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! ABSTRACT
\%4
A mixed system of parabolic and elliptic partial differential equations

is used to describe the carrier transport and potential distribution in semi-

ete.
conductor devices such as HOSFE?2;; diodes)evtfcw A singular perturbation

analysis of the corresponding }nitial boundary value problem is carried out.
Asymptotic expansions of the solution in powers of the minimal Debeye length
are given. Based on this analysis a finite difference method for the
numerical solution of these problems is developed. Here problems arise due to
different time scales which are intrinsically present in the analytical
problem. These different time scales do not occur in the physical solutions
because of special (equilibrium—-) initial conditions. Nevertheless they cause
severe stability problems for finite difference methods. An unconditionally
stable scheme is developed which minimizes computational effort. Numerical

experiments on a test problem in one space dimension are presented.

AMS (MOS) Subject Classifications: 35G25, 35M05, 65M15 \
Key Words: Semiconductors, Singular Perturbations, Finite Difference Methods

Work Unit Number 3 - Numerical Analysis and Scientific Computing
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SIGNIFICANCE AND EXPLANATION

In this paper we are concerned with a one dimensional transient model for
a simple p - n 3junction (i.e. a diode). The model consists of an initial
boundary value problem for a singularly perturbed nonlinear system of elliptic
and parabolic P.D.E-'g in one space and one time dimension. One of the main
purposes of this model is to give information about the "rise-time" of the
P - n junction (the time required to reach a steady state). We carry out our
asymptotic analysis of the problem for large doping concentrations. (This is
the case for modern devices.) We derive asymptotic expansions of the solution
in powers of a singular perturbation parameter which is proportional to the
minimal Debeye-length of the device. It turns out that the solutions vary on
a time scale which is proportional to the average lifetime of electrons and
holes. Therefore the risetimes will be of the same order of magnitude as this
lifetime. In addition to this tinescale.there is a second “"first" timescale
intrinsically present in the problem. This first timescale - although never
observed physically bccqpse of special (equilibrium=-) initial conditions -
causes severe stability problems in the numerical solution of the problem.
Based on our asymptotic analysis we derive an unconditionally stable finite

difference method for the solution of the p - n junction equations.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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NUMERICAL METHODS FOR
TRANSIENT SEMICONDUCTOR DEVICE MODELLING

Christian Ringhofer

1. Introduction

In this paper we present an asymptotic analysis of a sinqularly perturbed
mixed system of parabolic and elliptic differential equations modelling a
P - n Jjunction. The physical situation is as follows: A semiconductor (for
instance silicone) is doped with acceptor atoms in the left hand side and

donor atoms in the right hand side and a bias U = U, -~ U, is applied to the

The device is assumed to have a characteristic length 22 (~ 0.5*10-3cm) and
the junction is at x = 0. The device is forward biased for U > 0 and
reverse biased for U < 0. The physics of a p - n Junction is explained in
Sze [1969], Ashcroft et al [1976] and R. A. Smith [1978]. The equations
describing the electrostatic potential and the carrier and current densities
were first given by Van Roosebroeck in [1950]. 1In the case of one space

dimension they congsist of

(1.1) L -% (n -p -C) (Poisson's equation)

(1.2) Jn = q(Dnnx - unnvx) electron current relation
1.3 J = D + hole current relation
(1.3) o - oPx upp#x)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.4)

(1.5)

The system (1.1) to (1.5) is subject to the boundary conditions

(1.6)

(1.7)

(1.8)

(1.9)
and the initial conditions

(1.10)
(1.11)
(1.12)

The dependent variables (with units) are

N L R A N T L Ty de B ey QRN il AWy K
al iy Rl 4078 L YWY (AL A k¢ ..'.:'.7.".;';7.-1

n, - é-dn + R continuity equations

x
P, =" 15 +nr for electrons and holes.
t q p,

n
i
¥(-2,t) = U "“(p(-z,t)) + U, (E)

n
¥(2,t) = U, tn( u ) + U ()

n(i2,t) plit,t) = ni

n(tk,t) - P(ttlt) - C(tl} =0

¥v(x,0) = OI(x)
n(x,0) = ny(x)

p(x,0) = py(x)

Table 1

¢ electric potential (V)

¥, electric field (Vem ')

n electron density (cm™2)

p hole density (cm™3)

J, electron current density (Acm~2)
-2) .

Jp hole current density (Acm

The parameters q, €, W , W, D, Dp, ng, Up in (1.1) - (1.5) have the

P n

following meaning and approximate values at T 300K (room temperature) v

Wl
Vo

NNt
ig:k:cxk .‘.: ; .{'“{'




q elementary charge
€ permittivity constant

u

; n ¢electron mobility

“p hole mobility

n; intrinsic density
D

Up = 2L._P thermal voltage
un up

10-1%¢

10"2A3/ch3

103cm2/(Va)

103cm?2/(Vs)
100cm=3

0.025v

C is a given function of x and models the doping profile, i.e.

