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Preface

Ever since my first undergraduate course in
statistics, the application of statistical methods has been
of great interest to me. 1In obtaining a Masters of Science
degree in Operations Research at the Air Force Institute of
Technology (AFIT), I have had the opportunity to take many
statistic courses. These courses have expanded my knowledge
and interest in the field. This thesis is a direct result of
my interest in statistics and my education at AFIT.

No research of this magnitude is ever accomplished
without the involvement of several people. I now take this
opportunity to thank these participants. I am indebted to
Dr Albert H. Moore, my thesis advisor, for his valuable
assistance and guidance. I am also indebted to Dr Joseph P.
Cain for his aid and advice as my thesis reader. And for
doing an excellent job of typing the final manuscript, I
thank Ms Connie Pavliga.

Lastly, I thank my wife, Donna, for her constant

support and understanding during the past eighteen months.

Jim H. Keffer
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Abstract

-,

This thesis compares two modified maximum likelihood
(ML) estimation techniques against three minimum distance
(MD) estimation techniques in application to the three para-
meter lognormal distribution. The three parameter lognormal

Xy
distribution has a location parameter (é) and two other

nlren

parame?ers associated with the mean (4) and standard devia-
tion :&;\of its parent normal population. The first modified
MI. technique uses linear interpolation on order statistics
to estimate location while the second ML technique uses the
first order statistic as the location estimate. The remaining
two parameters are calculated by using the location estimate
in their respective censored or uncensored ML equations and
solving for the parameters. Three MD techniques are used:
Kolmogrov Distance, Cramer-von Mises Statistic, and the
Anderson-Darling Statistic. The MD techniques refine the
location estimates which are then used:-in the ML equations
of the other two parameters to obtain their refined estimates.
Monte Carlo analysis is used to accomplish the
comparison of estimation techniques. Sample sizes of 6, 8,

10, 12, and 16 are generated using thfee parameter sets

\
(w,0,8) = (0.0, 1.0, 10.0), (1.0, 1.0,\%0.0), and (1.0, 2.0,

\
vii \




10.0) Each estimation technique is applied to one-thousand
replications for every combination of sample size and para-
meter set.‘JThree measures of effectiveness are used to
facilitate comparisons: mean square error, relative
efficiency, and the Cramer-von Mises Statistic. Comparisons
of these effectiveness measures across all cases reveal a
clear superiority of the MD techniques over the modified ML

techniques.

AN

A




- P L s ot

ROBUST MINIMUM DISTANCE ESTIMATION OF
THE THREE PARAMETER LOGNORMAL

DISTRIBUTION

I. Introduction

Statistical analysis is continuousl glaying an ever=-
increasing role in all branches of the pre: ' 4day military
gservices. Being of such diverse application, statistical
analysis is being used for optimally operating under con-
strained budgets, determining manpower and equipment require-
ments, and increasing the level of operational readiness and
availability. Procurement of multi-millicn dollar weapon
systems, desired increases in the prediction of system and
component reliabilities, and logistics planning all usually
involve statistical analysis before the decision-making
process begins. The application of more efficient and
accurate statistics to these and other areas leads to better
informed decision makers and more effective decisions being
made, thereby strengthening our military forces while
simultaneously operating under the imposed constraints.

One very important aspect of statistical analysis is
that of parameter estimation of distributions. Often times
an analyst can look at a histogram of some data and determine

which density function belongs to the data set. However, in
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meost cases, simply identifying the data's density function
will not yield vital information such as the mean, variance,
and standard deviation. If an analyst had some reliability
data on a piece of operational equipment and was asked to
determine some statistics such as the mean time between
failures (MTBF) or the mean time to repair (MTTR), simply
fitting a density function by graphical methods and estimating
its parameters would most surely yield inaccurate estimates
at be;t. The military services recognize the importance of
accurately determining these parameter estimates and have
devoted much time and money to pursue this end. For example,
a commander of an F-16 squadron would certainly like to know,
as accurately as possible, how often the aircraft breaks down
and how much time is needed to repair or replace the faulty
component (s). These and other factors bear directly on the
survivability and operational capability of the squadron, not
to mention national defense. 1In order to obtain these vital
statistics, the parameters of an assumed distribution must

be estimated from sample data. Of course, better estimation
procedures result in more ac~urate parameter estimates and
yield more accurate information about the data. With the
importance of statistical analysis and.parameter estimation
in mind, this thesis effort focuses on parameter estimation

as applied to the three parameter lognormal (3-LN) distribu-

tion.




The method of moments and maximum likelihood are
two classical parameter estimation techniques with the method
of maximum likelihood usually outperforming the method of
moments. However, a recent technique called the minimum
distance method developed by J. Wolfowitz in the 1950s, seems
to yield better parameter estimates than those from the method
of maximum likelihood (3; 18; 25). This thesis applies
both the minimum distance method and the method of maximum
likelihood to the three parameter lognormal distribution and
compares the estimates from both methods. A Monte Carlo
analysis conducts the investigation. Both methods are dis-
cussed extensively in Chapters IV and y respectively.

Dr Albert H. Moore, professor of statistics at the
Air Force Institute of Technology, and his past thesis
students have devoted much time and study to the area of
parameter estimation. Over the past several years, he and
his thesis students have been extensively involved with the
application of robust minimum distance estimation techniques
to a variety of distributions. Some of the distributions
considered so far are the three parameter weibull, the three
and four parameter gamma, the four parameter beta, the
generalized t, and the generalized exponential power distribu-
tion. Parameter estimates from the robust minimum distance
estimation technique usually outperform the more classical

techniques.




The objective of this thesis effort is to estimate
and compare the parameters of the 3-LN distribution via the
method of maximum likelihood and the minimum distance method.
As the name implies, the 3-LN distribution has three para-
meters: a location parameter and two other parameters
associated with the mean and standard deviation of its parent
normal distribution. Two "modified" maximum likelihood
estimation techniques are developed and compared against
three minimum distance estimation techniques. The procedure
is straightforward and briefly stated here. Estimates
obtained by the "modified" method of maximum likelihood are
used by the minimum distance method to obtain a new estimate
of the location parameter. This new location parameter
estimate is then used by the method of maximum likelihood to
obtain new estimates for the remaining two parameters.
Lastly, three measures of effectiveness are applied to the
parameter estimates to determine which estimation method
gives the most accurate estimates. Emphasis is placed on
small sample sizes since moderately large sample sizes
(n > 20) are easier to handle due to the asymptotic properties.
It is anticipated that the minimum distance estimates
will be more accurate than those of the "modified" maximum
likelihood method for the 3-LN distribution.

The next chapter introduces the 3-LN distribution by
reporting its genesis and history, derivation and development,

and some important statistics. Chapter III is a short




literature review consisting of some classical and newer
estimation techniques that have been applied to the 3-LN
distribution. Chapter IV discusses the method of maximum
likelihood revealing its history, properties, and some
methods used by statisticians and mathematicians in solving
the maximum likelihood equations. Chapter V presents the
minimum distance theory and method. Chapter VI describes
the Monte Carlo analysis procedure and computerization of
the estimation methods. The final chapter, Chapter VII,
reports the results and conclusions obtained from the Monte

Carlo analysis.
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II. Three-Parameter Lognormal Distribution

History

The normal distribution has played a dominant role

in the field of theoretical and applied statistics ever since

its development by Guass in 1809. However, the normal curve
could not provide an adequate representation of the many
different distributions found in statistical practice so, by
the end of the nineteenth century, some statisticians
attempted to construct systems of frequency curves represent-
ing a variety of distributions. These were commonly referred
to as "skew frequency curves" (13:149). Among the most
successful of these systems were those developed by K. Pearson
5 in 1895, F. Y. Edgeworth in 1898, and C. V. L. Charlier in

‘ 1905 (13:149). Pearson's system of fregquency curves was

L defined as the solution to a differential equation involving
four parameters and Charlier's system was defined by coeffi-
cients from the expansion of derivatives from the normal
distribution (13:152). Edgeworth called his system the
*method of translation" in which a function of the observed
random variable was sought which closely approximated the
normal random variable. Normal theory was then applied to
the transformed variables. Although the "method of transla-
tion" was not widely accepted due to the limited variety of

' possible shapes, it was this system that greatly aided in

the advancement of the lognormal distribution.
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The genesis of the lognormal distribution arises
from a theory of elementary errors combined by a multiplicative
process instead of an additive process as in the case of the
normal distribution (2:2). 1In 1879, Galton pointed out that
many situations in nature such as growth, change, or even
death follow this multiplicative process and laid the founda-
tion for the development of the lognormal distribution.
Galton stated that if XjeXgreee,X,  are positive and inde-

pendent random variables and

n
T = II x. (2.1)

then

log(T,)

1

"
o2

]}og(xi) (2.2)

and application of the central limit theorem to the random
variables, 1og(xi) would result in the distribution of
log(Tn) being approximated by the unit normal distribution

as the sample size went to infinity. Thus, the distribution
of T, Wwas called lognormal (12:Ch 14, 113). D. McAlister
was the first to explicity develop some theory on the log-
normal distribution in 1879 by deriving its mean, median,
mode, and second moment (2:3). 1In 1903, Kapteyn further
established the genesis of the distribution and also developed

a crude machine for generating lognormal samples from a log-

normal population. Wicksel was first to estimate the parameters: j




of the distribution by employing the method of moments and
was also the first to consider the case where a simple
displacement of the variate rather than the variate itself
was lognormally distributed. The parameter which assigned
a value to the displacement of the variate from the origin
was referred to as the threshold parameter and established
the 3-LN distribution.

Since the 1930s applications of the lognormal distribu-
tion have steadily increased. It has been applied in such
fields as agriculture, entomology, metallurgy, biology,
economics, and reliability with much success. An extensive
list of applications can be found at the end of Chapter

Thirteen in Johnson (14).

Probability Density Function

By using Edgeworth's "method of translation" in
which a function of the observed random variable is sought
which closely approximates the normal random variable,
Johnson states that the transformation of a variable, say
X, to normality can be accomplished by a function, say
f(x), which has a specialized form and is made to depend only
on a certain number of parameters. His transformation is

(13:152):

»

z = Y+6-f[5§&] (2.3)

where:
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f is a monotonic function of x and does not depend on any
parameter

§ and y are shape parameters

A is a scale parameter

£ is a location parameter

z is unit normal

The 3-LN probability density function (pdf) is explicity
derived by allowing the logarithmic function to represent

the function of the transformation in Eq (2.3). When natural
logarithms are used, as in this thesis, the scale parameter

can be removed (2:6). Therefore, Eq (2.3) becomes

Y+§8.1n(x-£) (2.4)

N
]

Application of Eq (2.4) to the general form of a normal pdf

yields the pdf of the displaced lognormal variates.

s «y+81ln(x-£))?
f(X) = /IT_T(X"E) exp 2 if x > E (2.5)
=0 if x < ¢

Another, more common, expression of lognormal pdf
uses the mean (u) and the standard deviation (o) of its parent

normal distribution and is obtained by allowing u=-y/6 and

=1/ . The pdf becomes:

o Wow . KN P o R o
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s C—

1 =(ln(x-§)-u)?| .
f(x) = —~——— exp if x > ¢ (2.6)
avan (x-£) 2a?
=0 if x < £

Figure 1 contains two 3-LN plots with different

values of y and o .

Distribution Function

The distribution function, commonly referred to as
the cumulative distribution function (cdf), of a continuous
random variable is found by integrating its respective pdf
over a given range. Unfortunately, the cdf for the 3-LN
distribution does not have a closed form solution so it must
be integrated by numerical means. The cdf, F(x), for the

3-LN distribution is defined as (32:47):

1
o/2r

F(x) =

™S R

1 exp [-(ln(u)—p)z]du (2.7)
u 2g?

where u = x-¢{ .

Important Statistics

Using the 3-LN pdf defined by Eq (2.6), a list of some
important statistics are given below. The measures of central
tendency are the mean, the median, and the mode defined

respectively as:

10
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mean = exp[u+l/2(02)]+£ (2.8)
median = explu]+¢ (2.9)
mode = exp[u-cz]+£ (2.10)

Note that mean > median > mode.

The rth moment about £ is:

E[(x-&)r] = exp[u-r+l/2(r2-02)] (2.11)

The measures of dispersion are the variance (#?), skewness

(K3) and kurtosis (K,) defined respectively by:

g2 = exp[2u+02] -[exp(oz)-ll (2.12)
é 1
: Ky = (w+2)e(w=1) (2.13)
|
i Ky = w'+2wi+3w2-3 (2.14)

where w = exp[o2] .

The standardized 100 a% deviate is

= Xa-E [X]

2.15
a o(X) ( )

where

X, = exp[UaO+u]+E

E[X] = mean




o (X)

"
-

i Ua = a- percentile from unit normal distribution

An interesting and easily verified fact is that as ¢ goes to

zero, the standardized lognormal distribution approaches the

unit normal distribution (see Figure 1).

13




III. Literature Review

In searching through the literature for different
estimation techniques that have been applied to the 3-LN
distribution, several estimation techniques applicable only
to the two parameter lognormal distribution were encountered.
It was interesting to note that the estimation techniques
for the two parameter lognormal distribution were usually
straightforward and the estimates computed with relative
ease. However, with the introduction of the single location
parameter, resulting in the 3-LN distribution, the estimation
techniques become quite complicated and inaccurate. This
finding is due to the fact that estimation of the location

parameter is extremely difficult.

Classical Estimation Techniques

The most popular classical estimation techniques,
as applied to the 3-~LN distribution, are described in the

following paragraphs.

The method of moments was formulated by K. Pearson
in 1894 and is extremely simple in concept. Suppose that
the pdf of a random variable, say x, is a function of h
unknown parameters, say 0i, 02, ..., eh, then by equating as
many sample moments to population moments as there are
unknown parameters, the equations can be solved for
01, 82, ..., eh, thereby yielding the parameter estimates

(7:130). To avoid any ambiguity, the definition of a moment

14




is pursued. There are two types of moments related to both
the sample and population: a moment about the origin called
a moment and a moment about the mean called the central
moment. The kth sample moment, m”(, is computed from the

sample as follows:

n
I X, (3.1)
i=

where n is the sample size and Xy denotes the ith observation.

The kth population moment, uU(, is derived from the population

as

_ k

Wy = E[X ] (3.2)
The kth sample central moment, M is alculated from the
sample by
1 n -k
= - I (x,-x) (3.3)
th

where x is the sample mean. Finally, the k population

central moment, uyx, is derived from the population as
we = E[ (x-wk] (3.4)

where u = E[X] is the mean of the distribution. Since the
population moment is a function of the ﬁbpulation parameters

setting up the equations

uk =m'k k =l'.o.'p (3.5)

15




where p is the number of parameters being estimated,
establishes a system of p equations and p unknowns. These p
unknowns may be solved for yielding the method of moments

estimators:

& = /In(1+u?) (3.6)
~ 1 2 2
i = 3[inm,)-1n(u? (1+u?)) ] (3.7)
. 5 1
E = - e"(l+u?)? (3.8)
!
where u is the solution to 7
1
ud + 3u = (w-1)72 (w+2) (3.9)

and w = exp[cz]

From the sample and population central moments skewness and

kurtosis, two very useful statistics, denoted by K; and K,

respectively, may be obtained by

A mj

K, = o) b (3.10)
K, = ﬁ (3.11)
Ky = (m':;z (3.12)
Ky = a—f;—z (3.13)

16




The 'hat' (") is used to identify the sample statistics.

In the case of the 3-LN distribution, Egs (3.11) and (3.13)
yield Egs (2.13) and (2.14) respectively. Equations (3.10)
and (3.11) are used later in the thesis to provide an

initial estimate for the ¢ parameter. Wicksell, Gumble,
Yﬁan, and Aithcison and Brown have all applied the method of
moments to the 3-LN distribution. The latter found that the
method of moments is very inefficient when compared to other
estimation methods (14:Ch 14,124). This may be due to the
fact that the moment sequence,{u'k},of the lognormal distribu-
tion is not unique to the distribution and, therefore, cannot
be defined by its moments (14:Ch 14, 115). Thus, the method

of moments is presented but not employed in this thesis.

The method of quantiles was also applied to the 3~LN
distribution to estimate the parameters. This method results
in three quantiles, say q, 1/2, 1-q, where 0 < g < 1/2.

It is cleaxr from Eq (2.4) that the value of x such that

Plx < xq] = g 1is related to the corresponding percentile,

1/q, of the unit normal distribution by xq = €+exp[u+vq-c]
and that the median of the lognormal sample (corresponding

to g=1/2 is £+exp[u] . Denoting the sample quantile

of order gq by xq and the quantiles of order g from the unit
-v_ = v and

(1-q) ~ T'q
after some rearranging, results in the following set of

normal population by vq such that v

estimators:

17




5 =41 —x1) = -
g = v[ln(xl_q x%) ln(x% xq)] (3.14)
u = ln(xl-xq)-ln(l-exp[-v&) (3.15)
2
€ = xy-exp(y] (3.16)
2

and explicit estimates for u, o, and { are obtained (2:58).
Aitchison states that as a general rule, g should be set
at 0.05 (2:58).

A final and very interesting method of parameter
estimation was developed by W. F. F. Kemsley in 1952 which
uses a mixture of the method of moments and quantiles. He
equates the sample mean X to the population mean which is
equivalent to replacing Xy in Egs (3.14), (3.15), and (3.16)

by x and derives the function:

X-x
£(0?) = — (3.17)
X -X
1-q
from which ¢ is determined. The estimates for u and { are
then easily found by inserting the value of ¢ in Eq (3.15),

solving for i, then solving for £ using ﬁ in Eq (3.16).

Again, a general rule is to let gq = 0.05 .

