MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
Title: VELOCITY SHEAR STABILIZATION OF THE CURRENT CONVECTIVE INSTABILITY

Authors: P. Satyanarayana* and S.L. Ossakow

Performing Organization: Naval Research Laboratory
Washington, DC 20375

CONTROLLING OFFICE: Defense Nuclear Agency Office of Naval Research
Washington, DC 20305

Report Date: February 6, 1984

Number of Pages: 30

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited.

Supplementary Notes:

*Present address: Science Applications, Inc., McLean, VA 22102

This research was sponsored by the Defense Nuclear Agency under Subtask 599QMXBC, work unit 00067, work unit title “Plasma Structure Evolution,” and by the Office of Naval Research.

Key Words:
- Current convective instability
- Ionospheric F region
- Velocity shear
- Nonlocal theory

Abstract:
A nonlocal theory of the current convective instability in the presence of a transverse velocity shear is developed. It is found that the velocity shear stabilizes the short wavelength modes and preferentially excites a long wavelength mode. Application to east-west structure in the high latitude auroral F layer plasma enhancements is discussed.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. THEORY</td>
<td>3</td>
</tr>
<tr>
<td>III. ANALYSIS</td>
<td>7</td>
</tr>
<tr>
<td>IV. DISCUSSION</td>
<td>10</td>
</tr>
<tr>
<td>V. CONCLUSIONS</td>
<td>11</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
VELOCITY SHEAR STABILIZATION OF THE CURRENT CONVECTIVE INSTABILITY

I. INTRODUCTION

Large scale structure in plasma density enhancements in the auroral F layer ionosphere has been a topic of continued research over the past several years (Vickrey et al., 1980; Keskinen and Ossakow, 1982; 1983a,b; Tsunoda and Vickrey, 1983). Theoretically these so called F region plasma "blobs" have been shown to be susceptible to the $E \times B$ gradient drift instability (EBI) (Linson and Workman, 1970) and in an $E \times B$ stable geometry to the current convective instability (CCI) (Ossakow and Chaturvedi, 1979), or a combination of the two (Vickrey et al., 1980; Keskinen and Ossakow, 1982). The current convective instability was originally discussed in the context of the positive column of a laboratory gas discharge by Lehnert (1958), and Kadomtsev and Nedospasov, (1960). Ossakow and Chaturvedi (1979) suggested that the diffuse auroral precipitation, constituting a weak magnetic field aligned current (\hat{z}), could destabilize an inhomogeneous plasma having the density gradient pointing in the direction perpendicular (northward, \hat{x}) to the magnetic field. The unstable waves have wavevectors pointing in the direction perpendicular (eastward, \hat{y}) to both the ambient geomagnetic field and the density gradient. DNA Wideband satellite observations (Rino et al., 1978) indicated that a regularly occurring scintillation enhancement due to F region ionospheric irregularities can be identified in the nighttime auroral zone data. This data is characterized by diffuse auroral particle precipitation and total electron content (TEC) gradient pointing northward. Furthermore, the dominant modes appear to be in the north-south direction parallel to the density gradient in contrast to the predictions of the linear theory. Indeed, Chaturvedi and Ossakow (1979) have shown that waves parallel to the density gradient are generated by a nonlinear mode coupling mechanism.

Manuscript approved November 1, 1983.
There is increasing evidence that a strong velocity shear exists in the diffuse auroral region (Kelley et al., 1976; Fejer et al., 1983; S. Basu, private communication, 1983). The east-west plasma velocity is sheared as one moves in the north-south direction. The coupling to the neutral atmosphere, where the neutral flow velocity usually is strongly sheared, probably generates this plasma velocity shear. Recent calculations have shown that velocity shear has a strong stabilizing influence on interchange instabilities, such as the Rayleigh-Taylor instability (Hamieri, 1979; Guzdar et al., 1982; 1983) and the $E \times B$ instability (Perkins and Doles, 1975; Huba et al., 1983) leading one to anticipate similar effects in the case of the CCI also.

In this paper we investigate the effects of velocity shear on the CCI and its role in producing large scale east-west structure in ionospheric F layer plasma blobs (Tsunoda and Vickrey, 1983). We find that velocity shear stabilizes the short wavelength modes ($k_y L > 1$, where k_y is the east-west mode number, L is the density gradient scale length) and thus excites a long wavelength mode.

