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I, FOREWARD

The research program has been aimed at developing computational procedures

for simulation of flow about projectiles. During the three year effort a variety of

ideas were pursued and implemented. As a result this final report will include

summaries on numerical algorithm developments, methods of grid generation, and

descriptions of flow field solution codes for projectiles in the transonic range. Some

five technical papers have been published which describe much of the research effort.

These are included in this final report and they constitute the technical content of

this report. Some ongoing work which has not yet reached fruition is also described.

The research effort was initially directed toward two tasks: 1) basic algorithm

developments; and 2) development of a parabolized Navier-Stokes (PNS) computer

code to solve finned projectiles in supersonic viscous flow. The second task was

later redirected to the development of computer codes for computing the transonic

flow about projectiles with base. This effort was undertaken in collaboration with

Messrs. Nietubicz and Sahu of the Ballistics Research Laboratory (BRL). (The

original task of computing the supersonic flow about finned projectiles using a PNS

code was subsequently accomplished by Mann Mohan Raj, et. al., under joint BRL

and NASA Ames Research Center sponsorship.)

The research effort has greatly benefited by a sustained collaboration with re-

searchers at BRL. This collaboration properly focused the work on realistic prob-

lems, help stimulate new concepts, and provided necessary stimulate new concepts,

and provided necessary critiques.

The report is divided into four main areas. Section II describes the algorithms

and methodology for computing transonic flow about projectiles with base. Section

III describes some work in grid generation, while Section IV contains a potpourri
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or ideas in numerical algorithm develoment. Ongoing projects initiated, but not

conlIuded, are described in Section V.
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II. TRANSONIC PROJECTILES WITH BASE FLOW

A major accomplishment of the research program has been the development of

computer codes to simulate transonic projectiles with base flow. This project was

carried out in collaboration with J. Sahu and C. J. Nietubicz at BRL with Sahu

being responsible for the code implementation.

A full description of the numerical procedures is given in the two appended

ALAA papers. A key feature of the projectile base flow code is its segmentation

concept. Beginning with a basic projectile and sting code due to Nietubicz, a simple

way of dividing up the computational domain was devised which maintained the

simplicity of the implicit numerical algorithm. The sketches shown in Figure 2

of the second attached AIAA paper (83-0224) illustrate the segmentation process.

The idea here is that we add grids as needed yet solve the flow field implicitly as

one large grid in computational space. Various flags are used to properly turn-off

or connect the domains together. This concept can be extended to more complex

geometries, and currently, Sahu is treating a projectile with a cut-out in the base

by using three grid segments.

-5 -
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Numerical Computation of Base Flow for a Projectile at Transonic Speeds

Jubaraj Sahu* and Charles J. Nietubicz*
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and

Joseph L. Steger**
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Abstract circumferential angle

The Azimuthal-Invariant Thin-Layer Navier- Superscript
Stokes computational technique has been modified
for projectile base flow analysis. The resulting * critical value
new numerical capability is used to compute the
entire projectile flow field including the recir- Subscript
culatory base flow. Computed results show the
qualitative and quantitative details of the over- b base
all base flow structure. Base drag is computed p pressure
for a secant-ogive-cylinder projectile and com- v viscous
pared with liited experimental and semi-empirical ' free stream conditions
data. Results are also presented which show the
variation of pressure drag, skin friction drag and
the total aerodynamic drag for Mach numbers .9 < N 1. Introduction
< 1.2.

The rising costs of experimental measurements
Nomenclature has resulted in alternate means of determining the

aerodynamics of shells. Because of the recent
a speed of sound advances in computer processors, numerical compu-
A cross sectional area at the base tational capabilities have been developed to pre-
Cob base drag coefficient, 2 Db/P.uA dict the aerodynamic behavior of artillery shells.

Cp specific heat at constant pressure Recent papersl' 2 have reported the develop-
C pressure coefficient, 2(p - p.)/p~a ment and application of the Azimuthal-Invariant

p Thin-Layer Navier-Stokes computational technique

D body diameter (57.15mm) to predict the flow about slender bodies of revo-
Ob  base drag lution at transonic speeds. References I and 2

e total energy per unit volume/p~a showed the technique to be a viable computational
tool for predicting both external and internal

q vector of dependant variables in flows for spinning and non-spinning bodies of
. . transformed equations various geometric shapes. The base flow of the
E, F flux vector of transformed Navier-Stokes projectiles however, was not computed. Instead

equations the projectile base was modeled by an extended
H n-invariant source vector sting. Experimental base flow data is difficult
J Jacobian of transformation to obtain and therefore only limited data is
M Mach number available. No sophisticated numerical techniques
p pressure/p a2 have yet been utilized for base flow of projec-
pr Prandtl nbodr, ypaCp/iu tiles at transonic speeds. The objective of this
R body radius research was to develop a new numerical capability
Re Reynolds number, p.aD/v, to compute the flow field in the base region of

viscous flux vector projectiles at transonic speeds and be able to
t physical time compute the total aerodynamic drag.

u,v,w Cartesian velocity components/a.
U,V,W Contravariant velocity components/a. The total drag for projectiles can he divided

x,yz physical Cartesian coordinates into three components: (1) pressure (wave) drag;

a angle of attack (2) viscous (skin friction) drag; and (3) base

y ratio of specific heats drag. For a typical shell at N = .9, the relative

coefficient of thermal conductivity magnitudes of the aerodynamic drag corponents are:

u coefficient of viscosity (I) pressure drag, 20%; (2) viscous drag, 30%; and

&,n,c transformed coordinates in axial, (3) base drag, 50%. In order to predict the total

circumferential and radial directions drag for projectiles, computation of the full flow

P density/p, field (including the base flow) must be made.

transformed time Computation of base flow is especially important
at transonic speeds.

*Aerospace Engineer, Member AIAA
*Associate Professor, Member AIAA

this pmer Is declared a work of Ike U.S.
ovetamal and Ike faete is in I pablic domain.



The critical aerodynamic behavior of projec-
tiles occurs in the transonic speed regime. This r W
can be attributed to the complex shock structure - I
which exists for the projectiles at transonic P+4Y
speeds. Figure 1 is a spark shadowgraph which J PvW+ y p
shows the shock structure for a typical projectile / w+C'D p

at M - .9s, . 1 . It also shows a clearly L
defined wake behind the base of the projectile (eP)W-tP|
devoid of any vortex shedding. Primary emphasis
is focused on the base region flow field coinputa-
tions; however, the technique used computes the
full flow field over the projectile (including the
base region). Therefore, all three components of o
the drag are computed.1

A brief description of the qoverning equa- J-. oV[R(0-1,) + R (W.t
tions and the method of solution are qiven in t t
Sections II and Ill. A unique flow field segmen- pVRPI(V-,t) -p/(41)
tation procedure and the implementation of bound-
ary conditions are discussed in Section Ill. In
Section IV computed results are given for tran-
sonic flow about a 6-caliber secant-ogive-cylinder The thin layer viscous terms valid for high
shape for .9 < M < 1.2, u = 0. Velocity vector Reynolds number flow are contained in the vector
plots and stream function contour plots are pre- ,
sented to show the qualitative features of the where
flow field in the base region. All three compon-
ents of drag are obtained. Base drag is compared
with experimental and semi-empirical data while 0

the total drag is compared with the only available
semi-empirical data. The encouraging results show 2 2/
that the present computational technique can be P x + (u/3)(4 x j y Vrz 4W x
successfully used to predict the base region flow 2 2
field of projectiles. Although results here are P(cx+ +z)v + (u/3 )(4xuv+;v+y w
reported for transonic speeds, future computation- 4 x 4 14 y
al efforts will be directed at supersonic - 2 2 2
velocities. )w + (113)(. u vr+4 w

+y)[.5(u +v +w ) + Wr
I. Governing Equations Y(y Z C

The Azimuthal Invariant (or Generalized Axi- (Y-W ) -)] 
+ 

(P/3)( xU+4yV+czW)
symmetric) thin-layer Navier-Stokes equations for

general spatial coordinates ., n, 4 can be written•(, u +ryv 41w H)
as'

+ aRea S (1) The velocities

U = t + xu + 4 v + t, w
where = .(xy,z,t) is the longitudinal y z

coordinate V = rt + nxu + 1y v + nzw (2)

n = n(y,z,t) is the circumferential W t + u + 'yV + w

coordi nate

= (x,y,zt) is the near normal represent the contravariant velocity components.
coordi nate

The Cartesian velocity components (u,v,w) are
T t is the time nondimensionalized with respect to a, (the free

stream speed of sound). The density (p) is refer-
The notation for the physical coordinates x, y, z, enced to p_ and total energy (e) to p a2. The
and the transformed coordinates &, n, 4 are shown local pressure is determined using the equation of

in Figure 2. The vector of dependent variables q state,

and the flux vectors E, G, H are given as p = (I-I)re - 0.5P(u 2+vZw 2 )] (3)

[ where Y is the ratio of specific heats.
I uI puU+ rxp

q JIpv E pvU+ Fyp In high Reynolds number flows the thin-layer
Sy approximation is often used becauso, due to coin-

lw lwU+ 1.zp puter speed and storage limitations, fine grid

Sspacing can nly be provided in one coordinateLe P) L :J direction. The grid spacing available in other

directions u asually too coarse t,) resolve the

2
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viscous terms. Essentially, all the viscous terms reduces the solution proLess to one-dimensional
in the coordinate direction t and n are neglected problems at a given time level. Central differ-
while terms in the near normal direction to the ence operators are employed and the algorithm pro-
body . are retained. The thin-layer generalized duces block tridiagonal systems for each space
axisymmetric equations (1) are obtained from the coordinate. The main CCNiputatiOndl work is con-
three dimensional equations by making use of two tained in the solution of these block tridiagonal
restrictions: (i) all body qeometries are of an systems of 4 udti(n).
axisymmetric type; and (ii) the state variables
and the contravariant velocities do not vary in b.* Finite Iifference IqUdtlons
the circumferential direction (1i). Essentially,
the ri-derivative term in the three dimensional The resultinq finite difference

equations is replaced by a source term H as it equations, written in delta form are

appears in equation (1). The details can he found
in Reference I and 2. (1h6,A-, J1rVt'J)(l+h,' Cn-, J J

Equation (1) contains only two spatial deriv-
atives; however it retains all three momentum R ,i-inj) q n+ ln) -t .n ( )
equations thus allowing a degree of generality he( - -t . ,
over the standard axisymmetric equations. In
particular, the circumferential velocity is not Re_1 n)Atn n
assumed to be zero thus allowing computations for _EJ (va)t )Ijq

spinning projectiles or swirl flow to be
accomplished.

For the computation of turbulent flows a tur- Here h at because only first order accuracy in
Fthe time dioferenting is neededen forw th stead

bulence model must be supplied. In the present thate f differencing is nerded for the steady

calculations a Cebeci-type two layer algebraic state flows which are considered here. This

eddy viscosity model as modified by Baldwin and choice corresponds to the Euler implicit time

Lomax 3 is used. In their two layer model the differencing. The 6's represent central differ-

inner region follows the Prandtl-Van Driest formu- ence operators, a and V are forward and backward

lation. Their outer formulation can be used in difference operators respectively. The Jacobian

wakes as well as in attached and separated bound- __, __ ln ih h ofi
ary layers. In both the inner and outer formula- matrices A -, C - - along with the coeffi-

tions the distribution of vorticity is used to dq aq

determine length scales thereby avoiding the cient matrix M obtained from the local time
necessity of finding the outer edge of the bound-
ary layer (or wake). The magnitude of the local linearization of S are described in detail in

vorticity for the axisymmetric formulation is Reference 6. Fourth order explicit (cE) and

given by implicit (EI) numerical dissipation terms are

incorporated into the differencing scheme to damp
Iww + -3 + 2 a (4) high frequency growth and thus to control the

w ( + (T u ) ( nonlinear instabilities. A typical range for thesmoothing coefficients is c, = (I to 5) At with I
It should be noted that the turbulence model C I = 3Ea

has not been tailored for use in base flow

regions. Moreover, the no slip boundary condition c. Flow Field Segmentation

is not applied at the projectile base and slip is
allowed along the base (inviscid boundary condi- The objective is to compute the full flow

tion). The velocity component normal to the base field (including the base region) of a projectile
is however set to zero. at transonic speeds. Figure 3 shows a scheatic

illustration of the flow field segaentation used

in this study for computational purposes. The

I1. Nunerical Method hatched region represents the projectile. The
region ABCD includes the projectile base and the

a. Computational Algorithm wake and will be referred to as the base region.

An implicit approximate factorization The curvilinear coordinates used for the

finite-difference scheme in delta form is used as longitudinal and normal directions are represented

described by Beam and Warming4. An implicit by their indices J and L. The line J = 1 starts

method was chosen because it permits a time step at the downstream boundary (line CD) in the base

much greater than that allowed by explicit region. J is incremented until the line J = JB is

schemes. For problems in which the transient reached which represents the base of the projec-

solution is of no interest, this offers the pos- tile. The line J = JB+l is at the nose of the

sible advantage of being able to reach the steady projectile and J is then incremented until the

state solution faster than existing explicit line J 
= JMAX is reached which is the downstream

schemes. boundary in the outer region.

The Ream-Warming implicit algorithm has As for the other coordinate L, in the base

been used in various appllc3tionsl'
6. The algo- region L = I starts at line AC which is a comnputa-

rltmn can be first or second order accurate in tional cut through the physical wake region. L is

time and second or fourth order accurate in space. incremented until L LMAX which is the line of

The equations are factored (spatially split) which symmetry (line l). In the outer region L I
starts out from the projectile surface and I is

3



Incremented all the way to the outer boundary _n
where L = LAX. I A3  Aq2  RHS2

Implicit integration is carried out from J =  -A2 I A4  Aq3  RH 3
2 to J = JB-! and from J = JB+I to J JMAX-I in
the longitudinal direction and from L 2 to L
LMAX-1 in the normal direction.

d. Implementation of Boundary Conditions -Aj. 2  I

The no slip boundary conditions for *0 ' J AqJ6  0 (8)
viscous flow is enforced by setting

ti 1 0 Aq J8+1

U = V W " (6) -Aj+ I AJB+3 

on the projectile surface except for the base. At
the projectile base (J = JB) the velocity compon-
ent normal to tne base is set to zero, i.e. U = 0, -AjMAX-2 I IAX-I RHSjMAX-I
while other flow variables are set to be equal to
those at J = JB-I. In other words, slip is allow-
ed along the base (inviscid boundary condition).
Future work will be directed at the implementation Here As denote the qua , A and ! is a 5x5

of viscous boundary condition at the base to identity deat i No Lb a pA an c f ta o
further access this approximation. identity matrix. No ;he appearance of two

uncoupled block tridia., The rows at JB and

Care must be taken in the implementation of JB+1 are particularly " e because boundary

the boundary conditions along line AC which is the conditions are updated (.icitly at the end of

computational cut. After trial and error the flow inversions. These changes were easily implemented

variables above and below the cut were simply in a modular fashion into an existing code for

averaged to determine the boundary conditions on projectile base flow computations. One simply

the cut. This procedure proved to work well. On fills the block tridiagonal matrix ignoring the

the centerline of the wake region, a symmetry base JB and the nose axis JB+I. Elements in these

condition is imposed, rows are then overloaded as shown above. The flow
field segmentation does not affect the block tri-
diagonal matrix in the € direction.

au_ - 0

IV. Resultsvav

(7) A series of computations have been made for
the 3 caliber (1 caliber - I max. body diameter)

w 0 secant-ogive nose and 3 caliber cylinder shape
shown in Figure 4. All the computations were
obtained for Mach numbers .9 < M < 1.2 and a = 0.

