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ABSTRACT

A description is given of a number of numerical schemes to solve an

evolution equation Athat arises when modelling the propagation of water waves

in a channel. The discussion also includes the results of numerical experi-

ments made with each of the schemes. It is suggested, on the basis of these

experiments, that one of the schemes may have (discrete) solitary-wave

solutions.
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1 SIGNIFICANCE AND EXPLANATION

There has been great interest in recent years in certain nonlinear,

dispersive systems used to model the propagation of waves in a variety of

situations. In the particular context of wave propagation in shallow water,

two model equations have been used widely to describe the evolution of such

waves over a time scale related to their amplitude. (A more complete

discussion of the time scales involved and of the similarity between the

solutions of the two equations is given in NRC Report #2477 by the same

authors.) Both of these models have smooth solitary-wave solutions - isolated

waveforms that travel at constant speed and whose shape is independent of

time. One of the models, the Korteweg-de Vries equation, has been studied

extensively, both from a theoretical and a numerical viewpoint. The present

paper describes a numerical study made of the second equation. Several

numerical schemes, having second, fourth and higher order accuracy, are

described and results given of tests made with a number of these schemes

utilizing the exact solutions to the continuous problem afforded by the

solitary wave. A variety of subtle tests were used to study the growth of

errors when using the discrete approximations, the results of which indicated

interesting qualitative differences between the schemes. In particular, it

would appear that one, and only one, of the schemes tested had a (discrete)

solitary-wave solution. It would be interesting to know if the system of

difference equations associated with this scheme really admits a solitary-wave

solution.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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NUMERICAL SCHEMES FOR A MODEL FOR

NONLINEAR DISPERSIVE WAVES

1 2J. L. Bona W. G. Pritchard and L. R. Scott3

1. Introduction

In this paper we examine some numerical schemes for the initial-value

problem for the real-valued function u(x,t) given by

t + u +Bu - Y0 xEast>0, (P1)

u(x,O) - g(x), I (P2)

vhere 0 > 0 and Y > 0 are constants, and g is a given function comprising the

initial datum for the differential equation. This problem, which arises in the

theory of vater waves, has been studied in recent years by several workers:

Peregrine [131 examined its possible relevance to the temporal development of

* undular bores; a mathematical theory for the problem vas developed by Benjamin,

Bona and Mahony [31; and, more recently, the present authors IT] have made a-.

detailed comparison of the model with the outcome of some laboratory

experiments. The problem (P) is closely associated with the inital-value problem

for the Korteweg-de Vries equation
y~~~-2u 0(I)

ut + ux + Buu x +fYu xxxinO,
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.1 i in that both equations have been advocated as models for the same physical

phenomena (e.g. see-'Benjamin et al. 131). Indeed, when the initial datum g is

restricted to conform to that arising in many physical applications, it can be

shown (see Bona, Pritchard and Scott 181) that the two equations yield essentialy

the same solution over a non-trivial time scale. This latter work also points

out some other qualitative similarities between the solution of the two problems

over longer time scales.

Several numerical studies of (P), or closely associated -roblems, have been

reported: e.g. see Peregrine 113), Wahlbin 1161, Eilbeck and McGuire [91, 1101,

Alexander and Morris 121, Bona et al. 161, 171; Abdulloev et al. I1 describe the

results of some interesting computations for (P), but no details are given of the

methods employed. Most of these studies present the results of formal calcula-

j tions, except for the work of Wahlbin in which an analysis is given of a Galerkin

method for a (spatially) periodic version of (P) and that of 171 in which an

analysis is given of a finite-difference method for an initial- and boundary-

value version of (P). Both these latter studies also showed that a specific

implementation of the methods displayed the expected convergence properties when

the mesh was refined.

While developing the numerical method used in 171 a number of finite-

• difference schemes for (P) were also developed and tested, and the purpose of the

present paper is to describe some of the comparisons that were made between these

various schemes. A description is given in §2 of the methods studied, consisting

of a second-order method and a number of fourth-order schemes. The discussion

also indicates how efficient schemes having arbitrary order accuracy can be

generated. In 53 a discussion is given of the numerical experiments, including

standard convergence studies along with a number of more subtle, subsidiary

experiments.

-2-
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The main numerical experiments described below are related to special solu-

tions to (P) known "as solitary waves. This one-parameter family of solutions

represents single-crested waves of elevation and is given by

u(x,t) * U sech 2{a(x - xO) - (1 + OU)tll, (1.2)
0 3

for U > 0 and a = [ r2U(l + . U)-l11 2  corresponding to the initial datum

g(x) = U sech2!alx - x(). (1.3)

The arbitrary parameter x0 gives the location of the point of maximum amplitude

of the solitary wave at time t = 0. These solitary waves propagate without

change of form at the steady speed (I. + .1 8U), determined by their maximum

amplitude U.

An especially interesting feature to emerge from our numerical experiments

A is that one of the schemes under study appeared to have a discrete solitary-wave

solution.
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2. 7he Numerical Schemes

4

In this section a description is given of the various schemes that have been

studied. First we shall describe several semi-discrete, spatial approximations

to the solution to (P) and then go on to describe the temporal approximations

that have been used. As indicated in the introduction, Benjamin et al. 131

* shoved that (P) is a ell-posed problem and deduced regularity properties of its

solution u (in terms of the regularity of the corresponding initial datum g).

