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ABSTRACT
fhis report addresses the problem of estimating the
spectral parameters of an observed doppler velocity spectrum
using a burst radar waveform of arbitrary lergth. Maximum-

likelihood theory is applied and the exact M...E. algorithm for

estimating the spectral mean is derived. This M.L.E. algorithm
N is shown to include, as a special case, the spectral mean esti- 1
mator originally proposed by R. W. Miller [1]fo: processing of
<
burst waveforms. Also, when the burst waveform is a simple
pulse pair, the M.L.E. algorithm reduces to the :pectral mean
estimator originally proposed by W. D. Rummler {2]. The
Cravrer~-Rao bound for estimating the spectral mean using burst
waveforms 1is also derived. Simplifications to the exact maxi-
mum-1ikelihood algorithm are proposed and the performance of
various estimators is compared to the Cramer-Rao lower bound.
Some preliminary results of studies of spectcral width estima-

tors are also presented.
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I. INTRODUCTION

Estimation of the spectral moments of observed signal
waveforms is currently an important topic in many fields of
research. For example, the analysis of pulse doppler radar or |
sonar echoes from distributed scatterer targets 1s an important
area of interest. Early work in this area was done by Rummler

- [2] who proposed estimators of the spectral mean and variance
from pulse pair radar waveforms, His algorithms were based on
covariance argument techniques and ure generally referred to as
time-domain processing. Rummler's proposed algorithms wera
subsequently shown to be maximum-likelihood c¢stimators of spec-
tral mean and variance (see K. Miller and M. Rochwarger([3]).
Processing of independent pulse pairs requires a long radar
observation time, and thus, it was suggested by Berger and
Groginsky [4] that time-domain estimation of spectral moments

fror adiacent pulse pairs of a radar burst waveform is the most
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direct and efficient technique to implement on conventional
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radars. Since the explicit solution to the maximum-likelihood
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equation was not available, processing of the adjacent pulses

cof the contiguous-pulse burst waveform was done simply using
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Rummler's proposed time-domain algorithms. FEstimates from con-
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were analyzed in Benham [5] where the performance accuracy
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estimators) was determined and compared with independent pulse
pair processing. More recent studies of spectral moment esti-
mators using contiguous correlated pulse pairs are presented in
Zrnic [6,7). These references provide an excellent survey of
the topic of spectral moment estimation using time-domain pro-
cessing and present a fairly complete mathematical approach for
determining the theoretical accuracy of covariance argument
estimators.

It was recognized by R. Lee et al. [8] and by R.
Srivastava et. al. [9] that useable spectral moment estimates
could be obtained by processing lags other than the first-order

lag utilized by Rummler and Berger and Groginsky. Also, im-

.

proved estimates could be obtained by averaging the individual
moment estimates obtained at various lags. Lee proposed a
poly-pulse pair processing scheme for combining estimates ob-
tained at various lags and demonstrated that by utilizing
higher order lags to obtain spectral estimates, performance of
the estimators could be extended to lower signal-to-noise ratio
situations.

Up to this point we have discussed spectral moment
estimation using strictly time-domain signal processing tech-
niques. An alternative method of estimating the spectral mean
and variance utilizing autocorrélation estimates at all availa-

ble lags combined with frequency domain processing was proposed
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by R. W. Miller [1). An efficient implementation of Miller's

approach utilizes an FFT algorithm and an appropriately select-

ed window function. 1In this alternative approach, the power

spectral density of the observed random process is computed

from the sample autocorrelation function of the observed data

and the spectral mean is then estimated to be the location of
. the maximum peak of the computed power spectrum.

In Section II of the report, maximum-likelihood theory
is applied to the problem of spectral moment estimation using
burst waveforms. The exact M.L.E. algorithm for estimating the
spectral mean is derived. This optimal estimator utilizes
autocorrelation estimates ac all available lags and may be
implemented either as a time-domain or frequency-domain al-
gorithm. For contiguous-pulse burst waveforms th2 time-domain
implementation of this optimal M.,L.E., estimator is shown to be
a generalization of Rummler's algorithm. When the observed
data is comprised of independent pulse pairs the time-domain
estimator reduces to the spectral mean estimator originally
proposed by Rummler ([2]. The frequency~-domain implementation
of the M,L.E. estimator is also shown to be a generalization of
Miller's algorithm [1]. 1In either case¢ (time-domain or
frequency-domain processing) the M.L.E. estimator utilizes an
optimally weighted combination of the autocorrelation estimates

at all possible lags.,
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In Section IIl of the report we present an interesting
analytical solution for the Cramer-Rao lower bound for estima-
tion of the spectral mean from pulse burst data.

Section IV of the report presents the results of a
comparison of burst waveform processing versus pulse-pair pro-
cessing using Rummler time-domain processing. Also, practicai
simplifications to the M.L.E. estimator are presented and stud- {
ied, both analytically and through the use of a Monte-Carlo
simulation. Finally, preliminary studies of several algorithms
for estimating the spectral spread are presented.

Section V provides a brief summary »~f the report and
suggests the need for development of 2 more accurate algorithm

for estimating the spectral spread parameter,
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It. MAXIMUM LIKELIHOOD ESTIMATICN OF THE SPECTRAL MEAN

The return signal is assumed to be a discrete-time
sequence of (complex) radar video samples spaced at the radar
pulse interval, T. The return signal is comprised of a time-
wise correlated narrow band sigrial component and a white noise
comporient, i.e,.,

2, = 5,23 Te ny Km0, 01,01 (1)
Both s\ and n, are zero mean Gaussian processes centered at
zero frequency. The true signal power is denoted by S, while
the correlation coefficient, B(kT), depends upon the time
spacing between samples of the seguence as well as the spectral
width of the signal component.‘ Thus, the autocorrelation func-

tion of the process 2, is

jukT

R{KT) = S3(kT)e N3 (2)

k

where R(kT)=E{zi*zi+k} and N is defined as the white noise

power per sample. Also, the term Gk is defined as follows

Gk = 1 k=0

, (3)
- = 0 otherwise

The signal power spectrum is assumed to be symmetric

e
‘s
4

about the spectral mean "w" and is Gaussian in shape. Thus,

the correlation coefficient, B(kT), is also Gaussia: and of the

KRR
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where the spectral width is denoted "W" in the above expres-

B(T)

sion.