=3

+ -
(1.13) C(x) = ND(x) - NA(x) (em 7)

where N' ana w°

D A are the densities of electrically active donor and

acceptor atoms in the doped semiconductor. C(x) is negative for x < 0 (on

- the p-side) and positive for x > 0 (on the n-side). We further assume

that C is an odd function i.e.
(1.14) C(x) = -(C-x) holds.
(Although this does not appear to be any special case from the physical point
of view it will simplify the analysis considerably.) We assume that C(x)
has a jump-discontinuity at x = @g. R in (1.4), (1.5) denotes the
generation-recombination term and describes the rate at which electron hole
carrier pairs are generated or recombine (vaniQh). For our purpose it
suffices to consider the Shockley-Read-Hall recombination term

np - n2

i

- tn(p+ni)

(cm-as-1) .

(1.15) R=R RH(n,p) =

Tp‘n+ni)

T_ and tp denote the average lifetimes of electron and holes. For

n

simplicity we set L Tp =1 = 10'6(8). Other mote realistic recombination

rates are given in Langer et al [1981] and Schlitz et al [1981]. 1In general it

-Fe
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can be said that the choice of the recombination rate is not very important

for the behavior of solutions of the time dependent problem (whereas it is in

the steady state case - see Markowich and Ringhofer [1983], Markowich et al

[1983a], Mock [1983] and Schlitz et al ([1982]).

Ez A more restrictive assumption is w, = "p = const. In general n and )
A “p can be modelled as functions of the electric field va. This might

] influence the behavior of the solutions considerably (see c.f. Mock [1983]).

b" For the rest of this paper we assume that the initial conditions (1.10) -

(1.12) are compatible with the boundary conditions and the differential

equation. So we assume that

g q
) (1.16) *I = e (nI - pI - Q)

.. xxX

«- (1.17) n, (£2) + p (1) = n?

* 1 1 i

" A

= (1.18) nI(t!.) - pI(tl) - cCc(z2) =0

y n,

& (1.19) o (=) = U, ln(m) +U,(0)

) I

K

e n

(1.20) v.(2) = U tn(—es) + U_(0)

* I T nr(l) c
v; holds.

7|
ks After an appropriate scaling we carry out an asymptotic analysis of the
- problem (1.1) = (1.12) where the (dimensionless) quantity

’.
2 eUT 1/2

s (1.21) A= 5
\‘:« q max|c(x) |2

: xe(-2,2]

e acts as a perturbation parameter.

it

i; We investigate the behavior of the solutions as A + 0 which corresponds
Y

9

I to very high doping (which is the case for modern devices). It turns out that
,‘5 there are two different timescales intrinsically present in the equations
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g? {(1.1) - (1.5). However if we choose the initial conditions ¥y, ny and py
4y
S in (1.10) - (1.12) to be the solutions of the steady state problem
s
' =9 -p =
N - (1.22) 'xx T (n -p -0C)
P (1.23) 3 =q(D.n, - pnv)
'3 ¢ n 2 Pn M Un¥y
i~ (1.24) Jp = -q(Dppx + upp‘bx)
'J‘»
:;@ x px
}t}
ﬁ% the solutions will vary only on the "slow" time scale (which is of the same
» order of magnitudge as T the average lifetime of electrons and holes).
P
ﬁig Although the other ("fast") time scale is not present in this case, it causes
Y |
£ "
e severe stability problems for numerical methods to solve (1.1) -~ (1.12). We
94 derive a finite difference method for problem (1.1) - (1.12) which is
‘;: unconditionally stable and of second order in time. At each time step the
S ) .
?2; solution of two coupled nonlinear differential equations is required. The
e generalization of this method to nonsymmetric p - n Jjunctions (i.e. C(x)
£
' not odd) and to two or three space dimensions is straightforward.
ﬁg This paper is organized as follows. In Chapter 2 we scale problem (1.1)

= (1.12) and reformmlate it as a sinqular perturbation problem. In Chapter 3

e Yl bl W~

we review the asymptotic analysis for the steady state problem (1.22) - (1.25)

given in Markowich and Ringhofer [1982] and Markowich et al [1982]. 1In

o

-
-

Chapter 4 we derive the asymptotic expansion of the solution of (1.1) -
(1.12). In Chapter 5 we construct the finite difference method. In Chapter 6

we present some numerical results on a test problem.

20

RAR LR .

A OGN .
A A Y I L I vy v
[} N » - .,

% N I S ST R T St A S S S R R R

> ‘: " 'Q"\'Pﬁﬂ')\hu"w"\'f\f\ .} ‘.':'.':\.':- MO LA
A, v v A .,

g0 L hY ¥y ‘ ) LY N .

4



Aot R B ad W Ak R i S B w i o s ot . ‘ " > —~ g - T T 7
J h y . i o Tete LRI - SR T g0 st M VIR oM i - o/ NEGRY A o4 LS J_"._'*..r_."ﬁ

