n-‘ &l\'~ ‘ -.\..- -.\- ~.- . " .’ --o-c..o-n..- ! B -.. .- P

. eyeq orTdwo)y *62 SaANITJ

‘.

-

2 PG : R Al 1°2°¢° 61

.V _ 2 1Id130SEd

£ =Q25 1 C¥NeS 2EVITEY MOTIIJTHOSAA SOIVIS

. T IVUTNGD , FIVEENYD VIVQ ASuvd C g, FEVITEY AOTHO

x .

y,]
' ~
y, o
¥, 1
.“. 81! 21°6°G1

.

,

A

.,

mu

‘..

2

A

_..h

A

r NOIIJ THOSHA

a VIVZ FTISN0D

p

4 AN S !

3 ave

B R T
S
ST
l‘"'I
s

-

stoof £3T1T3n *0¢ 8andtd

ve8°L ¢°8°1L AN ! L‘g*L IsIT
. glelenn d0IO0HD T00L
NISOHD Ny TOOL IO NNAW ANTWYA LA

g ’ i /

kY

- 129 =

L: 8°1
5 ST00q
i XLITILN

A
., e
r, A -.dn..q
.
RARII S ¥ -..s\-cﬂ.\....q " R -~ T R G \.-\J TRt e PP sl LR |
» ‘e - AR NRNIE PR R R IS A
-.-...---..N.-s ¥ -q s, --.m-h-“V- [A LA Tttt n-q\vq- N .-.. .- -\(v ‘Aﬂi OA ‘. ... R T IO _-\-MI'\ o . .i- .\ []

ACKENYAS B - SRR — SR AR NN

- 129 -

B
\"' l.

e

‘e nialaa ad

= Appendix D

i Sire User's Manual
-

".r.'-

'r:'.

b D.1 General Information

- Sire is a menu driven software environment. Because of
N this, it 1is easy to use the system without having had any
experience with it. Therefore, this user's manual will not be
... a detailed explanation of the use of this system, rather, it
will be geared more toward a tutorial type of manual. Several
assumptions are made about the user's knowledge at this
< point. The first is that the user is familiar with the MIDAS
= language. Secondly, it is assumed that the user is familiar
= with the VI editor currently being used in Sire. Finally, and
- least important, is the assumption that the use have some
Cﬁa small working knowledge of UNIX.

D.2 Invoking Sire

Sire may be invoked in one of two ways. The first is to
o simply issue the UNIX command - sire <project_name>
28 <user_name>. If Sire recognizes <project_name> as being a
N valid project, it will start up with the currently defined
2 a level being the default, main. If <project name> is not
~ recognized then sire will assume ask whether a new project is
being started or whether a mistake has been made. If a new
project is specified then action will be taken to initialize a
new project, otherwise o.re will terminate.
The second method used to start Sire is basically the
. same, however Sire allows the specification of the project
j} level at this time. If the project level is invalid then Sire
- will default to the main level. In any case, it is necessary
j} to enter the name of the user as the last argument on the
o command line.
1, -
.--‘ ,_:: .-;'
o
- - 130 -

L

MAPNY

)

RAARA

v
oy
P

DN N M by - -

[\

o e

RRAOE

o

AR PO

0
%

PP

CCSatM s 0 %
2 LSS

..-"‘.'. -, -'.c R

i

.
LN
>
-
.'-
“a
-l
.

s s & &4 &4 u

O IS I RO R AT T AT S TN T S SR T P JO T T SN

Examples of Sire invocation:
sire nettles -- the basic method
sire projectl nettles -- specifying a project name

sire projectl levell nettles =-- specifying a project and level

D.3 Top Level Operation

After Sire has been invoked, the user will be presented
with a menu of choices. At the top of the menu will be a
message specifying the currently active project and level.
The choices correspond to the different sections of Sire, with
the exception of two. These two are the utility tools and the
level name change choice. The utility tools are all easy to
understand from their menu name, therefore it is easier to use
them than to read about them. The name change choice lets the
user change the level currently active (obviously).

All the user has to do at this level is to choose which
section of Sire is needed. This will vary with the stage that
the project is in, but it should proceed from the first
section, pars, to the last, srs.

D.4 Operation of PARS

TBD.