In this section of the report we shall focus mainly on
estimation of the spectral mean of the signal component and
shall derive the maximum-likelihood estimate of "u" based upon
the sequence {zg, Zys Z2,.+.,%-1}. A brief summary of
the mathematical solution to the proposed estimation problem is
given in the following paragraphs.

Given the sequence of radar measurements

QJUOT

= 3

Zp 0 0

ju(1)T
2y = s, @ 0T 4 n | (5)

jw(L-1)T
L-1 © +n

L-1
we write this data set in matrix form
z =Ds +n (6)

where the diagonal matrix, D, is given by the following
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e ®(0)T =

eﬂ"(1)T
(7)
ej“(z)T

L :eju(L-l)'r_

Since all the variables are assumed to be Gaussian, we
consider the covariance matrix of the measurement vector, 2z
which may be expressed as follows:

E{z 2"} = Dp(C + wr)D* (8)

In the above expression, C = E{s s*'] is the covariance
matrix of the signal vector, s. Denoting the logarithm of the
(complex) Gaussian probability density function as "ln f(z)",
we have

In £(z) = -z*'D(C+NI)”'D* z - In|C+NI| - L 1n 27 (9)
The maximum likelihood 2stimate of parameter "uw™ is obtained by

taking 3
Jo Un £(2)} =0 (10)

Since the term 'C+NI' is independent of the parameter
“w", we need only consider the first term in the above
log-likelihood expression. For purposes of simplicity, we
shall present the maximum-likelihood solution for bursts of

length L=2, 3, and 4. The general solution for an arbitrary

number of pulses will then be presented.
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In the following derivation we shall make use of the
elements of the inverse convariance matrix (C+NI)~! which is

written

Y Y

11 ..'l‘Y

12 L
-1 _

[ 3 B BN Y QY

Y‘L...".'..'.YLL

For the burst of length 2, we obtain

[ (=13 -juT
[( jT)Y12 zo* z, e

%w{ln f(g)} + (jT)Y12 2021* e qu (12)

Setting the above equation to zero yields the expression which
the maximum-likelihcod estimate @ must satisfy. When this is

done, we obtain

N A\
zg* 2, e 19T 2y 2,* ed V7T (13)
Clearly the above expression is equivalent to the Rummler
algorithm for estimating the mean of the power spectral density
function, i.e.,

A1 N
W= ARG {R(T) } (14)

A
where R(T) = zg*zqy is the unbiased M.L.E. estimate of the
complex autocorrelation, R(T).

Simiiarily, for a burst of length 3, given data samples

{Zo: Zy, zz], we obtain

T R o A s S gl
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9 . . = wT . -9 wT
7o {1n f(g)} = - [(-JT)Y1zzo*z1eJ + (-3T)Y1zz1*zzeJ

_a -j2uwT . j wp
+ { 32T)713zo*zze + (JT)Y122021*e (15)

jur §2 wT ]

+ (jT)Y1zz1zz*e + (j2T)Y13zozz*e

Setting the above equation to zero yields the following
expression:

2y D -~

13 -5ur -jer
[zo*z1 + oz %z, ¢ ., z24*z, e le
(16)
AN
=[z zZ.* + z.z* + 2Y13 Z.2 *e+ij]eij
0%1 122 % Y, %e*2

which may be written as follows

Y N\ )

N A A
[R(T) + 713 R(2T)e ) T 17T
12
(17)
A Y A ‘/\ R
=[rRe(m)+ 2 re(2m)ed T3 T

In the above equation, we have the definitions
N 1
R(T) = 3 (zo*z1+ z1*22) (18)

\
and R(2T) = (z,*z,) (19)

From the above expressions, it is clear that the
maximum~likelihood estimate of parameter "uw" is obtained from

the algorithm
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~ 1 ~ Vi3 A jr
w = = ARGIR(T) + —= R(2T)e } (20)
] A [ L] + . v 13
Since the above sclution for w®w is implicit, one iterative
method of solving the expression is suggested as follows. ﬁ
Given the data samples {zo,z1,z2}, obtain an initial :
. . A A - 4
approximation of w from R(T), i.e.,let
A\ q
D, = 3 arc{R(m) } | (21)
W . . ~ A
s The improved estimate of w based upon R(T) and R(2T) is then
f; obtained iteratively using the expression
n A
3% A A =Juy
® ., = &+ ARG{R(T) + <2 R(2T)e ~ 1} ' (22)
!:l For a burst of length 4, given data samples {20,21,22,23}
P we obtain the M.L.E. estimate
4y A Yia A c o
A A S — -
o = L ARG [RIT) +=—1- Ri2T)e 3Ty 14 Ri37)e”324T} (23
T 3Y Y
v 12 13
; where we have defined
2N
i Ny 2 Lig ¥y .23 % * .
R(T) = -3-(z0 z1 + 5 z, 42 + 22 z3) (24)
) 12 4
we
R
L ~ * *
%; R(2T) = 3 (z0 z, + z, z3) (25) j
N a . |
3 R(3T) = (2, z,) (26}

A
We note from the above equations that the estimate R(T) is

10
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biased, since in general, Y33 * Yy2. In a real-time

implementétion of the M.L.E. estimator one might use an
unbiased estimate of R(T) in the solution.

| Finally we present the solution for the estimate, 1b
for an arbitrary burst length. Omitting the details, the solu-

tion is given by the expression

L-1 A
are { C, R(kT)e
k=1

1

N\
= -Jm(k-1)T}
T .

