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£ AN OVERVIEW OF

RECURSIVE LEAST SQUARES ESTIMATION

AND LATTICE FILTERS t

John Mtt Turner

1t. INTRODUCTIN

The lattice Alter structure is an alternative means of realizing a digital filter transfer func-

tions. Although the lattice Alter structure (also called! the ladder structure) does sot have the

=minmm number of multipliers and adders for a transfer function realization, it does have several

advantageous propert. These include cascading of identical section, coeficients with magni-

tude leon than oue, utnbility test by inspection, and good aumenical roundolf characteristics.

hmeover, the lattice Alter structure is particularly suited for adaptive IUttrn since the recursive

soluti" of leat squares estimatos naturally produces a lattice Alter structure. Also the lattice

After structure ortbgeunl- e the input signal on a stage by stage basis. This leade to very fast,

convergence and trucking capabilities of the lattice structure. Although many alternatve tech-

nip. have been developedl to estime the refection coefficients that parameterize the lattice

sumetue, the recusive hsm square method updates the hut squares estimnat upon the obasev.

ato each data aapie. This procedure leads to an optimal estimnate and requires only slightly

grete eempstational burden than alternative techniques.

I-- 7Tbb verview present the derivation of the recursie leat sumse attice Alter using a

reursve etesion of the standard block dat Leviums least squares solution. The linear predic-
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psibi Wed ftdlhk me"su0d by the Defem Advanced RteMiu Prejue Age madw Cenhac

-I mm es MU)

*eWd*I 86M bIsMim Kr
to be puibbed 1% Adqnhe Pb.. Cowan ad Gros (3111..) Puses IM. IN&.

Y % % %



.2-

to lter presented here has been widely used for synthesis of speech waveforms (LPC), deconvo

lution of seismic data high resolution spectral estimation, adaptive line enhancement, adaptive

noise cancelling and adaptive antenna army processing. The ideas embodied in this estimation

technique are derived from the work of many individuals since 1970. The approach presented

here follows that of [Lee, ie0I.

Adaptive estimation techniques modify the estimation iter parameters according to the

newly observed data sample. For every new data sample, recursive estimation using the lattice

liter generates new relection coefficients and prediction error for every flter order. Changing

% every liter coefficient for each new data sample is important for applications where fast conver-

gence or tracking of quickly time varying signals is required. However, for applications where the

dynamics are slow, only the results after observing the signal for a certain time period are impor-

tant. The recursive algorithms described here can also be used to accumulate signal properties

over a particular time period. The procedure for converting between lattice flter coefficients and

the more common equivalent tapped delay line liter coefficients is given in Section 2.

The mathematics of recursive least squares estimation requires the updating of variables

with time and order subscripts. The algorithms for this are often complicated. Therefore, an

intuitive introduction in Section 3 presents the nature of the lattice ilter structure, the stage by

stage orthogonalizing property, and analogies with physical phenomena. Section 4 briely presents

approximation techniques for determining the relection coefficients from observed dat . The

advantage of the lattice Aier structure is that time recursive exact leat square# solution* to esti-

mation problems can be efficiently computed. The development of the Recursive Least Squares

Lattice estimatios algorithm , presented in Section 5 and 6. A square root normalized least

s 1arstte algorith, that has better numerical properties in presented in Section 7.

The eomptatioal complexity of these algorithms is discussed in Section 8. An efficient

mimn of implomen jg the recursive least squares algorithm using rotational arithmetic is

pressnted. Thin rotas al arithmetic, called CORDIC arithmetic, is not new, having been used

for ealeulating tlgonostrl functions in hand held calculators. The design of an integrated cir-

O.................................",...
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cuit chip to implement the least squares lattice algorithm sing CORDIC arithmetic is mentioned.

To demonstrate the power of this adaptive estimator, simulation examples of convergence

and tacking, examples using real speech data and electrophysiological data and adaptive equal-

izer examples are presented in Section 9. Since recursive least squares estimation and lattice filter

structures have been a very active area of research, Section 10 refers to related ideas.

Since the equations developed here are recursive in order and time, the following notation is

. used. A variable $(f) is a general time sampled data value while :r is the specific data sample T

samples after the beginning of the recursion (relative time T). Bold capital letter variables

represent matrices or vectors. When two subscripts are used, the irst is the order and the second

is the time parameter, ie. Aj.T is the vector of i-lh order predictor coefficients determined from

data up to the specile time T.

I N

! "'" " ".
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2. GENERAL LATTICE DIGIAL FILTER STRUCTURE

The general lattice digital filter is a means ot realizing a digital liter transfer function. The

lattice structure itself is motivated by similar analog Alter structures that have good properties.

In this section, the digital lattice flter is introduced and related to the direct form tapped delay

Hate digital Alter.

Since analog lattice and ladder fiters have desirable characteristics, digital liters with simi-

lar structures were investigated. For example, third order LC Butterworth lter shown in Fig. Ia

is a simple analog lattice-type structure. It is noted for the relative insensitivity of its frequency

response to slight perturbation of the circuit element values around their nominal values. This

structure can be transformed into the general lattice network shown in Fig. lb. The latter is the

lattice structure of interest in this chapter. The analog lattice structure consists of a cascade of

identical stages, each age with a pair of input and output terminals. - By developing a digital

lter coslguratoin that is similar to the analog lattice structure, the digital filter inherits many of

the same properties. Since the structure of a digital filter realization influences its sensitivity to

Unite word length arithmetic, the diOa lattice liter has good numerical properties.

The digital latic lter realizations consist ot cascaded stages with two input and two out-

put ports, as In the analog structures. Possible digital lattice configurations for realizing a general

digital trnser facties include: an aymmetric multiplier form (Fig. 2) and a symmetric two

multiplier form (Fig. 3). For the asymmetric multiplier lattice, the structure inside each stage

reafs a single pole and zero equValent transfer funtios. The algorithm tor determining the

asymmetric multiplier structure of Fig. 2 can be found in [Mitr et al, 19771. This form degen.

nou to a tapped deap Hie for either all polr all wo trander functions and thus b not of

interest here. The symmetric two multiplier form does not degenerate but it requires more multi.

p-dn tham n equvalent topped delay line Alter. This lattice filter can be modified to a one mul-

ipi. hem so a to have the mhimum number o multipliers, but this reirm extra adder (Fig.

.... 4.
.. . . .,f.i" , k.. . , , , . . ,



A cascade of lattice sections, forming a lattice flter can implement a digital transfer tune-

tion in a way that has advantages over the standard direct form, parallel, or standard cascade

form realizations. The cascaded structure in the lattice filter propagates a forward signal fj(t)

and a backward signal Iij() at time I and section number j. The fundamental equation describ-

ing the lattice Alter structure is (1), see Figure 4.

(- bjQ-1) - kj+ I 1))

The multipliers in the crmsover portion of the lattice, k4 are known as reflection coefficients or

partial correlation (PARCOR) coefficients.

The implementation of digital flter transfer functions in lattice form have been examined

bra, and Markel, 1973,1975J. State space canonical forms were also established IMorf, 1974,

Mort et al, 1977, Lee, 1980J. ALGORITHM I determines the reflection coefficients k/ and tap

coeflcients v, for the lattice Alter of Fig. 3 that is equivalent to a (stable nonreducible) direct

torm transfer function with numerator coefficients bi and denominator coefficients af (from [Gray

and Markel, 1973j). The one multiplier form in Fig 3b um coefficients us. Althougb the lattice

coefficients and the direct form coefficients are related in a nonlinear manner, this algorithm is

invertible so that a lattice structure can be converted uniquely to a direct form filter and vice

versa (when al the roots an inside the unit circle).

,q
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ALGORITHM 1:

General Transfer Function to Lattice Filter

P

Hp(s) - . 1
FP

im$

Form -P to 1
k,- si

V, 41

*,- - 8, 1+~

Frj m I to i-1

Ie - k.

b- b , 6-

continue
co'l -e' + vi ki

4: - we h
END

Whil. Fit. 3 and ALGORITHM I describe the lattice iter for a general transfer function

with pole sad terse, the remainder of this chapter discuss all pole transfer functions and their

inverse, &I .ero transler functis. For an all pole transfer function (bP - 1, bjp- 0, j> 1), the

lastice Shler is called the feedback lattice Aitr show in Fig. 4. The inverse of the feedback lat-

t"c can be detemaked by applng Maso's role to Fig. 4. This Unite impulse response flter, an

al seo transfr function, In the feedfouward lattice (Fig.6). Thus a feedforwaixd lattice and a

feedback lattice with the same coefficients perform inverse operations on the input signal. It a

signb appWe to a hfefuward lattice After and the relt is applied to a feedback lattice ltea.

the OWa signal is returned. According to Maton's rule, the ref ection coefficients parameterize

beth the feedback and fiorward lattice with the appropriate change in signal low. ALGO.

aMw 2 ives tGo provedure for converting from reflection coelieats to tapped delay lin

eseulet where the sigal low specils whether the all pole or an sero transfer function.i

* ~ ~~~~~~~~ - .d * % .***~- *~
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ALGORITHM 2:

Lattice Coefficients to Tapped Delay Line Coefficients

a, -- k

For i - 2 to P

For I to i-1

continue

END

The coefficient sensitivity of the lattice implementation of a general digital transfer function

has not been studied as thoroughly as other common filter structures. Scaling conventions

[Markel and Gray, 1975(2)M and roundolf noise characteristics IMarkel and Gray, 1975(l)] for finite

wordlength arithmetic were developed for various lattice configurations. The one multiplier lat-

tice has roundof nose characteristics that are always better than the two multiplier lattice. Both

lattice Alters are always better than the direct form reaization. Particularly when the width of

the filter pms band becomes small, the The lattice filter structure has better roundoff noise

characteristics than other filter realizations, particularly when the width of the filter pass band

becomes small. A. nornralised lattice After (requiring more multiplications) was developed that

pefom better than the other lattice structures or parallel form realizations.

