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I. INTRODUCTION

The relation between vapor pressure and temperature can be approximated
for certain chemical compounds by the so—called Antoine equation, viz.,

1g(p/pg) - A+ B/I(T - 273.15) + C¢] =0 , (1.1)

where p (Pa) is the vapor pressure, PR (Pa) is a refereunce pressure (usually
pg = 1l torr = 7.50064-10‘3Pa), T (K) is temperature, and A, B and C are model
parameters., The latter are determined for a particular compound by data
fitting to observed p,T-correspondences. If this is done by a simple least
squares method, then it 1is customary and also advantageous numerically to
consider as observations the quantities lg(p/pR) instead of the actually
observed pressures.l’z Penski and Latour” point out, however, that such a
treatment of pressure data implies the assumption that inaccuracies of the
pressure observations are proportional to the observed pressures. Also
implied by the published treatments of vapor pressure data 1is that
inaccuracies of temperature observations can be neglected. The adequacy of
these two assumptions has not been discussed in the literature, but, because
they do influence the model fitting results, it is important to have some
means by which these or other assumptions about data accuracy can be tested.
A test can be provided, for instance, by analyzing the different sets of
residuals that are obtained with different assumptions about measurement
errors. Based on such analyses one then may choose an optimal error model
according to some criterion or even develop an algorithm that produces the
optimal model automatically. Similar problems have been discussed by Cohen3’

and Nielsen? Both authors suggest iterative algorithms for the determination
of optimal error models. In this report, the approach of Nielsen is

THerbert R. Kemme and Saul I. Kreps, '"Vapor Pressure of Primary n-Alkyl
Chlorides and Aleohols," _Journal of Chemical and Engineering Data, Vol. 14,
pp. 98-102, 1969.

2Rlwin C. Penski and Leo J. Latour, '"Conversational Computation Method for
Fitting the Antoine Equation to Vapor Pressure-Temperature Data," Edgewood
Arsenal Technical Report EATR 4491, February 1971 (AD 881829L).

5E. Richard Cohen, "'Bxtended' Least Squares, " Rockwell International Science
Center Report SCTR-76-1, January 1976.

4p. Richard Cohen, "An Extended Least Squares Algorithm for Treating
Inconsistent Data," Rockwell International Science Center Report SCTR-78-11,
December 1978.

Kurt Nielsen, "A Method for Optimizing Relative Weights in Least Squares
Analysis, "_Acta Cristallographica, A33, pp. 1009-1010, 1977.




generalized so that it can be applied to a wider class of data fitting
problems, including vapor pressure measurements. Tests of the method on
typical vapor pressure data indicate, however, that an automatic determination
of error parameters as suggested by Nielsen 1s not feasible for this type of
data. More appropriate is an interactive computation, whereby the user
determines the optimal parameters based on the results of the analyses of
residuals.

In Section II we describe the generalized formulation of Nielsen's
approach and the suggested variation of it. Residual analysis is treated in
Section III, and Sections IV and V contain test results with simulated and real
data, respectively.

II. SIMULTANEOUS FITTING OF PRESSURE MODELS AND ERROR MODELS

An iterative process for the simultaneous determination of event model
parameters and error model parameters has been suggested by Nielsen.5 His
problem formulation is, however, restricted to weighted least squares
adjustments and, consequently, to single component observations. In this
section, the problem is reformulated so that general least squares model
fitting can be treated, including cases with multiple component observations
and models that are formulated by sets of simultaneous equations. The
generalization is needed for the treatment of vapor pressure data because they
consist of observation vectors with two components, pressure and temperature,
each of which may be subject to errors and adjustment.

Let the general least squares model fitting task be formulated as the
following constrained wminimization problem:
s
minimize W(c,t) = 2 i R, ¢

c
c,t i=1 L 1,

(2.1)

subject to Fi(Xi+c ; £) =0, i=1,...,s,

i

where X; are the observations (observed vectors), c; are corresponding
residuals, Ri are estimated variance—covariance matrices of the components of
X;, t is a model parameter vector, and Fi(Xi;t) = 0 are model equations.

In general, the model equations are sets of simultaneous equations; i.e.,
the F; are vector functions. In the case of vapor pressure measurements, the
model equations are scalar equations representing some form of the Antoine Eq.
(1.1). We shall give the specific formulations of the model fitting and error

fitting for vapor pressure measurements at the end of this section.

The solution of the problem (2.1) consists of the set c of the residuals
¢y and a corresponding model parameter vector t. The given input consists of
the observations Xi and the estimated variance-covariance matrices Ri (in
addition to the given functions Fi)' OQur goal 1is to find a set of Ri that is

optimal in some sense. To that end we assume that the Ri are expressed as



functions of the Xih ¢y, the model parameter vector t, and a free error
parameter vector 6 . This reduces the problem of finding s optimal matrices
R; to the determination of a single optimal error parameter vector 6 .

