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ABSTRACT

This paper is concerned with the computation of semiconductor device

current-voltage characteristics. We describe an algorithm which allows the

computation of characteristics by continuation in a parameter which

approximates the arclength of the characteristic. The use of this

parameterization allows the characteristic to continue beyond snap-back-

voltages, while continuation in the voltage fails past snap-back-voltages. We

discuss the implementation of the parameterization and give a numerical

example.
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SIGNIFICANCE AND EXPLANATION

In this paper we presenan algorithm for the numerical computation of

current-voltage-characteristics in a semiconductor device (i.e. curves

describing the dependence of the output current on the input voltage at some

contacts). For certain devices (e.g. thyristors) the set of equations

describing the state of the semiconductor device have multiple solutions for

specific voltage ranges and snap-back phenomena occur (i.e. the current is not

a single valued function of the voltage). This implies that the

characteristic cannot be computed numerically by merely stepping up the

voltage. Our algorithm involves reparameterizing the characteristic curve by

means of a parameter which approximates the arclength of the curve.

Continuation in this parameter past snap-back-points does not cause serious

difficulty.

We discuss the implementation of the reparameterization and present a

numerical example.
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COMPUTATION OF CURRENT-VOLTAGE-CHARACTERISTICS IN A SEMICONDUCTOR DEVICE

USING ARC-LENGTH CONTINUATION

Peter A. Markowich 1, Christian A. Ringhofer1 , and Alois Steindl*

1. Introduction

The computation of static current-voltage characteristics for devices which exhibit

snap-back phenomena (like thyristors or even a pn-junction in the avalanche case) has

created problems since continuation in the voltage does not work beyond snap-voltages.

Figure 1 shows a typical characteristic of a thyristor in forward bias with the snap-back

4 voltages US1 and US2.

2

US UI 1S 2  U2 U

% %

Figure 1. Current Voltage Characteristic of a Thyristor.
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Assume that the point (U1 ,11) was aomputed (say by starting at (0,0) and by

gradually stepping up the voltage by the increment AU). Then, if U2 I U1 + AU > US2,

the point (U2 ,12) already lies on the upper branch of 
the characteristic and Newton's

method for the numerical computation of (U2 1 12 ) will probably fail when providing an

initial guess which is computed just by using the previously 
computed solutions. The

(dynamically stable) upper branch emerging 
from (U5 1,I5 1 ) cannot be computed by

continuation in U starting from some point on the (also dynamically stable) 'lower

branch' connecting (0,0) and (US2 ,IS2 ).

In this paper we demonstrate how to avoid this 
problem by introducing an arclength-

type parameter. The characteristic can be computed past snap-back voltages when doing

continuation in this new parameter. This procedure is well known to mathematicians,

however, most semiconductor-device simulation codes do not make use of it yet.

We also demonstrate how an already existing 
code, which solves the fundamental

semiconductor device equations for given contact voltages has to be augmented to

accommodate the reparameterization. The augmentation turns out to be very cheap in

programing as well as in computer resources.

Finally we present numerical results for 
a one-dimensional pn-junction in the

avalanche case.

-2-

i' 
.. . . .. .



2. Statement of the Problem

The basic static semiconductor device equations as given by Van Roosbroeck (1950) are

(2.1) div(cV#) n - p C

(2.2) div(DnVn - n nV#) R x e 0 C IP, n - 1, 2 or 3

(2.3) diVlD pVp + v pV#) R I

(We employ the usual notation) where n represents the device geometry. The electron and

hole current densities are given by

(2.4) in = q(DhVn - IjnnV*)

(2.5) Jp -q(DpVp + uip pV)

and the total current density

(2.6) 
3 - 3

n 
+ Jp

For an MOS-device Laplace's equation

(2.7) div(eV#) - 0, x •

holds where # represents the oxide. The potential and the electrical displacement are

asaumed to be continuous at the interface 300a - 30 r) 3# and electrons and holes are not

allowed to penetrate the oxide (n and p vanish in #). We assume that the device has

r contacts Cl•* ,Cr - At these contacts the boundary conditions

(2.8) + U i

are prescribed where ; denotes the built in potential at the contact if Ci is Ohmic,

the negative flat-band voltage if C i is a gate contact on the metal-semiconductor

interface. Mark function if C i is a Schottky contact. Ut is the potential applied

to Ci.