The organization of this paper is as follows. In the next section we present the general nonlocal theory and present its results in the third section. We discuss the results and apply them to the diffuse auroral ionosphere in the fourth section, and the fifth section contains the conclusions.
II. THEORY

The geometry we use is as follows. The background magnetic field and the field aligned currents are along the z-direction \(\mathbf{E} = B \mathbf{Z} \); \(\mathbf{V}_d = V_oz \mathbf{Z} \). The density gradient and the inhomogeneous electric field \([E_{0x}(x)] \) are along the x-direction (northward). The inhomogeneous electric field gives rise to an \(\mathbf{E} \times \mathbf{B} \) sheared flow along the negative y direction (eastward).

The basic assumptions used in the analysis are as follows: (i) the perturbed quantities vary as \(\delta f = \delta f(x) \exp[i(k_y y + k_z z - \omega t)] \), where \(k_y \) and \(k_z \) are the wavenumbers along the \(y \) and \(z \) directions and \(\omega = w_r + i\gamma \), implying growth for \(\gamma > 0 \); (ii) the ordering in the frequencies is such that \(\omega > v_{in} + v_{ei} \ll \Omega_e, \Omega_i \), where \(v_{in} \) and \(v_{ei} \) are the ion-neutral and electron-ion collision frequencies and \(\Omega_e \) and \(\Omega_i \) are the electron and ion cyclotron frequencies, respectively; (iii) we retain the ion inertia effects, thereby including the ion polarization drift, but ignore the electron inertia; and (iv) we ignore finite-Larmor radius effects by limiting the wavelength domain to \(k\rho_i << 1 \), where \(\rho_i \) is the mean ion Larmor radius.

A key feature of our analysis is that a nonlocal theory is developed. That is, the mode structure of the potential in the x direction, the direction in which the density and flow velocity are assumed to vary, is determined by a differential equation rather than an algebraic equation obtained by Fourier analysis. This technique allows one to study modes which have wavelengths comparable to the scale sizes of the inhomogeneities (i.e., \(k_y L << 1 \), where \(L \) represents the scale lengths of the boundary layer). In fact, nonlocal theory is essential to describe the Kelvin-Helmholtz instability driven by a transverse velocity shear (Mikhailovskii, 1974).

Based on the assumptions described above, the fundamental fluid equations used in the analysis are continuity and momentum transfer in the neutral frame of reference

\[
0 = -\varepsilon \left(\mathbf{E} + \frac{1}{c} \mathbf{V}_e \times \mathbf{B} \right) - \mathbf{v}_{ei} \mathbf{V}_e \quad (1)
\]
\[
\frac{dV_j}{dt} = e(E + (1/c)V_j \times B) - M_{\text{ion}}V_j
\]
\[\frac{\partial n_j}{\partial t} + \nabla (n_jV_j) = 0\]

where \(m(M)\) is the electron (ion) mass, subscript \(j\) denotes species (e for electrons and i for ions), \(V\) is velocity and \(E\) is electric field, \(n\) is density, \(c\) is speed of light, and \(e\) is the absolute value of the electron charge. From eqs. (1) and (2) we obtain the zeroth order perpendicular electron and ion velocities as

\[
V_{e\perp} = -(c/B)E \times \hat{z} + 0 \frac{(n_{e1}/n_0)}{\Omega_i}
\]

\[
V_{i\perp} = -(c/B)E \times \hat{z} + \left(V_{in}/\Omega_i\right)E_{\perp} + \left(1/\Omega_i\right) \left(V_0 \cdot V\right) E_{\perp}
\]

where \(\Omega_i = eB/Mc\) is the ion cyclotron frequency.

Taking the dot product of eqs. (1) and (2) with \(\hat{z}\), we obtain the zeroth order parallel velocities as

\[
V_{ez} = -eE_{oz}/m_{ei}
\]

\[
V_{iz} = eE_{oz}/M_{ion}
\]

