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*ABSTRACT

This report addresses the problem of estimating the

spectral parameters of an observed doppler velocity spectrum

using a burst radar waveform of arbitrary lergth. Maximum-

likelihood theory is applied and the exact M.,.E. algorithm for

estimating the spectral mean is derived. This M.L.E. algorithm

is shown to include, as a special case, the spectral mean esti-

mator originally proposed by R. W. Miller [1]fo: processing of

burst waveforms. Also, when the burst waveform is a simple

pulse pair, the M.L.E. algorithm reduces to the pectral mean

estimator originally proposed by W. D. Rummler [2]. The

Cramer-Rao bound for estimating the spectral mean using burst

wavefo,_ms is also derived. Simplifications to the exact maxi-

mum-likelihood algorithm are proposed and the performance of

various estimators is compared to the Cramer-Rao lower bound.USome preliminary results of studies of spectcal width estima-

tors are also presented.
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I. INTRODUCTION

Estimation of the spectral moments of observed signal

waveforms is currently an important topic in many fields of

research. For example, the analysis of pulse doppler radar or

- sonar echoes from distributed scatterer targets is an important

area of interest. Early work in this area was done by Rummler

[2) who proposed estimators of the spectral mean and variance

from pulse pair radar waveforms. His algorithms were based on

covariance argument techniques and cre generally referred to as

time-domain processing. Rummler's proposed algorithms were

subsequently shown to be maximum-likelihood Lstimators of stec-

tral Dean and variance (see K. Miller and M. Rochwarger[3]).

Processing of independent pulse pairs requires a long radar

observation time, and thus, it was suggested by Berger and

Groginsky [4] that time-domain estimation of spectral moments

fror adacent pulse pairs of a radar burst waveform is the most

direct and efficient cechnique to implement on conventional

radars. Since the explicit solution to the maximum-likelihood

equation was not available, processing of the adjacent pulses

of the contiguous-pulse burst waveform was done simply using

Rummler's proposed time-domain algorithms. Estimates from con-

tiguous pulse pairs with a common pulse between each two pairs

were analyzed in Benham [5] where the performance accuracy

(i.e., standard deviation of the spectral mean and variance
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estimators) was determined and compared with independent pulse

pair processing. More recent studies of spectral moment esti-

mators using contiguous correlated pulse pairs are presented in

Zrnic [6,7]. These references provide an excellent survey of

the topic of spectral moment estimation using time-domain pro-

cessing and present a fairly complete mathematical approach for

determining the theoretical accuracy of covariance argument

estimators.

It was recognized by R. Lee et al. [8] and by R.

Srivastava et. al. [9] that useable spectral moment estimates

could be obtained by processing lags other than the first-order

lag utilized by Rummler and BergeL- and Groginsky. Also, im-

proved estimates could be obtained by averaging the individual

moment estimates obtained at various lags. Lee proposed a

poly-pulse pair processing scheme for combining estimates ob-

tained at various laqo, and demonstrated that by utilizing

higher order lags to obtain spectral estimates, performance of

the estimators could be extended to lower signal-to-noise ratio

situations.

Up to this point we have discussed spectral moment

estimation using strictly time-domain signal processing tech-

niques. An alternative method of estimating the spectral mean

and variance utilizing autocorrelation estimates at all availa-

ble lags combined with frequency domain processing was proposed
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by R. W. Miller [1). An efficient implementation of Miller's

approach utilizes an FFT algorithm and an approptiately select-

ed window function. In this alternative approach, the power

spectral density of the observed random p~ocess is computed

from the sample autocorrelation function of the observed data

Y and the spectral mean is then estimated to be the location of

the maximum peak of the computed power spectrum.

In Section II of the report, maximum-likelihood theory

is applied to the problem of spectral moment estimation using

burst waieforms. The exact M.L.E. algorithm for estimating the

spectral mean is derived. This optimal estimator utilizes

autocorrelation estimates at all available lags and may be

implemented either as a time-domain or frequency-domain al-
gorithm. For contiguous-pulse burst waveforms the time-domain

implementation of this optimal M.L.E. estimator is shown to be

a generalization of Rummler's algorithm. When the observed

data is comprised of independent pulse pairs the time-domain

estimator reduces to the spectral mean estimator originally

proposed by Rummler (2]. The frequency-domain implementation

of the M.L.E. estimator is also shown to be a generalization of

Miller's algorithm [1]. In either case (time-domain or

frequency-domain processing) the M.L.E. estimator utilizes an

optimally weighted combination of the autocorrelation estimates

at all possible lags.

3
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In Section It of the report we present an interept.ing

analytical solution for the Cramer-Rao lower bound for estima-

tion of the spectral mean from pulse burst data.

Section IV of the report presents the results of a

comparison of burst waveform processing versus pulse-pair pro-

cessinq using Rummier time-domain processing. Also, practical

simplifications to the M.L.B. estimator are presented and stud-

ied, both analytically and through the use of a Monte-Carlo

simulation. Finally, preliminary studies of several algorithms

for estimating the spectral spread are presented.

