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ABSTRACT

The theory of scalar first-order fully nonlinear partial differential

equations has recently enjoyed a strong development. One major step was a

proof by M. Crandall and P.-L. Lions of the uniqueness of certain generalized

solutions - called v4iscosity solutionsw - of problems involving such

equations with the scope to accommodate applications to, for example,

differential games. Following this event there has been a continuous stream

of work concerning the existence, approximation and representation of

viscosity solutions of Hamilton-Jacobi equations as well as the interaction of

the theory of viscosity solutions and areas of application (primarily control

theory and differential games), and refined uniqueness results. This survey

paper, which corresponds to an invited address by the first author at an

international symposium on differential equations held in March 1983 at the

University of Alabama-Birmingham, introduces the relevant concepts and

describes the major results up to, roughly, July 1983.
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DEVELOPMENTS IN THE THEORY OF NONLINEAR FIRST-ORDER

PARTIAL DIFFERENTIAL EQUATIONS

Michael G. Crandall and Panagiotis E. Souganidis*

INTRODUCTION

There has been a substantial development of the theory of scalar,

nonlinear, first-order partial differential equations in the last two years.

It is our goal to provide a brief tour of this work and a guide to the recent

literature. In view of the rate the literature is growing, this report will

be somewhat out of date even on its publication, but we hope it will be

useful.

In the discussion below, 9 is an open subset of Rn, T > 0, QT - Qx(0,T),

"x" denotes points of Rn, u is a real-valued function of x or (t,x),

Du - (uxl ..... ,U )_ stands for the spatial gradient of u and H, *, * are given

functions of the indicated arguments. We discuss the initial-boundary value

problem Accession For

NTIS GRA&I
ut + H(x,t,u,Du) = 0 for 0 < t 4 T, x e n, DTIC TAB

(IBVP) u(x,t) = *(x,t) for 0 < t 4 T, x e an, Unannounced LI
~~Just if icat ion -

u(x,O) - *(x) for x e n,
By.

together with its stationary form Distribution/

Availability Codes

H(xuDu) -0 for x e Avail and/or

(B0P) 
Dist Special

u(x) - O(x) for x e an.

A very simple case of (IBVP) arises when 0 - R and H is independent of

(x,t,u). The problem then has the form

*Division of Applied Mathematics, Brown University, Providence, RI 02912

Sponsored in part by the United States Army under Contract No. DAAG29-80-
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ut + H W = 0 for x e R, t > 0,

u(x,O) = *(x) for x e R.

The classical method of characteristics reveals that any smooth solution u of

(1) on W (O,T] satisfies ux(Y + tH'(*'(y)),t) = *'(y) for 0<t<T and y e R.

Here V denotes the derivative of *, etc.. If the lines x = y+tH'(*'(y).

intersect for some t > 0 as y varies, this information is contradictory. Thus

(1) cannot have smooth solutions defined for all time except in extremely

special circumstances. Simple examples also show that solutions of (1) with

slightly less regularity than continuous first derivatives are not unique.

For example, if H(p) = -p2 and * = 0, then u - 0 and v = max(t - lxI,0) are

distinct compactly supported (for bounded t) and piecewise linear solutions of

.4 (1) which satisfy the equation except on the lines lxi = t and x = 0, where v

is not differentiable.

The above remarks recall the classical observations that (1) does not

have global smooth solutions in general and that the most natural weakenings

of the classical notion of solution lead to nonuniqueness. However, in view

of the way these problems arise in applications - in particular, in the

calculus of variations, control theory and differential games - one expects a

notion of solution of (IBVP) and (BVP) for which there is both existence and

uniqueness.

The first demonstration of uniqueness for a notion of generalized

solution of (IBVP) or (BVP) adequate to cover applications to, e.g.,

differential games, was given in M. G. Crandall and P. L. Lions [7]. This

notion of solution is explained in Section I where uniqueness results are also

discussed. The topic of existence is taken up in Section 2, while Section 3

is concerned with the interplay between these topics, control theory and the

Y -2-
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theory of differential games. Approximation and representation of solutions

are discussed in Section 4.

As our goal is a brief outline of recent developments, the very

substantial literature which predates the work discussed herein will not be

referred to. The book [28] of P. L. Lions will provide the interested reader

with an appropriate historical view and references to the older literature.