They also derived an integral representation for u, namely

ut(x,t) =fK(x,y)(u + . S u2 )(y,,t)dy, (2.1)2

where K(xy) = gn(x y) e-I X-Y hich representation we have used to

generate the spatial discretizations described here. The ideas outlined below

are closely related to the work described in [71, to which paper repeated

reference will be made for some of the technical issues that arise.

2.1 Spatial discretizations

2.1.1. The GE scheme

The spatial discretizations were effected first by truncating the infinite

interval of integration to a finite interval [X1,X21 and then by taking

quadrature approximations of the integrals

X 1 2 1
f K(x,y)(u + y Su )(ylt)dy and f K(x,y)(u + - Ou2)(y,t)dy. (2.2)
Xx 2

Justification for the truncation of the infinite interval can be given using

arguments of the kind described in I7]. Note that K is smooth except for a jump

discontinuity on the diagonal y = x and so, by splitting the interval of

-4-
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integration at x, the smoothness of the integrand on each of the subinterivals is

determined entirely by the smoothness of the initial datum g (cf. (2.1)). The

quadrature approximation of the integrals used here is the Euler-Maclaurin

formula truncated at fourth order, namely the trapezoidal rule on a uniform mesh

with one derivative correction at each of the end points of the ranges of

* integration. When these derivative corrections fall upon the unknown

12." (u + 81 Bu) .they are approximated by a centered, second difference. This

discretization gives a quadrature rule similar to the one derived by Gregory (cf.

Goldstine 1111) prior to the work of Euler and Maclaurin, the only difference

being that here derivatives of K have been found exactly. A further simplifi-

cation can be made, as indicated in I7], by ignoring certain small terms arising

at the extremities X, and X2 of the interval of integration.

These approximations lead to a system of ordinary differential equations for

functions ui(t), where ui approximates u at the ith quadrature point (i.e.,

ui(t) - u(iAx,t)). Here i = Nl, N1+I,...,N 2 , with N1 := XI/Ax, N2 :- X2/Axl

and Ax denotes the mesh size. These equations comprise a semi-discrete

approximation to (2.1), taking the form

Suou)lt)) i .(23)
u1i(t) - (u + u 2

where u = (NiN ,...,ug ), the symbol uou is defined by

2

(UOU) := ui 2  (2.14)

and F i(V) =F (v 11'000v~ ) is given by

i 21 12

Fi(Y) := ,x{ I K(ix,x)v - y (vi+i(
J=N1

with the understanding that K(x,x) 0 for all x, and vNl = vN+l. = 0 whenever

19i-5
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these expressions appear. *More complete details of the derivation of these

formulae can be found in (7). We shall refer to the spatial discretization

(2.3)-(2.5), as vell as the simplification to be described below, as the Gregory-

L~iler-Maclaurin (GEM) scheme*

As it stands the method (2.3)-(2.5) involves a discrete convolution to

calculate F = (FN 1,...FN ) and is therefore not a very efficient procedure.
1 2

However, this may be overcome in the following way. Define a second-difference

operator D2 such that

(D2 v)i :M vi - (vi+1 -
2vi + vi l)/(eYAX - 2 + e-yAX), (2.6)

which we write in the form

avi + b(vi+1 + vi_I ),

so that a 1- 2b and -b (2sinh( 1 x))2 ( x + O(Ax) We want to

apply D2 to the convolution term of (2.5), and it is therefore convenient to

split F into two parts, namely

Fi(v) =: Fil(v) + Fi 2 (v),

where Fi I is the convolution term and F 2 (- v ). Then,

for N1 < i < N2, a straightforward calculation gives

(D2 F(v))i by2 x(v - v = ,12bFi 2 (v). (2".7.... 2 b (i+l - )

If again we ignore terms involving points outside the interval 1XIX 2 1, a

approximation to FI (under suitable assumptions on v) is given by the solution

f(v) to the tridiagonal system of equations

Af= -12b92(v), (2.8)

-6-
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where

a b

b a b

b.a b

b a b

b a

'Thus, it is more efficient computationally to use the semidiscrete scheme

-w R(u + 1 Ouou)(t)),I2 1~(2.9)
[ (GEN1)

Sui(0) - g(ix), i =N "",291

where 7 - f + a , and for which F can be calculated in O(N2 -,N 1 ) operations by

solving the tridiagonal system (2.8). Using the same methods as those described

in IT], it can be shown that (2.9) has an accuracy of

(Ax 4 + e-r(X2-X1 ) (2.10)

where r is a positive constant.