0 Limited experimental base pressure measurements
Z have been made by Kayser 7 for this projectile

shape and compared with the computed results. The
projectile base was supported by a sting attached

Free stream conditions are used at the outer to it and meaurements of base pressure were made

boundary. Simple extrapolation for all flow vari- at only one location along the base. These

ables is used at the downstream boundary (lines J experiments were conducted at Langley Research

x 1. JMAX). During transient calculations, use of Center 8-foot Transonic Pressure Tunnel. Compu-

a specified outflow pressure can give rise to tational base pressure results are also compared

numerical oscillations in the base region flow with available semi-empirical" data. The results

field. Eventually, these grow and swamp the solu- are presented in the form of surface pressure

tion. This difficulty is avoided by simply extra- distribution, contour plots and velocity vector

polating pressure to the downstream boundary which plots.

is the procedure always used with supersonic out-
flow. A combination of extrapolation and symmetry The computational gried frd for the numerical

is used at J - JB+l. coutations was obtained from a versatile grid
generator developed in Reference 9. This program

As a result of the flow field segmentation allows arbitrary grid point clustering, thus ena-

procedure described In Section III b, the block bling grid points for the projectile shapes to be

tridiagonal matrix in the direction has elements clustered in the vicinity of the body surface.

at J = JB, JB+1 which are treated as internal The grid consists of 108 points in the longitudi-

boundaries in the computational domain. The block nal direction and 50 points in the radial direc-

tridiagonal matrix in the F, direction takes the tion. The full grid is shown in Figure 5 while

following form (after setting c = 0 to simplify Figure 6 show; an expanded view of the grid in the

the illustration) vicinity of 'he projectile. The computational
domain extended to 4 body lengths in front. 4 body
lengths in the radial direction and 4 body lengths
behind the base of the projectile. The grid

4
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points in the normal direction were exponetially to the same scale in x and y while Figure 12 is
stretched away from the surface with the minimum not. iuwever, both of these figures are drawn to
spacing at the wall of .03002D. This spacing show the recirculation region and the position of

locates at least two points within the :adlinar the dividing stream line as clearly as possible.
sublayer. They also show the reattachment point which for

this case is about ? calibers down from the base.
Th. jrid shown in Figure 6 was generated in

two segments. First, the grid in the outer region A more critical check of the computational
is obtained using an elliptic solver

9 
for the results is presented in Figure 14 where the base

ogive portion and straight-line rays for the re- drag is plotted as a function of Mach number.
maining portion which runs all the way to down- Conputational results are indicated by circles,
stream boundary. Second, the grid in the base experimental results

7 
by triangles and the squares

region is obtained simply by extending the indicate the results obtained using a semi-
straight lines perpendicular to line AC down to empirical technique developed by McCoyb. Base
the center line of symmetry (line BD). An expon- drag, as expected, increases as the Mach number

ential stretching with the minimum spacing of increases from 0.9 to 1.2. The sein-empirlcdl
.000020 at line AC is used. It should be noted technique shows generally higher base drag when
that the same minirum spacing .00002D is specified compared with computational and experimental
on both sides of the cut (line AC) thus maintain- results. The computational results predict the
ing a smooth variation of grid across the cut. expected drag rise that occurs for 0.9 < M < I.?.
This spacing could, of course, be increased down- The computational results, however, indicate a

stream of the base. The number of grid points greater increase in drag than predicted by either
above and below line AC is the same (50 points) the semi-empirical code or the experimental meas-
which means that an adequate number of points are urements. The discrepancy between the numerical
located in the base region. As can be seen in and the experimental results can partly be attri-
Figure 6. the grid points are clustered near the buted to the fact that the experimental data was
nose-cylinder junction and at the projectile base obtained with a sting attached to the base. The

where appreciable changes in flow variables are sting has an effect of weakening the recirculatory
expected. flow in the base region and leads to higher base

pressure and hence, lower base drag.
The free stream Reynolds number for the

series of computations was fixed at 4.5 x 101 Figures 15, 16 and 17 show the variation of
based on the total model length. The computations pressure drag, skin friction drag and the total
are started from free stream conditions and march- drag with Mach number respectively. The rise in

ed in time to obtain the steady state solution, the pressure drag with Mach number is predicted
The initial calculation was made for M = 0.9. correctly. Skin friction drag dec'eases as Mach
Previous converged solutions were then used as number i-creases. The total drag, as expected,

starting conditions for additional Mach number increases as Mach number increases from 0.9 to
runs to achieve faster convergence. 1.2. The computational results are compared with

the results obtained by semi-empirical technique
Figures 7 and 8 show the distribution of the and the agreement is cons.dered good.

surface pressure coefficient, Cp as a function of

axial position, x/D. Figure 8 shows the overall
view whereas Figure 7 shows the distribution in V. Summary

the near wake region of the base. The distribu-
tion over the projectile surface itself is shown A procedure has been described in which the

in both these figures. The value of Cp beyond x/D Azimuthal-Invariant (generalized axisymmetric)
thin-layer Navier-Stokes code is modified in such

= 6 is the value of pressure coefficient along the a way as to compute the base flow field of projec-

cut AC. Both these figures indicate the shock tiles at transonic speeds.
waves near the nose-cylinder junction and near the
blunt base. Although not shown in these figures, The computed results show the qualitative
the pressure along the base remains fairly features of the flow field in the base region,
constant (within t.005 variation in Cp values), namely the recirculation region, dividing stream

l'e, reattachment point, etc. Quantitative com-
The series of Figures 9, 10 and 11 show the parisons of the base drag have been made with

velocity vector field in the base region for M = other available data for various Mach numbers in

0.9 and a = 0. Each vector shows the magnitude the transonic speed range. These results indicate
and the direction of the velocity at that point, that the present numerical technique can be used
Figure 9 shows the velocity field in the entire successfully to predict the base drag of projec-
base region. One can see the expected velocity tiles at transonic speeds.
defect in the far wake region. Figures 10 and 11

show the velocity field in the vicinity of the The computed results for this paper represent
base (near wake region). The difference between the first application of thin-layer Navier-Stokes

these two plots being that the former one is computational technique to predict projectile base
stretched (not drawn to same scale) while the flow at transonic velocity using the flow field
latter is drawn with the same scale in x and y segmentation described above. The results indi-
directions. Both Figures clearly show the recir- cate that this technique shows good promise of
culation region of flow in the base reqion and providing a useful new computational capability
indicate a strong shear layer as well. for exterior ballistics of shells.

The next two Figures 1? and 13 are stream Future computational efforts will investigate
function contour plots in the near wake region, the implementation of viscous boundary condition
again for M 0.9 and a 0. Figure 13 is drawn

5



on the projectile base, improved grid resolution,
and alternate turbulence models.
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Abstract angle of attack
y ratio of specific heats

A computational capability has been developed K coefficient of thermal conductivity
for predicting the flow field about the entire 4 coefficient of viscosity
projectile, including the recirculatory base flow, E,n,c transformed coordinates in axial,
at transonic speeds. Additionally, the computer circumferential and radial directions
code allows mass injection at the projectile base p density/p.
and hence is used to show the effects of base T transformed time
bleed on base drag. Computations have been made $ circumferential angle
for a secant-ogive-cylinder projectile for a
series of Mach numbers in the transonic flow Superscript
regime. Computed results show the qualitative and
quantitative nature of base flow with and without * critical value
base bleed. The reduction in base drag with base
bleed is clearly predicted for various mass injec- Subscript
tion rates and for Mach numbers .9 < M < 1.2. The
encouraging results obtained indicate that this b base
computational technique may provide useful design j jet conditions
guidance for shells with base bleed. J longitudinal direction

L normal direction
Nomenclature o total conditions

st stagnation conditions
a speed of sound free stream conditions
A cross sectional area at the base
Aj injection area for base bleed

CDb base drag coefficient, 2 0 b/P-u!A I. Introduction
c sA major area of concern in shell design is in
p specific heat at constant pressure the total aerodynamic drag. The designer, ever

pressure coefficient, 2(p - p.)/p. u desirous of increasing the range and/or terminal
D body diameter (57.15mm) velocity of projectiles, is eager to decrease the
Db base drag aerodynamic drag.

e total energy per unit volume/p.a.2  The total drag for projectiles can be divided
, flu, vector of transformed Navier-Stkes into three components: (1) pressure (wave) drag;
equations (2) viscous (skin friction) drag; and (3) base
u-nvariant source vector drag. For a typical shell at M x .90 the relative

mass injection parameter, A /P.UA magnitudes of the aerodynamic drag components are:
Iu (1) pressure drag, 20%; (2) viscous drag, 30%, and

J Jacobian of transformation (3) base drag, 50%. The pressure and viscous com-

m mass flow rate for air Injection at the ponents generally cannot be reduced significantly
base, Aju A. without adversely affecting the stability ofj~ shell. Recent attempts to reduce the total drag

M Mach number are therefore directed at reducing the base drag.
p pressure/pa2
Pr Prandtl n* A r, A number of studies have been made to examine
R body radius pthe drag reduction due to the addition of a boat-
Re Reynolds number, p.a.D/u, tail. Although this is very effective in reducing

S viscous flux vector the drag, it has a negative impact on the aerody-
t physical time namic stability of shell especially at transonicu,v,w -Cartesian velocity components/a velocities. An excellent review of base drag and
U,V,W Contravariant velocity components/a the effect of boattailing is presented in

x,y,z physical Cartesian coordinates Reference 1.

*Aerospace Engineer, Member AIAA**Associate Professor, Member AIAA
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Another effective means of reducing the base bly have a positive impact on the XM864 devleop-
drag is that of 'base bleed' or 'base injection'. ment. Although results here are presented for
In this method a small amount of mass is injected transonic speeds, current computational efforts
into the base region which increases the base are directed at supersonic velocities.
pressure and thus reduces the base drag. Recent
range and precision tests 2 of a l55mm projectile
with and without base bleed have been conducted Hi. Physical Problem
and an 85% reduction in base drag was obtained.
Presently the XM864 is an active projectile design The physical problem deals with the transonic
which is attempting to use the base bleed concept flow over a projectile shape including the base
for increased range. This concept of mass injec- region. Although the entire projectile flow is
tion at the projectile base has been widely computed, the emphasis here is on the flow field
studied for supersonic flows and much of the work in the base region of the projectile. A small
has been reported in Reference 3. One limited amount of air is injected at the projectile base
study at supersonic speeds was made at BRL and the in the direction parallel to the primary flow.
results were reported by Dickinson". A limited The injection at the base can be concentrated at
study made in the transonic flow regime has been the center of the base or spread throughout the
reported in Reference 5. The supersonic regime entire base. In the present work, however, the
has typically been the area where increased range injection takes place over 90% of the base.
due to drag reduction has been studied. Thus, Figure 1 shows a schematic illustration of the
only limited attention has been focussed on the base region flow field with base injection. The
'base bleed' problem in transonic flow. dividing streamline separates the recirculary base

flow from the primary external flow. The flow
Most of the work using the 'base bleed' field is dominated by separation and mixed regions

concept has been either experimental or semi- of locally supersonic and subsonic flows.
empirical in nature. Sophisticated numerical
techniques have not yet been utilized to predict The complete set of time-dependent generali-
the effects of base bleed on the base drag reduc- zed axisymmetric thin-layer Navier-Stokes equa-
tion. Limited computational work has been report- tions is solved to obtain a numerical solution to
ed recently by Sullins, et a16 . Their work dealt this problem. The numerical technique used is an
with the numerical computation of the base region implicit finite-difference scheme. Although time-
flow of a supersonic combustion ramjet engine dependent calculations are made, the transient
using two-dimensional Navier-Stokes equations. flow is not of primary interest at the present
They computed the flow field in the vicinity of time. The steady flow is the desired result which
the base with parallel gas injection and estab- is obtained in a time asymptotic fashion.
lished the effect of base injection on such flows.
Because of the recent advances in computer techno-
logy, numerical computational capabilities have I1. Governing Equations

* been developed to predict the aerodynamic behavior
of artillery shells. Recent papers 7'8 have The Azimuthal Invariant (or Generalized Axi-
reported the development and application of the symmetric) thin-layer Navier-Stokes equations for
Azimuthal-Invariant Thin-Layer Navier-Stokes comp- general spatial coordinates E, n, C can be written
utational technique to predict the flow about as7

slender bodies of revolution at transonic speeds.
This technique has been modified for base flow a q + 3 E + a G + H - Re a S (1)
analysis and the resulting new numerical capabi-
lity'J is used here to predict the base pressure of
shell at transonic speeds including the effect of where C - E(x,y.z.t) is the longitudinal
base bleed. Computed results show the quantita- coordinate
tive and qualitative details of the base flow
structure. The technique used computes the full n - n(y,zt) is the circumferential
flow field over the projectile at transonic coordinate
speeds; therefore, all three components of the
total drag (pressure, viscous, and base drag) are c - c(xy,z.t) is the near normal
computed. This computational technique is then coordinate
applied to predict the effects of base bleed on
the base drag reduction at transonic speeds. T - t is the time

A brief description of the physical problem
and the governing equations is given in Sections The vector of dependent variables q and the flux
II and 111. The computational technique and the
method of solutofi are discussed in Section IV. vectors E, G, H are given as

In Section V results are shown for transonic base
pressure computations for a 6-caliber secant-
ogive-cylinder shape for .9 <~ N < 1.2 with and rP r u
without base bleed. Velocity vector plots, stream F ]
function contour plots and density contour plots Pu puU+x P
are presented to show the qualitative features of q J- - pv , E - pvU + y p
the flow field in the base region. Quantitative II ' J y
comparisons of base drag and the total drag both Pw L Z
with and without base injection have been made.L el(e+p)u' tP/
The encouraging results show that the present
computational technique can be used to study the
effects of base bleed on base drag and can possi-
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r pW projectiles or swirl flow to be accomplished.! There is some evidence which indicates that base
PuW+xP pressure can change due to the spin of a projec-

j-1 lPVW+p tile. Although the present work considers base
flow with no spin, base flow with spin is of

p w+.,p interest and can be studied using the present

L(e+ p)W- tp J  
technique.

