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In khis report we showSKhat a twist map of an annulus with a periodic
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point of rotation number p/q must have a Birkhoff periodic point of rotation
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number p/q. We use’iapological techniquesAso no assumption of area-
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preservation or circle intersection property is needed. If the map is area
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preserving then this theorem and the fixed point theorem of Birkhoff imply a
Tt
recent theorem of Mather. .We also shOanhat periodic orbits of
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(significantly) smallest period for a twist map must be Birkhoff.
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i}E‘ SIGNIFICANCE AND EXPLANATION

53% It was noticed first by Poincaré that some questions concerning stability'

w§€ . and existence of periodic and quasi-periodic orbits in the three body problem

%%? of Celestial Mechanics could be reduced to the study of maps of the annulus

‘;¢ ’ satisfying a twist condition. The twist condition states that the angular

"?i difference between a point and its image is proportional to the radial

;i- distance from the inner boundary of the annulus. In the context of Celestial |

Mechanics there is a natural invariant measure for the maps, however, twist
maps appear in other contexts (e.g. maps of the plane after Hopf bifurcation)

where there is no invariant measure available.

The existence of periodic orbits for area-preserving maps has been shown

5 3 by Poincaré and Birkhoff. Recent theorems of Mather and others show the

hEy

qu existence of special 'Birkhoff' periodic orbits and of associated quasi-

Py ‘

‘ha . periodic orbits for area-preserving twist maps. In this report we show that

there is a version of Mather's theorem which does not require the area-

preserving condition. This theorem then applies to dissipative twist maps.
it e
v We also show that the periodic orbits of a twist map which have smallest
i
j? period must be the simple 'Birkhoff’ orbits. Accession For ‘
i )"! p—— e .
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A TOPOLOGICAL VERSION OF A THEOREM OF MATHER ON TWIST MAPS

Glen Richard Hall

1) Introduction: We say a diffeomorphism f of an annulus onto itself satisfies a twist
condition if the angular component of the image of a point under f increases as the
radial component of the point increases (see Section (2) for precise definitions). Such
maps were first studied in connection with the three-body problem by Poincaré, and in this
context the map has a natural invariant measure. Birkhoff [B1,B2] showed that such area-
preserving twist maps have many periodic orbits, however his theorem gave no insight into
the nature of these orbits. Recently, Mather (M1} (see also Katok {X]) has shown that
area-preserving twist maps possess periodic orbits such that £ preserves the angular
ordering of points on the orbit, such orbits are called Birkhoff periodic orbits (see
Katok (K] and Section (2)). Moreover, Mather also showed the existence of 'quasi-
periodic' orbits for area-preserving twist maps. The variational technigues used by
Mather have proven useful in the study of other aspects of area-preserving twist maps
(see, for example [M2]}).

Twist maps also occur frequently as nonarea-preserving maps. For example, near the
rest point of a map of the plane which has undergone Hopf bifurcation a twist condition
will be satisfied. Por such dissipative maps there will be no invariant measure.

In this report we show that a twist map of the annulus having a periodic orbit of
some rotation number will have a Birkhoff periodic orbit of the same rotation number. One
can think of this as replacing the area-preserving hypothesis vltﬁ the assumption on the
existence of periodic orbits, so this theorem can be applied to dissipative maps (see

Chanciner [5)). Given an area-preserving twist map, Birkhoff's theorem mentioned above

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and a National
Science Foundation Postdoctoral PFellowship.

R RN
«’p )
'\¢ )




B L R D 9 R RN Y A % ¥ ' ¥ SUBACE R e Yot it ie I Bl Tl "B
5 ..t PO Y U B T "Bt PN T & 3 Pt C7 Y TLT A Pl Maciie 1N IO DAL

gives the existence of many periodic orbits, and hence Mather's theorem may be derived as
a corollary.

The idea of the proof is to make use of the twist condition to show that periodic
orbits which are not Birkhoff periodic orbits are topologically complicated. For example,
if we suspend the twist map and look at the orbit of a non-Birikhoff periodic orbit it
forms a non-trivial braid. The way in which these orbits link, given by the twist
condition, can be used to imply the existence of new periodic points either by a geometric
| argument or a theorem on braids and periodic orbits of Matsuocka (Mat). 1In particular, if
a twist map has Birkhoff and non-Rirkhoff periodic orbits of some given rotation number
then it must infact have two distinct Birkhoff periodic orbits with that rotation number.

In Section (2) we give the notation used throughout. In Section (3) we state the

P I
B S N R

main result, proved in Section (5) using lemmas of Section (4). Section (6) is used to
MES give some related theorems for twist maps which say basically that a periodic orbit with
period (much) smaller than the period of every other periodic orbit of a given twist map

ks must be a Birkhoff periodic orbit.

Acknowledgements. The author would like to thank all of those who listened patiently and
offered suggestions and encouragement during this work. Particular thanks to C. Conley, ‘

E. Mansfield and D. Terman. A special thanks to M. Handel for suggestions simplifying and

extending Lemma (4) which removed many technical difficulties and for suggesting the

possibility of theorems of Section (6).
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2) Definitions and Notations: We let
A={(x,y) eRP : 0<yc< 1),
L (respectively Iz): A+ R: (x,y) * x (respectively vy)
be the usual projections and for each a € R
t,={ta,y)enrn:0<yc< 1} .
Definition: A map f : A * A 1is called a twist map if
1) £ is a (:2 diffeomorphism, preserving boundary components and orientation,
2) Vix,y) €A, £L(x,y)) + (1,0) = £{(x + 1,y)) ,
a(w1ot)
3) a8 >0, vz ena, T(z)>6.
Remarks: Condition (2) states that f is the lift of a map on the annulus of which A
is the universal cover. Condition (3) is the 'twist condition', it implies that for any

a,8 e R, f(za) n ls is at most one point (see Pigure 1). This is sometimes called a

‘monotone' twist condition.

"a "8 !

/
"y 7/
B 7/

o P 7

D _ -~ S - F

! 7

7
V4 £( "a)
/
Z

Figure 1

Definition: The orbit of a point z € A under a twist map £ : A+ A is defined to be

the set ((f,z) = (£%(2) + (2,0) : kx,2 e z}.

wu.‘.,

- Definition: A point z € A is called a p/q-periodic point for a twist map f : A + A if

"‘; fq(Z) - (p,0) =z .
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S8imilarly, a point =z @€ A is called a p/q~Birkhoff periodic point for f if z is a
p/q-periodic point and for any 3z.,%Z, € ((f,z)
wolzy) < W (z)) => w,(£(2,)) < v (f(z,))

Remarks: Recall that £ is the lift of an annulus map and hence the 'orbit' defined

above and the definition of p/g-periodic point correspond to the lifts from the annulus of
the usual orbit and periodic points. The p/q~Birkhoff periodic points are those p/q-

periodic points 2 for which f restricted to ((f,z) is 'order preserving' in the x-

coordinate.