Although (2.9) does not appear, superficially, to be a standard

discretization it can, nevertheless, be viewed as a fin ite-difference

approximation to (2.1) (or P1) written in the form

Cft 3 - -- *2u 3 (U + .01?).(Pis

7b see this define difference operators D1 and Do2 by

(D1v)i :z (vi+l vi-..)/2Ax,

(2.11)

(Do2v)i :a -(vl - 2i + v,+,)/ax2,

-7-

'N 'N , • ,. ,-*~~- % . .... L° .A , . . . . . ..*.,,, . .. -.- .,.



and a parameter K by

K :=-hbx2 = (Ax/2sinh(1! yhx))2 . (2.12)

Then, after multiplying the (GEN) scheme by D2 = I + iD0
2 , and using the

definition (2.8) of f, it follows that

(I + KD) -Y + 1-x)1 + K Ax2D 2 ID V, (" '3)

ui + ui .u, 1 4 N _
2 21

where V := )

0 , otherwise,

'.

and ui := (u)1 , N1  i N2 , ui := 0 otherwise.

Note that

. =-2[ -_4yAx) 2 + O((Yax) , (2.15)

which, together with (2.13) can be used to generate other discrete methods for

(PI).

*

9
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*".- 2.1.1 A second-order method.

At second order the (GEM) scheme agrees with the second-order centered-

difference approximation to (P1), namely

(I + Y 2 D0
2 ) u =-D v, (2.16)(CD)

with v defined as in (2.14).

This kind of spatial differencing has often been used (e.g. see Eilbeck and

C." M'Guire [91), though sometimes the nonlinear term is not cast in the

'conservative' form used here.

2.1.3 Another fourth-order method

-, Keeping terms in (2.13) only to fourth order yields an approximation to (P1)

of Stormer-Numerov type (cf. Stoer & Bulirsch [151), namely

"( Y -2l12 1 = - (I + - 2 Do 2 )Dlv, (2.l7)(SN)

and again v is defined as in (2.14).

As with the (GEM) scheme, this method can be shown to satisfy the error

bound (2.10), some specific tests of which are described below.

2.1.4 Remarks

(i) Although the (GEM) scheme ((2.9) or (2.13)) has only fourth-order
I.

spatial accuracy, schemes of arbitrary-order accuracy can be derived in a similar

way by retaining the required number of terms in the Euler-Maclaurin formula

6. %P(with the appropriate derivative corrections being replaced by differences). For

these higher-order schemes the system of equations corresponding to (2.8) is not

altered, the only change in the scheme being that F is of the form F t f + F2 ,

where F2 incorporates the higher-order derivative corrections; the orignal F2,

I',

-.- 9-
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however, remains on the right-hand side of (2.8). This occurs because the

difference operator D2  (= I + iD 0
2 ) is an infinite-order approximation to

'--2 (a - -2a2), in the sense that
x

2 -221D (l -2 2)A a. - Dx

for all sufficiently regular functions *. Thus the term f in the definition of F

*.: is infiniteorder accurate, and it remains only to determine i2 to the desired

accuracy.

(ii) It is more efficient to comptute the (GE4) scheme in the form (2.8)-

(2.9) rather than in the form (2.13): with the fourth-order scheme, for example,

* . the latter arrangement requires the calculation of a penta-diagonal approximation

to ax' whereas the former involves only D1 . In general, one could envisage a

variable-order method where 2 is calculated to different orders of accuracy in

different parts of the domain (depending, say, on some local estimation of the

spatial errors)..

" (iii) The generalisation of the (GEM) scheme to obtain higher-order methods

" may appear somewhat academic, but the use of the fourth-order scheme in [71 (in

- modelling a laboratory experiment) placed a considerable burden on the data

sampling to ensure the desired accuracy of the numerical solutions. Similarly,

in another study cbncerning the interaction properties of two solitary-wave

solutions of the family (1.1) (see Bona et al. 161), the implementation of a more

accurate scheme would have been beneficial. At the outset of each of these

projects the fourth-order scheme seemed to be more than adequate but, in

retrospect, we should have considered more seriously the relative efficiency of

,, the higher-order schemes.

(iv) The above methods can readily be adapted to solve (PI) posed on some

fixed interval [XI,X 2 ]1 subject to the initial condition that u(x,O) = g(x) for

~-10-
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,..

X1  x < X2 and the boundary conditions u(xi,t) = hi(t) for t > 0, i = 1,2, where

gh 1 and h2 are given functions. (Theory relating to this initial- and two-point

boundary-value problem has been provided by Showalter 1141 and Bona and Dougalis

151. In case X= - or X = 4-, the condition u(xj,t) = hi(t) may be replaced

* by a growth condition, as in Bona and Bryant 141.) These methods may also be

used to handle the periodic initial-value problem in which the initial datum g

and the solution u are both required to be periodic in x with a given period. We

have Implemented the GD4 scheme for some of these problems.

2.2 Temporal discretization

All the spatial discretizations of (P) described above lead to a system of

ordinary-differential equations of the form

u(0) = , (2.18)

V' ujO0
where, for example, = g(iAx) for NI_< i < N2 . Moreover, the function $

remains suitably bounded as Ax + 0, so that the problem (2.18) is not in any way

stiff for small values of Ax. An indication of why this is so is given by. a von

Neumann-type stability analysis of a linearized version of the problem with

periodic boundary conditions. Thus, in (2.14), set vi = Uui for all i, where U

4e.i is a constant, and consider the initial-value problem (P) with 2w-periodic data

_., and corresponding periodic boundary conditions in space. Then, for all three of

the above spatial discretizations, the resulting .; has eigenvalues Ilk of the

form

k= iUk,

where 0 < k < 2w/Ax and, fcr each k, Xk Is real with k1< C, where C remains

,'A



bounded as Ax approaches zero. In particular, we may take

1 ,for CD(2.16),

C +L j YAx , for GE1(2.13),

.1 L_ (v x)2)-1 , for sN(2.17).