|
i

3 2. Reformulation as a singular perturbation problem

%

;Z,'; In this chapter we scale the system (1.1) - (1.5) appropriately and

transform it into a singular perturbation problem. Essentially we use the

3
'; i scaling given in Markowich and Ringhofer [1982] and Markowich et al [1983a].
"{5‘ We scale the independent variables x and t by the characteristic length of
the device and by the average lifetime of electrons and holes.
‘Q X t
j. (2.1) e A -
)
t?; For the dependent variables ¢, n, p, J, and Jp we employ the following
€ scaling:
%
oo boob o omg=D . gk
Ly T c c
A
3
L L
(2.3) J =g , J =2_7
R "s ©Ceqp " Pg Cqp_ P
B _
’;n (2.4) C := max |c(x)] .
i~ xe[-£,L]
In this scaling equations (1.1) - (1.5} assume the form
x?‘ 2 32
'.; (2.5) A -a—-z- v = n, - pg "~ Cs
kS x
- s
. D
B ] n 9
‘}‘i (2.6) a— n B c— J + R
ats s !.2 5x' n, s
™ D
3 ) p 9
-~ (2.7) P, = - Jg +R
Ots s "2 5xs P, 8
_"”u‘
-4 - 9 - )
By (2.8) In ¥x s " "g ¥x_ *s
5 s s 8
vy
i 3 3
ke (2.9) Yo = T 3x Ps " Pg 3x ¥s
8 -] s
"y
¢ (41] 1/2
L C(x)
i (2.10) Aoe= 5 _) ’ cs( ) = ——(—
v L qcC (o
' n
2 -1 i
= - + + I - L]
’ (2.11) l!s (n‘ps 3 )(n’ Py 20) , a =
3]
-6=
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The boundary conditions (1.6) - (1.9) transforms to

o) 2
(2.12) n, =g (C + /c: + 4a“)
at X, = 1
o 1 2 2
(2.13) P, =3 (=C + /c. + 4a“)
u_(t) n_(=1)
A
(2.14) ¥ (-1t ) = = 4 tn(S—)
u.(c ) n_(1)
- C s ]
(2.15) 9, (1) =—— + n ) .
The initial conditions transform to
(2.16) ¥, (x 00) = ¥l(x ) = t',— wi(x)
T
(2.17) n (x,,0) = n:(x.) = é nt(x)
C
(2.18) p'(x.,O) - P:(*,) = é pI(x) .
(o

The quantities in (2.5) - (2.18) are now dimensionleas. Using the numerical

values given in Table 2 for the physical parameters gives (after omitting the

subscript s)

(2.19) szxx =n-p-=-C¢C

(2.20) n, =3 +R , p = -Jp + R
x b4

(2.21) Jn =n - ntx . Jp = -p, = PV,

together with the boundary conditions

(2.23) n--;-(C+v’C2+4cz),p-%(-C+/C2+4a2) , x = +1

where 0_1 and 01 are given by

-7~
f.‘{$ .. n_ u.--..f..f.‘a'._f._(‘.n’.-f..f.-f._v‘_‘f...‘.'d_'~f o e T et T T N N TNttt et ...
1('.‘.%"'...'.'-'.'. AT S ORI UL e P Y A I P M BNy -'..'&
e e e o - - . o . ~ A R SRR AR - ™
AL SR SO G R T N N NS e e T e e e S -l‘ o
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b, (t) = 5 U (6) + an(SE1L 2 YCEDT ¢ bo”
T
2 2
¥, (e) = - u () + en(ET "‘2:;” * va )
T
a = ni/c
and the initial conditions
(2.24) ¥(x,0) = $¥(x), n(x,0) = n¥(x), p(x,0) = pl(x) . |

(2.19) - (2.24) represents a singularly perturbed system consisting of an
elliptic equation (2.19) and two parabolic conservation laws (2.20) -

(2.21). The compatibility conditions (1.16) - (1.20) now read

(2.28)  ¥5-1) = y_ (0), ¥T(1) = ¢ (0)

(2.26) nl = % (c +7c? + ad?), pf = % (-c + Y + 4a%), x = $1

'nI-pI‘C 3

(2.210 %L
In the following chapters we will carry out our asymptotic analysis for (2.19)
- (2.24) for )\ + 0 which corresponds to very high doping (C + ®). This
usually is the case for modern devices. For the set of parameters given in
Table 2 of Chapter 1 and a maximal doping Ccm 10"7cm-3 A would take the
value A = 1073, We now use the fact that C(x) is an odd function to
simplify (2.19) - (2.24): 1If we substitute
(2.28) Fix,e) = 90x,t) = 2 (9, (8) +9_,(e) .
Equations (2.19) - (2.21) remain unchanged.

The boundary conditions (2.22) become
(2.29) FOLE) = B(=1,8) = 3 ($,(t) = $_ (£)) =2 §,(t)

and the initial condition for ¢ in (2.24) has to be replaced by

(2.30) $x,00 = $10x) 1= 9Tx) = 5 (9,(0) + b_ (0)) . |

(2.19) = (2.23) can now be simplified by the "Ansatz” |

-
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(2.31) ;(-x,t) = -;(x,t), n(-x,t) = p(x,t), Jn(-x,t) = Jp(x,t) .

For the rest of this paper we assume that this "Ansatz" is compatible with the
initial conditions (2.24). Thus we make the
(2.32) Assumption: *I: n! and PI in (2.24) satisfy
(2.33) $Tx) = =T =x) + pT1) + pT-1), ol = pl-x) .
The “Ansatz" (2.31) gives the conditions
(2.34) Rom)=o,mom)=pWAﬂ,qut)=%Jmt)-
Thus we obtain the simplified problem on [0,1]
(2.35) A%y =n-p-c
* xx
(2.36) n, n
(2.38) J, = n, = ny
(2.39) Jp = “Px ~ PV,

x e [0,1]

(2.40) $(0,t) 0, n(0,t) = p(0,t), Jn(O,t) = Jp(O,t)

(2.41) $(1,8) = ¥ (), n(1,¢) = 2 (e +/e(? + 4?)

