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1. INTRODUCTION

LAt

The lattice filter structure is an alternative means of realizing a digital filter transfer func-

5
ey

tiomns. Although the lattice flter structure (also called the ladder structure) does sot have the
‘minimem awmber of multipliers and adders for a transfer function realization, it does have several

advantageous properties. These include cascading of identical sections, coeflicients with magni-

e DLk

tudes less than ome, stability test by imspection, and good mumerical roundoff characteristics.
Moreover, the lattice fiter structure is particularly suited for adaptive fltering since the recursive
solution of least squares estimators maturally produces a Iattice Biter structure. Also the lattice
filter structure orthogoualizes the input signal on a stage by stage basis. This leads to very fast
coavergeace and tracking capabilities of the lattice structure. Although maay alterastive tech-

PR -

N

niques have beea developed to estimate the reflection coefficients that parameterize the lattice
strecture, the recursive least squares method updates the least squares estimate upoa the obeerva-
tion of each data sample. This procedure leads to an optimal estimate and requires ocaly slightly
Q’ computstional burden thaa alteraative techniques.
This overview presents the derivation of the recursive least squares lattice filter using »
secursive extension of the standard block data Levinson least squares solution. The linear predic- —)

% This work was partially supported by the Office of Naval Ressarch under Contract NOSOI(-85-K-0008 and
- “ummwbymwmAMlmmmmukcom
MDASS-00-K-0082
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iC \\1 tor Blter presented here has been widely used for synthesis of speech wavelorms (LPC), deconvo-
G . Jution of seismic data, high resolution spectral estimation, adaptive line enhancement, adaptive
‘ . noise cancelling and adaptive antenna array processing. The ideas embodied in this estimation
:ii technique are derived from the work of many individuals since 1970. The approach presented
‘ ‘ here follows that of [Lee, 1980). N\
o
i}: Adaptive estimation techniques modify the estimation filter parameters according to the
\:.E pewly observed data sample. For every new data sample, recursive estimation using the lattice
, o filter generates new reflection coeflicients and prediction errors for every filter order. Changing
W every filter coeflicient for each new data sample is important for applications where fast coaver-
1. geace or tracking of quickly time varying signals is required. However, for applications where the
A dynamics are siow, only the results after observing the signal for a certain time period are impor-
'}Q tant. The recursive algorithms described here can also be used to accumulate signal properties
s i‘? - over a particular time period. The procedure for converting between [attice filter coeflicients and
‘m . the more common equivalent tapped delay line filter coefficients is given in Section 2.
1 : The mathematics of recursive least squares estimation requires the updating of variables
; with time and order subscripts. The algorithms for this are often complicated. Therefore, an

intuitive introduction in Section 3 presents the nature of the lattice filter structure, the stage by
stage orthogonalizing property, and analogies with physical phenomena. Section 4 briefly presents
approximation techniques for determining the reflection coeflicients from observed data. The
advantage of the lattice flter structure is that lime recursive ezact least equares solutions to esti-
mation problems caa be efficiently computed. The development of the Recursive Least Squares
Lattice estimatioa algorithm is presented in Section 5 and 6. A square root normalized least
squares lattice algorithm that has better numerical properties is presented in Section 7.

- The computational complexity of these algorithms is discussed in Section 8. An eflicient

means of implementing the recursive least squares algorithm using rotational arithmetic is

o presented. This rotationsl arithmetic, called CORDIC arithmetic, is not new, having been wsed
';] for calculating trigonometric functions in haad held calculators. The design of an integrated cir-
. *
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1-". cuit chip to implement the least aquares lattice algorithm using CORDIC arithmetic is mentioned.
13
“ . To demonstrate the power of this adaptive estimator, simulation examples of convergence
E:j and tracking, examples using real speech data and electrophysiological data and adaptive equal-
‘e
F. izer examples are presented in Section 9. Since recursive least squares estimation and lattice filter
structures have been a very active area of research, Section 10 refers to related ideas.
\‘
’\
:;} Since the equations developed here are recursive in order and time, the following notation is
N _ﬂ
- used. A variable 3(¢) is a general time sampled data value while 2z is the specific data sample T
\ samples after the beginning of the recursion (relative time T). Bold capital letter variables
E} represent matrices or vectors. When two subscripts are used, the first is the order and the second
~
} »‘ is the time parameter, ie. A; t is the vector of i-th order predictor coeflicients determined from

data wp to the specific time T.
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3. GENERAL LATTICE DIGITAL FILTER STRUCTURE

_.,,,_
ARNGAD (VY

The general lattice digital filter is 3 means of realizing a digital flter transfer function. The

lattice structure itself is motivated by similar analog Blter structures that have good properties.

SRR

In this section, the digital lattice filter is introduced and related to the direct form tapped delay

A

line digital flter.

