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;S ABSTRACT

N -

{g This paper is concerned with the computation of semiconductor device
current-voltage characteristics. We describe an algorithm which allows the

% éomputation of characteristics by continuation in a parameter which

'; approximates the arclength of the characteristic. The use of this
parameterization allows the characteristic to continue beyond snap-back-

§ voltages, while continuation in the voltage fails past snap-back-voltages. We

;? discuss the implementation of the parameterization and give a numerical

B example.
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\\\/ SIGNIFICANCE AND EXPLANATION

Intgﬁia paper we presentﬁrn algorithm for the numerical computation of
current-voltage-characteristics in a semiconductor device (i.e. curves
describing the dependence of the output current on the input voltage at some
contacts). For certain devices (e.g. thyristors) the set of equations
describing the state of the semiconductor device have multiple solutions for
specific voltage ranges and snap-~back phenomena occur (i.e. the current is not
a single valued function of the voltage). This implies that the
characteristic cannot be computed numerically by merely stepping up the
voltage. gzsc;lgorithm involves reparameterizing the characteristic curve by

means of a parameter which approximates the arclength of the curve.

Continuation in this parameter past snap-back-points does not cause sgerious

difficulty.
ﬂ L o wTAOI’J

~We discuss the implementation of the reparameterization and present a

numerical example.
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COMPUTATION OF CURRENT-VOLTAGE~CHARACTERISTICS IN A SEMICONDUCTOR DEVICE
USING ARC~LENGTH CONTINUATION

Peter A. Harkowich"‘, Christian A. Ringhofer’, and Alois Steindl”

1. Introduction

The computation of static current-voltage characteristics for devices which exhibit
snap-back phenomena (like thyristors or even a pn-junction in the avalanche case) has
created problems since continuation in the voltage does not work beyond snap-voltages.
Figure 1 shows a typical characteristic of a thyristor in forward bias with the snap-back

voltages Us‘ and Usz.

I
I
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s
2 e e - —=
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1 [ |
U u U
s1 1 s2 2

Pigure 1. Current Voltage Characteristic of a Thyristor.

*Institut fur Angewandte und Numerische Mathematik, Technische Universitat Wien, A-1040
Wien, Austria.

1Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Assume that the point (Uq,I4) was computed (say by starting at (0,0) and by

gradually stepping up the voltage by the increment AU). Then, if U, = U, + AU > Usz,

the point (U,,I3) already lies on the upper branch of the characteristic and Newton's

method for the numerical computation of (Uy,I5) will probably fail when providing an

initial gquess which is computed just by using the previously computed solutions. The

{dynamically stable) upper branch emerging from (us’,ls1) cannot be computed by

continuation in U starting from some point on the (also dynamically stable) 'lower

branch® connecting (0,0) and (Usz,lsz)-

In this paper we demonstrate how to avoid this problem by introducing an arclength-

type parameter. The characteristic can be computed past snap-back voltages when doing

continuation in this new parameter. This procedure is well known to mathematicians,

however, most semiconductor-device simulation codes do not make use of it yet.

We also demonstrate how an already existing code, which solves the fundamental

semiconductor device equations for given contact voitages has to be augmented to

accommodate the reparameterization. The augmentation turns out to be very cheap in
prograsming as well as in computer resources.

Finally we present numerical results for a one-dimensional pn-junction in the

avalanche case.

-2-
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.7""-_ 2. Statement of the Problem

. The basic static semiconductor device equations as given by Van Roosbroeck (1950) are

e

“«: (2.1) div(eV$) = n - p - C

2N

.q‘ (2.2) aiv(D Vn - u n¥y) = R xeQCR, n=1,2 or 3.
2.3 q Vp + u Vy) = R

g ( ) 1v(Dp P up ¥)

(We employ the usual notation) where 1 represents the device geometry. The electron and

hole current densities are given by

%
M
L

R n R -

(2.4) In = q(DhVn - unth) '
& (2.5) J_ = -q(D Vp + v
p = "a(DVp * up V)

. and the total current density
s
o (2.6) I=3, 43
X q For an MOS-device Laplace's equation
,‘ T

(2.7) aiv(eVy) = 0, xe

holds where ¢ represents the oxide. The potential and the electrical displacement are

asaumed to be continuous at the interface an“ = 3Q N 3¢ and electrons and holes are not

allowed to penetrate the oxide (n and p vanish in ¢). We assume that the device has
r contacts Cq,.+.,C.. At these contacts the boundary conditions
i:. . (2.8) ¥l =¥+

v i
are prescribed where ¥ denotes the billt in potential at the contact if C; is Ohmic,
the negative flat-band voltage if C; is a gate contact on the metal-semiconductor
.}’ interface. Mark function if C; is a Schottky contact. U; is the potential applied
”
4_:; to Cy.