.The implementation of a transfer function requires quantized coefficients that can elect the

stability of a Ater and its Inverse. The sensitivity of the roots of the transfer function to pertur-

bation of the lattice filer ad tapped delay line Alter coefficients has been investigated Iches and

Messerschmitt, 1QS,108M. The effect of varying the tapped delay line fter coefficients was the

same for each eoelkiont Wha the roote ar elm to the unit circle, quantiuatiom of the tapped

dela M* cosllcieats Us&~ to mowe the roots perpendicular to the unit circle. For an all pole

transfe Ibactiss, this quantiatlos can cause the poles to move outside the unit circle and the

trmA Iuedle beesme itabis. For lattice filters, the effect on the root locatio of varying

lds low codeacef Isk is ech greater than for the higher order coefiints. For reflection

meoeelsW the 10W lob% to mve tamsalfly to the unit circle, thus cmanging the center



'41

frequency rather than the bandwidth of the toots. Low order reflection coefficients, particularly

those with magnitudes nea unity need to be more accurately quantized than the higher order

relectioa coefficients. No simple rule of thumb exists for tapped delay fine filters. The effects of

the lattice coefficient quntization have been studied most extensively for speech modeling appli-

cations. For typical prediction filters used in speech processing, substantially coarser quantization

of the reflection coeficients than of the tapped delay line filter coefficients is possible while still

* maintaining the subjectively perceived spectral response.

R L

TT
Fig. la Third Order LC analog Ladder

Fig. lb General Analog Impedance Lattice

%- ." " ' ," ," " ,'
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Fig. 2 Digital Asymmetric Lattice- Pole and Zero Transfer Function

Fig. 3a Digital Symmetric Two Multiplier Lattice - Pole and Zero Transfer Function

K4

Fig. 3b Digital Symmetric One Multiplier Lattice - Pole and Zero Transfer Function
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3. PROPERTIES OF THE LATTICE STRUCTURE

The lattice liter has a more complex structure and requires more numerical operations to

implement a transfer function than the straight forward direct form realization. However this

increased complexity is offset by several advantageous properties of the lattice structure including;

a stability test by inspection, a stage by stage orthogonalization of the input signal, and a physi-

cal interpretation as wave propagation in a stratified medium. The lattice filter structure natur-

ally evolves from a prediction filter where orthogonality conditions are applied. The properties of

the lattice estimation filter are presented in this section. An acoustical tube model of the human

vocal tract is interpreted as a lattice filter in Section 3.2 to lead a physical interpretation to the

reflection coefficients.

3.1 Orthogonallng Proper"tl

In early investigations of the lattice structure, a connection with orthogonal polynomials was

noted [Itakura and Saito, 1968, Burg, 1975, Makhoul, 1975, Markel and Gray, 19761. Lattice

form realizations are obtained by an orthogonalization of the state-space transfer function using

Supeo orthogonal polynomials. The theory of Sseo polynomials and their applications in system

theory (stability testing) and in stochastic problems (prediction theory and spectral analysis) has

been discussed in jGrenander and Szesoq. The Schur stability test uses the properties of orthogo-

mal polynomials to determine whether the poles of a transfer function are inside the unit circle

and hence a stable transfer function. The test is performed by using ALGORITHM 1 to compute

the lattice filter then checking that the magnitudes of all the reflection coefficients {(}) are less

than one.

* For problems in estimation, the minimum mean squared error estimation equations can be

transformed into a stage by stage optimization by forming a recursion on the optimum Alter

.order. The parameter in the recursion can be estimated stage by stage since it depends on quanti.

ties that are orthogonal between stages. This orthogoalization property is now developed for the

IrN~~~4 V*?* X -01 p ,IN11e .



-12-

" prediction filter (in all zero transfer function).

For a predictor of p-th order, the data sample at time g, z(f), is approximated as a linear

combination of the previous p samples, zQ-1),...,zQ-p). The forward prediction error f,(t)

must be orthogonal to the previous data samples to attain the minimum mean squared error

value. This determines the weighting factors, (ai) on the previous data.

IQ) -(S) + 12(tQ-1) + .- + GVX(-p) (2)
E(f,(t) x(t-j)) - 0, I<_j<_p

The operation E(') represents the statistical expectation. This prediction error is also called a

prediction residual or an innovation when the coefficients are chosen to attain the minimum mean

squared error. A backward prediction error, l,(t-1) can similarly be defined to predict :(t-p-1)

from the same samples, z(t-1),...z(t-p).

h,(-) - S(I-P-1) + c11z-p) + ..- + cpS(-1) (3)

E(b(-1) s(-j)) - 0, :Si:p

Here the (cj) are chosen to satisfy this condition. Notice that both prediction errors satisfy the

same orthogonality conditions.

Increasing the prediction order to p+ 1, f, (I) represents the component of z(1) that is not

predictable from zQ-1),...,zQ-p),zQ-p-1). The p-th prediction error uses information up to

(t-p), so now the information about a(f) that can be predicted from z(t-p-l) must be included.

However much of this information is already contained in :(-1),...,zQ-p). The backward pred-

iction error b(I-I) represents the new information in the sample z(t-p-1). The plausible recur-

si, for f,+ I(t) is (4) where the scala J1 is determined so that Ip+ (I) satisfes the new ortho-

gonality conditions.

f, IM# - f,(1) - 14 1 &,(Y-1) (4)
E(I 1(e) MS-)) - 0, l:Jsp+ 1

The al cstraint not immediately satised involves s(I-p-1), nnd is given by (6). By substi-

-. 0.0
%~ "61.
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tuting (3) ad (4) in (6), the optimal k 1 is determined (6).

0 - EVfQ) 3(9-p-')) - qj+I EPb,(t-) 2Q-P-)

- EVf,(t bQ.-1)) - &j+1 E(bp(a-1))

4+ ME((a b-1)) I EPb,'-) 8
-- 4 Similarly, the recursion for the backward predictor is obtained (7) ad the optimal A:+ I is deter-

mimed(S).

bv+ IY) - b,8-i) - 9+,1 fQ) (7)

3 E(b,+1(AS-1) z(t)) - 0

0 - E(f,(t) bQI-1)) - 1.t I E(j,'Q))

4+1- EUfQ) 40Q-)/ EVfAO) (8)

Extending the prediction liter to the sext higher order, p+42 requires the calculation of the

now prediction errors, fv,,I ~ad bp+ I from (4) ad (7). Thus a prediction After a be constructed

solely using the lattice structure by successively increasing the lter order. This is the stug by

stage orthogonalization property of the lattice structure where each refection coeruicient is deter-

* mimed separately. This stage by stage computation of prediction coeliients does not hold for the

tapped delay fln lter (2). The coefficients (sj) are interdependent ad they all chage when

the fter order increases.

Further insight into properties of the prediction errors is provided in (Makboul. 1978(2M.

The backward prediction error results from a Gram-Schmidt type orthogoalization of delayed

versions of the signal. This property of orthogonal variables makes the lattice structure advanta-

geos for adaptive Shltring. Also the decrease in signal enery after each prediction stage is easily

deterumned. This feature can be used to scale the prediction errors to malntain good numerical

propertios. The mosk important properties are summaried here.

4I I*.I . ', **.* VB A - - .
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E(f;(e)) -E(f,(I)x())- (10)
" E(1t) 1 )) -al 1<_j<_p

*' E(b,1Q-1)) - E(bV(-1)zQ(-p-)) - s', (1)

E(&4t-) b1(-1) 4 j -1 iP

"' o+,-4( l- g)(12)

When the signal z(') is stationary with known autocorrelation function, the forward and

backward prediction error energies at each stage re identical (a.4 - o,'). Then the two reflection

coefficients are equal and the symmetric two multiplier lattice structure computes these prediction

error recursions. When the isgnal to be modeled is assumed to be stationary, a single reflection

coefficient, k is determined by combining sample data estimates of kJ and 0. This lattice filter

with constant coefficients is the feedforward lattice (1) of Section 2. For nonstationary signals,

adaptiv estimates are generated by making the reflection coefficients time varying.

The reflection coefficiests are clely related to partial correlation factors which have several

interesting statistical properties. The correlation between z(t) and z(t-p-1), after their mutual

linear dependence on the intervening samples ({(t-),..., z(f-p)) has been removed is

E(ft(g) bp(t)). This relation rnes from the orthogonalizing nature of the lattice. When this

comlation is normalized by the variance of 1, and ,, it is known as the p-t order partial

correlation. The autocorrelaton function of a stationary unit variance discrete time process can

be unuely characterized by a sequence of reflection coefficients, having values less than or equal

to one [B3arsdord-Niesen sad Schou, Rasnseyl. For any p-A order AR process, the partial corre-

tmo of higer order, lg p + i, (i - 1, 2, . .) ban . For a stationary AR procem, the sample

estiates of the partial correlations ae asymptotically Gauman and independent (ee I(Mmrty

and NaNsul2am for more statistical properties).

In appIcatlas such as oise cancelling or equaUlialon, the ortbogosalising properties of the

ai a e of primary interest to obn fast tracking or convergence, see Section & The back.

! ' """" """!", '""'"".. "



ward prediction errors, b., (I) are extensively used since they are a Gram-Schmidt orthogomaliza.

tiou of delayed versions of the input time series.

3.2 Phys~ka Intesretation

The lattice structure and the reflection coefficients have a&physical interpretation that for

particular classes of signals lends understanding to the properties of the lattice structure. Model-

ing of wave propagation in a stratified medium leads to a cascade of lattice filters. This model

has been applied in seismic signal processing by (Treitel and Robinson, Burg, 19671 and others.

The physical properties of scattering medium leads to inversion methods based on cascaded

reflection elements, eg. the characterization of (electrical) transmission lines (Gopinath and Son-

4. dhi, 19711 or the human vocal tract IGolbinath and Soadhi, 19701. Similarly in the fields of acous-

tics and speech processing, an acoustic transmission line with step changes in impedance leads to

a lattice cascade structure. The human vocal tract has been modeled as a cascade of acoustic

tube section with different impedances. This relationship between a physiological system and the

lattice structure gives a physical meaning to the reflection coefficients and led to the development

of speech synthess system wing the lattice structure. The remainder of this section develops an

acoustical tube model of the vocal tract into a lattice filter (see (Flanagan, Markel and Gray,

1976, Rabiner and Schafer, 197A1).