Next, we introduce a function S as a measure for the optimality of the
set of the variance-covariance matrices R; by the following definition:

s
N 1
S 1+ In s Z 4 In ay (2.2)
i=1
where
s
_T.-1 > T -1
q; = ¢Rcy 7 jél chj e (2.3)

Our goal is to find such a set of Ri(e) that produces a minimum value for
S. The corresponding error parameter 6 we call the optimal parameter.

The definition of S by Eq. (2.2) as an objective function was suggested
by Nielsen5 and based on the following properties of S:

(a) S is a maximum and equals one if all but one of the q; are zero.
(b) S is a minimum and equals zero if all q; = i/s.

(e) Any averaging of the q reduces S§; that is, if

1j
S S .
jzl aij = izl aij =1 for i,j = 1,..,s
and
x S
gy & jzl a5 95
then

*
S(q) < s(q) .



Hence, a minimization of S tends to equalize the qjy. The numerator in the
definition (2.3) of q; can be considered as the square of a norm of the
residual Cy» Therefore, an equalization of the qq means an equalization of
the norms of the residuals. Cohen” points out that one can also use instead
of this S other objective functions with similar properties. In limited
numerical experiments with such functions and vapor pressure data we did not
find objective functions that would offer numerical or other advantages over
S. The remaining considerations in this report are, therefore, limited to the
objective function S5 as defined by Eq. (2.2).

Nielsen suggests an automatic determination of the error parameter 6
concurrently with a solution of the least squares problem by the following
iteration procedure:

Step 1. Choose an initial error parameter vector 6.
Step 2. Solve the least squares problem (2.1).

Step 3. Find a new error parameter vector O by solving the minimization
problem

minimize S(c, R(B)) .
0

Step 4. Replace 6 by O and repeat the procedure starting with Step 2.

An essential part of the algorithm is Step 3 at which S is minimized by
varying the R,(8) while keeping the residuals cy fixed. The minimization can
be achieved quite effectively by a simplex method because usually the number
of components of 6 is relatively small (less than ten). Nielsen did not
investigate the convergence properties of the algorithm but reports
convergence in two steps when the algorithm was applied to a data set with 882
observations. At the end of the iterations Nielsen compared the distribution
of the (weighted) residuals with normal distribution and found good agreement.

The minimization of S at Step 3 of the algorithm is also a weak point of
the method ©because it prevents the algorithm from producing the optimal 6
exactly, although the algorithm may produce a good approximation. In order to
show this, let us assume that the minimum of S is determined by setting its
derivative with respect to 6 equal to zero (instead of using a simplex
method). The residuals c; which appear in the definition (2.2) and (2.3) of S
are functions of 6, because they are determined at Step 2 from a least squares
fit in which the R, (8) are used as input. Therefore, the formal derivative of
S with respect to % can be symbolically expressed by

ds 95 oc dR , 95 dR

46 " Bc R d6 T R d8 - (2.4)
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A minimum of S and the corresponding © = O can be obtained by solving the
equation dS/d6 = 0. However, at Step 3 of the algorithm one seeks the minimum
of S with respect to 8 for fixed «c. This 1is equivalent to solving the
equation

35 dr

3R a8 = 0 - (2.5)

The solution of FEq. (2.5) may be a good approximation to the solution of the
complete equation dS/d® = 0, if the first term on the right-hand side of
Eq. (2.4) is small. However, by setting only the second term equal to zero
one never obtains the exact solution because the first term always dominates
when the second term approaches zero. (We are not interested in the limiting
solution dR/d® = 0.) On the other hand, if the first term is large, then its
neglect can prevent the algorithm from converging even to an approximate value
of the optimal 6. Experiments with vapor pressure data, indeed, have shown that
failure to converge or a convergence to obviously wrong values of 8 do
occur. Therefore, we recommend determination of the minimum of S by direct
search, e.g., by plotting S as a function of 6 instead of using the outlined
Nielsen's algorithm. We shall illustrate the behavior of S(8) with some
examples in Sections IV and V.

Next, we specialize the general formulation of the problem to vapor
pressure data. The data vectors are

Py
X, = ( Ti) a il = Lo 8 , (2.6)

the residual vectors are

“pi
ey = ( cp,) g e pS (2.7)
Ti

and the constraint equations are, e.g.,

+ - A+ - 5 = =1,..
1g [(p1 cpi)/pR] A B/(Ti+ cry” 273.15+ 0 =0 i=1,..,8 ,
(2.8a)
or
_ A - B/(T, + c,., - 273.15 + C) _ _
(p1+ cpi)/pR 10 i Ti =0 , 1i=1,..,8 .