Note that, for the (SN) scheme, we must have Ax < 14 -4y 1 in order that the

multiple of Do2 on the left-hand side of (2.17) be positive. For the full

nonlinear problem the precise boundedness conditions satisfied by X are given in

][7. It follows that any of a variety of methods for integrating ordinary

differential equations can be used to discretize (2.18).

For the second-order scheme (2.16) it is natural to consider a second-order

temporal discretization and, since stiffness is not a problem, an explicit method

can be used. We have therefore chosen the so-called "leap-frog" scheme

. n+l n-I + 2 • 19 , n > 1. (2.19)
U = U + A t ~ U n), n ~ l.(LF)

The 'starting value' u1 was obtained from a step using the Runge-Kutta scheme

described below. (in fact, for the numerical experiments to be reported in §3,

three steps of (RK) were used initially so that (LF) was used only for n > 3.)

The discretization (2.16), (2.19) of (P), the (CD-LF) scheme, has an error bound

of the form

O(ax2 + At2 + er(X2  X), 
(2.20)

where r is a positve constant.

II



For the fourth-order schemes (GEM) (2.8, 2.9) and (SN) we have used the

a.. following fourth-order Runge-Kutta method, for n > 0:

1 n 1 c W

2 - Un 1 1t;(' (2.21)
. . 2

v 3  . Ip+ At (I?), (mc)

n+1 n 1I
u U +;at[2 (v) + 2(v) +,J(un) + (v)

Once several steps of (RK) have been calculated it could prove more efficient to

switch to a multi-step scheme. We have, therefore, also considered the following

prediction-correction scheme, for n > 3:

N nl n 1 -n-i-n-2

n+ , + 1 At[55 P - 597,n-1 + 39,Sn -
(2.22)

'1 u 20 At125l1 Z(u 1 ) + 646e - 26Te- 1  i06 -  19 -31

:!

where 7eJ denotes * (u2) and ul, u2, and u 3 are calculated by (2.21). (Note

that this prediction-correction scheme is used in the so-called PECE mode, as

described by LAmbert 1121.)

All four possible combinations of the spatial discretizations (GEM) or (SN),

coupled with the temporal discretizations (PK) or (MS) provide a fully discrete

approximation to (P) satisfying the error bound

O(Ax + At4 + er( X2 Xl)) (2.23)

where r is a positive constant.

'. -13-
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Th~e (am ) spatial discretization, coupled with the standard fourth-order

, Adaas-Dashforth-tMoulton prediction-correction scheme (e.g. see Lambert 121) was
used in [jj to solve (P1) posed with initial and boundary conditions.

I
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u3. hmerical hperulente

3.1 Preliminary Definitions

in this section a description is given of some numerical experiments made

with our implementations of the above methods. All the experiments to be

described relate to initial data g(x) given by (1.3). 7his function is

associated with the faily (1.2) of exact solutions to the problem (P) and

therefore provides a convenient means of checking the convergence properties of

the various schemes. It has, in addition, enabled us to make a number of other,

more refined, studies of the properties of the numerical solutions.

It is standard practice to determine empirically the convergence of a scheme

to test both its theoretical basis and the correctness of its implementation.

Fairly detailed studies of this kind have been made for the methods under

consideration, but we give here only a sample of the results that have been

obtained. All the experiments to be described were made with B - 1.5 and 2 = 6,

identifications which henceforth will be assigned without further reference.

These values relate to the aforementioned physical problem of water waves

propagating in a uniform channel. (We have, however, carried out similar tests

with other values of u and y.) Thus, the quantity a appearing in (1.2) is given

by a a 13U/,( + 1: U)Il12  and the solitary wave of amplitude U has speed

,c := +1 f U).

* The truncation of the infinite interval described in 52 was usually

effected, at t - 0, by choosing X1 and X2 such that

g(x)U- i - 1,2. (31)

Here c was chosen empirically so that the truncation had negligible influence on

the results. At each time step (or after a certain specified number of time

-15-
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steps) the right-hand boundary was moved outwards (i.e., X2 was increased) so

that its distance from the 'crest' of the solitary wave did not, on average,

decrease with time. Whenever such an expansion of the domain was made the vector

u was extended by zero on its undefined components. In certain experiments it

was also possible to move the left-hand boundary X1 to the right without

influencing appreciably the experiment in question. (In such cases, the vector u

was simply truncated.) The changes in X, and X2 were made automatically by the

I' code, as follows. After each M time steps the values of X, and X2 were moved a

distance CiAtM, corresponding to speeds. C1 and C2 . A typical value for M was 25

and C1 and C2 were chosen appropriately for specific computations. In particular

C1  1 + U < C2 . We were conservative about the positioning of the endpoints

of the domain but, even so, in some of the experiments with very fine meshes the

errors generated by the numerical scheme were so small that the positioning of

the boundaries (at t = 0) gave rise to a nonnegligible additional error.

