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I. FOREWARD

The research program has been aimed at developing computational procedures
for simulation of flow about projectiles. During the three year eflort a variety of
ideas were pursued and implemented. As a result this final report will include
summaries on numerical algorithm developments, methods of grid generation, and
descriptions of flow field solution codes for projectiles in the transonic range. Some
five technical papers have been published which describe much of the research effort.
These are included in this final report and they constitute the technical contént of

this report. Some ongoing work which has not yet reached fruition is also described.

The research effort was initially directed toward two tasks: 1) basic algorithm
developments; and 2) development of a parabolized Navier-Stokes (PNS) computer
code to solve finned projectiles in supersonic viscous flow. The second task was
later redirected to the development of computer codes for computing the transonic
flow about projectiles with base. This effort was undertaken in collaboration with
Messrs. Nietubicz and Sahu of the Ballistics Research Laboratory (BRL). (The
original task of computing the supersonic flow about finned projectiles using a PNS
code was subsequently accomplished by Mann Mohan Raj, et. al., under joint BRL
and NASA Ames Research Center sponsorship.)

The research effort has greatly benefited by a sustained collaboration with re-
searchers at BRL. This collaboration properly focused the work on realistic prob-
lems, help stimulate new concepts, and provided necessary stimulate new concepts,

and provided necessary critiques.

The report is divided into four main areas. Section II describes the algorithms

and methodology for computing transonic flow about projectiles with base. Section

Il describes some work in grid generation, while Section IV contains a potpourri
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of ideas in numerical algorithm develoment. Ongoing projects initiated, but not

K concluded, are described in Section V.

at




II. TRANSONIC PROJECTILES WITH BASE FLOW

A major accomplishment of the research program has been the development of
computer codes to simulate transonic projectiles with base flow. This project was
carried out in collaboration with J. Sahu and C. J. Nietubicz at BRL with Sahu
being responsible for the code implementation.

A full description of the numerical procedures is given in the two appended
AlAA papers. A key feature of the projectile base flow code is its segmentation
concept. Beginning with a basic projectile and sting code due to Nietubicz, a simple
way of dividing up the computational domain was devised which maintained the
simplicity of the implicit numerical algorithm. The sketches shown in Figure 2
of the second attached AIAA paper (83-0224) illustrate the segmentation process.
The idea here is that we add grids as needed yet solve the flow field implicitly as
one large grid in computational space. Various flags are used to properly turn-off
or connect the domains together. This concept can be extended to more complex

geometries, and currently, Sahu is treating a projectile with a cut—out in the base

by using three grid segments.
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Numerical Computation of Base Flow for a Projectile at Transonic Speeds

Jubaraj Sahu* and Charles J. Nietubicz*
U.S. Army Ballistic Research Lahoratory, ARRADCOM,
Aberdeen Proving Ground, M 21005

and

. Joseph L. Steger**

. Department of Aeronautics and Astronautics,
Stanford University,
Palo Alto, CA 94305

Abstract

The Azimythal-Invariant Thin-Layer Navier-
Stokes computational technique has been modified
for projectile base flow analysis. The resulting
new numerical capability is used to compute the
entire projectile flow field including the recir-
culatory base flow. Computed results show the
qualitative and quantitative details of the over-
all base flow structure. Base drag is computed
for a secant-ogive-cylinder projectile and com-
pared with limited experimental and semi-empirical
data. Results are also presented which show the
variation of pressure drag, skin friction drag and
the total aerodynamic drag for Mach numbers .9 < M
< 1.2,
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1. Introduction

The rising costs of experimental measurements
has resulted in alternate means of determining the
aerodynamics of shells, Because of the recent
advances in computer processors, numerical compu-
tational capabilities have been developed to pre-
dict the aerodynamic behavior of artillery shells.

Recent papers!’2 have reported the develop-
ment and application of the Azimuthal-Invariant
Thin-Layer Navier-Stokes computational technique
to predict the flow about slender bodies of revo-
lution at transonic speeds. References 1 and 2
showed the technique to be a viable computational
tool for predicting both external and internal
flows for spinning and non-spinning bodies of
various geometric shapes. The base flow of the
projectiles however, was not computed. Instead
the projectile base was modeled by an extended
sting. Experimental base flow data is difficult
to obtain and therefore only limited data is
available. No sophisticated numerical techniques
have yet been utilized for base flow of projec-
tiles at transonic speeds. The objective of this
research was to develop a new numerical capability
to compute the flow field in the base region of
projectiles at transonic speeds and be able to
compute the total aerodynamic drag.

The total drag for projectiles can bhe divided
into three components: (1) pressure (wave) drag;
(2) viscous (skin friction) drag; and (3) base
drag. For a typical shell at M = .9, the relative
magnitudes of the aerodynamic drag components are:
(1) pressure drag, 20%; (2) viscous drag, 30%; and
(3) base drag, 50%. In order to predict the total

drag for projectiles, computation of the full flow
field (including the base flow) must be made.
Computation of base flow is especially important
at transonic speeds.




~a,

e e

A

e

The critical aerodynamic behavior of projec-
tiles occurs in the transonic speed regime. This
can be attributed to the complex shock structure
which exists for the projectiles at transonic
speeds. Figure 1 is a spark shadowgraph which
shows the shock structure for a typical projectile
at M 95, u = 0, It also shows a clearly
defined wake behind the base of the projectile
devoid of any vortex shedding. Primary emphasis
is focused on the base region flow field computa-
tions; however, the technique used computes the
full flow field over the projectile (inciuding the
base region). Therefore, all three components of
the drag are computed.

A obrief description of the qoverning equa-
tions and the method of solution are given in
Sections !l and 1ll. A unique flow field segmen-
tation procedure and the implementation of bound-
ary conditions are discussed in Section IlI., In
Section IV computed results are given for tran-
sonic flow about a 6-caliber secant-ogiv2-cylinder
shape for .9 < M < 1.2, « = 0. Velocity vector
plots and stream function contour plots are pre-
sented to show the qualitative features of the
flow field in the base region. All three compon-
ents of drag are obtained. Base drag is compared
with experimental and semi-empirical data while
the total drag is compared with the only available
semi-empirical data. The encouraging results show
that the present computational technigue can be
successfully used to predict the base region flow
field of projectiles. Although results here are
reported for transonic speeds, future computation-
al efforts will be directed at supersonic
velocities.

[I. Governing Equations

The Azimuthal Invariant (or Generalized Axi-
symmetric) thin-layer Navier-Stokes equations for
general spatial coordinates £, n, ¢ can be written
as

. - I
9.q+ agE + acb + H=Re aLS (1)

£(x,y,z,t) is the longitudinal
coordinate

where 3

n = n(y,z,t) is the circumferential
coordinate

5 = g{x,y,z,t) is the near normal
coordinate

T =1t is the time
The no*tation for the physical coordinates x, y, 2z,
and the transformed coordinates &, n, ¢ are shown
in Figure 2. The vector of dependent variables q

and the flux vectors £, G, H are given as
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The thin layer viscous terms valid for high

Reynolds number flow are contained in the vector
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The velocities

U = ét + gxu + gyv + gzu
VvV = "t + nxu + nyv + nzw (2)

S Ly v S Ut o V4
W= o SU eVt w
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represent the contravariant velocity components.

The Cartesian velocity components (u,v,w) are
nondimensionalized with respect to a_ (the free
stream speed of sound). The density (p) is refer-
enced to p_ and total energy (e) to p_al. The
local pressure is determined using the equation of
state,

p = (y-1){e - 0.50(u2+v2+w?)] (3)

where v is the ratio of specific heats.

In high Reynolds numbar flows the thin-layer
approximation is often used because, due tu com-

puter speed and storage limitations, fine qrid
spacing can only be provided in one coordinate
direction, The grid spacing available in other

directions 1< ysually too coarse tn resplve the
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viscous terms., Essentially, all the viscous terms
in the coordinate direction £ and n are neglected
while terms in the near normal direction to the
body ¢ are retained. The thin-layer generalized
axisymmetric equations (1) are obtained from the
three dimensional equations by making use of two
restrictions: (i) all body geometries are of an
axisymmetric type; and (ii) the state varigbles
and the contravariant velocities do not vary in
the circumferential direction (n). Essentially,
the n-derivative term in the three dimensional

equations is replaced by a source term H as it
appears in equation (l1). The details can he found
in Reference 1 and 2.

Equation (1) contains only two spatial deriv-
atives; however it retains all three momentum
equations thus allowing a degree of generality
over the standard axisymmetric equations. In
particular, the circumferential velocity is not
assumed to be zero thus allowing computations for
spinning projectiles or swirl flow to be
accomplished.

For the computation of turbulent flows a tur-
bulence model must be supplied. In the present
calculations a Cebeci-type two layer algebraic
eddy viscosity model as modified by Baldwin and
Lomax? is used. In their two layer model the
inner region follows the Prandti-Van Driest formu-
lation. Their outer formulation can be wused in
wakes as well as in attached and separated bound-
ary layers. In both the inner and outer formula-
tions the distribution of vorticity is used to
determine length scales thereby avoiding the
necessity of finding the outer edge of the bound-
ary layer (or wake). The magnitude of the local
vorticity for the axisymmetric formulation is
given by

W=/ 30ze (e dmze (-2 ()

It should be noted that the turbulence model
has not been tailored for use in base flow
regions. Moreover, the no slip boundary condition
is not applied at the projectile base and slip is
allowed along the base (inviscid boundary condi-
tion). The velocity component normal to the base
is however set to zero.

[11. Numerical Method

a. Computational Algorithm

An implicit approximate factorization
finite-difference scheme in delta form is used as
described by Beam and Warming“. An implicit
method was chosen because it permits a time step
much greater than that allowed by explicit
schemes. for problems in which the transient
solution is of no interest, this offers the pos-
sidle advantage of being able to reach the steady
state solution faster than existing explicit
schemes.,

The Ream-Warming implicit algorithm has
been used in various applicationsi”®. The algo-
rithm can be first or second order accurate in
time and second or fourth order accurate in space.
The equations are factored (spatially split) which

reduces the solution process to one-dimensiond)
problems at a given time level. Central differ-
ence operators are employed and the algorithm pro-
duces bhlock tridiagonal systems for edch space
coordinate, The main computdtiond! work is con-
tained in the solution nof these hlock tridiagonal
systems of egudtions,

h., Finite Difference tquations

The resulting finite difference
equations, written in delta form are

(l‘h\*,..'\n-v, J-IV{A{J)(I‘W"C."-L JTev 1".'.]

! !

- nRe o dTiMN) < (@M 1g™)  cat(e, BN G0 ()

_Re'10C5n)‘AtHn-LEJ'1[(V£A£)¢ v (VCAC)Z]Jq"

Here h = at because only first order accuracy in
the time differencing is needed for the steady
state flows which are considered here, This
choice corresponds to the Euler implicit time
differencing. The 6's represent central differ-
ence operators, & and V are forward and backward
difference operators respectively. The Jacobian

matrices A = a—E, C = -ig atong with the coeffi-
aq 3q

-

cient matrix M obtained from the local time

linearization of S are described in detail in
Reference 6. Fourth order explicit (cE) and

jmplicit (cl) numerical dissipation terms are

incorporated into the differencing scheme to damp
high frequency growth and thus to control the
nonlinear instabilities. A typical range for the
smoothing coefficients is e = (1 to 5) at with

ey = 3cE.

c. Flow Field Segmentation

The objective is to compute the full flow
field (including the base region) of a projectile
at transonic speeds. Figure 3 shows a schematic
illustration of the flow field segwentation used
in this study for computational purposes. The
hatched region represents the projectile, The
region ABCD includes the projectile base and the
wake and will be referred to as the base region.

The curvilinear coordinates wused for the
longitudinal and normal directions are represented
by their indices J and L. The line J = 1 starts
at the downstream boundary (line C0) in the base
region. J is incremented until the line J = JB is
reached which represents the base of the projec-
tile. The line J = JB+]1 is at the nose of the
projectile and J is then incremented until the
line J = JMAX is reached which is the downstream
boundary in the outer region.

As for the other coordinate L, in the base
region L = 1 starts at line AC which is a computa-
tional cut through the physical wake region. L is
incremented until L = LMAX which is the line of
symnetry (line BD). In the outer region L = 1
starts out from the projectile surface and L is

=Ty
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incremented all the way to the outer boundary
where L = LMAX,

Implicit integration is carried out from J =
2 toJ = JB-1 and from J = JB+l to J = JMAX-1 in

the longitudinal direction and from L = 2 to L =
LMAX-1 in the normal direction.

d. [Implementation of Boundary Conditions

The no slip boundary conditions for
viscous flow is enforced by setting

Y=V oW 9 (6)

on the projectile surface except for the base. At
the projectile base (J = JB) the velocity compon-
ent normal to tne base is set to zero, i.e. U = 0,
while other flow variables are set to be equal to
those at J = JB-1. In other words, slip is allow-
ed along the base (inviscid boundary condition).
Future work will be directed at the implementation
of viscous boundary condition at the base to
further access this approximation,

Care must be taken in the implementation of
the boundary conditions along line AC which is the
computational cut. After trial and error the flow
variables above and below the cut were simply
averaged to determine the boundary conditions on
the cut. This procedure proved to work well. On
the centerline of the wake region, a Symmetry
condition is imposed.

u
20
v
=0
RE (7)
w=20

Free stream conditions are used at the outer
boundary. Simple extrapolation for all flow vari-
ables is used at the downstream boundary (lines J
= 1, JMAX). During transient calculations, use of
a specified outflow pressure can give rise to
numerical oscillations in the base region flow
field. Eventually, these grow and swamp the solu-
tion. This difficulty is avoided by simply extra-
polating pressure to the downstream boundary which
is the procedure always used with supersonic out-
flow. A combination of extrapolation and symmetry
is used at J = JB+1,

As a result of the flow field segmentation
procedure described in Section [Il b, the block
tridiagonal matrix in the ¢ direction has elements
at J = JB, JB+l which are treated as internal
boundaries in the computational domain. The block
tridiagonal matrix in the ¢ direction takes the
following form (after setting € = 0 to simplify
the illustration)

r— - Tr 4
1 A3 qu RHSz
Ay 1 Ay Aq3 RHS3
-Agg-2 1 Mg . )
210 8a;a = 0 (8)
u 10 AqJB+l 0
=Agger 1 Aypes ' .
Amax-2 1 " ax RHS ) MAx-1
- Ik I A |

Here A's denote the qué .uy 'Z%E Aand | is a 5x5

identity matrix. No .he appearance of two
uncoupled block tridiay . The rows at JB and
JB+1 are particularly 3 e because boundary
conditions are updated . .ricitly at the end of
inversions. These changes were easily implemented
in a modular fashion into an existing code for
projectile base flow computations. One simply
fills the block tridiagonal matrix ignoring the
base JB and the nose axis JB+1. Elements in these
rows are then overloaded as shown above, The flow
field segmentation does not affect the block tri-
diagonal matrix in the ¢ direction.