Definition: If f : A+ A is a twist map and z € A then the rotation number of ¢
at =z is

i 1 n

i p(f,z) = lim a (11(f (z)))

nee

if it exists.

Notation: The maps ﬂ{(x 1)ixem}’ i =0, are lifts of circle diffeomorphisms, hence we
o let

po(f) = pn(f,(x,0)) and p () = plf,(x,1))

vhere these Jdefinitions are independent of x € R and the limits exist (see Herman [H1)).
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3) Statement of the Main Theorem: In this report we prove the following theorem:

Theorem 1: If £ : A+ A is a twist map and f has a p/gq-periodic point then f has a
p/q-Birkhoff periodic point.

This theorem applies, whether or not f 1is area-preserving. If f is area
preserving then we can combine it with the following two results to obtain a theorem of
Mather.

Theorem 2 (Birkhoff (B1,B2], see also Chanciner [C]): If £ : A+ A is an area-

preserving twist map and p/q € [po(t),p1(t)l then f has a p/q-periodic point.

Remark: Birkhoffs theorem (known as 'Poincar$'s Last Geometric Theorem') is actually true

under a much weaker twist condition.

o
Lemmwa 0 (Katok (K]): If £ : A+ A is a twist map, {-'—'} is a sequence of rationals

n>0
P, Pn
with ‘q: +a¢Q as n+* = and for each n, f has a ; = Birkhoff periodic point z,

then any limit point z of {'n}nﬂ) satisfies p(f,z) = a.

Remark: In fact, much more is true of the orbit of such limit point z of {z } ,,. The

map f restricted to it is order preserving in the x-coordinate and the orbit lies on the
graph of a periodic Lipschitz function (aee Mather [M1], Katok [K], Herman [H2)). These

additional facts follow merely from the geometry of twist maps.

Theorem 3 {(Mather [M1])): 1f f : A+ A ig an area-preserving twist map and

ae loo(f),p'(f)] then there exists z, €A with p(f,zu) = q

Proof of Theorem 3: By Birkhoff's theorem (Theorem (2)), for each rational

p/q € [po(f).p1(f)1 there is a =z € A wvhich is a p/q-periodic point of €. By

p/q
Theorem (1) we see that there must then exist a p/q-Birkhoff periodic point. Applying

Lemma (0) to sequences of Birkhoff periodic points we can obtain points with irrational
rotation number for any irrational in [po(f),p1(f)], which completes the proof of the
theorem. //. (See the remark above and the papers of Mather (M%), Katok (K], and Herman

[H2] for the other properties of the orbits of these 'Birkhoff points'.)

-f=
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?ﬁ3 The proof of Theorem (1) proceeds as follows: Assume we have a twist map f : A + A

with a p/qgq-periodic point. Then we show that f can be homotoped to a twist map

g : A+ A which has a p/q-Birkhoff periodic point such that each map in the homotopy has

kash i
Crw bR g e

p/a-periodic pointas. The set of maps which have p/q-Birkhoff periodic points will then be
seen to comprise an open-closed set in the parameter of this homotopy. Closure follows
eagily from the definition of Birkhoff periodic point (see Lemma (1) below) while openness
follows from the fixed point lemma of the next section, Lemma 4. Basically this lemma

says that a map with a p/q-Birkhoff periodic orbit and another p/g-periodic orbit must

infact have two p/q-Birkhoff periodic orbits, moreover this second orbit must persist

»;% under small perturbations.
;2 The next section contains some lemmas needed for the proof of Theorem (1) which is in
% Section (S5). In Section (6) we show, using similar, but technically easier techniques
ﬁs that if € : A > A 1is a twist map and for some relatively prime integers p,q the map
”S“ £ satisfies the following condition:
;%; (*) Every r/s-periodic point of f has s =q or s > (3/2)q,
; then every p/q-periodic point of f is a p/q-Birkhoff periodic point. Conditions on
g& p/q, po(f) and p,(f) can be given which imply the condition (+) above saying
;EE essentially that the map isn't twisting very much., For area preserving twist maps we can
él; improve this theorem, replacing (°*) with the following:
. Every r/s-periodic point of f has s > q,
:E. obtaining the same conclusion, that every p/q periodic orbit is a p/q~Birkhoff periodic
:‘l; orbit.
b
—
!
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f 4) Some lemmas: In this section we prove lemmas useful in the proof of Theorem (1).

; Lemma 1: Suppose f,: A+ AR is a sequence of twist maps, n = 1,2,... and for some
+5A .

:;.: fixed p,q relatively prime integers, each f, has a p/q-Birkhoff periodic point
o.l

e z, €A, If f,, converges, in the sup norm topology, to a twist map fo : A+ A (i.e.

o~

sup Mf _(2) - fo(z)l +0 as n+ @ where I°0 is the usual R° norm) and z
zep D

to zg €A as n tends to infinity then 2z; is a p/q-Birkhoff periodic point of fo-

n converges

i

Proof of Lemma 1: Since fﬁ(zn) - (p,0) =z  for all n = 1,2,... it follows that

n

o
iﬁ £J(zy) - (p,0) = zy. (Moreover, fg3(zy) - (r,0) # z, for any r,s with s < q since

p and q are relatively prime.) Hence, z; is a p/gq-periodic point of fo-
e
Hﬁ To show that 2z; is a p/q-~Birkhoff periodic point of fq we fix k1,k2,l1,lz e z.
Yy Then for n = 1,2,...
.

Xy Ky k +1 k,+1
!1(fn (zn)) + 11 < 11(fn (zn)) + !2 == 11(fn (zn)) + 11 < 11(fn (zn)) + lz .
5: But then the same statement holds by continuity when we replace £, and z, by f,
eyt
'53 and 2z, respectively and put '<' into the second inequality. But suppose
; k k
~ATEEe 1 2
!1(fo (zo)) + 21 < 11(fo (zo)) + 22 . (*)

3 and
Ny ky+1 ky+1
fﬁ 11(20 (zo)) + 21 = 11(fo (zo)) + lz .
, b
b k1 Kk, +1

Then, by the twist condition we have lz(fo (zo)) > wz(f0 (zo)) {(see Figure 2). So,
3 k1+2 k2+2
‘: again by the twist condition 11(f° (zo)) AL TERGR P ¢ 58 (z4)) + 12- But this implies
., k +2 k,+2
v w'(f (z )) + 11 > 11(f (z )) + lz for n sufficiently large while (*) above
S, n n Kk, n )
nt implies l,(fn (zn)) + !‘ < 11(fo (zn)) + lz for n sufficiently large and this
{: contradicts the fact that =z, is a p/q-Birkhoff periodic point of £, . So z; must be a |
L~
Jﬁ p/q-Birkhoff periodic point of f, and the proof is complete. //. !
Q. i
+
-

The next lemma says we can suspend a given twist map so that the intervening maps are

F.