In 1957, Aitchison and Brown (2) compared these three
estimation methods and reached the conclusion that, with
g = 0.05 , the method of quantiles was better than Kemsley's

method, and that both were considerably better than the

18
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method of moments (2:62-63). Unfortunately, Aitchison and
Brown did not apply the method of maximum likelihood to the
3-LN distribution, but they did apply it to the two para-
meter lognormal distribution and found that the maximum
likelihood estimates were far more accurate than the
estimates obtained by the method of moments or quantiles
(2:53). With this in mind, it is anticipated that the
method of maximum likelihood should also perform better than
the method of quantiles for the 3-LN distribution. Thus,
the method of maximum likelihood is used in this thesis

~

and is extensively discussed in Chapter 1IV.

New Estimation Techniques

In searching through the recent literature, several
articles pertaining to parameter estimation of the 3-LN
distribution were discovered. Dallas R. Wingo (28) estimated
the parameters by taking the conditional log-likelihood func-
tion of an ordered random sample of n independent observa-
tions, subject to several linear constraints and applied a
nonlinear program to obtain the estimates. Using these
estimates in a series of penalty functions and maximizing
these functions for a sequence of decreasing values of the
penalty parameter, he asserts that the corresponding solu-
tion sequences converges to the solutions of the nonlinear
program. Thus, estimates of u, ¢, and £ are obtained. This
estimation technique was applied to several lognormal data

sets which suggested that the algorithm is quite practical and

19




easy to implement. However, a major problem with Wingo's
approach is that the control parameter is arbitrarily chosen
which presents several difficulties. If the control para-
meter is initially too large, the penalty function will be
easy to maximize, but the algorithm may converge to a point
that is not the solution to the constrained problem (28:58).
On the other hand, if the control parameter is too small, the
penalty function becomes very difficuli to maximize (28:59).

In 1970, Munro and Wixley (21) estimated the para-
meters based on order statistics. 1In their approach, they
take the expectations of the order statistics and express them
as functions which are linear in a location and scale para-
meter but nonlinear in a shape parameter of the distribution.
Regressing the order statistics on their expectations and
implementing an iterative technique results in weighted least
squares estimates of all three parameters (21:212). A Monte
Carlo analysis of this methodology revealed that the iterative
procedure always converges, nearly unbiased estimates are
obtained, and the variances for the location and scale para-
meter compare favorably with those of the order statistic
estimates of the standard normal distribution (21:222).

A variant on Wingo's method was developed by Gibbons
and McDonald (9) in 1975. Using the expected values and
covariance matrix of the standardized 2-LN distribution,
they obtain the best linear unbiased estimators (BLUEs) for
£ and o. The BLUEs fair well against the maximum likelihood

estimates for sample sizes of five and under. However, their
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method is severely limited as it can only be applied when
the shape parameter is fixed at unity (9:290).

In addition to these parameter estimation techniques,
several variations of the method of maximum likelihood have
been applied to the 3-LN distribution. As such, these
variations are discussed in the chapter describing the

method of maximum likelihood.
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IV. Method of Maximum Likelihood

By far the most popular method of parameter estima-
tion has been and still is the method of maximum likelihood.
The concept of maximum likelihood was proposed by Daniel
Bernoulli in 1778 and was later used by Guass in his develop-
ment of the theory of least squares in 1796 (7:135). Gauss
had used the method of maximum likelihood and felt that such
estimation was inferior to least squares estimation. As a
result, the development of the maximum likelihood method was
overlooked until R. A. Fisher reintroduced the method in 1912.
Since that time, the maximum likelihood method has been applied
to numerous distributions and has enjoyed widespread success.
As will be discussed later, the maximum likelihood estimators
(MLLEs) possess several desirable properties such as
asymptotic unbiasedness, asymptotic efficiency, consistency,
sufficiency, and invariancy. It is mostly due to these
properties that the maximum likelihood method is used in
this thesis.

The principle of maximum likelihood consists in

accepting as the best estimate of the parameters, say
61, 62, ..., By those values of the parameters which
maximize the likelihood for a given set of observa-
tions say, xi1, %2, ..., xp [24:150].
Understanding what is meant by ". . . maximize the likelihood

for a given set of observations [24:150]" requires the intro-

duction of the likelihood function and its definition.
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Let x:, X2, ..., Xp be a set of independent random
samples taken from a population described by the density
function fn(x:, %2, ..., Xn/81, 62, ..., Bx) where
01, 62, ecey Sk are unknown parameters of the density

function. The likelihood function, L, is then defined by:

o
I

L(x1, X2, o, xn/elr B2/ «oey ek)

fnlxi, X2, «.., Xn/81, 82, ..., By)

f(xllel, ez, ceoey 9k)'f(X2/e1, 92, eo ey ek),

oo oy f(Xn/elp 62' LR ) ek) (4.1)

I
=9

fi(xi/el' 829 oees Og)

i=1

(20:278) .

The likelihood function gives the "likelihood" that the
random variables assume a particular value of X1, X2, «eo, Xn-
In other words, it is a means of determining from which
density function a set of values would most likely have come
from. Maximization of the likelihood function yields the
estimated values 8,, 8,, ..., ék for the unknown parameters
and are called the maximum likelihood estimators of

61, 02, «.., Ok respectively. The maximization process is
accomplished by taking the partial derivatives of the likeli-
hood function with respect to each unknown parameter, setting
the equations equal to zero and then solving for the para-

meters.
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38 = 0 i=1,2,3,...,k (4.2)

Since L and log{(L) attain their maximum at the same value of
ei, it is usually computationally more efficient to transform
L into log(L) as this transforms the product into a sum which

facilitates differentiation.

Properties

The widespread use of the method of maximum likeli-
hood is attributed to the resulting estimators being
asymptotically unbiased, asymptotically efficient, consistent,
sufficient, and invariant. The estimator, 8, is said to be

unbiased if
E(8] = 8 (4.3)

the expected value of the estimator is equal to the estimate.
Or simply stated, & is unbiased if the mean of its distribution
equals, £(8), the function of the parameter being estimated
(20:293) . Efficiency, mainly a large sample concept, is

linked with the smallest asymptotic variance among a class of
esﬁimators which yields rapid convergence for the estimator
(20:155). An alternate definition is due to the Cramer-Roa
Inequality which sets a lower bound on the variance of the
estimate. If equality at the lowest bound holds, then the
estimator is said to be an efficient estimator (7:139). The

property of consistency implies that the accuracy of the
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estimate increases as the sample size increases (24:151).
Sufficiency merely indicates that the maximum likelihood
estimates contain all the information about the unknown
parameters that is contained in the sample and that the
conditional distribution of the sample given the value of
the statistic does not depend on the parameters (20:301).

A final and important property of the MLEs is the invariance
property defined as "Let § be the MLE of ¢ in the density
function f£(x1, X2, ..., Xp). If 1(-) is a function with a
single valued inverse, then the MLE of t(6) is t(0) ([20:284]."
For example, it is well known that the MLE of the variance

of a normal density function is

02(8) = (x1~1o) 2 (4.4)

1

=1
e

i

where uo is the mean of the distribution. Then by the

invariance property, the MLE of ¢ is

_ /17 2
o = /-ﬁiil(xi-uo) (4.5)

or similarly, the MLE of log(c?) is

n
log(c?) = log[%'zl(xi-UQ)zJ (4.6)
i=

This property is extremely convenient when transformations are

required.
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Three-Parameter Lognormal Estimation

In searching through the literature, only five
articles dealing with maximum likelihood estimation of the
3-LN distribution were uncovered. The first attempt was
by E. Wilson and J. Worchester in 1945, followed by A. C.
Cohen in 1951, B. M. Hill in 1963, J. A. Lambert in 1964,
and finally H. Harter and A. Moore in 1966. The following
paragraphs present a short summary of each methodology along
with the maximum likelihood equations.

Employing the method of maximum likelihood, as
previously described, results in the maximum likelihood

equation for each parameter being:

>

n [ln(x;-£)]

he L — (4.7)
i=1 n
n ~
L [ln(xj=-€)-ul?
g = /L (4.8)
n

n In(x;-¢)

]
o

n
(6%-u) ¢ 1 +

4.9
i=1%i7C o1 X 4.9)

(6:207). It is clear that if any of these equations are
solved for £, the remaining parameters could be easily
obtained by algebraic manipulation. Unfortunately, Eq (4.9)
cannot be solved explicity for £; thus, herein lies the

difficulty of parameter estimation for the 3-LN distribution.
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Wilson and Worchester attempted to solve the maximum
likelihood equations by a trial and error method. This
resulted in computational inefficiency and extremely poor
parameter estimates as could be expected.

A. C. Cohen (6) presented a more feasible and
efficient technique for solving the maximum likelihood
equations. He substituted Egs (4.7) and (4.8) into Eq (4.9)
yielding a function, f(f{) of the location parameter. The
solution of this function is found by inverse interpolation
on a small interval say (£:, £:) where f£(£;)< 0. The
estimated value, £, is then substituted into Egs (4.7) and
(4.8) resulting in i and 6. He also uses a technique based
on the least sample value to estimate £. This technique

summarized below requires:
Xo=£ = explu+o-ty] (4.10)

where x4, = x1-+% with x; being the least sample observation,
§ the interval of precision, and t, determined from the

relationship

i
3

to
t2
J exp[--—i-]dt (4.11)

sS|=

in which k is the number of times the least observed value
occurs in the sample (6:209). Taking the natural logarithms

on both sides of Eq (4.10) and substituting Egs (4.7) and
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(4.8) into the logarithm of Eq (4.10) gives a function,
f(£) of the location parameter equivalent to the maximum
likelihood equation for £. A Monte Carlo analysis of these
techniques showed that the method based on the least observed
sample values performs better than the inverse interpolation
method.

A significant fact with respect to the maximum likeli-
hood estimation of the 3-LN distribution was reported by
B. M. Hill in 1963. He proved that there exists a path,
henceforth referred to as the "path of no return," along which
the likelihood function, L(£,u(£), 02(£)) goes to = as £ goes
to %1, the least observed sample value, and goes to a positive
constant as £ goes to -» (11:73). This leads to the
ridiculous statement that the maximum likelihood estimates of
£, U, and o? are x;, -», and +» respectively (11:75). To
overcome this difficulty, he introduces a joint prior
distribution for £, u, and ¢ then applies Bayes Theorem.
This approach leads to the conclusion that the solution to
the formal likelihood equations should be used with 3

satisfying

n ~ n yAR
X (xi-E)+ Al; [ z ———17— =0 (4.12)
i=1 o(g) li=1l(x3-¢)

where

(In(x;-E)-0(£))
2, = - (4.13)
J 5(€)
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and ﬁ(g), o(£) satisfying Eqgs (4.7) and (4.8) respectively

with £ being replaced by £ (14:Ch 14, 132).

In 1964, Lambert (l6) conducted an empirical investiga-
tion of Hill's proposed estimation methodology. Using
twenty-three different samples, each with different values
for the parameters (£ was always zero), he found the
estimates fairly inaccurate in a majority of the samples.
Also, when 02 was less than 0.04 or larger than 4.0, the pro-
cedure had a tendency to diverge.

The final article found on maximum likelihood estima-
tion of the 3-LN distribution was coauthoried by Drs H.

Harter and A. Moore (10) in 1966. Recognizing that an
algebraic solution to the maximum likelihood equations is
impossible and that the likelihood function may take the

"path of no return" which yields ridiculous estimates, as
proven by Hill, they develop an iterative technique to solve
the maximum likelihood equations. When the likelihood func-
tion gets on the "path of no return," a modification of the
technique is employed which circumvents this problem. Their
technique is very flexible in that it allows for samples
censored both from above and/or below. A Monte Carlo analysis
was conducted with various parameter values, sample sizes, and
censorings. In cases of no censoring, and all parameters
unknown, the mean of each estimator is very close to the true
parameter values with the corresponding variances being very

small. These values indicate that the iterative technique
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provides good estimates of the parameters. Since this tech-
nique has been validated, verified, and yields accurate
estimates of the parameters, a modification of this method
is used in this thesis as one of the bases for determining
the parameter estimates by the method of maximum likelihood.

The iterative procedure is straightf-rward and
involves estimating the three parameters, one at a time in
the cyclical order u, o, and £ assuming all parameters

unknown. First, the observations are ordered and initial

estimates chosen. The initial estimate of §{ is chosen as

the first order statistic. Secondly, the iterative technique
procedure begins where, at each step, the rule of false
position (iterative linear interpolation) is employed to
determine if the value of the parameter being currently
estimated satisfies its respective maximum likelihood equation,
given the latest and/or known values of the other parameters
(10:848). The possibility of encountering the "path of no
return” occurs when no value of £ in the permissible interval
£ < x; satisfies Eq (4.9). In these cases, the likelihood
function is monotonically increasing so that £ = x,; ,

p>=-» , and &>+~ (10:848). Fortunately, the modified
procedure alleviates this problem by censoring the smallest
observation and all those equal to it., The initial estimate
of £ is then equated to the smallest uncensored observation
and the iterative procedure is reapplied. The censored

observation(s) is subsequently not considered in the
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estimation procedure, but it does become an upper bound on
E. With the likelihood function bounded, finite estimates
of the remaining two parameters can be calculated. Harter
and Moore suggest the iteration continue until either the

results from successive steps agree with some assigned

tolerances or a specified number of steps is reached.
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V. The Minimum Distance Method

Minimum distance (MD) estimation is a relatively new
development in the field of statistical parameter estimation.
It was first introduced in the 1950s by J. Wofowitz as a
method which ". . . in a wide variety of cases, will furnish
super consistent estimators even when classical methods . . .
fail to give consistent estimators [30:9]." 1In 1957, he
published a fundamental paper proving the consistency of the
estimator along with several examples of its use. Basically,
Wolfowitz's technique was to let §&(F,,r;) = sgP[Fl(x)-Fz(x)]
be a measure of the discrepancy between two distribution
functions, and emphasized the applicability of this method
for a broad range of distance techniques. From that time on,
the minimum distance method slowly evolved. Working with
absolutely continuous distributions, Blackman (4) proved
consistency and asymptotic normality for an estimator of
location via the MD-method. 1In 1969, Knusel (15) investigated
the "robustness" of MD estimators and showed that they
exhibit the same properties as the class of maximum likeli-
hood type estimators (M-estimators). The term "robustness"
refers to the ability of an estimator to adopt to deviations
in the underlying model while remaining efficient (23:3).
Then, in 1970, Sahler contributed a major piece of work in

As Parr described it:

the area of minimum distance estimation,




Sahler systematically defines D-estimators
[minimum distance type estimators] and outlines
conditions for their existence and consistency.
In particular, he considers discrepancies of
integral type, and proves an asymptotic normality
result for the general (unidimensional) parameter
estimation [22:9].

It has not been until recently that statisticians
began applying minimum distance techniques for the estimation
of distribution parameters. 1In particular, Parr and Schucany
(23) applied the MD method to estimate the location parameters
of several symmetric distributions with emphasis placed on
the normal distribution. They concluded that the method
yielded ". . . strongly consistent estimators with excellent
robustness properties [23:5]." The MD-method has alsoc been
applied, via Monte Carlo analysis, to a variety of symmetrical
and nonsymmetrical distributions at the Air Force Institute
of Technology as theses research under the supervision of
Dr Albert H. Moore. Most of the theses have concluded that
the MD-estimators provide more accurate parameter estimates
than classical estimation methods, even the method of maximum
likelihood. This thesis is yet another application of the
MD-method to another distribution: the 3-LN distribution.
Results from the Monte Carlo analysis §hould prove quite
interesting in this case. Mos* -+ the other applications
involved symmetrical or near-symmetrical distributions, of
which the 3-LN distribution is usually neither. The shape

of this distribution may take on a variety of forms ranging

from positively to negatively skewed and very peaked to not
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very peaked depending on the parameter values. It will be
interesting to investigate how well the MD-estimators react
under the variety of distribution shapes. Nevertheless, it
is anticipated that the MD-estimators will provide more
accurate parameter estimates than the maximum likelihood
estimates.

The minimum distance technique is an extension of
the goodness-of-fit tests used in hypothesis testing. 1In
goodness-of-fit testing, the analyst is concerned with
determining whether or not a random variable follows a
particular distribution given certain values of the parameters.
This testing is accomplished by constructing a distribution
function, call it F(x:0) where Q represents known parameter
values, and then determining how well it fits the sample
distribution function referred to as-the empirical distribu-
tion function or EDF. The common measure of fit is usually
the distance between F(x:0) and the EDF. The most popular
EDF is a nondecreasing step function of size 1/n, where n
is the sample size, corresponding to the ordered sample
points. This EDF convention is employed in this thesis.

The minimum distance method is somewhat a reverse of the
goodness-of-fit philosophy in that the analyst assumes the
probability density function of a random variable and attempts
to estimate its parameters. Minimum distance estimation

merely takes as its estimates of 9 those values which minimize
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the discrepancy between F(x:0) and the EDF. See Figure 2
for a plot of an estimated cdf against its EDF.

Further discussion of MD concepts necessitates the
use of some notation which will be utilized throughout this
chapter. Let T = {Fe('),e € 0} represent the parametric
family of three parameter lognormal distributions. Fe(')
defines the estimated 3-LN distribution using the parameter
estimates found by the maximum likelihood method and Q
corresponds to the parameter space. Let Gn(-) denote the
EDF based on a random sample from the true but unknown
distribution function G(+). The EDF is a nondecreasing step
function of size 1/n at each point xi, X2, ..., X as pre-
viously defined and has a value of one at infinity (30:10).
Finally, &(Gp, Fe) denotes the discrepancy between the two
distribution functions. Thus, the "D-estimators" mentioned
in Parr's guote on page 33 is the ". . . value in @
minimizing (Gp, Fe) over Q0 [22:6]."