A (27)

where the weightiné coefficients, Ck, are defined in terms of

1

the elements, Y. of the inverse covariance matrix, (C+NI) '.

ij’
We note that, in general, the M.L.E. estimator utilizes esti-
mated autocorrelations R(T), {2\(2T),...., /R\(L—I)T at all availa-
ble lags to dete:mine *"w", since, in general, the coefficients
Yij # 0. The estimator is implemented as a time-domain algo-
rithm and it is seen (by comparing Equations (14) and 27)) to
be a generalization of the spectral mean eétimator proposed by
Rummler [2], This estimator, however, is implicit in struc-
ture and an iterative scheme must be utilized toc find the >
which satisfies Equation (27). Thus, we are interested in de-
termining an explicit method for obtaining the estimate 1h In
the following paragraphs, we develop a frequency-domain imple-

mentation of the estimator which is shown to provide an explic-

it solution for 4h This alternative implementation is a gener-

11
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alization of the spectral mean estimator propoused by Miller
A

From the estimates of the autocorrelation function {R(0),

A CA

R(T),.+.,R{(L~1)T} we compute an estimated power spectral den-

sity, S(w), as follows

(-1
S(w) = ) AkR(kT)erkT (28)
=-(L-1) '

where the coeff1c1ents (Ax) comprise an arbitrary set of
weights or equxvalently a window function. Slnce R( kT)=R*(kT)
w2 may write

(L=1)

ral -
S(w) = [ A_R*KkT)e 1 kT
. k=1
(29)
(L=1) A :
+ AOQ(O} + 1 aRr(kmed T
k=1

Miller {1] took as the estimate of spectral mean, v, that

A A
frequency @ which maximized the function S(w). That is, w is
estimated as that frequency ccrresponding to the peak of the

A .
power spectral density. Thus, ® is found by taking

s(w)L= 0 (30)

Performing the indicated differentiation one may easily obtain

Qalﬁ;
€

the result
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L-1 \ N
I Rk dUk-NIT -JuT

k=1 |
(31) i
L"'1 A\ -A - N
- ) ckR(k'r)eJ“'(k T JuT
k=1

where we have assumed Ax = A_x and substituted Ckx = kAyx
into the above. But the above expression may be shown to be
|

#qdivalent to the M.L.E. estimate

=3

A L=1 A —ja(k=-1)T
W=+ ARG{ | C, R(kT)e J (32)

|
;,l
; k=1

i A
[Therefore, instead of solving for ® from the implicit formula
jof Equation (32), we may compute the power spectral density
f function, S(w) of Equation (28) and locate the peak of the

J \ . N s .
| function to determine w explicitly.
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III. CRAMER-RAO BOUND FOR SPECTRAL MEAN ESTIMATES

Next, we wish to determine the Cramer-Rao lower bound
on achievable estimation accuracy by determining the Fisher
information matrix for the parameter "w"., Again we shall
present the general solution by first deriving the results for
short bursts of length 2 and 3. The general solution for a
burst of length L will then be presented.

For the case of L=2 pulses, we obtain

2 lin (@} = (=327, 2tz
o2 n £(2) (=3T)“v,,2,%2,e

Tt (jT)2¥1230z1*ej”m] (33)

Taking the "expectation"™ of the above yields the Eishet

information matrix, which is found to be

.2
E (a_:.z {1n f(z)})a 21 v,,S B(T) (34)

Substituting Yy into the above expression, one obtains the

Cramer-Rao lower bound for the variance of the estimate 1b

22 1 (amy/s)? (35)
2T Bo(T)

Incidentally, the above expression is identical to the
approximate predicted accuracy of the Rummler pulse pair method
for estimating the spectral mean, 1>(see Rummler (2]). His
derivation involved approximating the nonlinear estimator

(Equation (14)) using perturbation theory and computing the

. , . . /\
variance of the linearized estimate, W,
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Similarly, for a three pulse burst we have

2 -
3—7 {1n f(g)} = -[(-jT)271zz°*z1e j ur + (-jT)zY‘zzi*zze J oT
W

+ (-j2T)2713zo*zze'j”T+ (jT)271zzoz1*ej”T (36)

® * <
+(j'r)2v1zz1z2 erT + (32‘1‘)21,32022 erwT]

Finally, for the three pulse burst, the Cramer-Rao lower bound

becomes

2 1
o> 2[ (37)

AT [v,, SB(T) + 27, SB(2T) ]

The Cramer-Rao bound for a pulse burst of length L is similarly
determined. The derivaticon is briefly summarized as follows.
For the general L-pulse burst we write the log-likelihood

function as follows:
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lnfli)a
* ® R ® 2 N
. - JwT -j2wT -3 (L-1)wT
(2o2 250202, )0 Yy, Y32 Y13 118 %
y o JuT Y R
21 22 Y23 %)
. j2wT jwr
T3 Y322 | Va3 z,
LY -ij
Yi-1,1%
3 {Le1)WT, JwT
Y., ° Y e Y z
L1 - - ,
L,L-1 . L-1
+ CONST (38)

where the remaining terms vhich are independent of the
parameter "w" are simply denoted as "CCNST". Before proceeding
with the derivation we make the following remarks. In the

above expression, which is of the form

In f(z) = - 5* p(c+nr) o™ z + CONST (39)

we have assumed the matrix inverse to be more generally of the

form

-1 _
- (C+NI) = (Yij) (40)