11




We consider the following models for the standard errors of pressure and
temperature, respectively,

e i/pR

1+ +
' eO[ Gl(pi Cpi)/pR] s

(2.9)

ey = eo 02 s i=1,...,s

where e, is the standard error of weight one. It is defined in terms of the
least squares objective function W by

e = YW/ (s - 3) , (2.10)

because the Antoine model equation has three free parameters. The error
parameter 8 has according to this definition two components. The models of
the variance-covariance matrices R; we define by

2 2
p (1 +6.,(p, +c_)/p,] 0
Roaf B L = SpaEaR . (2.11)
i 2
0 0

The least squares objective function is, therefore,

s c ./p
pi "R 2 4 2 i (2.12)
Zl [( 1+81(pi+cpi)/pR ) ( 0, )" ]

W

i

The quantities qy that enter the definition (2.2) of S are

c ./p c
_ pi’ R 2 Ti 2
q; = [{ )S o+ )7 m 218
i 1+81(pi+ Cpi)/pR 82
The error models (2.9) were chosen by the following considerations. The
pressure standard error e is constant if 81 is small and it approaches a

constant relative error ifiél is large. Hence, by permitting 61 to vary we
should be able to determine whether a constant or a relative pressure standard
error is more appropriate. The temperature standard error is likely to be
constant and, therefore, the corresponding model for ery does not include a
term proportional to the temperature. By setting the parameter 82 = 0 we
obtain with this model also the special case in which the temperature errors

are neglected.

12



III. REDUCED RESIDUALS

One measure for the goodness of the solution of the problem described in
Section II is the final value of the objective function S. Nielsen suggests as
another measure an investigation of the distribution of weighted residuals and
a comparison of the distribution with a normal distribution. The suggestion
is easy to implement if the observations and residuals are scalars. In the
general formulation (2.1) of the adjustment problem, however, the observables
are not necessarily scalars and, therefore, one has to deal with
multidimensional distributions of measurement errors and residuals. On the
other hand, the effective dimensionality of the residuals is not necessarily
the same as that of the measurement errors because it is reduced by the
constraint equations Fi(xi + Ci;t) = 0 that must be satisfied by the
residuals. For instance, if one is fitting a straight line to observations of
x and y, and the Ri are unit matrices, then the measurement error distribution
is two-dimensional, but all residuals have the same direction (orthogonal to
the line); that is, they span only a one-dimensional residual space. For this
reason, an investigation of residual distributions should be sensibly done in
spaces that have appropriately reduced dimensions. Quantities with the proper
dimensionality are the reduced residuals ay which we define by

B W =]k
a; = (F RiF ) Ealem o (3.1)
where
.o B, + €. HE) 52
xi BXi *

are the Jacobian matrices of the model functions. The dimension of ay equals
the dimension of the constraint function Fi' If the constraint is scalar, as
in a fitting of a (n-1)-dimensional hypersurface in a n-dimensional space,
then the reduced residuals a; are scalars. The components of the reduced
residuals are dimensionless, in contrast to the components of the least
squares residuals c; which in general have different physical dimensions
(pressure and temperature in case of vapor pressure measurements).

Further relations between the ay and c; can be derived from the equation

-1

_ T T
¢ T Rini(inR in) inc

i i i (3.3)
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that is exactly satisfied by least squares residuals® Egs. (3.1) and (3.3)
imply

F;I;i)_l/zai (3.4)
and

c.R,¢c.,= a a, . (3.5)
A reasonable measure of the size of the residual cy is the elliptic norm

Lache JE2 (3.6)

llcill = (CiRi i

Eq. (3.5) shows that the Euclidean norm of the reduced residual ay equals the
elliptic norm (3.6) of the least squares residual Cy e

In the special case with scalar constraints F; = 0, the definition (3.1)
of the reduced residuals a; simplifies to

L e )
a;, = (ciRi ci) sgn(inc

i) c Bl

In an elementary least squares curve fitting problem where the observables are
one-dimensional and the constraints have the special form Xy t ey - fi(t) = 0,
the definition (3.7) further simplifies to

(3r8)

a; =cyleg = S,

where ey is the estimated standard error of the observation Xi and Wy is the
weight of the observation to be used for a weighted least squares adjustment.
Hence, in such problems, the reduced residuals (3.1) are identical to the usual
weighted residuals.