2P eRA

L4

Since analog lattice and ladder fiters have desirable characteristics, digital filters with simi-

* lar structures were investigated. For example, third order LC Bautterworth filter shown in Fig. 1a
; is & simple analog lattice-type structure. It is noted for the relative insensitivity of its frequency
;» response to slight perturbations of the circuit element values around their nominal values. This
structure can be transformed into the general lattice network shown in Fig. 1b. The latter is the
3: lattice structure of interest in this chapter. The analog lattice structure consists of a cascade of
] identical stages, each stage with  pair of input and output terminals.- By developing  digital
‘ Slter configaration that is similar to the aaalog lattice structare, the digital filter inberits many of
’)‘ " the same properties. Simce the structure of a digital Slter realization influences its sensitivity to
%‘? finite word length arithmetic, the digital lattice filter has good aumerical properties.
N The digital Iattice Slter realizations consist of cascaded stages with two input and two out-
“» put ports, as in the anslog structures. Possible digital lattice configurations for realizing s general
} digital transfer function include: an asymmetric multiplier form (Fig. 2) and a symmetric two
- multiplier form (Fig. 3). For the asymmetric multiplier lattice, the structure inside each stage
realises a single pole aad zero equivaleat traasfer function. The algorithm for determining the
ssymmetric multiplier strecture of Fig. 2 caa be found in [Mitra et al, 1977]. This form degen-
. orates to a tapped delay lime for either all pole or all sero transfer fuactions aad thus is not of
i interest here. The symmetric two multiplier form does not degenerate but it requires more multi-
X - pliers than 28 equivalent tapped delay line filter. This lattice fiter can be modified t0 3 one mul-
- tiplier form 90 28 o have the minimum number of multipliers, but this requires extra adders (Fig.
%)
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‘: A cascade of lattice sections, forming a lattice filter can implement a digital transfer func-
{L . tion in a way that has advantages over the standard direct form, paralle], or standard cascade
.:, form realizations. The cascaded structure in the lattice filter propagates a forward signal f;(¢)
:‘ and a backward signal §;(¢) at time ¢ and section number j. The fundamental equation describ-
_ ing the lattice @lter structure is (1), see Figure 4.
o
2 Tyt = £8) - Bias 6-1) (1)
oy by a(t) = bj(t-1) - by n £,(¢)

The multipliers in the crossover portion of the lattice, k; are known as reflection coeflicients or
it ) partial correlation (PARCOR) coefficients.
g:' The implementation of digital filter transfer functions in lattice form have been examined
jlc [Gray and Markel, 1973,1975]. State space canonical forms were also established [Morf, 1974,
Q Morf et al, 1977, Lee, 1980]. ALGORITHM 1 determines the reflection coefficients & and tap
'2,? . coefficients v; for the lattice filter of Fig. 3 that is equivalent to a (stable nonreducible) direct
: form transfer function with sumerator coeflicients b] and denominator coeflicients s (from |Gray
? . aad Markel, 1973]). The ome multiplier form in Fig 3b uses coeflicients v/. Although the lattice
t coeflicients and the direct form coefficients are related in a nonlinear manner, this algorithm is
k invertible 0 that a lattice structure can be comverted uniquely to a direct form filter and vice
?,: versa (when all the roots are inside the unit circle).
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While Fig. 3 aad ALGORITHM 1 describe the lattice Ilter‘ for a general transfer function
with poles aad serocs, the remainder of this chapter discusses all pole transfer functions and their
;f inverses, all 3e10 transfer functions. For aa all pole transfer function (b = 1, l,’ = 0, >1), the
lattice Blter is called the feedback lattice fiter shown in Fig. 4. The inverse of the feedback lat-
- tice can be determined by applying Mason's rule to Fig. 4. This finite impulse response Slter, an
all sero tramsfer function, is the feedforward lattice (Fig.5). Thus a feedforward lattice and a

P NN

Al

foedback lattice with the same coefficients perform inverse operations on the input signal. If a

o i

signal is spplied to a feedforward lattice flter and the result is applied to a feedback lattice filter,

the original signal is returned. According to Mason’s rule, the reflection coeflicients parameterize

* both the foedback and fesdforward Iattice with the appropriate chaage in signal flow. ALGO-

- RITHM 2 gives the procedure for converting from reflection coefficients to tapped delay line

coefiicionts where the sigaal flow specifies whether the all pole or all zero transfer function is
, et
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. Lattice Coeflicients to Tapped Delay Line Coeflicients

s& '1l =~ k)

Yty I Fori =2t P

A

.ﬁ% .d‘ - - ki

iyl For j = 1to i-1

. o = o - k of]}

A ?. continue

£S5 continue

B2 END

¥

A The coeflicient sensitivity of the lattice implementation of a general digital transfer function
R

ié’; has not been studied as thoroughly as other common filter structures. Scaling coaventions
N

T [Markel and Gray, 1975(2)] and roundoff noise characteristics [Markel and Gray, 1975(1)] for finite
5jL wordlength arithmetic were developed for various lattice configurations. The one multiplier lat-
g tice has roundoff noise characteriatics that are always better than the two multiplier lattice. Both

lattice fliters are always better thaa the direct form reafization. Particularly when the width of
. the filter pass band becomes small, the The Iattice Biter structure has better roundoff noise

characteristics thaa other fliter realizations, particularly whea the width of the filter pass band

becomes small. A mormalized lattice filter (requiring more multiplications) was developed that
performs better thaa the other lattice structures or parallel form realizations.