*
. Also, we have combined the matrices D and D with the elements

of the matrix (Yi . Hopefully, this will lead to the desired

j)
solution in a clear manner. Computing the required second

partial derivative with respect to the parameter "w" and then
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factoring out the complex exponentials leads to the result

l} 233 ln £(z) = (:;,z;eij,z;ejsz,...z;_lej(L-lqu)
T Jw
f° Yiz2 | 4 13 9 Y14 \ / Zy
Ya |© f23 4 724 IE Y25 2,
4¥3( Y32 | © T34 4 Y35 2 %
9 Yar| 4 Ya2| Va3 ° yL-1,L
9Y,,L-3] 4 YL,L-2 YL,L-I 0 } \ ’L—le-j(L-l)uﬂj

(41)
vhis expression is then expanded as the quadratic ferm

2
] -1 =1 . (m=-n) T
-1-2- — l1n f(_g)} = i %: (n-m)2 Ymnz:znej (42)
™ dw m=0 n=0 '

Finally, taking the "Expectation" we obtain the result

: 52 -1 L= )
-, BE|= ,lin g2)}) = Y X (n=m)®y _S8((n-m)T) (43)

T 3w =0 n=0
n#*m
étﬁ where we have used the fact that
s
CAN x . {n-m) wT
e Elz_z } = s 8((n-m)T)e’ ;  n*m (44)

Summarizing our derivation, we have found the following general

solution for the Fisher Information matrix
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a2 -1 I=d
E (‘ —g {1n £(2) }) = - 12 '}: ‘2 (1'3’2Yij“ij

L) i=0 j=0
where we define the LxL matrices

(Aij) = (C+NI)

. -1
(Yij ) = (C+NI)

Then the C-R bound is given by the following expression.

2 -1
% 2 " L? /3 IR
SRCENTETIRVEN
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Iv. ANALYSIS AND SIMULATION RESULTS

First the results of a comparison of burst waveform processing
versus pulse-pair processing using Rummler techniques is
presented. For this comparison, the total number of available !
pulses is considered to be fixed (specifically we take L=16 |
pulses) and compare estimator performance for a single burst

. with the estimator performance achieved using 8 independent
pulse-pairs {again, processing a total of 16 radar pulses).
Figures 1, 2 and 3 show the results of this study. In each of
these figures three performance curves are shown. First, the
fundamental accuracy achievable with a 16 pulse burst waveform

is shown, based upon the C-R bound derived earlier in this

report (see Equation 48). Also, the theoretically predicted
accuracy achievable by processing the 16 contiguous pulses of
the burst using the Rummler time-domain algorithm is shown.

Thus, we evaluate the accuracy of the estimator (see Appendix

B)
o = 3 ARG [R(T) | (49)
where
- ] ﬁf? *
RIT) = go7 24 ZiZj4 (50)

120

Finally, the accuracy achieved oy Rummler processing of 8 in-

O dependent pulse pairs (hence, a total of 16 transmitted radar
~\‘_1

55 pulses) is shown. This is considered to be a fair comparison
i!
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in that both approaches utilize the same total number of radar
pulses, Thus, both approaches utilize the same total transmit-
ted radar energy. The major difference, of course, is that the
8 independent pulse pairs use a considerably longer radar ob-
servation time.

The curves of Figures 1 through 3 show normalized esti-
mation accuracy versus normalized spacing between the pulses in
the burst or pulse pair. The normalization used in these
curves is described as follows. The assumed signal correlation

function is given by the expression

_ e_2'2(“)2

B(T) (51)

where W = 20v/l. We have defined the signal process decorrela-
tion time to be that time, TO' required for the signal process

-1/2 -1/2

to decorrelate to e » 0.6 in value. Setting B(TO) = e

we find

Th = 4+ (52)
0 T%ov

Therefore, in Figures 1, 2 and 3 we have evaluated the normal-
ized estimation accuracy (ST.DEV{V}/cv) versus normalized time
between pulses (T/TO). Note that the mean doppler velocity
(m/s) is related to the spectral mean estimate through the for-
mula & = (A/4!);. The pulse-pairs are assumed to be suffi-

cently separated in time so that statistically independent

22
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sampling of the signal process from pair to pair is achieved.

The figures show performance for three selected signal-to-noise
ratios (-6 dB, 0 dB, +10 4dB) and are val.d for any specific

spectral spread. From thece curves one may draw the following

conclusions.

l« In each case it is clear that burst processing
utilizing a total of 15 "lags of 1" available from
the 16 contiguous pulses is superior to pulse-pair
processing using 8 independent Rummier pulse-pairs.
This is especially true at low signal-to-noise
ratios. At high signal-to-noise ratios both esti-
mators provide comparable performance, the burst
waveform having a small advantage,

2. Comparing the performance of the 16 pulse burst
waveform with its corresponding theoretical C-R
bound shows clearly that the 16 pulse burst wave-
form with Rummler time-~domain processing of the 15
"lags of 1" products achieves estimation accuracy
comparable with the C-R bound except for low sig-
nal-to-noise ratios. Thus, it appears that some
improvement in estimating the mean velocity is
possible for only the low (S/N) ratio case.

3. From the curves shown in Figures 1, 2 and 3 it is
also seen that the optimal pulse spacing is given
by T/Tg ~ !, i.e., Selecting the pulse spacing
T » Tg minimizes estimator errors for both pulse
pair waveforms and burst waveforms. Thus, to
specify an optimal interpulse spacing T ~ Tg one
must have knowledqge of the true spectral spread,
Ov, as indicated in Equation (52).
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In the remaining paragraphs we restrict our discussion to burst
waveform r£rocessing and consider the design of optimal burst-
forms. The basic objective will be that of achieving good es-
timator accuracy using a burst waveform having a small inter-
pulse spacing (T<T0). Note from the curves of Figures 1
through 3 that excellent performance cgn be obtained with the
burst waveform provided the time between pulses, T, is properly
selected. At high signal-to-noise ratios, selection of a good
pulse spacing is not difficult since the performance cu.ves are
quite flat, i.e., are very insenéitive to the parameter T over
a wide range of values (see Figure 3). Even with the signal-
to-noise ratio as low as a few 4B this insensitivity to para-
meter T is true. Thus, for any reasonable signal-tc -noise
ratio the spacing between pulses could for example be selected
between 0.3T0 to 1.5 T0 and excellent performance will be
achieved over the equivalent range of the spectral spread para-
meter, There is no need to improve upon the Rummler burst es-
timator performance over this range of parameters. Therefore,
we next consider the problem of improving performance at low
signal-to-noise ratios.