% (=c(1) + Yc(1)? + aa?)

p(1,t)

(2.42) ¥(x,0) = vI(x) , n({x,0) = nI(x), p(x,0) = pI(x)

- = 1
(where for simplicity we have written ¥V, ¢1,¢I instead of ¢, ¥, and ¢ ).
Remark: The reason, why (2.35) - (2.42) is simpler than (2.19) - (2.24), is

that the solution of (2.19) - (2.24) will exhibit an internal layer at x = 0

which can be treated as a boundary layer in (2.35) - (2.42).
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3. Review of the Singular Perturbation Analysis for the Steady State Case

We now review the singular perturbation analysis carried out in Markowich

and Ringhofer (1982] and Markowich et al [1983a] for the steady state problem

(3.1) xzvxx =n-p-c¢C
(3.2) Iy TR . 3y = - b,
(3.3) Tp TR 4 Ty = By - pY,
2 -1
{3.4) R = (np = a“)(nip + 2a)
(3.5) $O0) =0 , $(1) =,
(3.6) n= % (€ + 7/ + aa®), p =g (¢ +/c? + add), x =41 .

The purpose of this review is twofold: On one hand there will be a fair
amounbt of analogy between the asymptotic behavior of (3.1) - (3.6) and the
behavior of (2.35) - (2.42) on the "slow™ time scale. On the other hand the
initial values *I: nI and pI in (2,42) will usually be the solutions of
the steady state problem (3.1) - (3.6) and it is thus important to know their
structure. Markowich and Ringhofer [1982]) derived an asymptotic expansion for

the problem (3.1) = (3.6) in powers of A. This expansion is of the form

hd ~
(3.7) wix )~ ) G e + wi(x/X)]Ai
i=0
(3.8) w= ($,n,p, 3 ,JT .
n p

Thus the solution of (3.1) - (3.6) can be represented as the sum of a smooth

[ ]
~ i
part (which has an asymptotic expansion ) wi(x)X ) and a boundary layer
i=

0
term at x = 0 which varies on the space scale x/A and has an asymptotic
Lad ~
expansion of the form ) wi(x/l)ki- The solution of the reduced problem
i=0
W, satisfies the equations

0

LS U
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(3.9) 0= no ~ Py~ C

(3.10) Jno = R(no,po) P Jpo = -R(no,po)
x x

(3.11) Jo =mg = Bg¥ o« T, =By -Be¥, -
0 x x 0 x x

(3.10) - (3.11) is a system of 2 second order ordinary differential equations
(obtained by inserting the expressions (3.11) for the current densities I
and Jp into the continuity equations (3.10)) coupled to the algebraic
condition (3.9). Thus we can impose two boundary conditions at each of the

boundaries x = 0 and x = 1. These boundary conditions are

(3.12) exp(~¥,(0)1n(0) = expl,(0)1p,(0)
(3.13) J (0)=3F (0)
To Py
= ~ a1 2
(3.14) Vo =9, , B =g+ 7 + pa?) .

Note that the boundary conditions (3.14) together with (3.9) imply the third
boundary condition n = % (c + /e + 462) in (2.41). This is why no boundary
layer occurs at x = 1. The zeroth order layer term ;0 satigsfies the
relations

(3.15) n,y(z) = FO(O){explto(:)] - 1}, pylg) = 50(0){exp[-vo(C)l - 1}

(3.16) J_(g) =3 () =0
By Py

T :=x/A .

’0 satisfies the second order o.d.e. problem
-~ -~ L3 ~ *o ~ -*0
(3.17) ¥ =n =-p, =n(0)le - 1] -p,.(0)(e - 1]
0 0 0 0
(44
(3.18) ¥,(0) = =§,(0), ¥o(=) =0 .
1=
(R TP D I I T » AR L SN N A I AT T AT Ca® ™. """
R S N S
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Thus for the zeroth order approximation of w we have a boundary layer at

x =0 in the variables ¥, n and p. J, and Jp do not exhibit a boundary

layer at x = 0.
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4. Asymptotic Analysis for the Time Dependent Problem

In this chapter we carry out our asymptotic analysis for the solution of
(1.1) = (1.12) as ) tends to zero. As we will gsee the choice of initial
conditions crucially influences the asymptotic behavior of (1.1) - (1.12). We

I

assume that the initial values OI. n- and pI have an asymptotic expansion

of the form
- ~
s Tl s v dEnt
1=0

(4.1)
1 I I I,7T

vi = %aTpD T, wwlen < ciexpicp) .

This choice is of course motivated by the structure of the solutions of the
steady state problem (1.17) - (1.20). First we derive our asymptotic
expansion for the solution of (1.1) = (1.12) which varies on the slow time
scale t; 1i.e.