’ also twist maps.
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.t g e, ,0) | s ’
k £ o] 1 H
1 O /
(z,)+(2,,0) P
N 0 1 N - /
&R Ny *; - k2
5 ¥ 22 )+(z2,0) £2 (zg)+(2,,0) +
33 xf/ 0 m '4 - 9
& »
3}: y / {k,+1 k,+2
; 7/ £ (z)+2 ,0f £ (zy)+(2),0)
Y, ' o' Y2y 0
i / / 1 /
'4‘ Y. I Z
N/
Wy
‘- Figure 2
'-'!
f” lemma 2: Given a twist map £ : A + A there exists a c! map ¢ : A x R+ A sausfying
ey 1) ¢(+,0) = identity on A, ¢(*,1) = £(¢) ,
& 2) vt e (0,1], ¥ne 3z, ¢(s,t +n) = (£, 8) ,
3) vt e [0,1), ¢(°,t) is a twist map ,
& 4) Vz e A, V£t € R, ¢(z + (1,0),t) = $(z,t) + (1,0).
h:
b Proof of Lemma 2: It suffices to define ¢ on A x [0,1] so that (1, 3 and 4) are
satisfied since (2) can then be used to extend the definition to all of R.
A Let f, : R+ R be given by f,(x) = t"(f(x,o)) and G : B + B be given by
‘,(
e vz € A, G(z) = pe(e” N (2))(0, 1)
<
"
sﬁ where Df(w) is the derivative (matrix) of f at w € A. Then f is determined by the
-
map f, and the vector field G as follows: Let ¥ be the local flow with domain in
|
. A x R determined by the initial value problem
‘
e (]
[ N =
\ at (z,t) = G(y(z,t))
" $(z,0) =z, Vz €en.
Then f {8 given by
‘;‘ Vz €A, f(z) = 0((1’0(11(2)),0),12(2)) . (**)
i’v .
, The required homotopy of f can then be easily constructed by
'
W a) deforming f; to the identity on R through diffeomorphisms which are lifts
of circle diffeomorphisms; *
"
3 -8-
Y
1
i
1,
1‘!‘
b
»
w
-
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b) forming a smooth, one-parameter family Gg ¢ A » R2

of vector-fields with
parameter 8 € [0,1] so that G, is the constant (0,1) and G, is equal
to G. To assure condition (3) we construct G’ so that the angle between
Gglz) and the x axis is always between -7/2 and ®/2 and increasing with
s. For condition (4) we require Gs(z + (1,0)) = G'(z) for all z € A,
s e [0,1).
The maps ¢(+,8) are now given by using the solution of the vector field G, and the
initial conditions specified by the diffeomorphism in (a) above in an equation of the form
(**). Of course, to extend ¢ to a globally smooth map on A x R we must "match up” the
families of circle maps and vector fields given in (a) and (b) near s = 0 and s = 1.
These details are left to the reader. //.

It is the topological nature of the orbits of p/q-Birkhoff periodic points under
these flows which is the key to the proof of Theorem (1), i.e., the fact that they are not
‘linked’ as is made precise in the next lemma.

Suppose f : A * A is a twist map and p,q are relatively prime integers. Let
g: A+ A be defined by

vz € A, glz) = £f9(z) - (p,0) .
Then the fixed points of g correspond precisely with the p/q-periodic points of f.
Suppose f has a p/q-Birkhoff periodic point 2z, € A, then we have
Lemma 3: There exists a C' map ¢ : A x R+ A satisfying
i) vz e A, vt e R, ¢(z + (1,0),t) = é(z,t) + (1,0) ,
ii) ¢(e,0) = identity, ¢(+,1) = g(°) ,
111) vt e (0,11, Vn e Z, #(*,t + n) = d(g"(+),t) ,
iv) wt e [0,1/q] and i = 0,...,q'1, ¢(¢(°.i/q)-1, i/q + t) is a twist map ,
v) for i=1,...,9, and any z,w €A, ﬂ1(¢(z,i/q)) < ﬂ1(¢(w,i/q)) if and only
18wt cneton

vi) VL e O(f,zg), V¢ € R, ¢(L,t) =¢ .

-
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Proof of Lemma 3: Let 01 : AXR*A be the one parameter family associated with f by
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Lemma (2). We may assume, by composing the maps ¢1(-,t) with a map which preserves

the x = constant foliation (i.e., adjusting the norms of the vectors given by the vector
field G,), that if Z,,l, € 0(f,zg) with w,(g,) < w (Z,) then

ﬂ1(¢1(C1,t)) < w1(61(C2,t)) for all t e [0,1]. But then letting $, 3 A X [0,1) » A
be defined by

vz e A, Vvt e [0,1], ¢,(z,t) = ¢,(z,qt) - t(p,0)

we see ¢2 satisfies conditions (i), (ii), (iv) and (v) and that if Tqyekq e O(f,zo),
!1(C1) < 11(C2) then !1(¢2(¢1,t)) < ﬂ1(¢2(C2,t)) for all t e [0,1). Hence, we may
deform ¢2 to a family ¢ : A x {0,1)] * A so that (i, ii, iv, v and vi) are satisfied
and extend ¢ to a map on R by condition (iii). This is the required map ¢ and the
proof is complete. //.

Remarks: 1) Informally we can say that the braid given by ¢,(C,t) for [ e 0(f,zy) 1is
trivial hence it may be 'straightened out', (see Figure 3).

2) The hypothesis that 2z, be a p/q-Birkhoff periodic point is necessary in the
above lemma. In fact, if z; is a p/q-periodic point, but not a p/g-Birkhoff periodic
point then the above lemma can not hold. To see this, note that if 2z, is not a p/q-
Birkhoff periodic point then there exist C1’52 e O(f,zo) with w1(;1) < 11(;2) and

11(5(51)) > ﬂ,(f(cz)). But as we will see in the proof of the next lemma, this implies
that the orbits of [, and z, under ¢, 'link' non-trivially (see Figure 4) and hence
cannot be simultaneously straightened out.