®givars Celminé, '"Least Squares Adjustment with Finite Residuals for Non-

Linear Constraints and Partially Correlated Data,” US Army Ballistic Research
Laboratory Report BRL R 1658, July 1973 (AD 766283).
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Next, we consider Eflations between the reduced residuals and
observational errors. Let t be the true value of the model parameter and let
éi be the true residuals (negative errors) of the observations Xi' Then by
definition

x %
Fi(xi + Ci’t) =0 . (3.9)

Expanding Eq. (3.9) at the least squares position (Xi + Ci;t) and only keeping
the linear terms of the expansion,one obtains

% *
Fi(xi + ci;t) + Fx e(c, - Ci) + FE (t -t)y =0 |, (3.10)

i i i

where

aFi(Xi + ci;t)

F, = = ‘ (3.11)

and F ; 1s defined by Eq. (3.2). The first term in Eq. (3.10) vanishes
because ¢y and t are solutions of the least squares problem (2.1). Therefore,
one has ghe followiwg relation between ¢y and ¢y (neglecting higher order

terms of cy T ¢y and t - t)

* *
F .,c, =F .c -Ft-(t-t) s (3.12)

i

Defining reduced errors gi in the same fashion as the reduced residuals by

I)“I/ZF s (3.13)

*
a, = (F Ry F xi €1

one obtains from (3.12) the relation

* =
a, =a, - (F_ R, F T) 1/2
X xi

*
" i &y Fti-(t -t) . (3.14)

15



The second term on the right-hand side of Eq. (3.14) 1is a slowly varying
function. It can be interpreted geometrically as a distance between the true
model surface Fi(x;t) = 0 and the least squares model surface Fi(x;t) = 0,
projected onto the space of reduceg residuals. Correspondingly, a; are the
projections of the true residuals cy onto a space that 1is orthogonal to the
least squares model surface F;(x;t) = O. Becqgse the last term in Eq. (3.14)
is a slowly varying function, any scatter of a; is directly feflected by the
scatter of the aj. Particularly, if the true errors c; are normally
distributed, then so are the projections a; and, except for a slowly varying
bias term, the reduced residuals ay.

We notice that Eqs. (3.4), (3.13) and (3.14) permit one to express the
least squares residuals ¢y explicitly in terms of the real errors c;. Since
ghe ¢y are known from the adjustment, it would be more useful to express tEe
c; in terms of the c;. This amounts to a solution of Eq. (3.12) for the c;
instead of c;. However, in order to solve Eq. (3.12) for the cy, We made use
of Eq. §3.3), which is satisfied by the residuals c; but not by the real
errors cj. Tﬁsrefore, one can determ%se from the residuals cy only the
reduced errors ay and not the complete Cy- This is the main reason for the
introduction of the concept of a reduced residual space. Only in the special
case where the dimension of the observable X; is equal to the dimensiqp of the
constraint function F;, Eq. (3.12) can be solved for either ¢y or c¢;. But
this 1is, of course, the case where the reduced residual space has the same
dimension as the space of the observables, and the only important difference
between 31 and éi is that the components of the former are dimensionless.

In the vapor pressure problem one obtains from Eq. (3.7) the following
definition of the reduced residuals ay

PR 1

_ Cpi/pR
ay = )
2

7 E (Il
i 1+61(pi+cpi)/pR

sgn(Fpic ) , (3.15)

+
pi T FriCoy

where F_; and Fp; are partial derivatives of the constraint function (2.8a) or
(2.8b) with respect to Py and Ty. If only pressure is adjusted, then the
corresponding definition of the reduced residuals is obtained from Eq. (3.15)
by setting Cpy = 0. For the vapor pressure problem the reduced residuals are
scalars. Therefore, their distribution can be represented by a simple plot of
cumulative distribution (a probit diagram), which permits a visual comparison
with a normal distribution. Other tests and analyses for scalar residual
distributions are discussed, e.g., in Draper and Smith?

"Norman R. Draper and Harry Smith, Applied Regression Analysis, 2nd Editionm,
John Wiley & Sons, New York, NY, 1980.
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IV, NUMERICAL EXPERIMENTS WITH SIMULATED DATA

Simulated vapor pressure datg wsre obtained by choosing a set A, B, C 2f
Antoine parameters, calculating piéTi) with Eq. (1.1) for s equidistant T

* 3
values, and subtracting from the Py and i random errors c . and Crryi with

known normal distributions. The simulated observations thus had the values

* *

Py = Py 7 cpi ’

*
Ty = Ti T Cpp

i=1,ee.,s (4.1)