Also n and p are prescribed at Ohwmic and Schottky contacts.

: The remaining part of the boundary of the device is assumed to be insulating, that

W) means the derivatives of %, n and p 1in normal direction to the boundary vanish there.

DRV
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The outflow current density of C, is given by
(2.9) xz-j J * nds ,
Cy,
where n denotes the exterior unit normal vector to Ci.
For the following we write the problem (2.1)-=(2.3) (and (2.7) for a MOS device)

subject to the mentioned boundary conditions (and interface condition for a MOS device) or

a scaled version of it in operator form:

(2.10) A(z,U1,...,Ur) = 0, z = (¢y,n,p)
while
(2.11) A:ZxXK + ¥

wvhere Z and Y are appropriate (Banach) spaces of functions. In the sequel we are
interested in the determination of the cutflow current I; for varying contact voltage
Uj € R and fixed voltages 01,-..,Uj_,,03+1,...,ur. For notational simplicity we set

U = Uy, I := I;. We assume that the resulting current-voltage (I-U)-characteristic is a

smooth curve in R which can be parameterized as follows

(2.12) U =U(s), I = I(s)
where
(2.13) v2(s) + I2(s) = 1 (¢ denotes %‘;) .

Then s - s; is the length of the arc connecting (U(sy),I(sy)) and (U(s),1(s8)).
The goal of the analysis following this section is to facilitate the numerical
computation of the curve (2.12). For further notational simplicity we denote

(2.14) B(z,U) = A(z,U,,...,Uj~1,U,Uj+1,-..,Ur)

EE O

(all contact voltages except Uj = U are fixed) where
]
(2.15) B:2Z2xR+Y,
4‘4
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3. Parameterization

The arclength parameterization (2.13) is not suited for computational purposes and

therefore we use the approximation
(3.1) Beegdx = 2txg)) # Btrg)w - vlrg)) - (1 - 1) =0
for t sufficiently close to 9 agssuming that (UO,IO) = (U(to),I(to)) and the unit
tangent-vector (6°,i°) 3= (6(to),1(1°)) are known.
Noting that I as given by (2.9) (for £ = i) is a functional of z, i.e.

I = I[z] we denote (3.1) by

(3.2) N(z,U,t) =0, N : 2Z X nz + R
and augment B(z,U) = 0 by (3.2), that means we solve
B(y)
(3.3) Ply,t) = =0, y = (z,0)
N(y,T)

where T is in a sufficiently small neighborhood of Tge We will show that the I-U-
characteristic can be computed by solving (3.3) by continuation in 1 (at least locally
about to) even if U, is a snap-back voltage.

A geometrical algorithm for the determination of (U(t),I{(t)) as defined by (3.1) is
as follows. At first the point S; on the tangent to (Uo,Io), whose distance to
(Ug,Ip) is It - tol (12 t - 1y > 0 the vector pointing from (UgsIg) to Sy is

oriented as the tangent vector (60,10) and if T - T, < 0 it is oriented in the

opposite direction) is determined. The normal to the tangent through 8§, is intersected

with the characteristic curve giving (U(t),I(t)). This is illustrated in Figure 2 at a
‘regular point' (a non-snap-back-point) of the characteristic.
Pigure 3 demonstrates the reparameterization at a snap-back-point (Ug,Ig). It is
intuitively clear that (U(t),I(Tt)) can be determined in a locally unique way if
It - T°| is sufficiently small.

To prove this we define ‘regular points’' and 'simple limit points' (i.e. snap-back

points) mathematically (see H. Keller (1977)).
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Figure 2. A Regular Point
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Figure 3. A 'Snap-back Point'
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For the reader who is not familiar with the concepts of nonlinear analysis in Banach
spaces we remark that, for understanding the implications of the following, it suffices to
regard B as a function from RK+‘ into ® and N as a function from RF+2 into R
for some integer K. Then Frechet derivatives (linearizations) are then Jacobi matrices
of corresponding dimensions. This corresponds to analyzing an appropriate discretization

of the semiconductor device equations (subject to the mentioned boundary conditions) and

of (3.1).