For lower signal-to-noise ratios (say 0 dB) selection
nf the interpulse spacing begins to become a more important
consideration (see Fi,ure 2). For exanple, selecting, T=0.3T

0
one observes that burst waveform performance begins to degrade
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relative to the estimation accuracy predicted by the C-R bound.
For very poor signal-to-noise ratios (say -6 dB) selection of
the interpuise spacing begins to become very critical (see Fig-
ure 1) and with T = 0.3T0, burst estimator performance becomes
very degraded relative to the CR bound. For this reason we
have considered the problem of improving burst estimator per-
formance at these very low signal-to-noise ratios.

We remark that in deriving the MLE spectral mean esti-
mator (see Equation 27) it was tacitly assumed that the covari-
ance matrix (C+NI)~! was exactly known a priori or has been
accurately estimated from‘observed data. However( if the coef-
ficients (Yij) must be estimated from the data then applying
the maximum-liklihood approach to the simultaneous estimation
of the parameter set {uw, Yeqr Yygr eees YLL} requires the
solution to the following equations

3. linezl=o0

s— lin £(z)} = 0 (53)
"o,
L J
o
)
w— {ln £(2)} = 0
LL =

The solution to this set of equations yields the joint maximum

liklihood estimates {u, Y11""'YLL}' This of course provides

the estimator of "wW" to be of the form
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© = % ARG Y, C R(kT)e ) U(k=DIT (54)
K=1

where the Ck are defined in terms of the M.,L.E. estimates of
° 1

the v;; of the inverse covariance matrix (C+NI) ', For an
L-pulse burst this implies the simultaneous solution to 1 + 0.5
L(L+1) equations. Letting L=16 this means one must solve a
total of 137 coupled nonlinear equations - a formidable task!
| The structure of the M.L.E. spectral mean estimator
suggests that using the information contained in the higher
orde; lags of the burst waveform one may improve the accuracy
in estimating the spectral mean at low signal—to-noise ratios
for small interpulse spacings. To this end, we consider the
simpler approach first suggested by Lee (see Reference [8]).
In this appproach, estimates of the spectral mean are
obtained using each estimated autocorrelation {ﬁ(T), ﬁ(zw),
ﬁ(3T),...} using Rummler's time-domain method. In these

studies, we have considered the following three spectral mean

estimators

\71 = .4:71; ARG {R(T) }

-~

A -
Vy = Tw 5Ty ° ARG {R(2T) } (55)

A A ~
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" 1
where R(T) = -7 & zi zi+1
-~ 1 L"'3 *
~ L"4
. R{3T) = ! 2 *z
L-3 i=0 i “1+3
. Then the estimates Vl' V2 and V3 are combined in a linear

fashion to obtain improved performance. To this end, we have

considered spectral mean estimators of the form

V12 = c1V1 + c2V2

~

where the coefficients Cyr Cyy C5 are selected either to mini-
mize the rms estimation error of V12, V123 (optimal weights) or
simply to average the estimates (uniform weights).

Figure 4 shows the theoretical estimation accuracy of
each of the spectral mean estimators V1, V2 and V3, computed

. _ \ AN N\
from estimated autocorrelations R(T), R(2T) and R(3T), respec-

tively. For the specific case considered (S/N = -6 dB,

s o, = 150 m/s A=,03m, L=16 pulses) the curves indicate thecreti-
[ 3R]

o . \

o . cal accuracy versus spacing, T, between adjacent pulses of the
A

ii burst waveform. If it is desirable to utilize a quick burst of
o

v pulses corresponding to a small spacing T, we see for the data
Ve .

» . . . Al

Qﬁ shown in Figure 4 that the spectral mean estimator, V3, pro-

E!

ATy

o .
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vides best performance. For pulse spacings greater than 8 u

N\ .
seconds the performance of estimator V3 degrades rapidly. How-

N\ /\
zver, in this region of pulse spacing both estimators V1 and V2

prcvide good performance.

. , /N N\ N\
Given the three estimators V1, V2 and V3,

provide useable estimates of the spectral mean, it is re.acona=-

each of which !

ble to consider obtaining improved estimates using a linear
combination of the individual estimates. Note however that the
estimatesls},‘c;, and’G; are correlated and the amount of im-
provement in estimation accuracy achievable depends upon the
degree of correlation.

Figure 5 shows the restlts of a theoretical analysis of ‘
the performance of the spectral mean estimatmrs‘xiz and €a23
using uniformuweight; as in Lee {8] (for comparison the figure‘
also indicates the performance of estimatorlc:). The curves of
Figure 6 indicate the theoretical performance of these same

estimators using optimal minimum variance weights. Comparing

the curves of Figure 5 and Figure 6 it is seen that the simpler

method of averaging estimates using uniform weignhts provides
'significantly improved accuracy relative to the single-lag es-

/N
timator V1. This is especially tiue for small pulse spacings

and at large spacings for V123, and at still larger spacings
) "'p‘ /\ .
S for v,,, and V,. For this case, the additional improvement

achieved using optimal weights may not be justifiable. That

) 28
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is, since the computation of optimal weights requires knowledge
of both the S/N ratio and spectral width parameters, implemen-
tion of optimal weights may not justify the computational
expense.