We perturb equations (1)-(3) and linearize them in the electrostatic limit. We substitute \(E = -\nabla \phi = -\nabla (\phi_0(x) + \delta \phi)\), \(V = V_0 + \delta V\), and \(n = n_0(x) + \delta n\) into eqs. (1)-(3). Since the equilibrium quantities vary in the \(x\) direction we do not Fourier analyze in the \(x\) direction. We Fourier analyze in the \(y\) and \(z\) directions. Using eqs. (4) and (5) along with eqs. (1) and (2) we obtain the perturbed velocities in the perpendicular direction as
\[
\begin{align*}
\delta V_{e_1} &= + (c/B) \delta E_{\perp} \times \hat{z} + O(\nu e_i/\Omega_e), \\
\delta V_{ix} &= \frac{(c/B)}{(1 + \nu_{oy}/\Omega_1)} \left[-ik_x \delta \phi + \frac{(i\omega - ik_y V_{oy} - \nu_{in})}{\Omega_1} \frac{\partial}{\partial x} \delta \phi \right], \\
\delta V_{iy} &= (c/B) \left[\frac{\partial}{\partial x} \delta \phi - \frac{(\omega - k_y V_{oy} + i\nu_{in})}{\Omega_1} k_y \delta \phi \right]
\end{align*}
\]

where \(V_{oy} = -(c/B) E_{ox} \). From eqs. (1,2) and (6,7) the perturbed parallel velocities are given as

\[
\begin{align*}
\delta V_{ez} &= -e \delta E_z / \nu e_i, \\
\delta V_{iz} &= e \delta E_z / \nu_{in}.
\end{align*}
\]

We substitute eqs. (4) thru (11) in eq. (3) and assume quasi-neutrality, \(\delta n_e = \delta n_i = \delta n \), to obtain the mode structure equation for the perturbed electrostatic potential as (where we have dropped \(\delta \) from \(\delta \phi \) and indicate the perturbed potential by \(\phi \)

\[
\phi'''' + p\phi'' + q\phi = 0
\]

where

\[
p = \varepsilon + (i\nu_{in}/\omega_2) \overline{k^2} v_{oy}/\omega_1
\]

\[
q = -k_y^2 + k_z^2(\Omega_e/\nu e_i)(\Omega_1/\omega_2) - \overline{k^2}(k_z v_{oz}/\omega_1)(\Omega_1/\omega_2) + k_y (V_{oz}^* + V_{oy})/\omega_2
\]

\[
+ (i\nu_{in}/\omega_2) \left\{ \overline{k^2} v_{oy}/\omega_1^2 - (k_y v_{oy}) \left[(n_{e}^* - n_{o})/\omega_1 \right] + ik_z (e v_{oy}/\omega_1) (\Omega_e/\nu e_i) \right\},
\]

where
where we assumed \(V'_{o}/n_i << 1 \) and ignored terms of \(O(v_e/n_e) \) and
\[
V_{oz} = (V_{ez} - V_{iz}), \quad \varepsilon = n_{e}^{*}/n_{o}^{*},
\]
\[
\bar{k}^2 = i k^2 \left(\frac{n_{e}}{v_{e}} / \frac{n_{e}}{v_{o}} \right) - k_y \varepsilon \tag{15}
\]
\[
\omega_1 = \omega - k_{z} V_{oz} - k_{y} V_{oy}, \quad \text{and} \quad \omega_2 = \omega + i \nu_{in}.
\]

The primes indicate derivatives with respect to \(x \). Equation (12) is similar to the equations that have been derived in the context of the Rayleigh-Taylor (Guzdar et al., 1982; 1983) and \(E \times B \) instabilities (Huba et al., 1983). In the absence of the velocity shear \((V'_{o} = V''_{o} = 0)\) the first three terms in \(q(x) \) (eq. 14) yield the nonlocal current convective instability. Equation (12) is solved numerically in various parameter domains and the results are presented in the next section.
Before solving eq. (12) we consider some known limiting cases. First, in the absence of field aligned currents ($V_{oz} = 0$), for a homogeneous ($v_{in} = 0$) collisionless plasma eq. (12) yields the well known transverse ($k_z = 0$) Kelvin-Helmholtz instability (Mikhailovskii, 1974)

$$
\phi'' + \left(- k^2 + \frac{k V_z c}{y} \right) \phi = 0
$$

The Kelvin-Helmholtz instability is shown in Fig. (1) curve A (Michalke, 1964). The velocity profile used is $V_{oy} = \bar{V}_{oy} \tanh(x/L)$. We see from the figure that the collisionless Kelvin-Helmholtz mode is unstable in the domain $0 < k_y L < 1$ with the growth rate maximizing at $k_y L \approx 1.5$ with a maximum value of $0.18 \bar{V}_{oy}/L$.