Since the distance between two distribution functions
is used in determining the parameter estimates, the distance
measure is of utmost importance. 1In their paper, Parr and
Schucany (23) describe the most commonly applied distance
measures, and it is from this paper that most of the following

definitions are taken (23:4-5).
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Weighted Kolmogrov Distance

The weighted Kolmogrov distance is defined as:

D, (Gn,Fg) = suPx|Gn(x)=Fq(x) [V (Fg(x)) (5.1)

This is one of the most popular distance measures as a result
of its use in the Kolmogrov-Smirnov goodness-of-fit tests.
The discrepancy measure minimizes the maximum distance
between G,(x) and Fe(x) when evaluated at each of the sample
points. w(Fe(x)) is a weighting function which allows the
user to assign a weight to each observation. 1In this thesis,

uniform weights of 1.0 are assigned to each observation.

Weighted Cramer-von Mises Distance

The weighted Cramer-~von Mises distance is defined as:

+

W$(Gn,Fe) =_i(Gn(x)—Fe(x))zw(Fe(x))dFe(x) (5.2)

This technique minimizes the discrepancy between the theoretical
and empirical distribution function, whereas the Kolmogrov
distance only finds the absolute differences between the two.
The weighting function is set equal to one resulting in the

Cramer-von Mises statistic (CVM).

Anderson-Darling Statistic

The Anderson-Darling statistic is defined as

+o

A3 (Gn,Fg) = J(Gn(x)<F o(x) ) =y 4F (x) (5.3)

¥
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Careful observation should reveal that this statistic is a

special case of the Cramer-~von Mises distance where
_ 1 - . . .
w(Fe(x)) = 3(i-0) and u = Fe(x) . This weighting places

more emphasis on the tails of the distribution. The process
also minimizes the area between the theoretical and empirical

distribution functions.

Kupier's Maximal Intexrval Probability Statistic

The Kupier statistic is defined as:

V(Gp,Fy) = sup_ lGn(b)-Gn(a))-(Fe(b)

w<g<b<+»

-Fe(a))l (5.4)

This statistic is closely related to the Kolmogrov distance
where the parameters a and b define the maximal probability
interval. The method yields more accurate estimates for a

distribution scale parameter than for a location parameter.

Watson Statistic

The Watson statistic is defined as:

+oo o
Uz(Gn,Fe) =.iJGn(X)'Fe(X))2dFe(f) +[in(Gn(x)

2

-Fe(x)dfe(x) {5.5)

and is related to the Cramer-von Mises distance. As with the
Kupier statistic, this technique is more appropriate for
estimating the distribution scale parameter than the location

parameter.
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The discrepancy measures listed represent some of the
more popular D-estimators. The popularity of these estimators
is attributed to their invariance property, similar to that
of the maximum likelihood estimators.

This invariance is a result of the estimator
not taking advantage of the function g(8) of the
point 6 € O to be estimated, instead it simply
selects a best approximating distribution {[18:27].

Or as Parr stated it:

It may well be inquired as to why an estimator
obtained by minimization of a discrepancy measure
which is useful in goodness-of-fit purposes (and,
hence in many cases, extremely sensitive to out-
liers or general discrepancies from the model)
should be hoped to possess any desirable "robustness"”
properties. It turns out that, in most cases
(although no for, say, A’ while the discrepancy
measure itself may be fairly sensitive to the pre-
sence of outliers, the value 6 which minimizes the
discrepancy 6(Gn, Fe) is much less so [23].

Since this thesis is concerned with the application
of minimum distance estimation to determine the location para-~
meter for the 3-LN distribution, the Kolmogrov distance, the
Cramer-von Mises statistic, and the Anderson-Darling

statistic are employed.
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VI. Monte Carlo Analysis

This chapter deals extensively with the procedures
used in conducting the empirical investigation and comparison
of the interpolative and iterative modified maximum likeli-
hood (ML) estimators (described later) along with each of
the minimum distance (MD) estimators. Specifically, data
generation, computerization of estimation techniques, and
evaluation criteria are covered in detail. In this research,
Monte Carlo analysis is used to evaluate the properties of
the estimators. Basically, Monte Carlo analysis of estima-
tion methods consists of the following three steps:

1. Generate independent random variables from a
specific distribution (the 3-LN distribution in this case)
to form random samples of a given size.

2. Apply the estimation method(s) to the random
samples to obtain the parameter estimates.

3. Compare the estimates from each estimation
method(s) using one or more evaluation criteria.

Since Monte Carlo analysis requires a vast amount of data and
many computations, a high speed computer is a necessity. For
the purposes of this analysis, the Control Data Corporation
(CDC) 6600 computer located at the Aeronautical Systems
Division, Wright-Patterson Air Force Base, Ohio is used.

Three programs are developed to carry out this research. Each

program is written in FORTRAN V and makes use of several
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subroutines from the International Mathematical and Statistics
Library (IMSL) (12). The first program generates samples of
size n from a 3-LN distribution and calculates the inter-
polative and iterative modified ML-estimators. The second
program calculates the MD-estimators. And the third program
evaluates the estimates from each estimation technique.
Before proceeding further, some notation and comments are
noted:

1. Let uy, 0o, and £, represent initial estimates for
U, o, and &.

2. Let ﬁ, 8, and é represent the ML-estimates of
v, o, and &,

3. Let ﬁ, é, and E represent the MD-estimates of
u, o, and £.

th

4. let X represent the i order statistic from

(1)
a sample.

5. All estimates are calculated to three significant
digits, except for the Kolmogrov estimates which are to two
significant digits.

6. Recall that in the 3-LN pdf and cdf (Egs (2.6)
and (2.7)) there is an 1ln (X-£) term; therefore, no estimate
of £ can be greater than or equal to the first order
statistic (x(i)), otherwise the term goes to minus infinity
and the pdf and cdf are undefined.

7. Evaluation of the 3-LN cdf at point X' is always

computed by evaluating its respective standard normal cdf
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with appropriate limits. The percentile points are identical.

A proof follows:

Let the transformation be

£ = ln(x-£)-u (6.1)
o
then
_ 1
dt = m—,—dx (6.2)
Now since the 3-LN cdf is defined by
' 1 - (In(x=£) ~w) *
F(x') =/ ————— exp = W) dx E<x'<® (6.3)
£ (x=E)ov2em 20°
application of the transformetion yields
v -t 2
F(t') = S exp / jdt  —w<t' <@ (6.4)
-0 27 2

F(t') is easily recognized as a standard normal cdf and

F(x') = F(t') .

Generation of Data

As previously mentioned, the objective of this
research is parameter estimation of the 3-LN distribution
with emphasis on small samples sizes. As such, sample sizes
of 6, 8, 10, 12, and 16 are generated. For each of these

sample sizes, three combinations of u (the mean of the parent
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normal distribution) and ¢ (the standard deviation of the
parent normal distribution) are used: (0.0, 1.0), (1.0,
1.0), and (1.0, 2.0). The location parameter is always

equal to 10.0 since different values of ¢ only result in a

% translation along the x-axis and does not affect the estima-
| tion of the other two parameters. The combinations of sample
sizes and parameters result in a total of fifteen different
cases.

For each case, 1,000 replications of sample size n
are generated for use in the analysis. Caso's study of
Monte Carlo validity recommended 2,000 replications; however,
he also stated that 1,000 replications would be sufficient
(5:37). Since runs of 2,000 iterations are very prohibitive
in terms of computer CPU time, 1,000 replications are used.
Generation of the 3-LN deviates is accomplished using the

IMSL routine GGLNG and adding the value of the location para-

meter to each deviate. GGLNG generates 2-LN deviates, given |

the values of u and ¢ as input; the addition of the location !

parameter forms the 3-LN random deviates. Each sample is
then sorted in ascending order by the IMSL subroutine VSRTA.
With the desired samples in hand, the next step is to 1
calculate the interpolative and iterative modified ML-

estimators. ‘
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Computerization of Maximum
Likelihood Estimators

Interpolative Maximum Likelihood Estimators. It was

mentioned in Chapter IV that if the location parameter is
known, then U and G are easily computed using Egs (4.7) and

(4.8) respectively. 1In this thesis, however, £ is assumed

to be unknown and, therefore, must be estimated. Unfortunately,
it is very difficult to estimate {. As stated in Chapter 1V,
iterative procedures must be applied if all three parameters
are to be estimated via the ML-method. It certainly would

be very convenient if a simple method existed where an

accurate estimate of £ could be found; thus, with this :
estimate, p and 3 could be easily computed. In searching

through the literature, one such method was discovered. This

method involves calculating the median ranks (Y;, i = 1, 2)

of the first two order statistics (X Then the

1y X2y
slope of the line connecting the first two points (i.e.,
(X(l), Yl), (X(z), Yz) is derived and interpolated down to
the x-axis. The point at which the slope intersects the
Xx-axis is taken as the value for é. Now, with é known,
Egs (4.7) and (4.8) are used to obtain the estimates for
ﬁ and J.

This method of linear interpolation for estimation
of location parameters was originally developed in a masters
thesis by Second Lieutenant D. E. Bertrand (3). He used this

procedure on the four parameter Beta distribution to locate

the upper and lower location parameters and obtained
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excellent results. This method is extremely desirable for
the estimation of ¢ since the interpolation will always result
in a é being less than the first order statistic. Further-
more, it appears intuitively obvious that when the pdf is
skewed to the left, as in the 3-LN pdf, the interpolation
approximation of location should be very close to its true
value. Although consistency of the interpolative estimate
was not proven by Bertrand, it seems apparent that as the
sample size increases, the first two order statistics would
get closer to the true value of the location parameter,
thereby making the interpolation approximation a better fit
to the tail of the true cdf (3:19).

The interpolative ML-estimator methodology is given

1. Arrange the sample deviates in ascending order.
2. Calculate the median ranks of the first two

order statistics using the formula (3:31):

_ _i-0.3
Y, = MR(X;))= o502

3. Find the slope (m) of the line between (X(l),

yl) and (X(z)' Y2) by
m = (Y2-Y1)/(X(2)-X(l)) (6.6)

4. The estimate £ is the point at which the slope

(m) intersects the x-axis and is given by




£ = X (1)-Yy/m (6.7)

The method is preser.ted graphically in Figure 3.

Although the estimators from this method are not
"strict"” ML-estimators in the statistical sense, they are
believed to yield extremely good estimates. Appendix B
contains a computer listing of the interpolative ML-estimator
algorithm.

Iterative Maximum Likelihood Estimators. As stated

previously, the interpolative ML-estimators are not "strict"
ML-estimators in the statistical sense, so an algorithm
designed to calculate the "true" ML-estimators was sought.

At first, the iterative ML-estimator algorithm developed by
Drs Harter and Moore was used. The purpose of their algorithm
was to study the asymptotic properties of ML-estimators and,
therefore, used sample sizes of 50, 100, and 200. They con-
stantly warn throughout their paper (10) that with small
sample sizes: (1) the likelihood function may have no clearly
defined local maximum, (2) the first order statistic might
have to be used as é to prevent the likelihood function from
going to infinity, and (3) the iteration procedure might be
slow. Their suppositions were confirmed. Using sample

sizes of 12 and smaller along with different combinations of
the values for py and o, their ;lgorithm set £ equal to X(l)
over 99 percent of the time and convergence was extremely

slow; in some cases the estimates diverged.
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These problems led to the development of a new

iterative ML-estimator algorithm designed to combat the
difficulties associated with the Harter and Moore algorithm.
This new algorithm follows along the same lines as the Hart
and Moore algorithm except that only ﬁ and ¢ are estimated
one at a time in cyclical order while é is equated to X(l)'
The IMSL subroutine ZSCNT which solves a series on nonlinear
equations by a variation of the secant method is used to
obtain ﬁ and 6. The ML-equations for u and ¢ are put in
separate ZSCNT subroutines. When ﬁ is being estimated, the
latest estimate of G is held constant and vice-versa until
both estimates converge. Initially, the ML-equations were
combined in one ZSCNT subroutine but convergence could not
reached to three significant digits in 1,000 iterations so
the ML-equations were put into separate subroutines. The
choice of initial estimates for input into the ML-equations
is crucial. Good initial values, especially for ¢ is vital
to this algorithm if accurate estimates are desired. The
following initial values were investigated (f{ always equals
X(l)): (1) u, = sample mean, o, = sample standard deviati
(2)  wuo

(3) wuo

In (sample mean), o, = 1ln (sample standard devia*

ln (sample median), o, = o derived by equating
sample and population skewness and solving for o. Results
from these runs showed that ¢ is very sensitive to o, while
ﬁ is relatively insensitive to u,. In this thesis, the thir

set of initial values is used as input to the modified iteras-
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ML-estimator algorithm since they give the most accurate
estimates.

Although this algorithm does not produce "strict"
MLEs in a statistical sense (since £ = x(l,)the resulting
estimators from this procedure ". . . appear to possess most
of the desirable properties usually associated with maximum-
likelihood estimates [10:843]." Since the constraint
£ = x(l) is imposed when calculating 1 and 3, the censored

(from below) ML~equations must be used; they are (10:844):

n frz
Lo 1 gz -x ———-F(zr“l) =0 (6.8)
Booi=rel (ZesD)
n 2 flz 3
%% = -(n-r) + I ziz-r r+%'z\ ¥l _
i=r+l \ r+1\
where
. - ln(xi-ﬁ)-u
i~ o
£(z;) = L exp [—ziz/z]
27
Z;
F(zi) = [ f(t)dt

with n as the sample size and r as the number of observations
censored from below.
The iterative methodology is presented below:

1. Arrange sample deviates in ascending order.
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2. Calculate the initial estimates: uo = ln (sample
median), oy = ¢ derived by equating sample and population

skewness, £ = X(l)

3. Given the initial estimates and £ = X(l) as

input, recursively estimate p and o, using censored ML-
equations, until the estimates agree within a certain
tolerance or a maximum number of iterations is reached.
Appendix B contains a computer listing of this algorithm.
Attention is now turned to the computerization of the MD-
estimators.

Computerization of Minimum
Distance Estimators

The main thrust of this research is to estimate
the location parameter of the 3-LN distribution by minimum
distance (MD) estimation and then use the estimate to obtain
refined estimates of u and ¢ via their ML-equations. It is

anticipated that these refined estimates are more accurate

than the estimates from the modified methods of maximum
likelihood. As described in Chapter V, the MD-estimators
are obtained by finding values for the parameters which
minimize the discrepancy between an empirical and an
estimated distribution function. 1In this thesis, only the
location parameter is minimized, while the other two para-
meter estimates, determined from the modified ML-methods,
are held fixed. The empirical distribution function is the

1/n- step function and the estimated distribution is obtained
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by using ﬁ and ¢ along with the most recent MD-estimate of
£E. Once é is determined, it is used in the censored or

uncensored (depending on whether or not ¢ = ML~

X (1)
equations of y and ¢ which yields ﬁ and g. This procedure
is done using the estimates from the interpolative and
iterative modified ML-methods. Three minimum distance
estimators are investigated: the Kolmogrov Distance, the

Cramer-von Mises Statistic, and the Anderson-Darling Statistic.

Kolmogrov Distance Estimators. The computational

formula which allows for calculation of the Kolmogrov

Distance is defined by Stephens as (26:731):

+

D =max(l < i <n) [(i/n) - z,;]
D =max(l < i < n) [z, - (i-1)/n]
D = max(DV,D") (6.9)

where z; is the estimated standard normal cdf evaluated at

the ith

sample point. To calculate the Kolmogrov Distance,

é is shifted two units to the right and left of itself. The
original shift is to the left and é is moved at .01 steps.
With each iteration, the maximum distance between the
theoretical and empirical distribution functions are recorded.
Of course, location estimates are not allowed to go within

.001 of x(l) since this implies divergence of the estimate.

Also, if the final estimate is constrained by the highest or

A "
~

lowest incremental value (i.e., ¢ = §+2.0 or § = 8-2.0),
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a new initial estimate, which eliminates this constraint,

is provided and the iterations begin anew. The final result
is to choose the incremental value which minimizes the maximum
distance bet+ween the two distribution functions. The actual
recalculation of the new minimum distance location parameter

is calculated by:

£ =Ff 4+ (2.0 -+ .01 - COUNT) (6.10)

where COUNT is a counter which locates the point at which the
maximum distance between the estimates and empirical distribu-
tion functions is minimized. The Kolmogrov MD-estimators

of u and o are calculated by using 2 in the censored/
uncensored ML-equations of u and o, thus yielding ﬁ and g.

Cramer-von Mises Estimators. Next, the program

calculates tne Cramer-von Mises MD-estimators. Recall that
this distance measure finds the discrepancy between the
estimated and empirical distribution functions. The computa-

tional formula for this measure is given by (26:731):

n
2 _ - - 2
w2 = 1 [zi (2 1)/2n] + (1/12n) (6.11)
i=1
where z; is the estimated standard normal cdf evaluated at
. th

the i sample point and n is the sample size. The minimiza-
tion of the location parameter is accomplished via the IMSL sub-
routine ZXMIN. The subroutine uses a Quasi-Newton method to
minimize a function of one or more variables and is identical

to the one used by Parr in his PhD dissertation. With this
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method, ﬁ and ¢ are held constant while £ is being minimized
by ZXMIN. If the last estimate of ¢ is within 0.001 of x(l)
(implying divergence), a new initial estimate of ¢ is provided.
If the estimate of £ is again within 0.001 of x(l)’ then

x(l) is censored along with any other sample points equal to

it and § is set to the last censored observation. The CVM

2

MD-estimators for y and ¢ are then calculated by using ¢ in
the uncensored/censored ML-equations of u and o thereby
yielding p and a.