3) Finally we note that the proof of Lemma (3) relies only on the fact that points
of a Birkhoff periodic orbit stay in order, i.e., the same proof serves to show
Lemma 3': With f : A+ A, g : A+ A as above and Lye8, p/gq-periodic points of f
satisfying 11(fi(c1)) < ﬁ‘(fi(cz)) for all i = 0,...,9 there exists a map

¢ : Ax R+ A satisfying (i-v) of Lemma (3) and
vi') ¥t e R, ¢(5,,t) =g, i=12.

Proof of Lemma 3': Same as the proof of Lemma 3. //.
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The final lemma of this section is the *'fixed point' lemma required for Theorem (1).

AL UL W%

Lemma 4: Suppose f : A + A is a twist map and p,q are relatively prime integers.

(et

Suppose f has a p/q-Birkhoff periodic point 25 € A and a p/q-periodic point wg € A
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: which is not a Birkhoff periodic point. Then f has another p/q-Birkhoff periodic
point 2z, € A with 2z, # O(f,zy). Moreover, if f : A+ A is a twist map and

.::': l:: 1£(z) - £(z)1 is sufficiently small, where 1 1 ig the usual norm in R, then f

:‘j h:- a p/q-Birkhoff periodic point.

3 Remark: This lemma is reminiscent of the theorem of Birkhoff for area-preserving twist

maps (of which Theorem (2) in Section (3) is a corollary) which states that if

<.

0e [po(f).p1(!)] for a twist map £ then f must have two fixed points. That f must

T

’.-: have two fixed points in the generic case follows easily from index arguments, however
- £f must have two fixed points even when they are degenerate (see [B1,B2]). It should be
,J emphasized that we are not assuming area-preservation or any circle intersection

3 properties in Leoma 4.
) Proof of Lemma 4: Let g(z) = £9(z) - (p,0) for all z € A as above and let
) ¢ : AX R+ A be the one parameter family associated with g and the orbit of 1z, € A
'j by Lemma (3). For convenience we introduce the following technical notation:
é We say two points (,n € A get out of order if w,(Z) < w,(n) and
8 '1“1“)) > w,(ti(n)) for some i, 0 <1 <q or if w,(g) > m (n) and

" w gt @) < (£ for some 1, 0 <1 <q.

‘:‘ An immediate consequence is that if [,n are p/gq-periodic points of f then §,n
y

':: get out of order if and only if fk(C),fk(ﬂ) get out of order for all k € Z.

Let uo,u1,....uq_1 e 0(!,:0) be chosen and ordered so that

) <1 and let Voeeev € 0(f,w,) be chosen and

;{ 0 < '1(“0’ < w,‘(u1) < 000 ¢ ﬂ,(uqq 0
:& ordered so that ¥ (1)) € W (vg) < W (Vy) < evr <MV () < Wolug + (1,0)).  (We may
\)
' 4 assume ﬂ1(\’i) # !(\)1”) by changing coordinates slightly if necessary.) Now we specify
two cases by the Pigeon Hole Principle:
I.J
N Case 1: There exists i,, 0 € iy < g such that for all j = 0,1,...,9 - 1,
a4
) I‘ - -
t, w,(vj) ¢ [n(uio).w,(uio“)) (or w,(v.) ¢ [“1("q-1)'"1‘“o’ +1) if iy =q - 1).
P Case 2: FPor each 1, 0 < i <g, " (v,) e (v, (u),my(u,,q)) (and
::‘. '1(\’q_.‘) e ("1(uq.1)l'1(|-|o) + 1).)
S
kN -12-
q‘
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If Case (1) holds take Tp =¥ and (1 bl in Case (2) take co = ¥, and

i, "10+1'
Eq = ¥y

Next we note that since wg is not a Birkhoff periodic point, there must exist
z @€ (f,z5) such that z,wy get out of order. Let Z e ((f,zy) be such that Z,wy get
out of order and if z e ((f,z;) and z,wy get out of order then z = z or
'1(1) < 11(;)- Similarly let z e 0(f,zy) be such that z,wy get out of order and if
z e Xf,wy) and z,wy get out of order then z =z or w,(2) < w,(z), (it is possible
that % = z). Pix rq,r,,s,,8, € Z so that £r1(§) =L, + (84,0) ana
frz(_z_) =3, * (35,0). Then it follows that &%t (s,,O),fr1(w°) get out of order and
L + (32,0),£r2(v°) get out of order. Letting ny = ft1(w°) - (84,0),
n1 = ftz(vo) - (82,0) we have that Co,no get out of order and t;1,r|1 get out of
order. Now, co,n1 do not get out of order since if they did then ;o + (32,0),fr2(w°)
would get out of order, so f-rz(co + (85,0)),wg would get out of order. But z; is a
Birkhoff periodic orbit, so '1“0) < 11(z1) implies '1“'!2(‘0 + (s5,0))) <
'1“-1'2(;1 + (83,0)) = %,(2) and we have a contradiction of the choice of z.
Similarly, C,,no do not get out of order, i.e., for { = 0,...,q - 1,
ety < v et ana w (grz ) > w tering)).  1f we are in Case (2) then either

1) w(ng) < w (L) and ¥, (g,) € W (ny),
ii) w1(no) < '1“0) and 11(;0) < wilny) < 11(:1)

or iii) :1(:0) < 11(n°) < 11(;1) and 11(C1) < 11(11‘)
while in Case (1) condition (i) must hold.

Suppose '1("0’ < 11(50) and for some i, 0 < i < q, 11(fi(n°)) > u,(f(co). Fix the
smallest i > 0 such that w1(¢(no,(i - 1)/q)) < !1(¢0) and 11(0(no,i/q)) > '1“0)’ By
the twist condition we see that if t e (0,1/q) and 11(0(n°.i/q +t)) = t.‘(co) then
12(0(n°,(1-1)/q+t)) > 12((0). Fixing the smallest 3j > { such that 11(0(n°.(j-1))/q))
> 11(c°) and !1(0(no,j/q)) < 11(1;0) we gee similarly that if t e [0,1/q) and
11(¢(no,(j -1)/g +¢t) = !1(C°) then I2(¢(no.(j - 1)/q + ¢t)) < lz(co). Repeating this

argument until { > q we see that 0('\0,[0,1]) is not contractible in A ~ (to}-

-{3=-
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SR Similarly, this statement holds if '1("0) > ¥,(gy). Also, the same argument implies that
#(n,,[(0,1]) is not contractible in A ~ {c,}. Schematically the situation is as

pictured in Pigure 5.