A lushu.. acoustical tube tramnmison line composed of cascaded cylinder. of differing diama-

eter but equal length was developed as a model of the vocal tract in [Kelly and Locbauml. This

vocal tract model was studied to obtain a better understanding of the s pech production mechan-

is. sd to syntheisise spesch by computer. Speech sonds reult haom pressure waves resonating

4,4 in the vocal tract (acoustic tube The significance of the model is that the cascaded cylinders

b, eonmie ascaded lattice stages. The crms sectional areas of adjacent cylinders specify reflected

sad trnumlted acomsti wave composentes which translate into the lattice rect" coefficients.

Sudwaves that propagate in a cylindrical section obey the coaservation at moetuma

sad -s oquations (assaft stansdard condtioaa see [Rabiner and Schafe, 19781). Since the
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'.* cros-sectional are of the n-tb tube is constant, combining the conservation laws yields a one

dimensional wave equatiom. To satisfy this equation, the steady state volume velocity vj(z,t) and

the pressure wave pj(z,I) are composed of waves traveling in the forward, u+ and backward, u-

direction.

aOs
ox A Os

O A 2
0: pc2  a

843,) - 1 *-z/c) - uj(1+ X/c) (13)

P,(x,t) - pclA ( "'Q(-u1c) + *-(I+ zic))

The density of air is p, c is the speed of sound in air and Ad is the cros-sectional area of the

acoustic tube, see Fig. 6a. Amuming that all the tubes are of equal length, L, at the boundary

between tubes i and i+ 1, a continuous wave propagation is required.

' j(L,S)-%j,.1(0,9)

pj(L,t)-p,.,1(0,8)

Using the boundary conditions, the transmitted wave u I and the reflected wave V across the

boundary we determined.

' 1 (9) - ( 1 + h, ) ;+(I-r) + 41 s,;(t) (14)

mill+r) - - k, ug+(9-r) + ( I- k ) V, (1)
Hee r - L It is the propaation time through the tube section and 14 is the wave reflection

coeficient at the junction of Ad and Ad+ 1.

h -(A, ,-A) I (A+ 1+ A,) (1)

Since the cro sectional arm we all positive, -1<;,1. The wave propagation due to the

discon uity in cross-eectiosal aea is shown in Fig. ab.

The lattice flter st e Is obtaidd by normalising variables ad grouping time delys.

By modifyIng (14) the waves in the i-1t physical seeton at the boundary with the (i+ 1)-IA e-

tie m be writtn in term of the (i+ 1)-t see"to.

* (9- r} = ( %, 1t( ) - k, * -+ (8) 1 + h, (16s)
u1  +-)-( ur,()- A jtI(#))/( I+ k)(

Am aheodute time rferoene b estabbed as the output of the las tube setion, which physically

,,:' ?,% . .... ,,; -'.,/ ......,. ........... .-. ,.,....>,..--,-..., .., ,,......... ..
-- . .- ? . *. , * - . *. % .' ** .' " .. " = " . . % ' . o . .. . -. . .. . " .;. '
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would be at the lip@. Assuming that the vocal tract model has p tube sections, the time delay

from the beginning of the i-th tube to the lips is ( p + I-i) r so the time variable in the

equation for the i-th section is replaced by I - Ia. A scale factor c, is introduced to combine the

S(I + k,) factors from the i-th tube to the last (p-th) section (lips).

ed - 1'( 1+ k,) -(1+ k ) c,+,
*q j=i

The lattice equations are obtained from (16) by using the absolute time reference and defining

*new variables, see Fig. 6c.

() - C, ( -T-t,)

b(1) - c, vd-t + r-0,)

j,(t) - Ij ,(I) - k, bj, (t - 2r) (17)
bd (t) - bjt I($ -2r)- k. fj, I(t)

This is the same equation as that developed earlier, (4) and (7), from orthogonality conditions

except the unit delay is 2r and the lattice sections are numbered in decreasing order.

Although modeling of the entire vocal tract includes other infuences due to the vocal chords

(glottis) and lip radiation, the wave propagation in the mouth ideally follows the lattice structure

equation. Studies have indicated that every reasonable vocal tract shape could be generated by

a lattice filter and that the reflection coeficients are directly related to the crow sectional area of

the vocal tract [Market and Gray, 19761.

For other types of signals, if they are generated by or can be modeled as wave propagation

in a stratiflod medium, the lattice structure is intuitively motivated. For physically generated

processes, the proem is often nonstationary but there is a limit to the rate at which a proem can

change. The shape of the vocal tract (excluding the lips) can only change at a moderately slow

rate determined primarily by the muscles in the tongue. Except when a sudden opening of the

lips occurs, the crossectional area of the vocal tract changes slowly and hence the reflection

coelicients also change slowly. This slow time evolution can be used advantageously in adaptive

estimaton or parameter quantisation.

An intuitive understanding of the migmifcance of refection coeficient values is possible

• - . * o* *. . . . *4.* ' .*



because the lattice filter structure can be thought of as wave propagation in the acoustical tube.

The equivalent tapped delay fine coefficients are not as easily interpreted. While the reflection

coefficients are limited to -1k ,the equivalent tapped delay line coefficients are often a fac-

tor of ten times larger. When the reflection coefficient is zero, the signal propagates without

change since adjoining sections in the tube would have the same cross sectional area. When the

reflection coefficient is near -1, the signal is apt to have highly resonant or oscillator characteris-

tics since if the next tube section is completely closed, ie. zero cross section, then the wave is

totally reflected. Conversely, when the reflection coefficient is near + 1, a decaying signal ampli-

tude is usually found since if the cross sectional area increases greatly across a boundary, then

there is full forward radiation. This connection between the physical properties of wave propaga-

tion in the acoustical tube and the analogous lattice filter structure greatly aids in an intuitive

understanding of the elfect of reflection coefficient values on signal characteristics.

. . .J......0
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4. SAMPLE DATA ESTIMATES OF REFLECTION COEFFICIENTS

The real advantage of the lattice filter is for adaptive filtering, where the characteristics of

an unknown process are to be determined from the observed data samples. The remainder of this

overview presents the adaptive lattice filter where each new data sample is used to update the

"* reflection coefficients. In this section, approximation techniques that estimate the reflection

coefficients based on gradient approaches or sample (block) data estimates of statistical quantities

are presented. The development of a recursive exact solution for least squares estimation, which

naturally produces a lattice structure filter, begins in Section 5. A simpler set of recursive equa.

tions using normalized variables is presented in Section 7.

The earliest techniques for estimating refection coefficients assumed that the signal was

locally stationary. Therefore sample data approximations were used for the statistical definition

of the reflection coefficients, (6) and (8). When the process z(.) is stationary with known auto-

corenlation function, the forward and backward prediction error energies at each stage are identi-

cal (a, = ). Thus the refection coefficient for the forward and backward predictor are the

same and the lattice Alter stage requires a single parameter.

fi, (I) - '4*j) - ki+ I by(I-1) (18)

bj+(IM - b,(t-1) - kj+ I 14')
The block data techniques use a time sequence of data and determine a single prediction

Aiter for this entire block of data. A single reflection coefficient per lattice stage is calculated by

combining sample data estimates of ki and k. if the geometric mean of k1 and 0' i used, then

the reflection coefrcient becomes the correlation coefficient between f, and b1 . This parameter,

was originally caled a parta correlation (PARCOR) coefficient ltakura and SMit, 1968I . It

is the normalized conditional correlation coefficient between 2(1) and z(t-j-1) given the interven-

ing datasam plus z(8 .,

r

EflhaFt) IP 1)

................I

4-...n.* *.- ... I * * *
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The expression for ki,.I that minimizes E(fi+ 1(9)) + E(b2, 1(t)) is the harmonic mean of

kI and k0. This estimate, k8 is computationally simpler and is related to Burg's maximum

entropy method [Burg, 19761.

r
E.(t) bi(t-1)

k*g 1 (20)

1/2 ~ fljt) + blt-i))

*-' These two definitions for reflection coefficients use blocks of T data samples and thus require

many computations. For kj+ 1, the T samples of fj and bi are required. To calculate kj+ 2, the

lattice filtering at stage j+ I must be performed to obtain T new values for f+ I and b j+ 1.

Clearly this requires P filtering steps of 2T samples to determine P reflection coefficients.

Adaptive gradient algorithms for determining the reflection coefficients greatly reduce the

computational complexity of the estimation technique. Only the prediction errors at the previous

time instant is needed for the gradient methods. The block data approach required all the past

error values. Several techniques have been proposed for adapting the reflection coefficients for

every newly observed data sample. These techniques do not minimize any criterion but try to

change the reflection coefficient in the direction of decreasing prediction error energy (gradient

descent). Two classes of gradient techniques either approximate the reflection definition of (20) as

the current reflection coefficient plus a correction or approximate the numerator and denominator

separately. The simplest update of the reflection coefficient [Griffiths, 19771 uses the forward and

backward prediction errors weighted by the constant a.

k(t+ 1) - k,(t) + a ( f(t) b,_l(t-1) + f,.(t) bQ) 1 (21)

This estimate can be improved by replacing the weighting factor by an energy normalized term,

1/ vo(t) where o(t) is the accumulated average of f11_(t) and bi_2 (I-1) [Griffiths, 1978,

Makhoul, 1978(2)1.

kj(+ 1) - kj() + ( 1 / 7 ) {(/f() b_1(1-1) + _j-,(t) b(t) ) (22)
.7j(() - (1-0) VA(I-1) + filt) + #J110t-1)

Another adaptive estimate [Makboul and Viswanathan, 1978(1), Makhoul, 1978(2)] approxi-

mates the numerator and denominator of (20) separately. The mine weighting factor a is used for
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both terms. The ratio of these two terms becomes the estimate of the reflection coefficient.

c*+ 1)- (1 - a c)(t) + 2 Ij_i(L) bj. (t-1)
m'd j(t + 1) - I - a } i,(t) + /;,(t) + bj/_,(t-1)

kj(t+ 1) c-(t+ 1) (23)

d,(t+ 1)

This ratio is a biased estimator since in general E(z/y) &E(z)/E(y) but simulations indicate that

this bias is generally very small [Honig and Messerschmitt, 19811.