Also n and p are prescribed at Ohmic and Schottky contacts.

The remaining part of the boundary of the device is assumed to be insulating, that

means the derivatives of 4, n and p in normal direction to the boundary vanish there.
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The outflow current density of C1  is given by

(2.9) 11J J nds
Cl

where n denotes the exterior unit normal vector to Ci.

For the following we write the problem (2.1)-(2.3) (and (2.7) for a MOS device)

subject to the mentioned boundary conditions (and interface condition for a MOS device) or

a scaled version of it in operator form:

(2.10) A(ZUI,...,Ur) 0 O, z = (#,n,p)

while

(2.11) A : Z x R* y

where Z and Y are appropriate (Banach) spaces of functions. In the sequel we are

interested in the determination of the outflow current Ii for varying contact voltage

Uj e a and fixed voltages U1,...,UjiUj+I,...,Or, For notational simplicity we set

U tm U, I : Ii . We assume that the resulting current-voltage (1-U)-characteristic is a

smooth curve in 22 which can be parameterized as follows

(2.12) U - U(s), I - I(s)

whore

(2.13) ;?(a) + i2(s) = .denotes L__).do

Then a - so is the length of the arc connecting (U(so),I(sO)) and (U(s),I(s)).

The goal of the analysis following this section is to facilitate the numerical

computation of the curve (2.12). For further notational simplicity we denote

(2.14) (z,U) = A(z,UI,...UjI,U,Uj+I,....Ur)

(all contact voltages except Uj = U are fixed) where

(2.15) B : x R + Y

%5 -4-
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* 3. Parameterization

The arclength parameterization (2.13) is not suited for computational purposes and

therefore we use the approximation

(3.1) -(T0 M -(T0)) + 6 )(U - U(T 0)) -(T - 0 0 0

for v sufficiently close to T0 assuming that (U0 ,1 0 ) :- (U(T 0 ),I(T 0 )) and the unit

tangent-vector (U0 ,;0 ) :- (U( 0 ),t(T 0 )) are known.

Noting that I as given by (2.9) (for I - i) is a functional of z, i.e.

I - Itz] we denote (3.1) by

(3.2) N(:,U,T) - 0, N : Z X 
2  

R

and augment B(z,U) - 0 by (3.2), that men esolve

(3.3) P(y,T) "[ - 0, y " Is,U)
LN(y,T),

where T is in a sufficiently small neighborhood of T0 . We will show that the I-U-

characteristic can be computed by solving (3.3) by continuation in T (at least locally

about T0 ) even if U0  is a snap-back voltage.

A geometrical algorithm for the determination of (U(T),I(T)) as defined by (3.1) is

an follows. At first the point So on the tangent to (U0 ,1 0 ), whose distance to

(U0 ,!0 ) is IT - T0 1 (if T - To > 0 the vector pointing from (U01 I0 ) to So  is

oriented as the tangent vector (U0 ,1 0 ) and if I - T0 < 0 it in oriented in the

opposite direction) is determined. The normal to the tangent through So  is intersected

with the characteristic curve giving (U(T),I(T)). This is illustrated in Figure 2 at a

$regular point' (a non-snap-back-point) of the characteristic.

Figure 3 demonstrates the reparameterization at a snap-back-point (U0 ,I0). It is

intuitively clear that (U(T),I(T)) can be determined in a locally unique way if

IT - T0l is sufficiently small.

To prove this we define 'regular points' and 'simple limit points' (i.e. snap-back

points) mathematically (see f. Keller (1977)).

-5-
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Figure 2. A Regular Point
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tangent

IS
00

U() U0  U

Figure 3. A 'Snap-back Point'
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For the reader who is not familiar with the concepts of nonlinear analysis in Banach

spaces we remark that, for understanding the implications of the following, it suffices to

regard B am a function from eK+1 into e and N as a function from RK +2 into R

for some integer K. Then Frechet derivatives (linearizations) are then Jacobi matrices

of corresponding dimensions. This corresponds to analyzing an appropriate discretization

of the semiconductor device equations (subject to the mentioned boundary conditions) and

of (3.1).