For the computation of turbulent flows a tur-
bulence model must be supplied. In the present

F o0 calculations a Cebeci-type two layer algebraic
o eddy viscosity model as modified by Baldwin and

Lomax" ° is used. In their two layer model the
H J'l n  pV[R & (U- t + RC(W-t) ] inner region follows the Prandtl-Van Driest formu-

.pVRin(Vnt- p(R i lation. Their outer formulation can be used in
n #) ) wakes as well as in attached and separated bound-

L 0 .1 ary layers. In both the inner and outer formula-
tions the distribution of vorticity is used to

The thin layer viscous terms valid for high determine length scales thereby avoiding the
Reynolds number flow are contained in the vector necessity of finding the outer edge of the bound-

S. where ary layer (or wake). The magnitude of the local
vorticity for the axisymmetric formulation is
given by

2 2 2 ,- ,(u/3)(4 u + (-v -- ) + (-w - -u, (4)
x ~4y cz )u x C yVC+'zC)4x ax z a az
2 +C2 +r2 ) p3(.u+ r W

In determining the outer length scale a

2 22
S P(x+Cy+Cz )w + (u/3)(x u C+ vy+ w C )+ function1 O

( 2 2 2) 2 2 2 1xx y+ c -1 +F(y) - yJ-J (1 - exp(-y+/A+)] (5)
{( +z)[O.SI(ua2 + 4w3) cPr-

(y'l)fl(az)¢] + ( /3)(¢xu+cyV+¢w) is used where y+ and A+  are the conventional

boundary layer terms. For the base flow (or wake
X (CxuC+CyV4+czWc)} flow) the exponential term of Equation (5) is set

L equal to zero.

The velocities
IV. Numerical MethodU - 4[ x + yv+ z

a. Computational Algorithm
V t + unxU + rnyV + nzW (2)

An implicit approximate factorization
W Ct + Cx u +  yV+ z w finite-difference scheme in delta form is used as

described by Beam and Warming". An implicit
method was chosen because it permits a time step

represent the contravariant velocity components, much greater than that allowed by explicit
schemes. For problems in which the transient

The Cartesian velocity components (u,v,w) are solution is of no interest, this offers the pos-
nondimensionalized with respect to a (the free sible advantage of being able to reach the steady
stream speed of sound). The density (p is refer- state solution faster than existing explicit
enced to p_ and total energy (e) to p.a 2 . The schemes.
local pressure is determined using the equation of
state, The Beam-Warming implicit algorithm has

been used in various applications?- 3 . The algo-
p - (y-l)(e - O.5p(u2+v2 +w2 )] (3) rithm can be first or second order accurate in

time and second or fourth order accurate in space.
The equations are factored (spatially split) which

where y is the ratio of specific heats. reduces the solution process to one-dimensional
problems at a given time level. Central differ-

In Equation (1) the thin-layer approximation ence operators are employed and the algorithm pro-
is used and the restrictions for axisymmetric flow duces block tridiagonal systems for each space
are imposed. The details can be found in coordinate. The main computational work is con-
References 8 and 9 and are not discussed here. taned in the solution of these block tridiagonal
Equation (1) contains only two spatial deriva- systems of equations.
tives; however it retains all three momentum equa-
tions thus allowing a degree of generality over b. Finite Difference Equations
the standard axisymmetric equations. In parti-
cular, the circumferential velocity is not assumed The resulting finite difference equa-
to be zero thus allowing computations for spinning tions, written in delta'form are

3



is allowed along the base (inviscid boundary
(|+h6 n-EIJ-1V t aE J)(I+h6 Cn- I J'lV CA J"- condition). Future work will be directed at the

implementation of viscous boundary condition at
~e'16 JinJ) X (qn+tqn) n.,. atGn  () the base to further access this approximation.

Along the computational cut (line AB)

n) - ( the flow variables above and below the cut were
-Re- 16 S )-atHn4 EJ_ [(V a )2 + (V a )]Jq n  simply averaged to determine the boundary condi-

tions on the cut. On the centerline of the wake
region, a symmetry condition is imposed.

Here h At because only first order accuracy in
the time differencing is needed for the steady au
state flows which are considered here. This - = 0
choice corresponds to the Euler implicit time dif- 3Z
ferencing. The 6's represent central difference
operators, A and V are forward and backward dif- av 0
ference operators respectively. The Jacobian (8)

matrices -=, C =- along with the coeffi- w 0

3q aq

cient matrix M obtained from the local time 0

linearization of S are described in detail in
Reference 6. Fourth order explicit (CE) and

implicit (C1 ) numerical dissipation terms are Free stream conditions are used at

incorporated into the differencing scheme to damp the outer boundary. Simple extrapolation for all
high frequency growth and thus to control the non- flow variables is used at the downstream boundary
linear instabilities. A typical range for the (lines AD and AG). During transient calculations,
smoothing coefficients is cE = (1 to 5) At with use of a specified outflow pressure can give rise
CI = 3EE. to numerical oscillations in the base region flow

field. Eventually, these grow and swamp the solu-
tion. This difficulty is avoided by simply extra-

c. Flow Field Segmentation polating pressure to the downstream boundary which
is the procedure always used with supersonic out-

Figure 2 is a schematic illustration of flow. A combination of extrapolation and symmetry
the flow field segmentation that is used to is used at on the nose axis (line EF).
compute the entire projectile flow field including
the base flow. It shows the transformation of the As a result of the flow field segmen-
physical domain into the computational domain and tation procedure described in Section IV c, the
the details of the flow field segmentation block tridiagonal matrix in the t direction has
procedure in both the domains, elements at J = JB, JB+l which are treated as

Internal boundaries in the computational domain (J
The cross hatched region represents the = JB represents the projectile base and J = JB+1

projectile. The line BC is the projectile base is the nose axis). The block tridiagonal matrix
and the region ABCD is the base region or the in the & direction takes the following form (after
wake. The line AS is a computational cut through setting £! = 0 to simplify the illustration)
the physical wake region which acts as a repeat-
Itive boundary in the computatioal domain.
Implicit integration is carried out in both t and
c directions (see Figure 2). Note the presence of
the lines BC (the base) and EF (nose axis) in the
computational domain. They both, however, act as I A3  Aq2  RHS 2
boundaries in the computational domain and special
care must be taken in inverting the block tridlag- -A2 I A4  Aq3  RHS3onal matrix in the t direction. The details are
presented in the next section.

d. Implementation of Boundary Conditions
-AjB-2 I AjB

1. Base Flow Without Base Injection

The no slip boundary conditions for 010 &qJB 0 (9)

viscous flow is enforced by setting 0 1 0 IqJB+ 0

U V W =0 (7) -AJ5.j AJ8 3

on the projectile surface except for the base. At
the projectile base the velocity component normal
to the base is set to zero, i.e. U 0 0, while AJRA.2 hqJ I RHSJIAXI

other flow variables are set equal to those at
grid point next to the base. In other words, slip

4



Here A's denote the quantity , A and I is a 5x5 The grid shown in Figure 4 was generated

identity matrix. Note the appearance of two in two segments. First, the grid in the outer

uncoupled block tridiagonals. The rows at JB and region is obtained using an elliptic solver"1 for

JB+1 are particularly simple because boundary con- the ogive portion and straight-line rays for the

ditions are updated explicitly at the end of remaining portion which runs all the way to down-

inversions. These changes were easily implemented stream boundary. Second, the grid in the base
in a modular fashion into an existing code for region is obtained simply by extending the

projectile base flow computations. One simply straight lines perpendicular to line AB down to

fills the block tridiagonal matrix ignoring the the center line of symmetry (line CD). An expon-

base JB and the nose axis JB+1. Elements in these ential stretching with the minimum spacing of

rows are then overloaded as shown above. The flow .00002D at line AB is used. It should be noted
field segmentation does not affect the block tri- that the same minimum spacing .000020 is specified

diagonal matrix in the r direction, on both sides of the cut thus maintaining a smooth
variation of grid across the cut. This spacing

2. Base Flow with Base Injection could, of course, be increased downstream of the
base. The number of grid points above and below

The boundary conditions used for base line AB is the same (50 points) which means that
flow with mass addition are presented here. The an adequate number of points are located in the

boundary conditions along the projectile surface, base region. As can be seen in Figure 4, the grid

at the cut and downstream boundary all remain the points are clustered near the nose-cylinder junc-

same as previously described. Along the base tion and at the projectile base where appreciable
boundary the following boundary conditions are changes in flow variables are expected.

imposed. As indicated in Figure 4, the fine viscous

u = uj grid follows the cut labeled as AB in Figure 2.
In so far as the viscous shear layer begins to

v-vj =0 neck-down shortly behind the base, much of this
fine grid resolution is wasted. As a consequence

w = wj = wjB.1 (grid point next to the base) logic has been implemented to adjust the grid cut
AB to the viscous shear layer. Such a grid is
shown in Figure 5 in which the height of the cut

P , Pj Pst is determined from a moment of shear subject to
various constraints and averaging. Specifically,

The stagnation density is obtained from the the cut height, i1 at each J-location is deter-
following relation. mined by the relation

1
0st . 1+Y-1M - ( 2 c

P (I .) (10) =(
6z UjL)2 ZjL +0/2

P, - J E(6z uJL)z + C (11)

The amount of air injected into the base region
where the summation is carried out only for those

can be specified by the mass flow rate, ;j. Since points within an interval .2D r ZJL ' 0/2. Here 0

pi and Aj are known, uj can be calculated for any is the base diameter, 6z is a central difference

given mass flow rate. Rather than specifying ;j operator and c is a positive parameter which

however, it is customary to specify a mass injec- ensures a standard grid if all 6z UjL are zero or

tion parameter, I where I P.uA. if c is very large. Additional averaging is used
in the x-direction (longitudinal direction).

e. Computational Grid Preliminary results have been obtained using the
grid shown in Figure 5 and further computations

The finite difference grid used for the are underway.
numerical computations was obtained from a grid
generator developed in Reference 14. This program
allows arbitrary grid point clustering, thus enab- V. Results
ling grid points for the projectile shapes to be
clustered in the vicinity of the body surface. The model geometry used in the present study
The grid consists of 108 points in the longitudin- is shown in Figure 6. The model consists of a 3
al direction and 50 points in the radial direc- caliber secant-ogive nose and a 3 caliber

tion. The full grid is shown in Figure 3 while cylinder.
Figure 4 shows an expanded view of the grid in the
vicinity of the projectile. The computational The free stream Reynolds number for the
domain extended to 4 body lengths in front, 4 body series of computations was fixed at 4.5 106
lengths in the radial direction and 4 body lengths based on the total model length. The computations

behind the base of the projectile. The grid are started from free stream conditions and march-
points in the normal direction where exponentially ed in time to obtain the steady state solution.
stretched away from the surface with the minimum The initial calculation was made for M = 0.9.
spacing at the wall of .000020. This spacing Previous converged solutions were then used as
locates at least two points within the laminar starting conditions for additional Mach number
sublayer. runs to achieve faster convergence. The results

are now presented for .both cases, (I) base flow
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without injection and (ii) base flow with i, has been increased to .07 and now the effect of
injection. mass injection can be clearly seen. The reattach-

ment point has moved further down stream. The
Figures 1 and 8 show the distribution of the flow pattern in the near wake flow field has

surface pressure coefficient. p as a function of changed considerably and the separation bubble is
axial position respectively, without and with mass reduced in size. When the mass injection para-

meter is increased further, I = .13, its effect on
injection at the base. The value of Cp beyond X/D the flow field in the base region is apparent.

= 6 is the value of pressure coefficient along the Figure 16 shows that dramatic change in the flow
line extending from the cylinder portion straight field. It indicates no presence of any recircula-
to the downstream boundary. In Figure 7 there is tion region and shows how the shear layer has been
no mass injection at the base. The pressure dis- displaced markedly.
tribution reflects the shock pattern that typical-
ly occurs on shell at transonic velocities, the A more critical look at the computational
rapid expansion which occur at the blunt base and results is presented in Figures 17 through 20.
the recompression that occurs downstream of the These figures show the quantitative details of
base. Although not shown in these figures, the projectile flow field. Figure 17 shows the varia-
pressure along the bdse remains fairly constant tion of base drag with mass injection rates for M
(within t.005 variation in Cp values). The pres- 0.9 and a = 0. The reduction in base drag with

base injection can be seen clearly. The percent
sure coefficient distribution for a case with reduction in base drag increases with the an
large mass addition is shown in Figure 8. The increase in the injection rate.
previous rapid expansion at the base and recom-
presslon downstream of the base are seen to be Since the entire projectile flow field,
virtually eliminated. including the base flow, has been computed, all

three drag components have been computed and thus
Figure 9 shows the velocity vector field in the total drag determined. Figure 18 shows the

the base region for M = 0.9, = 0 and I = 0. variation of the total drag with varying mass
Each vector shows the magnitude and the direction injection rates. Again, the reduction in the
of the velocity at that point. The figure shows total drag is apparent. As the injection rate is
the velocity field when there is no base bleed and increased, the percent reduction in total drag
the recirculatory flow in the base region is increases.
clearly evident.

Figures 19 and 20 show respectively, the
The velocity vector plots in Figures 10, 11 variation of base drag and the total drag with

and 12 show the effect of base bleed on the near Mach number both with and without base injection.
wake flow field. Figure 10 shows the effect of In both these figures the computational results
base bleed for the case when the mass injection without injection at the base are shown by the
parameter is very small (I = .01). The change in solid line whereas the dotted line represent the
the flow field is not very dramatic. In Figure 11 computational results obtained with injection at
the mass injection parameter is increased to .07, the base. The reduction in base drag and also the
and the effect of base bleed can be clearly seen. total drag with base injection can be clearly
The near wake flow field has changed considerably. seen. Figure 19 indicates that the percent reduc-
Figure 12 shows the effect of base bleed for a tion in base drag has increased with an increase
still higher mass injection parameter, I = .13. in Mach number from .9 to .98. In both the
The flow field in the base region has now been figures the expected drag rise in the transonic
dramatically altered. The recirculation pattern speed regime is well predicted for .9 < M < 1.2
has been totally swept downstream. and the reduction in base drag and the total drag,

due to base bleed has been clearly demonstrated.The next four Figures 13, 14, 15 and 16 are
stream function contour plots In the wake region,
again for M = 0.9 and a - 0. All these figures V. Summary
are deliberately stretched in y direction (not
drawn to the same scale in x and y) to show the A promising computational capability has been
flow pattern in the base region as clearly as pos- developed which computes the full projectile flow
sible. Figure 13 is for the case of base flow field including the recirculatory base flow at
with no mass injection at the base. It clearly transonic speeds both with and without base
shows the recirculation region and the position of injection.
the dividing streamline which separates the recir-
culatory base flow from the main flow. The reat- Numerical computations have been made for
tachment point is about 2 calibers down from the Mach numbers .9 < M < 1.2 to predict the base drag
base. Note the strong shear layer in the base and the total drag with and without base bleed.
region. Computed results show the qualitative features of

the flow field in the near wake for both cases.
Figures 14, 15 and 16 show the flow pattern The effect of base injection on the qualitative

In the base region with mass injection allowed at nature of base flow has been clearly shown. Quan-
the base. Figure 14 shows the effect of base titative comparisons of base drag and the total
bleed when the mass injection parameter is very drag both with and without base injection have
small (I = .01). The reattachment point remains been made. For M = 0.9 and a = 0 the computation-
at about the same place as with no injection at al results show the reduction in base drag and the
the base. The flow pattern has changed slightly total drag for several mass injection parameters.
as can be seen by the dividing streamline, however Results are also presented for .9 < M < 1.2 for a
the recirculation region has not changed dramatic- given mass injection rate and the reduction in
ally. In Figure 15, the mass injection parameter,
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base drag and the total drag has been demonstrated 12. Steger, J.L., "Implicit Finite Difference
for this range of transonic speeds. Simulation of Flow About Arbitrary Geometries

with Application to Airfoils", AIAA Journal,
Current computational efforts are directed at Vol 16, No. 4, July 1978, pp. 67T96. _

the numerical computation of base flow at super-
sonic speeds. The encouraging results obtained 13. Pulliam, T.H., and Steger, J.L., "On Implicit
thus far at transonic speeds indicate that the Finite-Difference Simulations of Three-
computational technique presented here shows the Dimensional Flow," AIAA Journal, Vol. 18, No.
promise of providing the capability to predict the 2, February 1980, p~p 19-67.
base drag and hence the total drag both with and
without base injection. 14. Steger, J.L., Nietubicz, C.J., and Heavey,

K.R., "A General Curvilinear Grid Generation
Program for Projectile Configurations",

References ARBRL-MR-03142, U.S. Army Ballistic Research
Laboratory, ARRADCOM, Aberdeen Proving

1. Sedney, R., "Review of Base Drag", U.S. Army Ground, MD 21005, October 1981.
Ballistic Research Laboratory/ARRADCOM, Report
No. 1337, Aberdeen Proving Ground, MD 21005,
October 1966.

