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ABSTRACT

The theory of scalar first-order fully nonlinear partial differential

equations has recently enjoyed a strong development. One major step was a

proof by M. Crandall and P.~L. Lions of the uniqueness of certain generalized

>

equations with the scope to accommodate applications to, for example,

solutions - called ;:I;cosity solutions of problems involving such

differential games. Following this event there has been a continuous stream

of work concerning the existence, approximation and representation of

viscosity solutions of Hamilton~Jacobi eguations as well as the interaction of
the theory of viscosity solutions and areas of application (primarily control

theory and differential games), and refined uniqueness results. This survey

paper, which corresponds to an invited address by the first author at an
international symposium on differential equations held in March 1983 at the
University of Alabama-Birmingham, introduces the relevant concepts and

describes the major results up to, roughly, July 1983.(4\\

AMS (MOS) Subject Classifications: 35F20, 35F25, 35D05, 35L60, 35C05
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-: DEVELOPMENTS IN THE THEORY OF NONLINEAR FIRST~ORDER

':' PARTIAL DIFFERENTIAL EQUATIONS

N Michael G. Crandall and Panagiotis E. Souganidis*

"Q INTRODUCTION

:r\

é: There has heen a substantial development of the theory of scalar,

W

nonlinear, first-order partial differential equations in the last two years.

Fé It is our goal to provide a brief tour of this work and a guide to the recent

N

i} literature. In view of the rate the literature is growing, this report will

be somewhat out of date even on its publication, hut we hope it will be

= useful.

-; In the discussion below, 2 is an open subset of R%, T > 0, Qp = 2x(0,T),

B "x" denotes points of R®, u is a real-valued function of x or (t,x),

%

GE Du = (“x1"""“xn) stands for the sgpatial gradient of u and H, ¢, ¢ are given
:‘.

" functions of the indicated arguments. We discuss the initial-boundary value

\

Rd ) problem Accession For

)

. . NTIS GRA&I

N u + H(x,t,u,Du) = 0 for 0 < t < T, x € Q, | prIC TAB

A% Unannounced |
A = <t¢« Q

" (1BVP) ulx,t) = ¢lx,t) for 0 < £ < T, x €231, Justification

u({x,0) = y(x) for x € Q,

.:j By

:\ together with its stationary form Distribution/

< Availability Codes
- Avail and/or

H(x,u,Du) = 0 for x € , Dist Special

. (BVP)

2 u{x) = ¢(x) for x e 3.

.:: —/

M

ii A very simple case of (IBVP) arises when @ = R and H is independent of

b

% . (x,t,u). The problem then has the form

od

*Division of Applied Mathematics, Brown University, Providence, RI 02912

Sponsored in part by the United States Army under Contract No. DAAG29-80-
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u + H(ux) =0 for x @R, t >0,
(1)
ul{x,0) = ¥Y(x) for x € R.

The classical method of characteristics reveals that any smooth solution u of

(1) on Rx[0,T] satisfies u,(y + tH'(P'(y)),t) = ¥'(y) for O0<t<T and y € R.

A L N

Here V' denotes the derivative of ¥, etc.. If the lines x = y+tH'(P'(y).

! intersect for some t > 0 as y varies, this information is contradictory. Thus

)
: (1) cannot have smooth solutions defined for all time except in extremely
; special circumstances. Simple examples also show that solutions of (1) with
slightly less regularity than continuous first derivatives are not unique.
?1 For example, if H(p) = -p2 and ¥y = 0, then u = 0 and v = max(t - |x|,0) are
) distinct compactly supported (for bounded t) and piecewise linear solutions of
'~
?ﬁ (1) which satisfy the equation except on the lines |x]| = t and x = 0, where v
~
: is not differentiable.
The above remarks recall the classical observations that (1) does not
*: have global smooth solutions in general and that the most natural weakenings
a

of the classical notion of sclution lead to nonuniqueness. However, in view

of the way these problems arise in applications - in particular, in the

=

calculus of variations, control theory and differential games - one expects a

:5 notion of solution of (IBVP) and (BVP) for which there is both existence and

j; unigqueness.

- The first demonstration of uniqueness for a notion of generalized
solution of (IBVP) or (BVP) adequate to cover applications to, e.g.,
differential games, was given in M. G. Crandall and P. L. Lions (7]. This

;; notion of solution is explained in Section 1 where uniqueness results are also

ey discussed. The topic of existence is taken up in Section 2, while Section 3

is concerned with the interplay between these topics, control theory and the




theory of differential games. Approximation and representation of solutions

are discussed in Section 4.