We define:

1) The point (zo,Uo)(z0 :- z(sO ) is the solution of B(z,U O ) - 0 with 10 - I[zo]) is

called regular solution point of B(z,U) - 0 if the Frechet derivative n- (z0 'U0 ) is

one-to-one and onto (i.e. invertible).

2) The point (z0 ,U0 ) is called normal limit solution point of B(z,U) - 0 if

N(IB (z0 ,U0 )) is one dimensional (N(A) denotes the null space of the operator A),
3n

the codimension of R(- (z01 U0 )) is one (R(A) denotes the range of the operator A)

3B B
a he i Cz01 U0 ) 0 RCL- (zo,Uo)).

.The following Theorem is along the lines of Keller's (1977) Theorem 3.3.

Theorem 3.1: Let (zo,U O ) be either a regular solution or a normal limit solution of

. B(z,U) - 0. If B is sufficiently smooth then for (T - T 0 ) sufficiently small there

exists a unique smooth arc of solutions (z(r),U(T)) of B(z,U) - 0 passing through

(z0 ,U0 ) and fulfilling (3.3). The Frechet derivatives are one-to-one and ontoS) z,U)

Pralong this arc.

S .. B SB
3B (z0 ,u0 ) 2B (z0 ,U0 )

CO o- 3 (z0 Fu0 "r0 ) -

!(r a' (o (
0 3z 0 0

holds. If (z0 ,B0 ) is a regular solution point of B(z,U) - 0, then 2z (z0 'U0 ) is
S3Z

one-to-one and onto. To show that ,- (z01 U0 ,T0 ) is one-to-one and onto it suffices

to prove that

-7-
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(3.4) a0  6 U(T0  - ( z 11 z1(LB (Z ,U0 ))  a (Zo,Uo) o

holds (see Keller (1977), Lemma 2.8)). By differentiating B(z,U) = 0 with respect to

S we obtain at S - To

.) " (ouo),(.r) + L (ZoUo6(.r) = 0
0) - 0 impliesZ(.0 ) - 0 (because of the nonsingularity of B(z,U0)) and

U(.)0 iple 0 3 z 0 U)

=t -L z0]_(t0 ) 0 follows which contradicts (2.13). Therefore U(T0 ) $ 0 and

3LB 3B3 2(r0)"( U - (zoUo) = - -

holds. Inserting this into (3.4) gives

+' [zoz - .
130 0 C 0) U- 0zI

U(T 0

*+ Thus

i' 'o ('~a fro) " ti('ro) + il'o) = 1 = %
0 0 0 0

and Co  is one-to-one and onto.

Now let (s0 ,U0 ) be a normal limit solution of B(zU) - 0, (3.5) implies

3B =ZOU);T (
. case0 (0.Uo);() a z 0o,U0 ).(T) 0

because M (z0,U0 ) 0 R(1j (z0 ,U0 )). Since AR. (z0 ,U0 ) is not the null-operator

0 0 follows (compare to Figure 3). Therefore N( ZU 0 )) =spanfz(T

holds. Keller's (1977) Leima 2.8 implies that CO is one-to-one and onto iff

(3.6) dim R(I(T O ) -r (z O]
0 ~z

(3.7) f(T 3) _I ! N(3B3

SZ (zoU))

hold. Obviously

i(T 0 ) - [2ol1o = I:To) = 1T

holds because of (2.13) ((J(T 0 ) = 01) and (3.6), (3.7) follow.