«» - 1
(4.2) vix,t ) ~ T W (xe) +w (F000 .

i=0

In order for this expansion to be valid, it will be necessary to impose

1 and pI. These conditions

certain restrictions on the initial values WI. n
will be satisfied if 0?. nl anda pI are the solutions of the steady state

problem (1.17) = (1.20). The zeroth order term :0 of the outer solution

satisfies
t 0 t 0
X X
(4.5) (a) Jn = no = noto + (D) Jp = -po - po*o .
X X X X

Substracting (4.4)(b) from (4.4)(a) and replacing ;0 by 50 + C gives
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i (4.6) 0= 30 . 30 =F +3 = c, = (2B, + 1§,

B "o Po x
&
‘ t 1] 0 x x
, x
= (4.6) is now a second order elliptic equation for ;o coupled to the
parabolic equation (4.7) for 30- Thus we can impose two boundary conditions .
. at each boundary x = 0 and x = 1. At x = 1 we impose the conditions
¥
& (4.8) Fp(18) ~ 9 (), By (1,8) - 3 (¢ + /% + 2y .
Note that - as in the steady state case - (4.8) together with (4.3) implies
the third boundary condition By(1,t) =3 (c(1) +vc(1? + ya®) 1n (2.41).
Thus we have satisfied all three boundary conditions at x = 1 with 30.
This is the reason why there is no boundary layer at x = 1. Inserting
- ;o(x) + wo(z) into equations (2.35) 2 (2.42) gives
. (4.9) . =n,-p. - 2%
h 0 0 0 0
‘ 44 xx
:_ (4.10) J,. =Aln, + R(ny +ny, py +pg) =~ Ring,pg)l
) 0 t
3 19 ]
i
’S ~ L ~ ~ ~ - ~ A
§‘ {(4.11) Jp - A[-p_o - R(no + ng. Pg + po) + R(no.po)]
¢ 0 t
14
3 (4.12) uno - n°c - (Ry + nonoc - ’“‘o;ox
‘i; » LY ~ a ~ ~ ;
i (4.13) = ~py = (py + Pol¥, -~ Ap .
Py o; 0 0 oz 0 0x
A
Y
X A+ 0 gives
%"' "N " ~N
5 (4.14) ¢, =n - p
) 0 0 0
44
¢ 5 =5 =0
- =
N (4.15) n, Po
> 14 4
(4.16) ny, =~ [n, + ny(0,8)]19, =0, p, + (py(0,t) + pyly, =0 .
14 14 4 14 J
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Since lwo(C,t)I < c,(t)exp[-cz(t):l has to hold, w(e,t) = 0 holds. Thus

we can integrate (4.15) and (4.16) and obtain

(4.17) 3 =3 =o

"o Py
(4.18) ng(L,t) = K (0,€){explby(z,t)] = 1)
(4.19) Po(L,t) = Bg(0,8) {expl-¥, (L, )] = 1}
(4.20) %, =n.-p. .

0 0

34 0
Ingerting =° + ;0 in the boundary conditions gives
(4.21) ¥,(0,8) = F,(0,¢)
(4.22) R (0, )exp (¥, (0,£)] = B (0,t)expl-#y(0,¢)]
(4.23) ano(o,t) - 3P°(0,t) .

Combining (4.21) and (4.22) gives

(4.24) n(0,t)exp(-$(0,t)] = P(0,t)exp($(0,t))

which together with (4.23) gives the boundary conditions for the reduced
problem at x = 0. We now investigate the initial conditions for the reduced
equations (4.3) - (4.5). Since equation (4.6) is elliptic it has to hold also

at t = 0. This gives the condition

- (23! I .
(4.25) [e, = (255 + C)§y) = 0
(4.26) fig (0)expl-§7(0)] = Bo(0)exp(F5(0)]
I -
(4.27) Vo (1) = ¥,(0)

on the geroth order term of =I(xpl)- Also the layer equations (4.14) -
(4.16) have to hold for t = 0 gince they are time-independent. This gives

the condition

18-
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(4.26) ng(c) = Ao(0){expl+¥g(c)] = 1}
Y‘! .I I "
: (4.27) Po(8) = Bg0) {expl-5(2)) -1}
té on vgo Bquation (4.14) has to be satisfied because of the compatibility
¥
}3 condition (2.28). Using the theory outlined in the previous chapter we see
that conditions (4.24) - (4.27) are satisfied if w' is the solution of the
33 steady-state problem (3.1) - (3.6). Thus, if conditions (4.24) - (4.27) are
55 satisfied we have determined the zeroth order term ;: + w: of the expansion
(4.2)., We summarize this in the
g (4.28) Theorem:
1"’ '
: b £ 4 wI(x,X) has an asymptotic expansion wh ~ )(;i(x) + w ( ))l '
A I 1.1 ~I A1 1=0
» = (¢ ,n",p )T ana v, and w, satisfies the conditions (4.24) - (4.27)
2
32 (as it is the case if w' is the solution of the steady state problem (4.1) -
i (4.6)) then the zeroth order term ;:(x,t) satisfies the equations
. (4.29) 0 = 3 0 3 = 3 -+ 3 = ¢ - (25 + c);
G 0 0 n, Py x 0 ox
‘," ~ ~ ~ ~ ~
7 (4.30) Pp =3 +R(B, +Cpy) I =-p, -5,
& o P, 0 0’ “pg o, ~ Fo¥o
x
" together with the boundary conditions
.
Y
k) (4.31) (B(0,£) + C(0)lexp(~§,(0,t)] = B (0,t)exp(F,(0,t)]
t
- (4.32) Fy(0,t) = 23’po(o,t)
~ 1 2 2
N (4.33) Vo (108) = 9, (£), B (1,8) = 2 (=c() + /C(1)® + ya®)

and the initial conditions

N (4.34) By (x,0) = Sz(x) .