As our goal is a brief outline of recent developments, the very

7
{ﬂ? . substantial literature which predates the work discussed herein will not be
3¢
f%j referred to. The book [28] of P. L. Lions will provide the interested reader
- with an appropriate historical view and references to the older literature.
AN

§? There is a theory of second order equations and their relations to

L

L]

73: stochastic control and games which corresponds to the first order theory

) reviewed in this paper. We have not discussed this theory herein and refer
RE
}ﬁ the interested reader to the papers [29], [30] of P. L. Lions in this

v
\ L]
ﬁ* regard. The topic of quasi-variational inequalities and Hamjlton-Jacobi
‘; equationg, which is not otherwise mentioned herein, is taken up in [1].

\\_‘.
ﬁﬁs

.
SECTION 1. NOTIONS OF SOLUTION AND UNIQUENESS

N It will be convenient to consider a general equation of the form
‘%i , (1.1) F(y,u,Du) = 0 in O,
‘M

““°°Eﬂi°”“'Y’th““ﬂﬂ'm'(W(“"%J'“d

Yy F:OXRXR™ + R. Of course, this general form incorporates the equations in both
‘.‘

e (IBVP) and (BVP). For u € C(O) and z € O put
8

ptutz) = { p e ’® : 1im sup (uty) - I%%lzr pely = 2))) ¢ },

D A 1
= (1.2) Y

(el

Sk

- - + -

W D u(z) = { pe R": lim inf Lgil) (uz) + pe(y Ell) > 0},

R ly = zl
\ y*>z
ﬁﬁ where a*b is the scalar product of a, be R*. E. g., if O = (-1,1) and
kY +
§§' . uly) = |yl, then 0*u(0) = @ and D"u(0) = (-1,1]. The relation p € ptu(z) can
pal
. be written u(y) € u(z) + p*(y ~ z) + oly = z), with the usual meaning of

\

N o(y-z), and a similar remark applies to D . Clearly u is differentiable at
N

s
N -3-
-

XN

‘.
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2 e_o exactly when both p*u(z) and D"u(z) are both nonempty and then

p*u(z) = D7u(z) = { pu(z) |}
where Du(z) denotes the usual (Fréchet) derivative of u at z. Since there are
continuous functions u which are nowhere differentiable, there are continuous
functions u such that at least one of D'u(z) and D u(z) is empty at every

point z € O. One way to define a viscosity solution of (1.1) is:

Definition 1. Let u € C(0O). Then u is a viscosity solution of F < 0 in O if

(1.3) F(y,uly),p) € 0 for all y € O and p € D+u(y).

Similarly, u is a viscosity solution of 0 < F in O if

(1.4) 0 € F(y,uly),p) for all y € O and p € D uly).

Finally, u is a viscosity solution of F = 0 in O if it is a viscosity solution
of both F< 0 and 0 < F.

We will also call a viscosity solution of F € 0 (respectively, 0 € F) a
viscosity subsolution (supersolution) of F = 0. The obvious relations between
D, D+, D~ guarantee that the notion of a viscosity solution is consistent with
that of a classical solution. For example, continuously differentiable
solutions of F = 0 in the classical sense are viscosity solutions and a
viscosity solution u of F = 0 satisfies F(y,u(y),Du(y)) = 0 at each point
y € O at which u is differentiable.

The term "viscosity solution" arises because a standard method to
approach the existence of solutions of, e.g., (IBVP) is to solve (if possible)

(1.5) u€t+ H(x,t,ue,Due) - eAue =0,

where A denotes the Laplacian in R, subject to initial and boundary
conditions and then to show that u. has a limit point in C(0Q) as €40 with the
desired properties. This is the method of “"vanishing viscosity”.

Here are two other ways to define a viscosity solution,

 CRSCI R IER R HIFa  “R A i ) S A S VWY S YY) LR S A A St ieth - S Ay
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':. Definition 2. A viscosity solution of F = 0 is a u € C(O) such that if
& «
¢ e Co(o) is nonnegative and k € R, then (i) and (ii) below hola:

g (i) If ¢(u - k) has a positive maximum in O, then

N (1.6) F(y,uly), 2 uly) = k) ) ¢ g
19 Q(Y)

i

at some point y at which the maximum is achieved. |
S
X (i1) If ¢(u - k) has a negative minimum in O, then (1.6) holds with the
\1

L]
N opposite inequality at some point y at which the minimum is achieved.
‘!