We define:
1) The point (243,Ug)(zy := z(sy) is the solution of B(z,Uy) = 0 with Iy = Ilzg]) is
called regular solution point of B(z,U) = 0 if the Frechet derivative %% (zy,Ug) is
one-to-one and onto (i.e. invertible).
2) The point (zq,Uy) is called normal limit solution point of B(z,U) =0 if
N(%% (zo,Uo)) is one dimensional (N(A) denotes the null space of the operator A),

the codimension of R(%% (zg,Up)) is one (R(A) denotes the range of the operator A)

ana 1£ 28 (2,00) £ RG2 (29,09))-
The following Theorem is along the lines of Keller's (1977) Theorem 3.3.

Theorem 3.1: Let (zo,Uo) be either a regular solution or a normal limit solution of

B(z,U) = 0. If B is sufficiently smooth then for (1 - T,) sufficiently small there

exists a unique smooth arc of solutions (z(t),U(t)) of B(z,U) = 0 passing through

(zg,Ug) and fulfilling (3.3). The Frechet derivatives 37%257 are one-~to-one and onto
’
along this arc.

Proof:

3B 3B
‘a_z' (ZO'UO) ﬁ (20000)

ar -
Co = (z,U0) (zo;Uo;TO)
. oI .
I(To) z (zq) U(To)

B
holds. 1If (zo,Bo) is a regular solution point of B(z,U) = 0, then 5; (zo,Uo) is
one-to-one and onto. To show that ) . (2,,U..T,) is one-to-one and onto it suffices
a(z,u) e’"0''0

to prove that




..
.4
v

PR X
S

-1
v B -3 a1 3B 3B
(3.4) 8, = Ut ) = I(ro) == (2 1(37 (20,U)) 35 (zq.Ug) # 0
holds (see XKeller (1977), Lemma 2.8)). By differentiating B(z,U) = 0 with respect to

S we obtain at S§ = To

)] . 3B .
{3.5) 3 (zo,Uo)z(ro) + 3U (zo,Uo)U(To) =0 .

6(10) = 0 implies ;(To) = 0 (because of the nonsingularity of %E (zg,Ug)) and
i(to) = %% [zo];(to) = 0 follows which contradicts (2.13). Therefore 5(10) # 0 and
1 z(t,)

3B B 0
(5; (zo,Uo)) ET (24,Ug) = - 7
U(to)

holds. Inserting this into (3.4) gives

y Az ) —2

a, = U(to) + I(to 7z ol 3

0

Thus
= 2 = =
aBtrg) = B (x) + iy = 1 = qg # 0
and Cqg is one-to-one and onto.
Now let (2,3,U3) be a normal limit solution of B(z,U) = 0, (3.5) implies
28 ey =-28 B ) =
e (zo.Uo)z(ro) 30 (zo,Uo)U(to) 0
be L r22 3 n -
cause < zg,Ug) ¢ R(3T (29,Ug)). Since U (z9,Ug) is not the null-operator
ﬁ(to) = 0 follows (compare to Figure 3). Therefore N(%E (zg,Ug)) = span{;(ro))

holds. Keller's (1977) Lemma 2.8 implies that C; is one-to-one and onto iff

s a1
ar 3B
(3.7 Brg) 5, (201 # N(57 (20,Up))

hold. Obviously

. o s . 2
I(to) 3z [zolzo I (To) =1

holds because of (2.13) (ﬁ(to) = 01) and (3.6), (3.7) follow.
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. The invertibility of C, and the implicit function theorem (see Schwartz (1969))
imply Theorem 3.1. 0

The Theorem implies that - at least for [t - tol sufficiently small - the solution
arc of B(z,U) = 0 can be computed by solving (3.3) (which is the 'reparameterized
version of B(z,U) = 0) for z and U (by continuation in 1) using Newton's method ;

which is quadratically convergent along the whole solution arc.