Section V provides a brief summary of the report and

suggests the need for development of a more accurate algorithm

for estimating the spectral spread parameter.
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II. MAXIMUM LIKELIHOOD ESTIMATION OF THE SPECTRAL MEAN

The return signal is Assumed to be a discrete-time

sequence of (complex) radar video samples spaced at the radar

pulse interval, T. The return signal is comprised of a time-

wise correlated narrow band signal component and a white noise

component, i.e.,

z k  SkeJwkT+ nk' k-0,1,...L-1 (1)

Both sk and nk are zero mean Gaussian processes centered at

zero frequency. The true signal power is denoted by S, while

the correlation coefficient, 0(kT), depends upon the time

spacing between samples of the sequence as well as the spectral

width of the signal component. Thus, the autocorrelation func-

tion of the process Zk is

R(kT) = Sa(kT)eJwkT + N$k  (2)

where R(kT)=E{zi*zi+ki and N is defined as the white noise

power per sample. Also, the term 6k is defined as follows

6k =1 k = 0I - = 0 otherwise
The signal power spectrum is assumed to be symmetric

about the spectral mean "w" and is Gaussian in shape. Thus,

the correlation coefficient, 0(kT), is also Gaussia- and of the

form

1 %5



O(T) • 2W2 T 2(4)

where the spectral width is denoted "W" in the above expres-

sion.

4In this section of the report we shall focus mainly on

estimation of the spectral mean of the signal component and

shall derive the maximum-likelihood estimate of "t" based upon

the sequence zO, z1, z2,...zL _ 11. A brief summary of

the mathematical solution to the proposed estimation problem is

given in the following paragraphs.

Given the sequence of radar measurements

z 0 Ws e jw(O)T +nO

I jw(1)T+

z L "L- j(L-)T + nL-1

we write this data set in matrix form

z a Ds + n (6)

where the diagonal matrix, D, is given by the followinq

6



j W(O) T

ejw( l)T
(7)

'j (2)T

L ~jw(L-1)Tj

Since all the variables are assumed to be Gaussian, we

consider the covariance matrix of the measurement vector, z

which may be expressed as follows:

E{z _2*' - D(C + NI)D* (8)

In the above expression, C - Eta s*'l is the covariance

matrix of the signal vector, s. Denoting the logarithm of the

(complex) Gaussian probability density function as "ln f(z)",

we have

ln f(_) - -z*'D(C+wIl-ID*Z - ln IC+NII - L .n 2v (9)

The maximum likelihood estimate of parameter "w" is obtained by

tW *niln f(_1) = 0 (10)

Since the term JC+NIJ is independent of the parameter

w , we need only consider the first term in the above

log-likelihood expression. For purposes of simplicity, we

shall present the maximum-likelihood solution for bursts of

length L-2, 3, and 4. The general solution for an arbitrary

number of pulses will then be presented.

1- 1
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In the following derivaLion we shall make use of the

elements of the inverse convariance matrix (C+NI) - ' which is

written

F~li ... 2 *."'L -

(C+NI) I 2Y2 * *

For tne burst of length 2, we obtain

l{In f(z)} = -[(-jT)Y1 2 z0 * z1 e-j(dr+ (jT)y 12 z0 z1 * e Jul (12)

Setting the above equation to zero yields the expression which

the maximum-likelihood estimate w must satisfy. When this is

done, we obtain

z0* z 1 e - j wT = z 0 z 1 * e j T  (13)

Clearly the above expression is equivalent to the Rummler

algorithm for estimating the mean of the power spectral density

function, i.e.,

= ARG{R(T)} (14)

where R(T) = z0 *z I is the unbiased M.L.E. estimate of the

complex autocorrel-ation, R(T).

Simiirily, for a burst of length 3, given data samples

{z0 , z1 , z2 ], we obtain

1 8
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j T ;2j WT
lin f(z)} =- [(-jT)Y 12z 0*Z1e + (-jT)Y 12 z1* 2

(-j2T)YI 0 2 ())Y z z e e + (15)

, 2,eJ wT 02,j 2 WT

+ (jT)Y 12ZZ *e + (j2r)Y13z z*e

Setting the above equation to zero yields the following

expression:

2y13

[z0 *zI + z1*z2 + f13 z0 *z2 e- udr ]ej AT

(16)
2 Y13 "+le j
i=[z Z1* + zZZ + z z2*e +3 Oy eiw

Y12

which may be written as follows

Y 13

[R(T) + - R(2T) ]e- j T
'12

(17)

Y1

In the above equation, we have the definitions

"11

R(T) = (z 0*zl1+  z 1 *z2) (18)

and A
R(2T) = (z0 *z2) (19)

From the above expressions, it is clear that the

maximum-likelihood estimate of parameter "w" is obtained from

the algorithm

9
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1 A 13 A -jT
SARG R(T) + R(2T)e (20)SA12

iN

Since the above solution for w is implicit, one iterative

method of solvinq the expression is suggested as follows.

Given the data samples {z0 ,zl,z 2}, obtain an initial

approximation of w from R(T), i.e.,let
1

A 1 ARG{R(T)} 21= (21)G

The improved estimate of w based upon R(T) and R(2T) is then

obtained iteratively usinq the expression

1 i Y13  t -J"iT
i + 1 ARG{R(T) + - R(2T)e } (22)ui+1 -T T12 -

For a burst of length 4, given data samples {z0 ,z1 , 2 ,z3}

we obtain the M.L.E. estimate

1 13 ^ -j 14 j2T 23)
1 I R[(T) R(2T)e + -R(3T)e

AR 3Y12  13

where we have defined

Y 2
1 * *23 1* *2+ z 3 ) (4

R(T) = *(z0 zI + -z 1 z2 z z3) (24)

0 1 * *

R(2T) = - (z0  z2 + z3) (25)

R(3T) = (z0 z3  (26)

We note from the above equations that the estimate R(T) is

10
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biased, since in general, Y23 Y Y1 2 " In a real-time

implementation of the M.L.E. estimator one might use an

unbiased estimate of R(T) in the solution.