IV. Results

A series of computations have been made for
the 3 caliber (1 caliber = 1 max. body diameter)
secant-ogive nose and 3 caliber cylinder shape
shown in Figure 4. All the computations were
obtained for Mach numbers .9 < M < 1.2 and a = 0.
Limited experimental base pressure measurements
have been made by Kayser’ for this projectile
shape and compared with the computed results. The
projectile base was supported by a sting attached
to it and meaurements of base pressure were made
at only one location along the base. These
experiments were conducted at Langley Research
Center 8-foot Transonic Pressure Tunnel. Compu-
tational base pressure results are also compared
with available semi-empirical® data. The results
are presented in the form of surface pressure
distribution, contour plots and velocity vector
plots.

The computational grid used for the numerical
computations was obtained from a versatile grid
generator developed in Reference 9. This program
allows arbitrary grid point clustering, thus ena-
bling grid points for the projectile shapes to be
clustered in the vicinity of the body surface.
The grid consists of 108 points in the longitudi-
nal direction and 50 points in the radial direc-
tion. The full grid is shown in Fiqure 5 while
Figure & shows an expanded view of the grid in the
vicinity of ‘he projectile, The computational
domain extended to 4 body lengths in front, 4 body
Yengths in the radial direction and 4 body lengths
behind the base of the projectile. The grid

-
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points in the normal direction were exponetially
stretched away from the surface with the minimum
spacing at the wall of .00002D. This spacing
locates at least two points within the ‘amnar
sublayer.

Th: ygrid shown in Figure b6 was generated in
two segments. First, the grid in the outer region
is obtained using an elliptic solver? for the
ogive portion and straight-line rays for the re-
maining portion which runs all the way to down-
stream boundary. Second, the grid in the base
region is obtained simply by extending the
straight lines perpendicular to line AC down to
the center line of symmetry (line BD). An expon-
ential stretching with the minimum spacing of
.000020 at line AC is used. It should be noted
that the same mininum spacing ,00002D is specified
on both sides of the cut (line AC) thus maintain-
ing a smooth variation of grid across the cut.
This spacing could, of course, be increased down-
stream of the base. The number of grid points
above and below line AC is the same ?50 points)
which means that an adequate number of points are
located in the base region. As can be seen in
Figure 6, the grid points are clustered near the
nose-cylinder junction and at the projectile base
where appreciable changes in flow variables are
expected.

The free stream Reynolds number for the
series of computations was fixed at 4.5 x 10°
based on the total mode! length. The computations
are started from free stream conditions and march-
ed in time to obtain the steady state solution.
The initial calculation was made for M = 0.9,
Previous converged solutions were then used as
starting conditions for additional Mach number
runs to achieve faster convergence,

Figures 7 and 8 show the distribution of the
surface pressure coefficient, Cp as a function of

axial position, x/D. Figure 8 shows the overall
view whereas Figure 7 shows the distribution in
the near wake region of the base. The distribu-
tion over the projectile surface itself is shown
in both these figures. The value of Cp beyond x/D

= 6 is the value of pressure coefficient along the
cut AC, Both these figures indicate the shock
waves near the nose-cylinder junction and near the
blunt base. Although not shown in these figures,
the pressure along the base remains fairly
constant (within +.005 variation in Cp values).

The series of Figures 9, 10 and !l show the
velocity vector field in the base region for M =
0.9 and a = 0. Each vector shows the magnitude
and the direction of the velocity at that point.
Figure 9 shows the velocity field in the entire
base region. One can see the expected velocity
defect in the far wake region. Figures 10 and 11
show the velocity field in the vicinity of the
base (near wake region). The difference between
these two plots being that the former one is
stretched (not drawn to same scale) while the
latter is drawn with the same scale in x and y
directions. Both Figures clearly show the recir-
culation region of flow in the base region and
indicate a strong shear layer as well.

The next two Figures 12 and 13 are stream
function contour plots in the near wake reqion,
again for M - 0.9 and « 0. Figure 13 is drawn

to the same scale in x and y while Figure 12 15
not. nowever, both of these figures are drawn to
show the recirculation region and the position of
the dividing stream line as clearly as possible.
They also show the reattachment point which for
this case is about ¢ calibers down from the base.

A more critical check of the computationa!
results is presented in Figure 14 where the base
drag is plotted as a function of Mach onumber,
Computational results are indicated by circles,
experimental results’? by triangles and the squares
indicate the results obtained wusing a sem-
empirical technique developed by McCoy®, Base
drag, as expected, increases as the Mach number
increases from 0.9 to 1.2. The semi-empirical
technique shows 9generally higher base drag when
compared with computational and experimental
results., The computational results predict the
expected drag rise that occurs for 0.9 < M ¢ 1.2,
The computational results, however, indicate a
greater increase in drag than predicted by either
the semi-empirical code or the experimental meas-
urements. The discrepancy between the numerica!l
and the experimental results can partly be attri-
buted to the fact that the experimental data was
obtained with a sting attached to the base. The
sting has an effect of weakening the recirculatory
flow in the base region and leads to higher base
pressure and hence, lower base drag.

Figures 15, 16 and 17 show the variation of
pressure drag, skin friction drag and the total
drag with Mach number respectively. The rise in
the pressure drag with Mach number is predicted
correctly. Skin friction drag decreases as Mach
number i-creases. The total drag, as expected,
increases as Mach number increases from 0.9 to
1.2. The computational results are compared with
the results obtained by semi-empirical technique
and the agreement is cons.dered good.

V. Summary

A procedure has been described in which the
Azimuthal-Invariant (generalized axisymmetric)
thin-layer Navier-Stokes code is modified in such
a way as to compute the base flow field of projec-
tiles at transonic speeds.

The computed results show the qualitative
features of the flow field in the base region,
namely the recirculation region, dividing stream
17ne, reattachment point, etc, Quantitative com-
parisons of the base drag have been made with
other available data for various Mach numbers in
the transonic speed range. These results indicate
that the present numerical technique can be used
successfully to predict the base drag of projec-
tiles at transonic speeds.

The computed results for this paper represent
the first application of thin-layer Navier-Stokes
computational technique to predict projectile base
flow at transonic velocity using the flow field
segmentation described above. The results indi-
cate that this technique shows good promise of
providing a useful new computational capability
for exterior ballistics of shells,

Future computational efforts will investigate
the implementation of viscous boundary condition
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on the projectile base, improved grid resolution,
and alternate turbulence models.
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Abstract

A computational capability has been developed
for predicting the flow field about the entire
projectile, including the recirculatory base flow,
at transonic speeds. Additionally, the computer
code allows mass injection at the projectile base
and hence is used to show the effects of base
bleed ¢n base drag. Computations have been made
for a secant-ogive-cylinder projectile for a
series of Mach numbers in the transonic flow
regime. Computed results show the qualitative and
quantitative nature of base flow with and without
base bleed. The reduction in base drag with base
bleed is clearly predicted for various mass injec-
tion rates and for Mach numbers .9 < M < 1.2. The
encouraging results obtained indicate that this
computational technique may provide useful design
guidance for shells with base bleed.

Nomenclature
a speed of sound
A cross sectional area at the base
Aj injection area for base bleed
CDb base drag coefficient, 2 Db/p.uﬁA
¢ specific heat at constant pressure

pressure coefficient, 2(p - p.)/p u3

body diameter (57.15mm)
base drag

total energy per unit volume/p_aZ

flux vector of transformed Navier-Stokes
equations

n-invariant source vector .

mass injection parameter, mjlp_u_ﬁ

Jacobian of transformation

mass flow rate for air injection at the
base, ojujA.
J
Mach number
pressure/o_a2
Prandtl number, uC /«x_
body radius 4
Reynolds number, p_a,D/u,

viscous flux vector

physical time

Cartesian velocity components/a_
Contravariant velocity components/a_
physical Cartesian coordinates
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G and theref

-1 angle of attack

Y ratio of specific heats

K coefficient of thermal conductivity

u coefficient of viscosity

g€,n,t transformed coordinates in axial,
circumferential and radial directions

p density/p_
T transformed time
¢ circumferential angle

Superscript

* critical value

Subscript

base
jet conditions
longitudinal direction
normal direction
total conditions

t stagnation conditions
free stream conditions
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I. Introduction

A major area of concern in shell design is in
the total aerodynamic drag. The designer, ever
desirous of increasing the range and/or terminal
velocity of projectiles, is eager to decrease the
aerodynamic drag.

The total drag for projectiles can be divided
into three components: (1) pressure (wave) drag;
(2) viscous (skin friction) drag; and (3) base
drag. For a typical shell at M = .90 the relative
magnitudes of the aerodynamic drag components are:
(1) pressure drag, 20%; (2) viscous drag, 30%, and
(3) base drag, 50%. The pressure and viscous com-
ponents generally cannot be reduced significantly
without adversely affecting the stability of
shell. Recent attempts to reduce the total drag
are therefore directed at reducing the base drag.

A number of studies have been made to examine
the drag reduction due to the addition of a boat-
tail. Although this is very effective in reducing

the drag, it has a negative impact on the aerody-
namic stability of shell especially at transonic
An excellent review of base drag and
presented in

velocities.
the effect of
Reference 1.

boattailing is
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Another effective means of reducing the base
drag is that of 'base bleed' or 'base injection'.
In this method a small amount of mass is injected
into the base region which increases the base

pressure and thus reduces the base drag. Recent
range and precision testsZ of a 155mm projectile
with and without base bleed have been conducted
and an 85% reduction in base drag was obtained.
Presently the XMB64 is an active projectiie design
which is attempting to use the base bleed concept
for increased range. This concept of mass injec-
tion at the projectile base has been widely
studied for supersonic flows and much of the work
has been reported in Reference 3. One limited
study at supersonic speeds was made at BRL and the
results were reported by Dickinson®. A limited
study made in the transonic flow regime has been
reported in Reference 5. The supersonic regime
has typically been the area where increased range
due to drag reduction has been studied. Thus,
only limited attention has been focussed on the
‘base bleed' problem in transonic flow.

Most of the work using the ‘base bleed’
concept has been either experimental or semi-
empirical in nature. Sophisticated numerical
techniques have not yet been utilized to predict
the effects of base bleed on the base drag reduc-
tion. Limited computational work has been report-
ed recently by Sullins, et alb. Their work dealt
with the numerical computation of the base region
flow of a supersonic combustion ramjet engine
using two-dimensional Navier-Stokes equations.
They computed the flow field in the vicinity of
the base with parallel gas injection and estab-
lished the effect of base injection on such flows.
Because of the recent advances in computer techno-
logy, numerical computational capabilities have
been developed to predict the aerodynamic behavior
of artillery shells, Recent papers’*® have
reported the development and application of the
Azimuthal-Invariant Thin-Layer Navier-Stokes comp-
utational technique to predict the flow about
slender bodies of revolution at transonic speeds.
This technique has been modified for base flow
analysis and the resulting new numerical capabi-
Tity? is used here to predict the base pressure of
shell at transonic speeds including the effect of
base bleed. Computed results show the quantita-
tive and qualitative details of the base flow
structure. The technique used computes the full
flow field over the projectile at transonic
speeds; therefore, all three components of the
total drag (pressure, viscous, and base drag) are
computed. This computational technique is then
applied to predict the effects of base bleed on
the base drag reduction at transonic speeds.

A brief description of the physical problem
and the governing equations §s given in Sections
11 and 111. The computational technique and the
method of solutfon are discussed in Section IV.
In Section V results are shown for transonic base
pressure computations for a 6-caliber secant-
ogive-cylinder shape for .9 < M < 1.2 with and
without base bleed. Velocity vector plots, stream
function contour plots and density contour plots
are presented to show the qualitative features of
the flow field in the base region. Quantitative
comparisons of base drag and the total drag both
with and without base injection have been made.
The encouraging results show that the present
computational technique can be used to study the
effects of base bleed on base drag and can possi-

bly have a positive impact on the XM864 devleop-
ment. Although results here are presented for
transonic speeds, current computational efforts
are directed at supersonic velocities.

IT1. Physical Problem

The physical problem deals with the transonic
flow over a projectile shape including the base
region. Although the entire projectile flow is
computed, the emphasis here is on the flow field
in the base region of the projectile. A small
amount of air is injected at the projectile base
in the direction parallel to the primary flow.
The injection at the base can be concentrated at
the center of the base or spread throughout the
entire base. In the present work, however, the
injection takes place over 90% of the base.
Figure 1 shows a schematic illustration of the
base region flow field with base injection. The
dividing streamline separates the recirculary base
flow from the primary external flow. The flow
field is dominated by separation and mixed regions
of locally supersonic and subsonic flows.

The complete set of time-dependent genera)i-
zed axisymmetric thin-layer Navier-Stokes equa-
tions is solved to obtain a numerical solution to
this problem. The numerical technique used is an
implicit finite-difference scheme. Although time-
dependent calculations are made, the transient
flow is not of primary interest at the present
time. The steady flow is the desired result which
is obtained in a time asymptotic fashion.

I11. Governing Equations

The Azimuthal Invariant (or Generalized Axi-
symmetric) thin-layer Navier-Stokes equations for
gegera! spatial coordinates £, n, ¢ can be written
as

- - R T
3.q+ 355 + a‘G + H = Re aCS (1)

where £ = E{x,y,z,t) is the longitudinal
coordinate

n = n{y,z,t) is the circumferential
coordinate

¢ = g(x,y,z,t) is the near normal
coordinate

-
"

t is the time

The vector of dependent variables :1 and the flux
vectors E, G, H are given as
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The thin layer viscous terms valid for high
Reynolds number flow are contained in the vector
S, where

r 0
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The velocities

U= ;t«b E,(u+ zyv~ gzu

V=g +nus+nyvenw (2)

U-;t+cxu4 cyv+ czw

represent the contravariant velocity components.