The convergence of the lattice filter is much faster than that of the adaptive tapped delay

, line filter [Satorius and Alexander, 1979(2), Horvath]. This is because the lattice filter tries to

*q orthogonalize the input signal so that the coefficient estimates are decoupled. In fact, the conver-

gence time is almost independent of the eigenvalue spread of the signal, i.e. independent of the

signal's spectral dynamic range [Griffiths, 19771. Quantitative characterizations of the conver-

gence properties of the gradient reflection coefficient estimators (22) and (23) have been studied

(Honig and Messerschmitt, 19811. A two stage gradient lattice algorithm was compared with a

two stage LMS gradient tapped delay line filter to show that it is possible but unlikely for the

tapped delay line filter to converge faster than the lattice filter. A comparison of lattice estima.

tion techniques using the gradient and block data reflection coefficient definitions (21), (22), and

(23) has been presented in [Gibson and Haykinj.

This orthogonalizing and decoupling property of the lattice is only asymptotically obtained

using the gradient estimation techniques of this section. The recursive least squares lattice,

developed in the next section, exactly solves the orthogonalization for every new data sample.

The optimal solution is similar to the energy normalized gradient lattice (22) except that the

optimum weighting factor is computed (instead of the constant 0). This least squares lattice esti-

mation technique ha even faster convergence than the gradient lattice methods of above. How-

ever as the number of data samples (from a stationary process) gets large, the results from the

gradient lattice and the least squares lattice become similar.

v,* , ,-; .,', 4 *," - . I. ,: .. . - ,
.,.... .-. ... ~.. .. . . 4.,. 4.. .. . . .... . .. .~ ... .. . .. ..
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5. RECURSIVE LEAST SQUARES LATTICE ALGORITHM

The recursive Least Squares Lattice algorithm (LSL) allows the exact solution to the least

squares problem to be updated for every newly observed data sample. This adaptive estimation

technique uses the properties of the lattice filter to efficiently implement the adaptation. The

LSL algorithm looks similar to the.gradient techniques of the previous section except that optimal

weighting factor are calculated. The LSL algorithm is developed in this section in the context of

an extension to the Levinson algorithm for solving the normal equation.

The least squares solution to a linear modeling problem can be reduced to a simple set of

-i linear equations called the normal or Yule-Walker equations. These equations, which involve the

inversion of a covariance matrix, has been widely studied to reduce the computational burden,

*.
'm' guarantee stable models, and handle nonstationary processes. The linear predictor form of the

linear modeling problem is presented here.

The linear prediction model assumes that a data sample at time T, Zr can be approximated

5. as z ., a weighted sum of previous data samples. For an p-th order linear predictor with

coefficients (a, • ., a,) :

;p,r == i z-yT- - . ap xT, (24)

S The coefficients are to be chosen so as to minimize the mean squared error between zr and the

estimate, p,.T. The p-tA order covariance matrix of the process z(.) is Rp and is composed of

elements r,.

TRpm EIXiT:T-p .r:.IPI1 (25)

XT:T.-pl = IzT, ZT-1, ... PZT-pIT

- Elzri T-+,I 0< id <5 P

Minimizing the square of the prediction error with respect to the predictor coefficients, (ai)

requires that the predictor coefficients satisfy (26), called the normal equation, where a. is the

* * * 4* * .* . *. .. . . . . .. ........................... .....
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minimum error.

a1 0
min E ((Zr - ,r )2} _ .R - (26)

Unless the process is a deterministic one, a unique solution to (26) exists.

In general, for a p-th order linear model, the solution of the normal equation involves the

inversion of the p by p covariance matrix. Standard matrix inversion methods such as Gaussian

elimination require O(p) computations (multiplications). However for stationary random

* .processes, the covariance matrix is a Toeplitz matrix.
4pq

r.j - r1,_ 1, O<ij p

Using the Levinson algorithm, the normal equation in Toeplitz form can be solved in O(p) com-

putations. The Levinson algorithm is an order recursive technique that uses ti@ *61ution for an

i-th order predictor to generate the solution for the (i+ 1)-th order predictor. This algorithm

performs an orthogonalization as discussed is Section 3. The reflectioi coefficients are related to

the predictor coefficients and are generated as a byproduct of this algorithm. In the Toeplitz

case, the reflection coefficients can be determined directly without using predictor coefficients

[LeRoux and GueguenI. This is an application of the Schur algorithm. If the covariance

sequence (r,, ,-., rp) is fed into a growing order lattice filter, the reflection coefficient at

each stage can be determined by dividing the forward error by backward error at the input of

that stage [Morf et a, 19771.

5.1 Formulation of Recursive Estimates

In the development of recursive least squares lattice algorithms, two aspects of the solution

of the normal equation are important. The Ant aspect is the efficient inversion of the covariance

matrix, Toeplitz and non-Toeplits, that gives rise to the order-update recursions. Secondly, the

time-update structure allows exact least squares solutions to be computed in a recursive manner

for each mew data sample. This enables the lattice algorithms to achieve extremely fast

. .. .
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convergence and excellent tracking capability. The first derivation of the least squares lattice

came from extending the Levinson approach and was based on the predictor coefficients. Once

the recursions were obtained, it was noted that they could be written compactly using just the

lattice filter parameters. A subsequent direct derivation of the recursive equation, using a

geometric approach solely in terms of reflection coefficients and lattice parameters was reported in

[Lee, 1980, Lee et al, 1981, Shensa, 19811. An overview of the first derivation is presented here

since it gives insighat into the nature of the recursions. The development of the order- and time-

update recursions for the lattice algorithms based on the special structures of the normal equation

follows the approach in (Lee, 1980J.

First the structural properties of the sample covariance matrix must be exploited as the

order of the predictor changes and as new time samples are added. The covaiance matrix of

order p for data samples (z,, j-0,T) used here is the prewindowed form.

RiT Xi.T Xi,T (27)

.. •i ...

Xir -(28)

The covariance matrix Ri.T has the following structural properties. As a new data sample

Jr+ I is included, the new covariance matrix is composed of the previous covariance matrix plus a

matrix of special form. The time-update matrix equation is given in (29).

[ST+ Ij
Ri,T I - Rir + I zr+ ,..., ZrT4i+, (29)

Also, the covariance matrix of order i+ 1 contains the covariance matrix of order i. The

order-update matrix equation for the covariance are given in (30) where e denotes unspecified ele-

meats along the outer row and column.

RI+1.T - :R.*j-, RiT :J(30)
* ~ '...'.'~ ~T
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The development of a recursive solution requires that the normal equation, (26) be extended

with auxiliary vectors. The forward and backward predictors vectors are A and C . respec-

tively. A vector D ir is defined to account for new data samples. The matrix equation (31), an

extension of (26) defines these vectors.

R ,T [A i,r, C ,,r, D ,, ] = 0 I I 0 , r-" 31)

0 i,T r zr-i

' .A j,r -- 1, ai~rP...,P ai,r I, i i r

Cijr - [c ,, ,.. l cT,r

4' The forward prediction error, fi.r and the backward prediction error, b,.r, are defined as in (2)

and (3) with xpr:r-ij defined as in (25).

A1 , Ai,r zr-r-ij (32)

r
b , - Ci, T -- T:T-

To account for the end of the sample data set, an auxiliary vector D j, T and related scalar '7- ,

are introduced.

-1

Di.r - R,r xlr:r-I (33)
7 r -1

7i, r - D i. r zl r: r-il -= xI T: r-il Ri, r zl r: r -I (34)

This parameter 7Yr can be interpreted as a likelihood variable and is limited to the range

0 :5 Yi,T 7< I see Section 5.6.

5.2 Order Update E~quations

As in the Levinson solution, an efficient means of determining the n-th order solution is to

develop recursive equations for updating the predictor order (at a fixed time). Following the

usual development of recursive equations, assuming the predictor vectors Ar and CI.T are

known, the predictors of order i+1 are to be determined. Thus the vectors Ai.,r &ad C,+Lr

%%.w,4 .4 4 '% 4.S C "'--. v"" "" ~-~. "*,, '. ". .-.- ,*v""." .. ,'-."......... . .. .. ..". .'".'-- - '-'. '.'- . .. . ...". -. ".'
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must satisfy the following normal equation.

["C - 7  I 0

0 I

Since Ai+i.r is to be assembled from Ar and C, .r-, these i-tb order predictors are aug-

mented with a final (or initial) zero to make an i+ 1 vector. From (30), the augmented A jr

satisfies the new normal equation except for the last entry.

" , . ,, I. , 0,., 0, A,+.r r  (35)

A,+i,r- [last row of R,+..T! A..TJ (36)

Similarly, augmenting C i, r-i with a leading zero satisfies the normal equations except for

the first entry.

RI+1T Cio 1 * 11 0 11 - [r,+,0, 0, 0, ffi,,r-A (37)

r,+.r - [first row of Rj+rl 0,r-T

Since R j+ 1, T is symmetric, it can be seen that A,+ 1.y - r, , r Bu751.

By appropriately combining these two equations to cancel the leading or final term in the

I
normal equation, the order-update equations are obtained. Multiplying (37) by A I.r / di.r-t

and then subtracting the result from (35), the order-update recursion for A,,r and al.r are

obtained.

A - O.r = ,r _ 0 A#+I.T / al T.-1 (38)
i. T-

4,1 , - A0 .,r/ ,,r-i (39)

,, . 5



Similarly the order-update recursion for C .r and oi. are obtained.

., 0 . i+ l" I 1o
, -i- 1 * A,. 1 / ,r (40)

0 .+i~i,(41)

When the order-update equations of the predictors are premultiplied by [r, z..r..J, the la--.j

tice equations result. The reflection coefficients are k 1,r and k:+ j.

I
hf+1,r = f,.r - ki. .r 6.r-1 (42)

b,+.,, bt71r- - hf+,. fi,.r (43)

b a
I ,, 144

. k,.,. ,r - A's+ .r I .,r-i (45)

So far the development has been parallel to the non-adaptive approach in Section 3. To develop

adaptive solutions, time-update equations for the predictors must be developed. Before proceed-

ing to time-updates, the order-update recursion for D i, r is developed in a similar fashion.