2. "155mm ERFB Base Bleed Range and Precision
Tests", Conducted at Proof and Experimental
Test Establishmeit, Nicolet, Quebec for Space
Research Corporation, January 11, 1978.

3. Murthy, S.N.B. (Ed.), "Progress in Astro-
nautics and Aeronautics: Aerodynamics of Base
Combustion", Vol. 40, AIAA, New York, 1976.

4. Dickinson, E.R., "The Effectiveness of Base-
Bleed in Reducing Drag of Boattailed Bodies at
Supersonic Velocities", U.S. Army Ballistic
Research Laboratory/ARRADCOM, Memorandum
Report No. 1244, Aberdeen Proving Ground, MD BASE BLEED
21005, 1960. DIVIDING STREAMLINE

5. Sykes, D.M., "Cylindrical and Boattailed RECIRCULATION
Afterbodies in Transonic Flow with Gas

Ejection", AIAA Journal, Vol. 8, No. 3, March
1970, pp.

BAtSE

6. Sullins, G.A., Anderson, J.D., and Drummond,
J.P., "Numerical Investigation of Supersonic
Base Flow with Parallel Injection", AIAA Paper
No. 82-1001, June 1982.

7. Nletublcz, C.J., Pulliam, T.H., and Steger,
J.L., "Numerical Solution of the Azimuthal- REATTACMENT POINT

Invariant Thin-Layer Navier-Stokes Equations",
ARBRL-TR-02227, U.S. Army Ballistic Research
Laboratory, ARRADCOM, Aberdeen Proving Ground, Figure 1. Schmatic Illustration of Base Region
MD 21005, March 1980. Flow Field with Base Bleed

8. Nletubicz, C.J., "Navier-Stokes Computations
for Conventional and Hollow Projectile Shapes
at Transonic Velocities", AIAA Paper No. 81-
1262, June 1981. Also being published as a
BRL report.

9. Sahu, J., Nletubicz, C.J., and Steger, J.L.,
"Numerical Computation of Base Flow for a
Projectile at Transonic Speeds", AIAA Paper
No. 82-1358, August 1982.

10. Baldwin, B.S., and Lomax, H., "Thin-Layer
Approximation and Algebraic Model for
Separated Turbulent Flows", AIAA Paper No.
78-257, 1978.

11. Beam, R., and Warming, R.F., "An Implicit
Factored Scheme for the Compressible Navier-
Stokes Equations", AIAA Paper No. 77-645,
June 1977.

7



G6

z CUT I

PROJECTIP E OJ1 A

X F E C D

PHYSICAL DOMAIN

nc ? y. 9. 0 )/

C-C(. Y..

COMPUTATIONAL DOMAIN Fi gure 4. Expanded Grid in the Vicinity of the
Projecti le

D0 F G

<0

0 0 0

A B E BODY B A

LOWER CUT UPPER CUT

J. 0.5

Figure 2. Schematic Illustration of Flow Field
Segmentati on 0. 1..

5 6 7 B 1

40Figure 5.Grid Adapated tothe Shear Layer

30

6.0

20- -~------3.017

Y/b

10

0t-1.0DIA 1.15

(2. 5 in)

-20 -20 -10 0 10 20 3

X.D 4.584

Figure 3. Computational Grid for Flow Field ALL DIMENSIONS IN CALI8ERS

Conmputati ons
Figure 6., Model Geometry

8



0 4 1.0 . . . .

0.23~ 
.' N- .. . -

0.3 
025-

0.2

0 4 6 8 75

X. O 0.00 ____- -

5 67 8 9 I0Figure 7. Longitudinal Surface Pressure XDDistribution, 0 5 .9, a = 0, 0
(without Base Bleed) Figure 10. Velocity Vector Field, M : 0.9,

,= , I .01

0.4

3 
1 ..00

0.2

8.1 0.75-

cp 6.0 
/

-8.1 . •

........ ..... ........ - .-0.2 CPS

-8 3 

0.25]

* a 4 6 0.00

X/D 5 6 7 8 9 I0
Figure 8. Longitudinal Surface Pressure x/o

Distribution, M = 0.9, a = 0, I = .13 Figure 11. Velocity Vector Field, M = 0.9,
(with Base Bleed) a = 0, I .07

1.00 
1.00-

---- - .-- - - - _ _ _ _

0.75 
0.75_

Y/D "Y'/.

0.25- 
0.25- 

- . . . .

0.O00 00

XD 5 6 7 8 9 10
XX.D

Figure 9. Velocity Vector Field, M = 0.9, Figure 12. Velocity Vector Field, M 0.9,a = 0, I 0 a= 0, 1 = .13

9



0. 0.88 -1

Y, D /o

Figure 16. Stream Function Contours, M =0.9,
Figure 13. Stream Function Contours. M =0.9, 0, 1 .13

0, 1 0

0.8- 0.151
0.8-

0.4- 0.05-

0 . 26 
0 .0 IS "

0.0 0.0 000I

Figure~~-.0 0.00 0.emFncinCnous05.9 ihBseBed 0.9 0

0.0-0

Y/D 0.15D

a~ 0,.10.0

00.2-

0.05 T -

71 --T 0.05 0.00 0.05 0 .10 0.AS

X/D Figure 18. Variation of Total Drag Coefficient

Figure 15. Stream Function Contours, M 0.9, with Base Bleed, M =0.9, a=0
a=0, 1 =.07

10



0.25-

0.20- 1O0

o 9-0.15-

0.10 I = .13

0.05 *

0.00-
0.8 0.9 1.0 1,1 1.2 1.3

MACH NUMBER (M)

Figure 19. Variation of Base Drag Coefficient
with Mach number, a 0 (with and
without Base Bleed)

0.5-

0.4-

1=0
0 0.3-,' " e

1 .13
0 .2-

0

0.1

0.01 "
o.A 0.9 1.0 1.1 1.2 1.3

MACH NUMBER (M)

Figure 20. Variation of Total Drag Coefficient
with Mach Number, a 0 (with and
without Base Bleed)

11 '



IlI. GRIDS

( b( d t j( n acc uracy dlepend~s on hiav in g properly spaiced grids that are.

mooIt hly varying, an1d not overly skewed. 1)uring the research program consideraI)le

ufirl :was I irtfore (evot ed to the task of grid generation. A )rojecttile grid genera-

t ion iprgran that c:in use either elliIpt.ic or hylperbolic grid generation procedures

was devised. The attached paper, present.ed at. the 1982 Army Numerical Analysis

and Computers Conference, describes our basic grid generation solver.

-6-



ARO Report 82-3
PROCEEDINGS OF THE, 1982 ARMY NUMERICAL

ANALYSIS AND COMPUTERS CONFERENCE

I9

Approved for public release: distribution unlimited. The
findings in this report are not to be construed as an official
Department of the Army position, unless so designated
by other authorized documents.

SPONSORED BY
THE ARMY MATHEMATICS STEERING COMMITTEE ON BEHALF OF

THE OFFICE OF
THE CHIEF OF RESEARCH, DEVELOPMENT AND

ACQUISITION



Grid Generation Techniques for Projectile Configurations

Charles J. Nietubicz
Karen R. Heavey

Launch and Flight Division
U.S. Army Ballistic Research Laboratory

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21005

Joseph L. Steger

Department of Aeronautics and Astronautics
Standford University

Palo, Alto, California 94305

ABSTRACT. The determination of accurate projectile aerodynamics is a
major area of concern for shell designers involved with new shapes and
Ballisticans concerned with developing artillery aiming data. To achieve the
desired goals a research effort has been on going within the Aerodynamics
Research Branch/BRL to establish a predictive capability for determing pro-
jectile aerodynamics. Modern finite difference codes have been applied to the
projectile problem and encouraging results have been obtained in transonic 1'2
and supersonic 3 flow. The generation of good computational grids has been a

prerequisite for achieving these flow field solutions.

This paper describes a versatile grid generation program which has been
developed for standard, hollow and non-axisymmetric projectile shapes. The
grid generator makes use of both elliptic and hyperbolic type partial differ-
ential equation solvers. The code allows arbitrary grid point clustering
along the body suface in areas of anticipated flow field gradients. The outer
boundary can also be arbitraily defined with its own clustering distribution.
The grid is then generated between these two boundarys with either straight
rays or by use of an elliptic solver. For those cases when the outer boundary
is not restricted, the grid can be generated using a hyperbolic solver which
adds the additional benefit of an orthogonal mesh.

The mathematical development of the clustering functions and partial
differential equation solvers are described and a series of grids are pre-
sented which show the versatility of the grid generation program. Grids for
ogive-cylinder-boattail configurations, hollow ring airfoil projectiles and
non-axisymmetric projectiles are discussed.

1. INTRODUCTION. The numerical solution of the Navier-Stokes
4 '5'b

equations has been successfully applied to a wide variety of problems. The
versatility of these methods is inpart attributed to the solution of the
transformed set of differential equations. Using transformed equations the
physical space can be mapped onto a regularly spaced rectangular region for
two dimensional flow. This mapping allows for a wide variety of projectile
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configurations to be solved using the same basic numerical technique. An
example of some characteristic projectile shapes are shown in Figure 1. A
standard projectile shape which consists of an ogive cylinder boattail is
shown in la; a more non-conventional shape but one of considerable interest,
the triangular boattail configuration in 1b; and a tubular projectile
configuration which has been type classified and is currently in the Army
inventory, in 1c. To calculate the flow field for any one of these shapes the
first requirement is to develop a suitable finite difference grid for use with
the equation solver. The grid generator described in this paper addresses
this problem.

Grid generation routines are employed to generate a network of constant C
and n lines in the physical x-y plane as indicated in Figure 2a. Correspond-
ing uniform values of & and n in the computational space define a one to one
mapping between points j,k in the physical plane to points j,k in the computa-
tional plane as shown in Figure 2b. The mapping functions are described, at
least numerically, once jk and nj,k are known in the physical plane as a

function of xj,k and Yj,k. The metric quantities &x, y, nx, and ny needed in

the transformed flow equations can then be determined numerically (see, for
example, References 4-6).

The grid generation program presented here describes earlier work done by
the authors 7 as well as extensions which include a hyperbolic solver and the
addition of more general projectile shapes. The grid generator is modular and
begins with a determination of the body shape. The inner body clustering
routine is then called to distribute points in the vicinity of previously
determined flow field gradients. The next option allows for the insertion of
stings for wake modeling, a rear cut or forward cut. If the outer boundary is
free or unconstrained as is the case for conventional projectiles, the hyper-
bolic solver, which generates a smoothly varying orthogonal grid, is called.
For those cases where the outer boundary is constrained, as is the case for
tubular projectile shapes, the outer boundary clustering routine is called.
Once the outer boundary is specified the elliptic solver is called. The grids
generated up to this point would be planar and sufficient for axi-symmetric
calculations. However for three dimensional flow fields a periodic or non-
periodic grid is generated by spinning the planar grid about the symmetry
axis. A flow chart of the overall grid program is shown in Figure 3.

The following sections of the paper will present some of the details used
for the inner boundary clustering the outer boundary description and interior
grid generation.

2. INNER BOUNDARY DESCRIPTION. The body shape can be input to the
program by cards, file specification or as a set of x,y ordinates. The data
is assumed to be non-dimensional with respect to the diameter or cord depend-
ing on the projectile configuration. Additionally, the code can generate a

parabolic arc or standard class of projectiles such as sharp or blunt, tangent
or secant ogive-nose, cylindrical body, boattail, or spherical cap. Once the
body shape is determined the values of x along the body axis are distributed
by contiguously combining segments of the clustering function
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x x. ( xf
2 3 o ,1 f

x x + a* + b 2 + c Jo. (1)

where +, = (j-jo)/(jf-jo) and j is an index value such that points Jo to if

lie in the interval xo to xf and xj = xo while xj = xf. Equation (1) is

used to cluster xj as a function of j. The user determines the shape of the

clustering function by specifying the initial and final increments of x, that
is

Axo = Xj0+1 - xjo (2a)

Vx = xf x (2b)
f Jf-

Since xo and xf are also specified, a, b, and c are determined

c = {VXf + AX0 - 2 h(xf- xo)}/(h - 3h2 + 2h3 )

b = lax0 - h(Xf- Xo) - c(h 3 - h)}/(h2 - h)

a = xf- x - b- c

* - 0

where h = (jf- jo) .

The amount of clustering at each point is determined by the specified

values of Axo and Vxf. Moreover, because Axo and Vxf are specified, the user

can smoothly patch functions together to form a general clustering function.
One drawback to the clustering function, Eq. (1), is that the function is not
guaranteed to be monotone in the interval. This can happen, for example, if
Axo is too small and Vxf too large.

At this point a sting or forward cut can be added to the previously
described body as shown in Figures 4a and 4b. Again the clustering function
of Equation (1) is used to distribute points along these new boundaries.

3. GRID GENERATION USING A HYPERBOLIC SOLVER. For most projectile
applications the outer boundary is unconstrained and simply needs to be placed
far enough away from the projectile body so as not to adversely affect the
flow field solution. This situation represents an ideal case for a hyperbolic
grid generation scheme.
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Once the body points have been redistributed and the sting or cut has
been determined, a grid can be generated using a hyperbolic solver similar to
that described in Reference 8. Before the actual solver can be implimented
however, the distance to the outer boundary must be specified and either con-
stant spacing in n or some type of stretching function is required. The n
stretching used here is determined by the following relationship

ask = Aso(' + C)k - 1 , k = -, kma x - (3)

Here As0 is the minimum specified grid spacing desired at the wall or inner

boundary. The parameter c is determined by a Newton-Raphson iteration process
so that the sum of the above increments matches the known arc length between
n = 0 and n = nmax for points which have the same value of C.