However, this additional contribution was never more than 5% of the total error.

We shall not, therefore, report the values of Xl(t) and X2 (t), but give only

"A their values at t = 0. These will be stated implicitly by quoting either x0 (cf.

.4J (1.3)), in which case X, = 0 and X2  2xo, or by quoting the value of c in (3.1).

To describe the convergence studies it is convenient to introduce some

definitions. Let the solutions to the discrete problem at time t = JAt, where J

is a positive integer, be denoted by u(iAx,t), NI(t) _ i < N2 (t), and let the

exact solution (1.2) be denoted by u(x,t). Define a relative difference E

between the two functions by

N2  N2

E(t) : I lu(i&xt) - (iAx.t)1 2/ I ru(ixt)I21l/2. (3'2)
i=N 1  i=N I

% .Another functional of interest in this problem is the difference between the

amplitude n m of the discrete solution and that of the solution of the continuous

.. J-16-
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problem, a difference we shall refer to as the height error M(t). This quantity

is defined in the following way. Find max{n(iAx,t) : N (t) < i < N 2(t); let I

be the value of I at which the maximum is achieved. (If there is more than one

such L, let I be the smallest of these.) Then interpolate the function values

'S n(iAxt) by a quartic polynomial Q(x) at the points x a iAx, for i = I+k with

Ikj _ 2 (i.e., at the five points centered about the maximum of o). Nov

determine the maximum value of Q using Newton's method, starting the iteration at

x - IAx. (This procedure vas successful in all cases.) Denote this maximum by

na. Then, finally, define the height error to be

H(t) :-u - .(t). (3.3)

*The value of x for which Q achieves its maximum, say x., provides the possibility

of determining a phase error at each t for the discrete solution and, by taking

differences, of obtaining an average speed for the wave crest in the discrete

solution. This speed can then be compared with the speed c of the solitary-wave

- solution to the continuous problem and with the speed (1 + n ) of a solitary
s-i 2 M

wave of the family (1.1) with amplitude n."

Finally, knowing the values of T6 and xm raises the possibility of yet

another comparison, namely the difference between the solution n(iAx,t) of the

discrete problem and'the function

N
is ~~(x) - 11 sech2 {[( + jl/2n,-X.

- 4(1 +2n

The function C corresponds to the wave of the family (1.1) of amplitude nm, whose

crest is located at xm. Then, analogously to the definition (3.2) we write

N2  N2

D(t) :- I I jn(iAx,t) - 4(ie~x,t)] /I ) kiAx't) 12 il/2, (3-5)
iN 1  i=N 1

which quantity we shall refer to as the shape error.

* .~ -17-



3.2 Convergence studies

Since, for the convergence studies, it is sufficient to use a fixed ratio of

Ax to At. one of our early experiments was to determine an 'optimal' value for

this ratio. The results of one such test (see table 1) indicate that the best

accuracy was achieved when Ax a At. We decided, therefore, to fix on the ratio

Ax - At (=: 4) for the remainder of the study.

0.32 0.16 0.08 0.0. 0.02

0.32 0.25(-l) O.37(-1) 0.36(-1) 0.36(-l) 0.36(-)
0.16 0.12(-l) 0.12(-2) 0.18(-2) 0.18(-2) o.18(-2)
0.08 o.l'(-l) o.80(-3) 0.53(-4) 0.86(-4) o.89(-4)
m40 0.14(-l) 0.8T(-3) 0.51(-4) 0.28(-5) o.48(-5)

0.02 0.1(-I) 0.87(-3) 0.54(-4) 0.33(-5) 0.14(-5)

TABLE 1.The errors E obtained at t a 19.2 using the (GEM-RK) scheme for a

solitary wave of amplitude U = 1. (These experiments had x0 = 11.) The
numbers in parentheses indicate the exponent of 10 multiplying the

-a preceding numbers, e.g. 0.25(-l) 5 0.25 x 10-1.

A number of convergence studies have been made using the fourth-order

schemes (GE.-RK), (OJE-MS), (SK-RK) and the second-order scheme (CD-LK), the

tests being carried out with solitary-wave amplitudes U of 0.1 and 1.0. A

sunmary of the results of these experiments is given in table 2 where the errors

E at time t u 30, 70 and 120 are given. (Recall that the speed of the

propagation of these waves is (1 + .1 U) so that when t = 120 they will have2
travelled distances of 126 and 180 spatial units, respectively.) The rowq

labelled 'ratio' in this table give the ratio of the numbers above and below the

entry and indicate the ratio by which the error decreased when A was halved; for

-18-X
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the fourth-order schemes this ratio should approach 16 as A decreases to zero and

should approach 4 in the same limit for the second-order scheme. That this

apparently was the case for our implementations can be seen from the results with

U M 0.1. With the larger wave amplitude, U = 1.0, convergence orders con-

siderably in excess of 4 were found in many of the tests made with the fourth-

order schemes, suggesting that still further mesh refinement was needed before

the asymptotic convergence rate would be achieved* Under similar conditions,

however, the asymptotic convergence rate was apparently realized with the second-

order (CD-LF) scheme. .he convergence properties of the (GD4-MS) scheme with

U. n 1.0 may seem to be somewhat anomalous, but they are probably a consequence of

the fifth-order time stepping used in this scheme: with the meshes employed the

dominant component of the error presumably arose from the temporal approximation

and the anticipated fourth-order rates would therefore only emerge with much

finer meshes or by using a different ratio for At/Ax. The run times on a CYBER

175 for the tests with A - 0.02 were approximately 400 s (GEM-RK), 267 s (GE4-MS)

and 400 s (SN-RK).