Finally we present the solution for the estimate, W,

for an arbitrary burst length. Omitting the details, the solu-

tion is given by the expression

L-1
N 1 L(k-1)TW ARG { [ Ck R(kT)e - T (27)

k=1

where the weighting coefficients, Ck, are defined in terms of

the elements, Yij' of the inverse covariance matrix, (C+NI)-

Ni We note that, in general, .the M.L.E. estimator utilizes esti-

mated autocorrelations RT), R(2T), .... , R(L-1)T at all availa-

ble lags to determine "w", since, in general, the coefficients

Yij * 0. The estimator is implemented as a time-domain algo-

rithm and it is seen (by comparing Equations (14) and 27)) to

be a generalization of the spectral mean estimator proposed by

* ,1 Rummler [2]. This estimator, however, is implicit in struc-

ture and an iterative scheme must be utilized to find the

which satisfies Equation (27). Thus, we are interested in de-

termining an explicit method for obtaining the estimate w. In

the following paragraphs, we develop a frequency-domain imple-

mentation of the estimator which is shown to provide an explic-

it solution for W. This alternative implementation is a gener-

*5~ii



alization of the spectral mean estimator proposed by Millerti ]

From the estimates of the autocorrelation function {R(O),

R(T),...,R(L-I)T} we compute an estimated power spectral den-

sity, S(w), as follows

(L- 1)
S( j kT

S(I) * A kR(kT)eJ (28)
k=-(L-1)

where the coefficients (AK) comprise an arbitrary set of

Weights or equivalently a window function. Since R(-kT)-R*(kT)

we may write

(L-1) -i'ikT
S(W) A_kR*(kT)e

k=1
(29)

(L e1)j wkT
+ A0 R(0) + k- AkR(kT)e

Miller [1] took as the estimate of spectral mean, w, that

frequency which maximized) the function S(w). That is, (a is

estimated as that frequency corresponding to the peak of the

power spectral density. Thus, w is found by taking

d S(4) 0 (30)

Performing the indicated differentiation one may easily obtain

the result

1



L CkR(kT) e- j l k - l l T e- j T
kl

k-1
(31)

L-I A k 1(k-1)T e JT- X CkR(kTle e
k-i

where we have assumed Ak - A.k and substituted Ck - kAk

,nto the above. But the above expression may be shown to be

.qulvalent to the M.L.E. estimate

A 1 wkIT- ARGk= CkRkTe )( l (32)

1Therefore, instead of solving for w from the implicit formula

Iof Equation (32), we may compute the power spectral density

function, S(w) of Equation (28) and locate the peak of the

I function to determine w explicitly.

I
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III. CRAMER-RAO BOUND FOR SPECTRAL MEAN ESTIMATES

Next, we wish to determine the Cramer-Rao lower bound

on achievable estimation accuracy by determining the Fisher

information matrix for the parameter NW". Again we shall

present the general solution by first deriving the results for

short bursts of length 2 and 3. The general solution for a

,* burst of length L will then be presented.

For the case of L-2 pulses, we obtain
*e]+(i)212oz (33)

{LIn f(z)} -[(-jT)2Y12z0*z1e-Jt + (JT)

Taking the "expectation" of the above yields the Fisher

information matrix, which is found to be

(Za2 n f(z) = -2T Y12S O(T) (34)

Substituting Y12 into the above expression, one obtains the

Cramer-Rao lower bound for the variance of the estimate W.

.2> 1 [ 1+N/ 2 '
2T (T) (

Incidentally, the above expression is identical to the

approximate predicted accuracy of the Rummler pulse pair method

for estimating the spectral mean, W (see Rummler [2]). His

derivation involved approximating the nonlinear estimator

(Equation (14)) using perturbation theory and computing the

variance of the linearized estimate, w.

15
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Similarly, for a three pulse burst we have

2 O* * -j a2-i tn f (z)1 I [(-JT) Y x zei + (-JT) Y 2 .Z1 ze

+ (-j2T) 2 Y13 z0* z 2 e- j Wl + (jT) 2 y12 z 0 z1IejWT (36)

+(jT) 2Y 12 z* e j  + (j2T)2Y13a0a2 ej2 T

Finally, for the three pulse burst, the Cramer-Rao lower bound

becomes

I . (3)
- 4T 2 [y12 SO(T) + 213 S (2T)]

The Cramer-Rao bound for a pulse burst of length L is similarly

determined. The derivation is briefly summarized as follows.

For the general L-pulse burst we write the log-likelihood

function as follows:

16
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4 in f (z)

(* z * * z 12 Ye -JLT V3e -J2w T  e-j (L-1I T A(0zlz2 ...zL-1) 711 12 13  U0

'1 71eJjwT -j Y~

-2 e2 2 7 2 3 e 1

y3 1eJ2WT y J 3e:

31 Y32e Y33 z2

YL-1 ,1
e-jWT

'j(L--1)wT jWT.(L--1)w 'Y eJ 0T z
Lie LL,L_1  L-LL "-

+ CONST (38)

where the remaining terms which are independent of the

parameter "w" are simply denoted as "CONST". Before proceeding

with the derivation we make the following remarks. In the

above expression, which is of the form

!.

in f(z) =- z D(C+NI)-1 D z + CONST (39)

we have assumed the matrix inverse to be more generally of the

form

-1
(C+NI) = (Y ij) (40)