The Cartesian velocity components (u,v,w) are
nondimensionalized with respect to a_ (the free
stream speed of sound). The density (5') is refer-
enced to p_ and total energy (e) to o a2. The
local pressure is determined using the equation of
state,

p = (v-1)(e - 0.5p(uZ vZ+w2)] (3)

where v is the ratio of specific heats.

In Equation (1) the thin-layer approximation
is used and the restrictions for axisymmetric flow
are imposed. The details can be found 1in
References 8 and 9 and are not discussed here.
Equation (1) contains only two spattal deriva-
tives; however it retains all three momentum equa-
tions thus allowing a degree of generality over
the standard axisymmetric equations. In parti-
cular, the circumferential velocity is not assumed
to be zero thus allowing computations for spinning

projectiles or swirl flow to be accomplished.
There is some evidence which indicates that base
pressure can change due to the spin of a projec-
tile. Although the present work considers base
flow with no spin, base flow with spin is of
interest and can be studied using the present
technique.

For the computation of turbulent flows a tur-
bulence model must be supplied. In the present
calculations a Cebeci-type two layer algebraic
eddy viscosity model as modified by Baldwin and
Lomax!® is used. In their two layer model the
inner region follows the Prandtl-Van Driest formu-
lation. Their outer formulation can be used in
wakes as well as in attached and separated bound-
ary layers. In both the inner and outer formula-
tions the distribution of vorticity is used to
determine length scales thereby avoiding the
necessity of finding the outer edge of the bound-
ary layer (or wake). The magnitude of the local
vorticity for the axisymmetric formulation is
given by

ol =/ @D2e Gy -2e (5-397 ()

In determining the outer length scale a
functionl?

F(y) = ylwj [1 - exp(-y*/A*)] (5)

is used where y* and A* are the conventional
boundary layer terms. For the base flow (or wake
flow) the exponential term of Equation (5) is set
equal to zero.

IV. Mumerical Method

a. Computational Algorithm

An implicit approximate factorization
finite-difference scheme in delta form is used as
described by Beam and Warming!l. An implicit
method was chosen because it permits a time step
much greater than that allowed by explicit
schemes. For problems in which the transient
solution is of no interest, this offers the pos-
sible advantage of being able to reach the steady
state solution faster than existing explicit
schemes.

The Beam-Warming implicit algorithm has
been used in various applications? !3.  The algo-
rithm can be first or second order accurate in
time and second or fourth order accurate in space.
The equations are factored (spatially split) which
reduces the solution process to one-dimensional
problems at a given time level. Central differ-
ence operators are employed and the algorithm pro-
duces block tridiagonal systems for each space
coordinate. The main computational work is con-
tained in the solution of these block tridiagonal
systems of equations.

b. Finite Difference Equations

The resulting finite difference equa-
tions, written in delta“form are

oo = ARSI, VR VT P o
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Here h = At because only first order accuracy in
the time differencing is needed for the steady
state flows which are considered here. This
choice corresponds to the Euler implicit time dif-
ferencing. The &'s represent central difference
operators, & and ¥ are forward and backward dif-
ference operators respectively. The Jacobian

matrices A =3—E. C-= EE. along with the coeffi-
aq 3q

cient matrixﬁobtained from the local time

linearization ofgare described in detail in
Reference 6. Fourth order explicit (eE) and

implicit (':I) numerical dissipation terms are

incorporated into the differencing scheme to damp
high frequency growth and thus to control the non-
linear instabilities. A typical range for the
smoothing coefficients is ec = (1 to 5) At with

£ = 3cE.

c. Flow Field Segmentation

Figure 2 is a schematic illustration of
the flow field segmentation that 1is wused to
compute the entire projectile flow field including
the base flow. It shows the transformation of the
physical domain into the computational domain and
the details of the flow field segmentation
procedure in both the domains,

The cross hatched region represents the
projectile. The line BC is the projectile base
and the region ABCD 1is the base region or the
wake. The line AB is a computational cut through
the physical wake region which acts as a repeat-
itive boundary in the computatioal domain,
Implicit integration is carried out in both § and
¢ directions (see Figure 2). Note the presence of
the lines BC (the base) and EF (nose axis) in the
computational domain, They both, however, act as
boundaries in the computational domain and special
care must be taken in inverting the block tridiag-
onal matrix in the £ direction. The details are
presented in the next section.

d. Implementation of Boundary Conditions

1. Base Flow Without Base Injection

The no slip boundary conditions for
viscous flow is enforced by setting

U=V =zW=0 (7N

on the projectile surface except for the base. At
the projectile base the velocity component normal
to the base is set to zero, i.e. U = 0, while
other flow variables are set equal to those at
grid point next to the base. In other words, slip

is allowed along the base (inviscid boundary
condition). Future work will be directed at the
implementation of viscous boundary condition at
the base to further access this approximation.

Along the computational cut {line AB)
the flow variables above and below the cut were
simply averaged to determine the boundary condi-
tions on the cut. On the centerline of the wake
region, a symmetry condition is imposed.

u

72—~0

v

2V .0

9z (8)
w=20

Free stream conditions are used at
the outer boundary. Simple extrapolation for all
flow variables is used at the downstream boundary
(lines AD and AG). During transient calculations,
use of a specified outflow pressure can give rise
to numerical oscillations in the base region flow
field. Eventually, these grow and swamp the solu-
tion. This difficulty is avoided by simply extra-
polating pressure to the downstream boundary which
is the procedure always used with supersonic out-
flow. A combination of extrapolation and symmetry
is used at on the nose axis (line EF).

As a result of the flow field segmen-
tation procedure described in Section IV ¢, the
block tridiagonal matrix in the £ direction has
elements at J = JB, JB+1 which are treated as
internal boundaries in the computational domain (J
= JB represents the projectile base and J = JB+1
is the nose axis). The block tridiagonal matrix
in the € direction takes the following form (after
setting € = 0 to simplify the illustration)

[ 1 4, Ta, T [Rws,
-Rp I Ay 4qy RHS3
-Ayp.2 1 Ayg .
010 s || 0 (9)
010 84)p01 0
Ager 1 Ajpes]]
-A I s RHS,
JMAX-2 QMAX- JMAX-1
i oy [f 3
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Here A's denote the quantity 2%%‘ and I is a 5x5

identity matrix. Note the appearance of two
uncoupled block tridiagonals. The rows at JB and
JB+1 are particularly simple because boundary con-
ditions are updated explicitly at the end of
inversions. These changes were easily implemented
in a modular fashion into an existing code for
projectile base flow computations. One simply
fills the block tridiagonal matrix ignoring the
base JB and the nose axis JBtl. Elements in these
rows are then overloaded as shown above. The flow
field segmentation does not affect the block tri-
diagonal matrix in the { direction.

2. Base Flow with Base Injection

The boundary conditions used for base
flow with mass addition are presented here. The
boundary conditions along the projectile surface,
at the cut and downstream boundary all remain the
same as previously described. Along the base
boundary the following boundary conditions are
imposed.

U= IlJ'
v = Vj =0
w = wj = wpg.] (grid point next to the base)

P =p;= Py

The stagnation density is obtained from the
following relation.

1
::t - (1 Xyt (10)

The amount of air injected into the base region
can be specified by the mass flow rate, v?vj. Since
o5 and AJ are known, uj can be calculated for. any
given mass flow rate. Rather than specifying "'j
however, it is customary to specify a mass injec-
tion parameter, [ where I = ﬁj/p.u.A.

e. Computational Grid

The finite difference grid used for the
numerical computations was obtained from a grid
generator developed in Reference 14, This program
allows arbitrary grid point clustering, thus enab-
1tng grid points for the projectile shapes to be
clustered in the vicinity of the body surface.
The grid conststs of 108 points in the longitudin-
2l direction and 50 points in the radial direc-
tion. The full grid is shown in Figure 3 while
Figure 4 shows an expanded view of the grid in the
vicinity of the projectile. The computational
domatn extended to 4 body lengths in front, 4 body
lengths in the radial direction and 4 body lengths
behind the base of the projectile. The grid
points in the normal direction where exponentially
stretched away from the surface with the minimum
spacing at the wall of ,00002D. This spacing
locates at least two points within the laminar
sublayer.

The grid shown in Figure 4 was generated
in two segments. First, the grid in the outer
region is obtained using an elliptic solverl“ for
the ogive portion and straight-line rays for the
remaining portion which runs all the way to down-
stream boundary. Second, the grid in the base
region 1is obtained simply by extending the
straight lines perpendicular to line AB down to
the center tine of symmetry (line (D). An expon-
ential stretching with the minimum spacing of
.000020 at line AB is used. It should be noted
that the same minimum spacing .00002D is specified
on both sides of the cut thus maintaining a smooth
variation of grid across the cut. This spacing
could, of course, be increased downstream of the
base. The number of grid points above and below
line AB is the same (50 points) which means that
an adequate number of points are located in the
base region. As can be seen in Figure 4, the grid
points are clustered near the nose-cylinder junc-
tion and at the projectile base where appreciable
changes in flow variables are expected.

As indicated in Figure 4, the fine viscous
grid follows the cut labeled as AB in Figure 2.
In so far as the viscous shear layer begins to
neck-down shortly behind the base, much of this
fine grid resolution is wasted. As a consequence
logic has been implemented to adjust the grid cut
AB to the viscous shear layer. Such a grid is
shown in Figure 5 in which the height of the cut
is determined from a moment of shear subject to
various constraints and averaging. Specifically,

the cut height,id at each J-location is deter-
mined by the relation

2
2(6z uJL) z) + €/2

ZJ = I(Gz uJL)‘ + € (11)

where the summation is carried out only for those
points within an interval .20 < ZJL < D/2. Here D

is the base diameter, Gz is a central difference

operator and € is a positive parameter which
ensures a standard grid if all dz uy are zero or

if € is very large, Additional averaging is used
in the «x-direction (longitudinal direction).
Preliminary results have been obtained using the
grid shown in Figure 5 and further computations
are underway.

V. Results

The model geometry used in the present study
is shown in Figure 6. The model consists of a 3
caliber secant-ogive nose and a 3 caltber
cylinder.

The free stream Reynolds number for the
series of computations was fixed at 4.5 x 106
based on the total model length, The computations
are started from free stream conditions and march-
ed in time to obtain the steady state solution.
The initial calculation was made for M = 0.9,
Previous converged solutions were then used as
starting conditions for additional Mach number
runs to achieve faster convergence. The results
are now presented for Jboth cases, (i) base flow




without injection and (1i) base flow with
injection,

Figures 7 and 8 show the distribution of the
surface pressure coefficient, Cp as a function of

axial position respectively, without and with mass
injection at the base. The value of C, beyond x/0

= 6 is the value of pressure coefficient along the
line extending from the cylinder portion straight
to the downstream boundary. In Figure 7 there is
no mass injection at the base. The pressure dis-
tribution reflects the shock pattern that typical-
ly occurs on shell at transonic velocities, the
rapid expansion which occur at the blunt base and
the recompression that occurs downstream of the
base. Although not shown in these figures, the
pressure along the bdase remains fairly constant
(within £.,005 variation in Cp values). The pres-

sure coefficient distribution for a case with
large mass addition is shown in Figure 8. The
previous rapid expansion at the base and recom-
pression downstream of the base are seen to be
virtually eliminated.

Figure 9 shows the velocity vector field in
the base region for M = 0.9, a= 0 and | = O,
Each vector shows the magnitude and the direction
of the velocity at that point. The figure shows
the velocity field when there is no base bleed and
the recirculatory flow in the base region is
clearly evident.

The velocity vector plots in Figures 10, 11
and 12 show the effect of base bleed on the near
wake flow field. Figure 10 shows the effect of
base bleed for the case when the mass fnjection
parameter is very small (I = .01). The change in
the flow field is not very dramatic. In Figure 11
the mass injection parameter is increased to .07,
and the effect of base bleed can be clearly seen.
The near wake flow field has changed considerably.
Figure 12 shows the effect of base bleed for a
still higher mass injection parameter, 1 = .13,
The flow field in the base region has now been
dramatically altered. The recirculation pattern
has been totally swept downstream.

The next four Figures 13, 14, 15 and 16 are
stream function contour plots in the wake region,
again for M = 0.9 and a = 0. All these figures
are deliberately stretched in y direction (not
drawn to the same scale in x and y) to show the
flow pattern in the base region as clearly as pos-
sible. Figure 13 1is for the case of base flow
with no mass injection at the base. It clearly
shows the recirculation region and the position of
the dividing streamline which separates the recir-
culatory base flow from the main flow. The reat-
tachment point is about 2 calibers down from the
base. Note the strong shear layer in the base
region.

Figures 14, 15 and 16 show the flow pattern
in the base region with mass injection allowed at
the base. Figure 14 shows the effect of base
bleed when the mass injection parameter is very
small (I = .01). The reattachment point remains
at about the same place as with no injection at
the base., The flow pattern has changed slightly
as can be seen by the dividing streamline, however
the recirculation region has not changed dramatic-
ally. In Figure 15, the mass injection parameter,

I, has been increased to .07 and now the effect of
mass injection can be clearly seen. The reattach-
ment point has moved further down stream. The
flow pattern in the near wake flow field has
changed considerably and the separation bubble is
reduced 1n size. When the mass injection para-
meter is increased further, I = .13, its effect on
the flow field in the base region is apparent.
Figure 16 shows that dramatic change in the flow
field. It indicates no presence of any recircula-
tion region and shows how the shear layer has been
displaced markedly.

A more critical look at the computationa)
results is presented in Figures 17 through 20.
These figures show the quantitative details of
projectile flow field. Figure 17 shows the varia-
tion of base drag with mass injection rates for M
= 0.9 and a = 0. The reduction in base drag with
base injection can be seen clearly. The percent
reduction in base drag increases with the an
increase in the injection rate.

Since the entire projectile flow field,
including the base flow, has been computed, all
three drag components have been computed and thus
the total drag determined. Figure 18 shows the
variation of the total drag with varying mass
injection rates. Again, the reduction in the
total drag is apparent. As the injection rate is
increased, the percent reduction in total drag
increases.