19

4!



. O.. 
• 7 .

*.77 
.-9

U -0.1 U - 1.0

t 30720 72.320 120.320 30.720 72.320 1^0•320

0.32 0.108(-1) 0.256(-1) o.429(-I)

ratio 15.8 15.7 15.7 - -

0.16 o.685(-3) o.163(-2) 0.274(-2) 0.249(-2) o.141(-1) O.hO0(-l)

ratio 15.9 15.8 15.9 28.4 31.3 31.3

0.08 0.430(-4) 0.103(-3) 0.172(-3) 0.876(-4) 0.451(-3) o.128(-2)

ratio 16.0 16.1 15.9 26.5 32.2 32.4

4 0.04 o.269(-5) 0.641(-5) 0.108(-4) 0.330(-5) o.14o(-4) 0.395(-4)

ratio - - - 21.4 24.4 28.8

0.02 - - - 0.154(-6) 0.574(-6) 0.137(-5)

(a) (GEN-RK)

0.32 0.107(-1) 0.255(-1) 0.429(-1) - -

ratio 15.6 15.6 15.6

0.16 0.686(-3) o.163(-2) 0.275(-2) 0.167(-I) 0.122 0.361

ratio 15.9 15.8 15.9 13.4 15.9 16.6

0.08 o.432(-4) ,0.103(-3) 0.173(-3) 0.125(-2) 0.765(-2) 0.218(-1)

ratio 16.0 16.0 16.0 25.2 26.8 27.3

m4 0.270(-5) o.6043(-5) oao8(-4) o.497(-4) 0.285(-3) 0.798(-3)

". ratio - - - 27.9 29.8 30.2

002 - - - o.178(-5) 0.956(-5) o.264(-4)
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U * 0.1 U 1.0
A A

A t 30.420 72.320 120.320 30.720 72.320 120.320

0.32 0.295(-3) 0.447(-3) 0.563(-3) - - -

ratio 15.9 15.9 16.0 - -

0.16 0.186(-4) 0.281(-4) 0.351(-4.) 0.1 0(-2) 0.188(-1) 0.1481(-1)

ratio 16.0 16.o 16.0 21.4 25.1 26.9

0.08 .16(-5) O.16(-5) 0.219(-5) 0.206(-3) 0.750(-3) O.179(-2)

ratio 15.8 16.0 16.0 19.4 22.9 25.2

V 0.004 0.733(-7) 0.110(-6) 0.137(-6) o.1o6(-4) 0.327(-4) 0.709(-4)

ratio - - - 17.2 18.8 21.2

0.02 - - - o.616(-6) o.17T(-5) 0.334(-5)

() (sN-nK)

0.32 0.393(-2) 0.797(-2) 0.113(-1) - -

ratio 3.7 3.9 4.0 - -

o.16 0.106(-2) 0.203(-2) 0.283(-2) o.143 0.311 0.496

ratio 3.9 4.0 4.0 4.3 4.3 4.2

0.08 0.274(-3) 0.513(-3) 0.T11(-3) 0.332(-1) 0.725(-1) 0.118

ratio 4.1 ,A.o 4.0 4.1 4.1 4.1

0.0. o670(-) 0.129(-3) o.179(-3) 0.818(-2) 0.178(-1) 0.290(-1)

ratio - 4- - I4.0 !.0 1.0

0.02 - - . 0.204(-2) 0.4u4(-2) 0.721(-2)

(d) (CD-LF)

TABLE 2. The errors E obtained when approximating solitary waves of amplitude 0.1

and 1.0. (a) (GEM-RK) scheme; (b) (GEM-MS) scheme; (c) (SN-RK) scheme;

(d) (CD-LF) scheme. C = 0.1 x 10-7 for all these tests. An entry in a

row labelled 'ratio' is the ratio -of the numbers above and below that

entry.
-21-
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While table 2 indicates the convergence properties of the schemes with A,

the graphs in figure 1 indicate the temporal dependence of E for a fixed A.

.Figure la shows the error E for the various approximations computed with A = 0.04

-. ... to the solitary wave having U = 0.1, and figure lb shows the approximations found

with A = 0.02 to the wave having U = 1.0. (Note that E is plotted on a

logarithmic scale.) The (SN-RK) scheme gave tae best approximation to the

smaller solitary wave whereas the (GE4-RK) scheme gave, by and large, the

smallest errors for the solitary wave with U = 1.0. (Note that the (GE4-RK) and

the (GEM-MS) schemes gave nearly the same errors for the computation of the

smaller solitary wave, but for the larger wave the errors were greatly different,

suggesting that the choice At = Ax was not 'optimal' for the (GEM-MS) scheme.)