There is a theory of second order equations and their relations to

stochastic control and games which corresponds to the first order theory

reviewed in this paper. We have not discussed this theory herein and refer
p.'

Athe interested reader to the papers [29], [30] of P. L. Lions in this

regard. The topic of quasi-variational inequalities and Hamilton-Jacobi

equations, which is not otherwise mentioned herein, is taken up in [1].

SECTION 1. NOTIONS OF SOLUTION AND UNIQUENESS

It will be convenient to consider a general equation of the form

(1.1) F(y,u,Du) - 0 in 0,

where 0 C if is open, y - (ylY 2,...,ym), Du - (uy1,...,uym), and

F:OxRW" + R. Of course, this general form incorporates the equations in both

(IBVP) and (BVP). For u e C(O) and z e o put

Du(z) " { p e R lim s (u(V) - (u(z) + P.(Y - z))) 4 0
p +Z ly - zI..'.i (1.2) +

Duz uv) z)))) 01,
p e R: lim inf y- (u(z) + V( z

• + Z ly -zI

where aeb is the scalar product of a, b e iF. E. g., if 0 - (-1,1) and

u(y) - lyl, then D+u(O) - 0 and Du(O) [-1,1]. The relation p e D+ u(z) can

be written u(y) 4 u(z) + pe(y - z) + o(y - z), with the usual meaning of

o(y-z), and a similar remark applies to D-. Clearly u is differentiable at

-3-
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z e 0 exactly when both D u(z) and D u(z) are both nonempty and then

D+u(z) - Du(z) Du(z)

where Du(z) denotes the usual (Frichet) derivative of u at z. Since there are

continuous functions u which are nowhere differentiable, there are continuous

functions u such that at least one of D +u(z) and D-u(z) is empty at every

point z e o. One way to define a viscosity solution of (1.1) is:

Definition 1. Let u e CMC). Then u is a viscosity solution of F ( 0 in 0 if

(1.3) Fly,u(y),p) 4 0 for all y e 0 and p e Du(y).

Similarly, u is a viscosity solution of 0 4 F in 0 if

(1.4) 0 4 F(y,u(y),p) for all y e 0 and p e D-u(y).

Finally, u is a viscosity solution of F = 0 in 0 if it is a viscosity solution

*of both F 4 0 and 0 4 F.

We will also call a viscosity solution of F 4 0 (respectively, 0 4 F) a

viscosity subsolution (supersolution) of F = 0. The obvious relations between

D, D+ , D- guarantee that the notion of a viscosity solution is consistent with

that of a classical solution. For example, continuously differentiable

solutions of F = 0 in the classical sense are viscosity solutions and a

viscosity solution u of F = 0 satisfies F(y,u(y),Du(y)) = 0 at each point

y e 0 at which u is differentiable.

The term "viscosity solution" arises because a standard method to

- approach the existence of solutions of, e.g., (IBVP) is to solve (if possible)

1.5) u t+ H(x,t,ueDuc) - CAu. = 0,

where A denotes the Laplacian in Rn, subject to initial and boundary

conditions and then to show that ue has a limit point in C(O) as *,AO with the

desired properties. This is the method of "vanishing viscosity".

Here are two other ways to define a viscosity solution.

-4-
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Definition 2. A viscosity solution of F - 0 is a u e C(o) such that if

e C0 (O) is nonnegative and k e R, then (i) and (ii) below hold:

(i) If *(u - k) has a positive maximum in 0, then

(1.6) F(y,u(y),-D#(y)(u(Y) - k) ) C 0
#(y)

at some point y at which the maximum is achieved.

(ii) If Olu - k) has a negative minimum in 0, then 1.6) holds with the

opposite inequality at some point y at which the minimum is achieved.

Definition 3. A viscosity solution of F - 0 is a u e C(O) such that for every

* e Cl(o), F(y,u(y),D6(y)) 4 0 (respectively, 0 4 F(y,u(y),D*(y))) holds at

each relative maximum (respectively, minimum) point y e o of u -

The equivalence of these three definitions is proved in [7] (in which

Definition 2 was taken as the basic property). Definition 3 is related to

ideas used by L. C. Evans in [10]. Definition 2 is obviously convenient for

localization and for this reason uniqueness was first obtained using it.