.V.
“h <

v e
ity
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FQAAY
For the numerical solution of the fundamental semiconductor device equations
<5\
NN
:::} B(z,U) = 0 the problem has to be discretized appropriately, that means B, (zy,U) = 0 has
5
$ : : to be solved instead of B(z,U) = 0 (h represents the grid parameter). For a collection
- ¥ + i
N ‘$ of results on discretization methods see Mock (1983).
We now ass th h lready be h d F. K
AR ume at Bh as already en chosen and that By : . 80 an
1‘ »
At{: appropriate numerical integration rule I, (2] has to be used to discretize
. Tu,
NEN I(z) =] I ¢ nds.
&~ ¢
. o
. To %et the continuation started at S = §; we solve Bh(zh,Uo) = 0 obtaining zho
{:’:: (we assume that (zho,Uo) = (zh(ro),U(to)) is a regular solution of B(zh,U) = 0) and
': : (Ihoz- Ih[zho]. An approximation of the tangent vector to the I - U characteristic at
4.‘ .: ~ ~
;Séa' (Up,Iy) can be obtained by solving B, (z ,Us) = 0 (with AUy = Uy - Uy suff. small)
o for z, = ;h and by setting
PO 0
28 ~ 1 (3, ) -1 (2 )
f}f-j . Uy -9, . b, h*ng
1S 7w+ " P
S
)
P with w=/T -v)?+ (5 1-1(z N>
LAY 0o~ o h'“n hhg
.‘."‘.‘\ o
\ﬁ*{ Assume now that we already solved
] s
N By, (zpsUp)
\ (4.1) Nh(zh,uh,‘r) H =0
AL
'.H{} N(zh'ul'l"l’)
. h“
.::;.: for T = Ty (1.e. (zh(tx),uh(rx)) and Ih(‘l'x) are known). We compute
N ' = (A 4
;?,?_ (zﬁ(TK)'Uh(!K)) : (dT zh(rx), T Uh(rK)) from
“avs 3B, 3B,
l\ — L]
:.:f. 3o (2 (T ) U (T )) g (2 (T o0 (T D) ] 5, (1) o
Cad d
% — = + = (0
.‘:\5 (4.2) G5 M (2,.0,.70) o g
" a . h [ .
R U
S I(TO) azh [zh(tx)] U(To) ('tx)

-10-
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:-54 and obtain I'(1K) 5—— [z (t )lzh(t ). For the continuation we choose AtK, set
b . Teer = g + A‘K and solve (4.1) for 1 = Tx+1® As initial guess for the iteration
:f% procedure for the numerical solution or (4.1) we pick the Euler predictor
Py
A
oA (0) .
5 (Teet? 2, () 7, (7y)
.'J-. (4.3) = + At .
‘! (0) K ,
Uh (TK+1) Uh(tx) Uh(rx)
‘“ié If the I-U-characteristic consists only of regqular and limit points then it follows from
f\‘ Keller (1975) and from Theorem 3.1 (we assume that Tee1 is suff. close to T such that
~.
b, Theorem 3.1 holds for Tt = TK+1) that Newton's method converges quadratically if At‘ is
o sufficiently small, and if P, is a stable and consistent (see Keller (1975})
' approximation to P.
3
s P
iﬁ Since Theorem 3.1 implies that 5(z,00 (z(t),U(t),v) 4is nonsingular if |t - tol is
B suff. small it is recommendable to update T (and N) after a few continuation steps.
jtd This is done by setting:
i
a1 (New) __
iq (4.4)(a) To Sl PP
fe, and
) (' (t ), 1'% (T ))
Y A +1 +
e (4.4)(b) BTy, 1 M) s L LAk .
~ ’ Jwrie,, 2 e rir,, 02
o Toeq T4
_-l
°. A way to determine when an update is desirable is to require that the length of the
o tangent vector (U'(tx),I'(TK)) differs from 1 by less than a certain prescribed error
I
L) tolerance.
»
l.’
; : Of course, the sign of the increments Atx has to be constant throughout the whole
’ continuation process (and equal to the sign of Auo). For the thyristor characteristic
-:",' with Uy = Iy = 0, Ty = 0 positive increments (4U, > 0,471, > 0) imply that one ‘'walks
fj' up' the forward characteristic (U > 0) and negative increments (AUO < O,Atx < 0)
e
2
B~ result _a the computation of the reverse characteristic (U < 0).
.-::i
}N : -11-
A%
L]
"‘:‘
-
"
;1
N
-
‘*w N

4-1.- -(~
.- - -

N
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The increments AT, have to be chosen such that the initial guess (4.3) lies in the
domain of attraction of the iteration method for (4.1) at <t = Txeqe For a gufficiently

smooth solution arc

2, (Teay)? T Txet (MK)2 2, (&)

(4.5) - -— ) Ex @ (TgiTye,y)

uh(tx+1) uh (t ) u;(Ex)

s ¥
&,

holds. Therefore one has to require that

QN P A

Nl

(4.6) IAT 1 & [(2021 + 210°1 ])6 ]

h [‘x"xn] h [Tx.tx+1 X+1

where 6“_1 represents the convergence radius of the iterative method for the approximate
solution of (4.1) at T = Ty . Computable estimates for Gx” and strategies slightly
different from (4.6) can be found in Den Heizer and Rheinboldt (1981).