Figure 7 presents the results of a Monte-Carlo simula-
tion of spectral mean estimators /v\1, /\7\12 and/V\

123°
considered (ov = 150 m/s, A= 0.03 m, L=16 pulses and T=5 u sec)

For the case

we have evaluated estimator accuracy as a function of signal-
to-noise ratio. We have also inciuded both the Cramer-Rao
lower bound and the theoretically determined accuracy for
algorithm <I\1 [see Appendix B]. From the figure we observe that
the simulation of estimator <a agrees quite well with accuracy
predictions at high signal-~to-noise ratios. Also, almost no
improvement in performance was obtained at high signal-to-noise
ratios using estimator'@%2 or‘$;23. At low signal-to-noise
fatios the performance of estimator‘<a departs from the theo-
retical predictions due to approximations used in the linear-
ized error analysis. As expected, however, at low signal-to-
noise ratios we observe a significant improvement in perform-

. . . 7\ /\ ,
ance achieved using estimators V12 and V123. Finally we remark

that uniform weights were used in this simulation.

Xy
P

Figure 8 shows the results of a Monte-Carlo simulation

A_.
FSels
%

of several spectral width estimators which were evaluated.

Among the algorithms simulated are Rummler's original spectral

a5
Y
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width estimator (Algorithm 1) and two logarithmic versions of
the width estimator (see table 1 for definitions of these esti-
mators). The first logarithmic version of the width estimator
(Algorithm 2) was developed to reduce the bias error inherent
in Rummler's original spread estimator and assumes the shape of
the power spectral density function to be Gaussian (Reference
[10]). The second logarithmic version of the width estimator
(Algorithm 3) does not require an estimate of the noise power,

N, as 1s required by the other algorithms by utilizing both

R(T) and R(2T) in estimating the spectral width (Reference

(91).

The performance of each spectral width estimator was
evaluated via Monte-Carlo simulation and the accuracy was
plotted versus signal-to-noise ratio for the same parameter set
considered previously (0v = 150 m/s, L = 16 pulses, T = 5 u
sec, A = 0,03m). Indicated on the figure is the Cramer-Rao
lower bound on estimating the spectral width parameter (from
Zrnic [10]). Also shown on the figure is the theoretical accu-
racy of algorithm (1) (see Appendix C for accuracy formulas).
For the data shown in Figure § we observe two significant re-
sults. First, the theoretical accuracy predictions are ob-
served to be quite good at high signal-to-noise ratios, how-
ever, at low signal-to-noise ratios we observe significant de-

parture of the simulation results from the theoretical predic-

30
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tions. Secondly, the Cramer-Rao lower bound is observed to be
very optimistic and does not provide a tight bound on the per-—

formance of these spectral width estimators.
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v. SUMMARY

This report considered the probiem of estimating the
spectral mean and spectral width parameters of an observed dop-
pler velocity spectrum using a burst waveform of arbitrary
length. The observed waveform was modeled as a correlated
Gaussian random process and the maximum likelihood algorithm
for estimating the spectral mean was derived. Also, the cor-
responding Cramer-Rao lower bound for estimation of the spec-
tral mean parameter was derived. The M.,L.E. spectral-mean
estimator was shown to include both the time-domain spectral-
mean estimator proposed by Rummler [2] and the frequency domain
spectral mean estimator proposed by Miller [1)}. Simplications
to the M.L.E. spectral mean estimator were proposed and
studied, both theoretically and by using Monte-~Carlo simula-

tions. It was shown that by using additional order lag estima-

\ ”\ \ .
tes (e.g9., R(T), R(2T), R(3T)) that improved spectral mean

¥

PLp™

estimates could be obtained and this improvement in performance

o
T

could be achieved at lower signal-to-noise ratio situations.

. Finally, preliminary studies of several spectral width

-
"

estimators were presented based upon Monte-Carlo simulations.
From these simulation results it was observed that performance

of the spectral width estimators was far from the Cramer-Rao

lower bound, thus, there is need for development of a new im-

}I

\J

proved algorithm for estimating the spectral width parameter.
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APPENDIX A: COMPLEX RADAR SIGNAL SIMULATOR

This appendix describes the technique used to simulate
complex radar signal samples for burst waveforms of arbitrary
length. The radar signals being simulated are described
earlier in the report (see Equations ! through 6). The
technique has been used to sihulate burst waveforms with as
many as 16 pulses and as few as 2 pulses. The technigue will
be described using, as an example, a three pulse burst. The
extension to the general L-pulse case 1is then trivial.

Assume we have three complex pulse returns

} jour
20 soe + no
(A-1)
) j1ar
21 Sig + l'l1
= j2ur .
22 52e . + n2

From the assumed signal autocorrelation function, which is

_ jk o _
E{z; zi+k} = SB(kT)e + N 8 (A-2)

WA

we obtain the covariance matrix for the vector 5'=(zo,z1,zz)

'y

T S + N sg(r)e 1T ss(2r)e I 2T

=

‘
P
.

-

Blzz" ) = j

SB(T)e S + N se(T)e‘j“’T

My =, LAY 2 A o
fw+{j.{ o
A AL, IO S
I

s8(2r)el 2T sg(T)ed “T

i,

" ") vy

(A-3) |

v - AR
<7 1 N
(o3 1N,

‘
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The basic idea is to recognize that this covariance matrix can

be factored into the product of three matrices, i.e, |

Elz 2 | = D(C+NI)D*® (A-4) |
1 0 0
Where D = 0 A 0 (A-5)
0 0 ed24T
S + N 58(T) SB(2T)
ana (c4n1)=|  s8(T) S + N SB(T) (A-6)
SB(2T) | SB(T) S + N

Note that since the matrix (C+NI) is real and symmetric, it may

be factored as follows

— - —_ —
asy 0 0 ay, as, a3,
(C+NI) = a21 a22 0 0 a22 a32
as, a3, a33 0 0 a3
(A-7)

i 1L J

where the unknown coefficients, ajj,are all real. Defining

the matrix factorization as (C+NI) = MM', then the reader may
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easily verify the following solution,
SB(T)