Figure 1 shows a typical simulated set of 40 data points with corresponding
error bars and the fitting curve wigp confidence limits. The Antoine
parameters and the standard deviations epi and ey of the random errors c;
and éTi’ respectively, that were used in this example are listed in Table ?.
Table 1 also contains the parameters of a fitting curve that is shown in
Figure l. These retrieved parameters correspond to the optimal value of the
error parameter 6. .. The error parameter 6, was set equal to zero for this
evaluation of the data. The corresponding standard deviations of pressure and
temperature observations are also listed in Table 1. The least squares model
fitting was done by using the utility program COLSAC.8 The confidence limits
that are shown in Figure 1 were calculated by solving the Antoine equation
(1.1) for p and applying the linearized law of variance propagation to the
function, i.e., by

a = 3p(T;A,B,0) 1/2

(3E(T§A2B!C)T ]
p 3(A,B,C) ABC

3(A,B,C) 2 (S

where VABC is the variance-covariance matrix of the parameters A, B and C.
The matrix V,p.~ is defined as follows in terms of the standard errors of A, B
and C and of the corresponding correlation matrix CABC (all given in Table 1):

Vasc = Dasc CaBc Pac (4.3)

where D, pn is a diagonal matrix with the standard errors in the diagonal. The
distribgtion of the true reduced errors ay (corresponding to the random errors
(cpi’ cTi)) is 1llustrated by Figure 2, that shows their cumulative
distribution function compared with normal distributionm.

pivars Celmin&, "A Manual for General Least Squares Model Fitting," US Army
Ballistic Research Laboratory Technical Report ARBRL-TR-02167, June 1979
(AD B040229L).
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TABLE 1. PARAMETERS OF SIMULATED DATA SHOWN 1IN FIGURE 1.

Input Antoine Parameters Retrieved Antoine Parameters
A= 7.0 A= 7,567 £ 0.629
B = 1900 K = 2406 £ 551 K
¢ = 130 K C = 181.39 + 49.89 K
Input Standard Errors Retrieved Standard Errors
* * .
epi/PR = 1.0 + 0.05 p;/pg epi/pR = 1.20 + 0.056 (p; + cpi)/pR
ey = O =0 (preset)
ey < .1 K ers b preset
Number of Data Sets Correlation Coefficients
s = 40 Cony T 0.998 909 7
Cac = 0.995 506 3
Cpe = 0.998 824 7

Figure 3 shows in the upper part a plot of the objective function § for
this data set over the error parameter 61, assuming 62 = 0. For small 61 the
error model (2.9) for e i approaches a constant pressure error assumption and
S approaches the value 61353. If 6, is large, the model approaches a constant
relative error and a corresponding S value of 0.316. The transition between
these limits is through a minimum of S at 6 = 0.046 and S = 0.233. That
minimum corresponds to the optimal 6., for this data set. The corresponding
pressure standard error of the model 1is calculated by Eq. (2.9) and its
numerical value is given in Table 1.

The lower part of Figure 1 shows a plot of the iterated parameter O, that
is computed by a minimization of S with fixed residuals, as in Step 3 of
Nielsen's algorithm. The abscissa is again the parameter 61 and the ordinate
is the ratio 0,/8,. Nielsen's algorithm converges to a point where the ratio
equals one. The plot shows that @1/61 = 1, indeed, is obtained in the vicinity
of the minimum of S.

The distributions of the reduced residuals for small € , optimal 6., and
large 61 are shown in Figures 4, 5 and 6, respectively. We notice the
interesting result that the distribution of reduced least squares residuals
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Figure 2. Distribution of Reduced True Errors of Simulated Data
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Figure 3. Objective Function S and Iterated Error Parameter
Ratio 01/61 for Simulated Data

Error parameter 62 =0
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Figure 4. Distribution of Reduced Residuals for Simulated Data
and Small Error Parameter 91
Error Parameter 02 = 0
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Error parameter 62 =0
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that corresponds to the optimal 6 (Figure 5) 1is much closer to a normal
distribution than the distribution of the true reduced errors, shown in
Figure 2.

Results from numerical experiments with sets of simulated data can be
~summarized as follows. The Nielsen algorithm produces reasonable
approximations (within 20 percent) of the pressure error factors e, and e 0O
if the temperature error is fixed and the number of data points is 56) or
more. The algorithm converges in a few steps in these cases if a convergence
acceleration formula 1is used. If both error parameters, 0, and 0., are
iterated, than one often needs an excessive number of iterations (60 or more),
even in cases with large numbers of data points. If the number of data points
is less than 50, then one can experience large deviations of the retrieved
optimal error parameters from the corresponding 1input values. The
minimization of S over 0 for fixed residuals ¢ was done using a simplex
program.9 In some cases, the program failed to find a wminimum of S,
particularly in the vicinity of 0 = 0. This is an indication that S has
little sensitivity to variations of 6 in that region.