Anderson-Darling Estimators. The final distance

measure investigated in this research is the Anderson-Darling
Statistic. This distance measure is similar to the CVM
measure in that it finds the discrepancy between two distribu-
tion functions but with more emphasis being placed on the
tails of the distribution. Stephens gives the computational

formula as (26:731):

n
A2 = -0 I

. 1(2i-l)ln(zi+1n(l—zn+1_i)/n‘:% -n (6.12)

Again, z; is the estimated standard normal cdf evaluated at

the ith

sample point and n is the sample size. The minimiza-
tion process is identical to that of the CVM distance calcula-
tion just described. Again, once E is obtained, ﬁ and é are
calculated via their uncensored/censored ML-equations.

Appendix C contains a listing of the computer program

used to calculate each MD-estimator. The approximate CPU
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time required for one run of 1,000 replications varied from

250 to 300 seconds depending on the sample size.

Evaluation Criteria

The final step in this Monte Carlo analysis is to
evaluate and compare all of the estimates obtained from each
estimation technique. This thesis uses two modified maximum
likelihood techniques along with three minimum distance tech-
niques for each yielding a total of eight sets of parameter
estimates (u, o, I} or twenty-four different parameter estimates
for each sample. To make any relevant conclusions out of all
the different parameters and parameter sets, certain criteria
for evaluation are needed. Three approaches are used for
this evaluation: mean squafe error (MSE), relative efficiency
(REFF), and the Cramer-von Mises Statistic.

The MSE is a measure of how close each estimated para-
meter is to its true value and is useful for investigating
the strength of each estimator. MSEs are calculated by

1000 .

MSE = T (6. - 6)%/1000
. h N
i=1

where 68 is the true parameter value and 61 is the parameter

estimate from the ith

sample and particular estimation tech-
nique. The smaller the MSE, the better the estimator. The

REFF is another tool, similar to MSE, which aids in the compari-
sons of individual estimators. Calculation of REFFs are

accomplished by:
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MSEm
REFF = /MSEi

where MSEm is the mean square error of a reference estimator
and MSEi is the mean square error of the estimator being
tested. For this analysis, MSEm is taken as the estimators
from the interpolative modified ML~method. Values of REFF
greater than unity imply that the estimator is performing
better than the interpolative modified maximum likelihood
estimator. The third evaluator is a distance measure which
provides an overall measure of how well the estimated
distribution fits the true distribution. An appropriate
measure of this type is the Cramer-von Mises statistic,
defined by Eq (5.2). In this application, however, G, is
replaced by F- the estimated cdf (see Figure 4). The integral
must then be multiplied by the sample size to form the actual
distance measure (3:32). Since JF(x) = %%dx = f(x)dx ,

the formula used to compute the distance between the

estimated cdf, ﬁ, and true cdf, F, is:

o R 2
W2(F,F) = n I[F(X:G)-F(x:e)] f(x:0)dx (6.13)
12

.
~

where 6 represents the parameter estimates and 6 represents
the true parameter values. The limits of the integral are
from £ to » as the 3-LN distribution is not defined outside
this range. This integral is evaluated using 15-point

Laguerre integration. A function g(x) with limits ranging
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from 0 to » may be numerically integrated by Laguerre integra-

tion using the relationship (1:923):

o n Xi
fog(x)dx ~ iilwie g(xi) (6.14)

where Wi and x; are the ith weights and abscissa of the
Laguerre polynomials and n is the number of quadrature points--
in this case n = 15 . Before applying Laguerre integration,
however, the lower limit is increased to £ by adding the

true value of £ to each abcissa. The weights and abcissa

are taken from the Handbook of Mathematical Functions with

Formulas, Graphs and Mathematical Tables (1l).

The CVM statistic just described is calculated for
each of the 1,000 replications of a given sample size and
estimation technique. The sample mean (MCVM) and sample

standard deviation (SDCVM) are calculated by:

1000
MCVM = T wizllooo
i=1
//1000 ]
SDCVM = ) (wiz- MCVM) 2/1000
i=1

where wi2 is the CVM distance of the ith

replication. MCVM
and SDCVM are the overall measures of how well the estimated

distribution fits the true distribution. The smaller the

MCVM and SDCVM the better the fit.
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Much can be learned from investigating the three
evaluation criteria just described. The MSEs are extremely
useful in determining which estimation method worked best on
a particular parameter. Unfortunately, however, the MSEs are
not scale invariant; the same size MSE may be highly signifi-
cant for a small valued parameter but insignificant for a
larger one (2:32). The relative efficiencies yield approximately
the same type of information about a particular parameter
except that a base estimator is used which facilitates
comparisons across all estimators. The CVM distance has the
advantages over the MSE and REFF in that it is a single measure
of fit for all three parameters and is also scale invariant
with respect to the magnitude of the parameter estimates.
Unfortunately, information concerning the individual parameters
is not provided. A closing comment on the CVM distance
measure is that no bias is introduced by using the CVM
statistic, both for the MD-method and as an evaluation
criteria. This should be apparent since during minimization
the discrepancy between the estimated distribution function
and 1/n step function is calculated, whereas during evaluation
the discrepancy between the true and estimated cdfs is found.
Investigation of these three criteria provides more than
enough information to draw valid inferences about each modi-
fied maximum likelihood and minimum distance estimator. A
computer listing of the program used to compute these three

evaluation criteria is given in Appendix D.
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VII. Results and Conclusions

Results and Comparisons

Numerical results pertaining to each of the estima-
tion methods are listed in Appendix A. For each of the
fifteen different cases (i.e., combination of parameter
set (u,0,£) and sample size), there corresponds a page in
Appendix A containing a table of the mean square errors
(MSEs) relative efficiencies (REFFs) and the means (MCVMs)
and standard deviations (SDCVMs) of the Cramer-von Mises
statistics. The eight different estimation methods:
modified interpolative maximum-likelihood (INT) estimation,
modified iterative maximum-likelihood (ITR) estimation, and
combinations of the INT and ITR estimates with Kolmogrov
minimum distance (KOL) estimation, Cramer-von Mises minimum
distance (CVM) estimation, and Anderson-Darling minimum
distance (A-D) estimation are listed down the side of each
table. The minimum distance estimators obtained by the INT
estimates are listed directly under INT, and the minimum
distance estimators obtained by the ITR estimates are listed
directly under ITR. At the top of each table the sample
size and true parameter values are given. In the following
row, "MU," "SIG,” and "XI" denote the narameters u, o, and
¢ respectively. The entries in the "DIV" column are the
number of times the location parameter estimate is equated to

the last censored observation, usually the first order
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statistic. In the "CVM statistics" table, "MCVM" is the

mean of the Cramer-von Mises statistic and "SDCVM" is the
estimate of the standard deviation. When reference is made
about a specific combination of a modified maximum likelihood
estimates with a minimum distance estimator, the notation
ML/MD is used where ML is either INT or ITR, and MD is

either KOL, CVM, or A-D depending on the estimation technique
applied. It should be noted that in some cases, the MSEs

and the MCVM appear to contradict each other. 1In other words,
one method may have larger MSEs for each parameter but a
smaller overall MCVM when compared to another method. This
situation arises in the case of N =10 , uyu=0.0 ,0=1.0
£ = 10.0 ; ITR/KOL has larger MSEs for each parameter but

a smaller overall MCVM than the INT/CVM estimates. This
apparent dichotomy occurs because a set of values further
away from the true values in a MSE sense may be closer in a
distance sense. Results obtained from the MSE, REFF, and

CVM Statistics tables are summa.;ized in the following para-
graphs.

As previously stated, the MSE provides a measure of
how close each estimated parameter is to its true value, while
the REFF provides for comparisons across all estimators by
the use of a base estimator. The MSEs from all estimation
methods considered in this thesis are extremely good in that,
except for cases where N = 6 , no MSE of any parameter is

ever greater than unity! 1In support of the asymptotic ML
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properties, the MSEs of each parameter decrease as the sample
size increases for the INT and ITR estimators with the
exception of the location estimator via ITR estimation.
This exception seems reasonable since the location estimate
is equated to the first order statistic in this method. Also,
the decreasing MSEs of the interpolation estimate for the
location parameter as the sample size increases lends strong
support for the consistency assumption of the interpolative
location estimator. When the term "best" or "better" is
mentioned in the following text, it refers to best or better
in the MSE sense. It should also be remembered that in every
case ¢ = 10.0 . When looking at a particular sample size,
the MSEs for all methods have a tendency to increase as the
parameter values increase; however, this is not unexpected
since the MSE is not scale invariant. In comparing the INT
and ITR estimators, the REFFs reveal that, in each case, the
INT estimator yields better estimates than the ITR estimators
except for the location parameter when u=1 , o=1 .
The REFFs also show that the INT/CVM and INT/A-D estimators are
better than their respective ITR/CVM and ITR/A-D estimators
for cases of u=0 , o=1 and p=1 , og=1 ; in
cages of u=1 , o =2 , the reverse is true. It is also
interesting to note which estimators perform the best for
each parameter across all possible cases.

For cases of u =0.0 , o =1.0 , the best

estimator for u is the ITR/KOL estimator when N = 6,8,10 ;
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for N = 12,16 the best estimators for yu are the CVM and
A-D estimators using the INT or ITR estimates. The best
estimator for ¢ is the INT/A-D estimator except when N = 16
where the INT/CVM estimator is best. The best estimator
for £ is INT/A-D estimator except for N = 6 in which case
the INT/CVM estimator is best.

For cases of uy=1.0 , o =1.0 , the best
estimator of each parameter across all sample sizes is the

ITR/KOL estimator.

For cases of 1.0 , o = 2.0 , the best

estimator for p when N 6,8,10 is the ITR/KOL estimator;
however, when N = 12,16 the best estimator varies between

the combinations of INT and ITR estimates with the CVM and

A-D methods. The best estimator of o is the ITR/CVM estimator
followed closely by the ITR/A-D, INT/CVM, and INT/A-D
estimators. The best estimator of { varies between the ITR/CVM
and ITR/A-D estimators; the INT/CVM and INT/A-D estimators

are much worse.

The MCVM measure also reveals some important informa-
tion regarding the estimators. Results from this measure are
usually interesting since it provides an overall measure of
how well the estimated distribution function fits the true
distribution function. The term "best" or "better” is now
changed to mean best or better in the minimum distance sense.
When the sample sizes are fixed and the parameter sets are
investigated in the order (u=0.0 , o =1.0),

(u=11.0 , o=1.0), and (b =1.9 , o = 2.0), the results
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show that (1) the MCVM for the INT estimator gets larger,
(2) the MCVM for the ITR estimator gets smaller, and (3)
the MCVM for the MD-estimators are always smaller than
either the INT or ITR estimators, except for one case where
N = 16 , and remain fairly constant. This indicates that
in choosing between the INT and ITR estimators, the INT
estimator should be used for values of y and o less than
unity, whereas for values of pu and ¢ greater than unity, the
ITR estimator is the correct choice.

For cases of uyu =0.0 , o =1.0 , the best over-
all estimator is the ITR/KOL estimator except for N = 16
where the INT/CVM estimator is best.

For cases of u=1.0 , o =1.0 , the best estimator
is the ITR/KOL estimator except for N = 16 in which case
the INT/A-D estimator is best.

For cases of uw=1.0 , o = 2.0 , the best estimator i

for N = 6,8,10 is the ITR/CVM estimator; for N = 12 is
the ITR/KOL estimator; and for N = 16 is the INT/CVM
estimator. The estimators are closely followed by other
combinations of INT and ITR estimates with the CVM and A-~D
methods.

The MCVM results clearly show that the minimum dis-~
tance estimators using the modified maximum likelihood
estimates are far more superior than the modified maximum
likelihood estimators. The dominant estimator appears to be

the ITR/KOL estimator followed closely by the ITR/CVM,
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ITR/A-D, INT/CVM, and INT/A-D estimators. As a final note,

the SDCVM value for each estimator is extremely small

indicating the stability of each estimator.

Conclusions

The objective of this thesis is the comparison of
ML-estimators against MD-estimators given small samples of
3-LN deviates. It was anticipated that the MD-estimators
would yield much more accurate estimates than those from
the MD-estimators. Due to the small sample sizes, "strict”
ML-estimators could not be obtained so two modified ML-
estimation techniques are developed and compared against
three MD-estimation methods. The results of the Monte Carlo
analysis clearly demonstrates the superiority of the MD-
estimators over both modified ML-estimators.

Considering the eight estimators tested (given the
ranges of parameter values and sample sizes) in the Monte
Carlo analysis, several conclusions are made. The MD-
estimators are always superior to both modified ML-estimators.
Of the modified ML-estimators, the interpolative method gives
the best estimates. Of the MD-estimators, it appears that
the ITR/KOL estimator gives the best estimates, but the
INT/KOL estimator gives the worst estimates. The result may
be partly due to the location parameter never being set to
the last censored order statistic by the ITR/KOL estimator.

The CVM and A-D estimators yield approximately equivalent
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estimates regardless of whether the INT or ITR estimates are

used. This fact lends further support to the robustness
property of the MD-estimators.

Although the estimators are rated as the "best" or
"worst" estimators in the above paragraphs, it should be
noted that no estimator gives extremely poor estimates. For
the MD-estimators, the MSEs are rarely greater than 0.5 and
the MCVM are usually less than 0.2. For the modified ML~
estimators, the greatest MSE is 1.360707 while the MCVM is
usually much less than 0.5. Furthermore, if great accuracy
of the estimates is not required, or if a computer is not
available, then the interpolative ML-method becomes a very
viable estimation technique since the estimates can be
easily computed using a desk or hand-held calculator; all
other estimation methods require computerization due to more

involved computations.

Recommendations for Further Study

Several possibilities exist for further research in
parameter estimation techniques for the 3-LN distribution.
First and foremost would be the development of an iterative
estimation methodology allowing for the solution of the ML-
equations for each parameter when working with small sample
sizes. As it stands now, the MLE of the location parameter
is equated to the first order statistic, while y and ¢ are
iteratively estimated. Perhaps using the interpolation

estimate of £ as an initial guess, an iterative procedure
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could be developed. In this procedure, é could be shifted
around itself in small step lengths (i.e., 0.001) with ﬁ and
o being calculated at each step. At each step the likelihood
function would also be calculated to determine the direction
of the next step for the location estimate. In this way,

the location estimates are independent of the steps and may
yield strict ML estimators.

In this thesis, only the location parameter is
refined by the MD-methods. The remaining two parameters
could be similarly estimated. An iterative procedure could
be developed where all three parameters are found via MD-
methods. For example, ¢ could be estimated using Kupier's
Maximal Interval Probability Statistic and/or Watson's
Statistic, while y and £ are estimated by the Kolmogrov
Distance, Cramer-von Mises Statistic and/or the Anderson-
Darling Statistic. It is anticipated that this procedure
would provide much more accurate estimators than those
obtained in this thesis. As such, this topic would be an

excellent research area for an adventurous statistician.
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Notation

MU
SIG
X1

DIV

INT
KOL
CVM

A-D

ITR
KOL

CVM

MCVM

SDCVM

Appendix A

Tables of Mean Square Errors,

Relative Efficiencies and

CVM Statistics

. . Estimate of yu
. . Estimate of ¢
. . Estimate of ¢

. . Number of Times E

X(1)

. . Interpolative ML-Method

. « Kolmogrov MD-Method
. « CVM MD-Method Using

. « A=D MD-Method Using

. - Iterative ML-Method
. . Kolmogrov MD-Method
. « CVM MD-Method Using

. « A-D MD-Method Using

Using INT Estimates
INT Estimates

INT Estimates

Using ITR Estimates
ITR Estimates

ITR Estimates

. « Mean of the CVM Distance

. « Standard Deviation of CVM Distance
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TABLE A.1
SAMPLE SIZE 6
TRUE MU 0,00
TRUE SIGMA  1.00
TRUE XI 10,00
4 MU 516 X1 DIV
MEAN SQUARE ERFORS
INT 3 V55310 .\ 285817 L105316
KOL ¢  1.360707 1,103962 . 143489 3
CuM ¢ L549699 L 178744 L 098908 14
A-T! ¢ V546901 195549 .100976 5
“ ITR ¢ .844492 L497264 VA9F105
KOL ¢ \ 329784 V244997 . 346587 0
CUM ¢ L 684417 L 292260 .127459 181
A-D ¢ V69653 \279103 L119645 280
RELATIVE EFFICIENCIES
INT ¢ 1.,000000 1.,000000 1.000000
KOL ¢ L48159%5 259807 V733966
, CUM ¢  1.192124 1.,608462 1.064791
A A-TI ¢ 1.198223 1.466725 1.042988
ITR ¢ V775797 \576791 ., 213578
, KOL ¢  1.987085 1.170695 .303516
- CVM @ V957472 .981278 826280
E A-D ¢ 978581 1.027640 .880239
CUM STATISTICS |
b MCUM SICUM
INT @ +366810 .000491 ,
KoL ¢ . 188285 .000189 ;
CUM ¢ L055743 . 000056 ;
A-D ¢ ,058678 . 000059 |
ITR ¢ .707892 . 000710
! KOL 3 L 030761 .000031
CUM ¢ 062547 .000063
A-D ¢ .062547 .000063
| oo 1
{
!
; 68
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TABLE A.2
SAMFLE SIZE b
TRUE MU 1.00