I- -8-
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The invertibility of CO  and the implicit function theorem (see Schwartz (1969))

imply Theorem 3.1. 5

The Theorem implies that - at least for IT - Tol sufficiently small - the solution
+-N

arc of B(z,U) s 0 can be computed by solving (3.3) (which is the 'reparameterized

"% version of B(zU) - 0) for z and U (by continuation in T) using Newton's method

which is quadratically convergent along the whole solution arc.
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4. Zmplementation

For the numerical solution of the fundamental semiconductor device equations

B(z,U) = 0 the problem has to be discretized appropriately, that means Bh(zhU) = 0 has

*' to be solved instead of S(a,U) - 0 (h represents the grid parameter). For a collection

* of results on discretization methods see Mock (1983).

we now assume that Bh  has already been chosen and that Bh , 1K+1 4 * . Also an

.*. appropriate numerical integration rule Ih[zh] has to be used to discretize

i[z] j I • nds.

Togtthe continuation started at S , S w solve Dth(zhUO) - obtaining zho

(we assume that (zh0"U 0 ) =: (zh(T0),U(r0)) is a regular solution of B(zhU) - 0) and

(Iho: 1h[zho 1 An approximation of the tangent vector to the I - U characteristic at

0C U 0 wt 0  sf.sal

(U0 1 0 ) can be obtained by solving Bh(zhV 0  0 (with AU0  U0 U0  Buff. mall)

for zh and by setting

U0 - U0  h[h - 1h Zh
- *0 "0 

0

',' with (a 4f O2 +(I (;,0 r z 2

Assume now that we already solved

"hlzhDUh)

(4.1) Nh (zhUh,
'r) = 0

N(ZhUh T)

for T = T. (i.e. (zh(TK),Uh(Xg)) and Ih(TX) are known). we compute

N(zT d h(U d (K)) from
h IC hTK) dr h ' dr hIC

3 z (h hC)' (zh(T :),U(T ((- "Z T
I(K)

V(4) T h(Z ,Uh)TK 1 + - 0

aj a h  h "
' I (r) i. ~ [Zh(rK)] U(rO)U( K

r.-' -10-
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%'d

andobain I'r

and obtain T K)  1 h(TK)]z(TK) For the continuation we choose ATK , set
h

TK+I , T K + ATK  and solve (4.1) for T = tK+1 As initial guess for the iteration

procedure for the numerical solution oi (4.1) we pick the Euler predictor

(0) (TCt
,,, h K+ 1 ) h(TK) Z K

(4.3) (T + fUT
If the I-U-characteristic consists only of regular and limit points then it follows from

, Keller (1975) and from Theorem 3.1 (we assume that TK+ 1  is suff. close to T such that

Theorem 3.1 holds for T - TK+I ) that Newton's method converges quadratically if ATK is

sufficiently small, and if Ph is a stable and consistent (see Keller (1975))

* approximation to P.

Since Theorem 3.1 implies that , (zlT),U( ),T) is nonsingular if IT - TOl is

suff. small it is recommendable to update r0  (and N) after a few continuation steps.

This is done by setting:

(4.4)(a) T 0 T 1+1

and

(4.4)(b) (NEW) ), (T NW) I (U'( ),I" +

0 0" A(T 2 + CI(T )2

A way to determine when an update is desirable is to require that the length of the

tangent vector (U' TK),I'(TK)) differs from 1 by less than a certain prescribed error

tolerance.

Of course, the sign of the increments ATK has to be constant throughout the whole

continuation process (and equal to the sign of AU0 ). For the thyristor characteristic

with U0 = I0 = 0, TO - 0 positive increments (AU0 > 0, > 0) imply that one 'walks

up' the forward characteristic (U > 0) and negative increments (AU0 C OATK < 0)

result :n the computation of the reverse characteristic (U < 0).

! ". -11-
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The increments ATR have to be chosen such that the initial guess (4.3) lies in the

domain of attraction of the iteration method for (4.1) at T - TK+ 1.  For a sufficiently

smooth solution arc

r (0)
(4.5) .K41 Z ( K+1 Mr +2 1

Uh(TK+13 K + Uferr)

holds. Therefore one has to require that

(4.6) IAT K [(21z;I,( + 21UI 16K 112
K,'K+h [KrK+I K+

where &K+, represents the convergence radius of the iterative method for the approximate

solution of (4.1) at T - T,+, . Computable estimates for 8K+, and strategies slightly

different from (4.6) can be found in Den Heizer and Rheinboldt (1981).