The governing equations for the hyperbolic solver are obtained by
requiring: (1) the coordinate lines C and n to be orthogonal; and (2) the
specification of a cell volume or area for the two dimensional case. The
condition of orthogonality requires

A4 • An = 0 (4)

The second equation is obtained by specifying a grid cell volume (or area in
two dimensions). Since the grid cell volume is finite the transformation
Jacobian will be greater than one, i.e.,

dxdy = jxy n -x4,1 dtdn (5)

The set of grid generation equations are therefore given in the physical plane
by

&xnx + &yn = 0

x y - tynx J

or in the transformed plane by (6)

X &X n + Y CYn = 0

x yn - xnyt = /J - V

Using local linearization for this set of non-linear differential equations,
the resulting system is shown to be hyperbolic 8 and can therefore be marched
in the n direction.
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The linearized set of differential equations to be solved numerically is
written in vector form as

Ar + B~n (7)

where

LOxoj -yo xoj

= Vo

where X 0, Y0, etc., refers to known conditions.

The set of Equations (7) are solved with an implicit finite difference
scheme which is first order accurate in the n direction(k) and where central
differencing is used in the & direction(j). The resulting set of finite
difference equations becomes

Ar- r . + B(r. - r.) (8)j+l,k+l j-1,k+l )  j,k+l, j,k )  j,k+l
2at An

Rearranging Eq. (8) and setting An = AE = 1 results in

A + +I A +
7 rJ k + B ,k+1 - rj-l,k+l jk+1 + B rj,k dj k+1 (9)

where

(xO+ YOO 1
jk+1 L(,x + x~yo) + V + vo

Equation (9) is now in a form which can be easily solved by inverting a block
tridiagonal matrix with 2 x 2 blocks. The terms x° and yO are central differ-
enced as
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_ Xj+l k- Xj-1 k
'j k 2

(10)

0j k Yj+1,k " Yj-1,k

The terms x0 and yo are obtained from Equation (6) evaluated at the old
n 

n
station(o). That is

x~x0 + y0y0 =0
En n

xV n - XnY {  v

Solving for x0 and y0 with x0 and yo given in (10) yields
SoYin for xn  Yn

x-_- yo V°  xo V°

x0  & 02 0 Y°-0 (12)

The cell volume remains to be specified. This specification is important
since it has the effect of controlling the grid evolution as the solution is
being marched out from the body. The method chosen here is straight forward
and uses the stretching function given by Equation (3). Specifying the
minimum spacing at the wall As0 and the total number of points, Jmax, in

the n direction an array of arc lengths Ask is determined. Since the Ax is

known along the j line, the volumes are calculated by

V = (Ask) (xj+l,k - xj k) (13)

This specification of cell volumes yields smoothly varying grids in the
n direction. Grid volume control is obtained by varying the arc length
distribution Ask and/or surface point distribution. An additional volume

specification approach can be found in Reference 8. A grid generated using
this technique is shown in Figure 5a and 5b for a standard projectile
configuration with sting.

4. OUTER BOUNDARY DEFINITION. For those cases where the outer boundary
is constrained or specified a grid point distribution along the outer boundary
is required. An example is shown in Figure 6 . A part of the grid generation
problem then is the formation of an arbitrary outer boundary. Here this
boundary is built up by connecting contiguous cubic segments, which in the
deqenerate case can be straight lines. Figures 7a and 7b illustrate two
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typical outer boundary curves. In Figure 7a three cubic segments make up the
boundary, n = nmax .  Each segment is formed by specifying the values of x,y,

and angle 0, at the endpoints, where 0 is the angle between the curve and the
x axis. In the example, Figure 7a, 6 = 900, b = 0 = 0', or 180' and 0d =
90° . a b c

The data (x,y,O) at each endpoint determines the shape of the parametric
curves

x = x + alt + a t2

o t ' 1 (14)
y = yo + a1t + a2 t 2

which are equivalent to a cubic

Y h Yo + Y1 (x-xo) + y2(X-Xo) 2 + Y3 (X-Xo) 3  (15)

The parametric cubic is used because the condition-dx can be specified

(segment bc of Figure 7b has this constraint at both endpoints).

The solution for the parameters al, a2 , 1, and a2 can be found in Refer-
ence 7.

The outer boundary curve is thus made up of contiguous cubic segments
starting from the & = 0 boundary. Points are distributed along this curve
either as a uniform distribution of arc length, or as a specified arc length
distribution using the previously defined clustering scheme, Eq. (1). Since
the true arc length is not specified a priori, precise alignment of points
along the outer boundary can be determined only after the cubic segments are
specified and the arc length is computed.

5. STRAIGHT RAY AND ELLIPTIC GRID GENERATION. Once the boundary curves
have been specified and points are distributed on the n = 0 and n max bound-
aries, two types of grid generation procedures can be used.

In the first case, lines of constant & (i.e., the rays emerging from the
body) are formed by simply connecting straight lines from points along n = 0
to points along n = nmax .  The spacing in n along each such line is either

uniform or is determined by the stretching relationship given by Equation
(3). Figures 8a and 8b illustrate a straight ray grid with clustering in n
for a tubular projectile.

In the second case, the grid is generated with elliptic partial differen-
tial equations following References 9, 10, and 11. The grid generating equa-
tions are solved on the specified computational space for unknowns xj,k and
Yj ,k:
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axx - 2oxcn + Yx n '.j 2 p -x + - x )nn & n(16)

aY - 20yn + Yy .J 2 ( y + -y )

where

2  2 2 y2, j=X{Yn _XnY2 n+ Y 3 n x x n+ Y Yn , Y = x +YCj n xn

and

= P e-a(n'n O ) + P e-a(n-nmax)0 m

= Qo e'b(n-n ) + Qm e-b(n-n max)

Here Po, Qo, Pm, Qm, a and b are prescribed clustering parameters. Along the

n = 0 and n = nmax boundaries, xj,k and Yj,k have been previously prescribed.

Along the E = 0 and { =max' which are either vertical or horizontal lines in

the physical space, the following boundary conditions are enforced: either

x is given and y= 0

on a vertical boundary, or (17)

x= 0 and y is given

on a horizontal boundary.

The difference equations to Eq. (16) (see Reference 7) are solved with a
successive line over relaxation (SLOR) procedure. As an initial guess for the
relaxation procedure the straight line ray procedure previously described is
used. For the most part, if coefficients P and Q are large, the SLOR pro-
cedure is very difficult to convrge. Consequently, the algebraic clustering
function, Eq. (3) is recommended.

In the algebraic clustering approach the elliptic solver is used to gen-
erate a grid with- =-Q = 0. The x,y points along a t = constant line are
then redistributed along this line as a function of arc length. The clus-
tering function Eq. (3) is used for this purpose. This procedure works quite
well and provides excellent control of the grid spacing near the body surface.
Further details are given in Reference 7.
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The elliptic solver need not be used over the entire range in C. Because
of the boundary condition, Eq. (17), the elliptic equations can be joined to a
straight ray along any vertical or horizontal boundary line in . Fiqure 9
shows details of such a procedure used for a secant-ogive-cylinder boattail
projectile which also includes a stinq. Here the C-region over the secant-
ogive nose is generated using the elliptic equations while the remainder i,
meshed with straight rays. After the basic grid is formed, the entire grid ic
clustered in n using Eq. (3).

6. 3D GRIDS. The final option available in the code is the ability to
generate three dimensional grids. At present the grids are formed in a two
dimensional plane and then rotated about a symmetry axis. The rotation is
either periodic or non-periodic depending on the grid desired. For cases
where the flow field has planar symetry, such as a projectile at angle of
attack, without spin, a non-periodic grid is generated.

The generation of grids for projectile shapes, with non-axisymmetric
sections (Figure Ib) is accomplished with a series of planar grids. Planes
are generated normal to the projectile axis at incremental values of Ax. For
each of these planes a grid is generated using an 0 type grid (Figure 10).
These grids are then combined to form a three dimensional mesh making sure
that continuity in the x direction is maintained.

7. SUMMARY. A versatile grid generation program has been described
which utilizes general elliptic and hyperbolic equation solvers for internal
grid generation. The flexibility of longitudinal grid point distribution is
obtained with the general clustering functions allowing points to be placed in
the vicinity of flow field gradients. Grid clustering is also obtained near
the body surface for viscous flow field calculations.

A series of grids have been presented which show the versatility of the
code. Grids for secant-ogive-cylinder boattails have been shown using an
elliptic solver, hyperbolic solver and a hybrid elliptic/straight ray solver.
The generation of a grid for a non-conventional hollow projectile shape has
been demonstrated.
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a. Conventional Secant-Ogive Cylinder Boattail (SOCBT) Projectile

79TRIANGUIAR &OATlAIL

b. Secant-Ogive Triangular Boattail Projectile

F c. Tubular Projectile

Figure 1. Projectile Configurations
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IMPLICIT FINITE DIFFERENCE SIMULATION

of

INVISCID AND VISCOUS COMPRESSIBLE FLOW

JOSEPH L. STEGER

I. INTRODUCTION.

It is not always convenient to use the simplified equa-

tions that extract the essential physics from the more com-

plete set of inviscid and viscous fluid conservation-law-equa-

tions. Such a situation may occur if the usually inviscid

outer flow is highly rotational and/or if the viscous layer is

fully separated.

Numerical procedures for solving the system of conserva-

tion-law-equations of fluid flow are not as efficient as, say,

the numerical procedures developed for the scalar nonlinear

potential equation used in inviscid transonic flow analysis.

Of course, the solution of a system of equations requires

more work than the solution of a scalar equation. Equally or

more significant, however, is that. in dealing with a system

of equations one often encounters characteristic speeds (i.e.

eigenvalues) of disparate magnitude (stiffness) and of both

positive and negative sign. These last conditions can make

use of implicit differencing schemes desireable and put rath-

er severe constraints on the choice of spatial differencing

operators.

The purpose of this paper is to review the use of implic-

it finite difference schemes to solve the Euler and Navier-

Stokes equations in primitive variables. In part one of this

paper an approximate factorization (AF) implicit finite dif-

ference scheme for solving the Euler and Navier-Stokes equa-



tions is discussed. The equations are cast in generalized co-

ordinates and partial differential equation grid generation

techniques are used. In this approach the flux vectors of the

equations are differenced as whole quantities and time-accu-

rate or time-like iterative schemes are used to solve the

equations for general boundary surfaces. In part two of this

paper ways of splitting and reducing the governing equations
are reviewed with an aim towards developing more accurate, ef-
ficient, and robust numerical algorithms. Again, implicit

schemes are emphasized. Here, though, the methods are less

developed.

II. IMPLICIT FINITE DIFFERENCE FLOW FIELD SIMULATION.

Over the last several years, a set (1-6] of versatile,

somewhat robust computer codes has been developed for simulat-

ing steady or unsteady inviscid or viscous compressible flow.

The computer programs make use of general coordinate transfor-

mations, numerical grid generation techniques, viscous model-

ing, and implicit finite difference algorithms to achieve a

high degree of adaptiveness to flow conditions. In this sec-

tion a review of this overall methodology is put forth. For

brevity, the discussion here is restricted to two-dimensional

compressible flow, although the basic procedures have also

been applied to three-dimensional flow [2], incompressible

flow (7], and supersonic flow solved by parabolic-like march-

ing [8].

a) Transformed Thin-Layer Equations

As governing equations (1,9] we take the two-dimensional

thin-layer Navier-Stokes equations subject to general coordi-

nate transformation, but kept in conservation-law-form (10,11]

a Q + a F + a G -Re a S (2.1)

where

= (x,y,t), n = n(x,y,t), T = t

-ZIA



and the flux terms are defined as

Pu PuU + Cxp

_1Pv Fi'aJ-1  PVU + Cyp

e (e + p)U - Etp/

- j-1 uV + nxp
GJ

PvV + yp

(e + p)V - ntp

0

S - nX r I + n 2

n~ X a 71 n 72mfxm 2 + 1*ya~Zf3

nx% a umI+vm2m 4 ]+nya n [ um2+vm3+m 5j

where

mI  (2/3)p(2nx un  n y v n )

m2 - U(nyu n + n xv)
m3 - (2/3)u(2, v nXUn)

m4  = 1P, 1  Y 
1 T? n(C2 )

m5 =Pr1(Y 1)'ny n (c 2)

Here p is density, p is pressure, u and v are Cartesian veloc-

ity components, and c is the sound speed. The total energy
per unit volume, e, is defined by

e 1( - -

(- )- p + 0.59(u 2 + v) (2.2)



and the (unscaled) contravariant velocities are defined as

U = Et + xu + yV (2.3a)

V = nt + n + nyV (2.3b)

The metrics Et' 9x, etc., are determined once a mapping
is defined. Usually, a numerical mapping is employed. The
metrics are related to xT , x, etc., by the relations

CX JyfI Cy M -Jx n' t = _XEx - YTty

n x = -JYg, Ily = Jx, n t = -XTn x - Yrny (2.4)

j = x yn - xnY&

Here C varies around the body surface, and n varies away from

the body surface, as indicated in Fig. 1-3. The symbol de-
notes that the scalar or vector quantity is divided through by

the Jacobian, J.
For practical viscous flow calculations, a turbulence

model is needed. The algebraic two-layer eddy-viscosity model
as proposed by Baldwin and Lomax (9] is used. The thin-layer
approximation requires that Re >> 1 and that the body coincide

with an n - const line.

The inviscid part of the governing equations is kept in
conservation law (i.e. divergence) form so as to capture as
accurately as possible the Rankine Hugoniot shock jump rela-
tions. Conservation-law-form is also useful in implicit for-
mulations in that it can lead to cleaner local linearization
formula. Conversely it can cause numerical inaccuracy unless
metric transformation terms are properly dealt with.

b) Comments About the Transformed Equations

The transformed equations offer several significant ad-
vantages over the less complicated Cartesian form of the equa-
tions. Chief among these is that fact that the physical
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boundary surfaces can coincide with transformed coordinate

lines. This feature can be used to simplify the application

of boundary conditions. Body conforming coordinates are also

necessary to simplify the governing equations so as to permit

the use of the thin-layer viscous model. Another significant

aspect of coordinate transformations is that they can be used

to cluster grid points to flow field action regions.

Generally we prefer to use a single transformation of co-

ordinates to map the physical plane onto a uniform rectangular

computational plane. Ideally the body boundary surfaces

should lie on the boundaries of the computational domain. In

this way one arrives at a well-ordered system of finite dif-

ference equations which is sparse, which can be efficiently

solved for, and which is usually amenable to vectorized com-

puter processing. These advantages are so significant that

they are relinquished with great sorrow. The use of trans-

forms and finite difference methods in no way requires such

a simple topology, however. Although seldom used, it is pos-

sible to match or overlap more than one grid or coordinate

system to treat complex geometries or to remove grid related

stiffness of the equations, sketches 1 and 2 illustrate. In

using such multiple grid systems, one will have to deal with a

more complex program and take care not to introduce numerical

instability at grid interfaces.

c) Metric Accuracy

Althpugh the conservation-law-form of the equations is

useful for capturing shocks and helps simplify the local lin-

earization process, its use can lead to inaccuracy in certain

difference formulations. In putting (2.1) into conservation-

law-form, use is made of the exact relation

F[Ey n - a y] + G[- Ex + a x ] = 0 (2.5)

In differencing the flow equations, (2.1), operators 6& and

6 are introduced to approximate 3 and n . If for example,

the metrics y. =  x /J etc. are exactly evaluated, then (2.5)

cannot be equal to zero but is equal to a small error, the



truncation error. This error shows up in (2.1) as a source or

sink, a "metric tare". For a highly stretched grid the metric

tare in differencing (2.1) can be so appreciable as to invali-
date the approximation and even numerical instability can re-

sult.