Subsequently, in (6], a variety of things were proved using Definitions 1 and

3 directly. We recommend (6] for an introduction to properties of viscosity

solutions and for easy access to proofs of model cases of results like those

given below.

Let us formulate conditions on H under which one can prove uniqueness

results. BR will denote the R-ball in 1P. The first two conditions are the

basic continuity requirement and a monotonicity condition concerning the

dependence of H on u. (For those who may wonder, it is the monotonicity

condition that rules out the case of a conservation law in what follows).

H:Ox[OT]tXlRn( + R is uniformly continuous

(Hi)
on nx[0,T]x[-R,R]xBR for each R > 0.

i -5-
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For each R > 0 there is a constant YR >0 such that

(H2) H(x,t,r,p) - H(x,t,s,p) ) YR(r - s)

for x e n, p e Rn and -P 4 s 4 R.5-

The next two hypotheses concern the behavior of the uniform continuity in x as

* p becomes large. They are expressed in terms of the function

AIR,P,C) = sup{IH(x,t,r,p)-H(y,t,r,p)I:04t4T,IrRutx-ylIp[<p,[x-yle}.

Here I I denotes both the norm in Rn and in R. The weaker of the two

hypotheses is

(H3) lim A(R,E,C) = 0 for R > 0.
C40

* Since A is nondecreasing in its arguments a more severe restriction is

(H4) lim A(R,p,c) - 0 for R, P > 0.
£ +0

The conditions (HI) - (H4) are meaningful for the problem (BVP) as well when H

is interpreted as a function of t which happens to be independent of t. The

uniqueness result of [7] for (BVP) is:

Theorem ([7]). Let u, v be bounded continuous functions on Q which are

viscosity solutions of H = 0 in n. Let 0 be continuous on an and u(x) -(z),

and v(x) - 4(z) tend to zero as x + z e afl uniformly in z. Set

R - max(nu ,nvn )
L (l) L (0)

and let (HI) and (H2) hold with YR > 0 in (H2). Then:

(i) If (H4) holds, then u = v.

S(ii) If u and v are uniformly continuous and (H3) holds, then u v.

(iii) If u and v are Lipschitz continuous, then u = v.

This result in fact follows from more general estimates comparing

viscosity sub-and-super solutions of different problems. We will not

formulate these results here. Observe that as the hypotheses on u and v are

strengthened, less is reruired of H. The corresponding result for (IBVP) is

-6-
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quite similar. The statement for this case arises upon replacing 0 by

fx[0,T], 30 by the union of Dnx[0,T] and nx{0}, and *(x) by *(x,t) on 3ax[O,T]

and by u0 (x) when t - 0. Moreover, the requirement YR > 0 in (H2) is

dropped. (The linear function 7R(r - s) in (H2) is replaced by a nonlinear

function in the result for (BVP) in [7].) The necessity of conditions like

H3) or MH4) is shown via examples in [7].

,4. Before the results mentioned above, the main uniqueness results which

were established in a generality for which there was a corresponding global

. existence theory concerned the case of convex Hamiltonians. These results

concern solutions of the equations in an almost everywhere sense which also

* satisfy a type of "semi-concavity" condition. Concerning such results we

refer to the book of P. L. Lions (28]. The viscosity notion is used in [28],

but the main emphasis in this book is the important special case of viscosity

solutions which are Lipschitz continuous (and hence satisfy the equation

almost everywhere).

Other uniqueness results concern domains of dependence (e.g., [7]),

unbounded functions, (H. Ishii [21]) and Hamiltonians which are not

necessarily continuous in t (H. Ishii [20]1. With respect to domains of

dependence, observe that if we regard (IBVP) as a special case of (BVP) by

thinking of t as as "space variable", then we have not prescribed data at

t = T. General results concerning which part of the boundary of 0 is

important for uniqueness in (BVP) are the subject of work of R. Jensen ([22])

in progress at the time of this symposium.