Definition 3. A viscosity solution of F = 0 is a u € C(0O) such that for every
fj ¢ e c1(0), F(y,u(y),Dé(y)) € 0 (respectively, 0 < F(y,u(y),Dé(y))) holds at
o
N each relative maximum (respectively, minimum) point y € O of u - ¢.

The equivalence of these three definitions is proved in [7] (in which
E: Definition 2 was taken as the basic property). Definition 3 is related to
Aé: ideas used by L. C. Evans in [10]. Definition 2 is obviously convenient for
- localization and for this reason unigueness was first obtained using it.
B
3? Subsequently, in (6], a variety of things were proved using Definitions 1 and
AY -
jﬂ 3 directly. We recommend [6] for an introduction to properties of viscosity

solutions and for easy access to proofs of model cases of results like those

[
‘.

given below.

Let us formulate conditions on H under which one can prove uniqueness

i
L AAL AN, o,

1

results. Bp will denote the R-ball in R®. The first two conditions are the

«
IS

basic continuity requirement and a monotonicity condition concerning the

l‘.l".

F: dependence of H on u. (For those who may wonder, it is the monotonicity
. condition that rules out the case of a conservation law in what follows).
l.' .
‘: H:Qx [0, TIxRXR" + R is uniformly continuous
a: (H1)
=1 on x[0,T]x[~R,R]xB, for each R > 0.
J
.4
4
(]
L]
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For each R > 0 there is a constant Yr ? 0 such that
(H2) H(x,t,r,p) - H(x,t,s,p) ? Yp(r - 8)

for x € Q, pe R® and =R < s < R,
The next two hypotheses concern the bhehavior of the uniform continuity in x as
p becomes large. They are expressed in terms of the function

A(R,p,e) = sup{|H(x,t,r,p)-H(y,t,r,p)|:0<t<T, [r|<R, |x~y]||pI<p, Ix-yi<e}. |

Here | | denotes both the norm in R® and in R. The weaker of the two
hypotheses is

(H3) lim A(R,e,e) = 0 for R > 0.
€+0

Since A is nondecreasing in its arguments a more severe restriction is

(H4) lim A(R,p,€) = 0 for R, p > 0.
€40

The conditions (H1) - (H4) are meaningful for the problem (BVP) as well when H
is interpreted as a function of t which happens to be independent of t. The
uniqueness result of [7] for (BVP) is:

Theorem ([7])). Let u, v be bounded continuous functions on € which are

viscosity solutions of H = 0 in 2, Let ¢ be continuous on 3 and u(x) - ¢(z),
and v(x) - ¢(z) tend to zero as x * z € 3IQ uniformly in z. Set

R = max(ful AV
L () L ()

and let (H1) and (H2) hold with Ygp > 0 in (H2). Then:

g (i) If (H4) holds, then u = v.

éﬁ? (ii) If u and v are uniformly continuous and (H3) holds, then u = v.
s

iﬁ (iii) If u and v are Lipschitz continuous, then u = v.

Efi: This result in fact follows from more general estimates comparing
ﬁsq viscosity sub-and-super solutions of different problems. We will not

formilate these results here. Observe that as the hypotheses on u and v are

strengthened, less is required of H. The corresponding result for (IBVP) is

R P <
NN
'(\l’__f-_l'.“..f N 'i

-
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quite similar. The statement for this case arises upon replacing Q by
ax[0,T], 32 by the union of 39x([0,T) and 2x{0}, and ¢(x) by é(x,t) on 39x[0,T]
and by ug(x) when t = 0. Moreover, the requirement yp > 0 in (H2) is

dropped. (The linear function Yp(r - 8) in (H2) is replaced by a nonlinear
function in the result for (BVP) in [7].) The necessity of conditions like
(H3) or (H4) is shown via examples in (7].

Before the results mentioned above, the main uniqueness results which
were established in a generality for which there was a corresponding global
existence theory concerned the case of convex Hamiltonians. These results
concern solutions of the equations in an almost everywhere sense which also
satisfy a type of "gemi-concavity” condition. Concerning such results we
refer to the book of P. L. Lions [28]. The viscosity notion is used in [28],
but the main emphasis in this book is the important special case of viscosity
solutions which are Lipschitz continuous (and hence satisfy the equation
almost everywhere).