The implementation of a transfer function requires quantized coeflicients that caa effect the

— stability of a Glter aad its inverse. The senmsitivity of the roots of the transfer functioa to pertur-
1"‘ bations of the lattice Slter and tapped delay line filter coeflicients has been investigated [Che and
I Messerschmitt, 1080,1083]. The eflect of varying the tapped delay line Slter coeflicients was the

| same for each coefficient. When the roots are close to the uait circle, quantization of the tapped

R delay line coeflicients tends to move the roots perpeadicular to the unit circle. For aa all pole
N - transfer fanction, this quantization caa cause the poles to move outside the wnit circle aad the
. . transfer function to become uastable. For lattice fiiters, the effect on the root location of varying

the Jow order conflicionts is | weh grester than for the higher order coeflicients. For reflection

coolicionts, the rvwv ten. t0 move taageatially to the unit circle, thus cLaaging the ceater
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frequency rather than the bandwidth of the roots. Low order reflection coefficients, particularly
those with magnitudes near unity need to be more accurately quantized than the higher order
reflection coefficients. No simple rule of thumb exists for tapped delay line filters. The effects of
the lattice coeflicient quantization have been studied most extensively for speech modeling appli-
cations. For typical prediction filters used in speech processing, substantially coarser quantization
of the reflection coeflicients than of the tapped delay line filter coeflicients is possible while still

maintaining the subjectively perceived spectral response.

Fig. la Third Order LC analog Ladder

Fig. 1b General Analog Impedance Lattice
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Fig. 2 Digital Asymmetric Lattice- Pole and Zero Transfer Function

Fig. 3b Digital Symmetric One Multiplier Lattice - Pole and Zero Transfer Function
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S-": 3. PROPERTIES OF THE LATTICE STRUCTURE
_‘ i The lattice filter has a more complex structure and requires more numerical operations to
E:;’ implement a transfer function than the straight forward direct form realization. However this
' increased complexity is offset by several advantageous properties of the lattice structure including;
\ a stability test by inspection, a stage by stage orthogonalization of the input signal, and a physi-
*\-}: cal interpretation as wave propagation in a stratified medium. The lattice filter structure natur-
- ally evolves from a prediction filter where orthogonality conditions are applied. The properties of
the lattice estimation filter are presented in this section. An acoustical tube model of the human
u vocal tract is interpreted as a lattice filter in Section 3.2 to lend a physical interpretation to the
. reflection coeflicients.
§ . » 3.1 Orthogonalising Properties
In early investigations of the lattice structure, a connection with orthogonal polynomials was
ét soted (Itakura and Saito, 1968, Burg, 1975, Makboul, 1975, Markel and Gray, 1976]. Lattice
-’ 4 form realizations are obtained by an orthogonalization of the state-space transfer function using
i;? Szego onhogonﬁ polynomials. The theory of Szego polynomials and their applications in system
%5 theory (stability testing) and in stochastic problems (prediction theory and spectral analysis) has
::__": beea discussed in [Grenander and Szego]. The Schur stability test uses the properties of orthogo-
:j‘ nal polynomials to determine whether the poles of a transfer function are inside the unit circle
;; and hence a stable transfer function. The test is performed by usi;lg ALGORITHM 1 to compute
' the lattice fiiter then checking that the magnitudes of all the reflection coefficients {k;} are less

For problems in estimation, the minimum mean squared error estimation equations cam be

Al
»

transformed into a stage by stage optimization by formiang a recursion on the optimum filter

:E order. The parameter in the recursion can be estimated stage by stage since it depends on quanti-
Y

32 ties that are orthogonal between stages. This orthogonalization property is now developed for the
B
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prediction filter (an all zero transfer function).

For a predictor of p-th order, the data sample at time ¢, z(¢), is approximated as a linear
combination of the previous p samples, z(t-1),..,2(t-p). The forward prediction error f,(t)
must be orthogonal to the previous data samples to attain the minimum mean squared error
value. This determines the weighting factors, {s;} on the previous data.

L(t)=2(t)+ ay2(t-1) + --- +a,2(t-p) (2)

E(f,(¢)2(¢-j)) =0, 1<j<p
The operation E(-) represents the statistical expectation. This prediction error is also called a

prediction residual or an innovation when the coefficients are chosen to attain the minimum mean
squared error. A backward prediction error, §,(¢-1) can similarly be defined to predict z(t-p-1)
from the same samples, z(¢-1),...,z(¢-p).

b,(t-1) = z(t-p-1) + cyz(t-p)+ --- +¢,2(t-1) (3)

E(3,(t-1) 2(t-j)) =0, 1<j<p
Here the {c;} are chosen to satisfy this condition. Notice that both prediction errors satisfy the

same orthogonality conditions.

Increasing the prediction order to p+ 1, £, 4(¢) represents the component of z(t) that is not
predictable from z(t-1),...,2(¢-p),2(¢-p-1). The p-th prediction error uses information up to
z(t-p), 90 now the information about z(¢) that can be predicted from z(¢-p-1) must be included.
However much of this information is already contained in z(¢-1),...,2(¢-p). The backward pred-
iction error J,(¢-1) represents the new information in the sample z(¢{-p-1). The plausible recur-
sion for f,, 1(¢) is (4) where the scalar &/, , is determined 50 that [, ,(¢) satisfies the new ortho-
gonality conditions.

Ly+1(8) = £,(8) - oy by(t-1) L)

E(fy+1(t) 2(t-j)) =0, 1<j<p+1
The only constraint not immediately satislied iavolves 3(t-p-1), and is given by (5). By subeti-
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tuting (3) and (4) in (5), the optimal &/, , is determined (6).