(2T
S + N (A=8)

b

Vis + M2 - (s8(T))2

a = —
22 VS + N
4. = (SB(T) [(S+N) - (SB(2T)) ]

32 \’S + N

g Y . & 3 LN . Sl d - P i LR U S T B
Bl o L G MU R U IR 3 S ATASR AR ARASEE Sb A Al 24 SASANA MM SN W 2 S DA D R b AR R RRARA

a =\,(.S+N)3-[(SB(2T))2+2Q3(T) )2](S+N)+2(SB(T)_)2(S B(2T))

33
Jis + ;2 - (s8(1))?

E} The sequence of complex data samples {zo, Zy» zz} is then

!‘ generated using the following matrix linear transformation

"g’* - - — r- - =ad —
a

" 0 0 9

o

N 37
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The input samples 99r 9, 9, are uncorrelated complex
Gaussian random variables
90 = Xo * J¥g
9, » x, + jy‘ (A-10)
9; = Xty
Thus, to obtain the properly correlated sequence of complex
data samples we generate 6 independent (mean=0, variance=1/2)
Gaussian random variables xqg, Yo X1, Y1¢ X2 and y3
and obtain the corresponding simulated complex radar signal

samples as indicated above in equation A-9. It is easy to show

that the complex data samples {zo, Zy0 z,} have the desired

Hermitian symmetric covariance matrix (see Equation A-3).

It is easy to verify the fact that the variables {zo, z,, zz}

also satisfy the required circular property (see reference [6])

E{zi,zj} = 0 for all i, j (A-11)

We remark that this property will not be satisfied if one were
to take the input data vector to be real Gaussian variates

(e.g., 9g = Xgr 9q = X0 9,= X,). Finally, it is clear that

the method described in this appendixr generalizes to the

general L-pulse case.
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APPENDIX B ERROR ANALYSIS OF MEAN VELOCITY EST1MATOR

This appendix provides a summary of the error analysis
of the mean velocity estimator for burst waveforms which are
processed using the Rummler time domain approach. Specifically
we have considered a burst waveform comprised of L contiguous
pulse returns, denoted {x,, z,, 25, .., 1}, From this
contiguous pulse train we may compute estimates of the mean
doppler frequency using various lag products. For example, we
might construct the following estimates.

£, = ‘2'1?&"' ARG {R(T)}

£, =

1 ~
2" gy ARG (R(2M) ) .
£, = L R
37 v A6 ROM
etc
where \ L2
R(T) = —=7— iEo %
_ 1 L-3
= H ]
Aeam) e izo 2zt 2., (B-2)
- 1 L4 *
R(3T) = T‘T izo zl z],+3
etc.
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Each of the above estimators f1, f2, f3, etc yields valid

e |

estimates of the mean doppler frequency. One is interested in

f determining the accuracy of these estimates. A brief

discussion of the accuracy analysis is given in the following
paragraphs. This analysis is based upon the work of Reference
[6]).

An analysis of the accuracy of the Rummler time domain
estimator (see appendix A, Reference [6]) yields the following
error expression for tha2 accuracy of the estimator Ek
Var {Ek} =

1 re | E 'ﬁ(xT) 2l _ ¢ lfrxm 2 | | (B-3)
Py R(KTY R(KTT

Omitting the lengthy derivations of the terms of the above

expression (see Reference [6] for basic approach) one may

| obtain the final expression shown below.

Var {EK} = [1/8"2(KT)2B(KT)]
: m=(L-K-1) : ]
—— (B4(mT)-B((m+K)T)B((m=K)T)) [L~K-|m
(L-K)“ m=-(L-K-1) | ‘
(B~4)
! 1 2
| *roRy [20v/8) + (v/s)°]
2__ 2 [(N/S) B(2KT) (L-2K) ]
=K}
L>2K, otherwise=0
40
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Note that the third term in the above expression is valid only

when L>2K, otherwise this term is zero.

Since f1 and f2 yield two viable estimates of the
mean doppler frequency, one may attempt to improve the accuracy
of the mean doppler frequency estimate by taking a linear

combination of the estimates f, and f2

1
L3 N ~

f.'2 = <, f1 + 02f2 (B-5)

. The weights (cq, €3) could be selected to provide a better
estimate of the mean doppler frequency (better in the minimum
variance sense). Selecting uniform weights (cq=ca=1/2)
might also be considered as a simpler improved estimator. In

either case, the accuracy of estimate f£15 is given by the

expression
Var {E } = ¢? var {f } + ¢2 var {f }
12 1 1 2 2
- a (B-G)
+2¢,c, Cov {£,, £,}
Selecting (c1, 02) to make f1zminimum variance and
unbiased we obtain the optimal solution
ot Var {fz} - Cov {f2 ' f1} (B=7)
Var{f1}+Var{f2}-2 Cov{fz, f1}
g'.l C; = 1_0? (B-8)
%j Similar expressions can be obtained for an improved estimator

of the form

S N A T RSN TN ‘-'.‘-' b T'j
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£

™

= C, f1 + c, £, +

2 c3 (B-9)

123 3

To evaluate the theoretical accuracy of these various

estimators it is clear that one must evaluate the covariance

~ ~

between the errors of each Rummler estimate f1, f2, f3,
etc. If the covariance between the errors of these estimates
is small then significant improvement in mean doppler frequency

estimates can be achieved.