=l 2 ¢

» ' (o(n,,t),t)
£ \'\° "1 " / §0ng O FTht)
r K e

54 t 5’ ALY

-7-.' \ (9 (z,,t),t)
| (¢(c°.t).t) / I 1

o yd w(n,,.t) t) l_\__

——— ) —

V3 A
A "o %o Gy M

Figure 5

{? Claim: There exists a point 1z, €A, w,(co) < 11(z1) < 11(51), such that z4 is a fixed
point of g and the loop 0(:1,[0,1]) is contractible in A ~ {;o,c1},

Remarks: 1) There are several alternatives for the proof of this claim. RAs indicated in

?éq? Figure 5, the orbits of §,,{,,N; and n, form a braid of a fairly simple form and hence
1> A%

*i:g it is not surprising that a proof of the claim can be obtained via a computation and an
l\'

’;_I; application of a theorem of Matsuoka (Mat] on braids and periodic orbits for time periodic

o.d.e.'s on surfaces. The elementary proof given below gives a geometrical view of some
4 simple cases of Matsuoka's theorem. (See also recent work of Asimov and Franks [A-F)
] relating ‘removable' periodic orbits and Nielson theory.)
Y, 2) The author would like to thank M. Handel for suggestions this proof, particularly
that the ‘'stability' statement of Lemma (4) could be shown via the geometrical approach.
'g;} This simplifies several steps in the next section.

! Proof of the claim: First we show the proof for Case (1), Case (2) follows from similar,

— easier, arguments.

;T‘ Case 1: (w,(ng) < w,(g,) and w,(n,) > w,(g,)): The following notation will be useful:

§
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B={zea: v < n(z) < x,(g,)}
by = {(n (T)0,y) €A s y> wy(g)}, 1=0,1
by = {(11(:1),3{) €A :y w5}, 1 =0,1 (see Pigure 6).
The following definition will also be useful:
For t € {0,1] we say a point Z € B with ¢(Z,t) € 4(B,t) N B is null in B at
time t if the loop formed by ¢({,[(0,t])) and the segment joining ¢(g,t) and [ is
contractible in A ~ {co.c1}. We let Sy = {e(g,t) eB : z€B and is null in B at

time t}.

Remark: Several other characterizations of 8, are available. Por example, if we let

A Dbe the universal covering space of A ~ {CO'C1}' 4t AXR*>A the 1lift of ¢ with

¢(*,0) the identity on A and B C A a particular fixed lift of B then the points

§ € S, are precisely the projections of the points in ¢(B,t) N B,

oS
by / LSS by
Sy

Figure 6

We note that if I is null in B then it does not necessarily follow that
$(z,[0,t]) C B. However, it does follow that ¢({,i/q) € B whenever 0 < i/g < t and
that if W (4(C,t')) = w,(g,), 4 =0 or 1 for some t' e (0,t) then
#(g,t*) € by Ub} U {z;,5,}. This follows from the twist condition.

Similarly, the twist condition implies that for each t € [0,1], we have

s, N (b§ Ub] ~ (5,8,}) = ¢ and if o : [0,1] +B has 0(0) € by, o(1) € by then for

15~
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each t e [0,1], ¢(a((0,1]),t) N S, contains an arc with one end point in b; and the
other in b:. Finally, we note that ase N (interior B) is made up of arcs of the form
¢#(J3,t) where J is an interval in b; or b and s, N 38 € by U b: v
{zy5,} U ltx,3) eB : § =0,1).
Next we use the existence of Ny and n, and the properties of their orbits under

¢ to show that when t = 1, S, must contain a connected component Ty such that

a) T N {gg.t,} =8,

g) art contains arcs of the form $(J5,t),4(3,,t) where J, g'b;, Jq g_b;

and both O(Jo,t) and ¢(J,,t) contain points of both

by U {(x,0) e B} and b U {(x,1) € B}, (see Figure 7).

,ff”?;//’/’—t g(3.)
V/ / 1 le

Figure 7

An easy index argument applied to the set 9-1(T1) will then give the required fixed
point z4 € A.

Fix the smallest igp,i, such that 0(no,io/q), 0(“1,11/q) € B and the smallest
3o > ig, 3y > iy such that ¢(n,.35/q), ¢(ny,3,/q) £ B. We assume first that j, < 3,
and consider the following cases:
Case a: For all 4 = ig,ig + 1,...,3q, n1(¢(n°,1/q)) < 11(0(n1,1/q)).
Case b: For some i, ig € i < jp, W, (4(ny,1/q)) > w,(4(n,,i/q)), (i.e. either the orbits

of no,n1 do not link, or they do, respectively).

-16-
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o Case a: The loop formed by 0("0,[0.jol'ql) followed by the segment connecting

X 0(n°.j°/q) and ng is not contractible in A ~ (co). Hence, ’jolq must contain a
:
f: component 'rjo/q satisfying (8) above and Lo ¢ ‘l'jo/q (see Pigure 8b). ;
-t !
'é; . Similarly, ¢(¢ ('rjolq.jo/q).j1/q) must contain a component Tj,/q satisfying (a) ‘
& and () and g(""('l'j /q.j1/q)) will therefore contain the desired component of 8, (see
1
s, Pigure 8¢).
f‘; Case b: Since the loop #(n,,[0,35/q]) followed by the segment connecting n, to
[
’_f $(ng,35/q) 1is not contractible in A ~ {go} and w,(4(ny,1/q)) > 7,(e(n,,i/q)) for |
) some 1, 0 < i < j;, we see that 830/‘1 either contains a component 'rjo/q ;
& - |
tx satisfying (a) and (8) above (in which case a component of g(¢ 1('l'j /q:jolq)) is the
3‘ o
5
' required set) or sjo/‘! contains a component 'rjo/q disjoint from (C,) with M'jo/q
% -
B containing arcs $(J),3,/q) and ¢(J,,3,/q) where J,.,J, are intervals in bg,b;

respectively, and Q(Jo,jolq) has both end points in b; while ¢(J,,35/q) either has
both end points in by on one end point in by ~ {:o) and one in b': ~ {:,} (see Figure

8f). when both end points of these arcs are in b; the arcs are not homotopic to bo'

- -1
in B ~ ¢(ny,3y/q) with end points restricted to by. But then $(é ('l‘j /q,jo/q).j1/q)
0
must contain a connected component '1‘,1 /q satisfying (a) and (B) and hence

9(0"1 ('rj /q.j1/q)) has a component which is the required set (see Figure 8g).
1

The proof when Jjq < Jg is sysmetric to the above proof.
Let By = g"('lh,). Then by properties (a), (B) of Ty we see that if we let
z € A mpove around 3!1 and compute the total change in the angle between the vector

z - g(z) and the x-axis, the result will be 12w (depending on orientation) (see Figure

N

’_ﬁ 9). Hence g must have a fixed point zy € By N Ty. Moreover, since Ty C S, we see

that 4(z,,(0,1)) must be contractible in A ~ {zg.%,} and since ok, €Ty, 24 €

A I {gq.t,). ‘
.‘ Since z; is a fixed point of g, it must be a p/q-periodic poi of f£. Since }
; 1 b ‘
K O(f,zo) contains no points in B ~ {co,c1} we ses that z, ¢ 0(f,z5). Finally, since
' #(z,,10,1]1) is contractible in A ~ {f,,C,} it follows that |
..

o
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v etz )) <w etz <w (e22)) for 1 =0,...,q and hence z, mist be a p/q-

Birkhoff periodic point of f£.