Also, we have combined the matrices D and D with the elements

of the matrix ( ij). Hopefully, this will lead to the desired

solution in a clear manner. Computing the required second

partial derivative with respect to the parameter "w" and then

1
i
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factoring out the complex exponentials leads to the result

2 * * jWT j2WT * j (L-1)wT)
- 2 - In f(z) (z0 ze z2 e ... ZL e

T 3w

12 4 13 9 17.4 
0

0 0 
Y 

4 

9Y

Y21  0 23 4 24 9 25 l

4 Y1 3 Y3 2  0 Y34 4 y 3 5  Z2e-J2U

4 4 4 42  V43  0 yL-1,L

9 Y L, .3  4 , _ Y , 10Z . -j(L-1)WT

- L,L 31 L,L-2 LL-1 ZL-1

(41)

This expression is then expanded as the quadratic form

a2 1 (m-n)

fln f(z) U (n-rn) 2 ej~m) (42)
T -w oo n-0

Finally, taking the "Expectation" we obtain the result

1 (' -1 L-1 m2y

In f(z) (n-ag2 nSB((n-m)T) (43)

T ) .-O n=O
n m

where we have used the fact that

"ZZ I = S B((n-m)T)e (n-n*m 44

Summarizing our derivation, we have found the following general

solution for the Pisher Information matrix

18
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/ - tin f1z1 ' - T2  (i-j)2
E~~i fiii()T (45)

a --jO y A

where w* define the LxL matrices

(Ai) - (C+14I) (46)

(Yi) - (C+NI) "  (47)

Then the C-R bound is given by the following expression.

.2 > -1 (-• (48)
- L-1 L-IT I L (i-) Y A

i"tO J-i ij

1

q .

!1\%
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IV. ANALYSIS AND SIMULATION RESULTS

1.; First the results of a comparison of burst waveform processing

versus pulse-pair processing using Rummler techniques is

presented. For this comparison# the total number of available

pulsas is considered to be fixed (specifically we take L-16

pulses) and compare estimator performance for a single burst

with the estimator performance achieved using 8 independent

* pulse-pairs (again# processing a t.otal of 16 radar pulses).

Figures 1, 2 and 3 show the results of this study. In each of

these figures three performance curves are shown. First, the

A~fundamental accuracy achievable with a 16 pulse burst waveform

4is shown, based upon the C-R bound derived earlier in this

report (see Equation 48). Also, the theoretically predicted

accuracy achievable by processing the 16 contiguous pulses of

the burst using the Rummier time-domain algorithm is shown.

Thus, we evaluate the accuracy of the estimator (see Appendix

B)

y ARGIR(ir.fI (49)

where

.:, 2*
R(T L i zizi+1 (50)

Finally, the accuracy achieved oy Rummler processing of 8 in-

dependent pulse pairs (hence, a total of 16 transmitted radar

pulses) is shown. This is considered to be a fair comparison

21
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in that both approaches utilize the same total number of radar

pulses, Thus, both approaches utilize the same total transmit-

ted radar energy, The major, difference, of course, is that the

8 independent pulse pairs use a considerably longer radar ob-

4servation time.

The curves of Figures I through 3 show normalized esti-

mation accuracy versus normalized spacing between the pulses in

the burst or pulse pair. The normalization used in these

curves is described as follows. The assumed signal correlation

function is given by the expression

O(T) -e2w2 l(WT ) 2
0()- e(51)

where W - 20v/1. We have defined the signal process decorrela-

tion time to be that time, T0, required for the signal process

to decorrelate to e - I / 2 . 0.6 in value. Setting $(T 0 ) - e -1 / 2

we find

To ( v-- (52)
V

Therefore, in Figures 1, 2 and 3 we have evaluated the normal-

ized estimation accuracy (ST.DEVIVO/0v) versus normalized time
Vv

between pulses (T/T0 ). Note that the mean doppler velocity

(m/s) is related to the spectral mean estimate through the for-

mula V - (A/4w)w. The pulse-pairs are assumed to be suffi-

cently separated in time so that statistically independent

22
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sampling of the signal procesR from pair to pair is achieved.

The figures show performance for three selected signal-to-noise

ratios (-6 da, 0 dB, +10 dB) and are vale for any specific

spectral spread. From these curves one may draw the following

conclusions.

'I. In each case it is clear that burst processing

utilizing a total of 15 "lags of 10 available from

the 16 contiguous pulses is superior to pulse-pair

processing using 8 independent Rummier pulse-pairs.

This is especially true at low signal-to-noise

ratios. At high signal-to-noise ratios both esti-

mators provide comparable performance, the burst

waveform having a small alvantage.

2. Comparing the performance of the 16 pulse burst

waveform with its corresponding theoretical C-R

bound shows clearly that the 16 pulse burst wave-

form with Rummler time-domain processing of the 15

"lags of 10 products achieves estimation accuracy

comparable with the C-R bound except for low sig-
nal-to-noise ratios. Thus, it appears that some
improvement in estimating the mean velocity is

possible for only the low (S/N) ratio case.

3. From the curves shown in Figures 1, 2 and 3 it is

also seen that the optimal pulse spacing is given
by T/T0 " 1, i.e., selecting the pulse spacing

T N To minimizes estimator errors for both pulse

0pair waveforms and burst waveforms. Thus, to

specify an optimal interpulse spacing T - To one

must have knowledge of the true spectral spread,

as indicated in Equation (52).