V. EXAMPLES OF TREATMENTS OF REAL DATA

A set of vapor pressure data for the chemical compound GD has been
published by Savage and Fielder.10 Figure 7 shows the data and the fitted
curve for near optimal error parameter 8, and a temperature standard error of
0.1 X. The corresponding reduced residual distribution is shown in Figure 8,
and the dependence of the objective function S on the parameter 0, is
illustrated by Figure 9. The slight minimum of S 1is in this case located
close to the place where 0,/6, = 1, so that Nielsen's iteration procedure,
indeed, produces a near optimal value of 6,. However, if the standard error of
the temperature measurements 1is assumed to be larger than in this example,
then the S(8 ) curve changes its shape and the transition between both limit

values (for 61 = 0 and 61 = ) is not through a minimum. For example, if the
temperature standard error is assumed to be 1.0 X, then the transition is
through a maximum. (See Figure 10.) In such cases, the optimal value of 8

is either zero or infinity, whichever produces a smaller limit of S. For the
compound GD data, the optimum is at infinity. Nielsen's algorithm is not
applicable in such situations.

“Frederick S. Brundick, US Army ARRADCOM/Ballistic Research Laboratory,
private communication, 1981.

10 james J. Savage and Donald Fielder, "The Vapor Pressure of Chemical Agents
GD, VX, EA 2223, EA 3347, EA 3580, EA 5365, and FA 5533," Edgewood Arsenal

Technical Report EC-TR-76058, August 1976 (AD B013164L).
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COMPOUND GD (SAVAGE AND FIELDER.1976)

ITERATION STEP NR. 9

T 1T
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FITTED CURVE WITH 9.3 STANDARD ERROR CONFIDENCE LIMITS

OBSERVATIONS WITH 9.3 STANDARD ERROR ELLIPSES

Figure 7. Data and Fitted Curve for Compound GD

Error assumptions for the fitting:

- -4
epi/pR = 1.68 107" + 0.081 (py; + cpi)/PR
0.10 K

eTi
Pressure is shown in torr and temperature is shown in %@L
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COMPOUND GD (SAVAGE AND FIELDER.1976)
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Figure 8. Distribution of Reduced Residuals for Compound GD and
Near Optimal Error Parameters

Error assumptions are the same as for Figure 7.
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COMPOUND GD (SAVAGE AND FIELDER.1976)
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Figure 9. Objective Function S and Iterated Error Parameter Ratio
ol/el for Compound GD

The error parameter 62 was chosen such that

= e B, =0.10 K
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COMPOUND GD (SAVAGE AND FIELDER.1976)
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Objective Function § and Iterated Error Parameter

Ol/e1 for Compound GD

The error parameter 92 was chosen such that
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The numerical results for the compound GD are summarized in Table 2,
which also contains results reported by Savage and Fielder. The table shows
that one obtains formally the best results (smallest standard errors and S) if
a large temperature standard error is assumed. However, the difference
between results with ep = 1.0 K and ep = 0.0 K are practically
insignificant. Therefore, one can simply choose a fixed reasonable value of
e consistent with the accuracy of the experimental procedure without
sacrificing the quality of the other results. The Antoine constants by Savage
and Fielder differ by about one standard error from the present result for e
= 0. The difference is probably due to the particular constraint and least
squares objective function formulation used by Savage and Fielder. That
formulation 1is equivalent to a nonlinear variable transformation and,
consequently, their results are not exactly minimizing the sum of pressure
residual squares. (Effects of nonlinear variable transformations are
discussed in Reference 11.)

A second example of vapor pressure data from Savage and Pielderlo is
shown in Figure 1l. The corresponding S(6,)-curve for ey = 0.1 is shown in
Figure 12. The transition between the 1fmit values of S 1is in this case
through a maximum. Consequently, the optimal 81 value 1is infinity. The
iterated value O, is for large 6., equal to a preset maximum which was included
in the optimiza%ion program to avoid overflow. For smaller 6, values one
obtains other iterates. In this example, the iterated 0,(8,) was found to be
quite sensitive to the assumption about the temperature Standard error. This
is illustrated by Figure 13, which shows S(8 ) and 0,(6.) for ep = 0. The S
function is practically the same as in Figure 11, but "the itg&ated ¢) 581)
obviously has changed its behavior in the range of 81 between 10 “ and 16 5

Numerical results for the compound VX data are given in Table 3. The
difference between the present results and those of Savage and Fielder again
is about one standard error. This agreement is remarkable, because Savage and
Fielder used additional data for their analysis covering an almost three times
larger temperature range than available for the present analysis. The
predicted boiling temperature is in the present analysis about 24 K lower than
predicted by Savage and Fielder. This difference is less than the estimated
standard error of our prediction; that is, the difference is compatible with
the accuracy of the observations. The relatively large size of the estimated
standard error is a consequence of the large extrapolation from 100°C to 274°C
(5 torr to 760 torr). Savage and Fielder had more data available over a
larger temperature range and extrapolated only from 231°C to 298°C (140 torr
to 760 torr). Their predicted boiling temperature is, therefore, probably
more accurate than ours. However, they do not provide error estimates of
their results.