Assume now that a Newton-type procedure is used as iteration-method. Then a linear

system of the form

8z v
(6.7 * Bl %% | [T
Ch d Guh Wh

has to be solved at every iteration step (and also for solving (4.2)) with

B, )

by, = o0 evaluated at some iterate

(4.8) L
() (0,

(zh and T = Ty .

'_‘-_‘- -‘.\ RN .
RGN w.’-. ~ -. 5 \'{-\. .-.'_4." _:1
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A“\ 1 ‘{\ _\‘.‘*\ AN \v.:'- ‘- *




EAACIMS IR S e i S S At et e )

If a Gauss-solver for sparse matrices is used to solve systems of the form Ahzh =ry
(which occur in solving the fundamental semiconductor device equations (2.10) for
prescribed ~~:*:~t-voltages) then it can easily be modified to solve systems of the form
(5.7). The K + 1-st row (dh) and the K + 1-st column (¢,,d) do not create
additional fill~in during the elimination process.

If a band-solver is used to solve systems with coefficient matrices A, then systems
of the form (4.7) can be solved as suggested in Keller (1977), that is by solving two
systems with coefficient matrix Ay simultaneously. This, of course, only gives accurate
results when A, has a moderate condition number, i.e. when Ty does not correspond to a
limit point. However, it is possible to continue beyond limit points when using the

parameterization (3.1) (see Keller (1977), Theorem 4.4).

-13=




S. A Test Problem

As a test problem we applied the arclength-continuation procedure to the one-
dimensional gsemiconductor device equations modelling a silicon pn-junction in the
avalanche case.

For simplicity we took an odd, piecewise continuous doping profile (see Figure 4).

A+c/cm3

10%7

e
¢
o
o e e e o

_1017

Figure 4. Doping Profile

The length of the pn-junction is 28 = 5 x 10"3cm.

The avalanche phenomenon was modelled by the generation rate

- ]
(5.1) R = =a(y’)(lg, 1 + 13,1}
with Jn'Jp given by (2.4), (2.5) resp. The folloviﬁg expression was used for the hole
! and electron ion isolation rate:
(]
Wy 2
Mot * - - ——
N (5.2) al¢'(x)) a1exp( |0'(X)|), 0400, > 0 .
LAY
}\ The electron and hole mobilities were taken equal (also the electron and hole
N diffusivities). The obtained results should not be regarded as physically significant,

they however illustrate very well the power of the reparameterization technique.
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We remark that in the one-dimensional case the current is constant and given by
(S.3) I 2 q(by(n' - p*) - un(n + ple') (for D = Dp, v, = up) .

A scaled version of (2.1)-(2.3) (see Markowich (1983a) for the scaling) was discretized by
using the three-point-scheme for Poisson’s equation and the Scharfetter~Gummel scheme for
the continuity equations (see Markowich et al. (1983)).

The functional Ih(:h] was obtained by discretizing the current (5.3) at the largest
grid point xy with x; <1 also using the Scharfetter-Gummel discretization.

Figure 5 shows the obtained I-U-characteristic for -SUT €U <O (UT is the thermal
voltage). The onset of avalanche generation occurs at U = -1.5Up and the current
increases linearly (in absolute value) beyond that. This linear increase continues as far
as U = -200U,. Then the increase gets faster and the snap-back occurs at U =~ =240U,,
(see FPigure 6). The continuation of the solution arc beyond the limit point was no
problenm.

Pigures 7 and 8 ghow 11 a($'(s))ds over the applied bjas. PFor U =0 (equilibrium
solution) J: a(¢’las < 1, -:hon it increases until it equals 1. This happens around that

U-value at which avalanche generation starts, i.e. U ~ =1.5U0y (compare to Figure 5).
1
Then ] a{¢')ds remains almost constant until close to the snap-~back voltage (see Figure
-1
4). Slightly before the snap-back voltage it increases and gets significantly larger than

1. It was often claimed (see, for example, Sze (1981)) that 'breakdown’ happens at that
voltage at which ]1 a(9’')ds reaches one. This is not true in the mathematical sense for
our simple model, ;;ere is a continuous branch of solutions (of the one-dimensional
semiconductor problem in the case of avalanche generation) which emerges at the
equilibrium solution (for U = 0) and which contains at least one solution for every

U <0 (see Markowich (1983b)). The situation, however, might change if temperature is

introduced as unknown guantity.
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