23
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In the remaining paragraphs we restrict our discussion to burst

waveform processing and consider the design of optimal burst-

forms. The basic objective will be that of achieving good es-

timator accuracy using a burst waveform havinq a small inter-

pulse spacing (T<T0 ). Note from the curves of Figures 1

through 3 that excellent performance can be obtained with the

burst waveform provided the time between pulses, T, is properly

selected. At high signal-to-noise ratios, selection of a good

pulse spacing is not difficult since the performance cuLves are

quite flat, i.e., are very insensitive to the parameter T over

a wide range of values (see Figure 3). Even with the signal-

to-noise ratio as low as a few dB this insensitivity to parq-

meter T is true. Thus, for any reasonable signal-t-noise

tatio the spacing between pulses could for example be selected

between 0.3T0 to 1.5 TO and excellent performance will be

achieved over the equivalent range of the spectral spread para-

meter. There is no need to improve upon the Rummler burst es-

timator performance over this range of parameters. Therefore,

we next consider the problem of improving performance at low

signal-to-noise ratios.

For lower signal-to-noise ratios (say 0 dB) selection

of the interpulse spacing begins to become a more important

consideration (see Fi-ure 2). For example, selecting, T=0.3T0

one observes that burst waveform performance begins to degrade
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relative to the estimation accuracy predicted by the C-R bound.

For very poor signal-to-noise ratios (say -6 dB) selection of

the interpulse spacing begins to become very critical (see Fig-

ure 1) and with T - 0.3T0 , burst estimator performance becomes

very degraded relative to the CR bound. For this reason we

have considered the problem of improving burst estimator per-

formance at these very low signal-to-noise ratios.

We remark that in deriving the MLE spectral mean esti-

mator (see Equation 27) it was tacitly assumed that the covari-

ance matrix (C+NI)- was exactly known a priori or has been

accurately estimated from observed data. However, if the coef-

ficients (Yij) must be estimated from the data then applying

the maximum-liklihood approach to the simultaneous estimation

of the parameter set {, Y11, Y1 2 , *.., YLL } requires the

solution to the following equations

- { tin f(z)} = 0

tin f(z)} = 0 (53)

-i- tin f(z)} 0
LL

The solution to this set of equations yields the joint maximum
A A

liklihood estimates 1, .11,...,LLi. This of course provides

the estimator of "w" to be of the form
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j L-1,.. )ARG R (kT) e (54)
1k=1

where the Ck are defined in terms of the M.L.E. estimates of

the Yij of the inverse covariance matrix (C+NI) . For an

L-pulse burst this implies the simultaneous solution to 1 + 0.5

L(L+1) equations. Letting L*16 this means one must solve a

total of 137 coupled nonlinear equations - a formidable task!

The structure of the M.L.E. spectral mean estimator

suggests that using the information contained in the higher

order lags of the burst waveform one may improve the accuracy

in estimating the spectral mean at low signal-to-noise ratios

for small interpulse spacings. To this end, we consider the

simpler approach first suggested by Lee (see Reference [81).

In this appproach, estimates of the spectral mean are

obtained using each estimated autocorrelation {R(T), R(2T),

R(3T),...} using Rummler's time-domain method. In these

studies, we have considered the following three spectral mean

estimators

V1 71 ARG{R(T))

A A
V 2 ___-= ARG{R(3T)}

V 41rT) R3T
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1 L-2
where R(T) E L-z zL-1 i=O

A 1 L--3
R(2T) - , zi zi+ 2  (56)

i--0

A L-4
R(3T) = ZE- i=0 +

A A A

Then the estimates V1 , V2 and V are combined in a linear
1' 2 3

fashion to obtain improved performance. To this end, we have

considered spectral mean estimators of the form

A A A

V 12 = 1V1 + c2V2

AA (57)
V 12 3 = c1V1 + c2 V2 + c 3 V3  (

where the coefficients c1, C2 , c3 are selected either to mini-

mize the rms estimation error of V 12, V1 23 (optimal weights) or

simply to average the estimates (uniform weights).

Figure 4 shows the theoretical estimation accuracy of

A A 
A

each of the spectral mean estimators V 1, V2 and V3, computed
from estimated autocorrelations R(T), R(2T) and R(3T), respec-

tively. For the specific case considered (S/N = -6 dB,

a = 150 m/s X=.03m, L=16 pulses) the curves indicate thecreti-
v

cal accuracy versus spacing, T, between adjacent pulses of the

burst waveform. If it is desirable to utilize a quick burst of

pulses corresponding to a small spacing T, we see for the data

shown in Figure 4 that the spectral mean estimator, V31 pro-
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vides best performance. For pulse spacings greater than 8 P

seconds the performance of estimator V3 degrades rapidly. How-

Zver, in this region of pulse spacing both estimators V1 and V2

provide good performance.

Given the three estimators V1 ' V2 and V3 , each of which

provide useable estimates of the spectral mean, it is re'.cona-

ble to consider obtaining improved estimates using a linear

combination of the individual estimates. Note however that the

estimates V1 , V2, and V3 are correlated and the amount of in-

provement in estimation accuracy achievable depends upon the

degree of correlation.

. Figure 5 shows the results of a theoretical analysis of

the performance of the spectral mean estimators V12 and V123

el- Musing uniform-weights as in Lee (8] (for comparison the fiqure

also indicates the performance of estimator V1 ). The curves of

Figure 6 indicate the theor etical performance of these same

estimators using optimal minimum variance weights. Comparing

the curves of Figure 5 and Figure 6 it is seen that the simpler

method of averaging estimates using uniform weights provides

significantly improved accuracy relative to the single-lag es-

timator V1 . This is especially tirue for small pulse spacings
.',.N

for V12 , and V1 . For this case, the additional improvement

achieved using optimal weights may not be justifiable. That
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is, since the computation of optimal weights requires knowledge

of both the S/N ratio and spectral width parameters, implemen-

tion of optimal weights may not justify the computational

expense.