' TRUE $S10MA 1.00
by TRUE XI 10.00

MU 516G X1 LIy

MEAN SQUARE LIRRURS

INT ¢ COTHTAY 287204 279412
KOL ¢ 1,332993 1.,0333275 PA3T0Y )
CUM ¢ LEE5340 $ 180249 27961 0
AT ¢ 555660 . 193898 745718 0
ITR .B44145 CEDGA1S 359424
KOL ¢ 084419 L071938 V368376 0
CUM ¢ 753766 < 385351 9046203 67
A-D ¢ « 655059 . 2846989 834891 184
RELATIVE EFFICLENCIES
INT ¢ 1.000000 1.000000 1.000000
i KOL ¢ « 491952 W D76590 326256
j cuM ¢ 1.180825 1.593375 1.070877
A-D ¢ 1.180162 1.443979 1.045183
ITR ¢ . 758865 ‘546415 2,168476
KoL ¢ 7.768037 3.992364 2,139032
i CUM ¢ 869990 +745306 841495
A-I ¢ $ 955849 1.000751 + 933549
i CVUM STATISTICS
MCVUM SHCUM
8 INT ¢ . 482803 «003400
) KOL ¢ + 146933 . 000032
cuM ¢ . 056385 +000021
A-D ¢ 059234 000025
ITR ¢ ¢342977 . 000025
KOL ¢ 037457 «000041
‘ cuM ¢ + 062233 « 000009
- A-D ¢ + 062650 . 000022
. e
69




INT
KOL
CUM
A-T

ITR
KOL
CVUM
A-Tt

INT
KOL
CVUM
A-D

ITR
KOL
CUM

INT
KoL
cvM
A-D

ITR
NOL
CuM
A-D

* 0

*e 00 +9 oo *e 40 o0 s *e 79 oo oo

e oo v oo

*® 00 ¢ oo

e 00 9¢ o0

MU

43630
1.357249
888478
823750

264483
442440
.861398
859002

1.000000

6735258
1,0618644
1.035818

978387
2.132709
1.095472
1.098528

TABLE A.3

SAMPLE SIZE

TRU
TRU
TRU

E MU
E SIGMA
£ XI

516G

SQUARE

521600
742137
+ 503325
« 526195

. 528586
670193
+ 379846
+470960

6
1.00
.00

10.00

ERRURS

RELATIVE EFFICIENCIES

1.000000
+ 702834
1.0346308
e 99126467

+ 829798
778283
1.373186
1.107523

CVUM STATISTICS

MCVM

+ 617581
118615
059271
063324

0272654
+ 060480
+0570346
058148

SDCUM

.021080
000612
«» 000850
+ 000845

+ 000792
000959
+ 000737
000770

70

X1

1.035676

282729
1.200742
1.259358

+B29922
+ 689556
+ 545788
5968345

1.000000
1.053878
862530
«822384

1.247920
1.5019446
1.897579
1.735251

nev

52

6
49




YLt . 3

INT
KOIL.
VM
a-D

ITR
KOL
CVM
a1

INT
KOL
CuUM
A-D

ITR
KOL
CVM
a-D

INT
KoL
cUM
i U

ITR
KOL.
CVM
A-D

e oo oo oo

e o0 o0 o0 oo 6 oo oo

e oo 20 ov

*e ¢o 9% o0

*® 20 *9 oo

Mty

476877
2902417
¢ A06060
393454

«A13789
+ 273430
$5301102
1472213

1.000000
¢ S13093
1.174307
+ 211999

770662
277021
« 951505

268843

TABLE A.4

SAMPLE SIZE
TRUE MU
TRUE $S1GMA
TRUE XI

MEAN

516

8
0,00
1.00

10.00

sQuAaRE CREORY

L 2729487
» P 39NHTD
1746728

[t X
. j '{)\5\.1/ E

«4167704
234507
252267

249537

RELATIVE EFIFICIENCIES

1.000000

290442
1.544111
1,638130

655657
1.1463414
1.077469
1.093573

CUM STATISTICS

MCUM

+ 488003
+171784
+040006
038185

952907
020390
041624
«041624

71

SOCVM

. 000641
+ 000172
+ 000040
. 000038

+ 000953
+000020
000042
000042

X1

SO71213
100614
070241
QL7290

fSGA97061
1405017
084231
084408

1.000000

.707788
1.013827
1,058307

1129653
175828
» B454C
«BA43676

0oy

—
HG IR R eV

0
268
290




INT
KOL.
CVM
A-D

ITE
KOL.
cyM
A-T

INT
KOL.
CUM
A-D

ITR
KNOL
CVM
A-DI

INT
KoL
CVM
A-T

ITR
KOL
CUM
AT

.0

Mt
: 4769234
: s 9533468
: 426717
: « 398835
: s 626356
: 071923
. e HAPL2Y
: 1495790
: 1.000000
: + 300263
: 1.117684
H 1.195815
. 0761443
: 6.631134
H + 884445
. + 954254

TABLE A.5
SAMPLIED SYZIE 8
TRUE MU 1.00
TRUE SIGMA 1.00
TRUE XI 10.00

S16G
MEAN SQUARE ERRURS
$ 273282
235647

+ 191437

« 172825

+4317479
063611
+35248¢
+ 255873

RELATIVE EFFICIENCIES

1,000000
+ 292077
1.427528

1.581258

1632964
4.296162
7753310
1.068013

CUM STATIOSTICS

MCUM

637025
s 121675
Q0392762
037338

¢ 336990
020569
169935
+C40439

72

SnNCYM

.004718
+ 00007
+ 000046
+ 000003

. 000008
+000016
+ 000030
+ 000004

.

a®

Xl

3269073
658776
sH23154
+497591

282776
228272
535454
393109

1.000000

+ 787861
1.007167
1.058903

1.863320
24308229
829176
838374

niv

P N

92

226

Py




AN - o B AT e el 23 [ —_— RS
PO ‘;,.':_' e
2
TABLE A.6
SAMFLE GIZE 3
TRUE MU 1.00
TRUE SIGMA 2.00
TRUE XI 10.00
ML 516G X1 niv
MEAN SQUARE ERRORS
INT 3 676236 413293 283798
KoL ¢ P24 350 » 587918 269736 3
cum 2 c 657344 + 3653832 368726 o]
A-D 3 639238 + 396803 + 333915 20
ITR ¢ 692689 480513 660948
KoL 3 + 840742 + 614440 + 437359 0
CuM ¢ 621160 305793 + 185932 62
A-D 3 623585 + 366783 1764682 a2
RELATIVE EFFICIENCIES
INT 3 1,000000 1.000000 1.000000
KoL ¢ » 731628 702977 1.0%2133
cvm 3¢ 1,061100 1,131126 775985
A-D ¢ 1,05795% 1.,0415% +849910
ITR ¢ + 276319 +840108 + 429380
KoL 2 1.534424 672634 582318
cunM 3 1,08880G1 1,351547 1.526353
-0 3 1.084512 1,1268035 1.606268
CVUM STATISTICS
MCUM SDCVM
- INT ¢ + 816757 .028034
k- KOL ¢ + 096663 . 000887
; CuM ¢ . 035378 + 000723
b A-D 2 036698 «000713
ITR 3 e 291249 « 000808
KoL ¢ «041684 + 000747
CUM 3 035354 + 000707
aA-Iv ¢ 035622 + 000718
73




TABLE A.7

SAMPLE BIZE 10
TRUE MU 0.00
TRUE STGMA 1.00
TRUE XTI 10.00

516

SAQUARE ERRORS

INT 3 383317 250480 OS1G70
KoL 2 + 5681101 772202 075254 3
cuM ¢ « 335957 185935 L050492 19
(aled U ¢ 319620 e 1U7262 +047732 £/
IR ¢ + 496913 379719 +HP0799
KoL ¢ + 402003 + 2279864 + 461629 0
DLV] o I 8403179 + 244989 +0HA706 295
A-D 2 » 394851 241653 2062153 277

RELATIVE EFFICIENCIES
INT 2 1.000000 1.000000 1.000000
KOL 2 e S62790 +» 324371 + 6853448
cuM ¢ 1.140972 1.347152 1.021448
A-It ¢ 1.214488 1.5927%97 1.079382
ITR 3 0771396 659646 . 087298
KoL ¢ . 9753518 1.098664 »111725
cve 3 950736 1.022434 797073
A-D0 3 270790 1.036528 + 829809

CUM STATISTICS

MCUM SNCUM
INT 3 + 612318 + 000539
KoL ¢ 276212 + 000003
cuM 2 + 126936 + 000000
A-T 3 + 130615 + 000000
ITR ¢ 1,565242 . 000001
KoL ¢ «0351737 « 000000
CuM ¢ +168352 + 000001
A-D ¢ +168352 +000001

3
74




INT
KOL
CuM
A~

ITR
NOL
c'4M
A-T1

INTY
KO
CvM
=D

ITR
KL
CUM
A-D

INT
KOL.
cvM
A-D

ITR
KOL
CUM
A-D

*e 90 2o oo

e o0 40 oo e 4 oo oo

*e o0 *0 oo

e eo o% oo

e 20 o0 oo

MU

3BRIP27
FEH02ATE
e 3A3BTE

W 31796%

e 505151
DH10GLY
« 417473
402501

1.000000

e 211718
1.055108
1.207451

760024
6.284779
919647
953854

HAM
TRL
TRU
Th

MEAN

KELATI

C\VM

MCUM

+ 804153
2264566
«124742
+127688

7495610
086908
+ 159530
+ 159330

TABLE A.8
FLE STZE 10
E MU 1.00
o ST0OMA 1,60
£ X 113,00
516

SQUARE ERRORS

« 2E0430
851645
220912

157387

391544
+QE7130
200833
22446345

VE EFFICIENCIES

1.000000

+ 280843
1.,133620
1,591178

+ 639597
4,383520
+ 832456
1.0146%586

STATISTICS
SHCVM

006031
000272
+ 000030
+ 000021

000051
+000Q19
000035
+ 000035

75

X1

¢ 381625
JODRTES
L 38151
302544

178601
1474617
e A52670C

1,000C00

757586
1,000296
1.082120

1.458327
2,136742
+ 804069
843054

niy

O C o

£
oG o




INT
KOL
CVM
A-T

ITR
KOL
CUM
a-1

INT
NOL
CUM
A-D

ITR
KOL
CuUM
A~D

INT
KoL
CuM
A-T

ITR

KOL
CUM

* 0

% g0 0 oo e 90 o4 oo e e o0 oo

e *0 %% o

*® 900 O o

*e oo oo oo

TABLE A.

SAMPLE STZE

TRUE

MU

MU

$H32332
JAHB3BHY
502089
+ 497984

+ 547307
» 424192
+A37294
505874

1.,0000G0

778415
1.060234
1,068974

272640
1.2547232
1.092424
1.052298

1

TRUE S1GMA
TRUE XY

§16G
MEAN SRUARE

«310910
472942
272678
£ 292731

374777
» 974206
» 235218

277305

9

10
1.00
2,00

10.00

ERRORS

RELATIVE EFFICIENCIES

1.000000

657395
1.140207
1.062102

.82958%5
+ 541461
1.321796
1.121184

CUM STATISTICS

MCUM

. 035208
+194634
112736
+ 123434

581777
079166
«112724
+112901

76

SnCVM

1034789
+ 000954
+,000801
» 000811

+ 000956
000870
+ 000805
«000813

X1

S117524
112787
102260
» 133133

684600
+517111
085660
082215

1.000000
1.041999
+ 771863
« 882425

0171666
$ 227270
1.371976
1,4294705

niv

8o W

t3

71
G99




SAM

TABLE A
FILE STZE

TRUE MU
TRUE S1GMA
TRUE XI

516

SRUARLE

L 279326
c6DG209
« 184550
140796

» 3348723
¢ 228309
226507

220576

RELATIVE EFFIC

1.0C0000

e 364877
1,296811
1.697397

+714785
1.057287
1.,056364
1.,085007

.10

12
0.00
1.00

10.00

FERORS

IENCIES

CUM STATISTICS

M
MEAN
INT ¢ « 326100
KL 3 +HGA634
cuM ¢ s 270527
A-D 3 2607645
IR 3 + 4177432
KOL ¢ PATT29
CuM ¢ + 343748
A-I 3 + 337610
INT 2 1.000000
KoL 3 2 SF45560
CUM ¢ 1.122444
A-It 2 1.,227020
ITR 3 +« 780250
KOL 3 e 769595
cuM 3 + 949211
A-D 3 « 265908
MCVM
INT ¢ + 735408
KoL 3 «210019
cum ¢ 064878
a-n 3 065139
ITR ¢ 1.624189
KoL ¢ « 023369
cuM ¢ 091958
A-D 091958
it

77

SHCUM

+000703
« 000004
+000000
+ 000000

+ 000000
000000
+000000
+ 000000

X1

+ 043434
1060628
s 0AT4LH
+ 040502

+ 622391
« 3501794
+QB2435

051215

1.000000

716413
1.000202
1.072407

1069786
086559
+ 828350
348074

oDy

¢ o

. ry

337
309




i

INT
KOL
CUM
A-I

I™
KOL.
CVUM
A-D

INT
KOL
CUM
A=l

ITR
KOL
CVUM
A-D

INT
KOL
CuM
A-D

ITR
KOL
CuM
A-D

LK 4

ee o0 oo e

e 40 00 o0 *e 00 o0 oo

*e o¢ oo o0

0 o9 90 oo

0 00 ¢o oo

MU

326100
620869
+3238%6

269186

s 427455
+ 062410
« 3HBIH0
347895

1.000000

$ 025231
1.006730
1.211430

+ 762887
5.225145
917687
«$37351

TABLE A

SAMPLE SIZE
TRUE MU
TRUE SIGMA
TRUE XI

616

.11

12
1.00
1,00

10,00

MEAN SQUARDE ERRKRORS

P 2B9326

307474

e 246831

«1474%,3

« 358289

Q76860

272643

$ 236927

RELATIVE EFFIC

1,000000

£ 296389

s 969095

1.5623070

667970

4,209080

877801

1.010128

CVM STATIST

MCUM

973852
+ 150207
+ 0863786
+ 0634633
0 657586
« 036542
» 088608
088597

78

IENCIES

ICs
SDCUH

+007515
+ 000098
000029
. 000022

+ 000051
000013
+000033
+ 000033

XT

s 320933
1421894
331687
+ 277023

272780
e 169423
+ 384187
« 374251

1.000000
e 7608697
£ 967577

1,080500

1.176527
1.894276
835308

«8E7536

niv

3L C

149
287




INT
KOL
Ccum
A=l

ITR
KoL
cum
A-D

INT
KaL
CUM
A-I

ITR
KOL
CUM

INT
KOL
CVM
a-D

ITR
KoL
CuM
A-D

* e

e 90 vo 2o

oo ¢0 oo oo

e oo 00 oo

*® 96 09 ¢

> o6 ¢ o0

0 % % oo

MU

« 449044
$539179
e 421967
« 416589

+ 4592219
422344
411279
+ 426530

1.000000

« 832427
1.064167
1.077905

977841
1.063217
1.091821
1.052784

1

TABLE A

SAMFLE SIZE
TRUE MU

TRUE

S516MA

TRUE X1

816G

.12

12
1.00
2400

10.00

MEAN SOQUARE ERRORS

e 270869
¢ 379041
226249

+ 240181

« 309192
056705
207014
+ 237099

RELATIVE EFFIC

1.000000

714616

1.197219
1.127772

+876056
+ 486558

1.308461
1.142431

LENCIES

CVM STATISTICS

MEVHM

» 233838
+114847
049472
+ 051923

. 486826
+ 046033
»051311
+ 051267

79

Sncvm

.041781
000514
000486
000508

000562
0003585
»000472
+ 000469

X1

+ 086631
082294
+119063
099595

s 725196
565643
$ 054277

» 0587158

1.000000
1.052942
v 724734
870033

+ 119486
153190
1.593510
1.515996

v

0
67
67




INT
KOL
cum
A-D

ITH
Kot
CVM
A-T

INT
KOL
CVM
A-T

ITR
KOl
cvM
A-D

INT
KOL
CuM
A-D

ITR

KOL
CVM

LK 2

*e ¢ 0o vo

o9 4% 09 v

*® ¢ ©0 20

*® ¢o ¢0 oo

e 0@ %0 oo

*® a0 *e oo

MU

P 2327243
378745

ey

+ 194003

S TOB170
+456919
£ 250650
$ 249732

1.,000000

s 613565
1.045427
1,197831

754063
. 508587
927125
« 930532

2
<

1

TABLE A.13

SaMPLE GTZE 16
TRUE MU 0.00
TRUE GICGMA 1.00
TRUE X1 10.00

MEAN

516

SQUARLE ERRORS

203052
5093247
«179816
« 126010

« 281351
221362
+1930645
+ 194706

RELATIVE EFFICIENCIES

CVUM
MCUM

058370
202583
s 052597
056141

+ 048071
620798
083688
083688

1,000009
« 3984651
1.129222

1.611390

721702
«917282
1.051723
1.042865

STATISTICS
SNCVM

» 000001
, 000010
» 000001
» 000001

+Q00002
. 00C008
» 000001
» 000001

80

XI

L Q2WPT72
+043096
0306834

JO27946T

e bK67245
+ 569259
+036964
036456

1.000000
+ 695501
976829

1.071822

« 044921
2052653
810873
,B822172

nry




INT
KOl
cun
a-I

ITR
KOL
cvHM
A-1

INT
KGoL
cuM
A-Ti

ITR
KOL
CVuM

INT
KoL
CVM
A-0

ITR
KOt
CuM

Pe 20 c0 ve

oo *% oo o0

e v oo o0

e oo 00 oo

e 90 o0 oo

*
L4
.
*
*
L]
[
.