Figures 19 and 20 show respectively, the
variation of base drag and the total drag with
Mach number both with and without base injection.
In both these figures the computational results
without injection at the base are shown by the
solid line whereas the dotted line represent the
computational results obtained with injection at
the base. The reduction in base drag and also the
total drag with base injection can be clearly
seen, Figure 19 indicates that the percent reduc-
tion in base drag has increased with an increase
in Mach number from .9 to .98. In both the
figures the expected drag rise in the transonic
speed regime is well predicted for .9 < M < 1.2
and the reduction in base drag and the total drag,
due to base bleed has been clearly demonstrated.

V. Summary

A promising computational capability has been
developed which computes the full projectile flow
field including the recirculatory base flow at
transonic speeds both with and without base
injection,

Numerical computations have been made for
Mach numbers .9 < M < 1.2 to predict the base drag
and the total drag with and without base bleed.
Computed results show the qualitative features of
the flow field in the near wake for both cases.
The effect of base injection on the gqualitative
nature of base flow has been clearly shown. Quan-
titative comparisons of base drag and the total
drag both with and without base injection have
been made. Ffor M = 0.9 and a = 0 the computation-
al results show the reduction in base drag and the
total drag for several mass injection parameters.
Results are also presented for .9 < M < 1,2 for a
given mass injection rate and the reduction tn
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IIl. GRIDS

Good solution accuracy depends on having properly spaced grids that are
smoothly varying and not overly skewed. During the research program considerable
effort was therefore devoted to the task of grid generation. A projectile grid genera-
tion program that can use either elliptic or hyperbolic grid generation procedures

was devised. The attached paper, presented at the 1982 Army Numerical Analysis

and Computers Conference, describes our basic grid generation solver.
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Grid Generation Techniques for Projectile Configurations
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ABSTRACT. The determination of accurate projectile aerodynamics is a
major area of concern for shell designers involved with new shapes and
Ballisticans concerned with developing artillery aiming data. To achieve the
desired goals a research effort has been on going within the Aerodynamics
Research Branch/BRL to establish a predictive capability for determing pro-
jectile aerodynamics. Modern finite difference codes have been applied to the
projectile problem and encouraging results have been obtained in transonic!’?
and supersonic3 flow. The generation of good computational grids has been a
prerequisite for achieving these flow field solutions.

This paper describes a versatile grid generation program which has been
developed for standard, hollow and non-axisymmetric projectile shapes. The
grid generator makes use of both elliptic and hyperbolic type partial differ-
ential equation solvers. The code allows arbitrary grid point clustering
along the body suface in areas of anticipated flow field gradients. The outer
boundary can also be arbitraily defined with its own clustering distribution.
The grid is then generated between these two boundarys with either straight
rays or by use of an elliptic solver. For those cases when the outer boundary
is not restricted, the grid can be generated using a hyperbolic solver which
adds the additional benefit of an orthogonal mesh.

The mathematical development of the clustering functions and partial
differential equation solvers are described and a series of grids are pre-
sented which show the versatility of the grid generation program. Grids for
ogive-cylinder-boattail configurations, hollow ring airfoil projectiles and
non-axisymmetric projectiles are discussed.

1. INTRODUCTION. The numerical solution of the Navier-Stokes“®>’®
equations has been successfully applied to a wide variety of problems. The
versatility of these methods is inpart attributed to the solution of the
transformed set of differential equations. Using transformed equations the
physical space can be mapped onto a regularly spaced rectangular region for
two dimensional flow. This mapping allows for a wide variety of projectile
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configurations to be solved using the same basic numerical technique. An
example of some characteristic projectile shapes are shown in Figure 1. A
standard projectile shape which consists of an ogive cylinder boattail is
shown in la; a more non-conventional shape but one of considerable interest,
the triangular boattail configuration in 1b; and a tubular projectile
configuration which has been type classified and is currently in the Army
inventory, in lc. To calculate the flow field for any one of these shapes the
first requirement is to develop a suitable finite difference grid for use with
the equation solver. The grid generator described in this paper addresses
this problem.

Grid generation routines are employed to generate a network of constant §
and n lines in the physical x-y plane as indicated in Figure 2a. Correspond-
ing uniform values of £ and n in the computational space define a one to one
mapping between points j,k in the physical plane to points j,k in the computa-
tional plane as shown in Figure 2b. The mapping functions are described, at
least numerically, once Ej K and "5k are known in the physical plane as a

function of X5 .k and Yj ke The metric quantities Ex’ Ey, Ny» and ny needed in

the transformed flow equations can then be determined numerically (see, for
example, References 4-6).

The grid generation program presented here describes earlier work done by
the authors’ as well as extensions which include a hyperbolic solver and the
addition of more general projectile shapes. The grid generator is modular and
begins with a determination of the body shape. The inner body clustering
routine is then called to distribute points in the vicinity of previously
determined flow field gradients. The next option allows for the insertion of
stings for wake modeling, a rear cut or forward cut. If the outer boundary is
free or unconstrained as is the case for conventional projectiles, the hyper-
bolic solver, which generates a smoothly varying orthogonal grid, is called.
For those cases where the outer boundary is constrained, as is the case for
tubular projectile shapes, the outer boundary clustering routine is called.
Once the outer boundary is specified the elliptic solver is called. The grids
generated up to this point would be planar and sufficient for axi-symmetric
calculations. However for three dimensional flow fields a periodic or non-
periodic grid is generated by spinning the planar grid about the symmetry
axis. A flow chart of the overall grid program is shown in Figure 3.

The following sections of the paper will present some of the details used
for the inner boundary clustering the outer boundary description and interior
grid generation.

2. INNER BOUNDARY DESCRIPTION. The body shape can be input to the
program Dy cards, Tile specification or as a set of x,y ordinates. The data
is assumed to be non-dimensional with respect to the diameter or cord depend-
ing on the projectile configuration. Additionally, the code can generate a
parabolic arc or standard class of projectiles such as sharp or blunt, tangent
or secant ogive-nose, cylindrical body, boattail, or spherical cap. Once the
body shape is determined the values of x along the body axis are distributed
by contiguously combining segments of the clustering function
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xJ Xo ¥ an wJ cm o . (1)
Jo ¢ J ¢ ¢

where ¥, = (3-3g)/(Jg-3,) and j is an index vaiue such that points j, to j¢
lie in the interval Xy to x¢ and xjo = X4 while Xjf = xg. Equation (1) is

used to cluster x; as a function of j. The user determines the shape of the é

J
clustering function by specifying the initial and final increments of x, that
is
AX = X, - X, (2a)
(o] J°+1 Jo
WX = X, - X, (2b)
f Jf Jf'l

e a st e

Since x, and x¢ are also specified, a, b, and c are determined

(]
1l

= {VXf + 8x, - 2h(x¢ - xo)}/(h - 3hZ + 2h3)
{Axo - h(x¢ - x ) - c(h?® - n)}/(h% - h)

o
]

! . a = Xe -'xo -b-c

where h = (jf - jo)'l.

The amount of clustering at each point is determined by the specified
values of Axo and fo. Moreover, because Axo and Vx, are specified, the user

can smoothly patch functions together to form a general clustering function.
One drawback to the clustering function, Eq. (1), is that the function is not
guaranteed to be monotone in the interval. This can happen, for example, if
ax is too small and fo too large.

At this point a sting or forward cut can be added to the previously
described body as shown in Figures 4a and 4b. Again the clustering function
of Equation (1) is used to distribute points along these new boundaries.

3. GRID GENERATION USING A HYPERBOLIC SOLVER. For most projectile
applications the outer boundary is unconstrained and simply needs to be placed
far enough away from the projectile body so as not to adversely affect the
flow field solution. This situation represents an ideal case for a hyperbolic
grid generation scheme,

101 )

PO . Y




Once the body points have been redistributed and the sting or cut has
been determined, a grid can be generated using a hyperbolic solver similar to
that described in Reference 8. Before the actual solver can be implimented
however, the distance to the outer boundary must be specified and either con-
stant spacing in n or some type of stretching function is required. The n
stretching used here is determined by the following relationship

- k-1 -
o5, = Aso(l +€) L,k =1, kmax -1 (3)

Here Aso is the minimum specified grid spacing desired at the wall or inner

boundary. The parameter € is determined by a Newton-Raphson iteration process
so that the sum of the above increments matches the known arc length between
n=0and n = Nmax for points which have the same value of £.

The governing equations for the hyperbolic solver are obtained by
requiring: (1) the coordinate lines & and n to be orthogonal; and (2) the
specification of a cell volume or area for the two dimensional case. The
condition of orthogonality requires

AE ¢ An =0 (4)

The second equation is obtained by specifying a grid cell volume (or area in
two dimensions). Since the grid cell volume is finite the transformation
Jacobian will be greater than one, i.e.,

dxdy = |x€yn - x"yel d&dn (5)

The set of grid generation equations are therefore given in the physical plane
by

Exnx + ;Yny =0
Exﬂy - Qynx =4
or in the transformed plane by « (6)

XeXn * Ye¥p = 0
170 =V

XeYn = *nYg

Using local linearization for this set of non-linear differential equations,
the resulting system is shown to be hyperbolic® and can therefore be marched
in the n direction.
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The linearized set of differential equations to be solved numerically is
written in vector form as

> +
AF, ¢+ BF = i (7)
where -
0 0 0 0
n  Yn e Y
A= 0 0 i B = 0 0
yn - X -y XE

o | x

>
f’- vV + VO ’ r y

where xg, yg, etc., refers to known conditions.

The set of Equations (7) are solved with an implicit finite difference
scheme which is first order accurate in the n direction(k) and where central
differencing is used in the £ direction(j). The resulting set of finite
difference equations becomes

+ + + +
Pt kel = Tyt ger) * 8500, - 500 = Hikn (8)

2AE An

A(

Rearranging Eq. (8) and setting an = AE = 1 results in

A

> A + _
Z et s " ik =4

L d >
Brikel "7 Tiihel = Tihel * BTy = 95k (9)

where

040 0,0
, (xgx tyey )j’k

Jok+l T _v0y0 0,0 0
(yex +x£y)j’k+V+V

Equation (9) is now in a form which can be easily solved by inverting a block
tridiagonal matrix with 2 x 2 blocks. The terms x? and y® are central differ-
enced as ¢ ¢

103




X1,k 7 %51k

x9 =
ik

(10)
_ Yk T Y51k

0
y =
gj,k 2

The terms xg and yg are obtained from Equation (6) evaluated at the old
station(o). That is

0,0 0,0 -
XgXn * Ye¥g = 0

0,0 0 (11)
- 0 - yo
nyn xny€ v
Solving for xg and yg with xg and yg given in (10) yields
- yg vo xg vo
x0 = yg 2 (12)

n o o2 o2 0 0
(xg *¥e ) (xg *Ye )

The cell volume remains to be specified. This specification is important
since it has the effect of controlling the grid evolution as the solution is
being marched out from the body. The method chosen here is straight forward
and uses the stretching function given by Equation (3). Specifying the
minimum spacing at the wall Aso and the total number of points, jpaxs in

the n direction an array of arc lengths as, is determined. Since the Ax is
known along the j line, the volumes are calculated by

V= (as) (xj+1,k - xj,k) (13)

This specification of cell volumes yields smoothly varying grids in the
n direction. Grid volume control is obtained by varying the arc length
distribution Ask and/or surface point distribution. An additional volume

specification approach can be found in Reference 8. A grid generated using
this technique is shown in Figure 5a and 5b for a standard projectile
configuration with sting.

4. OQUTER BOUNDARY DEFINITION. For those cases where the outer boundary
is constrained or specified a grid point distribution along the outer boundary
is required. An example is shown in Figure 6 . A part of the grid generation
problem then is the formation of an arbitrary outer boundary. Here this
boundary is built up by connecting contiguous cubic segments, which in the
degenerate case can be straight lines. Figures 7a and 7b illustrate two
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typical outer boundary curves. In Fiqure 7a three cubic segments make up the
boundary, n = Mmax * Each segment is formed by specifying the values of x,y,

and angle 6, at the endpoints, where 8 is the angle between the curve and the
x axis. In the example, Figure 7a, 6_ = 90°, eb =6_=0°, or 180° and 6y =
90° . a C

The data (x,y,0) at each endpoint determines the shape of the parametric
curves

- 2
X = X _+ alt + uzt

0
0< t< 1 (14)
Y =¥yt Byt + Byt?
which are equivalent to a cubic
= _ -y )2 oy )3
Y= ¥yt v{xexg) +ovp(x-x )%+ va(x-x ) (15)

The parametric cubic is used because the condition-g% = = can be specified

(segment bc of Figure 7b has this constraint at both endpoints).

The solution for the parameters Ay, Ay, 81, and 82 can be found in Refer-
ence 7.

The outer boundary curve is thus made up of contiguous cubic segments
starting from the £ = 0 boundary. Points are distributed along this curve
either as a uniform distribution of arc length, or as a specified arc length
distribution using the previously defined clustering scheme, Eq. (1). Since
the true arc length is not specified a priori, precise alignment of points
along the outer boundary can be determined only after the cubic segments are
specified and the arc length is computed.

5. STRAIGHT RAY AND ELLIPTIC GRID GENERATION. Once the boundary curves
have been specified and points are distributed on the n= 0 and Nnax bound-
aries, two types of grid generation procedures can be used.

In the first case, lines of constant £ (i.e., the rays emerging from the
body) are formed by simply connecting straight lines from points along n = 0
to points along n = Mnax® The spacing in n along each such line is either

uniform or is determined by the stretching relationship given by Equation
(3). Figures 8a and 8b illustrate a straight ray grid with clustering in n
for a tubular projectile,

In the second case, the grid is generated with elliptic partial differen-
tial equations following References 9, 10, and 11. The grid generating equa-
tions are solved on the specified computational space for unknowns Xj k and

Yjk*
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g, - 28X+ oYX = ) (ﬁxg +"6xn) 16) I
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where i
2 2 N N ] ’
u-xn+yn.6—x£xn+y€ynm—x£+y£.J Xe¥o = X Ye j
i
and :

P - Po e-a(n-no) + P e'a(n'nmax)

T=0 e-b(n-no) +Q e'b(n'nmax)

o m
Here Po, Qs P> Qm. a and b are prescribed clustering parameters. Along the
n=0and n = Nmax boundaries, X3 k and Yj k have been previously prescribed. W
Along the £ = 0 and £ = Emax’ which are either vertical or horizontal lines in

the physical space, the following boundary conditions are enforced: -either i

x is given and Ye = 0
on a vertical boundary, or (17)

Xg = 0 and y is given

on a horizontal boundary.