Other unigueness results concern domains of dependence (e.g., [7]),
unbounded functions, (H. Ishii [21]) and Hamiltonians which are not
necessarily continuous in t (H. Ishii [20]). With respect to domains of
dependence, observe that if we regard (IBVP) as a special case of (BVP) by
thinking of t as as "space variable”, then we have not prescribed data at
t = T. General results concerning which part of the boundary of Q is
important for uniqueness in (BVP) are the subject of work of R. Jensen (([22])

in progress at the time of this symposium.
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SECTION 2. EXISTENCE

The existence theory for viscosity solutions of (IBVP) and (BVP) is much
more a continuation of the existence theory which predates the notion of
viscosity solutions than the corresponding unigueness theory (which is quite
distinct from what existed before) is a continuation of more classical
results. Roughly speaking, known methods adapt to proving the existence of
viscosity solutions and the flexibility of the notion allows one to take
limits freely and obtain new results. There are also new argquments which
arose partly in trying to get the existence theory in harmony with the
generality of the uniqueness theory. We are going to describe, in more or
less chronological order, results obtained since the introduction of viscosity
solutions and ask the reader to be aware that this does not give an accurate
historical view. We again refer to (28] for a more balanced view of the
earlier theory.

The sort of dramatic existence and uniqueness theorems which are now
possible may be illustrated by the model problems
(2.1) u + H(Du) = v in R®,
and

u, + H(Du) = 0 in R™x(0,T),
{2.2)
u(x,0) = ug(x) in R,
It was proven in [7) that if H is continuous from R" to R and v and u, are

younded and uniformly continuous, then (2.1) and (2.2) have viscosity

solutions to which the uniqueness theorem applies. The only regularity

required is continuity of H and uniform continuity of v and ug, and then there

el
:f:- is a unique global solution.
ey
;ﬁi P. L. Lions, in [27] and [28], considers problems of the forms (IBVP) and
F:‘ (BVP). Two types of assumptions on H are important in his work. One is a
r"::"
Y
NG
e
i
Wty -8-
L:%'
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e R T YRR e T S N T
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A

continuity assumption of Lipschitz type which is used to establish uniform

Lipschitz estimates on solutions of (IBVP) and (BVP) (using results of

[26)). A simple special case of this hypothesis reads

’3 For R > 0 there is a constant C, such that
s (H5) |H(t,x,xr,p) - H(t,y,x,p)| € Cx(1 + |p|)Ix - vyl
§ for t e [0,T], x, ye{l, peR® and |r| < R.
% The other assumption reads
{5 (H6) H(t,x,r,p) *+ = as |p| + =, uniformly for x e'E, 0<t<T, and r € R.
;é The conclusion - in either case - is the exji- :n e of bounded, Lipschitz
‘% continuous viscosity solutions provided the ..ndary conditions are suitable
3 (see below). The proofs in [28] are based . “he vanishing viscosity
2 method, while in {27] a method of penilization of domain (introduced in [29])
i is employed.
- The paper [33] deals with (IBVP) and the "resolvent-type"stationary
. problem
‘
§ u + AH(x,u,Du) = v for A > 0
Z in R™[0,T] and R” respectively. The result is the existence of bounded and
N uniformly continuous viscosity solutions under hypotheses (H4) or (H5), where
s in the latter case the dependence of H on (t,r,p) is less restrictive that
2 that used in [27], [28]). 1In both cases the vanishing viscosity method is used
': and the proof proceeds via estimating the modulus of continuity of solutions
f of the approximate problems with respect to x.
3 However, the best theorem concerning existence of bounded uniformly
2 ‘ continuous viscosity solutions (without (H6)) was obtained by G. Barles {1].
3 Barles was able to show existence under the assumption (H3), which is the
L? weakest assumption under which uniqueness of bounded uniformly continuous
& solutions has been proved. The notation BUC(K) will mean the bounded and
;
:
-9
. i&i:li:; : = -:H
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uniformly continuous functions on K. Barles provided the existence assertion

of the next theorem which is stated for the general case in which Q is not R",
but it is valid equally well when 2 is R"™ (there simply being no conditions on
3Q in this event).

Theorem ([1]).