E(fy41(t) 3(t-p-1)) = 0 (5)
0= E(f,(¢) 2(t-p-1)) - k)’*l E(b,(t-1) 2(¢-p-1))
= E(f,(t) ‘p(“‘l)) - kv’+l E("z(“l))
k"i»l - E(!p(‘) b)(“'l))/ E(‘r’(“l» (6)

Similarly, the recursion for the backward predictor is obtained (7) and the optimal &), , is deter-

mined (8).
‘pﬁ- l(‘) - .'(“l) - k:+ 1 f'(‘) (7)
E(by1(t-1) 3(t)) = 0
0 = E(f,(¢) b,(t-1) - koo E(£}(t))
By o= E(f,(t) 4(-1) ] E(}() @)

Extending the prediction filter to the aext higher order, p+ 2 requires the calculation of the
aew prediction errors, f,,, and §,,, from (4) and (7). Thus a prediction filter can be constructed
solely using the lattice structure by succemively increasing the filter order. This is the stage by
stage orthogonalization property of the lattice structure where each reflection coeflicient is deter-
mined separately. This stage by stage computation of prediction coefficients does not hold for the
tapped delay line filter (2). The coeflicients {6,} are interdependent and they all change when
the filter order increases.

Further insight into properties of the prediction errors is provided in {Makhoul, 1978(2)].
The backward prediction error results from a Gram-Schmidt type orthogonalization of delayed
versions of the signal. This property of orthogonal variables makes the lattice structure advanta-
geous for adaptive flltering. Also the decrease in signal energy after each prediction stage is easily
determined. This festure can be used to scale the prediction errors (o maintain good aumerical
properties. The most importaat properties are summarized here.

J=)

A s
E(/,(t) b,(s-1)) = (o 1€i<p )
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N

E(HO) = EU,(0)a(t) = of (10)

b E(£,(t) 1;)) = o] 1<5<p

e,

N EQHt-1) = E(b,(¢-1)z(t-p-1)) = o} (11)
= ’

E(b,(¢-1) b,(t-1)) = {:’ ! ;: )

o

AN c ol =al(1-HE) (12)

? =0 (1-4 k)

N Whea the signal z(-) is stationary with known autocorrelation function, the forward and
’§a backward prediction error energies at each stage are identical (0] = g)). Then the two reflection
'1‘, '\3 coeflicients are equal and the symmetric two multiplier lattice structure computes these prediction

) error recursions. When the signal to be modeled is assumed to be stationary, a single reflection
coeflicient, k is determined by combining sample data estimates of £/ and *. This lattice filter
:;: . with constant coefficients is the feedforward lattice (1) of Section 2. For nonstationary signals,
e adaptive estimates are generated by making the reflection coeflicieats time varying.

'V ‘ The reflection coeflicients are closely related to partial correlation factors which have several
;‘ interesting statistical properties. The correlation between z(¢) and z(¢-p-1), after their mutual
linear dependence on the interveming samples {z(t-1),..., z({-p)} has beem removed is
f“:‘% E(f,(¢) 3,(¢)). This relation arises from the orthogomalizing mature of the lattice. When this
” correlation is normalized by the variaace of f, aad J,, it is known as the p-fA order partial
.— correlation. The autocorrelation function of a stationary wait variance discrete time process can
L be wniquely characterized by a sequence of reflection coefficients, having values less than or equal
t0 one [Barndorfi-Nielsen aad Schou, Ramsey|. For aay p-th order AR process, the partial corre-
Istion of higher order, lsg p + 4, (¢ = 1, 2, . ) is 3ero. For a stationsry AR process, the sample
?’5% estimates of the partial correlations are ssymptotically Gaussian aad indepeadent (see [Murthy

e and Narssimbam] for more statistical properties).
* In applications such as noise cancelling or equalization, the orthogoaalizing properties of the

lattice are of primary interest to obtain fast trackiag or convergence, see Sectioa 8. The back-
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W
N ward prediction errors, b,(f) are extensively used since they are a Gram-Schmidt orthogonaliza-
' . tion of delayed versions of the input time series.

AR

\ ‘ 3.3 Physical Interpretation

""\ ;

}: The lattice structure and the reflection coeflicients have a physical interpretation that for
:_E? particular classes of signals lends ﬁnderstnndin( to the properties of the lattice structure. Model-
'.:.' ing of wave propagation in a stratified medium leads to a cascade of lattice filters. This model
,‘-_:. bas been applied in seismic signal processing by [Treitel and Robinson, Burg, 1967] and others.
».: The physical properties of scattering medium leads to inversion methods based om cascaded
reflection elements, eg. the characterization of (electrical) traasmission lines {Gopinath and Son-
» o dhi, 1971] or the human vocal tract [Gopinath and Sondhi, 1970|. Similarly in the fields of acous-
i tics aad speech processing, sa acoustic transmission line with step changes in impedance leads to
A s lattice cascade structure. The humaa vocal tract has been modeled as a cascade of acoustic
: . tube sections with different impedances. This relationship between a physiological system and the
3 lattice structure gives a physical meaning to the reflection coeflicients and led to the development
2 of speech syathesis systems using the lattice structure. The remainder of this section develops an
i&%’ acoustical tube model of the vocal tract into a lattice filter (see [Flanagan, Markel and Gray,
l% 1976, Rabiner aad Schafer, 1978]).