llAivqrs Celmind, "Least Squares Model Fitting with Transformations of
Variables," Journal for Statistical Computation and Simulation, Vol. 14,
pp 17-39, 1981.
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TABLE 2. ADJUSTMENT RESULTS FOR COMPOUND GD

Savage
and 0
Present Analysis Fielder1
er = 1.0 K ep = 0.1 K er = 0 er = 0
Optimal - .
eE/Pi 0.0364p/pyg 1.42 107%440.0789p/p;  1.38 107%40.079%p/py  ~P/pg
A 8.089 + 0.319 7.837 + 0.333 7.855 + 0.333 7.4709
B (K) 2222 + 173 2100 + 174 2099 + 174 1903.1
¢ (K) 236.2 i;10.3 229.0 + 10.6 229.0 + 10.6 216.87
CAR 0.998 7996 0.998 8284 0.998 8313 ===
Cac 0.994 8105 0.995 3708 0.995 3934 ===
Cpe 0.998 5390 0.998 7951 0.998 8036 ———
S 0.1775 0.1920 0.1923 ==
Boiling
Temp . 190.41 + 3.28 £92.,9% & 8.90 192.93 & 3.92 198
i G

The Capr CaC and ¢ are correlation coefficients between the Antoine
constants A, B, and C. The boiling temperature is quoted for 101.8 kPa (760
torr) pressure. The temperature range of observations is between 243.15 and
463.15 K (=30 and 190°C) .
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COMPOUND VX (SAVAGE AND FIELDER.1976)

ITERATION STEP NR. 1

Lraaal
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1073

Figure 11. Data and Fitted Curve for Compound VX

Error assumptions for the fitting:

epi/pR

0.0025 (pi + cpi)/pR

e 0.10 K

o

Pressure is shown in torr and temperature is shown in °C.
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COMPOUND VX (SAVAGE AND FIELDER.1976)
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Figure 12. Objective Function S and Iterated Error Parameter
Ratio 01/61 for Compound VX

The error parameter 62 is chosen such that

epqy = e062 = 0.10 K
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Figure 13. Objective Function S and Iterated Error Parameter

Ratio 01/6l for Compound VX

The temperature standard error is assumed to be zero.
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TABLE 3. ADJUSTMENT RESULTS FOR COMPOUND VX

Savage
and 0
Present Analysis Fielderl
eqp= 0.1 K ep = 0 eqp =0
Optimal
0.0825 p/ 0.0829 p/ ~ p/
eT/pR P/PRr . P/ Pp Pr
A 8.710 = 1.793 8.708 + 1.793 7.2810
B (K) 2852 + 994 2851 + 993 2072.1
¢ (K) 215.4 = 48.1 215.4 + 48.0 172.54
CAR 0.999 380 8 0.999 381 6 ===
CAC 0.997 526 4 0.997 530 5 —
Cye 0.999 375 2 0.999 376 4 -
S 0.1616 0.1620 ———
Boiling 2
Temp. 273.9 £+ 28.2 273.9 + 28.2 298
(°0) :

The Caps Cyho are correlation coefficients between the Antoine constants
A, B and C. The boiling temperature is quoted for 101.3 kPa (760 torr)
pressure. The temperature range of observations was between 303.15 and
373.35 K (30 and 100.2°C) for the present analysis and between 303.15 and
504.15 K (30 and 231°C) for the Savage and Fielderl analysis.

As a last example, we show the results of the analysis of wvapor
pressure data for l-Tetradecanol. The data are taken from Kemme and Kreps
and shown in Figure 1l4. The corresponding objective function S(6.) and
iterate © (8, ) are shown in Figure 15. The erratic behavior of 6_ (0. ) in
Figure 15 is possibly due to a failure of the simplex algorithm to locate
the proper minimum, indicating that the problem is rather delicate
numerically. The detailed behavior of s(el) and 91(61) is very sensitive to
assumptions about the accuracy of temperature measurements, as illustrated
by the different curves in Figure 15 and 16, respectively. However, in both
analyzed cases, i.e., for temperature standard error 0.1 K and =zero, the
optimal value of the error parameter 8., is infinity. The numerical results
for the l-Tetradecanol data are summarized in Table 4. The present results
closely agree with those of Penski and latour. The differences are likely
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1-TETRADECANOL (KEMME AND KREPS. 1969)

ITERATION STEP NR. 1
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" OBSERVATIONS WITH 11.9 STANDARD ERROR ELLIPSES