ML)

$ 2327893
LA32193
¢ 242403
+ 1720384

308362
061823
256022

250442

1.000000
5337685
258667
« 220607

753118
3.75885%50
1907568
227893

TABLE A.l4

SAMIPLE SIZE
TRUE MU
TRUE SIGMA

146
1,00
1.00

10.00

ERRORS

SNCUM

+ 000106
+ 000483
+ 000794
000078

000093
« 000413
000253

TRUE XI

SI6G

MEAN SGRUARE

« 203052

+ 656473

2200748

119146

« 282413

054438

220713

+ 194406

KELATIVE EFFICIENCIES

1.000000

309307

890274

1.704219

+718989

3.729951

+919982

1.044473

CUM STATISTICS

MCUM
0592919
0152448
076387
056961
$ 772859
. 640381
080935
084114

+ 000106

XI

P L21497
+ 307171
237409
» 202697

. 307384
+188£0546
270062
« 2687900

1.000000
+ 721088
932978

1,092739

+ 720587
1.172838
«820171
823699

v

[CRERS]

204
302




INT
KOL
VUM
A-D

ITR
KOL
CVUM
A=l

INT
KoL
CVUM
A-D

ITR
KoL
CuM
A-D

INT
KoL
CVM
A-D

ITR
KOL
CuM
A-T

L 2N 4

oo 20 o0 o0

*e oo o0 oo

o S0 *0 o0

*® o9 99 oo

*® 00 0 oo

*® 00 *0 oo

MU

+ 303700
350235
291445
+ 287489

$322491
+ 414454
(2934632
0301267

1.000000

+867134
1.042050
1.056387

+941733
e 732771
1.034290
1.00807S

TABLE A.

SAMFLE SIZE
TRUE MU
TRUE SIGMA
TRUE XI

SIG

15

16
1.00
2.00

10.00

MEAN SRUARE ERRORS

+ 200303

$2T9P372

165668

177457

235817

+ 319659

+ 162336

+186689
RELATIVE EFFICIENCIES

1.000000

772261

1.209059

1.127467

+ 849399

3835450

1.233879

1.072922

CUM STATISTICS

MCUM SHCVM
+ 059835 + 000964
«121674 .001103
+ 057521 +001007
+ 072231 »001043
+ 585003 .000941
0 653962 . 001038
+ 073151 + 000925
«059473 + 000954

82

X1

+ 030553
+ 033354
042253
032471

787416
1659067
«024263
+ 024930

1.000000
+ 916034
723105
» 240942

038802
« 046359
1.259276
1.225547

nIiv

11
38

77
61
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Appendix B

Computer Listing of Data Generation and
Maximum Likelihood Techniques

FROGRAM REGLND

C
Cc KON K Y KK RO K KK K 2K OISR NOKOK KO CC o OO 0O OISR A SOROK ORI AT R KK
C % X
C ¥ WRITTEN RY 21T JIM H KEFFER aAFTT/GOR-83L FOR MG THESIS X
C X NECEMEEls 1783 X
C X X
Cc X FURFOSE: (1) GENERATE SAMPLES QF 3-LND DEVIATES X
1 C X (2) CALCUIATE THE MEAN ANU STh. LEV. OF SAFLER X
C X (3) CALCULATE THE MLE’S USING THE INTERFOLATION X
Cc X METHOD X
C X (4) CALCULATE THE MLE’S USING THE ITERATIVE X
C X METHOL %
C X X
Cc X VARIARLESS DSEEL - SEED FOR RANDOM NUMBER GENEEATOR X
c X TMU - TRUE MEAN OF FARENT NORMAL X
C % TEIG - TRUE SThO, DLV, OF FPARENT NOMMAL *
3 Cc x TXI - TRUE LOCATION VALUE X
| C X EMU - INTERFQLATIVE MLE OF TMU X
z C X ESIGC - INTERFOLATIVE MLE CF 751G X
) C X EBXI - INTERFOLATIVE MLE 0OF TXI X
c % HMU - ITERATIVE MLE OF TMU p
Cc x HSIG - ITERATIVE MLE OF TSIG X
C X HXI - ITERATIVE MLE OF TXI X
Cc X N - DESIRED SAMFLE SIZE X
; C % NC - % OF DEVIATES CENSORED FROM RELOW X
3 i c X NREPS - NUMEBER OF REPLICATIONS X
; ' C % MLE ~ SUBROUTINE TO COMFUTE ITERATIVE MLE’S X
C X GGLNG - IMSL ROUTINE WHICH GENERATES 2-LNI DEVIATEX
: Cc X VUSRTA - IMSL ROUTINE WHICH ORDERS DIATA X
: c X SUM - DUMMY VARIAEBLE USED 70 COMFUTE SAMFLE X
2 Cc x MEANS AN SThi. DEVS, b 3
b C x SUMR - DUMMY V& IABLE USED FOR SUMS X
3 Cc X SUMR1 - DOUMMY VARIAERLE USED FOR SUMS X
= C X X - VECTOR OF 3-LND DEVIATES X
Cc X MEAN - SAMFLE ARITHMATIC MEAN X
C x SD - SAMPLE STANDARD DEVIATION X
Cc X Y1 - MEDNIAN RANK OF FIRST ORDER STATISTIC x
C X Y2 - MEDIAN RANK OF SECOND ORUER STATISTIC ¢
Cc * SLOFE - SLOFE DF INTERFOLATION LINE X
3 C X X
3 | c X I/0 FILES: INPUT - UNFORMATTED IMFUT OF "RUE FARAMETERS X
C X TAPES - QUTFUT OF TRUE PARAMETERS, SAMFLES, x
Cc % MEANS, Sk, AND ALL MLE ESTIMATES ¥
C x %
Cc X IMFORTANT: IMSL LIEBRARY MUST BE ATTACHED REFORE THE PROGRAM X
C X IS KUN., REVIEW IMSL MANUAL ON GGNLG AND VSRTA %
Cc X %
; c 3 38 20K 3 20300200 0 K KK 30KOK K KOK NEIOK K K I OKOK KKK OK K KKK K KK K K K 3k 5K 330K KO KOK K KO 3Kk
C
. 83




100

103

aoOa

101

10

o000

30

Py

COMMCN NyNC,X(50) $IIMUyHSTIGyHXTy Sy SIGy NN
EXTERMAL GGNLG,VSTRA,MLE
DOUBLE FRECISION LSEED
KEAL TMU,TSI[G,TXI,EBMU,RSIG, RXI
REAL MEAN,SUM,SD.SLOFPE,Y1,Y2
INTEGER N
DEEED=1R859.:1752.710
%% READ FPARAMETERS AND WRITE THEM TO FILE %X
FRINTXy "ENTER TrU, TCIGy TXI Ny NREFS’
REAINX, TMU, TSLG, TXI, N, NREFS
WRITE(S,100) NREFS,N,TMU,TSIG, TXI
FORMAT(IA/I3/3(F15.67))
okkk BEGIN DO-LO0F FOR GENERATION OF SAMFLES xokickxx
0o 999 J=1,NREFS
FORMAT(IA4)

L

¥kk GENERATE AND SORT GSAMPLES FROM 2-LN LISTRIDUTION ¥:

CALL GONLG(DOSEED,N,TMU,TSIG,X)
WRITE(D,103) J
CALL VSRTA(X,N)
XXX ADD L.CCATION PARAMETER T 2-LN DEVIATES XXX
Xkk WRITE THE 3-I.N ODEVIATES TO FILE XxxX
Xxx CALCULATE SAMFLE MEAN XXX

Stir=0.0

0 10 I=1,N

X(I)=X(I)+TXI

WRITE(S,101) X(I)

FORMAT(F13.6)

StiM=5UM + X(ID)
CONTINUE
MEAN=SUM/N
%% CALCULATE SAMFLE STANDARDY TIEVIATIONS XXX
SUM=0,0
N0 20 T=1,N

SUM=SUM+ (X (I)-MEAN) X (X (1) -MEAN)
CONTINUE
SD=(5UM/N)XXO .5
Xk CALTUILATE MEDIAN RANKS XXX
Xkk INTERPOLATE TO ESTINATE BXI XXX
11=(1.0-0.3)/(N+0.4)
Y2:=(2.0-0.3)/(N+0 . 4)
SLOFE=(Y2-Y1)/(X(2)-X{1))
BXI=X{(1)-Y1/SLOFE

*x% CALCULATE MLE OF TMU AMND TSIG USING THE INTERFOLAT!

kK UALUE FOR THE LOCATION FARAMIITER, X1 dokxk

¥xk USE FINST CRDER STATISTIC IF THE INTERFOLATED VAL UE:.™

x¥kx OF THE LOCATION PARAMETER IS CLOSE TO X(1) %X
IF (BXI .GT. X(1)) RBRXI=X(1)
5UM=0.0
ng 30 Ty yN
SUM=SUMILOG{X(I)-RXI)
CONTINUE
EMU=SUM/N
SUM=0.0
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0o 40 I=1,N
SUM = SUM + (LOG(X(I)-RXI) -~ EMU)XX2
40 CONTINUE
BSIG=5AQKT (SUM/N)D

C XXk CALCULATE THE MLE’S USING THE CENSORED MAXTMUM LLIKELIHOOD X
C KXREQUATIONS AND THE ITFRATIVE PROCELURE
CALL MLE (31D
C XXRWHITE THE MILE’S, SAMI'LE MEAN ANT STANDARD DEVIATIONXKX
C Ak% TO FILE FOR EACH SAMFLE ¥xxX

WRITF(5,102) RiMU,BS1G,BXT,HMU.HSTG,HX1 MEAN, SD
102 FORMAT(FL15.,3/F15,3/F15.3/F15.3/F15.3/F15.3/F15.6/F15.6)

C HARKOKK ENTU IIO-LOOF  OR¥OKK KK
999 CANTINUE
sSTOF
END
C
c
SURROUTINE MLE(SD)
C SR KK K KKK 3% 3K K 3K 3K 3K 3K 0K 3K 353K K 3K 30K 5K 0K 3K 5K 3 5 K K 35K 3K KK 0K 3K KK 3K 3K ok oK KR 3K KKK K K KK K
(o X X
o X FURFOSE: (1) CALCULATE THE ITERATIVE MLE’S FOR TMY AND X
” X 151G WHILE TXI=X(1) X
c X X
C ¥ VARIABRLES: SUMN - [DUMMY USED FOR SUMS X
C X SUMU - DUMMY USED FOR SUMS X
C X PAR1 - INITTAL & FINAL ESTIMATE OF TSIG VIA x
c X EQUATING SAMFLE AND FOFULATION SKREWNESS X
c X XBAR — SAMPLE MELIAN *
c x SIG - FINAL ESTIMATE OF TSIG FROM SAMFLE 4
c % SKEWNESS X
c X c1 - ARRA OF CONSTANTS FOR USE RY ZSCNT %
C X FCNO - FUNCTION USEDN TO CALCULATE EXPLSIGX%2] X
C X FCN1 - FUNCTION USED TO CALCULATE MLE OF TMU X
c % FCN2 - FUNCTION USED TO CALCULATE MiLE OF TSIG X
C X X
c X  NOTE: UNDEFINED UARIAKLES IN THIS SURAHLOUTINE ARE X
C X DEFINED IN THE MAIN FROGHAM X
C X X
¢ 123832382833 2820823232322833323¢333233¢333233383¢833332 8338303833433 3YS
COMMON NyNC,X(S0) yHMI, HSIG,HXI y JySIG,NN
EXTERNAL FCNO,FCN1,FCN2 :
REAL WR(54) ,FNORM,FARCL) ,C1) , Sl FANRLC1) ,C1 (1)
INTEGER J
INTEGER NyNCyNSTGyNIAR, TTMAY, TER, MAXFN K
C XXX CHFCK IF ANY OF THE 3nMPLE FOINTS ARE CLOSE TO THE XXX
i c XXx FIRST ORDER STATISTIC - CENSDR THEM IF THEY ARE KAOK
9 NC=1
‘ o 10 I=2,N
IF ((XCIY=-XC1)) JLEs 0.001) NC=NCH1
10 CONTINUE
3 C KKK SET ZOCONT FARAMUTERS FOR SKECWNESS ANMD MLE CALCULATIDNS XXX
B, NFAR=1

NSIG=3
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NFAR1 =1
ITMAX=1000
NN=0
C{1)=0.0
¥k CALCULATE SAMIFLE SKEWNESS AND STGMA FROM THE SKEWNESS XkxX
xx¥x  EQUATION - RESULTS ARE USELD A% INITIAL ESTIMATES XK K
XBAR=X(INTCIN-NCI/2))
SUMN=0.0
SUMD=0.0
0 8 I=NC,N
SUMN=SIMN+ (X (I)~-XRBAR)%%3
SUMD=SUMEI+ (X (I)-XEAR) %%2
CONTINUE
SUMN=SUMN/ (N-NC)
SUMD=(SUMD/ (N-NCY I %XX1.5
C1 (1) =5SUMN/SUMD
FART (1)) =L ORI
IF (FAR1(1) .LT. 0.001) PARI(1)=1.0
CALL ZSOCNT(FUNO,NSIG,NFARL, ITHMAX,C1,FARL,FNORM, WK, TER)
SIG=SQRRT(LCG(ARS(FAR1(1))))
Xkx SET INTIAL VYALUFS FOR THE ITERATIVE MLLE FROCEDIURE ANL XXX
XX¥ CALCULATE THE MLE OF TMU AND TSIG L $ 2 4
HMU=I_L0G(XEAR)
H3IG=S1G
IF (516G .LT. 1.001) HSIG=PAR1(1)
FPARCL) =HMY
CaLL ZSUNT(FCN1,NSIG,NPAR, ITMAX,C,FAR,yFNORM, WK, IER)
HMU=FAR(1)
FAR(1)=HSIG
CAlLL ZSENT(FCN2,NSTIG,NFAR, ITHAX,CoFAR,FNORM,, WK, TER)
HSIG=FAR(1)
RETURN
END

SUBROUTINE FCN1(FAR,F,NF,C)
XkXK CALCULATE THE CENSOREDN nlLE OF THMU XxXx
LIMENSION FARINF) ,F(NF),L((1)
COMMON NyNC,X(50) ,HMU,HS TG yHXT y JySIG,NN
SUM=0.,0
HXTI=X(NC)
r=CLOGOXINCHL) —HXIY-FPARC(1) ) /HST6G
FU=,3989423kEXF(~(YX%X2)/2)
CAall. MUNOFRCY,2Z)
R=NCX(FU/Z)
D0 10 1=14NC,i!
SIM=SUM+ (LOG(X(I)-HXT)--FAR(1) ) /HSTH
CONTINUE
F(1)=5UM-FK
RETUIRN
END

SURROUTINE FCN2(FAR,F NP,
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XXX CALCULATE THE CENSORED MLE OF TSIG XXX
DIMENSION PARCNP)Y ,F(NF),C(1)
COMMON N,NC,X(50) yHMU,HSIGyHXIyJ,SIG,NN
Xk I7 THE FAR(1) ESTIMATE I8 INFEASIRLE, CHANGE THE INITIAL XXX
XkX ESTIMATE TO THE SIGMA ORTAINED FROM THE SKEWNLSS EQN, L3 3
IF (PAR(1) .LE. SiG .AND. NN EQ. 0) THEN
FAR(1)=6IG
NiN=1
ENDIF
SUM=0.0
HXI=X(NC)
Y=C(LOG(X(NCH+1)-HXTI)-HMU) /PAR(1)
FU=,3989423XEXF(~-C(YXX2)/2)
CALL MDNOR(Y,Z)
R=NCX(YXFU)/2Z
DO 10 I=1+NC,N
SUM=SUM+( (LOG(X{I)-HXI)~-HMU)/PAR(1) ) XX2
CONTINUE
F(1)=SUM-(N-NC)-R
RETURN
END

SUBROUTINE FCNO(FAR1,F,NP,C1)

xx%k CALCULATE SIGMA FROM THE SKEWNESS EQN - FAR1(1)=W XXX
REAL FINF) yCLINFP) ,PARL (NP)
F(1)=C((PAR1C(L)+2)XX2)X(PARL1(1)-1)~ (C1(1))%k%2

RETURN

END
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: Appendix C

P Computer Listing of Minimum
¥ Distance Techniques

FROGRAM MLEMD

CUMXI - CRAMER-VON MISES MD ESTIMATE OF XI

A2XTI ~ ANDERSON-DARLING MD ESTIMATE OF XI

MONOR - IMSL ROUTINE FOR NORMAL CNhF VALUES

ZXMIN - IMSL ROUTINE TO MINIMIZE THE DISTANCE
NPAR - NUMBER OF VARIARLES INFUTTED RY ZXMIN
MAXFN - MAXIMUM $ OF ITERATIONS RY ZXMIN

NSIG - # OF SIGNIFICANT DIGITS ZXMIN SLOVES FOR
I0PT - ZXMIN OPTION (SEE IMSL MANUAL)

DRGXI - SUBKOUTINE TO FIND DISTANCE VIA KOLMOGROV
DCUXT - SURROUTINE TO FIND DISTANCE VIA CVM
DA2XTI ~ SUERROUTINE TO FIND DISTANCE VIA A-D

C KKK IOK KKK KK KKK 3K KKK IR KK 3K 3K K KK 33K KK KKK K KKK K KKK K K XK KKK
C b 4 %X
C X WRITTEN RY 2LT JIM H KEFFER AFIT/GOR-83D FOR MS THESIS M
C X DECEMKER 1583 X
C X %
c ¥ FURFOSE MINIMUM DISTANCE ESTIMATION OF THE LOCATION X
c X FPARAMETER FOR THE 3-LN DISTRIRUTION USING THE X
C X INTERPOLATIVE ANN ITERATIVE MLE’S. THE MINIMUM X
c X DISTANCE ESTIMATORS ARE THE NOLMOGROV DISTANCE, X 1
c X CRAMER-VON M1SES DISTANCE, AN THE ANDERSON- X
c X DARLING STATISTICS x
c X X
c X VARIAKLES! NREFS - NUMBER OF REFLICATIONS X
c X N - SAMFLE SIZE CINFUT) X k
c X TMU - TRUE MEAN OF FARENT NORMAL (INFUT) x
c X TSIG - TRUE STANDARD DEVIATION OF PARENT NORMAL X
" C X TXI - TRUE VALUE OF THE LOCATION PARAMETER X
c X EMU - INTERFOLATIVE MLE OF TMU x
. c X ESIG - INTERFOLATIVE MLE OF TSIG X
_ c X ESIG - INTERFOLATIVE MLE OF TSIG X
. > X EXI - INTERFOLATIVE MLE OF TXI x
‘ c X HMU - ITERATIVE MLE OF TMU X
: c x HSIG - ITERATIVE MLE OF TSIG X
' c X HXI - ITERATIVE MLE OF TXI X
‘ c X K - SAMFLE INDEX x
| C X NGB - DIVERGENCE COUNTER OF INTERFOLATIVE MLE’S X
C X WHERE @ IS INITIAL OF MD METHOD X
c X NeH - DIVERGENCE COUNTEK OF ITERATIVE MLE’S x
c X WHERE @ IS INITIAL OF MII METHOD X
c X NC - % OF DEVIATES CENSORED FROM BELOW X
c X NN - CHECK FOR DIVERGENCE OF KOLMOGROV ESTIMATEX
C x EXIC - NEW INITIAL ESTIMATE - USED WHEN FIRST X
c X INITIAL ESTIMATE DIVERGES x
c X X - ARRAY OF 3-LN DEVIATES X
c x MEAN - SAMFLE MEAN X
C X SD - SAMFLE STANDARD LEVIATION X
c X PAR -~ ARRAY CONTATNING MLE OF XI FOR MD X
C X KXI - KOLMOGROV MD ESTIMATE OF XT X
c X X
c X X
C X X
c X X
c X X
c x X
C X x
c X X
C X X
c x X
c X X
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c
100
106

101

103
10

40

104

F DISTANCE VALUE IN SUBROUTINES
HyG,W ~ ARRAYS USED RY ZXMIN (SEE IMSL MANUAL)
IER -~ IMSL ERROR MESSAGE

{

1/0 FILES! TAPES ~ INPUT,CONTATNS TRUE PARAMETER VALUES,
SAMPLE DEVIATES,SAMILE MEAN AND STh. DEV,
ANDI MLE AND MDD ESTIMATES

TAFPE&4 - OUTPUT, CONTAINS TRUE FARAMETER VALUES AND
ESTIMATED FARAMETER VALUES FOR EACH
MINIMUM DISTANCE METHODR

IMPORTANT S IMSL LIBRARY MUST BE ATTACHED REFORE RUNNING THE
FROGRAM. REVIEW IMSL MANUAL ON ZXMIN.