R,+ ,r rr- , , rr-, ..., IT
Thlatlee -D 7.

The last element of D + ,r can be found from the last row of R 1+ , T, by (32) and (33).

last element D +i. - laot element ( R+ 1, ) xr:.rj.11 - b+ , r / ai, 1,?,

Since the last element of C* ,. is 1 and the last element of D+ .,r has been determined, the

order-update equation for D j+ 1,r becomes (46).

D -+, r + C(4+) r bi+ ,r / O&+I r

The order-update for 7, r is determined by premultiplying (46) by [zr, ...,z--.

+ (47)

5.3 Thw. Update Equatio.

Next the timeupdate of the covariance matrix is used to determine time-updates for the

predictor vectors. From the time-update of the covariance matrix (29) and the definition of the
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forward prediction error (32);

0:- ,,r r
RST+ .8= • =r,"-• r-] A j.r (48)

[zr-,+ I

The auxiliary vector D j. r is used to account for the new data samples.
I,-I *,

R . 2. (48)

i-, + 1 ,t ri R i~t. r J -.2' z7_4

The time-update recursion for Ajr is obtained from (48) and (49).

Air. 1 - Air -XT ,.. XTAI T Ar (50)

By premultiplying (50) by (:Tr+ i, ..., Zr-i. ]j and using the definition of '7i-|, , (34) the expres-

sion can be simplified.

[z 7 ,.. ., z Ar- i,r - Is,T+1 / (1 - Y7-ir) (51)

The time-update for A i r becomes a simple expression.

A,, 7-fD.O I A r+ 1 (52)AsT~ = A~r- [A-.r] I - %i,r

From the preceding relation, the time-update for 9r can be determined using (52) and (29).

! r
C4 ,r+. A,.r+ R.jr+Air(42

hr, r+ I
d'. - + b1-,.+ (53)

By applying similar techniques, the time-update recursions for C i, r ad vi, r are determined.

b, r+ 1 (4

411,r+l -" 0. r I - 7i-i.r 1 (565)

To recurvely update the reflection coefficients, the time-update equation for A is needed.

10 C,.lIj,.Tr+ ibJ - Ad+ ,i.+ (56)
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By using the covariance time-update (29), the time-update for C ,r and the forward and back-

ward predictors, the time-update equation is obtained.

+ bi,,r fi, T+ 1 (7
- + + ()

The exact time-update of Ai. ir is a time average of the croes-correlations between bir and

1,+1, with the special gain factor I This relates Ai,7i. to the partial correlations
I - 7i-t.r

discussed in the previous section.

The development of the time-update equations allows the influence of all prior data to be

accumulated into the current parameter estimates. If the process that is being approximated con-

tains time varying attributes, then it is desirable to weight more recent observations more

heavily. An exponential weighting factor X on the accumulated covariances can be included in

the development of this algorithm. Typical values of X are from .98 to 1.00 (corresponding to full

weighting of past samples). The algorithms presented in subsequent sections include this

exponential weighting factor.

5.4 Zxaet Least Squares Lattice Recursions

The recursions so far have focused on the predictor vectors, AIT, CIT and Dj,T. For a P-

th order prediction filter, these recursions require O(P 2) operations per time sample since all the

predictor coefficients change in an order-update. However for the lattice structure, due to its

orthogonalizing nature, only the i-b reflection coefficient changes in the i-th order-update. The

exact least squares recursion can be written directly in terms of lattice filter variables which

require only O(P) operations to update per time sample.

The order-update recursions for the lattice filter variables, f,r and bir was developed in
I I

(42-46). The order-updates for 1,r and ai,. are given in (39) and (41) and the time-updates are

given in (53) and (55). The reflection coefficients defined above depend on Ai+,7+ l which is

related to partial correlations. Here, the time-update for A,+Lr+I 0 is required to augment the

correlation for the new data sample. These updates also require the order-update of ,y.r, deter-

amined is (47).

"" "". ;. .. . .
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These recursions are seen to compute the sample cross-covariance of the forward and back-

ward prediction errors, using the optimal weighting 1/(1 - -- i.ir ). From Section 4, the gradient

lattice equations have the same form as above except that the exact recursive least squares solu-

tion calculates and uses the optimal weighting factor for the new data sample.

The complete set of order-update and time-update recursions to obtain the exact least
.,

squares lattice predictor (LSL) is presented in ALGORITHM 3. When starting the lattice filter,

only the stages that receive data are executed until P data samples have been observed, ie.

min(T,P) filter stages are used where T is the data sample number.

d

% %

--.- " "-" -- "- .
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ALGORITHM 3:

Recursive Least Squares Lattice (LSL)

Scalar case for exponentially weighted data

Input Parameters
P n maximum order of lattice
X- exponential weighting factor (usually .98 to 1.0)
zr - data sample at time T

*" Variables
Ai,r r partial autocorrelation coefficients
% r, likelihood variable
h., r, bi,r - forward (backward) prediction errors

0,4r r, ai = forward (backward) prediction error covariances

I &
kr, khr - forward (backward) reflection coefficient

Initialization

I 2
f0,0 - .0 M , O90,0 = 00,0 -Aij = 0 ,  --1'j 0, l< i <P

ITERATION FOR EVERY NEW DATA SAMPLE

For data sample Zx and previous results A, y, bo" ,

foi - bj~r sr 1T 2

0.7 -r vo,r -X 47oT- + 2 r

For each stage of the lattice, i - 0, min(T,P)-I

Ai+,,r - X Ai+t,r-, + b.i -fi, r1(1 - 74-1.7-t)

7j,r - w-T + b ,T/,r

k,.+, - ,.1, ,r / r
I I

k+i.r A +,r i,,r-T1

h4+i.7 r f,r - k+i. r bi. r-

'1 ,r - ,,r-, - k i r h, r

when T < P i+i,.r = 0,7- A+k.r A .r

I I I

ciae 0I I o'+i,(i+ r 1 - .- t )

I I-ffi+i, 7+i. r- '+ i /( ',r)i
-+lr 01+1.r-1 + b.+.. .....- .7.

Tw%°. 4r' "" % ''" ... .'"% _% "% ."%
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5.5 A Likellhood Variable

Information about changes in the nature of the observed process can be determined from

p7?r. This variable can be interpreted as a sample data approximation of a statistical likelihood

variable. For a zero mean Gaussian random process, z, the joint distribution for

(Zr, r_1 ..... zr-) is given by (58) with the covariance matrix as defined in (25).

p(z, ..., zr-p) - 12rRp - '12 exp TXT:Tp Rp XIT:T-PI } (58)

The determinant of the covariance matrix, I Rp I is related to the reflection coefficients and the

process variance R0 [Markel and Gray, 19761.

IRpr = Ro ( - K.2 ) (59)
Ai==1

The logarithm of (58) becomes a log-likelihood function composed of two parts. The first two

terms depend on the covariance of the process and the third term relies on the observed data sam-

pies.

P T -0
top-likelihood - { In R0 + I In ( 1 - Ki) + X[T:T-p Rp XT:T-PI (60)

The variable ,yp r obtained in the exact least-squares recursions can be interpreted as the sample

estimate of the third term in (60). The definition of p .r uses the sample estimate of the covari-

ance matrix, Rpr instead of the known covariance matrix, Rp. Thus 'IP,r is a measure of the

likelihood that the P most recent data samples, .{ZT ... ,zr-,) come from a Gaussian process

with sample covariance Rp, r determined from all of the past observations (z,, 0<j_5 T). Since

0 : yp.?r -- 1, a small value of "IP.I indicates that the recent data samples are likely observa-

tions from a Gaussian process with covariance Rp, ,r. However, a value of -1p r near one implied

that given the current Gaussian process assumption, the observations are unexpected; either the

new observations come from a different Gaussian process due to a time varying nature of the phy-

sical process or there is a non-Gaussian component in the observations. So ,yp r can be used as a

detectios statistic for changes in the process characteristics or for unexpected (not-Gaussian)

compomenu in the observations. Simulations indeed demonstrated that 'yp,r does take values

%I

%I
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close to one when sudden changes in the observations occurred. In the LSL algorithm, -Y, r acts

as an optimal gain control since the new observation influences the accumulated estimate by a

factor of (I - 1PT.). With this gain factor, changes in the process statistics can instantane-

ously influence the estimates more than just being averaged with past observations. Simulation

results that demonstrate this behavior on synthetic signals and speech signals are shown in Sec-

tion 9.
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6. JOINT PROCESS LATTICE FILTER

Many practical problems require the joint interaction of two or more processes rather than

the prediction of a process based on its own past observations. For example, a channel equalizer

in its adaptation phase uses the received distorted signal from the channel and the actual

transmitted channel symbols to determine the channel distortion characteristics. In a noise can-

celler, the information signal plus noise and a reference or noise signal is used to extract the infor-

mation. The estimation of autoregressive moving average (ARMA) processes with known input

involves the joint interaction of two processes. llgenerat, a multi-channel problem can be formu-

lated as a single vector process problem which can be solved by extending the previous least

squares solution to the vector case. The one channel prediction lattice of Section 5 is extended

here to include a second related channel. This joint process recursive least squares provides very

fast tracking or adaptation for channel equalization or noise cancelling.

When one process y is to be estimated from observations of a related process z, it is possi-

ble to combine them into a joint process (z,y), that can be solved as a joint process lattice filter.

The exact least squares solution for jointprocess estimation is an extension of the development in

Section 5. A new prediction error is defined that includes samples from both processes. The joint

prediction error, Jp,r is the error in estimating Mr from (ZT, XT-1, ... , Zrp) where {#) are the

prediction coefficients obtained by minimizing the sum of the squared errors.

..

jPT- MT + E li T.. (1

The solution of (61) can be formulated in terms of the lattice structure just as the single process

predictor (32) was translated into (42). A prediction lattice filter (LSL) for zr performs a Gram-

Schmidt orthogonalization of {zT_,) into the mutually orthogonal backward prediction errors

{bT_). The advantage of using the orthogonal {br-,} instead of (sr_,) in (61) is that the joint

predictor coefficients (gJP} become decoupled from one another so faster convergence is possible.