Both sets of graphs show an initial phase over which the error rapidly increased

* and after which there was a slower increase in E. Much of the slower increase

arises because the 'amplitude' of the approximate solutions is, in general,

,.: different from that of the exact solution and therefore the two waves, having

slightly difrerent phase speeds, draw apart.

3.3 Further Tests

L The dependence of the height error H on time for the various schemes (when

A = 0.02) is shown in figure 2a. The results for figure 2 were obtained using a

solitary wave of amplitude U = 1.0 as the initial datum. (Note that, to

normalize the errors, the ordinates in figure 2 have been scaled by An, where n

is the order of accuracy of the scheme being used.) Thus we see that the

'amplitude' of the discretely-computed waveforms for both. the (GE4-RK) and the

.- (SN-RK) schemes were slightly smaller than the amplitude of the exact solution;

moreover, after an initial 'settling out' period, the amplitude of the

approximate solution decreased onotonically with time. Both the (GEM-MS) and

-22-
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*(CD-L ). (b) u . 1.0, A . 0.02. (GSN-Rc) - *- -* I(CD-LI-).
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FIGURE 2. .Two measures of differences between approximate solutions and solitary-
wave solutions, for calculations using initial data corresponding to a
solitary wave of amplitude U a 1.0 (and e 0.1. x 10-T). - G1-R)

n - 4;~ (GD4-MS) , n - 4; - (SNL-RC) , ri 14; -- CD-LF) ,
* n a 2. These calculations had A e (.02. () H(t)/an (see 3-3);

(b) DOt)44 (see 3.5).
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the (CD-LF) schemes, on thie other hand, generated waveforms whose amplitudes

K exceeded that of the exact solution. Probably the most interesting feature of

these computations is that the (CD-LF) scheme, in contrast to the other schemes,

generated a waveform which, after an initial period, had an amplitude (or height

error) independent of to We shall consider this point in more detail below.

Another obvious feature of the graphs is the Ikink' near t = 10. This

corresponds to the time at which the crest of the wave passed the initial

location of the right-hand boundary of the domain, the point where the initial

datum bad been truncated. This is not unexpected since the theory for problem

(P) developed in 131 shows that a discontinuity of the sort generated by our

truncation procedure does not propagate. (The larger errors associated with the

second-order scheme presumably dominated the truncation effect so that the 'blip'

was not apparent in that case.)
"--p.

The same effect is also apparent in connection with the 'shape error' D(t),

shown in figure 2b, where a 'spike' can be seen near t = 10 for all three of the

higher-order schemes. Recall that the shape error indicates the difference

between the discretely-computed waveform and a solitary wave (1.1) having the

same amplitude and phase location as that of the discrete solution. Thus, the

results of figure 2b suggest that, after an initial 'settling-out' period of

about 30 time unitd, the shape of the discretely-computed wave changed only

rather slowly with time, with the exception of the (GEN-MS) scheme which showed

some short-time variation in D superimposed on a more gradual, long term

variation. In keeping with the results shown in figure 2a, the (CD-LF) scheme

generated a waveform whose shape was eventually independent of t.

Thus, the above results suggest that the (CD-LF) scheme has discrete

K• 'solitary-wave' solutions, whereas none of the other schemes would appear to have

this property. To provide further support for this thesis similar tests were

-25-
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made with a variety of different initial wave amplitudes U. This new set of

Nexperiments was made with A = 0.16 with the calculations progressing for 8000

time steps to investigate the possibility of very slow temporal changes in H or

D. The results of these tests are summarised in figures 3 and 4, the height

errors being given in figure 3 and the shape errors in figure 4. It is seen from

these graphs that the height error for the (CD-LF) scheme quickly became constant

at a value that was maintained for several thousand time steps. By contrast the

- - height errors for both the (GEM-RK) and the (SN-RK) schemes increased steadily

with time (see figure 3a where the case U = 1.0 is shown). An illustration of

how nearly constant the height error was for the (CD-LF) scheme is as follows.

At t = 23.04,-H = -0.01746 (rounded to 4 significant digits) and from then until

t a 1280.00 the height error was either -0.01746 or -0.01747, with the fluctua-

tion in the fourth digit probably arising as a consequence of the height-locating

procedure that was used (cf. 13.1). The times taken for the steady situation to

be attained were found to depend rather strongly on the amplitude U of the

initial datum, a feature that is evident in figure 3, but which appears more

obviously in the graphs of the shape error shown in figure 4. Thus, when U = 1.0

it took only about 40 time units for the steady waveform to be realized whereas

with U = 0.1 it took at least 1000 time units for the discrete waveform to reach

its steady value.