The zeroth order layer term wo(Cat) satisfies the relations

(4.35) ng(5,t) = §,(0,t) lexply(z,e)] - 1]

R
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(4.36) Py(E.t) = Py(0,t) lexpl-9(Z,t)] - 1]

(4.37) 3 = 3 = 0
"o Po
(‘038) ’ozc b no - po, ’O(O't) = .;O(O't)' 'o(.,t) = 0 .

S0 we have determined the zeroth order approximation to the solution of (2.35)

I ana pI are

- (2.42) in the case that the initial functions 01. n
solutions of the steady state problem. This expansion varies in time on the
timescale t. Thus the reaction time of the p - n Jjunction (the time it
takes the system to reach another steady state if we vary the bias) will be of
this order of magnitude. Essential for the derivation of this asymptotic
solution was the fact that (4.24) - (4.27) was satisfied for the initial
values. Although this will be the case for all practical purposes (since we
always start with a steady state solution) it is of some interest to see what
happens if conditions (4.24) - (4.27) are violated. This is the case if we
solve (2.35) = (2.42) numerically and our numerical solution is "polluted” by
a discretization error. Por this purpose it is convenient to rewrite our
problem (2.35) - (2.42): We elliminate n from (2.36) - (2.38) by

substituting n = x’t&x +p+C in (2.36) - (2.38) and subtracting (2.37)

from (2.36). This gives
(4.39) 229 =3 ,3=3 +3 =c_+2% - (2p+c+2r%y
¢ xx x’ n P x XXX w T x

(4040) pt = -Jp - R, Jp = -px - p*x .
X

We now supplement our expansion (4.2 ) by a term ;(t,x,x) which varies on
the fast time scale T = tX-Y- Y >0 (where Y gtill remains to be

determined)
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(4.41) vt A) ~ ) [, ) 4w (g,8) + W 0t
1=0
(4.42) Iw, (x, )0 € Cy(x)exp(=C,(x)T), L = 1,2, ouv &

Ingerting (4.41) into (4.39) gives

2-y — 2 — 2 - 2 -
i v = A" 9, - (2p° +C+2A9y +2py+dA ¥, ) .
xxt x%xx xx xx
(4.43)
- - 2 -
% - (20 + 2" 9y J¥g 1,
X xx X
- Y -— — -— - -
(4.44) Pn =\ J J = -p, = (pg *+ Pgl¥g = Po¥
o Py’ Py 0, 0" Po'% = Po%o

X

where 00 and pg stand for the zeroth order expansion on the slow timescale

t.
(4.45) o = 30xAT1) + .2, ATT)
. o = ¥o)x 0%
~ Y - Y
(4.46) P po(x,l T) + po(c,l T .

A+ 0 in (4.44) gives p, = O which together with (4.42) implies p, = 0.
T
From (4.43) we see that the only value of Y which produces a nontrivial

solution away from x =0 is vy = 2,

Thus we set T = 5= and let A tend to zero in (4.43) - (4.44). This

12
gives
(4.47) v = -[(2pg + CIeg |
xxXT X x
(4.48) Po=0 -

For a complete asymptotic expansion in the case of general initial conditions

we refer the reader to Ringhofer ([1983].
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5. Pinite Difference Methods

In this chapter we develop a finite difference scheme for the solution of
problem (1.1) - (1.12). Severe stability problems arise because of the
presence of the fast time scale (t/kz) in (4.47). To illustrate this we
first consider a "naive”™ discretization of (2.35) - (2.42): First we only
discretize (2.35) - (2.42) in time and leave the space variable x
continuous. Thus we define a sequence
(5.1) {6, 0= tg <covvec gy <ouen b, At 1= g =ty k = 0,1,...
and denote the function v(x,t,) with
(5.2) R A RERIC PR AN UL A ALAE LN PR
As a first approach one would perhaps try to solve equations (2.35) - (2.42)
by a Crank=Nicholson scheme and solve Poisson's equation (2.35) implicitly on
the new time level. This would give

A2gk+1 o ket k1 _ o

(5.3) xx n -p
k+1 k
(5.4) “_A_‘l‘_ - .;_ (3% + 3%
% Py Ny
k+1_ k
5.5 p P . _1_ (Jk+1 + Jk )
(5.5) 2 P P
% x x
| 2N A TN
(5.6) Jn n -n *x
L=k, k + 1
Lt _ 2.2

As we saw in chapter 4 the part of the potential ¢ varying on the fast time
scale (t/Xz) satisfies the equation