The difference equations to Eq. (16) (see Reference 7) are solved with a
successive line over relaxation (SLOR) procedure. As an initial guess for the
relaxation procedure the straight line ray procedure previously described is
used. For the most part, if coefficients P and Q are large, the SLOR pro-
: cedure is very difficult to converge. Consequently, the algebraic clustering
function, Eq. (3) is recommended.

In the algebraic clustering approach the elliptic solver is used to gen-
erate a grid with P =Q = 0. The x,y points along a § = constant line are
then redistributed along this line as a function of arc length. The clus-
tering function Eq. (3) is used for this purpose. This procedure works quite
well and provides excellent control of the grid spacing near the body surface.
Further details are given in Reference 7.




The elliptic solver need not be used over the entire range in . Because
of the boundary condition, Eq. (17), the elliptic equations can be joined to a
straight ray along any vertical or horizontal boundary line in &, Fiqure 9
shows details of such a procedure used for a secant-ogive-cylinder boattail
projectile which also includes a stinq. Here the &£-region over the secant-
ogive nose is generated using the elliptic equations while the remainder is
meshed with straight rays. After the basic grid is formed, the entire grid i<

clustered in n using Eq. (3).

6. 3D GRIDS. The final option available in the code is the ability to
generate three dimensional grids. At present the grids are formed in a two
dimensional plane and then rotated about a symmetry axis. The rotation is
either periodic or non-periodic depending on the grid desired. For cases
where the flow field has planar symetry, such as a projectile at angle of
attack, without spin, a non-periodic grid is generated.

The generation of grids for projectile shapes, with non-axisymmetric
sections (Figure 1b) is accomplished with a series of planar grids. Planes
are generated normal to the projectile axis at incremental values of Ax. For
each of these planes a grid is generated using an 0O type grid (Figure 10).
These grids are then combined to form a three dimensional mesh making sure
that continuity in the x direction is maintained.

7. SUMMARY, A versatile grid generation program has been described
which utilizes general elliptic and hyperbolic equation solvers for internal
grid generation. The flexibility of longitudinal grid point distribution is
obtained with the general clustering functions allowing points to be placed in
the vicinity of flow field gradients. Grid clustering is also obtained near
the body surface for viscous flow field calculations.

A series of grids have been presented which show the versatility of the
code. Grids for secant-ogive-cylinder boattails have been shown using an
elliptic solver, hyperbolic solver and a hybrid elliptic/straight ray solver.
The generation of a grid for a non-conventional hollow projectile shape has

been demonstrated.
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IV. NUMERICAL ALGORITHMS

A majority of the research elfort was devoted to numerical algorithm work so as

to improve computational eflicieney. Much of this work is deseribed in two invited 1

survey papers which are attached.
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IMPLICIT FINITE DIFFERENCE SIMULATION
of
INVISCID AND VISCOUS COMPRESSIBLE FLOW

JOSEPH L. STEGER

I. INTRODUCTION.

It is not always convenient to use the simplified equa-
tions that extract the essential physics from the more com-
plete set of inviscid and viscous fluid conservation-law-equa-
tions. Such a situation may occuf if the usually inviscid
outer flow is highly rotational and/or if the viscous layer is
fully separated.

Numerical procedures for solving the system of conserva-
tion-law-equations of fluid flow are not as efficient as, say,
the numerical procedures developed for the scalar nonlinear
potential equation used in inviscid transonic flow analysis.
Of course, the solution of a system of equations requires
more work than the solution of a scalar equation. Equally or
more significant, however, is that. in dealing with a system
of equations one often encounters characteristic speeds (i.e.
eigenvalues) of disparate magnitude (stiffness) and of both
positive and negative sign. These last conditions can make
use_of implicit differencing schemes desireable and put rath-
er severe constraints on the choice qf spatial differencing

operators.
The purpose of this paper is to review the use of implic-

it finite difference schemes to solve the Euler and Navier-

Stokes equations in primitive variables. In part one of this
paper an approximate factorization (AF) implicit finite dif-
ference scheme for solving the Euler and Navier-Stokes equa-
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tions is discussed. The equations are cast in generalized co-
ordinates and partial differential equation grid generation
techniques are used. 1In this approach the flux vectors of the
equations are differenced as whole quantities and time-accu-
rate or time-like iterative schemes are used to solve the
equations for general boundary surfaces. In part two of this
paper ways of splitting and reducing the governing equations
are reviewed with an aim towards developing more accurate, ef-
ficient, and robust numerical algorithms. Again, implicit
schemes are emphasized. Here, though, the methods are less

developed.

II. IMPLICIT FINITE DIFFERENCE FLOW FIELD SIMULATION.

Over the last several years, a set [1l-6]) of versatile,
somewhat robust computer codes has been developed for simulat-
ing steady or unsteady inviscid or viscous compressible flow.
The computer programs make use of general coordinate transfor-
mations, numerical grid generation techniques, viscous model-
ing, and implicit finite difference algorithms to achieve a
high degree of adaptiveness to flow conditions. In this sec-
tion a review of this overall methodology is put forth. For
brevity, the discussion here is restricted to two-dimensional
compressible flow, although the basic procedures have also
been applied to three-dimensional flow [2], incompressible
flow [7]1, and supersonic flow solved by parabolic-like march-

ing [8].

a) Transformed Thin-Layer Equations
As governing equations [1,9] we take the two-dimensional

thin-layer Navier-Stokes equations subject to general coordi-
nate transformation, but kept in conservation-law-form ([10,11]

-~ tad ~ -l ~
= 2.
BTQ + BEF + anc Re BnS (2.1)

where

E = E(x,y,t), n=nix,y,t), T=t¢t
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Here p is density, p is pressure, u and v are Cartesian veloc-
ity components, and ¢ is the sound speed. The total energy
per unit volume, e, is defined by '

e= (v - 1)71p + 0.50u? + v¥) (2.2)




and the (unscaled) contravariant velocities are defined as

u Et + Exu + Eyv (2.3a)

<
]

un +nu+ nyv (2.3b)

The metrics Et' Ex' etc., are determined once a mapping
is defined. Usually, a numerical mapping is employed. The
metrics are related to Xeo Xeo etc., by the relations

Ex = Jyn, E = -an. Et = -x. &, - v.E

Y Ty
N, = -Jyg, ny = JxXg, Ny = -x.n, - YNy (2.4)
-1
J Xg¥n Xn¥g

Here § varies around the body surface, and n varies away from
the body surface, as indicated in Fig. 1-3. The symbol " de-
notes that the scalar or vector quantity is divided through by
the Jacobian, J.

For practical viscous flow calculations, a turbulence
model is needed. The algebraic two-layer eddy-viscosify model
as proposed by Baldwin and Lomax (9] is used. The thin-~layer
| approximation requires that Re >> 1 and that the body coincide
: with an n = const line.

The inviscid part of the governing equations is kept in
conservation law (i.e. divergence) form so as to capture as
accurately as possible the Rankine Hugoniot shock jump rela-
tions. Conservation-law-form is also useful in implicit for-
mulations in that it can lead to cleaner local linearization
formula. Conversely it can cause numerical inaccuracy unless
metric transformation terms are properly dealt with.

b) Comments About the Transformed Equations

The transformed equations offer several significant ad-
vantages over the less complicated Cartesian form of the equa-
tions. Chief among these is that fact that the physical

-
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1 ’ boundary surfaces can coincide with transformed coordinate
lines. This feature can be used to simplify the application
of boundary conditions. Body conforming coordinates are also
i necessary to simplify the governing equations so as to permit
the use of the thin-layer viscous model. Another significant
i aspect of coordinate transformations is that they can be used
to cluster grid points to flow field action regions.

Generally we prefer to use a single transformation of co-
ordinates to map the physical plane onto a uniform rectangular
computational plane. Ideally the body boundary surfaces
should lie on the boundaries of the computational domain. In
this way one arrives at a well-ordered system of finite dif-
ference equations which is sparse, which can be efficiently
solved for, and which is usually amenable to vectorized com- i
puter processing. These advantages are so significant that y

e e

they are relinquished with great sorrow. The use of trans- i
h forms and finite difference methods in no way requires such
a simple topology, however. Although seldom used, it is pos-
sible to match or overlap more than one grid or coordinate
system to treat complex geometries or to remove grid related 1
stiffness of the equations, sketches 1 and 2 illustrate. 1In
using such multiple grid systems, one will have to deal with a
more complex program and take care not to introduce numerical

instability at grid interfaces.

c) Metric Accuracy

Although the conservation-law-form of the equations is
useful for capturing shocks and helps simplify the local lin-
] earization process, its use can lead to inaccuracy in certain
difference formulations. In putting (2.1) into conservation-
law-form, use is made of the exact relation

Flagyn - Bnygl + G[-asxn + aan] =0 (2.5)

In differencing the flow equations, (2.1), operators <SE and
Gn are introduced to approximate BE and an. If for example,
the metrics Y, = Ex/J etc. are exactly evaluated, then (2.5)
cannot be equal to zero but is equal to a small error, the




truncation error. This error shows up in (2.1) as a source or
sink, a "metric tare". For a highly stretched grid the metric
tare in differencing (2.1) can be so appreciable as to invali-
date the approximation and even numerical instability can re-
sult.

To avoid this problem steps must be taken as described in
[1,2,5]. As first noted in [1l]), if Ex/J = yn etc. are cen-
trally differenced with the same operators 6E and Gn used to
difference the fluid flux terms, then the difference egquations
also exactly satisfy (2.5). Central differencing the metrics
removes the source term difficulty, although flow field solu-
tion accuracy can still be poor if a very poor grid is used.
This process can be extended to three-dimensions (2,5].

As an alternative to the above, good success has been ob-
tained by making what we have termed "free stream subtraction”
[2]. In this approach (2.1) is put into a perturbation~like
form

~ ~ ~ A -1 ~
(F ~F,) +3 (G~G,) =Re 35 (2.6)

BTQ + 9 n

13
That is, the "metric tare” is approximately subtracted off.
This works on a well generated grid because the metric tare is
usually only severe in the far field.

If one is willing to accept a "weak conservation-law-
form”, the eguations could be modified as (here for inviscid
flow only)

BTQ + BEF + anG = F(aiyn-anyi) + G(-agxn+anxg) = H (2.7)

The right hand side source term H should not effect the shock
strength or location, but it will contribute diagonal terms
which by themselves can be weakly unstable. ’

d) Grid Generation

To take advantage of the transformed governing equations
it is necessary to generate a smoothly-varying body-conforming
grid. While this is a difficult task in general, a variety
of algebraic (c.f. 12-14] and partial differential equation
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[c.f. 14-22] schemes have been developed which at least handle
the two-dimensional grid generation about a single body in a
fairly automatic way. By automatic is meant that if the user
carefully specifies grid points and clustering information
along the mesh boundaries, the grid generation schemes will
usually generate a smooth nonsingular interior grid. oOf
course the grid may not be as optimum as one would like, but
the results are likely to be satisfactory. Moreover, progress
is being made in treating more complex two and three-dimen-
sional configurations.

The grid generation methods based on solving partial dif-
ferential equations have always seemed especially appealing.
This is because the numerical expertise one develops for sol-
ving the flow equations is directly applicable to the grid
generation task. Figures la and 1lb show an example of a grid
using elliptic partial differential generating equations as
taken from [23), while Figs. 2a and 2b show a grid obtained
from hyperbolic partial differential generating equations as
taken from [22]. 1In both cases the grid lines are orthogonal
to the body and the grid spacing at the body is uniformly con-
trolled. The grid generated with hyperbolic partial differen-
tial equations is ideal for many external flow configurations,
it is essentially orthogonal throughout.

e) Difference Equations and Numerical Algorithm

An implicit, noniterative, time-accurate finite differ-
ence algorithm has been used to solve the transformed govern-
ing equations. Although viscous flows are ideally treated
with an implicit scheme, the same numerical algorithm is used
for inviscid flow calculations as well. By doing so one can
base the time step size on accuracy considerations and not be
overly concerned about highly clustered or distorted meshes.
Computer programs that use explicit or semi-implicit (e.g. ex-
plicit in the streamwise direction, [c.f. 24]) schemes can be
more efficient for a given problem, but are generally not as

versatile.
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The Beam~Warming delta form approximate factorization al-
gorithm (25,26], with various adaptations, has been used to
solve the thin-layer equations. It is remarked that similar
) numerical algorithms have been developed independently, and in
£ aerodynamics applications the contributions of Briley and
Macbonald (27,28] are notable. For either trapezoidal or
Euler implicit temporal differencing the delta form differen-
cing scheme. for the thin-layer equation is given by: .

R e v

“n -1 ~n -1 j
(I + hGEA -J eihVEAEJ) (I + hdnB -J eihVnAnJ -|

-Re‘lhxna'lun)(on+l - Q") = -be(§,F” + 5 6" - Re-lfﬁsn)

: - -1 2 2. .~n
: €hd TL(VgA) T + (v, 8.)713Q (2.8)

Here h = %%E, a = 0 or 1 for first or second order accuracy,
and €ir €o = 0(1) with €; > Zee are added numerical dissipa-
tion terms. The operators_ﬁs, Gn are three point central dif-
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while V, A are conventional backward or forward operators,

e.g.
VeQ = Q5 - Q.
Finally, 36 is the midpoint operator
S - 8
- K+ k=i
Fﬂ s n

| where S itself contains midpoint differences so thf viscous .
4 g term uses three points. The coefficient matrices A, B, and M
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result from local llnearlzatlon of the flux terms, thh A and
B the Jacobian matrices [aF/aQ] and [BG/aQ] while M contains
derivative operators from linearizing S.

The difference equations given by (2.8) are readily
solved with an alternating direction-like sequence in which
one inverts all block tridiagonals in £ followed by all block
tridiagonals in n. Boundary conditions can be imposed implic-
itly, approximate implicitly, or explicitly if the implicit
stability range is not upset. These and additional details,
including use of higher order space differencing, are de-
scribed in [1-7,25,26].