A -

- A lossless acoustical tube transmission line compceed of cascaded cylinders of differing diam-
}i1 eter but equal length was developed 28 a model of the vocal tract in [Kelly aad Lochbaum)]. This
:‘:.'; vocal tract model was studied to obtain a better understaading of the speech production mechan-
e ism sad to synthesise speech by computer. Speech sounds result from pressure waves resonsting
;“ ; in the vocal tract (acoustic tube). The significance of the model is that the cascaded cylinders
‘§ become cascaded Iattice stages. The cross sectional aress of adjacent cylinders specify reflected

and tranemitted acoustic wave components which transiate into the lattice reflection coefficients.

Sosad waves that propagate in a cylindrical section obey the comservatioa of momentum

- - -
J@'
- k.

sad mass equations (sssuming standard coaditions, see [Rabiner and Schafer, 1078]). Since the
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<
YA cross-sectional area of the n-th tube is constant, combining the conservation laws yields a one
‘I
? . dimensional wave equation. To satisfy this equation, the steady state volume velocity u;(z,¢) and
the pressure wave p;(2,t) are composed of waves traveling in the forward, «* and backward, u-
A
direction.
hY
o __2 9
Oz A 8
S __A S
Oz pcz at
¢ w(3,8) = w*(8-2/c) - wi(t+2/c) (13)
i pi(3.8) = pc/A; (8" (t-3[c) + w(t+32]c))
: The density of air is p, ¢ is the speed of sound in air and A; is the cross-sectional area of the
& acoustic tube, see Fig. 6a. Assuming that all the tubes are of equal length, L, at the boundary
5: between tubes i and i+ 1, a continuous wave propagation is required.
|~ . w(L )=y, (0,t)
¢ PAL )=y 1(0,1)
Y . Using the boundary coaditions, the transmitted wave u;%, and the reflected wave x; across the
)
boundary are determined.
* sinalt) = (14 &) o' (t-1) + & wiia(t) (14)
o s+ m -k o (t-r)+ (1-k&) w3y (0)
# Here r== L /c is the propagation time through the tube section and k; is the wave reflection
coefficient at the junction of A, aad Ay, .
kims(Ay 1-A¢) | (Ais 1t As) (15)
§ Since the cross-sectional areas are all positive, -1k S1. The wave propagation due to the
‘1
. discoatinuity ia cross-sectional area, is showa is Fig. 6ab.
o The lattice fiiter structure is obtained by mormalizing variables and groupiang time delays.
By modifying (14), the waves in the i-tA physical section at the boundary with the (i+ 1)-(A sec-
: tion can be writtes in terms of the (i+ 1)-th section.
(=) (wda(0)- & wiy(8)) /(1 + &) (10)
‘. slt4n) = (sia(t)-hwla(t))/(1+ &)
¢ Aa sbeolute time reference is established st the output of the last tube section, which physically
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J :‘. would be at the lips. Assuming that the vocal tract model has p tube sections, the time delay
- - from the beginning of the i-tA tube to the lips is ¢ = ( p+ 1-1) r; so the time variable in the
::}i equation for the i—th section is replaced by ¢ - ¢,. A scale factor ¢, is introduced to combine the
::}; ( 1+ &;) factors from the i—tA tube to the last (p-th) section (lips).

=TI+ k)= (14 k) e,y

s=i

The lattice equations are obtained from (16) by using the absolute time reference and defining

b

1 new variables, see Fig. 6c.

:.':; Ji(t) = c; w* (¢ -1-4;)

'} bi(t) = c; ui(t +7-4)

S Jit) = f;05(t) - & byt - 21) (17)
) bi(t) == bioa(t -21) - & [iso(t)

:4: This is the same equation as that developed earlier, (4) and (7), from orthogonality coanditions

LN NEN

except the unit delay is 2r and the lattice sections are aumbered in decreasing order.

Although modeling of the entire vocal tract includes other influences due to the vocal chords

4 (glottis) aad lip radistion, the wave propagation ia the mouth ideally follows the lattice structure

2w

-
A A el

equations. Studies have indicated that every reasomable vocal tract shape could be generated by

s lattice fiter and that the reflection coeflicients are directly related to the cross sectional area of

oy
S the vocal tract [Markel and Gray, 1976].
-4 For other types of signals, if they are generated by or can be modeled as wave propagation
., in a stratified medium, the lattice structure is intuitively motivated. For physically geaerated
:‘,'.: procesees, the process is oftes sonstationary but there is a limit to the rate at which a process can
:-:' change. The shape of the vocal tract (excluding the lips) can only change at a moderately slow
rate determined primarily by the muscles in the tongue. Except whea a suddes opening of the
S? lips occu®s, the cross-sectional area of the vocal tract changes siowly and hence the reflection
' . coeflicients also change slowly. This slow time evolution caa be used advaatageously in adaptive

estimation or parameter quantization.