D.5 Operation of RDS

TBD.

- 131 -

A R e R RO L PP LI DI SNOI
- ANPGRS R A A Y P A AV o A A A SR

R LR

Ny

D.6 Operation of PDS

0 Starting PDS

N

After having specified the PDS menu choice in the top
level of Sire, the next thing that will happen will be the
appearance of the PDS menu. The operation of the PDS, like
‘ all parts of Sire, is driven completely by the menu. The next
3 section will describe the menu and how the PDS works. The
- description is only the recommended course of actions. After
o familiarity has been gained, the user may want to vary the
N actions in any manner suitable to the task.

The Menu

.
-

LA

The basic parts of the menu are the edit/compile cycles
and the tools. The edit/compile cycles are responsible for
building up the complete description needed by PDS in order to
function correctly. The first cycle is the "hierarchy"
cycle. 1In this cycle the user will start the editor and enter
the hierarchy description that is needed. After entering the
description and leaving the editor, the next action will be to
compile that description. If any error messages occur, the
. user must look at the 1listing file and determine what errors
- were committed. Then, the user should go back to the
beginning of the cycle and correct the errors.

s
-

G aTsE

<, The next action, after successful completion of the
hierarchy edit/compile cycle, is to enter the "mid"
edit/compile cycle. The same course of actions will be
followed here as were followed in the previous cycle. The one
big, noticeable difference is that a partial mid description
will already exist. This is so because the hierarchy
compilation process was able to glean enough information from
the hierarchy description to £ill out parts of the mid
o description. One useful thing to know is that any information
LN entered in the mid cycle will not be lost. Successive

\ ‘l. ‘.'ﬁ‘l ‘. ‘il .

0

BRIV oYy

- 132 -

- »

-
<,
l.\

\ '. ~ -.,-\. \...\‘,\ ORI '.... .

N A T ST ST A A P R Sy p e A N A S A AT Y P)

’

-

i)

recompilations will save the data entered in the first
attempt. This service is provided to keep the user from
having to enter the information more than one time.
Obviously, if the information changes, the user must update
the description.

After successfully leaving the mid cycle, the next cycle
is the data, or release, cycle. 1In this part, the user must
enter the descriptions of all the data that the mid
compilation couldn't figure out. The purpose of this cycle is
twofold, first it is supposed to compile the data
description. Second, it is responsible for the translation of
the MIDAS into the implementation language.

The translation will only take place if certain
conditions have been met. The first is that all the three
cycles have been successfully completed. The second is that
an implementation 1lanynage has been chosen. If the curxently
active level is not the main level, then the translation will
take place. 1If the level is the main level then translation
will only take place if all the separate 1levels have been
taken care of first.

A sample project has been included in Sire to demonstrate
its use. The project name is "Sample" and the 1levels are
main, first and first_sub_one. A quick perusal of this
project will be useful to the first time user.

D.7 Operation of DDS

TBD.

D.8 Operation of SRS

TBD.

D.9 Operation of Utility Tools

It is hard to fully describe all the Utility Tools that
are built into Sire since, by nature, Utility Tools is very
flexible and intended to change. It should be sufficient to

L ORI T Bt A R A A (R AT IR BT IR RN R S S I
L SRR el gt e api Sy A I AP i A LA A et A SR S R R (SRS, AL L s

say that all the tools presently included in Sire are very,
ERER very simple in nature and should be easy to understand from
> just reading the title.

U A |

1
8 8 3 s s

o

O
3 PAAM AR

lll—
I A

s @ 0 F
5
e

4 a8

‘:’."l' L

a s 8
.
I_I:l

a l..' -"

*y “-

P AP ¥

o,
4
o
0

LY

- 134 -

AR R T PTG g™

et P .« NS . L e e %N
PRI S - - -« " e . - T . PR] EERNE TS - . -~ . 0 .
T N A AN S e A A R R N D SR LA S TP R S RSN
AL IO A I VI I IR I UV PIPE R I WA I ALY W AT Ty I iy .