£) Results
The numerical scheme described previously has been used

in a variety of steady and unsteady state flow problems as re-
ported in [1-7,23]. The simulation of aileron buzz represents
a typical application of the code, so a few such calculations
are presented below. These results are reproduced from [4].
In the buzz calculations a rigid aileron is allowed a one
degree of freedom motion about its hinge line as described by

the equation

Iasa = H(t) (2.9)

Here Ia is the aileron mass moment of inertia about the hinge
line, H is the aerodynamic forcing term, and 6a is the aileron
angle of deflection, see Fig. 3. Equation (2.9) is solved
along with the thin-layer equations on a C-type grid in which
the grid deforms to follow the aileron motion.

The results of a numerical simulation for a NACA 65-213
a = 0.5 airfoil section are indicated in Figures 4 to 8. Ex-
perimental data, albeit with some three-dimensional effect, is
available on this airfoil from the tests of Erickson and
Stephenson {29] in which they mounted the wing of the P-80
from the sidewall of the Ames sixteen foot tunnel.
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According to the experiment, at M, = 0.82 and a = -1 deg,

the aileron could be restrained at an angle near zero, and
when freed, would buzz. In the numerical simulation the ai-~-
leron was initially deflected to 4 deg, it would, on being
released, buzz as indicated in Fig. 4. The computed frequency
of 22.2 Hz is in good agreement with the experimental value of
21.2 Hz. However, in the numerical calculation, the aileron
deflects *11.1 deg about the angle -1.1 deg, while the corre-
sponding experimental values are *9.2 deg about -3 deg.

In the numerical calculations at a slightly higher Mach
number, M_ = 0.83, the aileron does go into a buzz cycle when
freed from a zero deflection position. An essentially steady-
state solution was used as initial data. The build-up of ai-
leron deflection angle as a function of time is indicated in
Fig. 5. After four cycles, a quasi-steady-~-state is reached
and the aileron oscillates at 22.7 Hz.

At a lower Mach number, M_ = 0.79, the aileron motion
damps to a neutral value even though the flap was initially
deflected 4 deg. Data from this calculation are displayed in
Fig. 6.

Several frames from computer-generated film strips show-
ing Mach contours are shown in Figs. 7a-7c at selected times
for a = -1 deg and M_ = 0.82. Contour levels of M = 0.2, 0.4,
0.6, 0.98, 1.0, and 1.02 were used in order to illustrate both
the separated flow regions and sonic lines.

Finally, for the aileron held fixed at a higher Mach num-
ber, M_ = 0.85, we find that the viscous flow does not reach
a steady state but buffets at a frequency of about 26.6 Hz.
This is indicated by the unsteady hinge moment coefficient, Cq
shown in Fig. 8. If the aileron is then released, it no long-
er oscillates in a simple sinusoidal motion. Viscous effects

appear to be much more dominant and change the frequency and
amplitude of the aileron motion. Similar type motion, but for
a different airfoil, has been observed experimentally [30].




III. FLUX SPLIT SYSTEMS.
In a series of recent papers (31,26,32] splitting of the

spatial flux terms of the conservative form of the Euler equa-
tions was proposed. The flux terms are usually split based on
the positive and negative eigenvalues (characteristic speeds)
of their appropriate Jacobian matrices. Nonconservative
schemes based on the same principle have previously been pro-
posed (33,34]), and have recently been developed for aerodyna-
mic applications ([35-37]. Related older schemes have been
identified and others are under extensive development [c.f.
38].

Splitting the flux vectors (conservative form) or coef-
ficients matrices (nonconservative form) based on the sign of
their eigenvalues allows the use of upwind (either backward or
forward) spatial differencing schemes. Without use of such
splitting only central spatial differencing can be used to
approximate the Euler equation flux derivatives, except of
course, for those spatial directions in which the coordinate
velocity exceeds the sound speed. Upwind differencing schemes
can offer some advantages over central differencing insofar
that they are mcre dissipative, in some instances can follow
the physics better, and can lead to new implicit approximate
factorization schemes. It is this latter property which is
the subject of this section.

The aim of the conservative form plus and minus flux
vector splitting is to recast the inviscid portion of the

equations into

+ - + -~ vi
atQ + axF + axF + Byc + ayc Viscous Part (3.1)

where Cartesian coordinates are used for illustration, i.e.
(2.1) with Ex =1= ny and EY =0 = U The Jacobian matrices
BF+/30 and 3G+/3Q are constructed to have positive real eigen~-
values while 3F /3Q and 3G /3Q are to have negative real ei-
genvalues. The initial development of F* and G* relied on the
fact that the Euler equations are homogeneous of degree one

and proceeded as (illustrated for F)




F = AQ A = 3F/3Q
= sas” g
+ - -1 ; *
= S(A” + AT)sT4Q with 207 = (A#|A})
= sAts7lg + saTs" g
=r" +F”

(3.2)

where S is a matrix of the eigenvectors of A while A is a di-
agonal matrix of its eigenvalues. This approach doesn't work
exactly as desired because the crucial eigenvalues are those
nf the Jacobian matrices 8F+/80 and 3F /3Q, and aFt/BQ #
SAts-l Nevertheless the eigenvalues of 8Ft/ao have the pro-

per signs if not the proper magnitudes [39].

by [32]:

i % ]

Z(Y-l)Al + A3 + A4

2(Y-l)k1u + A3(u+ck1) + A4(u~ck1)
= B -1V % X X by -ck

3 21 20-1)% v + Xy (vhcky) + X, (v=cky)

- A - ~
(Y-l)kl(u2+v2) + —% [(u+ckl)2 + (v+ck2)2]

X
4 ~ 2 ~ .2
+ = [(u-ckl) + (v-ckz) ] + WII--J

~ = 3
where k1 and k2 =1 or 0 for Ft or 0 and 1 for G

T LT .2
(3 =v) (X5 + X)e

II - 2y - 1)

]

and (in the present application)

A general formula for the flux vectors Ft, G* is given

(3.3)

(3.4)




For example, the eigenvalues Xi of F are u, u, u+c, u-c, and

. S .
F~ is defined from 3§I using

"+

2.5 = u lul

1

+
2A3 =u+c

I+

[u+c| (3.5)

+

2A4 =u-c

H

[u-c|

Similar relations hold for Gi with v, v, v+c, v=-c. In gener-
alized coordinates F as given by (2.1) has eigenvalues [40,1]

U, U, U * c/E 2 + £ 2 and F* is derived from (3.3) with
X Y

+

2Al =U ¢ |U| U = Exu + Eyv + £t

+

T = ¢ = ¢ c=zo, 2 . . 2
22, U+ &+ |u+C| €z2c/t 2.2 (3.6

X y

# -~ o

22, =U-7CT¢ | u-2|
%)k,

where k) = £,/(6,%7 + 5,97 and Ky = £./(6,% + £,

A previously identified [32] difficulty with the above
formulation is that F° and G* have discontinuous derivates
because [A| has a discontinuous derivative. As discussed in
(32] it is necessary to smooth [x], and this is neatly accom-
plished [41] by replacing (3.4) with

i—
Ry =y e N2 (3.7)

where ¢ is small. As indicated in Fig. 9, this gives a
smooth Ai variation which asymptotes to the old formulation,
It also adds numerical dissipation whenever an eigenvalue
changes sign. In numerical tests on a one-dimensional tran-
sonic nozzle the use of the new formulation (3.7) in place of
(3.4) gives a smooth sonic line result that was not previous-

ly obtained, see Fig. 10.




Other split flux vectors have been proposed. For exam-
ple, Bram van Leer (41] has suggested the form (here given in

[

one-dimension)

u < c
£,* oc (M+1)2/4 (3.8)
, F¥=[£," = (o) ((y-1)M+2]/(4y) |and FT = F - FF '
’ £5" Y2ree,H /e, 17020020
]
u>c L

] FF=FandF =0

This splitting, devised from different arguments than (3.2),
is naturally smooth at points where the eigenvalues change
sign. 1In the above test problem use of the van Leer flux

vector gives the pleasing result shown in Fig. 1ll.

Because upwind differencing schemes generate lower or
upper triangular matrices, flux split implicit algorithms can
be devised for the inviscid equations which are efficiently
inverted. For example, a second order fully implicit dif-
ferencing of (3.1) is obtained using three point upwind dif-

PR

ferencing in space and in time

b
x

n+l _

b + £ - b+ f .-
(GtQ + §F + GXF + GyG + GyG )jk 0 (3.9)

where

6:Qn+l - (3Qn+1 - 4" + Qn-l)/(ZAt)

f
6ij = (-30j + 4Qj+1 - Qj+2)/(%Ax) etc.

With use of local linearization to avoid iterative solution
of the nonlinear terms, and with use of approximate factori-
zation to simplify the inversion work, a delta form implicit
differencing of (3.9) can be obtained as

o




n+l n) =
(3.10)

b,n b.n f.n f n
(I + h§ A + h6yB+) (I + h§ A_ + héyB_) (Q -Q
f
X

-n(sPF* + 6F7 4 6%t + sZ6T)P + 1/300" - ™Y
x b4 Y
aF*
where h = (24t/3) and A = xz~, etc. Equation (3.10) can be

put into its obvious algorithm form as

b,n b.n _
(T + h62AL + nsBY)ag* = Ras (3.11a)
f n f n n
(1 + hegal + no 8D ag™ = ao* (3.11b)
"t = ot + aQ" (3.11c)

where RHS represents the right hand side of (3.10). The first
step of the algorithm (3.l1lla) requires a lower triangular in-
version (i.e. solution) with 4x4 block elements. The second
step, (3.11b), requires an upper triangular inversion. Both
such solution processes are simple compared to the block tri-
diagonal inversions required with (2.8) when applied to only
inviscid flow. The standard solution scheme (2.8) is still
competitive with (3.10), however, because At and Bt are much
more costly to form than A and B.

Various other implicit algorithms are possible with flux
splitting [c.f. 32]. 1If the thin-layer viscous terms are in-
cluded the following differencing has merit

b,n n n £.n, .n+l _ .n
(I + h(sa, + 68" + §§M Y1{I + h& Aa’1(Q QM)

(3.12)
£

b, + - -
= -h(axp + axF + GyG + 3&8)“ + a(Qn - Qn 1)/3

where h = (_3_:_1)_AE

curacy, and GY and 3& are the central difference operators de-
fined previously. A solution algorithm for (3.12) entails
block tridiagonal inversions carried on with a forward sweep
in x, followed by a simple backsweep in the x-direction.

+ @ =0 or 1 for first or second order ac-
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The schemes given by (3.10) and (3.12) have not yet been
applied to as complex geometry situations as the Beam-Warming
class of algorithms represented by (2.8). The scheme (3.10)
has been used on stretched grids to compute inviscid transonic

flow about a biconvex airfoil; however, thin airfoil boundary

conditions were employed. A typical solution is shown in Fig.
12. This result was computed without the benefit of the tran-
sition smoothing, (3.7). A viscous supersonic wedge flow cal-
culation using (3,12) is indicated by Fig. 13. This result is
an old one that used an earlier flux splitting, namely (for P:)

+ -
2A] = u+ [u] 22, = u - |yl
2% = u+ Jul +c 2T =u - |y
3 3
2ab = u o+ |y 20, =u - |ul - ¢
4 4

In this case, the exact geometry was fitted using shear trans-
forms and a very fine grid was needed to resolve the viscous
layer. A preliminary version of the turbulence model de-
scribed in [9] was used in the calculation.

IV. REDUCED SYSTEMS.

Time-accurate or time-like iterative methods are fre-
quently used to obtain steady state solutions. If only a
steady state solution is sought, however, one can attempt to
precondition and otherwise try to reduce the system of partial
differential equations to obtain a more efficient solution.
Not surprisingly, certain reductions of the Euler equations
can begin to take on features of classical aerodynamic formu-
lations. One such formulation [42]), discarded several years
ago in favor of the schemes discussed earlier, is being re-
vived because of its excellent computational efficiency for
steady rotational subsonic flow.
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The nonconservative form of the Euler equations can be

written in the matrix form

ABXQ + BayQ = 0 (4.1)
where
Q =/p A=fu p 0 0 B=fv 0 o o
u 00 u o o1 0O v 0 0
v 0 o u 0 0 0 v p-l
P 0 yp 0 u 0 0 yYp v

If the x-axis is aligned with the mean flow direction, one can
perburb A and B about a reference state, o, with

u=u,vVvs= 0, p= Por P = Py (4.2)
Then (4.1) can be put into the perturbation form
3§ +3 183 F=e (4.3)
X o oYy ‘
where
e -l _xlyya
€ (Ao Bo A B)BYQ (4.4a)
or
--1 ¥ -~ ~ o ~
€ Ao [(A° A)axQ + (B° B)ayQ] (4.4b)

The e-formulation (4.4a) is obtained by multiplying (4.1) by
%! and placing 318 in the perturbation form A 1§ = X;lﬁg -
(33156 - E°1%). 70 obtain the e-formulation (4.4b), X and B
are put in perturbation form and the equations are multiplied

by K;l The (4.4a) formulation has been successfully used in

numerical calculations (as described later) and requires fewer




derivative operators than the (4.4b) formulation. The (4.4b)
formulation is not singular at a sonic or stagnation point,
but it has not been attempted in numerical calculation.

The importance of (4.3) is the simplicity of the left
hand side. As indicated in (4.2), v is taken as zero so

o
K;lﬁg has the reduced form
3 = 0 0 -pusé 0 (4.5)
o o oo0'o \\ ¢
2
0 0 o ¢° 0 ‘
-1
0 0 0 ) (uopo)
0 0 “PoYCo ¢° _ 0
where ¢° = 1/(co2 - uoz) and o is the reference sound speed.
The eigenvalues of X;‘Eo are:
c
o(X1B) =0, 0, ¢ )
Y% T %

For subsonic mean flow the nonzero eigenvalues are imaginary,
for supersonic mean flow they are real. Thus the left hand
side part reflects elliptic or hyperbolic behavior as u, is
less than or greater than co.

As the above matrix makes clear, only the third and
fourth equations of the system (4.3) are strongly coupled.
Written out we obtain

axp - p°u°¢°3yv =€y {4.6a)
Iu+cavec (4.6b)
x o ‘oY 2

a v+ (pu)ls p=c (4.6¢c)
x oo Y 3

3p-pucledve=c (4.64)
x o000 oy 4

P




Thus if €; are known from some previcus estimate, we can solve
equations (4.6c) and (4.6d4) for v and p. Once v is obtained,
p and u are obtained from (4.6a) and (4.6b) via simple inte-~
gration. Better estimates of €; can now be formed and the
process is repeated until iterative solution of (4.1) is ob-
tained.