In the absence of the velocity shear we obtain

$$
\phi'' + \varepsilon \phi'' + \left[- k^2 + \frac{k V_z c}{y} + \frac{\Omega_e \Omega_i}{\nu_{ei}} \frac{k V_{oz} c}{\omega} \right] \phi = 0
$$

Equation (17) describes the nonlocal current convective instability. In the local limit, $\varepsilon/\omega \ll k_y$, we obtain the local dispersion equation (Chaturvedi and Ossakow, 1981)

$$
\omega^2 + \omega \left[i v_{in} + i \left(\frac{k_z^2}{k_y^2} \frac{\Omega_e \Omega_i}{\nu_{ei}} \frac{v_{oz} c}{\nu_{ei}} \right) \right] - \left(\frac{k_z}{k_y} \right) \Omega_i V_{oz} c = 0.
$$

The solution of eq. (18) yields the growth rate (Chaturvedi and Ossakow, 1981) with $\omega = \omega_r + i \gamma$ as

$$
\gamma = \frac{(k_z/k_y) \left(\nu_{ei}/\nu_e \right) V_{oz} c}{\left(k_z^2/k_y^2 \right) + \left(\nu_{ei}/\nu_{in} \right) \nu_{in} \Omega_i}
$$

for $\nu_{in} > 4 \left(k_z/k_y \right) V_{oz} c \Omega_i$, where $\nu_{in} = \nu_{in} + \left(k_z^2/k_y^2 \right) \left(\Omega_e \Omega_i / \nu_{ei} \right)$. Note that for instability k_z/k_y, ν_{ei}, V_{oz}, and c have to be nonzero. In fact, the optimum value of k_z/k_y can be calculated by maximizing eq. (19) with respect to k_z/k_y.

7
The growth rate maximizes at

$$k_z = k_y \left(\nu_{ei} / \nu_{in} \right)^{1/2},$$

with a maximum value

$$\gamma_{\text{max}} = \frac{1}{2} V_{oz} \epsilon \left(\nu_{ei} / \nu_{in} \right)^{1/2}. \quad (21)$$

For $\nu_{ei} / \Omega_e = 10^{-4}, \nu_{in} / \Omega_i = 10^{-4},$

$$[\gamma / V_{oz}]_{\text{max}} \sim 0.5 \quad (22)$$

Now we solve eq. (17) numerically for various k_y using the density profile

$$n_0(x) = \overline{n}_0 \left(1 + \delta \tanh(x/L) \right) / (1-\delta) \quad (23)$$

shown in figure 2 for $\delta = 0.8$.

Figure (1) curve B shows the growth rate normalized to V_{oz}/L as a function of $k_y L$ for $\delta = 0.8$ and k_z given by eq. (20). We note that the growth rate increases monotonically with $k_y L$ and asymptotes to the local growth rate (eq. 22).

We now introduce the velocity shear and solve eq. (12) numerically. We use the density profile given in eq. (23). The velocity profile is determined self-consistently from the zeroth order continuity equation