Figure 7 presents the results of a Monte-Carlo simula-

tion of spectral mean estimators , V12 and V 1 2 3. For the case

considered (a = 150 m/s, X- 0.03 m, L-16 pulses and T=5 P sec)

we have evaluated estimator accuracy as a function of signal-

to-noise ratio. We have also included both the Cramer-Rao

lower bound and the theoretically determined accuracy for

algorithm V, [see Appendix B]. From the figure we observe that

the simulation of estimator V1 agrees quite well with accuracy

predictions at high signal-to-noise ratios. Also, almost no

improvement in performance was obtained at high signal-to-noise

ratios using estimator V or V At low signal-to-noise

ratios the performance of estimator V 1 departs from the theo-

retical predictions due to approximations used in the linear-

ized error analysis. As expected, however, at low signal-to-

noise ratios we observe a significant improvement in perform-
ance achieved using estimators 2 and V12 3 . Finally we remark

that uniform weights were used in this simulation.

Figure 8 shows the results of a Monte-Carlo simulation

of several spectral width estimators which were evaluated.

Among the algorithms simulated are Rummler's original spectral

29
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width estimator (Algorithm 1) and two logarithmic versions of

the width estimator (see table 1 for definitions of these esti-

mhators). The first logarithmic version of the width estimator

(Algorithm 2) was developed to reduce the bias error inherent

in Rummler's original spread estimator and assumes the shape of

the power spectral density function to be Gaussian (Reference

[10]). The second logarithmic version of the width estimator

(Algorithm 3) does not require an estimate of the noise power,

N, as is required by the other algorithms by utilizing both

R(T) and R(2T) in estimating the spectral width (Reference

(9]).

The performance of each spectral width estimator was

evaluated via Monte-Carlo simulation and the accuracy was

plotted versus signal-to-noise ratio for the same parameter set

considered previously (a = 150 m/s, L = 16 pulses, T - 5v

sec, ) = 0.03m). Indicated on the figure is the Cramer-Rao

lower bound on estimating the spectral width parameter (from

Zrnic [10]). Also shown on the figure is the theoretical accu-

racy of algorithm (1) (see Appendix C for accuracy formulas).

For the data shown in Figure 8 we observe two significant re-

sults. First, the theoretical accuracy predictions are ob-

served to be quite good at high signal-to-noise ratios, how-

ever, at low signal-to-noise ratios we observe significant de-

parture of the simulation results from the theoretical predic-
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tions. Secondly, the Cramer-Rao lower bound is observed to be

very optimistic and does not provide a tight bound on the per.-

formance of these spectral width estimators.

N.
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V. SUMMARY

This report considered the problem of estimating the

spectral mean and spectral width parameters of an observed dop-

pier velocity spectrum using a burst waveform of arbitrary

length. The observed waveform was modeled as a correlated

Gaussian random process and the maximum likelihood algorithm

for estimating the spectral mean was derived. Also, the cor-

responding Cramer-Rao lower bound for estimation of the spec-

tral mean parameter was derived. The M.L.E. spectral-mean

estimator was shown to include both the time-domain spectral-

mean estimator proposed by Rummler [2] and the frequency domain

spectral mean estimator proposed by Miller [1). Simplications

to the M.L.E. spectral mean estimator were proposed and

studied, both theoretically and by using Monte-Carlo simula-

tions. It was shown that by using additional order lag estima-

tes (e.g., R(T), R(2T), R(3T)) that improved spectral mean

estimates could be obtained and this improvement in performance

could be achieved at lower signal-to-noise ratio situations.

Finally, preliminary studies of several spectral width

estimators were presented based upon Monte-Carlo simulations.

From these simulation results it was observed that performance

of the spectral width estimators was far from the Cramer-Rao

lower bound, thus, there is need for development of a new im-

proved algorithm for estimating the spectral width parameter.
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APPENDIX A: COMPLEX RADAR SIGNAL SIMULATOR

This appendix describes the technique used to simulate

_complex radar signal samples for burst waveforms of arbitrary

length. The radar signals being simulated are described

earlier in the report (see Equations I through 6). The

technique has been used to simulate burst waveforms with as

many as 16 pulses and as few as 2 pulses. The technique will

be described using, as an example, a three pulse burst. The

extension to the general L-pulse case is then trivial.