(a) Let H:{IxRxR® + R satisfy (H1), (H2) and (H3) with Y > 0 for R > 0. Let u,
u e Buc(fl) be, respectively, a sub- and a supersolution of H = 0 in Q.

Assume, moreover, that u = W on 32. Then there is a unique viscosity solution
u € BUC(]) of H = 0 in Q such that u = u = T on 39.

(b) Assume that H:{Ix[0,T]xRxR"™ + R satisfies (H1), (H2), and (H3). Let

u, U e BUcC(Qx([0,T]) be, respectively, a sub- and a supersolution of

u, + H(x,t,u,Du) = 0 in OQx[0,T] such that u(x,t) = ulx,t) = ¢(x,t) for (x,t)

t
in 30x[0,T] and u(x,0) = u(x,0) = Y(x) in Q. Then there is a unique viscosity
solution u € BUC({Ix[0,T]) of (IBVP).

Barles attacked the existence problem by reducing the question to one of
the form v + H(y,v,Dv) = 0 in R® {)r some m and then approximating the
Hamiltonian A involved by smooth ones satisfying an (H5)-type assumption. The
results of [27] together with the uniqueness estimates of (7] are used to
complete the proof.

Of course, given the above theorem, interest shifts to the question of

when sub - and supersolutions with the desired properties can be found. There

are many open questions here. Especially when § is not R, it is only in the

case of convex Hamiltonians that this is well understood, and one can find
necessary and sufficient conditions in [28].
Recently, L. C. Evans and H. Ishii [13] gave a different proof rfnr the

existence of a viscosity solution of u + H(x,Du) = 0 in Q, u = ¢ on 3R, where

-10-
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H satisfies (H3). Their technique involves a version of the localization

method of [29].

SECTION 3. CALCULUS OF VARIATIONS, OPTIMAL CONTROL THEORY AND DIFFERENTIAL
GAMES.

Hamjlton-Jacobi equations are classically derived in the closely related
areas of the calculus of variations, optimal control theory (where they are
called Bellman equations) and differential games (Isaacs equations). As was
observed by Bellman, a very good way to exhibit the relationship between the

equations and the problems in which they arise is via the dynamic programming

principle (see, for example, Fleming and Rishel [17]). This remains true in
the context of viscosity solutions as was pointed out by P. L. Lions. In this
section we will expand a bit on these remarks and give several references.
We begin by reviewing the relationship between the notion of a viscosity
. solution and control theory in the simplest possible case: We consider a
"finite horizon" control problem without boundary conditions and formulate two
typical theorems (omitting all the technical assumptions - the references
contain precise statements). After this we quickly outline the situation as
regards differential games. Consider a system whose state at time t if
started at x is yx(t) and whose evolution is governed by the following Cauchy
problem for an ordinary differential equation:
Y (t) + Ely, (t),v(£)) = 0 for 0 < ¢,
(3.1)
v, (0) =xe R,
where £:Rxv + lp, V is a given compact set in some R (for example) and v(t),
called the control, is a measurable function from [0,®) to V. Under natural
. assumptions on £, (3.1) has a unique solution for all x € R denoted by

Yx(t). We now define a pay-off J(x,t;v(®)) for each given x,t and control

vie):
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AR R SIFTEE )

t
(3.2) J(x,tiv(e)) = uyly (t)) + [ hly (8),v(s))ds,

0 x
Here h(x,v) and u, are given continuous functions which satisfy certain
hypoiheses. The problem is to choose the control function v(¢) so as to
minimize J. An important quantity in this situation is the value (or the

optimal cost):

(3.3) u(x,t) = inf J(x,t;v(°*)).
vie)

Two of the main goals of control theory are to characterize u and to design
optimal (or nearly optimal) controls. One of the most important tools for the
study of these problems is the dynamic programming principle. 1In the case
under consideration here it says:

Theorem (dynamic programming). For all 0 € s € t

s
u(x,t) = inf { f h(yx(c),v(a))do + u(yx(s),t - s)}.
v(e) 0
Using this principle P.L. Lions proved [28]:

Theorem. The optimal cost u given by (3.3) is the viscosity solution of

u_ + sup {£(x,v)*Du - h(x,v)} = 0 in R"x(0,=),
t vev

u(x,0) = uo(x) in R?