To avoid this problem steps must be taken as described in

[1,2,5]. As first noted in [i], if Ex/J = y etc. are cen-
trally differenced with the same operators 6 and 6 used to

difference the fluid flux terms, then the difference equations

also exactly satisfy (2.5). Central differencing the metrics
removes the source term difficulty, although flow field solu-

tion accuracy can still be poor if a very poor grid is used.

This process can be extended to three-dimensions (2,51.

As an alternative to the above, good success has been ob-

tained by making what we have termed "free stream subtraction"

[2]. In this approach (2.1) is put into a perturbation-like

form

A+3(-) e A(26

a T+ a P)+ ain(G -Gm) - ea is(26

That is, the "metric tare" is approximately subtracted off.

This works on a well generated grid because the metric tare is
usually only severe in the far field.

If one is willing to accept a "weak conservation-law-

form", the equations could be modified as (here for inviscid

flow only)

AA
a + a E F + a 11G - F(3 Eyn- ayO) + G(-a x 11+a ~x E H (2.7)

The right hand side source term H should not effect the shock
strength or location, but it will contribute diagonal terms

which by themselves can be weakly unstable.

d) Grid Generation

To take advantage of the transformed governing equations

it is necessary to generate a smoothly-varying body-conforming

grid. While this is a difficult task in general, a variety

of algebraic (c.f. 12-14] and partial differential equation



[c.f. 14-22] schemes have been developed which at least handle

the two-dimensional grid generation about a single body in a

fairly automatic way. By automatic is meant that if the user

carefully specifies grid points and clustering information

along the mesh boundaries, the grid generation schemes will

usually generate a smooth nonsingular interior grid. Of

course the grid may not be as optimum as one would like, but

the results are likely to be satisfactory. Moreover, progress

is being made in treating more complex two and three-dimen-

sional configurations.

The grid generation methods based on solving partial dif-

ferential equations have always seemed especially appealing.

This is because the numerical expertise one develops for sol-

ving the flow equations is directly applicable to the grid

generation task. Figures la and lb show an example of a grid

using elliptic partial differential generating equations as

taken from [23], while Figs. 2a and 2b show a grid obtained

from hyperbolic partial differential generating equations as

taken from (22]. In both cases the grid lines are orthogonal

to the body and the grid spacing at the body is uniformly con-

trolled. The grid generated with hyperbolic partial differen-

tial equations is ideal for many external flow configurations,

it is essentially orthogonal throughout.

e) Difference Equations and Numerical Algorithm

An implicit, noniterative, time-accurate finite differ-

ence algorithm has been used to solve the transformed govern-

ing equations. Although viscous flows are ideally treated

with an implicit scheme, the same numerical algorithm is used

for inviscid flow calculations as well. By doing so one can

base the time step size on accuracy considerations and not be

overly concerned about highly clustered or distorted meshes.

Computer programs that use explicit or semi-implicit (e.g. ex-

plicit in the streamwise direction, [c.f. 24]) schemes can be

more efficient for a given problem, but are generally not as

versatile.

NOUN"



The Beam-Warming delta form approximate factorization al-

gorithm (25,26], with various adaptations, has been used to
solve the thin-layer equations. It is remarked that similar

numerical algorithms have been developed independently, and in

aerodynamics applications the contributions of Briley and

MacDonald (27,28] are notable. For either trapezoidal or

Euler implicit temporal differencing the delta form differen-
cing scheme for the thin-layer equation is given by:

(I + hdAn _ J- 1 CihV AJ)(I + hS n - JC i hV A J

Re-lh~j-iJMn) (Qn +l - n At(6Fn + n - e- sn

-CehJ- 1 [(V A )2 + (VA ) 2 ]Jn (2.8)

AtHere h = ' - 0 or 1 for first or second order accuracy,
and ci, Ce = 0(1) with ci > 2c, are added numerical dissipa-

tion terms. The operators6, 6 are three point central dif-

ferences e.g.

Fj+ 1 - F j_

while 7, A are conventional backward or forward operators,

e.g.

~~V Q - Qj - Q-I
Sj -1.

Finally, T is the midpoint operator

s S s k+h -s k'
n An

where S itself contains midpoint differences so the viscous

term uses three points. The coefficient matrices A, B, and M

ia --.4



result from local linearization of the flux terms, with A and
B the Jacobian matrices (aF/3Q and [2G/ Q] while M contains

derivative operators from linearizing S.
The difference equations given by (2.8) are readily

solved with an alternating direction-like sequence in which

one inverts all block tridiagonals in & followed by all block
tridiagonals in n. Boundary conditions can be imposed implic-

itly, approximate implicitly, or explicitly if the implicit
stability range is not upset. These and additional details,
including use of higher order space differencing, are de-

scribed in [1-7,25,26].

f) Results

The numerical scheme described previously has been used
in a variety of steady and unsteady state flow problems as re-
ported in [1-7,23]. The simulation of aileron buzz represents
a typical application of the code, so a few such calculations

are presented below. These results are reproduced from [4].
In the buzz calculations a rigid aileron is allowed a one

degree of freedom motion about its hinge line as described by
the equation

I a6 = H(t) (2.9)

Here I is the aileron mass moment of inertia about the hinge
a

line, H is the aerodynamic forcing term, and &a is the aileron
angle of deflection, see Fig. 3. Equation (2.9) is solved

along with the thin-layer equations on a C-type grid in which
the grid deforms to follow the aileron motion.

The results of a numerical simulation for a NACA 65-213

a = 0.5 airfoil section are indicated in Figures 4 to 8. Ex-
perimental data, albeit with some three-dimensional effect, is

available on this airfoil from the tests of Ericksgn and
Stephenson [29] in which they mounted the wing of the P-80
from the sidewall of the Ames sixteen foot tunnel.



According to the experiment, at M. = 0.82 and a = -1 deg,

the aileron could be restrained at an angle near zero, and

when freed, would buzz. In the numerical simulation the ai-

leron was initially deflected to 4 deg, it would, on being

released, buzz as indicated in Fig. 4. The computed frequency

of 22.2 Hz is in good agreement with the experimental value of

21.2 Hz. However, in the numerical calculation, the aileron

deflects ±11.1 deg about the angle -1.1 deg, while the corre-

sponding experimental values are ±9.2 deg about -3 deg.

In the numerical calculations at a slightly higher Mach

number, M. = 0.83, the aileron does go into a buzz cycle when

freed from a zero deflection position. An essentially steady-

state solution was used as initial data. The build-up of ai-

leron deflection angle as a function of time is indicated in

Fig. 5. After four cycles, a quasi-steady-state is reached

and the aileron oscillates at 22.7 Hz.

At a lower Mach number, M = 0.79, the aileron motion

damps to a neutral value even though the flap was initially

deflected 4 deg. Data from this calculation are displayed in

Fig. 6.

Several frames from computer-generated film strips show-

ing Mach contours are shown in Figs. 7a-7c at selected times

for a = -1 deg and M, = 0.82. Contour levels of M = 0.2, 0.4,

0.6, 0.98, 1.0, and 1.02 were used in order to illustrate both

the separated flow regions and sonic lines.

Finally, for the aileron held fixed at a higher Mach num-

ber, M. = 0.85, we find that the viscous flow does not reach

a steady state but buffets at a frequency of about 26.6 Hz.

This is indicated by the unsteady hinge moment coefficient, CH

shown in Fig. 8. If the aileron is then released, it no long-

er oscillates in a simple sinusoidal motion. Viscous effects

appear to be much more dominant and change the frequency and

amplitude of the aileron motion. Similar type motion, but for

a different airfoil, has been observed experimentally (30].



III. FLUX SPLIT SYSTEMS.

In a series of recent papers (31,26,321 splitting of the

spatial flux terms of the conservative form of the Euler equa-

tions was proposed. The flux terms are usually split based on

the positive and negative eigenvalues (characteristic speeds)

of their appropriate Jacobian matrices. Nonconservative

schemes based on the same principle have previously been pro-

posed (33,34], and have recently been developed for aerodyna-

mic applications (35-37]. Related older schemes have been

identified and others are under extensive development [c.f.

38].

Splitting the flux vectors (conservative form) or coef-

ficients matrices (nonconservative form) based on the sign of

their eigenvalues allows the use of upwind (either backward or

forward) spatial differencing schemes. Without use of such

splitting only central spatial differencing can be used to

approximate the Euler equation flux derivatives, except of

course, for those spatial directions in which the coordinate

velocity exceeds the sound speed. Upwind differencing schemes

can offer some advantages over central differencing insofar

that they are mcre dissipative, in some instances can follow

the physics better, and can lead to new implicit approximate

factorization schemes. It is this latter property which is

the subject of this section.

The aim of the conservative form plus and minus flux

vector splitting is to recast the inviscid portion of the

equations into

+ aF + + aF + + G= Viscous Part (3.1)

where Cartesian coordinates are used for illustration, i.e.

(2.1) with x = 1 = n and y = 0 = . The Jacobian matrices

3F+/aQ and G+/aQ are constructed to have positive real eigen-

values while aF-/aQ and aG-/3Q are to have negative real ei-

genvalues. The initial development of F and G relied on the

fact that the Euler equations are homogeneous of degree one

and proceeded as (illustrated for F)



F = AQ A = ;F/3Q

= SAS Q

= S(A + + A-)S Q with 2A -+ = (AtIAj) (3.2)

= S S -1Q + SA S Q

=F + F-

where S is a matrix of the eigenvectors of A while A is a di-

agonal matrix of its eigenvalues. This approach doesn't work

exactly as desired because the crucial eigenvalues are those

of the Jacobian matrices DF+/DQ and 3F-/;Q, and aF-/ aQ

SAS -
. Nevertheless the eigenvalues of aF-/3Q have the pro-

per signs if not the proper magnitudes [39].

A general formula for the flux vectors F-, G- is given

by [32]:

2(y-l)X1 + X3 + X4

2(y-l)7lU + 7 3 (u+ckl) + X4 (u-ckl)

_ 2(Y-1)Xv + X3(v 2+ 4(v-c 2  (3.3)
II 2y (-) 1v X3(v 2 ) +X 4(vc 2)

(u 2 +V2 ) + 3 [(u+c~l) 2 + (v+ck 2 )2]

X4 i-l 2+ 21 + W
+ - [(u-cl)+ (v-c 2)2 I

+

where k1 and k2 =1 or 0 for F- or 0 and 1 for G-

(3 -y) ( X3 + X4) c

WII - 2(y - 1)

and (in the present application)

X xi X ix . (3.4)

I,, , , 1



For example, the eigenvalues Xi of F are u, u, u+c, u-c, and

F is defined from 3I using

2X1 = u J ful

2X 3 = u + c ± Iu+cI (3.5)

u -+ u-
+

Similar relations hold for G with v, v, v+c, v-c. In gener-

alized coordinates F as given by (2.i) has eigenvalues [40,1]

U, U, U ± Ovx2 2 * and F is derived from (3.3) with
++

2A - = U ± Jul U u + yv +t

2A 3 = U + a I U+FJ a - C~x2 + Cv2  (3.6)

2X 4 = U- a ± IU- l

where k1 = Ex/2 + y2) and 2 =x + Ey

A previously identified [32] difficulty with the above

formulation is that F and G- have discontinuous derivates

because IXI has a discontinuous derivative. As discussed in

[321 it is necessary to smooth JAI, and this is neatly accom-

plished [41] by replacing (3.4) with

2Xj = X+ (3.7)

where c is small. As indicated in Fig. 9, this gives a

smooth X variation which asymptotes to the old formulation.
It a1tso adds numerical dissipation whenever an eigenvalue

changes sign. In numerical tests on a one-dimensional tran-

sonic nozzle the use of the new formulation (3.7) in place of

(3.4) gives a smooth sonic line result that was not previous-

ly obtained, see Fig. 10.

, . .. . - . . .,..-,U N - .



Other split flux vectors have been proposed. For exam-

ple, Bram van Leer (41] has suggested the form (here given in

one-dimension)

u < c

+ 2

f PCM+l) /4 -(3.8)

F+ C l [ Y ~(y-1)fM+2(yl) and F F F

u > C+

F = F and F = 0

This splitting, devised from different arguments than (3.2),

is naturally smooth at points where the eigenvalues change

sign. In the above test problem use of the van Leer flux

vector gives the pleasing result shown in Fig. 11.

Because upwind differencing schemes generate lower or

upper triangular matrices, flux split implicit algorithms can

be devised for the inviscid equations which are efficiently

inverted. For example, a second order fully implicit dif-

ferencing of (3.1) is obtained using three point upwind dif-

ferencing in space and in time

(6 Q + 6 bF+ + aXF + 6 bG+ + a G-] k  0 (3.9)
x x yG

where

bQ n + 1 . (3Q n +  - 4Qn + Q n-1 )/(2At)

6Fj = (-3Qj + 4Qj+l - Q.+2 )/(2Ax) etc.

With use of local linearization to avoid iterative solution

of the nonlinear terms, and with use of approximate factori-

zation to simplify the inversion work, a delta form implicit

differencing of (3.9) can be obtained as



(I + MbAn + h B n) (I + h6fAn + h6f B) (Qn+l - Qn) =x + y + x - Y - (3.10)

-h(6bF+ + 6fF- + 6 bG+ + 6fG-)n + 1/3(,n Qn-l

x y y

8F
+

where h = (2t/3) and A+ = Q , etc. Equation (3.10) can be

put into its obvious algorithm form as

hb n b n
(I + + h6 B+)AQ* = RHS (3.11a)

fn fn
(I + hMx A + h Bn)AQ n = AQ* (3.11b)

Qn+l =Q + AQn

where RHS represents the right hand side of (3.10). The first

step of the algorithm (3.11a) requires a lower triangular in-

version (i.e. solution) with 4x4 block elements. The second

step, (3.11b), requires an upper triangular inversion. Both

such solution processes are simple compared to the block tri-

diagonal inversions required with (2.8) when applied to only

inviscid flow. The standard solution scheme (2.8) is still+ ±

competitive with (3.10), however, because A and B are much

more costly to form than A and B.

Various other implicit algorithms are possible with flux

splitting [c.f. 32]. If the thin-layer viscous terms are in-

cluded the following differencing has merit

(I + h(6 bAn + 6 Bn + Mn)][I + hfAn] (Qn+l _ Qn)
x + y y

(3.12)

-h(6 bF+ + 6 fF + 6yG + ES)n + ( n _Qn-l)/3
x x y y

where h - a)tt = 0 or 1 for first or second order ac-
3

curacy, and 6y and 7y are the central difference operators de-
fined previously. A solution algorithm for (3.12) entails

block tridiagonal inversions carried on with a forward sweep

in x, followed by a simple backsweep in the x-direction.