The equations (4.6c) and (4.64) form an elliptic system

when u, < c,- This is readily apparant as the eigenvalues of

-1
0 {(u p )
oo (4.7)

2
Po% ¢o 0

are imaginary as indicated previously. The equations, which
if linearized by setting e, = 0 could be transformed into
Cauchy Riemann equations, can be differentiated to form a
Poisson equation with either v or p as the dependent variable.

For example

(408)

L ¢

2 2 -
(1-(u /c )13 v + ayyv = [{1~(uy/c ) ") (3 e4 (P uy) ve4
Once v is obtained, p is found by integrating (4.6d4d). If

u > c (4.8) represents a wave equation and the eigenvalues

(o] o’
of (4.7) are real.

The (4.4a) formulation using (4.8) to update v has been
successfully applied in two-dimensions [42] to compute rota-
tional subsonic flow. Typical results for a lifting biconvex
airfoil are shown in Fig. 14 for the incoming shear flow (jet
or defect) profiles as depicted in Fig. 15. Computational
times for a fully converged solution on a 59x90 grid averaged
18 seconds per case on a Control Data 7600 computer.

The algorithm using (4.8) is robust. For inexplicable
reasons, elimination of v from (4.6c) and (4.6d) and solution
of a Poisson equation for pressure, p, has always been a dis-
appointment. The failure is believed to be keyed to the

boundary condition treatment.
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The above ideas readily extend to three-dimensions al-
though no calculations have yet been undertaken. The three-
dimensional perturbation form of the equations is given by:
g=c (4.9)

~  ~=1 ~ =]
axo + K §°ayo + K anz

In this case, v, w, and p are strongly coupled through

-1 _
axv + (pouo) ayp = €, (4.10a)
3w+ (ou)la pa=ce (4.10b)

x o’o z 4 *

2

axp -(pouoco ¢°)(ayv + azw) = €g (4.10c)

Once v, w, p are obtained, p and u are found by integration of

Bxp =€y + (pouo¢°)(3yv + 3zw) - (4.104)

2
axu =e, = (co ¢°)(8yv + azw) (4.10e)

Equations (4.10a) to (4.10c) can be differentiated so
that v and w are eliminated to form a Poisson equation in

pressure, that is

2
{1-(u /e )18 P + ayyp +3,,Pp=g (4.11)
Alternately, as this was unsuccessful in two-dimensions, pres-
sure can be eliminated and vector potential like equations can

be formed for v and w. In particular

2
{1 (uo/co) ]axxv + ayyv + ayzw = fl (4.12a)

2 =
[1-(u°/c°) laxxw + azzw + ayzv fz (4.12b)




Here again, if (4.12a) and (4.12b) are solved for v and w,
then p, p, and u can be found by simple integrations of
(4.10c) to (4.10e).

Although not discussed previously, one can draw some in~
teresting analogies between (4.10a) - (4.10c) to the incom-
pressible irrotational relations

axu + ayv + azw = 0 (4.13a) ;

8yw - azv = 0 (4.13b)

3,u - axw =0 {(4.13¢) {
i

axv - ayu = 0 (4.134)

The potential

b =W b =V, G, =W (4.14)

satisfies (4.13b) to (4.13d) and from (4.1l3a) gives the
Laplacian

bux * byy * 955 = O (4.15)

The particular vector potentials ¥, x defined as [43)

u= wy + Xge V= -wx, LA O (4.16)

satisfies (4.13a) and from (4.13c) and (4.13d4) give

+ X = (4.17a)

v vz

XX + wyy

xx * Xz2 + ¢ = ( - (4.17b)
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The analogies between (4.11) and (4.15) and between
(4.12) and (4.17) are completely transparent and extend even
to the boundary condition treatment. Curiously, (4.15) is
elliptic, but (4.17) is not strictly elliptic according to the
definition of [44]. Moreover, the system of equations com-
prised of (4.13a), (4.13c), and (4.13d) is not elliptic. This
latter system presents no difficulty to numerical solution,

however, and conventional numerical algorithms such as succes-
sive overrelaxation have been successfully applied to the sol-
ution of (4.17). It is conjectured, therefore, that one could
devise rapid solution procedures for (4.12) and (4.10¢)

through (4.10e) since a similar approach worked in two-dimen-

sions. 4
The perturbation schemes described here have only been
used in numerical calculation of pure subsonic two-dimensional

flow. Extensions to pure supersonic flow appear to be
straight forward but such is not the case for transonic flow.
The isentropic primitive variable approach of Martin [45] and
the stream function sonic line treatment of Hafez [46] may of-
fer gquidance, however. Note there is no problem bringing the
essentials of the perturbation formulation into conservative

form. For example

-~ -

1
y(BOQ-No G) 1 (4.18)

o m=le . ox _ x=lo. == =1
BxQ + Ao BoayQ = Ao [ax(AOQ-N° F)+9d

where the matrix N relates Q to § via

4

]
@ |
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1 and Q, F, G are the Cartesian form of the conservative fluxes
of (2.1). The left hand side of (4.18) is identical to (4.3).

Rather than attempt to extend the method of this section
into the realm of transonic flow, it may be better to use this
procedure as the outer part of a chimera (i.e., multiple con-
stituent) algorithm. For example, the semi-flux-split scheme
(3.12) can be used to solve supersonic and subsonic flow, and
it is very efficient for supersonic and high subsonic regions.




The scheme of this section is very efficient for subsonic
flow. A combined chimera method for transonic flow simulation
. about an airfoil might entail use of the schemes (4.3) and
; . (3.12). The outer subsonic flow would be solved with (4.3),
the inner high subsonic and supersonic flow with (3.12), and
both solution regions could be slightly overlapped [42,47] for !
iterative efficiency.

| V. CONCLUDING REMARKS. 1
The successful simulation of the flow about really com-

plex geometries will require further advances than those dis-
cussed here. Nevertheless, the combination of implicit fi-
nite difference procedures, generalized coordinates, and nu-
merical grid generation techniques is proving to be effective.
The overall methodology can be built on, and improvements in
computational efficiency can be expected. In this overall
development it would seem that the next crucial step is to
develop efficient chimera schemes - that is, modularly coded
numerical schemes that blend or overlay more than one grid

system and more than one type of governing equation or numeri-

cal algorithm.
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Sketch 1. Showing patched grid system with all body surfaces
mapped to grid outer boundaries. This approach requires in- (
terpolation along boundaries.

Sketch 2. Showing overset grid system. In this approach var-
ious interior points must be turned-off and interpolation is
required at grid interfaces, however, grids are easy to gener-
ate and have minimum distortion.
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Fig. 2 Grid generated about airfoil using hyperbolic partial

differential equations.
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Fig. 3. Schematic defining geometric quantities.
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Fig. 4. Computed variation of aileron angle with time for
NACA 65 213 airfoil.
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Fig. 5. Computed variation of aileron angle with time; ailer-
on initially set at 0 deg.
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Fig. 6. Decay of aileron buzz with time.
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Fig. 7. Mach contour lines during an aileron buzz cycle, M_=
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is the time to complete one cycle.
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Fig. 8. Growth of aileron deflection with time.
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Fig. 9. Comparison of continuous derivative A* formulation
to discontinuous derivative At formulation.
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Fig. 10. Computational comparison of At formulations.
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Fig. 12. Steady state solution for 1l.4% thick parabolic arc
airfoil, M_=0.84.
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Fig. 13. Steady state viscous wedge flow solutions.
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k. ON APPLICATION OF BODY CONFORMING CURVILINEAR GRIDS
W FOR FINITE DIFFERENCE SOLUTION OF EXTERNAL FLOW
. Joseph L. Steger
Department of Aeronautics and Astronautics
- Stanford University, Stanford, CA 94305

L. INTRODUCTION

Finite difference practitioners frequently make use of arbitrary coordinate transforms
o and introduce body conforming curvilinear grid systems. The coordinate transforms may
either be built in globally in mappings from physical space to computational space, or

they may be built in locally in the finite volume sense. The 2dvantages of using body

—‘-‘Cﬂ -conforming curvilinear grids in finite differcace flow field simulation include the following: f
s My conforming grids simplify the application of boundary conditions insofar that grid !
i lines will coincide with the body boundary. Curvilinear grids may be clustered to flow {
g; field action regions to ‘mprove solution accuracy. Body conforming grids may allow
simplification of thr .. -rning equations. Such grids can also help maintar. a well-ordered

system of algebraic equations suitable for vector-computer processing or approximate- :
factorization-implicit techniques. :
The task of generating suitable body conforming curvilinear grids is not an easy one. 4
The grids should be generated in an automatic manner requiring minimum user input. , !
i_-. Yet the user will wish to maintain considerable coutrol of where points will be distributed l '
" along the boundary surface and how they are clustered in the interior field. Moreover the ;
grid must be tailored in some degree to the numerical algorithm because some numerical ! i
\:‘? algorithms are more sensitive than others to grid smoothness, skewness, and stretching. : }
,: Although use of body conforming curvilinear grids can offer the advantages cited w
‘? previously their careless application can lead to difficulties. This is particularly true when ‘
: the governing equations arc diffcrenced in conservative (i.e., divergence) form and transform |
-‘ metric terms are brought inside the difference opeu‘tors. Then as noted above, some
: numerical algorithms are far more mesh-sensitive than others, and numerical accuracy ‘
» ! :
3 |
-l
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. and computational efficiency can be affected by how rapidly a grid changes or how far

" away it is from orthogonality.

- The subject of this paper is not the generation of body conforming curvilinear grids;
T rather it is the use of such grids in fnite diflerence applications. In Section II of this paper
= the difficulties of solving the transformed equations in conservative form are discussed.

~In Section Il various experiences are cited to suggest that considerable computational

1 ] T 1 rr*'—r1 T

: efficiency can yct be gleaned by further improvements of the grid. Concluding remarks

follow in Section IV.

JJ_Lli

;II. CONSERVATIVE DIFFERENCING OF TRANSFORMED EQUATIONS
a) Background

In aerodynamics applications we frequently try to difference the governing equations

JUCRETN I B

in conservative or divergence form. Conservative form diflerencing is preferred because

1

- it best maintains the correct weak solution of the governing equations. Thus if a shock

-:wave is captured by simply solving the difference equations (as opposed to fitting a shock

_-;'»wave discontinuity into the difference equations), then the speed, location and jump of
“the shock can only be correct if the partial differential equations are in conservative
form. The difference equations must alsc satisly the divergence relation, at least in the
jvicinity of the shock. The couservative form of the equations may also be desirable for its
numerical properties. For example, noxlinear equations in conservative form can be more
icleanly linearized about a previous state than those in nonconservative form. This can

jbe advantageous in implicit marching procedures in order to avoid iterative solutions of

~ nonlinear equations with each marching step.

K
€
3
a

2
2
'
c

Let the conservation-law-form of the equations be represented in Cartesian coordiuates

3Q+3:F+3,6=0 (1)
LINES TO
80TTOM

where for simplicity only two dimensions are considered. This strict divergence form of
the equations can be maintained for new independent variables

2
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€= §(z,9,0)

n=nqlz,y1) {2)
rx={
as (.l 1))
‘ 8,Q+0,F +3,G=0 (3)
where
Q=J1Q (4a)
F=J"(6Q +&F + §0) (45)
C= J Y9 Q + n.F + 7yG) {4c)

and where J is the transform ‘acobiaa
J - Etty ~ &2 {5)

For a thermally perfect gas @, F, and G may represeat the Cartesian inviscid and
viscous flux quantities for conservation of mass, momentum and energy. For example, for

inviscid fiow

P pu pu
ou pud+p puv
e= el F= puv |’ G= M 4+p (©)
e u(e + p) v(e +p)

where p is fluid density, v, v and w are Cartesian velocities components, p is pressure and
¢ is given by
e=(1-1)7"p 4 36" + %) ]

Alternately in the case of compressible potential low
Q=p F=pdy, G=p3, 8

and p = p(¢) is determined by the Bernoulli relation.
Although the transformed governing equations (3) are more complex than (1}, appareat
simplicity is returned to the inviscid flow equations with introduction of the unscaled
3
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contravariant velocities
U=§&+&u+§u="~E(u—2)+§(v~-1§) (9a)

V=n+nu+nv=rnlv-2)+nv-§) {9%)

For example, the transformed conservation of mass relation is given by

3:(p/J)+3elpU/J) + 84(pV [J) =0 (20)

and does not appear too much more complex than the Cartesian form. Moreover, il g =0
coincides with the body boundary surface then flow boundary conditions such as tangency

and no slip are especially elegant and are expressed as
- V =0 {langency) (11)

U,V =0 (no slip) (12)

To motivate further discussion is it noted that the transformed equations (3) can be

derived by first performing chain rule expansions on the terms of (1). For example
Fo=§Fe + ’I:FQ + 1. Fy {13)

where 7, = 0. The equstions are then scaled by J~! and metrics are brought back inside

the operators using differentiation by parts. For example,

[ &F &
73¢F = a((-—l—-) - Fa{(’j)

and so on. Terms are then collected to give equation (3) as well as combinations of metric
terms that will be found to be zero. That is

8,Q+3cF+9,6=Q a((-ej-) + 3,(2}) + 0,(-:1,-)] +F 8¢(-€:’1) + 8,,(%'—)]

+p($)+03) "




= All such right-hand-side combinations of metric terms are found to be zero because of the
) relations ‘
&/ =y NafJ = —y¢ !