$$\nabla \cdot (\nabla n_0 V) = 0. \quad (24)$$

The eigenvalues are determined for various values of the parameter $\hat{\epsilon} (\nu_{ei} / \nu_{oz})$, which serves as a measure of the velocity shear. In Fig. (3) we plot the growth rates normalized to the shear-free current convective growth rate, $\gamma \left(V_{oz}/L \right)$, as a function of the normalized wavenumbers, $k_y L$. We choose $\nu_{ei} / \Omega_e = 10^{-4}, \nu_{in} / \Omega_i = 10^{-4}$, and $\delta = 0.8$. Curve A gives the case $\hat{\epsilon} = 0$ (same as curve B, Fig. (1)). Curves B, C and D are for $\hat{\epsilon} = 0.5, 1$, and 2, respectively. We can draw several conclusions from this figure. First, velocity shear stabilizes the short wavelength modes.
Second, the growth rate maximizes at $k_y L \sim 1.5$ for $\hat{s} = 0.5$; and as \hat{s} is increased the peak growth rate decreases and the growth rate maximizes at longer wavelengths. For $\hat{s} = 2$, the growth rate maximizes at $k_y L \sim 0.55$ with $\gamma_{\text{max}} = 0.083(V_{oz}/L)$. Third, when $\hat{s} = 1$, i.e., when the horizontal flow velocity is of the order of the vertical plasma drift velocity, modes with $\lambda \sim (2\pi/0.9)L$ are the fastest growing modes ($\gamma_{\text{max}} = 0.142 V_{oz}/L \sim 0.142 V_{oy}/L$). We note that as $\hat{s} \to \infty$ the V'_{o} and V''_{o} terms dominate in eq. (14) and the growth rate curve peaks around $k_y L \sim 0.45$ (not shown in the figure) resembling curve A of fig. 1.
Recent experiments conducted at Chatanika (Tsunoda and Vickrey, 1983) indicate that high latitude F-region plasma blobs have an east-west plasma density structure with scale sizes of 150 km and greater. Even though these experiments did not measure the velocity shear in this region, other evidence (Kelley and Carlson, 1977) indicates the presence of a strong east-west flow velocity shear of the order $1 - 20 \text{ sec}^{-1}$ in the diffuse auroral region. Assuming that the east-west flow is $\sim 250 \text{ m/s}$ and the shear scale length (of the order of the density gradient scale length; $L_N = L_V$) is 25 km, Fig. (3) shows that the generalized current convective instability has perpendicular scale sizes of order 150 km ($s = 1; V_{oy} = V_{oz}; k_yL = 0.9$). The corresponding growth rate is given as $\gamma - 0.142 (V_{oz}/L) - 0.142 \times 10^{-2} \text{ s}^{-1}$ (around 10 minutes e-folding time). For larger shears, for example, with the east-west flow velocity, V_{oy}, twice that of the field aligned flow, V_{oz}, the instability generates irregularities of scale sizes around 300 km, but with a smaller growth rate, $0.08 (V_{oz}/L)$ (20 min e-folding time scale for V_{oz}/L around 10^{-2} s^{-1}).

Since velocity shear has similar effects on the E x B gradient drift instability (Perkins and Doles, 1975; Huba et al., 1983) it is important to compare our present results with the results of Huba et al. (1983). Referring to Fig. (5) of the paper by Huba et al., we see that east-west flow comparable to the equilibrium north-south flow (due to the horizontal electric fields generating the E x B instability) excites modes with wavelengths $\sim 60 \text{ km}$ ($k_yL = 2.6, L = 25 \text{ km}$). The growth rate of these modes is $\sim 0.5 (V_{oz}/L)$ with e-folding times of the order 3 minutes (for $V_{oz}/L = 10^{-2}$). From this we can see that in the diffuse auroral region, the generalized CCI and EBI (CCI and EBI with velocity shear) can excite long wavelength modes with east-west scale sizes of 100 km or greater. However, we point out that in the absence of the E x B instability (zero westward electric field in the presence of say a poleward density gradient on a blob) the soft particle precipitation causing in turn currents of moderate strength $\sim 250 \text{ m/s}$ ($4 \mu \text{A/m}^2, n = 10^{11} \text{ m}^{-3}$) can still excite the long wavelength modes.
V. CONCLUSIONS

We have studied the effects of velocity shear on the current convective instability. We have shown that velocity shear suppresses the short wavelength modes and preferentially excites a long wavelength mode with $k_y L < 1$. This suggests that a generalized current convective instability (CCI with east-west flow velocity shear) with currents $\sim 4\mu A/m^2$ (~ 250 m/s parallel flow) can possibly excite modes with wavelengths of 150 km or more. Since the $E \times B$ instability can also excite long wavelength modes ($\lambda \sim 60$ km with a westward electric field ~ 10 mV/m, and north-south flow \sim east-west flow), we conjecture that the soft particle precipitation alone can destabilize a stable $E \times B$ diffuse auroral F region geometry by the CCI (Ossakow and Chaturvedi, 1979). In turn, The CCI in the presence of velocity shear can generate irregularities in the long wavelength domain.

We note that a unified treatment of current convective and $E \times B$ instabilities, with velocity shear and magnetic shear and nonlinear effects included, is needed in order to come to a better understanding of the morphology of the irregularities evident in auroral F region plasma enhancements. This subject is presently under investigation and will be presented in a future paper.