The joint process lattice solution involves the LSL for the z process and a similar lattice

recursion of the joint prediction error, j, r. From the LSL for the z process, at the i-tA lattice

0."-.*-'4...'.4',q.'4*..'w.r r- r". ,".. . . . .
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*stage, bi1 T is the backward prediction error, Oij is its variance and the likelihood variable is

--. TA new cross correlation term, A , similar to (57), can be defined between signals avail-

. able after the i-tb lattice stage, Ji-i.r and b,r. This new term can be recursively updated.

i'T = X Aorl + (62)

The recursion for the joint prediction error ji,r is similar to (42) except that quantities after the

i-th lattice stage are used. The initial condition is j.,r =y T and the output is ji.r.

.ii = Ji-1,T - ( ACT / ar ) b,.T (63)

"- The previous single channel LSL equations augmented with (62) and (63) form the complete solu-

tion to the joint estimation problem and lead to the joint process lattice filter, Fig. 7.

For noise cancelling problems, noisy data containing the signal of interest, (Vr) are

observed together with the noise estimate or reference signal, {zr), see [Satorius et al, 1979(l),

Grifliths, 1979(2)]. For channel equalization problems, (yVT) is a known training sequence sent

though the channel and (zr) is the distorted channel output. Applications of the joint process

lattice estimation algorithms to adaptive data equalization have been investigated [Satorius and

Alexander, 1979(2), Satorius and Pack, 19811.

The ARMA estimation problem with known input and with bootstrap estimated input was

formulated as a two channel lattice filter in [Lee et al, 19821. For an input process y, the output

ARMA process is z generated in the following manner.

P P
Zr + ', S-d V r + b b YT-

A prediction equation can be written for the process z, if the input V is considered known. This

predictor follows from Section 5 but now includes a weighted combination of past inputs 1.

P P

•r - 1 xr- + > b, yT-i

Similarly, a prediction equation for the V process with x known is generated by extending (61) to

include a weighted combination of past inputs V.

P P

i- i yi+ i -i
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The vector process [zT,yT has a structure similar to the scalar AR processes discussed earlier.

Prediction errors are now vectors and covariances are matrices. The ARMA lattice estimation

algorithm follows the scalar LSL or SQNLSL algorithm but the quantities are now vectors and

matrices. The reflection coefficient has become a two by two matrix. Further details are found in

(Lee et al, 19821.

%
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7. SQUARE ROOT NORMALIZED LEAST SQUARES LATTICE

The complexity of the recursions can be reduced and the numerical properties of the vari-

ables improved by rewriting the Least Squares Lattice algorithm in terms of normalized variables.

The Square Root Normalized Least Squares Lattice, (SQNLSL) developed in [Lee, 19801 has only

three recursions per order for each time sample where all three variables have unit variance. The

reduction of the LSL into the SQNLSL requires two types of normalizations. A variance normali-

zation scales the variables by their respective variances. A normalization by the optimal weight-

ing factor using the likelihood variable, - is also necessary. A brief development of the SQNLSL

is presented here; see [Lee et al, 19811 for more details.

The forward and backward prediction errors when normalized become Vi,r and 17, r respect-

fully. The normalizing factors are the square roots of the variances, air and 4 r and the square

Z root of the optimal weighting factor ( 1 - "Ii-. r-1

11iT = A. ('i ) -1/2 ( - - r)-1/ (64)
+, r-T_1 b,, r_1 ( O r_1 ) -1/2 ,l r_1 )-1/2

By combining the two reflection coefficients from the LSL, the normalized partial correlation, pi, r

is defined like a correlation coefficient. This single parameter is the new reflection coefficient.

Pi+ (I,, ) -1/2 ",+lT ( , ) -'/ (65)

First the recursion for the partial correlation (65) will be developed from the LSL algorithm.

The variances of the prediction errors (with exponential weighting X ) has a time-update recur-

sions given by (63).

If IrX ad.- l
By dividing by 01',r and using the definition for vi,r, the time-update for the variance can be

related to the new variables (66). A similar relation (67) exists for the backward prediction error

variance.

b IO',,T _ / a',T, - 1 - ', r(68)

,./ .- I -i, (67)

The time-update recursion for the normalized partial correlations are obtained by substituting the

*- * , - ". * . .. . ."..,, . . .' . . . ., '. ¢, , -k. ,, . . . . .
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expression for Aj, 1.r (57) (including the exponential weighting X ) in (65).

• . .,T + 1 - lfi-1,T

.,6i, r-i f ,,r

0 - r ) -1/2 ( X A,+1._ + b.1  T r- i ) -1/2 (68)

The first term is replaced by the definition of pi+ 1, r-1 and the second term is vi, 7 y .r-1.

, P,+,.T - X ( U/.T) -,/ -,,1/2 P,,-, ( rT 2 ) -1/2 ( T ) 1/2

+ vi,r I.Tr-i

Using (66) and (67), the new time-update equation for the normalized partial correlation simplifies

to (69).

p,+z~~r " { t- , .r ~)1/2 p,+ .- 1 , )1/2 + . ,rz{0

Now the lattice recursions can be written in terms of these new variables. The order-update

recursions for the forward prediction errors (42) can be written using the normalized partial corre-

lation.

(1 - iT,._)_)
1 /2 V,+ .r (O' 1,T)'/ 2 - (o/./a (V,. - P, . ',-,)(1 - ,_,r-z)/2 (70)

To simplify this expression, two order-update equations from the development of LSL are needed;

for the likelihood variable (47) and for the prediction error variances.

/+/ I lr = 1-pi+,,7

Using these relations, (70) can be reduced to a simple expression for the normalized forward pred-

iction errors (71). A similar development for the backwards prediction error leads to (72).

',+ .T = ( I _ p ,. r)-,/2 ( V1. -_ ,+,. 1 , - ) 1,, r_ - y,.- -/1 71

N+ - (1 - P+i.r )-,/ 2 ( ,r-i - P+i,r V,. ) (r 1 - Ir )-/2 (72)

The lattice recursions have now become three equations, (69), (71), and (72) that compute the

normalized prediction errors, (v} and (oi}, and the reflection coefficients, {p) for each lattice stage

and for every data sample. Proper initialization is required to start the recursions with unit vari-

ane quatities.

,, . €" " ," " , ,.. , • 4' 1, - 4 • .V" .,, ." " - . ,- ,- " , . ., . . . . . . . ... . . ,-,.
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The reflection coefficients in the SQNLSL still have magnitudes bounded by one but now

the prediction errors are also bounded. The complexity of the lattice recursions has been reduced

from six recursions to only three recursions per order and time update. Square root operations are

required. They can be efficiently computed by bit recursive algorithms such as the CORDIC

technique (discussed in the next section). Simple recursions and their potentially better numerical

behavior, makes the SQNLSL algorithm preferable over the unnormalized LSL version.

The SQNLSL just developed applies for exponentially weighted data. However the

exponential weight X in (68) is not evident in these recursions. By combining the three time-

update recursions for C/r, acr and Ai+1.r into one recursion for pi, 1,r, the effect of X is carried

through unseen. When a new data sample is used, the exponential weighting is applied to the

sample variance estimate. ALGORITHM 4 summarizes the Square Root Normalized Least

Squares Lattice (SQNLSL) estimation method. The sample variance Rr is initiiAized to some
_S

value a, to avoid dividing by zero.

Although SQNLSL is a very powerful and compact algorithm, the necessity of computing

square roots can lead to problems. The fixed point error analysis of this algorithm [Samson and

Reddyl indicated that finite wordlength arithmetic computation of the square roots lead to small

biases in the reflection coefficients. This bias was more predominant than the variance of the
".:

error in the estimate and generally quite small. The bias increased as the wordlength became

shorter or the exponential weighting factor X approached one.

'% %
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ALGORITHM 4:

Square Root Normalized Least Squares Lattice (SQNLSL)

Exponentially Weighted Scalar Data

Input Parameters
P - maximum order of lattice filter
X - exponential weighting factor (usually .98 to 1.0)
or - prior variance

- data sample at time T

- ." Variables
RT = estimated variance of z
PS,T = reflection coefficients
v,,, - normalized forward prediction error

-,r = normalized backward prediction error

Initialization
R. a + .

, ".: v... = .. = I .

p,, 0 1< i <P

ITERATION FOR EVERY NEW DATA SAMPLE

New data sample sr and previous results Ili, r-i , pi+ 1,r-, Rr-1

RT -X )RT.. + zi

(..r- -1.r " ZrlVr

For each stage of the lattice, i - 0 to min(T,P)-I

'. .q - P ,/ P.+.- + -",.. ,._-

- -

' ' '  ".-,

."" i, ,. ,-, .'. . .• - .. . . . "- " . . • -" " " " " . -" " . - . ."- . - . . ., y, ,?. ,', r..-'r.ml.+1 7'. ". .T,'..,.".,.,". ',,.;.'..">/.,".... . .:"'
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S. COMPUTATIONAL COMPLEXITY AND CORDIC ARITHMETIC

The complexity of the lattice filter is greater than the equivalent tapped delay line filter,

,'.i However the lattice filter has many advantageous properties not shared by the simpler filter.
.'4

Similarly the adaptive lattice filter has a few more operations than an adaptive tapped delay line

filter. Table 1 compares the computational complexity of several adaptive estimation algorithms.

The lattice methods require three to six times as many computations as the simplest adaptive

tapped delay line filter (LMS). However this increase in computational complexity provides for

substantially faster convergence, better numerical properties of the coefficients, and an assurance

of a stable filter. The complexity of several adaptive algorithms is presented in the following

table. The scaling by a constant weighting factor, eg. X or P is usually approximated as a shifting

by a power of two. Thus this fixed scaling is not included in the count of operations. The LMS

algorithm is the tapped delay line gradient least mean squares technique. The gradient lattice

algorithms is (22) and (18). ALGORITHM 3 is denoted LSL and ALGORITHM 4 is called

SQNLSL. The number of operations are counted for executing a single filter stage on a single

data sample. To process T data samples in an N-th order filter would require NT time as many

computations.