&/J = -z, n/J =z (18)

&=~z 9rdy Be == =ZcNs ~ Yoy
for example,
o¢(%)+ a8, +(%) - Flye -1 =0  (18)
0 " 7 n = Iné

and so ou.
The point of all this is that the metric quaatities have beea worked inside the differential

operators. This is possible because combinations of metric terms such as

( )+a,,( )..o (17)

are found. Note also that unlike equation (1), equation (3) bas been scaled by J~!.

b) Metric Differencing

The fact that the transformed governing equations now have the metrics brought
inside the difference operations can lead to numerical errors. This is because the metric
variation is now being differenced along with the flow field quantity. In typical externat
serodynamics applications, the flow quantities far from the body are essentially constant
ot wniform. Difference terms should therefore be zero, and this will be true if equation (1)
is dilferenced on a uniform mesh. For a nonuniform mesh the transformed equations will
pot yield zero in regions of constant Sow, however, unless proper differences of the metric
identitics are zero, that is from (14)

§e(€s/ ) + 84(na/ ) =0 (18)
§e(Ey/T) + 8g(ny/J) = O (188)
§e(6/T) + by(me/ 1) + 8,2/ ) = 0 (18¢)

where §¢, §, and §, are the difference operators used in the solution algorithm (or (3). If,
for example, the metrics §,//J, ote., could be exactly evaluated (as they can be in, say,
s
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a cylindrical coordinate), then equations (18) will not be exactly zero but will be zero
to within the order of accuracy of the operators &, etc. For a rapid variation of the
metrics and for large grid spacing—s phenomenon [requently occurring in aerodynamic

spplications in the far Geld—this error can be very appreciable. It can, in fact, add a

_ error source to the equations that can overwhelm the solution accuracy. However, if the

metrics themselves are differenced such that equations (18) are exactly zero, thea this esror
is controlled. For example, in two dimensional steady flow relations (18a) snd (18b) become
using (15)

Selyn) ~ Sulye) =0 (19q)

~b¢(29) + Ga(2e) = 0 (199)

If y, and y¢ are differenced as &,y and §¢y where §, and §¢ are the same difference operators
used in the solution algorithm for (3), then the metric identities (19) exactly difference to
gero. The importance of satisfying these relations was pointed out ig [2] in which three
point central spatial differences were used in the solutioa algorithm [3] as well as for the
metric quantities.

In three dimensioans it becomes more difficult to exactly difference the metric identity
relations. For steady or simple unsteady grid motion, Pulliam and Steger (4] introduced
an averaging process for the steady terms that works for any difference operator that can
be differenced in parts as

8(uv) = (uv)(su) + (uu)(év) (20)

where p is an averaging operator. An example of (20) is given by
Vuv = (pv)}(Vu) + (us)Vv (21)

where Vu == u; — w;_y, pu = S22t ete. In extended work Thomas aad Lombard (5]
correctly treated the unsteady metric variations and cleverly simplified the calculation of
the spacial metric terms. They also coined the term “metric conservation law” to describe
the (act that the metric relations (18) must be dilferenced to be zero.

As one introduces higher order central or one-sided spatial difference operators, or

uses predictor-corrector schemes, it becomes more and more difficult to correctly satisfy
6
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the metric relations (18). This ultimately lead {4] to an spproximate cancellation method

that relies on solving the differenced equations in a simple perturbation form:
8(Q ~ Qo) + 8¢l F = Foo) + 65(G = Coo) = 0 (22)

In the far Beld F — F, etc., and any consistent difference scheme is satisfied regardless of

- how rapidly the metrics vary., When F appreciably varies from Fo,, ete., it is assumed that

the grid is sufficiently smooth and refined so that the metric error is no greater than the
error of differencing the flux terms. In exterual flow applications this process has worked
quite well, including successful use with the potential flow equation (cf. {6}).

A divect means of cancelling the metric errors is the straightforward one of subtracting

the error, for example, for a stationary grid
6:Q + 8¢F + 8,G = Flbeyy — bqye) + G(—8¢zq + 842¢) (23)

This puts the equation into a weak conservation law {orm that in principle does not degrade
the shock capturing properties of the scheme. It could, however, contribute to a mild
source-term weak instability that would be sllevisted somewhat by spatial averaging of
the right-hand side F and G flux terms. These right-hand-side flux terms can also be
approximately evaluated at oo in somewhat duplication of (22) above.

The whoale problem of differencing the metrics has been avoided in [7-10]. In this
approach the Cartesian equations are expanded by chain rule and then simply left that
way. That is

0,Q + £:9¢Q + 1:0,Q + £20¢F + 0204 F + £,0¢G +1,0,F =0 (24)

and is called the quasi-linear form by Shamorth and Gibeling [10] or chain-tule conservation
form by Hindman [9]. Although the Jacobian is never divided through, this form is
somewhat similar to the weak conservation law form (23) just discussed, particularly so
with averaging of F and G. It should also properly capture the correct jump relations.
The chain-rule conservation form msy well be a good compromise to differencing the
transformed equations in conservative form. For certain algorithms (e.g., Beam-Warming
[3]) it appears to require more work than using the strong conservation law form with (cee

stream correction.

e




" Qo is the nearby or approximate solution aad let Q' be the perturbation. The terms of

¢) Perturbation Form Digression ’
The above idea of subtracting out the free stream metric variation, equation (22),
discussed previously is a special case of perturbing the solution about a known function ‘

which in some sense is also a nearby or approximate solution. Let @ = Qo + @’ where

squation (3) can be rewrittea as,

an - 81?0 + an'
- 3¢F(Q) = 8¢F(Qo) + 9¢(F(Q) - F(QW))

elc.

Then assuming functions of Qo are sufficiently simple to be very accurately (or exactly
differentiated) with operators §, the differencing of equation (3) can be represented as .

8,9+ F1Q) - FLan)] + &[1@) - ¢1@u)]

: i ) (25)
= —[‘,o. 4 QP(QQ) + ‘qé(QO)]

where §,, 8¢, and §, represent the algorithm difference operators and 5, 3¢, 5,, represent
the very accurate differencing. In the case Qo == Qo the right-hand side is analytically
zero and equation (25) is identical to equation (22).

Such a perturbation form of the differenced equation has been proposed in internal
spin-up problems to remove the axisymmetric variation from the dependent Cartesian
velocity variable _(u,n]. It might also be used in problems in which certain fine detsils
might be otherwise lost in a coarse grid. For example, & nonuniform incoming fow profile
¢an be represented in Qo that would otherwise be lost in a far field coarse grid. Assuming
in this case that Qo satisfies the Euler equations, the right-kaad side of (25) is identically
zero. Calculations using this particular technique for incoming inviscid shear flows have
been tested by Buning and Steger [13]. Although not yet tried, Qo might be chosen as
ap approximate solution, in which case the right hand side of (25) would not be zero. In
regions in which Q — Qo, one could hope to use & much coarser grid without losing solution
accuracy.
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1. CALCULATIONS ON CUR\'HLINEAR GRIDS

Finite difference and related finite volume calculations using body fitted curvilinear
grid systems have been carried out for some time. Solution variables have included
velocity potential, stream [unction, and the primitive variables. Computed results include
incompressible and compressible Bow around airfoils, projectiles, cascades, inlets, wings,
wing-body combinations, etc. In some cases the body deforms with time (e.g., airfoil
with moving aileron) aad occasionally solutions for multiple non-connected bodies appear
(e.g., airfoil with detached flap). No attempt will be made to review this work-—the
interested reader will find much of the materis) in the AIAA Journal, the Proceedings of
the International Conference on Numerical Methods in Fluid Mechanics, Computers and
Fluids, and the Journal of Computational Physics. What is apparent from this literature is

that while we are becoming more adept at solving the flow about complex configurations,

" considerable computational efficiencies are yet to be obtained.

In order to illustrate points to be discussed later, the results of a finite difference
simulation, due to Nicolet e¢ al. {14] for flow about an X-24C configuration is reproduced
in Figs. 1 to 3. A bhead-on view of the X-24C is indicated in Fig. 1, while Fig. 2 shows
typical views of the grid fit between the body surface and an analytically fit outer bow
shock. The grid in this case is generated with a hyperbolic partial differential equation grid
generation scheme [15]. The overall three dimensional grid is formed by generating two
dimensional grids at each station slong the body as the solution progresses by marching
the steady parabolized Navier-Stokes (PNS) equations. The hyperbolic grid generation
scheme is fast enough to be used within the flow field marching scheme. Moreover, each
two dimensional grid is itsell generated using the same kind of numerical algorithm used
for solving the PNS equations—a sort of conservation of numerical algorithm knowledge.
Zomputed surface pressure and heat transfer at a station just prior to the begianiag of
the wing are compared to experimental data in Fig. 3.

In carrying out the preceding calculation or any similar ealculation on a generalized
grid it is found that the solution accuracy depends oo the grid. This is not surprising
because unless one has s very fine mesh throughout the field, an accurate solution will
require that grid points be clustered to the flow field action regions—the change of gradient

9
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regions. The grid in Fig. 2, for example, is exceedingly fine pear the body surface in order

to resolve viscous gradients along the wall. (The less than perfect agreement with the
experimental heating rate shown in Fig. 3 is apparently not due to inadequate resolution
in this direction). The outer grid line also coincides with the bow shock, and poiants are
clustered along the body, for example to resolve the cross low expaunsion around the chime
(i.e., lower right corner in Fig. 2) when the vehicle is at angle of attack (here at 6°).
Otherwise ao other attempt was made in this calculation to adapt the grid to computed
flow field gradieats.

Besides proper grid clustering, the smoothness of the grid, the skewness of the grid,
and sometimes the aspect ratio of the grid can affect the accuracy of a numerical solution
or the efficiency with which it is obtained. The grids shown in Fig. 2 are nearly orthogonal
close to the body surface and they have a smooth, gradual variation. These grids would
be judged felicitously. However, the quality of a grid seems to be hard to quaantify be-
esuse various numerical algorithms appear to behave differently to the properties of grid
smoothness, skewness, and stretching. Numerical algorithms that use a very compact
stencil of points to evaluate Buxes and metrics, for example, generally seem to be less sen-
sitive to grid spacings that change rapidly or even discontinuously. Thus computors using
the MacCormack finite volume method for Navier-Stokes equations sometimes change the
grid spacing by a factor or 2 or 4 in s given region. Such a change is not allowed, for
example, when using high order central spacial differencing operators.

Some numerical algorithms appear very sensitive to mesh cell aspect ratio, ie., the
ratio of Az to Ay or (=} +y§)‘l ? to (23 +y§)‘l 2. Thus Jameson [18] in developing
s multlxrid relaxation algorithm for the transonic potential equation abandoned SLOR
iterative methods. In its place he used an alternating-direction-implicit scheme as the
multigrid iterative solver because it is less sensitive to cell aspect ratio. The very efficient
spproximate-factorization-implicit relaxation scheme of Holst (17| appears to degrade if
uniform fine grid spacing is used along the body, prompting Holst to generate his grids
with this constraint in mind. For his approximate-factorization scheme the grid. shown in
Fig. 4 is much preferred to that shown in Fig. 5. A user of a standard alternating-direction-
implicit relaxation scheme, however, may very well opt instead for the grid of Fig. § over

10
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;‘i'-;.-‘: . that of Fig. 4 simply because of its faer grid spacing near the body and presumably greater
accuracy.
ol
- Avoiding certain undesirable grid properties such as skewness can lead to more com-

plex computer programs and perhaps other difficulties. The cascade C-grid shown ia Fig.
68 for example is too highly skewed. While the implicit Beam-\Warming algoritbm for the

Euler or Navier-Stokes equations functions on such a grid, it runs far from optimum. An

alternative grid to that shown in Fig. 6 might use an overlapped or patched grid system.

For example, the overlapped grid system shown schematically in Fig. 7 is suggested because
each grid is easy to generate and has minimum distortion. However, such a grid system
requires extensive modification of existing numerical algorithms and computer programs.
This is because certain grid poiats will have to be flagged off, and grid interfaces will have to
be joined without degrading numerical stability. Nevertheless, overlapped or patched grid

VR . s — R, PP

* systems will ultimately be needed as bady boundary configurations become more complex,

for example, in computing flow about & wing with engine nacelles.

Finally, it should be remarked that the effect of a poorly spaced grid will sometimes
not be observed uatil the data is displayed or utilized in a different way. The uapublished
result due to Seidel [18] that is shown in Fig. 8 is an example. The plots of generalized
pitching moment versus reduced frequency show an essentially exact solution (dashed line)
and a low [requency transonic small disturbance finite difference solution with the nonlinear
terms removed. The flow is sbout a flat plate subjected to an angle of attack pulse. The

small cscillations shown in the finite difference result are a significant error in a flutter

ST [ T N R DTSR a L F 1

calculation. They were traced back to a discontinuous change of grid stretching more
than s chord away from the airfoil, and were eliminated by using a smoothly stretched

grid throughout.

IV. CONCLUDING REMARKS

Finite difference methods coupled with body conforming curvilinear grid systems are
being used to solve a variety of complex flow fields. Current numerical algorithms and
grids are tuned to flow field applications that can be computed in reasonable times on
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- flow field gradients to be resolved in an orderly manner. However, one must be careful in

present day machines. These numerical algorithms rely on sparse-equation time-accurate

or iterative-solution methods that functiou best on well ordered grids. r
Curvilinear body conforming grids bave made modern finite difference schemes into

practical engineering tools. They simplily the application of boundary conditions and allow

differencing transformed equations, especially when the equatioas are in conservative form

and transform metrics are brought inside the difference operators. Finite difference algo-
rithms are also sensitive to grid smoothness, skewness and stretching with some algorithms
being much more adversely aflected than others.

As finite difference methods are extended to more complex geometries, it becomes

obvious that more than one grid system will have to be used. Exactly how multiple

grids should best be joined, patched, or overset together remains a research topic, but a
.number of approaches will likely give satistactory results. The simultaneous development of

multiple grid systems and finite difference schemes suitable for multiple grids is underway

and will be & major pacing item in computational fluid dynamies.

Acknowledgements: This work was partially supported by Army Research
Office Contract DAAG29-81-K-0013 and Air Force Flight Dynamics Contract
F33815-81-K-3020.
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V. FUTURE WORK

Two new flow simulation codes for projectiles are now underway at BRL. One
of these, which is being implemented by Nictubicz, extends our segmented projectile
code for the calculation of ringed or tubular projectiles. This advanced projectile
flics a more level trajectory than conventional rounds. Figures 1 and 2 show a
typical configuration and a preliminary result obtained by Nietubicz.

The other new projectile code is still in the planning stage. A three dimensional
transonic projectile code with base will use the same segmentation process used
with the two dimensional code. In order to minimize the number of grid points
needed to resolve a three dimensional field, we plan to use a spectral method in the
circumferential direction. Although our solution method is implicit, the spectral
method only has to be implemented explicitly. (This has been shown by K. C.
Reddy and has been independently verified by my student, Mr. T. Barth.) This
code should be operational by December 1984. My involvement will continue as an

employee of NASA Ames.
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