Assume now that a Newton-type procedure is used as iteration-method. Then a linear

system of the form

(4.7) bhIh f8Z) fl:
has to be solved at every iteration step (and also for solving (4.2)) with

Ah -3B

bh - evaluated at some iterate

*(4.8) • S 1) ndD =

(1) (1)
zh  ,uh

d Nh
d au

-12-
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If a Gauss-solver for sparse matrices is used to solve systems of the form AhZh = rh

(which occur in solving the fundamental semiconductor device equations (2.10) for

prescribed r--- -t-voltages) then it can easily be modified to solve systems of the form

b hb
(5.7). The X + 1-st row (d) and the K + 1-st column (ch,d) do not create

additional fill-in during the elimination process.

If a band-solver is used to solve systems with coefficient matrices Ah then systems

". of the form (4.7) can be solved as suggested in Keller (1977), that is by solving two

systems with coefficient matrix Ah simultaneously. This, of course, only gives accurate

*results when Ah has a moderate condition number, i.e. when T. does not correspond to a

limit point. However, it is possible to continue beyond limit points when using the

iN parameterization (3.1) (see Keller (1977), Theorem 4.4).

4:

i.%
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5. A Test Problem

As a test problem we applied the arclength-continuation procedure to the one-

dimensional semiconductor device equations modelling a silicon pn-junction in the

avalanche case.

For simplicity we took an odd, piecewise continuous doping profile (see Figure 4).

1017

I

)x

, 
-10 17

Figure 4. Doping Profile

The length of the pn-junction is 21 = 5 x 10"
3
cm.

The avalanche phenomenon was modelled by the generation rate

(5.1) R - -a(#')(IJ nI + IJpl)

with JnJp given by (2.4), (2.5) resp. The following expression was used for the hole

and electron ion isolation rate:

. 5.2) a exp(- 2 )
5)' - ( @1,2 > 0 2

The electron and hole mobilities were taken equal (also the electron and hole

diffusivities). The obtained results should not be regarded as physically significant,

they however illustrate very well the power of the reparameterization technique.

-14-
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7 7 0

US We remark that in the one-dimensional case the current is constant and given by

(5.3) I 3 q(Dn(n' - p') - %n(n + p)W) (for Dn = Dp, pn - p) •

A scaled version of (2.1)-(2.3) (see Markovich (1983a) for the scaling) was discretized by

, .using the three-point-scheme for Poisson's equation and the Scharfetter-Gummel scheme for

the continuity equations (see Markovich et al. (1983)).

The functional Ih(zh I was obtained by discretizing the current (5.3) at the largest

grid point xi with xi < I also using the Scharfetter-Gurml discretization.

Figure 5 shows the obtained I-U-characteristic for -SUT 4 U 4 0 (UT is the thermal

voltage). The onset of avalanche generation occurs at U a -1.5U T  and the current

increases linearly (in absolute value) beyond that. This linear increase continues as far

as U a -20OUT. Then the increase gets faster and the snap-back occurs at U w -240UT

(se Figure 6). The continuation of the solution arc beyond the limit point was no

problem.~1
Figures 7 and 8 show J a(#'(s))ds over the applied bias. For U - 0 (equilibrium

1 -1

solution) j a(*')ds < 1, then it increases until it equals 1. This happens around thatq~s -1

U-value at which avalanche generation starts, i.e. U o -1.5U T  (compare to Figure 5).
1

Then J a(#')ds remains almost constant until close to the snap-back voltage (see Figure-1

4). Slightly before the snap-back voltage it increases and gets significantly larger than

1. It was often claimed (see, for example, Sze (1981)) that 'breakdown' happens at that1

voltage at which ) a(#')ds reaches one. This is not true in the mathematical sense for
-1

our simple model, there is a continuous branch of solutions (of the one-dimensional

semiconductor problem in the case of avalanche generation) which emerges at the

equilibrium solution (for U - 0) and which contains at least one solution for every

U < 0 (see Markovich (1983b)). The situation, however, might change if temperature is

introduced as unknown quantity.
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