COMPARISON OF THE STRESS CONCENTRATION FACTOR OF A HOLE NEAR A CIRCULAR HOLE (ONFH10) E. FRAGA ET AL. NOV 83 NRC-22829
COMPARISON OF THE STRESS CONCENTRATION FACTOR OF A HOLE NEAR A EDGE NOTCH

National Research Council Canada

November 1963

AERONAUTICAL NOTE
NAE-AN-18
NRC NO. 22825
AERONAUTICAL REPORTS:

Aeronautical Reports (LR): Scientific and technical information pertaining to aeronautics considered important, complete, and a lasting contribution to existing knowledge.

Mechanical Engineering Reports (MS): Scientific and technical information pertaining to investigations outside aeronautics considered important, complete, and a lasting contribution to existing knowledge.

AERONAUTICAL NOTES (AN): Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

LABORATORY TECHNICAL REPORTS (LTR): Information receiving limited distribution because of preliminary data, security classification, proprietary, or other reasons.

Details on the availability of these publications may be obtained from:

Publications Section,
National Research Council Canada,
National Aeronautical Establishment,
Bldg. M-16, Room 204,
Montreal Road,
Ottawa, Ontario
K1A 0R6

RAPPORTS D'ÀERONAUTIQUE

Rapports d'Àeronautique (LR): Informations scientifiques et techniques touchant l'Àeronautique jugées importantes, complètes et durables en termes de contribution aux connaissances actuelles.

Rapports de génie mécanique (MS). Informations scientifiques et techniques sur la recherche externe à l'Àeronautique jugées importantes, complètes et durables en termes de contribution aux connaissances actuelles.

CAHIERS D'ÀERONAUTIQUE (AN): Informations de moindre portée mais importantes en termes d'accroissement des connaissances.

RAPPORTS TECHNIQUES DE LABORATOIRE (LTR): Informations peu disséminées pour des raisons d'usage secret, de droit de propriété ou autres ou parce qu'elles constituent des données préliminaires.

Les publications ci-dessus peuvent être obtenues à l'adresse suivante:

Section des publications
Conseil national de recherches Canada
Établissement aeronautique national
Im. M-16, pièce 204
Chemin de Montréal
Ottawa (Ontario)
K1A 0R6
COMPARISON OF THE STRESS CONCENTRATION FACTOR OF A HOLE NEAR A CIRCULAR EDGE NOTCH WITH AN ENGINEERING ESTIMATE

COMPARAISON DU FACTEUR DE CONCENTRATION DE CONTRAINTE D'UN TROU À PROXIMITÉ D'UNE ENTAILLE DE BORD CIRCULAIRE AVEC UNE VALEUR APPROXIMATIVE

by/par
W.E. Fraga*, R.L. Hewitt

National Aeronautical Establishment

* Department of Mathematics, University of Alberta

OTTAWA
NOVEMBER 1983

AERONAUTICAL NOTE
NAE-AN-18
NRC NO. 22825

W. Wallace, Head/Chef
Structures and Materials Laboratory/
Laboratoire des structures et matériaux

G.M. Lindberg
Director/Directeur
SUMMARY

The stress concentration factor for a hole near a circular edge notch has been determined using Nisitani's body force method and compared with some engineering approximations. For a hole close to the notch the error in the approximation was about 6% but decreased to near zero as the hole was placed further away.

The stress concentration at the root of the edge notch was found to be decreased in the presence of a hole close to the notch because of the interaction between the hole and the edge of the plate.

RÉSUMÉ

On a évalué le facteur de concentration de contrainte pour un trou à proximité d'une entaille de bord circulaire, au moyen de la méthode des forces de Nisitani, et on a comparé le résultat avec certaines approximations pratiques. Pour un trou voisin de l'entaille, l'erreur de l'approximation est de 6% environ, mais elle diminue jusqu'à devenir presque nulle à mesure que le trou est éloigné de l'entaille.