TABLE I Computational Complexity

Algorithm X - V *

LMS 2 0 0 2

Grad. Latt. 6 1 0 6

LSL 6 6 0 7

SQNLSL 10 2 3 6

The SQNLSL algorithm is the most complex of the algorithms, requiring three square roots,

ton multiplications, and two divisions to execute an update for each stage in the lattice for every

new data sample. However, the SQNLSL has a very compact form with only three equations

.---
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involving variables that have constrained magnitudes. The implementation of the SQNLSL equa-

tions in hardware would require special multiplier hardware for fast execution or would require

considerable execution time on general purpose microprocessors. Even using shift and add instead

of multiplication and Newton's method for square root operations would require considerable exe-

cution time.

By interpreting the lattice equations as rotations, an efficient realization of the square root

-; normalized lattice algorithm using CORDIC arithmetic was developed in [Ahmed, 1981(1)J. The

COordinate Rotation Digital Computer (CORDIC) developed in [Voider] is an iterative algorithm

for computing trigonometric functions, multiplications, divisions, and square roots. The CORDIC

*' algorithm interprets the above functions as rotations of a vector in different coordinate systems.

The rotation is implemented by a sequence of shift and add operations. This type of arithmetic is

not new; it has been used to compute trigonometric functions and their inverses in hand held cal-

culators. Many other signal processing algorithms, such as DFT and matrix inversion, can also be

implemented in arrays of CORDIC processors [Ahmed et al, 19821.
'

8.1 CORDIC Arithmetic

The well known equation for rotating a vector [z., Mi to a new vector [zi, 1, i,+ jTr uses

the sne and couine of the rotation angle 0.

t +[co(O) #in() 1
1+,+iJ s- ) ce()}J [i]

Four multiplications by two trigonometric quantities are required. This operation can be made

more amenable to fast computer implementation by modifying this equation into a sequence of
-4

small rotations of a specific form, each implemented using only additions and shifts.

CORDIC arithmetic was unified into a single equation [Walther) that allows rotations on

either a circle (mmi), along a line (mmO), or along a hyperbola (m--i). The incremental unit

of rotation at the i-ti iteration is the predetermined sequence (16) and pi - * 1 that determines

the direction of rotation.

[ [+1 (78)

02 
- .
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The (6.) must be chosen to satisfy certain constraiuts that assure convergence of the iterations.

To obtain computational efficiency on current computer hardware using binary representations, a

negative integer power of two is chosen for 6j. This allows the multiplication by 6i to be per-

formed as a shift.

The effect of (78) is a rotation and a change of scale interpreted in the appropriate coordi-

nate space. The vector [so, Yoj can be represented as a generalized radial component Ro and a

generalized angular component, o.

"| R0 - /4 + -,g

"- 40 - Im" tan-'(YoVN/Z0)

For the circular rotation, this is a true polar coordinate representation. Performing the operation

in (78) scales the radial component by r, - VI T+mbT and changes the angular component by
"° ms m

- / 2

-mi tan'(6 m') . After p iterations, the new radial and angular components are R. and

.- D

- R, - R0 1I - Ro 1VI-+ m6' (79)

4, - $0- A , - #0- ,s, M-1/ 2 tan-'(6, )

The convergence of the iterations and the efficient implementation of the rotations depend

.4, critically on the predetermined choice of 6,. Each type of rotation, (m - -1,0,+ 1) has a

different predetermined set of positive increments (6,) which specify fixed radial and angular

increments (r,, 4j) from (79). Within the domain of convergence (limited by the total possible

rotation) constraints were developed on the sequence {,) such that any angle 4 could be rotated

to within 0.-1 of zero in p steps [Waltherl. This guarantees that the granularity of the calcula

tio (the angular resolution) is Op-, in p steps. With the proper choice of the set of increments

{- , each successive iteration yields approximately one more bit of accuracy in the deal result.

The CORDIC equation, (78) is augmented by an additional variable, z, that accumulates

the angular component of the rotation.
4..

S' SO -o- Is'o (so!

%i m%
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%  °  

" 
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The three parameters (z,Y,z) are manipulated by successive application of the CORDIC equation.

The function to be computed is obtained by forcing either y or z to zero. Often the initial value

of the other variable, z or y is zero or one. The sign of the rotation, pi is chosen at each itera-

tion to move the desired parameter towards zero. Rotation operations are obtained by forcing z,

to zero. and vectoring operations result if yp, is forced to zero.

4 The interpretation of (78) as. a rotation on a circle, fine and hyperbola can be seen from a

graphical perspective. For example, a circular rotation (m=1) of a vector [Z., y,0 r into the vec-

tor [zp, 0 1j computes tan y./s.. The direction of rotation p# is chosen at each iteration to

force yh closer to zero. The sequence of small angular step, {0), predetermined by (6j), is accu-

mulated with appropriate sign in z,, giving the answer. Fig. 8a indicates how this rotation

proceeds. The radius of the circle increases a predetermined amount ri with each rotation step.

It is not necessary to account for this change in radius when computing tan-l./:,. However the

value of x, has become a scaled square root where the scale factor is known in advance.

V67:0 + OrAz i.

The three input/output box of Fig. 8a is used to describe the function evaluated by the CORDIC

rotation. With a nonzero initial value of zo, forcing zi to zero generates sin(zo) and cos(zo), see

Fig Sa.

For a rotation on a fine, the radial component is always one and the angle component is

interpreted as the y, value. The increments become ri - 1 and 0i - 6,. The result of applying

the CORDIC operation is shown in Fig. 8b. Multiplication and division can be calculated this

way.

The hyperbolie rotation computes *nk, cooh, arclan and square roots, see Fig. Se. The
.4

surface of rotation is the set of point that is a constant distance v5zy 1 z from the origin. This

hyperbola moves a fixed amount, V'i-7 closer to the origin after each CORDIC operation.

.'%

.6
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8.2 Lattice FUtering by Rotations

The square root normalized lattice equations have a natural interpretation as rotations. The

three recursive equations can be efficiently realized using CORDIC arithmetic (Ahmed et al,

"" 1981(1), 1981(2)1. The structure of the SQNLSL algorithm suggests an implementation via rota.

tions. Since v, p, and Vp always have magnitudes less than one, they can be interpreted as cosines

of angles. Furthermore, if z = co8(,), then the complement of z is z" = l = sin($,).

The SQNLSL equations can be written using a compact notation.

=i++, VI == 77 %/I - 7.7, Pi+1,,-, + J~i,7 9 -1  "+ = V?1P + V17

'i+",T - vi r - Pi+ 1,rnh.r-i -+ (V - P+17) /P+ q

0 Pi+ 'i "

,,,T '7-i,T- - Pi+iTrVi,' h(l -P+ V)I4",C

For notational convenience, the following abbreviations were used.

P M Pi+i,y-i P+ m Pi+ir

V - Vi, , '+ V+i,

9 s Ili, -I , 17+ ?s h+lT

The SQNLSL update equations can be written almost entirely in a single matrix equation (81)

using the rotation matrices for v and q.

I-Li ~ 1 iie [, 9 -' ~1J.L'PV ' - PV P+ 17+(81

blop 0 1: 1 " -:' I+
On the left hand side of (81), the first matrix performs a rotation by 0, - cos-(v) and the third

. matrix rotates by , = coo-(#). The result is the complete update for p and partial updates for P
"I
-4

*and q and a term (*) of no interest. The updates for v and q are completed by dividing by p".

Thi matrix equation (81) is directly realizable using CORDIC operations.

The implementation of the SQNLSL algorithm in an integrated circuit proposes using two

procesms in parallel, each executing sequentially Ave functions, jAhmed et al, 1981(1), 1981(2)).
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The computation proceeds from (81) in three step; an angular rotation by 0, the multiplication of

p matrix by the q rotation matrix, and the divisions by p+'. The sequence of CORDIC operations

shown in Fig. 10 begins with p, q and P and computes p+,'i+ and v,. The functional elements

use the notation of Fig. 9. The rotation angle 8, is calculated as tan-'(v/ve) using a circular

CORDIC operation by processor 2 in time slots 1 and 2. Rotating the p matrix by 0,1 is computed

as two multiplications (linear CORDIC): p t1e by processor 1 during time slots 1 and 2, p 17 by

processor 2 in time slot 3. These quantities are rotated by 90, using circular CORDIC operations

in processor 1 (time slot 3) and processor 2 (time slot 4). This generates the p update and partial

updates for v and q. In time slot 5, the processors generate the updates for v and q by dividing

the earlier results by p'. The signals that flow farther than adjacent time slots must be held in

temporary buffers. Each CORDIC operation uses 16 iterations and results in almost 16 bits of

-. accuracy. The integrated circuit could perform the SQNLSL algorithm of tenth order on an 8

- KHz. sampled signal in real time. This assumes standard integrated circuit design rules to gen-

erate a moderate size chip running at a 20 MHz. clock rate.

I'
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9. SIMULATIONS AND APPLICATIONS

SIMULATED SIGNALS

Simulated signals with different characteristics were generated and the response of the lat-

tice estimation algorithms noted. The simulated signals included white noise drive autoregressive

processes that were (1) stationary, (2) had linearly time varying coefficients, (3) had step changes

a'. in coefficients, and (4) had impulse excitation at the step changes in coefficients.

For a stationary autoregressive process, the convergence of the least squares lattice method

is shown in Fig. 10. An eighth order fixed coefficient lattice filter driven by white noise generated

the simulation data. The LSL algorithm with X=.99 was used to compute the reflection

coefficients. The first reflection coefficient converged in less than 50 samples and the first four

reflection coefficients were near their correct values after 1.50 samples. Higher order reflection

coefficients approached their correct values after 250 samples.

When the simulated data was generated by a white noise driven second order lattice with

linearly time varying coefficients, the adaptive nature was be seen in Fig. 11. The two reflection

coefficient estimates followed the actual parameter values. However, there was an increase in the

variance of the estimate as the reflection coefficients approached zero or as the coefficient index

increased. The previous experiment was repeated with piecewise constant coefficients to generate

the simulation data. The estimated reflection coefficient trajectory did not indicate that the

model had step changes in the coefficients, see Fig. 12.