Figure 14, Data and Fitted Curve for 1-Tetradecanol

Error assumptions for the fitting are
epi/pR = 0.0294 (pi + cpi)/pR
epy = 0.1 K

Pressure is shown in torr and temperature 1s shown in °e

36



OBJECTIVE FUNCTION S
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1-TETRADECANOL (KEMME AND KREPS. 1969)
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Figure 15. Objective Function S and Iterated Error Parameter
Ratio Ol/(?)l for 1-Tetradecanol

The error parameter 62 is chosen such that

ery = e062 = 0.10 K
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16. Objective Function S and Iterated Error Parameter

Ratio Ol/e1 for l1-Tetradecanol

The temperature standard error is assumed to be zero.
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TABLE 4. ADJUSTMENT RESULTS FOR 1 — TETRADECANOL

Kemme Penski
and and
Present Analysis Krepsl Latour2
er = 0.1 K ep = 0 erp = 0 ep = 0
Optimal
ep/pR 0.0294 p/pg 0.0294 p/py ~ p/pg ~ p/pPR
A 6.2284 + 0.1846 6.2251 + 0.1851 6.4840 6.21962
B (K) 1250.2 + 106.3 1248.2 + 106.7 1412.907 1244.90
Cc (K) 76.23 £ 12.02 76.01 + 12.06 95.368 75.600
Cag 0.997 527 0 0.997 520  ————- ———
CaC 0.991 019 O 0.991 0253  ————  ————-
Cpe 0.997 877 0 0.997 8821 = ———— ====
S 0.2974 0.2973 === ————=
Boiling
Tgmp. 297.23 £ 1.07 297.24 + 1.08 = ————— 297.258
°® ;

The cyp, Cyc and cppo are correlation coefficients between the Antoine
parameters A, B, and C. The boiling temperature is quoted for 101.3 kPa (760
torr) pressure. The temperature range of observations is between 425.15 and
569.15 K (152 and 296 °C).
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due to the effect of noniinear data transformation mentioned above. This
effect is smaller than in the case of compound GD because the temperature
range of the observations is smaller. The difference between the present
results and those of Kemme and Kreps is between one and two standard errors
of the Antoine parameters. It is not clear how Kemme and Kreps obtained the
Antoine parameters, but their values are between the values corresponding to
e ~ p and constant e_. We obtained almost the same Antoine parameters as
Kemme and Kreps if we assumed for the pressure standard errors the formula

eyi/pg = 0139 + 0.0139 (p; * cpi)/pg

and eq; = 0. The corresponding value of S is 0.4663, indicating that this
choice of error models is not optimal.

VI. CONCLUSIONS

A posteriori estimation of measurement accuracy is usually based on a
postulated mathematical model of the observed event and an analysis of the
corresponding residuals. In addition, one generally assumes that the
dimension of the model equation is equal to the dimension of the
observables. With these assumptions one can handle, for instance, curve or
surface fitting with only one variable subject to errors and repeated
measurements with arbitrary dimensions. In general, however, the dimension
of the model equation car be less than the dimension of the observations,
for instance, if a curve or surface is fitted to observations with errors in
more than one component. The usual techniques of residual analysis cannot
be directly applied to such cases because the model equations effectively
reduce the dimensionality of the residuals by generating correlations
between the components of the residuals. In order to treat such cases, we
introduced a new concept of reduced residuals. These residuals have the
proper dimensionality and <can be analyzed by available methods.
Particularly, in the case of vapor pressure measurements (planar curve
fitting with both components subject to error) the reduced residuals are
one-dimensional and can be analyzed by well-known methods that have been
developed for scalar residuals.

In the particular error estimation technique considered here, one
determines the residuals by least squares model fitting and postulates as
optimal a close to normal distribution of the reduced residuals. As a
measure for the normality of the distribution one choses a negative entropy
function S, as suggested in the literature, whereby the distribution is
considered optimal if S is a minimum. The technique consists of a
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systematic variation of the measurement error estimates until a minimum of S
is obtained. Our numerical experiments with vapor pressure data have shown
that this procedure, indeed, produces reduced residuals that have a close to
normal distribution. We were also able to retrieve by this procedure
approximate standard errors from simulated measurements with known normal
error distributions. Reasonable accuracy of the retrieved errors was obtained
with 50 or more observation sets per fitted curve. However, an automatic
determination of measurement standard errors (as suggested in the literature)
is not generally possible. We suggest, instead, an interactive direct search
for the minimum of S.

In summary, a combination of the new concept of reduced residuals and the
use of an objective function S allows one to estimate a posteriori the
standard errors of pressure as well as temperature measurements. The
technique is applicable to general model fitting situations, including cases
with arbitrary dimensions. The particular choice of the entropy function § as
a measure for the goodness of the distribution of the reduced residuals is
arbitrary and other objective functions also can be used in the described
process. We have not tried to determine whether the entropy function is the
best choice but it has produced reasonable results in our examples.
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