R R S B RIS A BT 4SS U A s B S e S A et e it s Jiest et it e = g A A S AN

A

{

Ay

o o0
WA

Ny

oy Appendix E

: ' Installation and Maintenance of Sire

E.l Introduction

Sire is fairly easy to install on a VAX/UNIX system that
is running version 4.1 bsd. The rest of this appendix
contains a list of the files needed for Sire and a brief
description of those files. Also, instructions are given on
how to move and install Sire.

E.2 File Descriptions

Currently all files listed below exist under

iE /en/gcs83d/nettles/thesis/sire, on the AFIT SSC VAX.

.ﬁ bin The location of all executable parts of Sire.

E bin/data The data compiler of the PDS tool. ?
% bin/mid The mid compiler of the PDS tool.

bin/utility_tools 5
The utility tools that can be used by every
part of Sire. !

AR

r
a

bin/hierarchy The hierarchy compiler of the PDS tool.

- bin/pds The PDS tool of Sire.

i bin/sire The Sire system driver. 1
% ‘
g exec The directory that contains the source code to

3

the Sire driver. \

,_
L e I

exec/Makefile The make program that maintains the
Pac configuration of the directory.
- 135 - (

e Rt Y Ny T SN “-\' Ul -.\- \..\.‘..1.. '.h .N‘ - :q..-.‘.-.' . ‘-',‘f,'l-..'..r'". 4-‘..'_» \'-~
m.hl’.&,u".kuuk.h | VR TR SV E R Y. I g TP TR I SV

e
At

.......

......

exec/main.c The source code of the Sire driver.

pds The directory that contains the PDS tool source
code.

pds/Makefile The PDS directory make program that maintains
PDS configuration.

pds/data.y The YACC input file that contains all the
source for the data compiler.

pds/data_table.c
The source for the data table code used in the
data compiler.

pds/hash.c The hash source for the hashing functions used
by hierarchy and mid compilers.

pds/hierarchy.y
The YACC input source used for the hierarchy
compiler.

pds/main.c The main driver source of the PDS.

pds/mid.y The Yacc input source used for the mid
compiler.

pds/midasall.l

The Lex 1input source used for the release
compiler's lexical analyzer.

pds/midasdata.l
The Lex input source used for the data
compiler's lexical analyzer.

pds/midashier.1l
The Lex input source used for the hierarchy
compiler's lexical analyzer.

pds/midasmid.1l
The Lex input source used for the mid
compiler's lexical analyzer.

pds/module_table.c
The module_table source used by the hierarchy
compiler.

pds/release.y The YACC input source used for the release
system that is triggered by the data compiler.

pds/tree.c The tree builder source used by the hierarchy
compiler.

B T T T T T T T T Ry T T W . Fm. =~ YRR NI LT AT TN S AN ITTIIT T AT AT AT

P
e
L2

% v N

[Srs -

s a'a o a8 al

...................

projects The directory under which all the projects
exist.

projects/.globals.h
The file which contains the global header file
that is wused by the translation module that
generates C source code.

globals The directory which contains things of global
importance.
globals/Makefile

The global make file configuration maintainer.

globals/errors.h
The error definition header file.

globals/globals.h
The global definition header file.

globals/screen.c

The source file which contains both menu() and
report_errors().

globals/struct.h
The structure and definition header file.

globals/utilities.c

The source file for many small utility programs
of global use,

tools The directory containing the utility tools.

tools/Makefile
The directory configuration maintenance file.

tools/utl_tools.c
The source code for the utility tools.

E.3 Maintaining Sire

Sire was developed in many small parts for the purpose of
easy development and maintenance. Also, the design of Sire
was run through the PDS system in order to produce
documentation for the implemented parts of the design. This
provides for a fairly good level of documentation. It is hard
to describe the proper method for maintenance of Sire since
the recommendations given earlier in the main body of the
thesis call for the redesign and reimplementation of the

""" S L, AN TR SR e N e T et T AT e e T NN N e LT T e T e e T e
S WIS TN Ne” J.-_.-.‘u.ﬁ-“- 'n..f\.._. 53 _.J.\s:_. .:'._ IR » RSO N . AN

Al A St e A Sl ~as - e I et A e b A SR IT A A T A A BRI alCUN oL S P R A M A PR

e ré 2% Y .’I-{r.t"(_'*'