Assume we have three complex pulse returns

Z= sieJlaT + n(

Z= s 2 ej2AT 4. n2

From the assumed signal autocorrelation function, which is

E z* z I = SO(kT)e j k wT + N 6 (A-2)

I i+k kc

we obtain the covariance matrix for the vector z'=(zozlz2)

S + N S 0(T)le - j T  SO(2T)e -2wT-

Elz z*' } SO(T)e JwT S + N S O(T)e-i WT

SO(2T~e j T  SO(Te j a  S + N

(A-3) _j
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The basic idea is to recognize that this covariance matrix can

be factored into the product of three matrices, i.e.
E{z z } = D(C+NI)D*' (A-4)

0s 0

Where D= 0 e 0 (A-5)

0 0 e j

[ S + N SO(T) SS(2T)

and (C4NI)-[ SO(T) S + N SO(T) (A-6)

S(2T) SO(T) S + N

Note that since the matrix (C+NI) is real and symmetric, it may

be factored as follows

a 1  0 0 a1 1  a2 1  a3 1

(C+NI)= a2  a22 0 0 a2 2  a32

a 31 32 33 0 a3 3
(A-7)

where the unknown coefficients, aij,are all real. Defining

the matrix factorization as (C+NI) = MM', then the reader may

Il
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easily verify the following solution.

all = S + N

SO(T)

a 31 l s :" )(A-8)

a V$-(S + N)
2 _ (SO(T)) 2-)a22 -

(SO(T) [(S+N) - 1S1O12T11

a3 -" 4S + N

a 33 -. vr--+N3_ [ (SO( T) )2+2 (SO(T) ) 2 ](s+)+2((Tl)) 2( ) 2)

4(S + N)
2 - (SO(T))

2

The sequence of complex data samples Iz0 , z1, z2 } is then

generated using the following matrix linear transformation

0  0 0 all 0 0g

zI  0 ejWT 0 a21 a22 0 91

j 2O

®r. (A-9)
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The input samples go, 91, 92 are uncorrelated complex

Gaussian random variables

9 0  a x 0 + Jy0

-- x + JYl (A-10)

92 a2x 2 + JY 2

Thus, to obtain the properly correlated sequence of complex

data samples we generate 6 independent (mean-O, variance-I/2)

Gaussian random variables x0, yo X, YIP x2 and Y2

and obtain the corresponding simulated complex radar signal

. .' samples as indicated above in equation A-9. It is. easy to show

that the complex data samples tz 0 , ze z2 I have the desired

Hermitian symmetric covariance matrix (see Equation A-3).

It is easy to verify the fact that the variables {ZO, z, z2 }

also satisfy the required circular property (see reference [61)

Etzi}zj - 0 for all i, j (A-11)

We remark that this property will not be satisfied if one were

to take the input data vector to be real Gaussian variates

(e.g., g0 = X'0 g1  X'1 g 2
= x 2 )" Finally, it is clear that

the method described in this appendix generalizes to the

general L-pulse case.
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APPENDIX B ERROR ANALYSIS OF MEAN VELOCITY ESTiMATOR

This appendix provides a summary of the error analysis

of the mean velocity estimator for burst waveforms which are

processed using the Rummler time domain approach. Specifically

we have considered a burst waveform comprised of L contiguous

pulse returns, denoted I:0 , a1 z2,...,_L-i1 . From this

contiguous pulse train we may compute estimates of the mean

doppler frequency using various lag products. For example, we

might construct the following estimates.

f ARG {i(T} i

2 T R(2T)j (B-1)

f1 3 ~ARG {R(3T) I

etc

where L-2

R(T) = L- i-O i i+1

L-3L-3 z* i 2  B2
R(2T) = L-2 (B-2)

L-4 Ii+
'(3T) - 3 I i +3

i--O

etc.
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Each of the above estimators f , f2 ' f3 ' etc yields valid

estimates of the mean doppler frequency. One is interested in

determining the accuracy of these estimates. A brief

discussion of the accuracy analysis is given in the following

paragraphs. This analysis is based upon the work of Reference

(6].

An analysis of the accuracy of the Rummler time domain

estimator (see appendix A, Reference (6]) yields the following
error expression for the accuracy of the estimator fk

Var{fk} = 1 -T- Re R(T -E. (B- -3)

Omitting the lengthy derivations of the terms of the above

expression (see Reference [6] for basic approach) one may

obtain the final expression shown below.

Var {fK} I [1/8r (KT)a(KT)]

(L-K)mf-(L-K-1I)

(B-4)

+ ([2(N/s) + (N/S)2 ]+(L-K)

-K 2 [(N/S) 0(2KT)(L-2K)

L>2K, otherwise=O
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Note that the third term in the above expression is valid only

when L>2K, otherwise this term is zero.
.1A

Since f1 and f2 yield two viable estimates of the

mean doppler frequency, one may attempt to improve the accuracy

of the mean doppler frequency estimate by taking a linear

combination of the estimates f1 and f.
A A A

f = c1 f1 + c2f2 (B-5)

The weights (cl, c2 ) could be selected to provide a better

estimate of the mean doppler frequency (better in the minimum

variance sense). Selecting uniform weights (cI=c2=1/2)

might also be considered as a simpler improved estimator. In

either case, the accuracy of estimate f1 2 is given by the

expression

Var if 1 21 = c2 Var {f1 } + c 2 Var {f2}

+ 2 c1 c2 Cov If f2 } (-6)

Selecting (c 1 , c2 ) to make f 12minimum variance and

unbiased we obtain the optimal solution

C*=Var If 2} - Coy If 2 1 A~ (B-7)21 varif 1 , a - Covif 2,f

C* = 1-c, (B-8)

Similar expressions can be obtained for an improved estimator

of the form
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f c1 f1 + c2 f2 + c 3 f3  (B-9)

To evaluate the theoretical accuracy of these various

estimators it is clear that one must evaluate the covariance

between the errors of each Rummler estimate f1' f2 ' f3 ?

etc. If the covariance between the errors of these estimates

is small then significant improvement in mean doppler frequency

estimates can be achieved.