I I I I IE I I I W I I I I I W

$$3$33332233 8333333383 33333323 8332338323332 233¢383333232848323333¢2"
COMMON X(50) yNCy Ny EMU,EBSIGEXT y BXIC NN
EXTERNAL ZXMIN,DCUXI,DAZXI,DKSXI,MLE, MINOR
DIMENSION FAR(1),H(1),G(1),W(3)
INTEGER N,K
REAL MEAN,KXI,CUMXI,A2XI,MU,SIG,XI,SD
%X INITIALIZE DIVERGENCE COUNTERS XXx
NEB=0
NCRB=0
NAB=0
NKH=0
NCH=0
NAH=0
XXX INPUT TRUE PARAMETERS XXX
READ(5,100) NREFS,N,TMU,TSIG,TXI
FORMAT(I4/13/3(F15.58/))
WRITE(7,106) NREFS
FORMAT(14)
WRITE(7,101) N
FORMAT(I3)
WRITE(7,102) TMU,TSIG,TXI
FORMAT(F15.46/F15.6/F15.6/)
XXkXkXXkX BEGIN [O-LOOFP FOR NREPS SAMFLES Xokxkkkx
Do 999 J=1,NREFPS
XXX INFPUT SAMPLE INDEX XXX
RFAD(G,106) K
XXX INPUY SAMFLE DEVIATES XXX
Do 10 1=1,N
READ(S,103) X(I)
FORMAT(F15.6)
CONTINUE
DO 40 I=1,N
CONTINUE
AkX INPUT ESTIMATE OF XI, SAMPLE MEAN AND STD. DEV.XXX
READ(S,104) BMU,RSIG,BXI,HMU,HSIG,HXI,MEAN,SD
FORMAT(F15.4/F15.6/F15.6/F15.6/F15.6/F15.6/F15.6/F15.6)
EXIC=HXI~1.,0
XXX BEGIN MD ESTIMATION USING INTERFOLATIVE MLE’S XXX
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X Do 888 L=1,2
4 Cc %Xk EBEGIN MD ESTIMATION USING ITERATIVE MLE’S XkX
; IF ( L +EQ. 2 ) THEN
BMU=HML)
RSIG=HSIG
BXIC=RXI
; BXY=HXI-1.0
L ENDIF
v WRITE(7,10%) BMU,ESIG,RX1
1 105 FORMAT(3(F15.,6/)
c AKX SET ZXMIN FARAMETERS XXX
NFAR=1
NS1IG=3
MAXFN=3000
I0OPT=0
Cc XkX MINIMIZE DISTANCE VIA KOLMOGROV DISTANCE XXX
FAR(1)=BX1
S NP=1
i NC=0
- NN=0
) CALL DRSXI(NFyFAR)
KXI=PAR(1)
IF (KXI LT. X(1)) THEN
CALL MLE(KXI)
ELSE
IF (L +EQ. 1) NKBE=NKER+1
IF (L .EQ. 2) NKH=NKH+1
WRITE(7,107) HMU,HSIG,HXI
ENDIF
C XXX MINIMIZE DISTANCE VIA CRAMER VON-MISES XXX
FPAR(1)=ERX1
NC=0
NN=0
CALL ZXMINC(DCUXI,NPAR,NSIG,MAXFN, IOFT,FPAR,H,G,F,W, IER)
CUMXI=FAR(1)
IF (CUMXI LT, X(1)) THEN
CaLL MLE(CUMXI)
ELSE
IF (L .EQ., 2) NCH=NCH+1
IF (L +EQ. 1) NCE=NCR+1
WRITE(7,107) HMI,HSIG,HXI
107 FORMAT(3(F15.67))
ENDIF
' (o XXX MINIMIZE DISTANCE VIA ANDERSON~DARLING STATISTIC XX
E PAR(1)=RXI
‘ NC=0
NN=0
CALL ZXMIN(DA2XI,NPAR,NSIG,MAXFN,IOFT,FARyHyG,F,W,IER)
AZ2XI=PAR(1)
! IF (A2XT LT. X(1)) THEN
CALL MLEC(A2XI)
ELSE
IF (L .EQ. 1) NAB=NAE+1
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999

108

10

IF (L +EQ. 2) NAH=NAH+1
WRITE(7,107) HMU,HSIG,HXI
ENDIF
NC=0
CONTINUE
KXRRKKKEND NO-LOOF FOR NREFS XXEKXXXX
CONTINUE
WRITE(7,108) NKE.NCR,NAEK,NKH,NCH,NAH
FORMAT(I4,14,14,14,14,14)
STOP
END

SURROUTINE MILLE(XI)
**********X*********************************#**%******************

X FURFOSE? CALCULATE THE MLE OF MU AND SIG GIVEN THE VALUE x
X OF THE LOCATION FARAMETIR (XI) x
X X
X VARIABLES: N - SAMPLE SIZE x
x X - ARRAY OF 3-LN DEVIATES x
b 3 MU ~ MLE ESTIMATE OF FARENT NORMAL MEAN b
X SIG ~ MLE ESTIMATE OF FPARENT NORMAL ST. DEV. X
X XI - ESTIMATE OF LOCATION FARAMETER (INFUT) X
X SUM -~ DUMMY VARIABLE USED FDR SUMS X
X x
1333233333333 333333333 838333323 8282883383333 3 2328320033333 ¢332384¢32: 4
COMMON X{(S0),NC,N,EMU,RSIG,EXI,BXIC,NN
REAL XI,MU,SIG,5UM,Y,Z T
INTEGER N
xk%k INITIALIZE PARAMETERS XXX
SUM=0.,0
MU=0.0
S1G6=0.0
%*XkX CALCULATE THE MLE OF MU XxXx
D0 10 I=1,N

SUM=SUM+LOG(X(TI)~XI)
CONTINUE
MU=SUM/N .
x%k%x CALCULATE THE MLE OF SIG XXX
SUM=0.0
DO 20 I=1,N

SUM = ( LOG(X(I)=XI) - MU )Xx%2 + SUM
CONTINUE
SIG=SAQRT(SUM/N)
WRITE(7,102) MU,SIG,XI
FORMAT(3(F15.6/))
RETURN
END

SUBROUTINE DKSXI(NF,FAR)
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c KK 335 30 K 338 330 3K 300 K KK 303K 3K 33K 330 333K 303 330K oK 3 3K 33K 3K 9K 3K K 33 3K 3K K oK oK
c X X
c * FURPOSES FIND DISTANCE RETWEEN EQTIMATEN CIF ANII 1/N X
c X STEF FUNCTION FOR XI VIA KOLMOGROV DISTANCE x
c X X
, c X VARIAKLES: NP - NUMBER OF PARAMETERS (ALUWAYS 1) X
" c X PAR - ARRAY OF FARAMETER VALUES X
‘ c X FLUS - DUMMY VARIABLE FOR D4 X
c X MINUS - DUMMY VARIAKLE FOR D- X
c x DMAX - VALUE OF I+ STATISTIC X
c X OMIN - VALUE OF D- STATISTIC %
c X COUNT - LOCATION OF FOINT WHERE MINCMAX DISTANCE] X
c X M - % OF DEVIATES REMAINING AFTER NC CENSORED %
C X FROM KELOW X
c X y4 -~ PERCENTILE POINT FROM STD NORMAL COF COR- X
c X RESPONDING TO THE 3-LN CIF FERCENTILE FT. X
. C X X
. c X NOTE: UNDEFINED VARIARLES ARE DEFINED IN THE MAIN FGM X
- c X x
(% P et e et T3 e33 8833283323833 33823228333322332233¢23

COMMON X(50),NC,N,EMU,BRSIG,BXI,EXIC,NN

3 INTEGER NF,COUNT,M
L REAL FAR(NF) yMAXI,PLUS,MINUS,IMAX,YZ
F: " XXX USE FIRST DRDER STATISTIC IF ESTIMATED VALUE OF XI IS XXX
J (™ %% CLOSE TO THE FIRST ORDER STATISTIC %Xx
IF ((X(1)-PAR(1)) LT. 0.001) THEN
NC=1
Lo 3 I1=2,N
IFCXC(II-X(1)) LT, 0,001) NC=NC+1
! 3 CONTINUE
' PAR(1)=X(NC)
ENDIF
MAXI=99999.
M=N-NC
C xk%x CALCULATE KOLMOGROV STATISTICS %Xkx

K

0 5 J=1,400
XII=PAR(1)+(-2.0+,01%d)
IF (XC1+NC) LT. XII + 0.001) GOTO S
D0 10 I=1,M :
Y=(LOG(X(NC+I)-XII)-EMU) /BSIG
CALL MINOR(Y,Z)
FLUS=ABS( I/M -~ 2)
MINUS=ABS( Z~-(I-1)/M) |
DMAX=MAX (PLUS, MINUS)
3 IF (IMAX JLT. MAXI) THEN
3 MAXI=0MAX
' COUNT=J
! ENDIF
10 CONTINUE
S CONTINUE

e

c Xkx USE NEW INITIAL ESTIMATE FOR XI IF AT EOUNDARY XXX
IF (COUNT .EQ, 400 .ANDIl, NN .EQ, 0) THEN
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PAR(1)=EXIC
NN=1
GO 10 2
ENDIF
3k USE NEW INITIAL ESTIMATE FOR XI IF AT ROUNDARY XXX
IF (COUNT .EQ. 1 .AND. NN .EQ. 0) THEN
FAR(1)=BXIC
NN=1
GO TO 2
ENDIF
PAR(1)=BXT+(~-2.0+.C1XCOUNT)
RETURN
END

SUBROUTINE DCUXI(NF,FAR,F)
(2323383333303 0323380383803 283880033038 038302¢3823 2003023333334

X X
¥ PURPOSE: FIND DISTANCE RETWEEN ESTIMATED CUF AND 1/N %
X EDF FOR THE LOCATION PARAMETER, XI, VIA CRAMER X
*x VON-MISES ULISTANCE X
X %
X VARIABLES: NP - NUMBER OF FARAMETERS (ALWAYS 1) X
X ‘FAR - ARRAY OF PARAMETER VALUES %
X SUM - DUMMY VARIABLE USED FOR SUMS %
X F = DISTANCE VALUE AT THIS XI ¥
X Z - PERCENTILE PT FROM STO NORMAL. CORRESFOND- X
x ING TO THE 3-LN COF FERCENTILE FT. X
x X
X NOTE:? UNDEFINED VARIABLES IN THIS SUEROUTINE ARE X
X DEFINED IN THE MAIN PROGRAM X
X X
20030500003 00K 0300 AR 3K KA KK 50K K oK K 3 3K oK 3K 50 K3 33K SR KKK K KOk Kk

COMMON X(50),NC,N,EMU,RSIG,BXI,EXIC,NN
INTEGER NP
REAL FAR(NP),F,SUM,Y,Z
xkX USE FIRST ORIDER STATISTIC IF ESTIMATE OF XI LIES XXX
XXk CLOSE TO THE FIRST ORDER STATISTIC X%k
IF ((X(1)-FPARC1)) LT. 0.001 .ANU, NN :EQ. ) THEN

NN=1

FAR(1)=BXIC
ENDIF
xxx IF MD ESTIMATE DIVERGED FOR XI USE A NEW INITIAL ESTIMATE ®xXx
IF ((X(1)-PARC1)) +LT. 0.001 ,AND. NN +EQ. 1) THEN

NC=1

N0 3 I=2,N

IFCEXCII=XC(1)) JLT.0,001) NC=NC+1

CONTINUE

FAR(1)=X(NC)
ENDIF
IF (NC .GT. .0) PAR(1)=X(NC)
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xxk CALCULATE CRAMER-VON MISES DISTANCE xXX
SUM=0.0
M=N-NC
ng 10 I=1,M
Y=(LOG(X{IFNCI-FAR(1))~RMU) /BSIG
CALL MDNOR(Y,Z) '
SUM= (Z =~ (2%1-1.0)/C(2.0%M))I)%x%x2 +1/712%H + SUM
CONTINUE
*xkk SET F EQUAL TO CRAMER VON MISES DISTANCE %%k
F=8UM
RETURN
END

SURROUTINE DAXI(NF,FAR,F)

ACROK KR KK K KKK KR KKK 5 30K S KK KR KK 310K 3K K KK KKK OKOK KKK KK KKK Kk K

FURFPOSE$ FIND DISTANCE RETWEEN ESTIMATEDR CIF AND 1/N
EDF FOR LUOCATION FARAMETER, XI, VIA ANDERSON-
DARLING DISTANCE

VARIAKLES: NP - NUMBER OF FARAMETERS (ALWAYS 1)
PAR — ARRAY OF PARAMETER VALUES FOR XI -
SUM ~ DUMMY VARIAERLE USED FOR SUMS
F ~ DISTANCE AT THIS XI

Y2 VALUE FOR A-D STATISTIC

Z1 -~ PERCENTILE PT FROM STD NNRMAL CORRESFONDING
TO Y1

Z2 - PERCENTILE PT FROM ST NORMAL CORRESFONDING
T Y2

NOTE VARIARLES NOT DEFINED IN THIS SURROUTINE ARE
DEFINED IN THE MAIN FROGRAM

P I I IE W I I I I I W I I I W WK K WK W

X
X
X
X
X
X
X
X
X
Y1 -~ VALUE FOR A-D STATISTIC X
x
X
X
x
3
x
3
x
x

0K 2 0003 3K 3 32K 3K 3 KK K K K 3K A 830K KK 8 20 3 08 00 3 3330 00 0K 003K 2K KK OK KR KKKk K

COMMON X(50) yNC,N,BMU,RSIG,yBXI,BXIC,NN
INTEGER NP
REAL FAR(NF) ,F,S5UM,Y1,Y2,Z1,2Z2
%% USE FIRST ORDER STATISTICS IF ESTIMATE OF XI LIES XXX
k% CLOSE TO THE FIRSYT ORDER STATISTIC dokx
IF ((X{(1)-PAR(1)) .LT. 0.001 .AND., NN .EQ. O) THEN

NN=1

PARC1)=EXIC
ENLIF
xxx IF FIRST INITIAL ESTIMATE DIVERGES USE A NEW INITIAL ESTIMATE
IFC(X(1)-PAR(1)) LT. 0.001 .AND. NN +EQ. 1) THEN

NC=1

P03 I=2,N

IF ((XC(I)-X(1)) LT, 0.,001) NC=NC-+1
CONTINUE
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FAR(1)=X(NC)
ENDIF
IF (NC +GT. 0) FARCLI=X(NE)
XXX CALCULATE ANDERSON-DARLING STATISTICS XXX
SUM=0, 0
M=N-NC
[0 10 (=1,M
Y1=(LOG(XCIHNEG) ~FAR(1) ) ~EMU) /BSTG
CALL MINOR(Y1,Z1)
Y2=(LOG(X(N+1-1)-FAR(1) ) -EMU) /ESIG
CALL MDNOR(Y2,Z2)
SUM=(2%1-1)%(L0OG(Z1)4L0G(1-Z2)) + SUM
CONTINUE
SUM=(-1XSUM) /M-M
X%X SET F EQUAL TO ANDERSON-DARLING DISTANCE XXX
F=SUM
RETURN
END
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Appendix D