Observe that the Hamiltonian here, that is
H({x,p) = sup{f(x,v)'p - hix,v): v € V},
is the supremum of affine functions and is therefore convex. For the proofs
and generalizations of these results and references to the classical

literature, see P. L. Lions [28], [24], and L. C. Evans [12]. Other recent

references which are relevant for the interaction hetween viscosity solutions

and contol theory are: P. L. Lions and M. Nisio [31], I. Capuzzo Dolcetta and
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L. C. Evans [4], L. C. Evans and H. Ishii (13], I. Capuzzo Dolcetta [3],
I. Capuzzo Dolcetta and H. Ishii [5].

Differential games resemble contol theory in involving a system of
differential equations and a pay-off function. However, now there are two
players and two control sets. The first player attempts to make the pay-off
large by choosing his control, while the second player strives to keep the
pay-off small by judicious choice of his control. The notion of value becomes
much more subtle because, as the words suggest, we are dealing with “sup-inf"
or "inf-sup" operations (as opposed to the simple "sup"™ of the control case)
depending on which player "goes first" and this must be interpreted in some
infinitesimal way. However, the value may be defined in various ways which
turn out to be equivalent - and a very good way to see the equivalence is to
use the relation with Hamilton-Jacobi equations and the uniqueness theory.
The formal relationships between differential games and Hamilton-Jacobi
equations were observed by Isaacs [19] in the early 1950's: he showed that if
the values of various differential games were regqular enough, then they solve
certain first-order partial differential equations (called Isaacs equations)
with "max-min" or "min-max" type nonlinearities (in the sense that the
Hamiltonian for the control problem is a "max" nonlinearity). The difficulty
that these equations seldom have solutions regular enough to justify the
formal arguments was worked around in various ways by, among others,

W. Fleming [15), [16], A. Friedman (18], Elliot and Kalton [9] (see also the
references in these works). A main idea here was to approximate the
differential game by a stochastic differential game whose value would then
satisfy a vanishing - viscosity type of approximation of the first-order
equation. It proved possible to take a unique limit as the noise went to 0

and to identify this limit with the value. Again, the unique existence of
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this limit - which was relatively difficult to show - is made transparent by
uniqueness results like those of Section 1.

For direct proofs of the facts that (various notions of) the value of
differential games satisfy the Isaac's equation in the viscosity sense as well
as some applications we refer to P. Souganidis [32], E. Barron, L. C. Evans
and R. Jensen (2], L. C. Evans and H. Ishii [13], L. C. Evans and

P. Souganidis [14]}, H. Ishii [20], and P. L. Lions [24].

SECTION 4. REPRESENTATION AND APPROXIMATION OF SOLUTIONS

It will be advantageous to sketch the topics of this section in the §

context of the model problem

u, + H(Du) = 0 for t > 0, x € R,

(4.1)
u(x,0) = ¥(x), for x e R",

where H:R® + R is continuous. The proof of the uniqueness results of
Section 1 and the existence results of Section 1 and 2 provide a unique
bounded viscosity solution u of (4.1) which is uniformly continuous on
R"x[0,T) for each ¥ € BUC(R") and T > 0. Moreover, the self-map S(t) of
BUC(R"™) given by S(t)¥(x) = u(x,t) where u is the solution of (4.1) is a
semigroup (i.e., S(t)S(s) = S(t + s8)) which preserves the natural order of
BUC(R®) and satisfies

IS(t)h - S(t)n? < Iy - nh for O < t and ¥, n € BUC(R").
Here | I denotes the essential supremum norm. We refer to this norm estimate
by saying simply that S(t) is "nonexpansive"”. We first formulate an abstract

theorem about approximating S(t) and then give gsome special cases of it.
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For p > 0, let F(p):BUC(R") » BUC(R") satisfy:
(F1) F(p) is and order-preserving, translation invariant and nonexpansive
self-map of BUC(R").
(F2) For each ¢ e BUC(R"), o + F(p)¢ is continuous from [0,*) into BUC(R").

(F3) There is a constant C such that

'F(D)g - ¢ + H(DP)Y < C(1 + IDPN + |02¢')p

for p > 0 and those ¢ € BUC(R®) whose first and second partial
derivatives are continuous and bounded on R".
In (F3), 10241 denotes the largest supremum norm of any second derivative of

¢, etc.. We will approximate S by the following object built from F:
(4.2) §,(t)¥ = F(t - nA)F(A)™ if nA < £ < (n+1)A, n = 0,1,2,. , and X > 0.