-7-
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SECTION 2. EXISTENCE

The existence theory for viscosity solutions of (IBVP) and (BVP) is much

more a continuation of the existence theory which predates the notion of

viscosity solutions than the corresponding uniqueness theory (which is quite

.-distinct from what existed before) is a continuation of more classical

results. Roughly speaking, known methods adapt to proving the existence of

viscosity solutions and the flexibility of the notion allows one to take

limits freely and obtain new results. There are also new arguments which

arose partly in trying to get the existence theory in harmony with the

4S generality of the uniqueness theory. We are going to describe, in more or

less chronological order, results obtained since the introduction of viscosity

solutions and ask the reader to be aware that this does not give an accurate

historical view. We again refer to [28] for a more balanced view of the

earlier theory.

The sort of dramatic existence and uniqueness theorems which are now

possible may be illustrated by the model problems

(2.1) u + H(Du) = v in Rn,

and

Ut + H(Du) = 0 in Rnx(o,T],

(2.2)
u(x,0) = u0 (x) in Rn.

It was proven in [7] that if H is continuous from RP to R and v and u0 are

bounded and uniformly continuous, then (2.1) and (2.2) have viscosity

solutions to which the uniqueness theorem applies. The only regularity

required is continuity of H and uniform continuity of v and u0 , and then there

is a unique global solution.

P. L. Lions, in [27] and [281, considers problems of the forms (IBVP) and

(BVP). Two types of assumptions on H are important in his work. One is a

%% -8-
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continuity assumption of Lipschitz type which is used to establish uniform

Lipschitz estimates on solutions of (IBVP) and (BVP) (using results of

[26)). A simple special case of this hypothesis reads

For R > 0 there is a constant CR such that

' (H5) IH(t,x,r,p) - H(t,y,r,p)l 4 C ( + I p)x y

for t e [0,T], x, y e a, p e Rn and Irl 4 R.

The other assumption reads

(H6) H(t,xr,p) + , as IPt + -, uniformly for x e n, 0t4T, and r e R.

The conclusion - in either case - is the exi- xnie of bounded, Lipschitz

continuous viscosity solutions provided the -.ndary conditions are suitable
.1

(see below). The proofs in [281 are based he vanishing viscosity

method, while in (27] a method of penilization of domain (introduced in (29])

is employed.

The paper [33] deals with (IBVP) and the "resolvent-type"stationary

problem

u + AH(xuDu) - v for A > 0

in Rnx[0,T] and Rn respectively. The result is the existence of bounded and

uniformly continuous viscosity solutions under hypotheses (H4) or (H5), where

in the latter case the dependence of H on (t,r,p) is less restrictive that

that used in [271, [28]. In both cases the vanishing viscosity method is used

and the proof proceeds via estimating the modulus of continuity of solutions

of the approximate problems with respect to x.

However, the best theorem concerning existence of bounded uniformly

continuous viscosity solutions (without (H6)) was obtained by G. Barles [1].

Barles was able to show existence under the assumption (H3), which is the

weakest assumption under which uniqueness of bounded uniformly continuous

solutions has been proved. The notation BUC(K) will mean the bounded and

.19

-9-
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uniformly continuous functions on K. Barles provided the existence assertion

of the next theorem which is stated for the general case in which Q is not SP,

but it is valid equally well when a is Rn (there simply being no conditions on

afl in this event).

Theorem (W1]).

(a) Let H:&IXRXRn + R satisfy (Hi), (H2) and (H3) with YR > 0 for R > 0. Let u,

ur e BUC(O) be, respectively, a sub- and a supersolution of H = 0 in Q.

Assume, moreover, that u = W on an. Then there is a unique viscosity solution

u e BUC(O) of H = 0 in fl such that u = u ='U on an.

(b) Assume that H:nx[0,T]x×R1 n + R satisfies (Hi), (H2), and (H3). Let

. e BUC(flx[0,T]) be, respectively, a sub- and a supersolution of

ut + H(x,t,u,Du) = 0 in flx(O,T] such that u(x,t) = ii(x,t) = *(x,t) for (x,t)

in 3x[0,T] and u(x,O) - W(x,0) = *(x) in fQ. Then there is a unique viscosity

solution u e BUC(nx[0,T]) of (IBVP).