An iatuitive understanding of the sigaiicance of reflection coefficient values is pomsible
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because the lattice Blter structure can be thought of as wave propagation in the acoustical tube.
The equivalent tapped delay line coeflicients are not as easily interpreted. While the reflection
coeflicients are limited to -1<k; <1, the equivalent tapped delay line coeflicients are often a fac-
tor of ten times larger. When the reflection coeflicient is zero, the signal propagates without
change since adjoining sections in the tube would have the same cross sectional area. When the
reflection coeflicient is near -1, the signal is apt to bave highly resonant or oscillator characteris-
tics since if the next tube section is completely closed, ie. zero cross section, then the wave is
totally reflected. Conversely, when the reflection coeflicient is near + 1, a decaying signal ampli-
tude is usually found since if the cross sectional area increases greatly across a boundary, then
there is full forward radiation. This connection between the physical properties of wave propaga-

tion in the acoustical tube and the analogous lattice filter structure greatly aids in an intuitive

understanding of the effect of reflection coeflicient values on signal characteristics.
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4. SAMPLE DATA ESTIMATES OF REFLECTION COEFFICIENTS

: The real advantage of the lattice filter is for adaptive filtering, where the characteristics of
an unknown process are to be determined from the observed data samples. The remainder of this
overview presents the adaptive lattice filter where each new data sample is used to update the
reflection coeflicients. In this section, approximation techniques that estimate the reflection
X coefficients based on gradient approaches or sample (block) data estimates of statistical quantities
are presented. The development of a recursive exact solution for least squares estimation, which
paturally produces a lattice structure filter, begins in Section 5. A simpler set of recursive equa-

tions using sormalized variables is presented in Section 7.

. A A

The earliest techniques for estimating reflection coeflicients assumed that the signal was

locally stationary. Therefore sample data approximations were used for the statistical definition

otiba o) S .

of the reflection coefficients, (6) and (8). When the process z(-) is stationary with known auto-

correlation function, the forward and backward prediction error energies at each stage are identi-

T

cal, (¢7f = 0)). Thus the reflection coefficient for the forward and backward predictor are the

PNV

same and the lattice filter stage requires » single parameter.

Ties(t) = 1,(t) - kjsy bi(2-1) (18)
bjaa(t) = b;(t-1) - kjsy £4(¢)

The block data techniques use a time sequence of data and determine a single prediction

[

filter for this entire block of data. A single reflection coeflicient per lattice stage is calculated by
combining sample data estimates of £/ and k. If the geometric mean of &/ and k* is used, then

the reflection coeflicient becomes the correlation coefficient between f; and ;. This parameter,

PN A T

¥ was originslly called a partial correlation (PARCOR) coefficient [Itakura azd Saito, 1068]. It
is the normalised coaditional correlation coeflicient between z(¢) and z(¢-5-1) given the interven-

ing dats samples, 2(¢-1),...,2(t-5).

Lo Yk B U W

3 7,(6) byte-1)
*’# 1 - = (19)
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.:‘_; The expression for k;,, that minimizes E(f )+ E(bf,,(l)) is the harmonic mean of
[ . k! and k. This estimate, k® is computationally simpler and is related to Burg's maximum
2
-t entropy method [Burg, 1975].
o ,
-
- o ‘Efj(‘) b,(t-1)
=1
. ke y = T (20)
o 12 3 (FH0)+ 4e-1)
N =1
::jl. These two definitions for reflection coeflicients use blocks of T data samples and thus require
many computations. For &, , the T samples of f, and b; are required. To calculate &;, ,, the
:: lattice filtering at stage j+ 1 must be performed to obtain T new values for f;.; and bj,,.
Lot Clearly this requires P filtering steps of 2T samples to determine P reflection coeflicients.
& Adaptive gradient algorithms for determining the reflection coeflicients greatly reduce the
}-.‘f
":'3 computational complexity of the estimation technique. Only the prediction errors at the previous
s,
' - time instaat is needed for the gradient methods. The block data approach required all the past
» error values. Several techniques have been proposed for adapting the reflection coefficients for
N
:E‘: every newly observed data sample. These techniques do not minimize any criterion but try to
Wal
A " change the reflection coefficient in the direction of decreasing prediction error epergy (gradient
3 descent). Two classes of gradient techniques either approximate the reflection definition of (20) as
£
‘ the current reflection coeflicient plus a correction or approximate the numerator and denominator
\ separately. The simplest update of the reflection coefficient [Griffiths, 1977] uses the forward and
- backward prediction errors weighted by the constant a.
&
N E(t+1) = ki(t) + a { £;(8) ba(t-1) + £54(t) b,(0) } (21)
'Y. This estimate can be improved by replacing the weighting factor by an energy normalized term,
;; 1/ o;(t) where o;(t) is the accumulated average of f2,(¢) and b}2,(t-1) [Griffiths, 1978,
3 Makhoul, 1978(2)].
ki(e+1) == ki) + (1] 05) { £,(¢8) d;(8-1) + [a(8) b5(¢) } (22)
g ’ o;(t) = (1-F) a;(t-1) + f}1(¢) + d24(¢-1) _
ot
3 Another adaptive estimate [Makhoul aad Viswansthan, 1978(1), Makhoul, 1978(2)] approxi-
)
i L
& mates the sumerator and denominator of (20) separately. The same weighting factor a is used for
s
S
s T T T T T T T L R R P e T A T T A e S e T e T T e T T e TR e T
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both terms. The ratio of these two terms becomes the estimate of the reflection coefficient.

ci{t+1)=(1-a)ei(t)+ 2/f,(t) bja(t-1)
di(t+1)=(1-a)di(t)+ fE.(8)+ 8}, (¢t-1)

EPLARAL N LA

Blt+1) = :_j:‘:%

: This ratio is a biased estimator since in general E(z/y)#E(z)/E(y) but simulations indicate that

(23)

this bias is generally very small [Honig and Messerschmitt, 1981].