To obtain the stability portion of the lemma, we note that if f is sufficiently
close to f and g(*) = £(*) - (p,0) then the index of 9 B, * A will still be non-
zero and hence 3 will have a fixed point :1 e ;(81) N Bye Since Ty N By is contained
in the interior of B (relative to A) this will also hold for 3(31) N By and hence
11(?1(C°)) < 11(?1(;1)) < '1(Ei(co) for i = 0,...,9 when f is sufficiently close to f.
It then follows as above (even though 8ys&y are not necessarily near periodic points of

%) that ;1 is a p/q-Birkhoff periodic point of f and the proof of Case 1 is complete.
Case 2: 1In this case we know 11(fi(n°)) < 11(f1(n1)) for i = 0,...,9. Hence when

"(Co) < !1(ﬂo) < 11(C') we may apply Lemma (3') to obtain ; : AXx R+ A associated
with g which has #(ny,t) = n,, $(5,,t) = &, for all t. Then #(5;,[0,1]) is not
contractible in A ~ {nol. but :(Co,(0.1]) and ;(n1,[0,1]) do not link. Hence we may
apply Case (a) above taking B = {z e A : 11(n°) < '1(2) < 11(:1) and obtaining a fixed
point z; of g such that 3(:1,[0,1]) links with none of the z orbits of

Cor §4s Ny or ny. The rest of the proof proceeds as before.

The case when 1‘(Co) < 11(n1) < w'(;1) is, of course symmetric to the above and the

proofs of the claim and the lemma are complete. //.
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5) Proof of Theorem 1: Let £ : A > A be a twist map, p,q relatively prime integers
and wg € A a p/q-periodic point of f. We may assume w, is not a Birkhoff periodic
point since if it were we would be done.

Next we note that since f has a p/q-periodic point we have that
p/a € [pg(f),04(f)]). We may assume p/q € (P,(f),p,(f)) since if py(f) = p/q, £ =0 or

1 then tl{(x ) is a 1ift of a circle diffeomorphism with rotation number p/q
’

i1):xe

and the existence of the p/q-Birkhoff periodic point follows from the usual arguments for
circle maps (see Herman [H1]). Moreover, we may assume that for each a € R there exists
Yo @ (0,1) such that 11(f(u,yu)) = a + p/q. If this is not the case for the given

map f then we may extend f to amap f, : Ay * Ay where A, = {(x,y) € R:

-1/2 < y < 372}, fy is a twist map satisfying the above condition and £ and f; agree

on A. Since oo(f) < p/q < 91(1), if we can find a p/q-Birkhoff periodic point for

£y on Ay then in fact it must have orbit in A (see Figqure 10).

1 i
a | f(la)

)
]
'
a a+p/q

Pigure 10

Claim 1: There exists a c2 homotopy H : A x [0,1] + A satisfying
a) H(e,0) = £(*) ,
b) vs e [0,1], H(*,s) {is a twist map ,
c) vs e [0,1], wg is a p/q-periodic point of H(*,s) ,

d4) H(e,1) has a p/q-Birkhoff periodic point.

-20-
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Proof of Claim 1: Pix z; € A so that z; is in the interior of A, (11(20) + ip/q,

J=0,..0,q=1}nN ((',(v) iwe 0(t,w,)}V ) =g and " (f(zg)) = v, (z,) + p/q. Fix
y; € [0,1] so that w (£(¥,(z,) + ip/q,yy)) = *{zy) + (4 + Vp/q for 1 =0,...,q - 1
(s0 yg5 = '2('0))' For any € > 0 we may define hi,s :t A+ A, one parameter familijes
of diffeomorphisms, i = 1,...,q, s @ [0,1] so that
1) vs e (0,], 1 = 1,...,q9, hi"(x + 1,y = hi's(x,y) + (1,0) for all (x,y) €n ,
2) vs e [0,1],i=1,...,q, support (hy g - identity) N {(x,y)ea:0¢x <1}
is contained in {(x,y) € A : |x - (%,(zy) + ip/q = ¥ (zy) + ip/q])| < €}

LJ
(¢) i8 € on

Py

(vhere [*] denotes the greatest integer function) and h1
A x [0,1] ,
3) Vs e [0,1], 41 = 1,...,q, Vix,y) € A, 11(h1"(x,y)) =x,
4) i=1,...,q, hi,o = identity and
'2("1,1('1('0) + ip/q - [w4(zy) + ip/ql, #,(f(w,(z5) + (4 = 1)p/q,y41)))
yy if i = 1,.00,9-1
yo if i=gqg

Choose € > 0 so small that

q
( support (h; _-identity)) N (0(f,wy) VU {(j,y) €A : jezh=
=1 se[0,1] PPO! i,s y g Jey 3
and define
H:Ax [0,1] +A

H(z,8) = h O f Oh
q,8

q“,! o hq_z’a O eee O h1"(z) .

Then H has properties (a-d) above. In particular, for all s e {0,1], wo is a p/q
periodic point of H(*,s) since f and H(e,s) agree on a neighborhood of O(f,wo) and
H(*,s) is a twist map since the composition of a twist map with a map preaetviﬂg the x =
constant follation is a twist map. The map H(*,1) has =z, as a p/q-periodic point by
condition (4) above and 2z, is a p/g-Birkhoff periodic point since for any

g e 0(H(-,1),zo) satisfies 7¥,(H(Z,1)) = n,(3) + p/q again by condition (4). Hence, H

is the required homotopy and the proof of the claim is complete. //.
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Let £ = (s e [0,1] : Vsy 7 s, H(°,s1) has a p/q-Birkhoff periodic point}. Since

w

1e2# ¢, if we can show that the point s, = inf{s e {0,1) : s € £} 1is in the interior

of £ i.e., that = is open and closed, then we must have & = [0,1]. Hence

H(e,0) = f(¢) would have a p/gq-Birkhoff periodic point and the proof would be complete.

Claim 2: = is closed.

Proof of Claim 2: This follows immediately from Lemma (1). //.

Claim 3: = = [0,1].