Also given in figure 4a are graphs of the shape error D for both the (GEM-

•K) and the (SN-RK) schemes, for the case U = 1.0. It can be seen from these

graphs that the variations of D with time were quite small when t exceeded about

100. Note that this does not mean the discrete wave nearly has permanent form

for, as we saw in figure 3, the 'amplitudes' of these discrete solutions

decreased steadily with time. Rather, the interpretation is that, for t > 100

say, the 'shape' of these discrete solutions differed from a solitary wave (1.1)

-26-

, , . ' .- , . -, .. .- .,.'..-- . -..'.. .< . .. -. ....,,.. . . .. • . . -...-. -. . • . . . . *-... . .- .- - . -. .. .



-b,, . .. . . .. C. .b *..... . 4.~
.4.4

0 200 400 600 1000 200

(b)

4.,

o*6

0 .200 400 -00 8- - -

* t
(a)

?IOUU 3. Me beight error vhen a - 0.16 for a variety of initia vrsve
u m1 ltud es U. (c a 0.1 x 10"T) . Saote the ordites are magnified byr t. e

fator 108.

(a) - : - 1.0. (GEN-4K) l .4, s - -2. i(i 28o)/ 3 .86

S- : U a 1.0, (CD-LI), n - 2, a - 1, E(12 8 0)/A n = -0.6722;
---- : U 0.1, (CD-LF), n a 2, s a 1, H(1280)/& = -0.3480;

- U a 0.5, (CD-LF), n a 2, a a 1, H(1280)/ n - -0.1412.
(b) U-- a 0.25, (CD-LI), n - 2, s 2, 3(1 2 80)/Aa - -0.0324-;

- U * 0.1, (CD-LI), n - 2, s * 3, K(1280)IA u -0.0014914.
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?IGM k. The shape error vhen a a 0.16 for a var'iety7 of intl a ve ampli-
tudes U. (c 0.1 x 10"7.)(&) .:U ,, 1.0 (Gb-R), a k, D(1280)/A n  10 o.88692

:U = 1.0, (SIX-R), n - 4, O(12eO)/Ani =0.T19;

-•---:U a 1.0 , (CD-IX), n a 2, D(1280)/An 0.94A6;
-U a 0.5, (CD-LF), - 2, D(1280)/a n -. 6263;

:U a 0.5, I(CD-I, ), n a 2, D(128O)/A n a0.3680.
('b) ---- :U * 0.25, (CD-LF), a a 2, D(1280)/An -0.1605;

U 0 0.1 (CD-t.F) , n a 2, D(1280)I& n - 0.05871.
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of the same amplitude by approximately a constant proportion. Thus, althougn the

amplitudes of these approximations to the solitary wave (1.1) decreased steadily

with time the waveform preserved a shape fairly close to that of a member of the

family (1.1).

Some of the values of D/A for the (GD4-RK) scheme, from which the graph in

figure 4& was drawn are given in table 3.

t 99.84 199.68 299.52 399.36 499.20 599.0 T01..

DIA 0.8TTT 0.8812 0.8825 0.8838 0.8865 0.8860 0.8855

t 801.28 901.12 1000.96 1100.80 1200.6

D/A 0.8841 0.8850 0.8829 0.8835 0.8795

TABLE 3. Some values of D/A4. for the (GEM-RK) scheme, U - 1.0,

C a 0.1 x 10-T, A - 0.16, corresponding to the graph

shown in figure 4a.

-29-
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It. Conclusions

A description has been given of a number of numerical schemes to solve the

initial-value problem (P). The methods studied have either second- or fourth-

order accuracy in both the space and time variables, though one of the schemes

has a straightforward extension to any desired order of accuracy. Rigorous error

estimates can be obtained for all these schemes using the methods described in

-7. A description is also given of some numerical experiments made with these

schemes based on the solitary-wave solution (1.2) of (P). The experiments, which

*included both a standard convergence study and other special tests, revealed some

subtle differences between the errors for the various schemes. So, for example,

the multi-step scheme appeared to introduce an oscillatory component to the

solution, as indicated by the shape error D (cf. Figure 2), whereas the others

apparently did not. On the other hand, the (CD-LF) computations appeared to

settle into a permanent-form solution of its own, a property not evident with the

other schemes.

In purely practical terms we found the convergence study invaluable, by way

of exposing errors both in the programming and of a conceptual kind, and as a

guide to performing the computations described in Bona, Pritchard and Scott [61,

(71, and [8.

Finally, the numerical evidence that the (CD-LF) scheme might have

permanent-form (solitary-wave) solution was a surprise to us and it would be of

interest to know definitively whether or not this is the case. (We have not as

yet attempted to find an explicit solitary-wave solution to the present problem,

or to demonstrate the existence of such by an abstract argument.) Should a

family of such solutions exist it would be Interesting to enquire whether or not

they would exhibit the so-called soliton property, namely that two solitary waves

-30-
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of the family would reemerge from an interaction with their shapes unaltered. We

.- believe the ansver to this question to be in the negative for the folloving

reason. If the (CD-ia?) scheme were to have the soliton property for all At and

Ax, then the convergence estimates referred to in 52 would imply that the same

holds for (P): as At and Ax tend to zero, the solitary-wave solutions to (CD-LF)

would converge to a solitary-wave solution of (P). But the numerical experiments

described in (61 indicate that (P) does not have the soliton property. It

should, however, be stressed that the above argument is not a proof, even given

the existence of (CD-LF) solitary waves.

S.
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