The convergence of the lattice filter is much faster than that of the adaptive tapped delay
. line filter [Satorius and Alexander, 1979(2), Horvath|. This is because the lattice filter tries to

X orthogonalize the input signal so that the coeflicient estimates are decoupled. In fact, the conver-

gence time is almost independent of the eigenvalue spread of the signal, i.e. independent of the

signal’s spectral dynamic range |Griffiths, 1977]. Quantitative characterizations of the conver-

. gence properties of the gradient reflection coeflicient estimators (22) and (23) have been studied
[Honig and Messerschmitt, 1981]. A two stage gradient lattice algorithm was compared with a

g two stage LMS gradient tapped delay line Blter to show that it is possible but unlikely for the
'.; tapped delay line filter to converge faster thap the lattice filter. A comparison of lattice estima-
tion techniques using the gradient and block data reflection coeflicient definitions (21), (22), and

- (23) has been presented in [Gibson and Haykin].

This orthogonalizing and decoupling property of the lattice is only asymptotically obtained
using the gradient estimation techmiques of this section. The recursive least squares lattice,

developed in the next section, exactly solves the orthogonalization for every new data sample.

. -8 AL A K

The optimal solution is similar to the energy mormalized gradient lattice (22) except that the
optimum weighting factor is computed (instead of the constant §). This least squares lattice esti-

mation technique has even faster convergence than the gradient lattice methods of above. How-

o I

ever as the number of data samples (from a stationary process) gets large, the results from the

gradient lattice and the least squares lattice become similar.
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N 5. RECURSIVE LEAST SQUARES LATTICE ALGORITHM
N
" -
>,
>
-“ The recursive Least Squares Lattice algorithm (LSL) allows the exact solution to the least
;_2 squares problem to be updated for every newly observed data sample. This adaptive estimation
- technique uses the properties of the lattice filter to efficiently implement the adaptation. The
"‘.{: LSL algorithm looks similar to the gradient techniques of the previous section except that optimal
'_ ~: weighting factor are calculated. The LSL algorithm is developed in this section in the context of
< an extension to the Levinson algorithm for solving the normal equation.
)ﬁ
o
:.: The least squares solution to a linear modeling problem can be reduced to a simple set of
“~
A linear equations called the normal or Yule-Walker equations. These equations, which involve the
X inversion of a covariance matrix, has been widely studied to reduce the computational burden,
::: guarantee stable models, and handle nonstationary processes. The linear predictor form of the
el
i linear modeling problem is presented here.
" The linear prediction model assumes that a data sample at time T, 27 can be approximated
f: as z r, a weighted sum of previous data samples. For an p-th order linear predictor with
. coefficients (a,, . . ., 8,) :
B .
.4
;‘1 Zy,r==-06y2r1- "' — 8y Ir, (24)
X The coeflicients are to be chosen so as to minimize the mean squared error between zr and the
A .‘: .
-— estimate, z, r. The p-th order covariance matrix of the process z(-) is R, and is composed of
b elements r; ;.
J“ T L}
3 R, = Elxir.7 X|T:7p|] (25)
- XiT:1-p) = [#1) 210 :3T~p]T
! rij = Eleri o1 0545 <o
;; Minimizing the square of the prediction error with respect to the predictor coeflicients, {s;}
A
.5
> requires that the predictor coefficients satisfy (26), called the normal equation, where ¢, is the

»

‘ |
' g K -’
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~24-
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B ,‘.'

minimum error.

( * 1 )

A a 0

& min, E {(sr- 2,1} = R, 1=l (26)
A ERF

Unless the process is a deterministic one, a unique solution to (26) exists.

-

FA

'’ o &

NN

&

:3 In general, for a p-th order linear model, the solution of the normal equation involves the

. ::E inversion of the p by p covariance matrix. Standard matrix inversion methods such as Gaussian
elimination require O(p®) computations (multiplications). However for stationary random

‘,4 processes, the covariance matrix is a Toeplitz matrix.

f Pig = rli-j, 0€4,j<p

3 Using the Levinson algorithm, the normal equation in Toeplitz form can be solved in O(p?) com-

"3 putations. The Levinson algorithm is an order recursive technique that uses ti= ssiution for an

:‘ i~tA order predictor to generate the solution for the (s+ 1)-th order predictor. This aigorithm

‘\?l ‘ performs an orthogonalization as discussed is Section 3. The reflectiou coefficients are related to

: the predictor coefficients and are generated as a byproduct of this algorithm. In the Toeplitz

¥ case, the reflection coeflicients can be determined directly without using predictor coeflicients

v : [LeRoux and Gueguen|. This is an application of the Schur algorithm. If the covariance

2 sequence (rq, r;, ..., r,) is fed into a growing order lattice filier, the reflection coeflicient at

:' each stage can be determined by dividing the forward error by backward error at the input of

'2 that stage [Morf et al, 1977).

s

3

v .