2

A *xxt [cx (n+p)*x]x *

Time differencing equation (5.3) and inserting the expressions nk*? - nk,

Pt - X from (5.4) - (5.7) yields

-19-
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Vial
oK1 gk
2 "xx XX 1 k+1 k+1, k+1 k k.. k 2
- - + - + + .
‘ (5.8 M"k 3 [2Cx (n o )tx (n P )Vbx]x o(A")
e
2™
Thus away from the boundary layer at x = 0, *:x will behave like the
AN k
o
\'.‘53 solution y of
:a:'. 2 - 1k k, k+i k+l X
(5.9) XYA y==-—(ay +a vy ) + £, a, >0
tk 2 k
334 At
?‘t- which oscillates wildly unless = < const holds. To derive a scheme which
A
'Ll} does not need this severe restriction on the time steps we rewrite (2.35) -
(2.42): We proceed as follows: We first discretize (2.35) - (2.42) in the
.
NW space variable x. Thus we define a mesh X and a meshsize h by
& X
i (5.10) X = {x, :x, = ih, i = O(DIN}, h =2 .
) (For the sake of simplicity we assume a uniform grid. The generalization of
1‘?“
~,: our results to nonuniform grids is straightforward.) Realistically we have to
4
2
W) assume that h >> A holds.
SER We approximate (hn.p)r at x; by the gridfunction Wi.ni:pi)'r.
Jl"’: .
e,
1?§ i = 0(1)N} We approximate the currents (Jn,Jp) at xi+ g 8= + X )72
1§18 2
by {((J , J ), i = 0(1)N-1}. For a gridfunction {z,, i =0(1)N} we
2 Ry P g i
%35 g i3
E’é define the discrete operators D,, D_. and M by
S3¥
(5.11) (Dy2); = 24,4 = 24 (D_z); =2, - z,_,4
Y ,
. }‘ B o
\_;: (5.12) (llz)i 3 (::1 + 21”) .
-‘.u
YN We discretize (1.1), (1.2) and (1.3) by
2R (5.13) A’h~2(D,p_#), = n, - p, - Clx,)
ot * + =74 i i i
)
! 5.14 d =(J -J )/
i) (5.14) ac ™ n 1 n 1
D i+ 5 i- =
‘s 2 2
i
348 -20-
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(5.15) &p =-a -3 Im .

RO

...
A

!'

For simplicity we set the recombination rate R = @. For the discretization

of the current relations (2.38), (2.39) we use an exponentially fitted

;}2 . scheme. This scheme was first proposed by Scharfetter and Gummel [1969] and
A
analyzed in a singular perturbation framework by Markowich et al [1983b]:
KA
L (5.16) I, ] = [o(D+t1)(D+ni) ~ (Mn )(D, ¥, )1 /ny
;.' i+ -5
(5.17) Jb = [-o(D,¥, )(D,p, ) - (Mp, ) (D, ¥, )1/h,
. 1
Q'Q i+ E
;t‘.‘
T\

o(z) := ; coth (z) .
The boundary conditions transform to

(5.18) ¥o(t) = 0, ny(t) = py(t), I (t) = J_ (t)

"1 P1
2 2
iR ) 1 — )
i.: (5.19) . (€) = § (£), p(t) =3 (C(1) +/c(D® + 4a®), m(¢) =p (£) +C(1)
Y]
Y
Y] and as initial conditions we impose
. (5.20) 9.(0) =92, n (0) =n% p (0) =p%, &= 1M1 .
{ 4 * i i’ 1 1’ *i i’
)
b, Where for the sake of compatibility we assume
A
' 2, -2 o_.0_ 0 _ - _
(5.21) A%h D+D_ti ni Py C(xi), i 2(1)N=-1
2
:% (5.13) - (5.20) is an initial value problem for a system of 2(N-1) ordinary
AT
:2 differential equations coupled to the N - 1 algebraic equations (5.13). We
e 0%
now eliminate the algebraic equations (5.13) by differentiating (5.13) with
1}
ﬁb respect to t and inserting for n, and p, from (5.14) and (5.15). We
k obtain
{?3
o
IR
N -21-
N
=
.
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4 (5.22) n?op Sv, = (3 -3
‘ i+ = 4- o
} 2 2
5.23 J = J + J = D - -
(5.23) L1Th [0(D, %, )(D,n, - D,p,)
2 i+ = i+ 2

5 %
e Ja fun ghe gin va

“re WA AN W

(Mn, + Mp, )(D ¥, )1/h .

We now eliminate n; from (5.23) by using (5.13) and the boundary conditions

"y ® .

TV Y W, Y

(5.18), (5.19)

: (5.24) n, = py +v,Clx) + w*h~%o by,
3 1 41s#0,N 1 140
+i (5Q25) Wi = vi -
; 0 1 =0, 0o 1=9 .
R Thus we obtain the system
N -
, (s.26) »n oo Ley =3 -3 )
: i+ -2- i- -i-

(5.27) hy = {0(D,¥, )D, (C(x,)) =~ M(2p+C), (D ¥, ), +

v 2

| 2, -2
. + A%h “[o(D 9, )D_ (wD D $), = (M(wD,D_¥)), (D ¥), ]}
which approximates the fourth order differential equation
2
(5.28) A *xxt = Jx
: (5.29) J=c_ - (2prcho_ + 2% -2% v .
x x xXX XX X

The problem consisting of (5.15), (5.17), (5.26), (5.27) together with the

initial conditions (5.20) for p, and b is equivalent to the original

o

problem (5.13) = (5.17) if we define n; by (5.24).

Inserting (5.24) into (5.23) we obtain

s alal L s

2
2 d A
(5.30) A“(D,D_ == %), = D_[a(D $)(D,C) = M(2p+C) (D y)], + °(;3)

F A D

v
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(5.31) Gt p), = 17?p_[0(D,¥)(D,p) + (Mp)(D,W)], .