ACKNOWLEDGMENTS

We would like to thank P.K. Chaturvedi, J. Huba, and M.J. Keskinen for useful discussions. This work was supported by DNA and ONR.
Figure 1. Normalized growth rate versus $k_y L$ curves for Kelvin-Helmholtz (curve A) and current convective (curve B) instabilities. Curve A refers to velocity profile $V_{oy} = \overline{V}_{oy} \tanh x/L$. Curve B refers to the density profile of eq. (23), with $\delta = 0.8$, and $v_{in}/\Omega_i = 10^{-4}$, $v_{ei}/\Omega_e = 10^{-4}$.

12
Figure 2. Density profile given in eq. (23) for $\delta = 0.8$.
Figure 3. Generalized current convective instability as a function of \(\hat{s}(\equiv \frac{\nabla y}{\nabla u}) \). Curve A refers to \(\hat{s} = 0 \). Curves B, C, and D refer to \(\hat{s} = 0.5, 1, \) and 2, respectively. We used \(\delta = 0.8, \) \(\frac{\nu_e}{\Omega_e} = 10^{-4}, \) and \(\frac{\nu_i}{\Omega_i} = 10^{-4}. \)
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM. OMD. OMD 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON EN 683
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RESCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE B410
01CY ATTN CODE B812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TTIL
01CY ATTN DDST
03CY ATTN RAAR

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
01CY ATTN PCFR

DEFENSE NUCLEAR AGENCY
gaben/dna
BUILDING 20476
KIRTLAND AFB, NM 87115
01CY D.C. THORNBERG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JLTM-I
01CY ATTN JPSX G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
F.O. BOX 808
LIVERMORE, CA. 94550
01CY ATTN FCFL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICE

UNDER SECY OF DEF FOR RSC & ENCA
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OSB)

WMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-60 P. HILES
NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
OICY ATTN CODE 4700 S. L. Ossakow
26 CYS IF UNCLASS, 1 CY IF CLASS
OICY ATTN CODE 4701 L. Wikovitsky
OICY ATTN CODE 4780 J. Ruban
CYS IF UNCLASS, 1 CY IF CLASS
OICY ATTN CODE 7500
OICY ATTN CODE 7550
OICY ATTN CODE 7551
OICY ATTN CODE 7555
OICY ATTN CODE 4730 E. McLean
OICY ATTN CODE 4108
OICY ATTN CODE 4730 B. Ripin
20CY ATTN CODE 2628

COMMANDER
NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
OICY ATTN CODE 4700 S. L. Ossakow
26 CYS IF UNCLASS, 1 CY IF CLASS
OICY ATTN CODE 4701 L. Wikovitsky
OICY ATTN CODE 4780 J. Ruban
CYS IF UNCLASS, 1 CY IF CLASS
OICY ATTN CODE 7500
OICY ATTN CODE 7550
OICY ATTN CODE 7551
OICY ATTN CODE 7555
OICY ATTN CODE 4730 E. McLean
OICY ATTN CODE 4108
OICY ATTN CODE 4730 B. Ripin
20CY ATTN CODE 2628

COMMANDER
NAVAL RESOURCES COMMAND
WASHINGTON, D.C. 20362
OICY ATTN CAPT R. FITZIK

COMMANDER
NAVAL RESOURCES COMMAND
WASHINGTON, D.C. 20362
OICY ATTN CAPT R. FITZIK

NAVAL SPACE SURVEILLANCE SYSTEM
DAHLGREN, VA 22448
OICY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE
NAVAL SPACE SURVEILLANCE SYSTEM
WHITE OAK, SILVER SPRING, MD 20910
OICY ATTN CODE F31

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20376
OICY ATTN XSP-2141
OICY ATTN NSSP-2732 FRED VIBBERLY

COMMANDER
NAVAL RESOURCES COMMAND
WASHINGTON, D.C. 20362
OICY ATTN CAPT R. FITZIK

NAVAL SURFACE WEAPONS CENTER
DAHLGREN, VA 22448
OICY ATTN CODE 4108
OICY ATTN CODE 4730 B. Ripin
20CY ATTN CODE 2628

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN, VA 22448
OICY ATTN CODE DP-14 R. BUTLER

OFFICER OF NAVAL RESEARCH
ARLINGTON, VA 22217
OICY ATTN CODE 465
OICY ATTN CODE 461
OICY ATTN CODE 402
OICY ATTN CODE 420
OICY ATTN CODE 421