Barles attacked the existence problem by reducing the question to one of

the form v + R(y,v,Dv) = 0 in RI i)r some m and then approximating the

Hamiltonian 9 involved by smooth ones satisfying an (H5)-type assumption. The

results of [27] together with the uniqueness estimates of [7] are used to

complete the proof.

Of course, given the above theorem, interest shifts to the question of

when sub - and supersolutions with the desired properties can be found. There

are many open questions here. Especially when 9 is not Rin , it is only in the

case of convex Hamiltonians that this is well understood, and one can find

necessary and sufficient conditions in [28].

Recently, L. C. Evans and H. Ishii [13] gave a different proof for the

existence of a viscosity solution of u + H(x,Du) = 0 in fl, u = 4 on 3Q, where

-10-
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H satisfies MH). Their technique involves a version of the localization

method of [291.

SECTION 3. CALCULUS OF VARIATIONS, OPTIMAL CONTROL THEORY AND DIFFERENTIAL
GAMES.

Hamilton-Jacobi equations are classically derived in the closely related

areas of the calculus of variations, optimal control theory (where they are

called Bellman equations) and differential games (Isaacs equations). As was

observed by Bellman, a very good way to exhibit the relationship between the

equations and the problems in which they arise is via the dynamic programming

principle (see, for example, Fleming and Rishel [17]). This remains true in

the context of viscosity solutions as was pointed out by P. L. Lions. In this

section we will expand a bit on these remarks and give several references.

We begin by reviewing the relationship between the notion of a viscosity

solution and control theory in the simplest possible case: We consider a

"finite horizon" control problem without boundary conditions and formulate two

typical theorems (omitting all the technical assumptions - the references

contain precise statements). After this we quickly outline the situation as

regards differential games. Consider a system whose state at time t if

started at x is yx(t) and whose evolution is governed by the following Cauchy

problem for an ordinary differential equation:

(. )x(t) + f(yx(t),v(t)) - 0 for 0 4 t,
, (3.1)

' Yx(0) - x e 0N ,

where f:RNxV +R, V is a given compact set in some (for example) and v(t),

called the control, is a measurable function from [0,-) to V. Under natural

assumptions on f, (3.1) has a unique solution for all x e It denoted by

yx(t). We now define a pay-off J(x,tiv(*)) for each given x,t and control

.v -11-
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t
(3.2) J(x,tiv(*)) = uo(y (t)) + f hyl(s),v(s))ds,

00

Here h(x,v) and u0 are given continuous functions which satisfy certain

hypoLheses. The problem is to choose the control function v(-) so as to

minimize J. An important quantity in this situation is the value (or the

optimal cost):

(3.3) u(x,t) = inf J(x,t;v(*)).
v(.)

Two of the main goals of control theory are to characterize u and to design
I%

r optimal (or nearly optimal) controls. One of the most imp6rtant tools for the

study of these problems is the dynamic programming principle. In the case

under consideration here it says:

Theorem (dynamic programming). For all 0 4 s 4 t•5
u(x,t) = inf { f h(y x(o),v(a))d + u(yx (s),t - s)}"

v(,) 0
,4 0.

Using this principle P.L. Lions proved [28]:

Theorem. The optimal cost u given by (3.3) is the viscosity solution of

. + sup {f(x,v).Du - h(x,v)} - 0 in inx(0,-),
veV

u(x,0) = u(x) in R'.
% % 0

Observe that the Hamiltonian here, that is

H(x,p) supff(x,v)*p - h(x,v): v e vi,

is the supremum of affine functions and is therefore convex. For the proofs

and generalizations of these results and references to the classical

literature, see P. L. Lions [28], (24], and L. C. Evans [12]. Other recent

references which are relevant for the interaction between viscosity solutions

and contol theory are: P. L. Lions and M. Nisio (31], I. Capuzzo Dolcetta and

-12-
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L. C. Evans (4], L. C. Evans and H. Ishii [131, I. Capuzzo Dolcetta [3],

I. Capuzzo Dolcetta and H. Ishii (5].

Differential games resemble contol theory in involving a system of

differential equations and a pay-off function. However, now there are two

players and two control sets. The first player attempts to make the pay-off

large by choosing his control, while the second player strives to keep the

pay-off small by judicious choice of his control. The notion of value becomes

much more subtle because, as the words suggest, we are dealing with "sup-inf"

or "inf-sup" operations (as opposed to the simple "sup" of the control case)

depending on which player "goes first" and this must be interpreted in some

infinitesimal way. However, the value may be defined in various ways which

turn out to be equivalent - and a very good way to see the equivalence is to

use the relation with Hamilton-Jacobi equations and the uniqueness theory.