On a remarqué que la concentration de contrainte à la racine de l'entaille de bord diminue lorsqu'il y a un trou à proximité de l'entaille en raison de l'interaction entre le trou et le bord de la plaque.
ILLUSTRATIONS (Cont’d)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(a)</td>
<td>Details of Semi-Elliptical Notch Configuration</td>
<td>8</td>
</tr>
<tr>
<td>3(b)</td>
<td>Details of Circular Edge Notch Configuration</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Stress Distribution Around Hole</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Approximate Stress Distribution Between 1.5 mm Diameter Hole and Circular Edge Notches of Various Radii (Fig. 3(b))</td>
<td>11</td>
</tr>
</tbody>
</table>
COMPARISON OF THE STRESS CONCENTRATION FACTOR OF A HOLE NEAR A CIRCULAR EDGE NOTCH WITH AN ENGINEERING ESTIMATE

1.0 INTRODUCTION

In a recent note, Schijve11 has estimated the stress concentration factor for a small hole in the neighbourhood of a larger notch by comparing with other geometries for which the solutions are known or can be reliably estimated. Although he was unable to give a firm indication of the accuracy of the estimate, he expected it to be better than 5%. Since we have recently implemented a computer technique for solving this kind of problem2, 3 it seemed appropriate to use it to determine the stress concentration factors for the configurations considered by Schijve to see how accurate the estimates were.

2.0 ANALYSIS

2.1 Body Force Method

The method of analysis used was Nisitani's body force method4. In this method a plate with a hole is treated as a plate without a hole but with an infinite number of point forces distributed around the edge of an imaginary hole. Approximating this by a finite number of point forces, the solution is obtained by making use of the equations for the stress at an arbitrary point in a plate due to a point force. The density of the point forces is obtained from the boundary conditions, ie. that the edge of the hole is free of stress.

2.2 Notch Geometries

Schijve studied the problem of two circular edge notches in a finite width plate with a small hole near each edge notch as shown in Figure 1(a). He first approximated this by a single edge notch and hole in a semi-infinite plate as shown in Figure 1(b). This approximation was felt by Schijve to have a negligible effect since the plate was quite wide and this is the geometry that will be studied here. To obtain the solution Schijve made one other approximation which he considered to have a negligible effect and that was that the circular edge notch can be considered as a semi-elliptical notch of the same root radius. Since these were minor variations in geometry in terms of programming, these two geometries were therefore studied also.

2.3 Solution Technique

The solution technique for the hole next to an edge notch as shown in Figure 2 is as follows:

(1) The circular arc DCE is divided into M_1 equal intervals while the hole is divided into M_2 equal intervals.

(2) The influence coefficients are calculated for each interval, ie. the stresses at each interval on the hole and edge notch are calculated for unit body forces in both the x and y directions at every interval of the hole and edge notch. These are calculated from the stress fields for a point force in a semi-infinite plate4, 1.

(3) The conditions that the midpoint of each interval be free of stress is used to give a system of $2(M_1 + M_2)$ linear equations in the unknown body forces ρ_{xN} and ρ_{yN}. These may then be determined.

(4) The stresses at an arbitrary point are found by determining the influence coefficients for that point (ie. the stresses at that point due to unit forces at each interval of the hole and edge notch) and multiplying by the appropriate body forces ρ_{xN} and ρ_{yN}.
3.0 RESULTS

3.1 Semi-Elliptical Edge Notch

Figure 3(a) shows the dimensions for the semi-elliptical edge notch. The stress concentration factors at the root of the notch, C, and at a distance of 2.25 mm from the notch, A, are shown in Table I as a function of the number of intervals, M1. As Naitani has shown1, the errors caused by the finite number of divisions are nearly proportional to $1/M_1$, and the true value of K_T can be obtained by extrapolation to a value of M_1 corresponding to infinity. The extrapolated values are 1.7350 at the notch root, C, and 1.2955 at A.

TABLE I

<table>
<thead>
<tr>
<th>No. of Divisions</th>
<th>Stress Concentration Factor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{TC}</td>
<td>K_{TA}</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.734081</td>
<td>1.295110</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.734349</td>
<td>1.295243</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.734532</td>
<td>1.295337</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>1.7350</td>
<td>1.2955</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Circular Edge Notch

Figure 3(b) shows the dimensions of the circular edge notch, and the stress concentration factors at C and A are shown in Table II as a function of the number of intervals. The extrapolated values at C and A are 1.7036 and 1.2883 respectively. The value at C may be compared with a value of 1.707 given by Green and Zemal5 for a circular edge notch with a subtended angle of 60°, rather than the 60.07° for the present case.