Proof of Claim 3: Suppose = # [0,1). Then sy = inf{s e (0,1] : s € E} > 0. By Claim

\" -.” DR KA G LA LN

(2) we have that s, € £ and hence that H(°,s1) has a p/q-Birkhoff periodic point

co € A. By construction, wy is a p/q-periodic point of H(°,s1) which is not a
Birkhoff periodic point. Hence, we may apply Lemma (4) to show that H(°,s1) has another
p/g-Birkhoff periodic point z, € A with z, ¢ O(H(*,s,),z,) and, more importantly,

for s sufficiently close to s,, the stability statement in Lemma (4) implies H(°,s)
also has a p/q-Birkhoff periodic point. Hence 8; is in the interior of &

contradicting the defi-ition of s4. This contradiction implies that we must nave

sy =0, i.e., E = {0,1), and the proof of the claim is complete. //.

As noted above, 0 @ £ implies that H(e,0) = £(*) has a p/q-Birkhoff periodic

point and the proof of Theorem (1) is complete. //.
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Proof of Claim 1: Fix z5 € A so that zg is in the interior of A, (11(z0) + jp/q,

= 0,000, 1}N ([l,(w) rwe O(f,wo)}U Z) = ¢ and w,(f(z;)) = x,(z,) + p/q. Fix

v

vy € [0,1] so that w, (f(m (z4) + ip/q,y4)) = l1(zo) + (i +1)p/q for i=20,...,9q~ 1

;E; (so Yo = wz(zo)). For any € > 0 we may define hi,s : A+ A, one parameter families
L of diffeomorphisms, i = 1,...,q, s € [0,1] so that
;S 1) wvs e (0,1], i=1,...,q, hi,s(x + 1,y) = hi’s(x,y) + (1,0) for all (x,y) €A,
A 2) vse [0,1], 4 =1,...,q, support (h; o - identity) 0 {(x,y) €A : 0< x < 1}
Ki is contained in {(x,y) € A : |x - (w,(z4) + ip/q - (v4(zg) + ip/ql)l < e}
(where (°] denotes the greatest integer function) and hi,-(') is C° on
A x [0,1] ,
3) vs e (0,1], {=1,...,9, Vix,y) €A, I,(hi’s(x,y)) = x ,
4) i=1,...,q, hi,o = jdentity and
mylhy (¥ lzg) + ip/q - [¥,(2g) + ip/q), Wy(£(m,(zg) + (L = Vp/aiyy_q)))
vy if i=1,.0,q-1
yo if i=gqg |
Choose € > 0 so small that
q
(i=1 se%6{1] support (hi’s-identity)) N (0(f,wg) UV {(J,y) €R: jEeZh=¢g
and define
H:Ax [0,1] +A
H(z,8) =hy O £0 hy g  Ohgy 0 *es 0hy (2).
Then H has properties (a~d) above. In particular, for all s € [0,1], wy is a p/q
periocdic point of H{*,s) since f and H(*,s) agree on a neighborhood of 0(f,wy) and
H(e,8) is a twist map since the composition of a twist map with a map preserviﬂg the x =
S constant foliation is a twist map. The map H(-,1) has z; as a p/g-periodic point by
: condition (4) above and 2z, is a p/g-Birkhoff periodic point since for any
: g e 0(H(°,1),ze) satisfies ¥, (H(Z,1)) = % (g) + p/q again by condition (4). Hence, H
) is the required homotopy and the proof of the claim is complete. //.
~
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Let 3 = (s e [0,1] : Va, > 8, H(*,s,) has a p/q-Birkhoff periodic point}. Since
1€ S #4¢g, if we can show that the point s, = inf{s e [0,1] : 8 € E} 4s in the interior
of £ i.e., that E 1is open and closed, then we must have & = [0,1). Hence

H(*,0) = f£(*) would have a p/q-Birkhoff periodic point and the proof would be complete.
Claim 2: E is closed.

Proof of Claim 2: This follows immediately from Lemma (1). //.

Claim 3: 2 = [0,1].

Proof of Claim 3: Suppose E # (0,1]. Then sy = inf{s € [0,1] : s € E} > 0. By Claim

(2) we have that s8; € £ and hence that H(',s1) has a p/q-Birkhoff periodic point
Lo € A. By construction, wg is a p/q-periodic point of H(-,s1) which is not a
Birkhoff periodic point. Hence, we may apply Lemma (4) to show that H(‘,s1) has another
P/q-Birkhoff periodic point =z, € A with 2z, ¢ O(H(-,s1),z1) and, more importantly,
for s sufficiently close to s,, the stability statement in Lemma (4) implies H(+,s)
algo has a p/gq~Birkhoff periodic point. Hence 84 is in the interior of X
contradicting the definition of s,;. This contradiction implies that we must have
sy =0, i.e., E = [0,1], and the proof of the claim is complete. //.
As noted above, 0 € E implies that H(+,0) = f(¢) has a p/qg-Birkhoff periodic

point and the proof of Theorem (1) is complete. //.
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6) Some Related Theorems: In this section we show

Theorem 4: Suppose f : A + A is a twist map and p,q are relatively prime integers.
If every r/s-periodic point of f sgatisfies s = g or s > %9 then every p/q~periodic
point of £ is a p/q-Birkhoff periodic point.

Remark: The theorem states that a periodic orbit of a twist map, with period
significantly smaller than all larger periods, will be a Birkhoff periodic orbit. S8ince
the possible periods are always contained between the rotation numbers of the map
restricted to the boundaries, we may give conditions under which the hypotheses hold as
follows:

Let Fn denote the Farey series of order n, i.e., Fn is a series of irreducible

fractions between zero and one in ascending order with denominator less than one equal

to n. So Fy = {% ' %}, Fp= {1 . 2 , 1} Fq= % . % ' % ' % , %} «es (see Hardy and
Wright [H-W]).

Corollary: Suppose f : A+ A is a twist map, p,q are relatively prime integers and

po(f),p/q,o1(f) are consecutive elements in Fn for gome n. If po(f) = xo/80,

91(1) = ry/8qy in lowest form and s8; > ; q, 89> % q then all p/q-periodic points of

f (if any) are p/q-Birkhoff periodic points.

Proof of the Corollary: Suppose r/s € Fnti ~ Fpeg-q for 1 >0 and ro/sg < r/s < p/q.

a, +a a a
2
Then, by Theorems (29-31) of Hardy and Wright [H-W], r/s8 = where T , — are
by + b, b, " b
consecutive elements of Fn+1_1 and ay + ay, by + b, are relatively prime. But then
ay a, %4 42 )
;: ' ;2 e [ry/sg,p/al and hence ;: eF, iff ;: = ry/8p and ;; e Fn iff ;; = p/q.