COMMANDER
AEROSPACE DEFENSE COMMAND/DC
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
OICY ATTN DC MR. LONG

COMMANDER
AEROSPACE DEFENSE COMMAND/XP
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
OICY ATTN XPDQ
OICY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY
HANSCON AFB, MA 01731
OICY ATTN OPR HAROLD GARDNER
OICY ATTN LSG KENNETH S.W. CHAMPION
OICY ATTN OPR ALVA T. STAIR
OICY ATTN PHD JURGEN BUCHAU
OICY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY
KIRTLAND AFB, NM 87117
OICY ATTN SUL
OICY ATTN CA ARTHUR R. GUENTHER
OICY ATTN MTCE L.T. G. KRAJE

AF SAC
PATRICK AFB, FL 32925
OICY ATTN TF/MAJ WILEY
OICY ATTN TF

AIR FORCE AVIONICS LABORATORY
WRIGHT-PATTERSON AFB, OH 45433
OICY ATTN AAD WADE HUNT
OICY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACQ
DEPARTMENT OF THE AIR FORCE
WASHINGTON, D.C. 20330
OICY ATTN AAFDQ

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION
DEPARTMENT OF THE AIR FORCE
HANSCON AFB, MA 01731
OICY ATTN J. DEAS

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/TSR
DEPARTMENT OF THE AIR FORCE
HANSCON AFB, MA 01732
OICY ATTN TSF

21
OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234
OICY (ALL CORRESP. ATTN SEC OFFICER FOR)

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
OICY ATTN A. JEAN (UNCLASS ONLY)
OICY ATTN D. CROMBIE
OICY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
OICY ATTN R. GRUBB
OICY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
OICY ATTN I. GARFUNKEL
OICY ATTN T. SALMI
OICY ATTN V. JOSEPHSON
OICY ATTN S. BOWER
OICY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
OICY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 WUTLAND DRIVE
AUSTIN, TX 78738
OICY ATTN L. SLOAN
OICY ATTN E. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
OICY ATTN J. WORMAN
OICY ATTN C. FRETIE
OICY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
OICY ATTN G. KEISTER
OICY ATTN D. MURRAY
OICY ATTN G. HALL
OICY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
OICY ATTN D.B. COX
OICY ATTN J.P. GILMORE

COMSAT LABORATORIES
LINTRICUM ROAD
CLARKSBURG, MD 20734
OICY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
OICY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
OICY ATTN A. LOGSTON
OICY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401
OICY ATTN C.B. GABBARD

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
OICY ATTN J. ROBERTS
OICY ATTN JAMES 'ASHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
OICY ATTN M.B. BONTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
Syracuse, NY 13201
OICY ATTN F. REIBERT
IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
Dr. P. MANGE - CODE 4101
Dr. P. GOODMAN - CODE 4180
A.P. GEOPHYSICS LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01730
Dr. T. ELKINS
Dr. M. SWIDER
MRS. R. SAGALYN
Dr. J.M. FORBES
Dr. T.J. KENESHEA
Dr. W. BURKE
Dr. H. CARLSON
Dr. J. JASPERSE

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
Dr. J. AARONS

CORNELL UNIVERSITY
ITHACA, NY 14850
Dr. W.E. SWARTZ
Dr. D. FARLEY
Dr. H. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
Dr. N.B. McELROY
Dr. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARM/NAVY DRIVE
ARLINGTON, VA 22202
Dr. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
LIBRARY, NW16-262
CAMBRIDGE, MA 02139

NASA

GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
Dr. E. HAEDA
Dr. S. CURTIS
Dr. M. DUBIN
Dr. N. MAYNARD - CODE 696

COMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360
Dr. T. CZUBA

COMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
Mr. R. ROSE - CODE 5321

NOAA

DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
Dr. A. GLENN JEAN
Dr. G.N. ADAMS
Dr. D.H. ANDERSON
Dr. K. DAVIES
Dr. R.F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
Dr. G. JOINER

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
Dr. J.S. MISHET
Dr. P.R. RONBAUCH
Dr. L.A. CARPENTER
Dr. N. LEE
Dr. R. DIVANY
Dr. P. BENNET
Dr. F. KLEVANS

SCIENCE APPLICATIONS, INC.
1150 PROSPER PLAZA
LA JOLLA, CA 92037
Dr. D.A. HAMLIN
Dr. E. FRIEIAN

27