The formal relationships between differential games and Hamilton-Jacobi

equations were observed by Isaacs (191 in the early 1950's: he showed that if

the values of various differential games were regular enough, then they solve

certain first-order partial differential ecruations (called Isaacs equations)

with "max-min" or "min-max" type nonlinearities (in the sense that the

Hamiltonian for the control problem is a "max" nonlinearity). The difficulty

that these equations seldom have solutions regular enough to justify the

formal arguments was worked around in various ways by, among others,

W. Fleming [151, [16], A. Friedman (18], Elliot and Kalton [9] (see also the

references in these works). A main idea here was to approximate the

differential game by a stochastic differential game whose value would then

satisfy a vanishing - viscosity type of approximation of the first-order

equation. It proved possible to take a unique limit as the noise went to 0

and to identify this limit with the value. Again, the unique existence of

_.1
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this limit - which was relatively difficult to show - is made transparent by

uniqueness results like those of Section 1.

For direct proofs of the facts that (various notions of) the value of

differential games satisfy the Isaac's equation in the viscosity sense as well

as some applications we refer to P. Souganidis [32], E. Barron, L. C. Evans

and R. Jensen (2], L. C. Evans and H. Ishii (13], L. C. Evans and

P. Souganidis [14], H. Ishii [20], and P. L. Lions [24].

SECTION 4. REPRESENTATION AND APPROXIMATION OF SOLUTIONS

It will be advantageous to sketch the topics of this section in the

context of the model problem

ut + H(Du) - 0 for t > 0, x e Rn ,

(4.1)

u(x,O) - *(x), for x e Rn,

where HzRn + R is continuous. The proof of the uniqueness results of

Section 1 and the existence results of Section I and 2 provide a unique

bounded viscosity solution u of (4.1) which is uniformly continuous on

mnx[O,T] for each * e BUC(In) and T > 0. Moreover, the self-map S(t) of

BUC(Rn) given by S(t)*(x) - u(x,t) where u is the solution of (4.1) is a

semigroup (i.e., S(t)S(s) - S(t + s)) which preserves the natural order of

DUC(Rn) and satisfies

ISt)* - S(t)nl 4 I@ -* for 0 4 t and ', n e BUC(I).

Here I I denotes the essential supremum norm. We refer to this norm estimate

by saying simply that S(t) is "nonexpansive". We first formulate an abstract

theorem about approximating S(t) and then give some special cases of it.

-14-
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For p > o, let F(p):BUC( n ) + BUC(in ) satisfy:

(Fl) F(P) is and order-preserving, translation invariant and nonexpansive

self-map of BUC(Rt).

(F2) For each * e BUC(on), P + F(p)* is continuous from [0,-) into BUC( n ).

(F3) There is a constant C such that

F (p  
- + H(D)| 4 C(1 + IDOl + ID2 1)p

P

for p > 0 and those e e BUC(R) whose first and second partial

derivatives are continuous and bounded on le.

In (F3), ID2 1 denotes the largest supremum norm of any second derivative of

4, etc.. We will approximate S by the following object built from F:

(4.2) SA(t)* - F(t - nA)F(A)n4' if n 4 t ( (n+l)A, n = 0,1,2,. , and A > 0.

Theorem ([32]). let F satisfy (Fl), (F2), (W3), * e BUC(Rn ) and T > 0. Then

(4.3) lir IS(t)* - SA(t)* = 0 uniformly for 0 4 t 4 T.
A+0

If also H and # are Lipschitz continuous, then there is a constant K such that

(4.4) IS(t)# - SA(t)+1 K VX for 0 4 t 4 T.

We remark that the validity of (4.3) only requires that (F(p)$ - *)/p +

-H(D*) uniformly when 4 is bounded in C2 . The strong estimate (4.4) requires

the stronger criteria in (3).

Let us give some examples.