To avoid the stability problems outlined at the beginning of this chapter
(5.30) has to be discretized by backward differencing. (5.31) can be
discretized by the trapezoidal rule (or the Crank-Nicholson scheme). The

2 -2
terms abreviated with O(A"h ") in (5.30) can be taken at the previous time
-1

step since we assumed Ah << 1. Thus we approximate bisn5, Py I 4
i+ 2
J at t =¢t, by #k, nk, pk, gk . ak and obtain
) J A A AT U
i+ 5 2 i+ 3
(5.32) 2n,a0) " o,p_9K*! - ¥Ry = gkt - SR
i+ 3 i- 2
-1, _k+1 k 1 k+1 k+1 k k
(5.33) (At) - ) == (T -J +J +J /h
F1 Py =2l P 4 P 4 P 4 P 1)
i+ 5 i- 3 i+ = i- =
n* = e o0, - 2t 4 o) o ¥
1 + 1 i+ i
i+ -
2
(5.34)
2 =2 k k k k
+ A"h “[o(D ¥, )D (w(D.D 7)), = M(w(D.D ¥)) (DY),
k - k Ky _ (oK k
(5.35) th 1 -a(D+vi)(D+p )1 (Mp )i(D+w )i
i+ 2
k+1 k+1
(5.36) *0 o, *N = wb(tk+1)
k+1_ k+1 k+1 .1 2 2
(5.37) 'zap1 Jl Py Ppltieq) =3 (=c(1) + /c(1)° + 4a“] .
2
This corresponds to solving the differential equations
2
A k+1 k k+1 k+1 2 k 2.k .k
. —_ - = - (2 + + ) A
(5.38) At (*xx *xx) [cx (2p c)"x u’xxx *xxwx]x
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1, k+ + +1 k+
k+1 k 1 k+1 + pk 1.k 1)

et (5.39) (Ae) " (p<T - p°) = 2 (pS vt - % a;
\ xX

‘{}“ at each time step, which represent a coupled system of two nonlinear equations
for % and p. (5.33), (5.35) (or (5.37)) represent a second order time

) discretization for (5.15), (5.17) whereas (5.32), (5.34) only is a first order
\? time discretization for (5.22), (5.23).

The time derivative in (5.22) is multiplied by A%. Thus the method is
actually convergent of order
VR orat)? + a%ax)
where At denotes the maximal time step. Since for practical purposes
x~§\ At >> X will hold we can say that the method is actually of second order in
ﬁﬁ\ time. A detailed analysis of the stability and convergence properties will be

the topic of a subsequent paper.

a
t

¢l
XX

L CAY
A‘-‘l'l .

:

~
-4."&

R

[/
~

=24~

E

e

i’.:’. .




A
———
*::zf 6. Numerical results
.32 In this chapter we present numerical results for two test problems which
’\‘ were solved by the technique outlined in the previous chapter. The

j:f& computation was performed on a VAX-780 computer in double precision (which
;;:I: . provides 14 significant digits). The physical parameters were taken from

Table 2 in Chapter 1. We took a constant doping profile on the interval

:_-:: {0,2). The maximal doping (C in Chapter 2) was taken to be 1073, The
‘": characteristic length 2¢ of the device was taken to be Suy. This

2t corresponds to A = 1073, as initial values the solution of the equilibrium
ﬂ problem (that is the steady state problem with zero bias applied) have been

K 'q taken on the interval [0,1]. 21 equally spaced gridpoints were taken in

5 ?‘ the x direction (h = 0.05). As time steps we used Atk = At = 0.1,

:R k =0,1,2,... . (No stability problems were encountered when we varied At.)
| Sﬂ- . Two cases have been simulated: First we switched from the equilibrium to a

o reverse bias of 0.25V, In the other case we switched from O0V. (equilibrium)
:3: . to a voltage of 0.25V forward bias. This corresponds to a variation of the
:.:: boundary condition #,(t) in (2.41) from ¢, = 16.12 (~ #.V) to 9, = 21.12
J (~ 0.25V reverse bias) in figures 1, 2 and 3 an to a switch from 1;1 = 16.12
Sﬁ (~ 0.V) ¢to ¢1 = 11,12 (~ 0.25V forward bias) in figures 4, 5 and 6.

és We plotted ¢ and the hole density p on the interval [0,1]. The

w" electron density n would be given by

x.,: nix,t) = plx, &) + Clx) + A%y (x,£) .

,'::;‘ Thus away from x = 0 it differs visually from p only by the (constant)
function C(x). To obtain a picture of the full solution on [~1,1] ¢, n

*:-_‘ and p would have to be continued according to ¢(-x) = =-y(x), n(-x) = p(x).
‘bi ' In figures 3 and 6 we plotted the value of the total current

S 3y = )1 g e + 3 trax

.‘f
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%7 In detail the figures 1 - 6 show:

o

Pigures 1 - 3: Switch from @.V to 0.25V forward bias

Figure 1: $(x,t), Figure 2: log1o(p(x,t)) .

bl

§

Pigure 3: 1091°(J(t))

1

Figures 4 - 6: Switch from @.V to .25V forward bias

e Pigure 4: ¥(x,t), Figure 5: logyy(p(x,t), Figure 6: log,,(J(t))
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ABSTRACT (continued)

problem. These different time scales do not occur in the physical solutions
because of special (equilibrium-~) initial conditions. Nevertheless they cause
severe stability problems for finite difference methods. An unconditionally
stable scheme is developed which minimizes computational effort. Numerical
experiments on a test problem in one space dimension are presented.
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