TABLE II

<table>
<thead>
<tr>
<th>No. of Divisions</th>
<th>Stress Concentration Factor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{TC}</td>
<td>K_{TA}</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.712143</td>
<td>1.296008</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.709221</td>
<td>1.293408</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.707889</td>
<td>1.292183</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>1.7036</td>
<td>1.2883</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Hole Near Circular Edge Notch

Nisitani et al.\(^6\) have published results for a hole near a semi-circular notch in a semi-infinite plate. These provided a method of checking the program. The configuration studied by Nisitani et al. is shown in Figure 4 and the stress concentration factors at the root of the notch, \(C\), and the edge of the hole, \(A\), determined in the present investigation are given in Table III for various values of the number of intervals \(M1\) and \(M2\). The extrapolated values are 3.5534 at \(C\) and 4.2801 at \(A\) as compared with the values of 3.561 and 4.283 given by Nisitani.

The stress concentration factors at the edge of a hole near a circular edge notch, Figure 1(b), are shown in Table IV for the three hole separation distances, \(s\), studied by Schijve, and for various numbers of intervals \(M1\) and \(M2\). The extrapolated values for holes at distances of 2.25, 3.0 and 4.5 mm from the edge of the notch are 3.8136, 3.5399 and 3.2511 respectively. For the equivalent notches Schijve predicted values of 3.58, 3.39 and 3.24, and therefore underestimated the stress concentration factors by 6.4, 4.4, and 0.3%, the largest error being for the hole closest to the notch.

TABLE III

STRESS CONCENTRATION FACTOR FOR HOLE NEAR SEMI-CIRCULAR EDGE NOTCH (FIG. 4)

<table>
<thead>
<tr>
<th>No. of Divisions</th>
<th>Stress Concentration Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M1) (M2)</td>
<td>(K_{TA}) (K_{TC})</td>
</tr>
<tr>
<td>8 8</td>
<td>4.340597 3.694438</td>
</tr>
<tr>
<td>16 16</td>
<td>4.309273 3.614692</td>
</tr>
<tr>
<td>32 32</td>
<td>4.294697 3.584046</td>
</tr>
<tr>
<td>(\infty) (\infty)</td>
<td>4.2801 3.5534</td>
</tr>
</tbody>
</table>

TABLE IV

STRESS CONCENTRATION FACTOR FOR HOLE NEAR CIRCULAR EDGE NOTCH FOR VARIOUS HOLE SEPARATION DISTANCES

<table>
<thead>
<tr>
<th>No. of Divisions</th>
<th>Stress Concentration Factor (K_{TA})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M1) and (M2)</td>
<td>(s = 2.25 \text{ mm}) (s = 3.0 \text{ mm}) (s = 4.5 \text{ mm})</td>
</tr>
<tr>
<td>8</td>
<td>4.010007 3.735499 3.405721</td>
</tr>
<tr>
<td>12</td>
<td>3.949801 3.670475 3.353424</td>
</tr>
<tr>
<td>16</td>
<td>3.913948 3.637558 3.327908</td>
</tr>
<tr>
<td>24</td>
<td>3.877074 3.605106 3.302993</td>
</tr>
<tr>
<td>(\infty)</td>
<td>3.8136 3.5399 3.2511</td>
</tr>
</tbody>
</table>
3.4 Stress Distribution Near the Hole

Having obtained the body force densities to calculate the stress concentration factors, it is a simple matter to calculate the total stress distribution around the hole. This is shown in Figure 5 for the hole placed 2.25 mm from the edge of the notch.

4.0 DISCUSSION

The stress concentration factor for the circular edge notch is about 1.8% lower than that for the semi-ellipse (1.7036 compared with 1.7350). However, as Schijve expected, the difference in stress at a point removed from the notch a distance of 2.25 mm or more is less than 0.6% (1.2883 compared with 1.2955). The difference in stress concentration factor for the semi-ellipse in a semi-infinite plate (1.7350) and an ellipse in an infinite plate \((K_T = 1 + 2a/b = 1.727)\) is less than 0.5% as expected. Thus the first two approximations of Schijve, i.e. from a circular edge notch to a semi-ellipse of the same root radius and then from a semi-ellipse in a semi-infinite plate to an ellipse in an infinite plate, were quite accurate. The only real inaccuracies stem from his last approximation, where he took the solution for a small circular hole next to a larger circular hole in an infinite plate and applied a correction factor to this to get a solution for a circular hole next to an ellipse. This was done by comparing the stresses near to a circle and an ellipse alone in an infinite plate and assuming that the ratio of the stresses in these two cases would remain the same in the presence of the additional small holes. As expected, the approximation is most accurate for the hole placed furthest away (4.5 mm) from the edge notch since interaction effects are least for this case and the error is only 0.3%. For the hole closest to the notch (2.25 mm) the error is 6.4%. However, this is not much larger than Schijve expected (5%) and indicates that good engineering judgement can produce quite acceptable approximations.