The schemes given by (3.10) and (3.12) have not yet been

applied to as complex geometry situations as the Beam-Warming

class of algorithms represented by (2.8). The scheme (3.10)
has been used on stretched grids to compute inviscid transonic

flow about a biconvex airfoil; however, thin airfoil boundary
conditions were employed. A typical solution is shown in Fig.
12. This result was computed without the benefit of the tran-
sition smoothing, (3.7). A viscous supersonic wedge flow cal-
culation using (3.12) is indicated by Fig. 13. This result is
an old one that used an earlier flux splitting, namely (for F)

2X+ = u + lul 2X_ = u - lul

2X3 = u + Jul + c 2X = u-lu

2 = u + lul 2X 4 = u - lul - c

In this case, the exact geometry was fitted using shear trans-

forms and a very fine grid was needed to resolve the viscous
layer. A preliminary version of the turbulence model de-
scribed in [9] was used in the calculation.

IV. REDUCED SYSTEMS.
Time-accurate or time-like iterative methods are fre-

quently used to obtain steady state solutions. If only a

steady state solution is sought, however, one can attempt to
precondition and otherwise try to reduce the system of partial
differential equations to obtain a more efficient solution.

Not surprisingly, certain reductions of the Euler equations
can begin to take on features of classical aerodynamic formu-

lations. One such formulation [42], discarded several years
ago in favor of the schemes discussed earlier, is being re-
vived because of its excellent computational efficiency for

steady rotational subsonic flow.



The nonconservative form of the Euler equations can be

written in the matrix form

A3Q + Ba = 0 (4.1)
x y

where

U 0 P-  0 v 0 0

v 0 o u0 00v 0

P YP 0 u 0 0 Ypv

If the x-axis is aligned with the mean flow direction, one can
perburb A and B about a reference state, o, with

U , Uo , V 0, p = Pot p = Po. (4.2)

Then (4.1) can be put into the perturbation form

where a

C- (Ao B - ! a (4.4a)

or

C- .A t(Ao- ) x + (W o-)a y (4.4b)

The c-formulation (4.4a) is obtained by multiplying (4.1) by
and placing -Ai in the perturbation form X-11 JX-oi-o -

(K 1% - 1-1t). To obtain the c-formulation (4.4b), X and B

are put in perturbation form and the equations are multiplied

by r1 . The (4.4a) formulation has been successfully used in

numerical calculations (as described later) and requires fewer

J.



derivative operators than the (4.4b) formulation. The (4.4b)
formulation is not singular at a sonic or stagnation point,

but it has not been attempted in numerical calculation.

The importance of (4.3) is the simplicity of the left
hand side. As indicated in (4.2), v. is taken as zero so

A0  B0 has the reduced form

A B 0 0 -Pu0 0 (4.5)

0 0 00 0o)

0 0 0

0 0 -P0 u0c0
2 o00  0 /

where l = 1/(C0
2 _ Uo2 ) and c is the reference sound speed.

The eigenvalues of AoZ"o are:

c
am 0 0 , 0

U -Co 0

For subsonic mean flow the nonzero eigenvalues are imaginary,

for supersonic mean flow they are real. Thus the left hand
side part reflects elliptic or hyperbolic behavior as u is

less than or greater than co .

As the above matrix makes clear, only the third and

fourth equations of the system (4.3) are strongly coupled.

Written out we obtain

a xp - pouo*o yv - Ci (4.6a)

23u+ Co 0 a y
v  c 2  (4.6b)

a + (P0u)-a yp a £ 3  (4.6c)

2
- Po.oCo0 oyv - £4 (4.6d)

- '-



Thus if ci are known from some previous estimate, we can solve

equations (4.6c) and (4.6d) for v and p. Once v is obtained,

p and u are obtained from (4.6a) and (4.6b) via simple inte-

gration. Better estimates of ei can now be formed and the

process is repeated until iterative solution of (4.1) is ob-

tained.

The equations (4.6c) and (4.6d) form an elliptic system

when u0 < c0 . This is readily apparant as the eigenvalues of

( 0o~ 2. (U0 % / (4.7)

are imaginary as indicated previously. The equations, which
if linearized by setting ei = 0 could be transformed into

Cauchy Riemann equations, can be differentiated to form a

Poisson equation with either v or p as the dependent variable.

For example

fl-(Uo /C0 )2axx
v + a yy v [(l-(u o/C ) 2(aXE3-(Pouo)ly Y

(4 .8 )

Once v is obtained, p is found by integrating (4.6d). If

u° > Co, (4.8) represents a wave equation and the eigenvalues

of (4.7) are real.

The (4.4a) formulation using (4.8) to update v has been

successfully applied in two-dimensions [42] to compute rota-

tional subsonic flow. Typical results for a lifting biconvex

airfoil are shown in Fig. 14 for the incoming shear flow (jet

or defect) profiles as depicted in Fig. 15. Computational

times for a fully converged solution on a 59x90 grid averaged

18 seconds per case on a Control Data 7600 computer.

The algorithm using (4.8) is robust. For inexplicable

reasons, elimination of v from (4.6c) and (4.6d) and solution

of a Poisson equation for pressure, p, has always been a dis-

appointment. The failure is believed to be keyed to the

boundary condition treatment.



The above ideas readily extend to three-dimensions al-

though no calculations have yet been undertaken. The three-

dimensional perturbation form of the equations is given by:

a 5+ -loayQ + X-la E (4-
x 0 y 0 02z

In this case, v, w, and p are strongly coupled through

a xv + (P0u o)-ayp = £3 (4.10a)

a + (P 0 Uo) az p = £4 (4.10b)

a xp -(P0 U0c0 2 0 )(3 yV + azW) = £5 (4.10c)

Once v, w, p are obtained, p and u are found by integration of

Sxp - £1 + (Po u 00)( v + a zw) (4.10d)

a - C 2 - (co 2 o)(ayV +zw) (4.10e)

Equations (4.10a) to (4.10c) can be differentiated so
that v and w are eliminated to form a Poisson equation in

pressure, that is

El-(U 0/C0 ) 
2
]a + a g + - g (4.11)axx + yyp z

Alternately, as this was unsuccessful in two-dimensions, pres-

sure can be eliminated and vector potential like equations can

be formed for v and w. In particular

2

[l-(u o/Co) 1] xx v + a yy v + 3 yz w - f 1 (4.12a)

[1-(u 0/C0 ) 2 xxw + 3 zzw + 3yzV = f2 (4.12b)

'a.



Here again, if (4.12a) and (4.12b) are solved for v and w,
then p, p, and u can be found by simple integrations of

(4.10c) to (4.10e).

Although not discussed previously, one can draw some in-

teresting analogies between (4.10a) - (4.10c) to the incom-

pressible irrotational relations

a U+av + azw  0 (4.13a)

a yW - azv - 0 (4.13b)

a U -w - 0 (4.13c)

v - 3yU = 0 (4.13d)

The potential

I U, Qy v, - w (4.14)

satisfies (4.13b) to (4.13d) and from (4.13a) gives the

Laplacian

xx +  -yy +  zz 0 (4.15)

The particular vector potentials *, X defined as (43]

u J Jy + Xz, v M -*x' w = -Xx (4.16)

satisfies (4.13a) and from (4.13c) and (4.13d) give

1'xx + *yy + X yz 0 (4.17a)

xx + Xzz + *yz -0 (4.17b)



The analogies between (4.11) and (4.15) and between

(4.12) and (4.17) are completely transparent and extend even

to the boundary condition treatment. Curiously, (4.15) is

elliptic, but (4.17) is not strictly elliptic according to the

definition of (44]. Moreover, the system of equations com-

prised of (4.13a), (4.13c), and (4.13d) is not elliptic. This

latter system presents no difficulty to numerical solution,

however, and conventional numerical algorithms such as succes-

sive overrelaxation have been successfully applied to the sol-

ution of (4.17). It is conjectured, therefore, that one could

devise rapid solution procedures for (4.12) and (4.10c)

through (4.10e) since a similar approach worked in two-dimen-

sions.

The perturbation schemes described here have only been

used in numerical calculation of pure subsonic two-dimensional

flow. Extensions to pure supersonic flow appear to be

straight forward but such is not the case for transonic flow.

The isentropic primitive variable approach of Martin [45] and

the stream function sonic line treatment of Hafez [46] may of-

fer guidance, however. Note there is no problem bringing the

essentials of the perturbation formulation into conservative

form. For example

a + A 1 B 3[ (K do 1F)+y N_1G)] (4.18)

where the matrix N relates Q to Q via

N = a
-Q

and 0, F, G are the Cartesian form of the conservative fluxes

of (2.1). The left hand side of (4.18) is identical to (4.3).

Rather than attempt to extend the method of this section

into the realm of transonic flow, it may be better to use this

procedure as the outer part of a chimera (i.e., multiple con-

stituent) algorithm. For example, the semi-flux-split scheme

(3.12) can be used to solve supersonic and subsonic flow, and

it is very efficient for supersonic and high subsonic regions.



The scheme of this section is very efficient for subsonic

flow. A combined chimera method for transonic flow simulation

about an airfoil might entail use of the schemes (4.3) and

(3.12). The outer subsonic flow would be solved with (4.3),

the inner high subsonic and supersonic flow with (3.12), and

both solution regions could be slightly overlapped [42,47] for

iterative efficiency.

V. CONCLUDING REMARKS.

The successful simulation of the flow about really com-

plex geometries will require further advances than those dis-

cussed here. Nevertheless, the combination of implicit fi-

nite difference procedures, generalized coordinates, and nu-

merical grid generation techniques is proving to be effective.

The overall methodology can be built on, and improvements in

computational efficiency can be expected. In this overall

development it would seem that the next crucial step is to

develop efficient chimera schemes - that is, modularly coded

numerical schemes that blend or overlay more than one grid

system and more than one type of governing equation or numeri-

cal algorithm.
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Sketch 1. Showing patched grid system with all body surfaces

mapped to grid outer boundaries. This approach requires in-

terpolation along boundaries.

-* Nb-Y -V
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Sketch 2. Showing overset grid system. In this approach var-

ious interior points must be turned-off and interpolation is

required at grid interfaces, however, grids are easy to gener-

ate and have minimum distortion.
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DETAIL NEAR BLADE

Fig. 1. Cascade grid generated using elliptic partial differ-

ential equations.
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OVERVIEW
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DETAIL NEAR AIRFOIL4

Fig. 2 Grid generated about airfoil using hyperbolic partial

differential equations.
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Fig. 3. Schematic defining geometric quantities.
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FOR FINITE DIFFERENCE SOLUTION OF E.XTERNAL FLOW

Joseph L. Steger
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Stanford University, Stanford, CA 94305

I. INTRODUCTION

Finite difference practitioners frequently make use of arbitrary coordinate transforms

and introduce body conforming curvilinear grid systems. The coordinate transforms may

either be built in globally in mappings from physical space to computational space, or

they may be built in locally in the finite volume sense. The advantages of using body

conforming curvilinear grids in finite difference flow field simulation include the following:

Body conforming grids simplify the application of boundary conditions insofar that grid

* "lines will coincide with the body boundary. Curvilinear grids may be clustered to flow

field action regions to :mprove solution accuracy. Body conforming grids may allow

simplification of th ; rning equations. Such grids can also help maintari a well-ordered

system of algebraic equations suitable for vector-computer processing or approximate-

factorization-implicit techniques.

The task of generating suitable body conforming curvilinear grids is not an easy one.

..-- The grids should be generated in an automatic manner requiring minimum user input.

Yet the user will wish to maintain considerable control of where points will be distributed

along the boundary surface and how they are clustered in the interior field. Moreover the

grid must be tailored in some degree to the numerical algorithm because some numerical

algorithms are more sensitive than others to grid smoothness, skewness, and stretching.

Although use of body conforming curvilinear grids can offer the advantages cited

previously their careless application can lead to difficulties. This is particularly true when

the governing equations are differenced in conservative (i.e., divergence) form and transform

metric terms are brought inside the difference operators. Then as noted above, some

numerical algorithms are far more mesh-sensitive than others, and numerical accuracy

*.4
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and computational efficiency can be affected by how rapidly a grid changes or how far

- away it is from orthogonality.

The subject of this paper is not the generation of body conforming curvilinear grids;

* . rather it is the use of such grids in finite difference applications. In Section II of this paper

- the difficulties of solving the transformed equations in conservative form are discussed.

-In Section I various experiences are cited to suggest that considerable computational

- efficiency can yet be gleaned by further improvements of the grid. Concluding remarks

• follow in Section IV.

.11. CONSERVATIVE DIFFERENCING OF TRANSFORMED EQUATIONS

a) Background

. In aerodynamics applications we frequently try to difference the governing equations

,in conservative or divergence form. Conservative form differencing is preferred because

.it best maintains the correct weak solution of the governing equations. Thus if a shock

-wave is captured by simply solving the difference equations (as opposed to fitting a shock

wave discontinuity into the difference equations), then the speed, location and jump of
-the shock can only be correct if the partial differential equations are in conservative

" form. The difference equations must also satisfy the divergence relation, at least in the

vicinity of the shock. The couservative form of the equations may also be desirable for its

numerical properties. For example, nonlinear equations in conservative form can be more

] cleanly linearized about a previous state than those in nonconservative form. This can

- be advantageous in implicit marching procedures in order to avoid iterative solutions of

- nonlinear equations with each marching step.

- Let the conservation-law-form of the equations be represented in Cartesian coordinates

-as

, :. O, g2 + a.F + Oa 0 )

LINES TO
BOTTOM

' where for simplicity only two dimensions are considered. This strict divergence form of

-the equations can be maintained for new independent variables

22
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S- Y (, ,) (2)

t.

as (C.I. III)

+ OCP + 6 = o a}(3)

where

QJ1Q (4a)

F , I(= Q + GF + CC) (46)

= J'-(qQ + ,.F + qC) (4c)

and where J is the transform ;acobian

"- For a thermally perfect gas Q, F, and C may represent the Cartesian inviscid and

viscous flux quantities for conservation of mus, momentum and energy. For example, for

inviscid flow
P .( <pu+ (Put

PV ,tis PQ= F-= ptp =~ (6)

wee is fU(e + A) (Ae + p)
where p is fluid density, I, v and w are Cartesian velocities components, p is pressure and

--11 e is given by e ,= (-I - l)-I,+ jp(U2 + 92 (7)

Alternately in the case of compressible potential flow

.Q = p, r = ,,q , G --p ,l, (8)

and p = p(O) is determined by the Bernoulli relation.

Although the transformed governing equation% (3) are more complex than (1), apparent

simplicity is returned to the inviscid flow equations with introduction of the unscaled

3
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- -~ coftravariaint velocities

U A+G lu GU-1 (0.)