Computer Listing of
Evaluation Criteria

PROGRAM EVAL
KK 3K K KK K 3K 3K 3K K 3K 3K 3K 3K 3K K A0KOK 3K 3 3K 35 3K 3K K 3K 3K K 50K 3K 3K 3K 3K K 3K 3K K00 3 3 00K 0K 3 30K 3 2 0K 0K K K 3 oK ok K

WRITTEN RY 2LT JIM H. KEFFER AFIT/GOR-83D FOR MS THESIS
DECEMRER 1983

PURFOSE ¢ EVALUATE THE MLE AND MD FARAMETER ESTIMATES RY?
(1) MEAN SQUARE ERROR (MSE)
(2) RELATIVE EFFICIENCY (REFF)
(3) CRAMER-VON MISES DIISTANCE (CVUM)

VARIAERLES? NREFS NUMEER OF REPLICATIONS
N - SAMFLE STZE

SUM - DUMMY USED FOR SUMS

SuM1 - DUMMY USED FOR SUMS

X - ARRAY CONTINING LAGUERRE AECISSA

W - ARRAY CONTAINING LAGUERRE WEIGHTS

CUM - MATRIX CONTAINING CVUM DISTANCE FOR EVERY
SAMPLE AND ESTIMATOR

MCUM - ARRAY CCNTAINING MEANS OF CVM DNISTANCE
FOR EVERY ESTINMATOR TYFE

SOCUM -~ ARRAY CONTAINING SO OF CVM DISTANCE FOR

EVERY ESTIMATOR TYFE
F - VALUE OF TRUE FIF
TMU TRUE VALUE OF MU
TSIG TRUE VALUE OF SIGMA
X1 - TRUE VALUE OF XI
EMy RS, BX - INTERFOLATIVE MLE’S FOR TMU,TSIG,TXI
HMyHS,HX - ITERATIVE MLE’S FOR TMU,TSIG,TXI
Re$ - MSE OF ESTIMATES FROM INTERFOLATIVE MLE
WHERE @= INITIAL OF MD ESTIMATOR
AND & = M FOR MU; S FOR SIGMA; X FOR XI
He$ - MSSE OF ESTIMATES FROM ITERATIVE MLE’S
WHERE @ = INITIAL OF MDD ESTIMATOR
AND & = M FOR MU} S FOR SIGMA3 X FOR XI
RE/HE@S RELATIVE EFFICIENCIES FOR BP% AND HP#
Yl - ADJUSTED LAGUERRE ARCISSA FOR I=0,8

21 - PERCENTILE PT FROM STD NORMAL CINF USING
A SET OF FARAMETER ESTIMATES
MDNOR - IMSL ROUTINE WHICH CALCULATES THE CIW

OF A STD NORMAL DISTRIBUTION AT PT. X

1/0 FILES! TAPE7 - FORMATTED INFUT OF TRUE FARAMETERS AND
ESTIMATES
TAPE8 - FORMATTED OUTFUT OF MSE’S, REFF’S AND
MCVUM, SDCVUM

IMPORTANT? IMSL LIRRARY MU3T BE ATTACHED BEFORE THE FROGRAM
IS RUN., REVIEW IMSL CURROUTINE MINOR

o000 GO0O0OO00OnNO0000NOONO0NGLGO0O0000000OaOOcOaaOnooan
LA XA E R E BB EAEREEEEXEREENRSEERESERSNERERESENES:RSRZSEXNR-ZEH-SEJZ: ®RZEJRJZEHJR-I}N]
P I I I P I N I I I I I I I I I I I I I I I I I FE I I I I I I K I I I I I I I I I I
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2350390 0 203 200K 3000 390 3K 35K 3K 3038 30 30 38 3K 3K 80 3K 0K 3K K 30K 30K 0K KK 3 KK b 300K 30K K 3K 50K K K 0K 0K 0K KK % oK

REAL SUM(8B),3UM1(8),CUM(8,1000),MCUM(8),5DCUM(8B)

REAL X(1%5),W(1S) '

NATA BMyBS, BXy BKMy BKSy EKX y ECM y RCS y RCX » BAM y KFAS  RAX/12X0.0/

NATA HMyHS HX y HRKMy HRS  HRX y HCM HES y HECX y HAM» HAS y HAX/ 12%0 . O/

DATA SUM,SUML/8X0.0,8%0.0/

DATACX(R) yR=1, 1T /0. 0933,0.49269,1.2150P,2.26994,3.66762,5.42533,
+7.56591510.12022,13.13028,16.86540,20.77647,25,62339,31.40751,
+38.53068,48.02608/

DATACWIR) yK=1,15)/0.23957,0.5601,0.887,1.223846,1.5744¢ 1,94475,
+2.3415,2.77404,3.25564,3.80631,4.45847,5.27001,6.359= 3 03178,
+11.527777

P1=3.1415927

XXk INPUT TRUE FARAMETER ESTIMATES XXk

READ(7,100) NREFS,N,TMU, TSIG,TXI

FORMAT(IA/1I3/F15.6/F15.6/F1%.,6/)

¥xxxxkk BEGIN DNO-LOOF FOR NREFS SAMPLIS XKKXKXX

ng 999 J=1,NREFS

READI(7,101) EMU,RSIG,EXI,BKMU,BKSIG,BKXT, BCMU,RCSIG,HCXI,
+BAMU, BASTIGy HAXT y HMU, HS TGy HXI y HRMUy HKSIG y HKXI y HCMU, HESIG,
+HCXI y HAMU,HASIG HAXI

FORMAT(F13.4/F15.6/F13.6/7/F15.6/F 15,6, F19.6//F15.6/F15.6/
+F15.6//F15.6/F15.6/F15,8//F15.6/F15.6/F15.6//F15.6/F15.6/
tF15.6//F15.6/F15.6/F15.6//F15.6/F15,6/F15.67)

xXx%k CALCULATE THE SQUARED ERRORS FOR ALL FARAMETERS XXX

EBM=EM+ ( TMU-BMU) xX%2

BS=HS+(TSIG-KRSIG)X%k2

BX=BX+(TXI-R{1)%¥2

BKM=BKM+ (TMU-EKNMU) %XX%2

BRS=BKS+(TS16-BRKS1G) %x%x2

BKX=REKX+(TXI-BKXT)%%2

BCM=RCM+( TMU-RCMU ) k%2

BCS=RBCS+(TSIG-RCSIG) %x%2

BCX=RCX+ (TXI-R{XY)XX2

BAM=RAM+ (THU-RAMU) X%2

BAS=RAS+(TSIG~BASIG) k%2

BAX=RAX+(TXI-RAXT)XX2

HM=HM+ ( TMU-HMIS) xx2

HS=HS+(TSIG~HS 165G ) x%x2

HX=HX+ (TXI-HXTI)R%k2

HRKM=HKM+ ( TMU-HKMU ) X%2

HKS=HKE+(TSIG-HKSIG) %2

HKX=HKX+ (TXI-HKXI)XXx2

HCM=HCM+ (THU-HCMU ) k%2

HCS=HCS+(TSIG-HCSIG) kX2

HCX=HCX+ (TXI~HCXT ) %x%x2

HAM=HAM+ ( TMU-HAMU ) X% 2

HAS=HAS+(TSIG-HASIG) XX2

HAX=HAX+ (TXI-HAXI)X%2

XXk CALCULATE THE CRAMER VON-MISES DISTANCE USING NUMERICAL XXX

XXX QUADRATURE *x%%

DO 10 I=1,15
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11

13

14

16

1?2

18

Xxx ALD LOCATION TO QUADRATURE FOINTS XXX
X(Id)=XC(I)+TXY
x%% CALCULATE EST COF FROM INTERFOLATION XkX
IF ¢ (X{I)-BXI) LT, 0,00001) THEN
Z1=0.0
GOTO 11
ENDIF
Y1i=CLOG(X(I)-BXI)-EMU) /BXI
cAaLL MDNOR(Y1,Z1) 4
XXX CALCULATE EST COF FROM INTERFOLATION & KOL %Xx
IF ( (X<CI)-BRXI) LT. 0.00001) THEN
22=0.0
GOTO 12
ENDIF
Y2=(LOG(X(I)-RKXI)-BKMU) /BKSIG
CALL MIDNORC(Y2,Z22)
XxXx CALCULATE EST CDF FROM INTERFOLATION % CUM XXX
IF ¢ (X(I)-BCXI) JLT. 0.00001) THEN
23=0,0
GOTO 13
ENDIF
Y3=(LOG(X(I)~-RBCXI)-RCMU) /BCSIG
CALL MIONOR.Y3,Z3)
Xk%x CALCULATE EST COF FROM INTERFOLATION ANDIY A-I1 dkX
IF ( (X(I>~BAXI) .LT., 0.00001) THEN
Z4=0,0
GOTO 14
ENDIF
YA4=(LOG(X(I)-BAXI)-HAMU) /RASIG
CALL MDNOR(Y4,Z4)
xXxXx CALCULATE EST CDF FROM ITERATION XXX
IF ¢ (X{I)~-HXI> LT, 0.00001) THEN
25=0,0
GOTO 14
ENDIF
YS=(LOG(X(I)-HXT)-HMU) /HSIG
CALL MIINOR(YT,Z25)
XkX CALCULATE EST COF FROM ITERATION & KOL %kxx
IFC (XCI)-HKXI) +LT. 0.,00001) THEN
246=0,0
GNTO 17 *
ENDIF
Yo=(LOG(X(I)-HKXI)-HKMU)/HKSIG
CALL MDNOR(Y6,Z6)
xxx CALCULATE EST CDF FROM ITERATINN & CUM XXX
IF ¢ (X(I)-HCXI) LT, 0.00001) THEN
27=0.0
GOTD 18
ENDIF
Y7=CLOG(X (D) -HCXTI)-HCMU) /HCSTG
CALL MDNOR(Y7,27)
*kX CALCULATE EST COF FROM TTERATION & A~D kXX
IF ¢ (XCL)-HAXI) LT, 0.00001) THEN
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Z8=0.0
GOTO0 19

ENDIF
Y&=(LOG(X (L) -HAXT)~HAMU) /HASTG
CaLl MINOR(Y8,Z8)
Xxkk CALCULATE TRUE CIF ok
Y=(LOG(X(T)-TXI)-TM) /TS1G
CALL MIINOR(Y,2Z)
XXX EVALUATE TRUE FIIF %%XxX
F=(1/((XCD-TXI)XTSIGXSART(2XF I IKEXP((-1.0/2,0)%Y%X%2)
k¥ ADDN T SUMS FOR EVALUATION OF INTEGRAL XXX
SUM(1)=8UM(1)+W(TIKR(Z1~Z) XXK2KF
SUMC2)=8UM(2) tW (1)K (Z2~Z ) KX2KF
SUM(3)=3UM(3) tW(EIN(ZI-Z) XK2KF
SUM(4)=8UM(4)+U(I)X(Z4-Z) XX2%KF
SUM(D) =SUM(S) +W (T X(Z5-Z) Xk2%KF
SUM(L)=SUM(S)+W(TI X (ZE5~Z) %X 2kF
SUM(7)=8UM(7)+W(I)K(Z7-Z) NX2%F
SUM(8)=8UM(E)+W(I)X(ZB-Z)XX2XF

CONTINUE

X%x% CALCULATE CVM STATISTIC FOR EACH METHOD XXX

ne 8 1=1,8
CUM(I,J)=NXSUM(I)

CONTINUE

x%xx ADD 7O SUMS FOR CUM XXX

o 2 1=1,8
SUMI(I)=SUMI(TI)+CUM(I,J)

CONTINUE

Xkkxkxk ENDI' DO-LOOFP FOR NREPS SAMPLES XXXKXXX

CONTINUE

0kx CALCULATE MSE’S FOR EACH PARAMETER XXX

EM=BM/NREFS

BS=HS/NREPS

BX=REX/NREFS

EKM=BKM/NREFPS

RKS=HKS/NREFS

BKX=RKX/NEREFS

RCM=BRCM/NREFS

BCS=RCS/NREFS

RCX=RCX/NREFS

BAM=RAM/NREFS

BAG=BAS/NREFS

HAX=RAX/NREFS

HM=HM/NREFS

H8=HS/NREPS

HX=HX/NREFS

HKM=HKM/NREPS

HKS=HKS/NREFS

HKX=HKX/NREFS

HCM=HCM/NREFS

HCS=HCS/NREFS

HCX=HCX/NREFS

HAM=HAM/NREFS
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HAS=HAS/NREFS
HAX=HAX/NREFS
C XXX CALCULATE THE RELATIVE EFFICIENCIES Sk
REM=EM/BM
RES--BS./ES
RERX=RX/ X
REKM=KM/RKM
REKS=RS/EKS
REKX=RX/BKX
RECM=EM/KCM
RECS=RS/RCS ;
RECX=HX/KCX |
REAM=EM/EAM i
REAS=HS/KAS
REAX=EX/RAX
RHM=EM/HM
RHS=ES/HS
RHX =EX/HX
RHKM=RM/HKM
RHKS=HS/HKS
RHKX=RX /HKX
RHCM=RM/HCM
RHES=ES/HCS
RHCX=EX/HCX
RHAM=EM/HAM
: RHAS=ES/HAS
E KHAX=EX/HAX
E c XXX CALCULATE MEAN CUM XXX . {
{ 0o 35 I=1,8
MCUM(TI)=SUM1(¢I)/NREFPS
35 CONTINUE
c *%x%x CALCULATE THE STD DEV OF CUM STATISTICS XXX
o 37 1=1,8
SUM(I)=0,0
37 CONTINUE
DO 45 I=1,8
00 46 L=1,NREFS
SUMCI)=SUMCT) +(CUMCT , L) ~MCUMCT) ) XX2
46 CONTINUE
45 CONTINUE 1
o S5 1=1,8
SDCVMC I =(SUMCT) /NREFS) XX0 5
; 55 CONTINUE
! C *xxXx READ IN THE UIVEKGENCE COUNTERS FOR THE MD METHODS XXX
READC7,102) NKE,NCEyNAL, NKH, NCH, NAH
102 FOKMAT(14,14,14,14,14,14)

C X% WRITE ALL RESULTS TO FILE %%xX
WRITE(B, (21X, "SAMIFLE SIZE *,IS5)’) N
WRITE(B, (21X, *TRUE MU *WFS.2)7) TMU
WRITE(S, (21X, "TRUE SIGMA *,F5,2)’) TSIG
WRITECS, (21X, *TRUE X1 "y F5.24/7)°) TXI

WRITE(B, 2 (12X, "MU*, 13X, *SIG*y14X, XY *,5X,"DIV*,/)’)
WRITE(8,’ (20X, "MEAN SQUARE ERRUKS®,/)’)
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XEOR

WRITE(8,  ("INT
WRITE(B,y " (*KOL
WRITE(B,  ("CVM
WRITE(H, ("A-D
WRITE(8B, ' ("ITR
WRITE(8, " ("KOL
WRITE(B, " {"CVM
WRITE(8,’ ("A-I

WRITE(8, ¢ "INT
WRITE(S,  ("KOL
WRITE(B, ' ("CUM
WRITE(H,  ("A-D
WRITE(B, ("ITR
WRITE(8, ’ ("ROL

1" yF11.6)F16.6,F16.6)’) EBMyBS,RBX

$ "y FL11.64F16.6,F16.6y16)7) EREM,EBKRS, BKX,NKR

tPyF11,.64F16064F1L6.6,16)7) BCH,RBCS,HCX,NCH

P yF11.6FicebyFlb. by 16,/)7) BRAM,BAS,BAX,NAR

P F1146,F16.6,F164.6)°) HA,HS,HX

PP yF11.4,F16.69F1646916)7) HKMyHKS, HRXy NKH

1" yF11.4,F16.6+F16.6,16)7) HOM,HUS,HCX,NCH

t"yF11.6,F16.6,F16.6,164/)7) HAMyHAS,HAXyNAH
WRITE(8,’ (18X, "RELATIVE EFFICIENCIES®,/)’)

t*yF11.6,F16.6,F16.6)’) REM,RES,RREX

$"9F11.6,F16.6,F16.6)’) RBRM,RBKS,REKX

$"yF11.6,F16.6,F16.6)7) RRUM,RECS,RRECX

$*yF11.6,F16.6,F16.6,7)’) REAM,REAS,RBAX

L yF11.6,F16.6,F16.6)7) RHMyRHS,RHX

$*yF11.64F16.6,F156.6)’) RHKM,RHKSy RHKX

WRITE(B, ("CUM " ,F11.6,F16.64F16.6)’) RHCH,RHCS,RHCX
WRITE(B, (A~ :*"yF11.6,F16.6,F16.6,/1’) RHAM,RHAS,RHAX

WRITE(B, (21X, "CVM STATISTICS®,/)")

WRITE(8,’ (18X, *MCVM",11X, "SIICYM*,/)"

WRITE(B,’ ("INT
WRITE(B, (*KOL
WRITE(B, ("CUM
WRITE(8,’(*A-DL

te2XyFl6.64F16.6)7)
WRITE(B,  ("ITR $*,2X,F16.6,F16.6)7)

12XsF16.6,F16.6)7)
2y 2XsFlb.64F16.6)7)

WRITE(8,’ ("KOL 12XyF16.6,F16.6)7)
WEITE(B, ' ("CVNM 12XFl6.6,F16.6)7)
WRITE(8,  (*A-D v2XyFlb6.6,F1b646)7)
STOP
END
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MCUM(1),50CVM(1)
MCUM(2) ,SHCUM(2)
MCVM(3) , SDICUM(3)

) MCVUM{4),SUCVM(4)
MCVM(T)  STICUM(S)
MCUM(6) y SIICVM(6)
MOCVM(7) , ENCVUMT7)
MCVUM(8),SICVM(B)
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