;‘J
0y
W4
_ entire system. However, should some hardy soul wish to wade
N through the code and fix the system, the maintainer should
N become thoroughly familiar with the C language, YACC, and LEX
(for this is where the complexity of the system lies.
.}\
an The majority of the source code is very simple and is
N broken into small modules. Also, there is seldom any occasion
s in which the <calling 1level ever goes past three or four
o functions at a time. This means that the tracing of the
system flow will be fairly easy.
o~
';\
iy E.4 Moving Sire
N Moving Sire should prove to be a fairly easy exercise.
}: All that need be done is to move the directory "sire", which
‘fy currently exists under /en/gcs83d/nettles/thesis, to whatever

final location is desired. Then, the definition of HOME in
the globals/struct.h file must be changed to reflect the new
location. Finally, the makefile in the sire directory must be
invoked by giving the following command, "make sire >& serr
&<CR>". This will remake the whole system in background mode
and put any errors in the file. "serr". There shouldn't be any

e @ errors.
{

R

'l i
B A
v .
L

> & .'n
a.'A."'."‘:. . e RN

.
l""

T R
LA A N .

T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

~"~REPORT SECURITY CLASSIFICATION

= UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

F»
20 SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

20. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited.

AFIT/GCS/VA/83D-5

4. PEAFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

School Of Engineering

b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicabdle)

AFIT/ENC

6c. ADDRESS (City, State and ZIP Code)

Ailr Force Institute of Technology
Mright-Patterson AFB, Ohio 45433

7b. ADORESS (City, State and ZIP Code)

ORGANIZATION

8s. NAME OF FUNDING/SPONSORING

8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

(If applicable)

8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
%1. TITLE (Include Security Classification)
see box 19
. PERSONAL AUTHOR(S)
vid Y. ilettles, B.S., 11t, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
i FROM TO 1983 Decgnber 147
16. SUPPLEMENTARY NOTATION ved 1. x L PP
L v L -)FWP 4
REPROR B U SRLLTIRT o Davnlm
COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if ncmwk‘mmﬂﬁ‘ﬂ#m&b%w)
Wright-Patierson AFB OH 45133
GROUP SU8. GR. Software Development, Software Engine,ering ’
2 Automatic Program Generation

Thesis Chairperson:

19. ABSTRAACT (Continue on reverse if necessary and identify by diock number)

Title: SIRE: AN AUTOMATIC SOFTWARE DEVELOPENT ENVIRONMENT

Patricia K. Lawlis, Captain, USAF

.':'..', OISTRIBUTION/AVAILABILITY OF ABSTRACT

Y

UNCLASSIFIED/UNLIMITED Xt same as reT. (O oTic useas O UNCLASSIFIFD

2325 NAME OF RESPONSIBLE INDIVIDUAL
Patricia X. Lawlis, Captain, USAF

DD FORM 1473, 83 APR

€OITION OF 1 JAN 73 IS OBSOLETE. DICLASSIFIED

21. ABSTRACT SECURITY CLASSIFICATION /
22b. TELEPHONE NUMBER 22¢c. OFFICE SYMBOL
ilncludc Area Code)
513-255-3636 AFIT/ENC

SECURITY CLASSIFICATION OF THIS PAGE;

_mg‘LACQIT.‘TJ-‘h

ABSTRACT:

The objective of this thesis is to perform the preliminary design and partial develop-
ment of an automated software development environment (ASDE). This environment, called
Sire, is intended to support the design and production of software using automated and s
interactive tools. Sire is to be a system that aids the software designers and programmers
through the use of an integrated and flexible set of tools that are intended to reduce the
amount of work that is done by humans. This reduced workload will free the system
designers/implementors for more productive work.

As part of this investigation, a partial implementation of Sire is aecomplished.
This implementation allows the user to input a system design in a specification language.

Sire will then produce a correct source program shell for the user to use for detailed
design and implementation.

l*q
"’d’
SECURITY CLASSIFICATION OF THIS PAGE
N S AT T L T, L e et e e e e e e e
“)&J}‘ .' "M.a SRR T ST TSI S R N N P PR)

DA RN I o . - A -'-'-'-'-'-'~‘.'<'-" --'-'«“_ »'
AP AT P T Y A W 3 7 P I T T T e B T BT SRS SRS T »