Hence by, > q and b, >q so s » 2q. Similarly, if p/q < r/s < r1/s1 then s > 2q
so f,p,q satisfy the hypotheses of Theorem (4) and the proof of the corollary is

complete. //.

Remark: Essentially the theorem and corollary above say that if f : A + A is a twist

map and f is not 'twisting' very much, then the periodic orbits with smallest period

must be Birkhoff periodic orbits. We know of no examples implying that the conditions of

.23~

I AN N

\. \'-’\ AR A S AN . SN St 20 TN
o . RSN AR AC AR e T
’1 B . L y Sl e RO ) y '



i
N PR
-y AN, W8
A B -

4, Agg < -
bt 8%

S50

.‘Ol‘... l...‘.)"i

‘....
SN

PP
Noteete 'Y

]
P

¥ Y
‘ R

-

| SRR

A N
-7 8" M

a‘
LA

\

4 MR aon A At S0 AT v RS TARINN TR T T R TR T (A U A N (ML VL 7 Vo W W T P

Theorem (4) are the best possible, however if f is area preserving then the theorem can
be significantly improved.

Theorem S5: If £ : A+ A is an area preserving twist map, p,q are relatively prime
integers and if every r/s-periodic point of f has s > q then every p/q-periodic point
of f 1is a p/q-Birkhoff periodic point.

The proof of Theorem (4) follows from ideas similar, but much easier technically, to
those in Theorem (1). The proof of Theorem (5) is vaguely related to the 'graph-
theoretical® approach to Sarkovskii's theorem in Block, Guckenheimer, Misurewicz, Young
[BG].

Proof of Theorem 4: Fix f : A+ A and p,q as in the theorem. Suppose Zp €A is a

p/q-periodic point, but 2z, is not a p/q-Birkhoff periodic point of f. Then we fix
C4s8y € O(£,2)) so that ¥,(L,) < %, (L), W (£(Ty)) > wy(£(Z,)) and

11(£j(t1)) < 11(fj(cz)) for some Jj, 1 < jJ < q/2 + 1. Then there exists an integer «r
so that fk(Cz) =%, + (r,0) for some k, j € k € 3g/2, k # q.

Now fix N > 0 so large that ¥ (£1(x (z,),1) < w (£1x (1)) + N,00) for
{i=0,...,2q and let B = {(x,y) : T(Ty) € x < ® (Ly) +N}. Let g : A+ A be defined
by ¥z € A, g(z) = £%(2) - (r,0). Then 9(8,) =~ g,. Let Ty = {(%,(5,),y) : Vyy > ¥,

g(¥,(Z,),yy) € B}. ana J, = {(x (L,) + N,y) : Vyy < y, g(®y(g,y) + N,yq) € B}. Then the
component T of g(B) N B with boundary containing g(J1) U g(Jy;) must have a fixed
point. This is easily seen by computing the change of the argument of the vector 2z =~
g(z) as z moves around the boundary of 9'1(T), this change is 2% depending on
orientation (see Fiqure 11).

But this fixed point of g corresponds to an r/k-periodic point of f. Hence, if
f has no r/sy-periodic points with 84 ¥ q, sy € 3q/2 then every p/q-periodic point of
f must be a p/q-Birkhoff periodic point and the proof is complete. //.

Proof of Theorem 5: Fix £ : A+ A an area preserving twist map, p,q relatively prime

integers and z; a p/q-periodic point of f. Let {co,...,;g_1} - 0(f,zo)

N{zen: l1(z) € [0,1)} and number so that ﬂ1(co) < x‘(c‘) € eee ¢ '1(C We may

o1
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Figure 11

2 assume, by changing variables slightly if necessary, that 11(:1) # ‘l.'((l,._‘) for
t
; 1 =0,...,9 -~ 2. We define a directed graph with ‘0""":;-1 as nodes as follows:
There is an edge from ci to cj if and only if
] a) w® (f(w,(g,),0) e (w,(qu) +s, '1“3) + 8] for some s €3
(]
; or b) w (f(w,(g.),1) € [i,(cj) + s.l‘(cjﬂ) + 8) for some s € Z.
' Hence each i has at least one edge exiting it, moreover if g, is not a p/q-Birkhoff
r periodic point then some ( i has two edges exiting from it since for some
3 Ciptjﬁ,(ci) < !,(cj) but w(E(g, ) > ‘l1(f(Cj)) (see Figure 12), so
: 11(£(t1(ci),0)) < 11(f(cj)) < 11(f(r.1)) < w‘(f(t1(ci),1)).
[]
<
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Figure 12

In this case the graph formed has loops of length less than q. But this implies that
there exist rationals r/s e (po(t).p‘(t)] with 8 < q. By Birkhoff's theorem (Theorem
{2)) (as noted by Birkhoff, f : A + A need only preserve a measure with non-zero density
for Theorem (2) to hold, see [B1], so the change of variables above is no problem) we see
that f must have an r/s-periodic point. Hence, if f : A * A has no r/s-periodic
points with s < q then every p/q-periodic point of f is a p/q-Birkhoff periodic

point. //.
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assume, by changing variables slightly if necessary, that '1(;1) * '1““1) for

1 =0,.0., =~ 2, Ve define a directed graph with :0,...,:(’_1 as nodes as follows:
There is an edge from ;1 to ‘j if and only if

) + 8, 11(1:

a) "(f(t1(¢1),0) e (l‘(t ) +8] for some s € 2

3= )
or b) w (f(w (g,),1) € [t,(cj) + I,I‘(Cj,”) +8) for some s € Z.

Hence each n has at least one edge exiting it, moreover if 2z is not a p/q-Birkhoff
periodic point then some ‘i has two edges exiting from it since for some

;1,;:‘,:1“1) < ‘l’(Cj) but w,(f(:i)) > l1(f(Cj)) (see Figure 12), so

. "(f('1(‘1)'°)) < 11(f(;j)) < 11(2(61)) < l,(f(l,.(:l),ﬂ).
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¥
b In this case the graph formed has loops of length less than q. But this implies that
<
* there exist rationals r/s € [po(f).o1(!)] with 8 < q. By Birkhoff's theorem (Theorem
4 (2)) (as noted by Birkhoff, f : A + A need only preserve a measure with non-zero density
o for Theorem (2) to hold, see [B1], so the change of variables above is no problem) we see ‘
‘.’ ‘
A that f wust have an r/s-periodic point. Hence, if f : A + A has no r/s-periodic
Y
i points with s < q then every p/q-periodic point of f 1is a p/q-Birkhoff periodic *
: point. //. ‘
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