Theorem ([32)). let F satisfy (F1), (F2), (F3), ¥ € BUC(R") and T > 0. Then

(4.3) 1lim IS(t)y - Sk(t)vl = 0 uniformly for 0 < t < T,
A+0

If also H and ¥ are Lipschitz continuous, then there is a constant K such that
(4.4) IS(t)¥ = S, ()Yl < K/A for 0 < t < T,

We remark that the validity of (4.3) only requires that (F(p)¢ - ¢)/p >
-H(D$) uniformly when ¢ is bounded in Cz. The strong estimate (4.4) requires
the stronger criteria in (F3).

Let us give some examples.

Min-max representations: Assume that Y and Z are compact subsets of some R

and h:YxZ + R, £:YxZ + R" are bounded. Let H be given by

H(p) = inf sup (h(y,z) + f(y,z)*p).
yey zez

If we set
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F(p)¥(x) = sup inf (-ph(y,z) + ¥(x - pf(y,z))),
ye€Y 2€2Z

then (F1) - (F3) hold, as a straightforward analysis shows. The theorem, in
this case, represents S(t)¥ as the limit of iterated "max-min" operations and
provides an error estimate.
A difference approximation:

Here we take N = 1 to simplify the writing. The equation becomes
u, + H(u,) = 0. Assume that H is Lipschitz continuous and consider the

difference approximation

n+1 n n n n n n
u, -U u - U, v, .+ U - 20
i RS R G .2 BURG -4 N RPN YW L4 G b R
At 2Ax

(Ax)2
of this equation, in which © is a constant to be chosen, Ax and At are step

sizes and UT corresponds to u(jAx,nAt). This approximation is consistent with é

J

the equation and involves the viscosity term -(SAx)(Ug+1 + Ug_1 - 203), which

corresponds roughly to -G(Ax)uxx. Let a = At/Ax. An "F" corresponding to

thig aproximation is

2; Y{x-p) Y420 (P (x+p ) +¥(x-p) =29 (x) ).

(4.5) F(p)p(x) = ¥(x) - apn( Lix’p)
This F has the desired properties (F1) - (F3) if 200 € 1 and L < O, where L is
the Lipschitz constant for H. The theorem implies that if 2a0 < 1 and L < 6,
¥ is Lipschitz continuous and Ug = ¢{(jAx), then the Ug given by (4.5) for

n=1,2,... and all j satisfy

|u;.‘ - S(nAt)P(§bx)| < o (At)

for a suitable C. (We leave it to the reader to trace this relation.)

A product formula: ;
|

Let the Hamiltonian H in (4.1) be given as a sum: H(p) = Hq(p) + Hy(p)

where each of H, H,, and H, is Lipschitz continuous. Let S(t), S1(t), and




AL P

PN A WA

+

S Y Y3

¥ ¥ d

S,(t) be the semigroups associated with the problem (4.1) for the Hamiltonians

H, Hy, and Hy respectively. Put
Flp) = 8,(p)s,(p).
It is again possible to verify (Ft) - (F3), although it is not so easy as in
the previous two cases. As a consequence, one has
IS(E)¥ = (S,(t/n)S,(t/n))"0 < c//n
for n= 1,2,... and bounded 0 < t.

With these examples to set the scene, we outline the current situation.
Approximation of viscosity solutions by a max-min representation was first
established by L. C. Evans [11]. The abstract theorem is a very special case
of results of Souganidis ([32], wherein one finds more general applications to
max-min representations. These are closely related to Fleming's notion of the
value of a differential game (see [32]). The Elliot -~ Kalton notion yields a
different representation theorem ((13], [14]), as does the Friedman notion
([32], ([2]). A different max-min representation (where the index sets are
finite) is given by Lenhart ([23].

The first error estimates like (4.4) were given in (8] in the case of
numerical approximations. A general class of difference approximations of
(4.1) are discussed in [32] and error estimates are made. Moreover, error
estimates are made in the same spirit for the approximation of (4.1) by
(1.5). These reproduce in a much simpler way estimates inherent in the older
literature.

The proofs of the abstract results of [32] are related to those of [8].
The application of the general convergence results in [32] to numerical
approximations extend the results of (8] to more general Hamiltonians, etc..

Implicit schemes are also considered. Product formulae related to the example

above are also found in [32].
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Other works of interest include (5], in which a stationary problem with
a convex Hamiltonian is approximated by a "min" method and the convexity

permits a sharper error estimate.
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