The stress distribution around the hole shown in Figure 5 is similar to that anticipated by Schijve except in the region very close to the edge notch. The stress concentration factor at the notch root is slightly lower in the presence of the hole than without it (1.6224 compared with 1.7036), and there is an inflection in the stress-distance plot about 0.4 mm away from the notch. This was surprising at first sight since Nisitani's solution for the hole next to a semi-circular notch (which had been duplicated using the current program) indicated a higher stress concentration factor in the presence of a hole than without it (3.561 compared with 3.065). However, for a hole near the edge of a semi-infinite plate, the stress concentration factor at the edge of the plate is always less than one\(^7\), and so this case was examined.

The stress distribution for a 1.5 mm diameter hole placed 2.25 mm from the edge of a semi-infinite plate calculated using the present technique is shown in Figure 6. The stress concentration factors agree with those given in Reference 7. Also shown in this figure are the stress distributions for three cases with circular notches at the edge of the plate in addition to the hole, with the root of the notch in each case being 2.25 mm from the hole and 2 mm from the edge of the plate. For a notch radius of 45 mm, the distribution approaches that of the case without the notch, and the stress concentration at the root of the notch is 1.2649 compared to 1.3967 without the hole, i.e. it is reduced by the presence of the hole. For a notch radius of 2 mm (i.e. a full semicircle) which is similar to the problem of Nisitani, the stress concentration at the root is 3.1231 compared to 3.0653, i.e. it has been increased by the presence of the hole. Thus for sharp notches the stress concentration factor is increased by the presence of the hole, while for obtuse notches it is decreased. The stress distribution shown in Figure 5 is therefore quite reasonable and the inflection in the curve is a consequence of the interaction of the hole with the edge of the plate.

CONCLUSIONS

The stress concentration factor for a hole near a circular edge notch was determined using Nisitani's body force method and compared with some engineering approximations presented by Schijve. For a hole close to the notch the error in the approximation was 6.4% but decreased to near zero as the hole was placed further away. These errors are very close to the error limits expected by Schijve, and confirm the usefulness of these kinds of approximations.
The stress distribution around the hole was calculated and the stress concentration at the root of the edge notch was found to be decreased in the presence of a hole close to the notch. This was explained in terms of the interaction between the hole and the edge of the plate.

6.0 ACKNOWLEDGEMENTS

The authors would like to thank Dr. G.R. Cowper of this laboratory for useful discussions and advice during the course of this work.

7.0 REFERENCES

FIG. 1(a): SMALL HOLE NEAR EDGE NOTCH IN FINITE-WIDTH PLATE

FIG. 1(b): APPROXIMATION TO FIG. 1(a): SEMI-FINITE PLATE
FIG. 2: HOLE NEAR EDGE NOTCH IN SEMI-INFINITE PLATE
FIG. 3(a): DETAILS OF SEMI-ELLIPTICAL NOTCH CONFIGURATION

FIG. 3(b): DETAILS OF CIRCULAR EDGE NOTCH CONFIGURATION
FIG. 4: SEMI-CIRCULAR NOTCH AND HOLE GEOMETRY STUDIED BY NISITANI ET AL [5]
STRESSES EXTRAPOLATED FROM VALUES OBTAINED USING $M_1 = M_2 = 8, 12$ AND 16

FIG. 5: STRESS DISTRIBUTION AROUND HOLE

DISTANCE FROM EDGE OF PLATE (mm)

NORMALIZED LONGITUDINAL STRESS σ_y / σ_y^0
STRESSES OBTAINED ONLY FOR $M_1 = M_2 = 16$
NO EXTRAPOLATION TO HIGHER M VALUES

FIG. 6: APPROXIMATE STRESS DISTRIBUTION BETWEEN 1.5 mm DIA HOLE AND CIRCULAR EDGE NOTCHES OF VARIOUS RADII (FIG. 3(b))
The stress concentration factor for a hole near a circular edge notch has been determined using Nisitani's body force method and compared with some engineering approximations. For a hole close to the notch the error in the approximation was about 6% but decreased to near zero as the hole was placed further away.

The stress concentration at the root of the edge notch was found to be decreased in the presence of a hole close to the notch because of the interaction between the hole and the edge of the plate.