~

The covariance between estimate fK and fJ (where K>J)

is evaluated as follows. Extending the results of Appendix A

of Reference [6] we have the expression

cov (£, £5} = [1/872 (k) (am) ]
. . B-10) 4
RE E{ (R(JT)) (_(KT)' - (R(JT)) (R(KT))}
R(IT)/| |\R(KT) R(JT)] \R(KT)
where,
= — %*
R(JT) -3 izo 2] %4
(B-11)
- _ L-K~-1
R = le Lo 2y 2y
i=0

Omitting the lengthy derivations, the result may be shown to be

given by the following expression.
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Cov {fK, £51 = [1/8"2(KT)(JT)(L-J)(L-K)B(KT)B(JT)]

L-J-1 L-K-1
B(3-1)T) B((i-j+J-K)T)=-B((J-i+K)T)B((i-j+3)T)

(B=12)
+ 2(L-K) B((J-K)T)(N/S)
" 2(L-K=J) B((J+K)T)(N/S)

L-K-J > 0, otherwise = 0

Note that the last term in the above expression is valid only

when L-K-J > 0, otherwise this term is zero.
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APPENDIX C ERROR ANALYSIS OF SPREAD ESTIMATOR

This appendix provides a summary of the error analysis

equations used to evaluate the performance accuracy of the

Rummler spread estimator. The basic algorithm is defined by

the following expression

W =

! ,1—'D(T)| ' 172 (C-1j
\[T'ﬂT
where »(T) is the estimated correlation coefticient of the
underlying signal prccess. The correlation coefficient is
estimated from the sample correlation function as follows
R(T)

o(T) = (C~2)

R(O0) -~ N
Thus, it is assumed that the noise power, N, is known or can be
accurately estimated from range gate data comprised of

noise-~only samples. Also, we have the terms

. . L-1 5
o - 3 1l (e-2)
- ~ 1 L:Z
R(T) = = 'lo 2t 2., (C-4)
l:

This estimator provides reasocnably good estimates of the spread

ﬂf parameter "W" for small values of T. To see this, one simply
“ly

Ny )

f& considers for a large number of pulses (L+=)

gﬁ 45
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l;(O) ~~ S+N (C=5)

R(T) o~ SB(r)el?"fT (C-6) |
Thus, for large L,
. 2.2
p(T) ™~ e‘”zw T (C-7)

Approximating the right hand side of the above equation by the

term 1-272W272 we obtain.

q L

W~ -~

21T

1/2 -
21,2Wz,1,2| (C-8)

Thus, for small T we have

~

WA W
This derivation was not intended to be rigorous but was

presented simply to demonstrate that the algorithm W may
provide reasonably good estimates of the spread parameter, W,

for small T. This algorithm is however, a biased estimator

b

A\ of the parameter W since

R

o .

0 E{w} #+ w (C-10)
and thus the analysis of the performance accuracy of this

v" ! r 3 - (3 0 .

ﬁu algorithm must include a determination of both its bias and

variance terms. It may be shown (see Reference [10] for
details of the derivation) that the variance and bias errors

for the Rummler spread estimator are

46
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A. Random Error Equation
. 2 Q
var{wj = | ——{% {TERM 1}-2 {TERM 2}+0.5( {TERM 3}+{TERM 4D|
— |
8= (1-8(T)) (C=11) |
where, %
TERM 1 = Var {ﬂg-’-}
(L=1)
- ] ) 82 (m1) [L-|m| ]+ & [2(9/8)+(8/8)2]
;7_ m=-{L-1) ' | L
(C-12)
. R(0) R(T)
TERM 2 = Cov {—-S-——, -R-(—TT}
(L=2)
9 72 B(mtn)T) B(nT) |
= (L=1)-|m} ] (C-13)
I(L 1)[m=_(L_2) B(T) ||
L-2
B((1-L-2)T) B({1-L=1)T)
. + (2L-2)(N/S)
1=0 B(T) ]
_ R(T) _ (1) (C-14)
TERM 3 = E{l R(T) l } {-ﬂ,—r— }
L-2 2
= oy B(mT)  “[poq)-|m|] + L [209/8)+(8/SF
= — )
(L-=1) { me-(L-2) P(T) | B2 (T) ’ ]
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TERM 4 = E (R‘T' - 1) = E (‘“T’ -1 (C-15)

R(T) R(T)
(L=2) )
=L |1 () 2 [(L-1)-|m| ] + 2L2L22T) (nys)
(L-1) ==(L-2) (8(T)f
B. Bias Error Equation
Bias (W] = B{T)_ [{TERM 1} - {TERM 2}
4néply
+ 0.25 ({TERM 3} - {TERM 4})} (C-16)
var (W}
20
where W= | 1-B(T)|‘/2 (C-17)

\I'z'n'r
Another algorithm for estimating the spread parameter,

h )

W, is the jarithmic version of Rummler's algorithm, defined

by the following expression (see Reference [10]}).

Pt
g

3 Wog = ﬁ“; |- 1 feem]| /2 ~ (C-18)
g This algorithm is reported to have less bias than the Rummler
5 version, esnpecia®’” for the case where the signal process has a
f power spectral Jdensity which is Gaussian in shape (and hence, a

A
;.
i.
5
N

Gaussian autocorrelation function). Taking the same approach

-«

as for the previou - Jread estimator it is easy to determine

the error equatons for the logarithmic spread estimator.
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The variance and bias errors for this estimator are summarized

below
Var {wloq} = ! [{TERM 1}
08 Py 2
(4w T 1og) (cm10)
-2 {TERM 2} + 0.5{TERM 3 + TERM 4}]
Bias {wlog} = ! [{TBRM 1} - {TERM 4}]
2,2~
g ey ) og
(C-20)
-Var {wlog}
2 ) o
- - /2
where Wlog = L_l_“_m (C-21)
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TABLE 1

ALGORITHMS FOR ESTIMATING SPECTRAL
SPREAD PARAMETER, W

>
[l

{1in —
21T R(T)

]

—_— 1ln ———
3 (et R(2T)

ax

.

W
;f',-

‘i :

_‘lif.
L BLLLYL

, .‘
M IRk

A,
o

4
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Fig. 1. Normalized standard deviation of mean velocity estima-
tors versus normalized pulse spacing (16 pulses total, SNR = -6
dB).
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