The effect of the optimal weighting function y' was seen when the simulated data was gen-

erated by the same lattice with step changes in coefficients but also had a periodic impulse added

to the white noise driving process at the instant of coefficient change. The presence of the

impulses caused the estimates to readjust quickly to the new piecewise constant values, see Fig.

13. The impulse caused a sudden increase in the -1 which allowed the estimates to focus on the

new signal characteristics. Once the elfect of the impulse has passed, the -f decreased so that con-

vergence could take place.
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APPLICATION FOR SPEECH ANALYSIS

The most extensive use of the lattice filter has been for speech processing applications,

including speech compression systems and stored vocabulary speech synthesis chips. Reflection

coefficients and the lattice filter are well suited for speech processing for many reasons; the rela-

tionship to the acoustical tube model of the vocal tract, the advantageous quantization properties

of the reflection coefficients, the finite word length arithmetic properties of the lattice filter, and

the slowly time varying nature of the reflection coefficients across speech sounds (making them

amenable to interpolation).

Linear Predictive Coding (LPC) is a technique that has been used widely for low bit rate

speech coding and fixed vocabulary speech synthesis. LPC uses a vocal tract model, the lattice

filter parameterized by reflection coefficients and an excitation model, periodic pulses for sounds

N produced by vocal chord oscillation (eg. vowels) and white noise for hiss sounds. Short time seg-

I ments of speech, typically 20 milliseconds, are characterized by eight to ten reflection coefficients,

the pulse period (zero for noise), and an energy term. All of the parameters can be quantized to a

total of 48 bit per 20 millisecond interval. Using this compact description of sounds, speech syn-

thesis integrated circuit have been developed that generate understandable speech using parame-

ters store in read only memory.

Analyzing a spoken vowel sound by the LSL algorithm shows the properties of the likeli-

hood variable. The time waveform, Fig. 14a clearly shows the periodic nature of this vowel. The

LSL algorithm applied to this sound produces the forward prediction error shown in Fig. 14b.

This relatively stationary sound produced fairly constant reflection coefficients (after conver-

gence), see Fig. 14c. The periodic jumps seen in all five reflection coefficients are due to the

influence of the periodic opening of the vocal chords. The likelihood variable, -1 usually is small

~ .but increases when these openings occur, Fig 14d. When the vocal .;hords open, a sudden pulse of

air excites the vocal tract which the likelihood variable interprets as a change in the structure of

the signal. Determining the periodicity of these openings, called the pitch period is necessary of

the LPC speech model. Pitch pulses can be located directly from the prediction errors but do not
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always give accurate results. The periodicity is evident but not easily extracted from Fig. 14b.

By combines the derivative of the likelihood variable -f with the prediction error sequence, a more

easily discernible spike is generated at the onset of vocal chord oscillation, see Fig. 14e. This

technique has been proposed as a pitch estimation method [Lee and Mort, 19801.

Since the recursive exact least squares lattice algorithms can track quickly changing spectral

characteristics, they can be used to differentiate the nature of transitional sounds [Turner, 19821.

By exponential weighting of past data, the current estimate reflects the short time signal charac-

teristics. The beginnings of the words 'bid' and 'did' spoken by the same male speaker are shown

in Fig. 15. When analyzed by the SQNLSL with X = .98, the reflection coefficients for the begin-

ning of each word follow different trajectories corresponding to the different consonants. How-

ever, during the later vowel portion, the values are more similar, see Fig. ISb,c,e,f. The transi-

tional part of the sounds is emphasized but the effects of the pitch pulses are also seen. The abil.-

ity of the SQNLSL to differentiate these types of sounds may be useful in a phoneme based

speech recognition systems.
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APPLICATION FOR CHANNEL EQUALIZATION

The adaptive lattice filter offers substantial advantages for channel equalization where the

ortbogonalizing properties and fast tracking characteristics are important. Tapped delay line

!II adaptive gradient equalizers, although simple to implement, have a rate of convergence that

depends on the ratio of the largest to smallest eigenvalues of the channel correlation matrix [Git-

lin et al, 19731. Self-orthogonalizing techniques have been proposed by [Gitlin and Magee, 19771

and in lattice form by [Griffiths, 1977, Griffiths and Medaugh, 1979(2)1. The gradient lattice

equalizer [Satorius and Alexander, 1979(2)] and the LSL equalizer (see Section 6) [Satorius and

Pack, 19811 have been shown to provide very fast convergence. The lattice filter equalizers

demonstrated fast convergence that was independent of the channels eigenvalues disparity ratios,

see Fig. 16 from [Satorins and Pack, 19811. Two simulated data channels with correlation

matrices of eigenvalues disparity ratios (ratio of largest to smallest eigenvalues) of 11 and 21

respectively were studied. An 11 tap equalizer was implemented using the LMS gradient algo.

rithm, the gradient lattice algorithm and the LSL algorithm. The gradient tapped delay line

equalizer had considerably slower convergence that depended on the eigenvalue ratio. The LSL

equalizer converged in both cases in approximately 40 iterations while the adaptive lattice equal-

izer required approximately 120 iterations to converge.

,,. ..
.
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APPLICATION FOR ELECTROENCEPHALOGRAPHIC ANALYSIS

Electroencephalographic (EEG) data analyzed by autoregressive modeling can provides a

better summary of EEG spectral information than frequency domain techniques, such as FFTs.

The reflection coefficients from the SQNLSL algorithm were studies to detect subtle changes in

* brain states as observed in EEG activity IRedington and Turner]. The data obtained from the

left central EEG (CI) response of an adult human subject monitored during sleep onset (sampled

60 times a second) is shown in Fig. 17a. A large change in activity appears near the beginning of

the raw EEG data trace and is apparent in the reflection coefficients, Fig. 17b,c,d. A second

change in activity near the end of the trace is barely noticeable in the raw data; yet, it is easily

recognized in the activity of the higher order reflection coefficient. The changes in reflection

coefficients may reflect physiological transitions and provide a means of inferring presence or

sequence of EEG brain states.
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10. COMMENTS AND CONCLUSIONS

The lattice filter structure as a realization of a digital transfer function has several advan-

tages; it is a cascade of identical sections, has a general insensitivity to round-off noise, and the

reflection coefficients can be related to physical processes. The physical interpretation of

reflection coefficients gives them intuitive appeal, particularly (or speech signals. For adaptive

* estimation, the lattice structure is the natural form for an efficient solution to recursive least

squares problems. Lattice filters provide an orthogonalization or decoupling of the states of the

input process. The stability of an all pole model when expressed in lattice form can be deter-

mined by inspection.

The real advantage of the lattice structure lies in adaptive estimation and filtering. An N

stage lattice filter automatically generates all the outputs which would be generated by N

- different TDL filters with lengths from 1 to N. This allows dynamic assignment of any filter

length which proves most effective at anyr instant of adaptive processing. When compared to the

* simpler adaptive transversal filter, the lattice filter has superior convergence properties and

.4 reduced sensitivity to finite wordlength effects.

Recursive lattice estimation algorithms allow the exact least squares solution to be

efficiently updated for each new time ample. The structure of this exact recursive approach is

similar to the gradient lattice techniques; however an optimal gain is calculated at every time

sample. This optimal recursive solution has a complexity that is only slightly more that the gra.

dient lattice solution. Consequently, the LSL and SQNLSL algorithms achieve extremely fast ini-

A tial conivergence and ca track quickly time varying parameters. The SQNLSL has a very comn-

pact notation and normalizes all signals to unit variance at each stage. A single integrated circuit

to execute this algorithm has been proposed.

However, as with all adaptive estimation procedures, there are various trnade-offs to be made.

The lattice structure involves more computation and is conceptually more complicated than the

tapped delay line structure but has better convergence properties., The recursive least squares lat-.

%...........................
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tice offers even better convergence than the gradient lattice, but again it is slightly more complex.

For example, in the definition of the two reflection coefficients, there is a difference in the time

subscripts of the normalizing covariances. In the stationary case, these terms are identical but in

the LSL the difference is critical; in general the algorithm will fail if this difference is overlooked

[Satorius and Shensa, 180J. The SQNLSL allows a very short time constant to be applied to the

sampled data so that the quickly time varying nature of the signal can be tracked. However,

attempting to track transient speech sounds also tracks the pitch excitation signal which was not

of interest. For processes that tend toward stationarity, the convergence properties of the gra

dient lattice and LSL lattice are similar [Honig, 1963).

Many extensions to the basic recursive least squares algorithm have been developed.

Reviews of least squares adaptive lattice filtering can be found in [Satorius and Shensa, 1980,

Friedlander, 1982(3)1. Recursive ladder algorithms for ARMA modeling have been presented in

* [Lee et al, 19821. The SQNLSL algorithm has been extended from the "pre-windowed" data case

presented here to the "Covariance" data case in [Porat et al, 19821. The problem of system

identification has been addressed in [Porat and Kailath, 1983J. A review of lattice filters for nons-

tationary processes was presented in [Kailath, 1982,.

4+ There are other means to implement the lattice filter structure for estimation. The order-

update recursions can also be obtained by using a Cholesky decomposition of the covariance
matrix (Dickinson, 1979(l), Dickinson and Turner, 1979(2), Klein and Dickinson]. Alternatively,

. since a reflection coefficient is similar to a correlation coefficient, computationally simple tech-

niques to estimate correlation coefficients can be applied to determining the reflection coefficients.

" Since the correlation of Gaussian random variables is related to the correlation of the hardlimited

variables by an ARCSIN relationship, a very simple reflection coefficient approximation technique

is possible [Turner et al, 10801. This algorithm requires only a count of polarity changes in the

prediction errors to estimate the reflection coefficients (assuming zero mean unit variance Gaus-

sim Signals).

Overall the adaptive lattice filter offers a compact algorithm for obtaining quickly converg-

-----------------------------------------------------------
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ing estimates. The properties of the lattice filter and reflection coeflicients motivate their use in

4 many practical situations.
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