For example, the transformed conservation of mass relation is given by

a,(pJ) +- a(Pu/J) .4- D(PV/J) =0 (10)

and does not appear too much more complex than the Cartesian form. Moreover, if 9 =0

coincides with the body boundary surface then flow boundary conditions such as tangency

and no slip are especially elegant and are expressed as

41V=0 (tan gency) (11)

't U, V %W (no slip) (2

To motivate further discussion is it noted that the transformed equations (3) can be

derived by first performing chain rule expansions on the terms of (1). For example

F& - C.Ff + ,JFe + rxF, (13)

where r. 0. The equations are then scaled by J-1 and metrics are brought baek inside

the operators using differentiation by parts. For example,

~e4 and so on. Terms are then collected to give equation (3) as well as combinations of metric

terms that will be found to be zero. That is

+ac+ 8.t: Qte(0Y4-La&)f ",Q)j + 480( + ~~~1 (4

a-00

4



All such right-hand-side combinations of metric terms are round to be zero because of the

relations
.. al, = i, I.IJ = -I(

I,-z1 zq (is)
C -. .- i . , :r q z . - . :

for example,

Ffo(() + 09 + - F(it. - f) -0 (1)

and so on.

The point of all this is that the metric quantities have been worked inside the differential

operators. This is possible because combinations of metric terms such as

+ 0 -- 0 (17)

are found. Note also that unlike equation (1), equation (3) has been scaled by J-1.

b) Metric Differencing

The fact that the transformed governing equations now have the metrics brought

-N, inside the difference operations can lead to numerical errors. This is because the metric

variation is now being differenced along with the Bow field quantity. In typical external

aerodynamics applications, the low quantities far from the body are essentially constant

or uniform. Difference terms should therefore be zero, and this will be true if equation (1)

" I differenced on a uniform mesh. For a nonuniform mesh the transformed equations will

not yield zero in regions of constant Bow, however, unless proper differences of the metric

identities are zero, that is from (14)

q(M.J) + q(N./j) -0 (18.)

5O(C,/J) + (,/j) - 0 (186)

qi(C/I) + 8i9l) + d,(i/J) 0 (18)

where 6j, 5, and 5, are the difference operators used in the solution algorithm for (3). If.

for example, the metrics &,J, etc., could be exactly evaluated (as they can be in, say,

.•°
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a cylindrical coordinate), then equations (18) will not be exactly zero but will be zero

to within the order of accuracy of the operators 6j, etc. For a rapid variation of the

metrics and for large grid spacing-& phenomenon frequently occurring in aerodynamic

applications in the far field-this error can be very appreciable. It can, in fact, add a

error source to the equations that can overwhelm the solution accuracy. However, if the

metris themselves are differenced such that equations (18) are exactly zero, then this error

is controlled. For example, in two dimensional steady flow relations (18a) and (18b) become

using (15)

664 - y( )- 0 (19a)

-6&(z%) + ,() = 0 (lob)

If , and vC are differenced as 6,y and 64y where 6, and 6( are the same difference operators

'A .used in the solution algorithm for (3), then the metric identities (1) exactly difference to

zero. The importance of satisfying these relations was pointed out in [21 in which three

point central spatial differences were used in the solution algorithm 131 as well as for the

7"q metric quantities.

" In three dimensions it becomes more difficult to exactly difference the metric identity

relations. For steady or simple unsteady grid motion, Pulliam and Steger [41 introduced
• .an averaging process for the steady terms that works for any difference operator that can

be differenced in parts as

S(uv) In (pVX6u) + (FVX6) (20)

where p is an averaging operator. An example of (20) is given by

VUc = (pt)(Vu) + (#V)VV (21)

where VU - uj - uMi,, p !Lqi=L, etc. In extended work Thomas and Lombard [S1

correctly treated the unsteady metric variations and cleverly simplified the calculation of

the spacial metric terms. They also coined the term 'metric conservation law" to describe

the fact that the metric relations (18) must be difierenced to be zero.

As one introduces higher order central or one-sided spatial difference operators, or

uses predictor-corrector schemes, it becomes more and more difficult to correctly satisfy

6
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the metric relations (18). This ultimately lead (41 to an approximate cancellation method

that relies on solving the differenced equations in a simple perturbation form:

610 - .) + SOli - '.) + 6q(0- 10 (22)

In the far field F- ., etc., and any consistent difference scheme is satisfied regardless of
bow rapidly the metrics vary. When F appreciably varies from F., ete., it is assumed that
the grid is sufliently smooth and refined so tbat the metric error is no greater than the

error of differencing the flux terms. In external flow applications this process his worked

quite well, including successful use with the potential flow equation (cf. 161).

A direct means of cancelling the metric errors is the straightforward one of subtracting

the error, for example, for a stationary grid

*Q+ lt+ 6,7- F(6fg,, -. 5qVC) + C(-4crq + 6,,zc) (23)

This puts the equation into a weak conservation law form that in principle does not degrade

the shock capturing properties of the scheme. It could, however, contribute to a mild

source-term weak instability that would be alleviated somewhat by spatial averaging of

the right-hand side F and G flux terms. These right-hand-side flux terms can also be

approximately evaluated at on in somewhat duplication of (22) above.

The whole problem of differencing the metrics has been avoided in 17-101. In this

approach the Cartesian equations are expanded by chain rule and then simply left that

way. That is

8Q+ fta(Q + q,,, + Ga(F + 9,8,1F + (48MG + q9,F =0 (24)

' tand is called the quasi-linear form by Shamorth and Gibeling 1101 or chain-rule conservation

form by Hindman [91. Although the Jacobian is never divided through, this form is

somewhat similar to the weak conservation law form (23) just discussed, particularly so

with averaging of F and C. It should also properly capture the correct jump relations.

The chain-rule conservation form may well be a good compromise to differencing the

transformed equations in conservative form. For certain algorithms (e.g., Bearn-Wanning

(31) it appears to require more work than using the strong conservation law form with free

stream correction.

4
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c) Perturbation Form Digression

The above idea of subtracting out the free stream metric variation, equation (22),

* discussed previously is a special case of perturbing the solution about a known function

which in some sense is also a nearby or approximate solution. Let Q = Qo + q where

-.,: *Qo is the nearby or approximate solution and let Q' be the perturbation. The terms of

.... equation (3) can be rewritten as,

".fa.,- +

,(Q) - a (Qo) + 8d0Q) - two))
etc.

r Then assuming functions of Qo are sufficiently simple to be very accurately (or exactly

differentiated) with operators E, the differencing of equation (3) can be represented as

i "w '[- NO°°°] 16 -dw
'the ide+ ) +

where 6,, 8g, and 6, represent the algorithm difference operators and J,, SC , represent
.. : ,.: the very accurte differencing. In the caee Q9 = Qo. the right-hand side is aalytically

ze and equation (2) is identical to equation (22).
• ":: Such a perturbation form of the differenced equation has been proposed in internal

. spin-up problems to remove the axisymmetric variation from the dependent Cartesian

velocity variable (11,121. It might also be used in problems in which certain fine details

might be otherwise lost in a coarseg id. For example, a nonuniform incoming flow profile

earn be represented in Qo that would otherwise be lost in a far field coarse grid. Assuming

in this em that Qo satisfies the Euler equations, the right-hand side of (25) is identically

zero. Calculations using ihis particular technique for incoming inviscid shear flows have

been tested by Buning and Steger 1131. Although not yet tried, Qa might be chosen as

-'.1.an approsAmate solution, in which ease the right hand side of (2S) would not be zero. In

regions in which Q -. Qo, one could hope to use a much coarser grid without losing solution

* !!
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II. CALCULATIONS ON CURVILINEAR GRIDS

Finite difference and related finite volume calculations using body fitted curvilinear

grid systems have been carried out for some time. Solution variables have included

velocity potential, stream function, and the primitive variables. Computed results include

incompressible and compressible low around airfoils, projectiles, cascades, inlets, wings,

wing-body combinations, etc. In some cases the body deforms with time (e.g., airfoil

with moving aileron) and occasionally solutions for multiple non-connected bodies appear

(e.g., airfoil with detached flap). No attempt will be made to review this work-the

interested reader will find much of the material in the AIAA Journal, the Proceedings of

the International Conference on Numerical Methods in Fluid Mechanics, Computers and

Fluids, and the Journal of Computational Physics. What is apparent from this literature is

that while we are becoming more adept at solving the flow about complex configurations,
considerable computational efficiencies are yet to be obtained.

In order to illustrate points to be discussed later, the results of a finite difference

simulation, due to Nicolet e &1. (141 for flow about an X-24C configuration is reproduced

in Figs. 1 to 3. A bead-on view of the X-24C is indicated in Fig. 1, while Fig. 2 shows

typical views of the grid fit between the body surface and an analytically fit outer bow

shock. The grid in this case is generated with a hyperbolic partial differential equation grid

generation scheme [111. The overall three dimensional grid is formed by generating two

dimensional grids at each station along the body as the solution progresses by marching

- the steady parabolized Navier-Stokes (PNSJ equations. The hyperbolic grid generation

scheme is fast enough to be used within the flow field marching scheme. Moreover, each

two dimensional grid is itself generated using the same kind of numerical algorithm used

for solving the PNS equations-a sort of conservation of numerical algorithm knowledge.

Computed surface pressure and heat transfer at a station just prior to the beginning of

the wing are compared to experimental data in Fig. 3.

In carrying out the preceding calculation or any similar calculation on a generalized

grid it is found that the solution accuracy depends -on the grid. This is not surprising

because unless one has a very fGn mesh throughout the field, an accurate solution will

require that grid points be clustered to the flow field action region-the change of gradient

4 g
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regions. The grid in Fig. 2, for example, is exceedingly fine near the body surface in order

to resolve viscous gradients along the wall. (The less than perfect agreement with the

experimental heating rate shown in Fig. 3 is apparently not due to inadequate resolution

in this direction). The outer grid line also coincides with the bow shock, and points are

clustered along the body, for example to resolve the cross flow expansion around the chime

(i.e., lower right corner in Fig. 2) when the vehicle is at angle of attack (here at 68).

Otherwise no other attempt was made in this calculation to adapt the grid to computed

flow field gradients.

Besides proper grid clustering, the smoothness of the grid, the skewness of the grid,

and sometimes the aspect ratio of the grid can affect the accuracy of a numerical solution

or the efficiency with which it is obtained. The grids shown in Fig. 2 are nearly orthogonal

*close to the body surface and they have a smooth, gradual variation. These grids would

be judged felicitously. However, the quality of a grid seems to be hard to quantify be-

.. cause various numerical algorithms appear to behave differently to the properties of grid

smoothness, skewness, and stretching. Numerical algorithms that use a very compact

stencil of points to evaluate fluxes and metrics, for example, generally seem to be less sen-

sitive to grid spacings that change rapidly or even discontinuously. Thus computors using

the MacCormack finite volume method for Navier-Stokes equations sometimes change the

grid spacing by a factor or 2 or 4 in a given region. Such a change is not allowed, for

example, when using high order central spatial differencing operators.

Some numerical algorithms appear very sensitive to mesh cell aspect ratio, Le., the

ratio of Az to Ay or (z4 + y2)1'/ to (A + g)"/. Thus Jameson 1161 in developing

a multxrid relaxation algorithm for the transonic potential equation abandoned SLOR

iterative methods. In its place he used an alternating-direction-implicit scheme as the

multigrid iterative solver because it is less sensitive to cell aspect ratio. The very efficient

approximate-factorization-implicit relaxation scheme of Hoist (171 appears to degrade if

uniform fine grid spacing is used along the body, prompting Hoist to generate his grids

with this constraint in mind. For his approximate-factorization scheme the grid shown in

Fig. 4 is much preferred to that shown in Fig. S. A user of a standard alternating-direction-

implicit relaxation scheme, however, may very well opt instead for the grid of Fig. S over

-~ 10I .



" * that of Fig. 4 simply because of its iner grid spacing near the body and presumably greater

accuracy.

Avoiding certain undesirable grid properties such as skewness can lead to more com-

plex computer programs and perhaps other difficulties. The cascade C-grid shown in Fig.

' 6 for example is too highly skewed. While the implicit Beam-Warming algorithm for the

Euler or Navier-Stokes equations functions on such a grid, it runs far from optimum. An

alternative grid to that shown in Fig. 6 might use an overlapped or patched grid system.

For example, the overlapped grid system shown schematically in Fig. 7 is suggested because

each grid is easy to generate and has minimum distortion. However, such a grid system

requires extensive modification of existing numerical algorithms and computer programs.

This is because certain grid points will have to be flagged off, and grid interfaces will have to

be joined without degrading numerical stability. Nevertheless, overlapped or patched grid

systems will ultimately be needed as body boundary configurations become more complex,

for example, in computing low about a wing with engine nacelles.

Finally, it should be remarked that the effect of a poorly spaced grid will sometimes

not be observed until the data is displayed or utilized in a different way. The unpublished

result due to Seidel [IS) that is shown in Fig. 8 is an example. The plots of generalized

pitching moment versus reduced frequency show an essentially exact solution (dashed line)
•. and a low frequency transonic small disturliance finite difference solution with the nonlinear

terms removed. The flow is about a flat plate subjected to an angle of attack pulse. The

small scillations shown in the finite difference result are a significant error in a flutter

calculation. They were traced back to a discontinuous change of grid stretching more

than a chord away from the airfoil, and were eliminated by using a smoothly stretched
. grid throughout.

IV. CONCLUDING REMARKS

Finite difference methods coupled with body conforming curvilinear grid systems are

being used to solve a variety of complex flow fields. Current numerical algorithms ant

:4 .grids are tuned to flow field applications that can be computed in reasonable times on

111
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present day machines. These numerical algorithms rely on sparse-equation time-accurate

or iterative-solution methods that function best on well ordered grids.

Curvilinear body conforming grids have made modern finite difference schemes into

practical engineering tool. They simplify the application of boundary conditions and allow

flow field gradients to be resolved in an orderly manner. However, one must be careful in

differencing transformed equations, especially when the equations are in conservative form

and transform metrics are brought inside the difference operators. Finite difference algo-

rithms are also sensitive to grid smoothness, skewness and stretching with some algorithms

being much more adversely affected than others.

As finite difference methods are extended to more complex geometries, it becomes

obvious that more than one grid system will have to be used. Exactly how multiple

grids should best be joined, patched, or overset together remains a research topic, but a

"number of approaches will likely give satisfactory results. The simultaneous development of

multiple grid systems and finite difference schemes suitable for multiple grids is underway

and will be a major pacing item in computational fluid dynamics.
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V. FUTURE WORK

Two new flow simulation codes for projectiles are 11ow underway at BIZL. One

f thes, which is being implemented by Nietubicz, extends our segmented projectile

vcde for the calculation of ringed or tubular projectiles. This advanced projectile

flies a more level trajectory than conventional rounds. Figures 1 and 2 show a

typical configuration and a preliminary result obtained by Nietubiez.

The other new projectile code is still in the planning stage. A three dimensional

transonic projectile code with base will use the same segmentation process used

with the two dimensional code. In order to minimize the number of grid points

needed to resolve a three dimensional field, we plan to use a spectral method in the

circumferential direction. Although our solution method is implicit, the spectral

method only has to be implemented explicitly. (This has been shown by K. C.

Reddy and has been independently verified by my student, Mr. T. Barth.) This

code should be operational by December 1984. My involvement will continue as an

employee of NASA Ames.
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