The covariance between estimate fK and fA (where K>J)

is evaluated as follows. Extending the results of Appendix A

of Reference [6] we have the expression

Coy IfK V J = [1/8-0 (KT)(JT)] l-

R E [ EA 
- R ( JTT ) R ( K T ) , B

(RJT R(KT) KqT

where,
L-J- z z

R(JT) = IJ z# +Ji=O 1 (B-i )

A L-K-I
R(KT) = 1 LK

L-K i i +K

Omitting the lengthy derivations, the result may be shown to be

given by the following expression.
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Coy IfK f I =[1/8W (KT)(JT)(L-J)(L-K)O(KT)O(JT)]

L-J-1 L-K-I

i=O (B-12)

+ 2(L-K)O((J-K)T)(N./S)1

-2(L-K-J) 0((J+K)T)(N/S) ]
L-K-J > 0, otherwise =0

Note that the last term in the above expression is valid only

when L-K-J > 0, otherwise this term is zero.
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APPENDIX C ERROR ANALYSIS OF SPREAD ESTIMATOR

This appendix provides a summary of the error analysis

equations used to evaluate the performance accuracy of the

Rummler spread estimator. The basic algorithm is defined by

the following expression

W - 1 1 - PT) 1/2 (C-1)

where P(T) is the estimated correlation coefficient of the

underlying signal process. The correlation coefficient is

estimated from the sample correlation function as follows

P(T) R(T) (C-2)

R(O) - N

Thus, it is assumed that the noise power, N, is known or can be

accurately estimated from range gate data comprised of

noise-only samples. Also, we have the terms

R(0) = 1 - zi 2 (C-3)

L i=0

A L-2
R(T) = )i z* z i+ (C-4)

:', Ii=O

This estimator provides reasonably good estimates of the spread

parameter "W" for small values of T. To see this, one simply

considers for a large number of pulses (L+-)

4
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R(O) S+N (C-5)

" ^ i2 fTR(T) , SO(Te (C-6)

Thus, for large L,

P ( T e(C-7)

Approximating the right hand side of the above equation by the

term 1-2w2W2 T2 we obtain.

1 2 221 1/2 (C-8)

Thus, for small T we have

wO W

This derivation was not intended to be rigorous but was

presented simply to demonstrate that the algorithm W may

provide reasonably good estimates of the spread parameter, W,

for small T. This algorithm is however, a biased estimator

of the parameter W since

E{WI* W (C-10)

and thus the analy3is of the performance accuracy of this

algorithm must include a determination of both its bias and

variance terms. It may be shown (see Reference [101 for

details of the derivation) th3t the variance and bias errors

for the Rummler spread estimator are
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A. Random Error Equation

[ 2
= 8ir(1a (T) [TERM 1 }-2 {TERM 2 }+0.5( [TERM 3 }+ [TERM 4 1

8wr{ 2= 1O(T))(C-11)

where,

TERM 1 mVar

I.~~~ -~(~) (mT) [L-Im 1++2(N/S)+(N/S )2]
(C-12)

TERM 2 = co R(T)

1 [L-2) 8( (m+ )T) 13)T

- L(L-1) Im..1)T) (mT) [(L-1 )I tI(-3

+ 2 ((1-L-2)T) ((-L-1)T) + (2L-2)(N/S
(T)=0

TERM 3 E R(T) -7T

=-(L-2 2 2

0(mT) [(L1)j/S1 + N12 (N

p, 47
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TERM 4 = E{(T--" ))= E{ }i (C-15)

1 - 2[L (O(mT)) 2 [(L-)-jI ] + 2(L-2)-(2T) (N/S]
(L-1) m=-(L-2) O(T)

B. Bias Error Equation

O[(T)
Bias iI 2 I4WTW [TERM 11 - TERM 21

+ 0.25 ([TERM 31 - (TERM 4}) (C-i6)

Varfwl
20

where W I- B(T)1/ 2  (C-17)

Another algorithm for estimating the spread parameter,

W, is the ' jarithmic version of Rummler's algorithm, defined

by the following expression (see Reference [101).

p 1 I-n I P(T)11/ (C-18)log

This algorithm is reported to have less bias than the Rummler

version, especial" for the case where the signal process has a

power spectral density which is Gaussian in shape (and hence, a

Gaussian autocorrelation function). Taking the same approach

as for the previou -read estimator it is easy to determine

the error equatons for the logarithmic spread estimator.
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The variance and bias errors for this estimator are summarized

below

Var 1W3 } [ ITERM 1}v.= { l~oq} (42T' log)[{E }
(C-19)

-2 TEIRM 21 + 0.5 {TERM 3 + TERM 4}]

Bias 1W log} =I [TERM I} - [TERM 41]

-Var 8log

2(
log

- = (- InO(T) 1/2

where W log (C-21)

.%

49

.



TABLE 1

ALGORITHNS FOR ESTIMATING SPECTRAL

SPREAD PARAMETER, W

1 1- R (T)[
1 v21T R(O)-N

____ R(0)-N2  - -2.;T n A
i R(T)

6 - r T R(2T)
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BURST (Lags I1 only)
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0 0.5 1.0 1.5 2.0

Fig . 1. Normalized standard deviation of mean velocity estima-
tors versus normalized pulse spacing (16 pulses total, SNR =-6

dB).
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Fig. 2. Normalized standard deviation of mean velocity
estimators versus normalized pulse spacing (16 pulses total,
SNR= 0 dB).
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Fig. 7. Standard Deviation (m/s) of mean velocity estimators

VN, V12, V123 versus signal-to-noise ratio (dB) (16 pulse

burst, = 150 m/s, f 9.1 GHz, T = 5 Psec).
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