Min-max representations: Assume that Y and Z are compact subsets of some le

and h:YxZ + R, f:YxZ + ln are bounded. Let H be given by

H(p) - inf sup (h(y,z) + f(y,z)'p).

yeY zez

If we set

"1 -15-
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F(p) (x) - sup inf (-ph(y,z) + ,(x - pf(y,z)l),
yeY zez

then (FI) - (F3) hold, as a straightforward analysis shows. The theorem, in

this case, represents S(t)O as the limit of iterated "max-min" operations and

provides an error estimate.

A difference approximation:

Here we take N - I to simplify the writing. The equation becomes

Ut + H(ux ) = 0. Assume that H is Lipschitz continuous and consider the

difference approximation

n+1 n n n n Un
U. UU -U U 2Uuj + H( u1+1- 1-1 ) OAx -j"+ J -1 "-U .2

At 2Ax (Ax)2

of this equation, in which e is a constant to be chosen, Ax and At are step

sizes and U ' corresponds to u(jAx,nAt). This approximation is consistent with
I

the equation and involves the viscosity term -(OAx)(Uq+, + U 1  n),n+ 3 - 2U n)  which

corresponds roughly to -G(Ax)uxx* Let a = At/Ax. An "F" corresponding to

this aproximation is

(4.5) F(0)*(x) - *(x) - aPH( *(x+p) - *(x-p) )+XG(*(x+p)+*(x-pl_2*(x)l.
2p

This F has the desired properties (Fl) - (F3) if 2aE) 4 1 and L 4 0, where L is

. the Lipschitz constant for M. The theorem implies that if 2aO 4 1 and L 4 0,

is Lipschitz continuous and U0 = *(JAx), then the Uj given by (4.5) for

n - 1,2,... and all j satisfy

IU'. - S(nAt)l*(jAx)l 4 C/(At)
4.

for a suitable C. (We leave it to the reader to trace this relation.)

A product formula:

Let the Hamiltonian H in (4.1) be given as a sum: H(p) = HI(p) + H2 (P)

where each of H, H1, and H2 is Lipschitz continuous. Let S(t), St(t), and

4j.
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S2 (t) be the semigroups associated with the problem (4.1) for the Hamiltonians

H, H1 , and H2 respectively. Put

F(p) - SI(p)s 2 (p).

It is again possible to verify (FI) - (F3), although it is not so easy as in

the previous two cases. As a consequence, one has

IS(t)* - (S1(t/n)S2(t/n) )n,, < C//n

for n - 1,2,... and bounded 0 4 t.

With these examples to set the scene, we outline the current situation.

Approximation of viscosity solutions by a max-min representation was first

established by L. C. Evans [11]. The abstract theorem is a very special case

of results of Souganidis (321, wherein one finds more general applications to

max-min representations. These are closely related to Fleming's notion of the

value of a differential game (see [32]). The Elliot - Kalton notion yields a

different representation theorem ((13], (14]), as does the Friedman notion

([321, (2]). A different max-mmn representation (where the index sets are

finite) is given by Lenhart [23].

The first error estimates like (4.4) were given in (8] in the case of

numerical approximations. A general class of difference approximations of

(4.1) are discussed in [32] and error estimates are made. Moreover, error

estimates are made in the same spirit for the approximation of (4.1) by

(1.5). These reproduce in a much simpler way estimates inherent in the older

*. literature.

The proofs of the abstract results of (32] are related to those of (8].

* The application of the general convergence results in [32] to numerical

approximations extend the results of (8] to more general Hamiltonians, etc..

Implicit schemes are also considered. Product formulae related to the example

above are also found in (32].
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Other works of interest include (5], in which a stationary problem with

a convex Hamiltonian is approximated by a "min method and the convexity

permits a sharper error estimate.
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differential games. Following this event there has been a continuous stream

of work concerning the existence, approximation and representation of

viscosity solutions of Hamilton-Jacobi equations as well as the interaction of

the theory of viscosity solutions and areas of application (primarily control

theory and differential games), and refined uniqueness results. This survey
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international symposium on differential equations held in March 1983 at the

University of Alabama-Birmingham, introduces the relevant concepts and

describes the major results up to, roughly, July 1983.
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