‘ §.1 Formulation of Recursive Estimates

.‘ In the development of recursive least squares lattice algorithms, two aspects of the solution

_ * of the normal equation are important. The Grst aspect is the efficient inversion of the covariance

’f . matrix, Toeplits and non-Toeplits, that gives rise to the order-update recursions. Secondly, the

time-update structure allows exact least squares solutions to be computed in a recursive manner

X for each mew data sample. This enables the lattice algorithms to achieve extremely fast
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~
1-2 convergence and excellent tracking capability. The first derivation of the least squares lattice
’ . came from extending the Levinson approach and was based on the predictor coefficients. Once
:’E the recursions were obtained, it was noted that they could be written compactly using just the
, lattice filter parameters. A subsequent direct derivation of the recursive equation, using a
7 -‘ geometric approach solely in terms of reflection coeflicients and lattice parameters was reported in
’ [Lee, 1980, Lee et al, 1981, Shensa, 1981]. An overview of the first derivation is presented here
since it gives insight into the nature of the recursions. The development of the order- and time-
' update recursions for the lattice algorithms based on the special structures of the normal equation
?: follows the approach in [Lee, 1980].
ai‘ First the structural properties of the sample covariance matrix must be exploited as the
5 order of the predictor changes and as new time samples are added. The covariance matrix of
i: order p for data samples {z,, j=0,T} used here is the prewindowed form.
3 T
' Rir = X;rXir (b))
'.:3,
~ Zy . . - % ... 2r
% Xr=]1 . Z (28)
4 0 ) z., e z,'-_,
‘-j The covariance matrix R; 1 has the following structural properties. As a new data sample
f:'j 27,1 is included, the new covariance matrix is composed of the previous covariance matrix plus a
- matrix of special form. The time-update matrix equation is given in (29).
A [3r+ 1 ]
, Ritv1 = Rir + [2re1, - - - Zroiva] (29)
y 2r-i+1
::j Also, the covariance matrix of order i+ 1 contains the covariance matrix of order i. The
Ss . order-update matrix equation for the covariance are given in (30) where ¢ denotes unspecified ele-
ments along the outer row and column.
: # ,
' Riyyr = [: R:r-;] - [B‘m : ] (30)
2,
o
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The development of a recursive solution requires that the normal equation, (26) be extended

with auxiliary vectors. The forward and backward predictors vectors are A; r and C; r respec-
tively. A vector D, y is defined to account for new data samples. The matrix equation (31), an

extension of (26) defines these vectors.

!
ir | o | Zr
. 0 | 0 | Zra
RirlAir, C;t, Digl = | . | . | . (31)
0 ? | Zr-i+1
0 | agir | zr.
i i T
A;r = (1, ayr,..., sir]

. , T
C,-'r == [c:'r Ry c;'r, ll

The forward prediction error, f; r and the backward prediction error, §; r, are defined as in (2)

and (3) with x| r.r_; defined as in (25).

T
Jir = Ajr 211 (32)
T
bir = Cir 2.1
To account for the end of the sample data set, an auxiliary vector D; r and related scalar v, ¢

are introduced.

1
Dir = Rir2r.r-i| (33)

r T A
Tir = Dir2rry = Xr.ri Rir zirr (34)
This parameter 7; r can be interpreted as a likelihood variable and is limited to the range

0 < 7r < 1 ,seeSection 5.5

8.2 Order Update Equations

As in the Levinson solution, an efficient means of determining the n—-(A order solution is to
develop recursive equations for updating the predictor order (at a fixed time). Following the
usual development of recursive equations, assuming the predictor vectors A,y and C, r are

known, the predictors of order i+ 1 are to be determined. Thus the vectors A, yaad C;,, ¢

CP LA ‘._. AR CaC .~'~_-‘ .-‘ R A AP A B "-.-'..-.c“_;.'.-. _~.’_-"_~ R AR "-:'A‘ L3
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Pl
o must satisfly the following normal equation.
( -

d !
o i+1.,T | 0
N °© 0 0
N Rioyr[Aisirs Civrrl = . 1.
> o | 0
b 0 l Tiy T
.

), Since A,.;r is to be assembled from A, r aud C, r_,, these i-th order predictors are aug-
<

o mented with a final (or initial) zero to make an i+ 1 vector. From (30), the augmented A ; ¢

satisfies the new normal equation except for the last entry.
&
%l

X Rir {ﬂ;”] - [R;, :] [A(;'r] = [0lr 0,..., 0, &yl (35)

Aiyrr = [last row of R,y 1] Fér] (36)

i N Wt

Similarly, augmenting C; r_; with a leading zero satisfies the normal equations except for

the first entry.

;'i ] RHL!‘ L‘r_] [¢ R‘r_][c.r_] - [rH»l r 0, ..., 0, al'..f—llr ’ (37)

Tivrr = [first row of R, 1] it

Since R, r is symmetric, it can be seen that A,,, r = [, r [Bu75].

By appropriately combining these two equations to cancel the leading or final term in the

R

b

" normal equation, the order-update equations are obtained. Multiplying (37) by A,y r / a,-.,r_,
3"-: and then subtracting the result from (35), the order-update recursion for A; r and a.-’, r are
C

3 obtained.

N “r 0 ’

N\ Aisrr = [ g |- |o,r,| Bi+rr/ i (38)

P P

-

! ! ]
Civsr ™= Oir - Abrr ] 0ira (39)

i
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Similarly the order-update recursion for C, r and a,-._,- are obtained.

Cisir = L.r_] {AlT] o+lf/”|1' (40)

d.nr = ‘7- b 2 Wiy A--Ht/”:f (41)

When the order-update equations of the predictors are premultiplied by [zy, ..., zr_;,], the lat-

’
tice equations result. The reflection coefficients are k.-',, ,raond &,y 1.

Jisrr = [ir - k, L1 bi,r (42)
bivrr = b1 - .'l+1.r fir (43)
By = By /oir (44)
ki.-r nr = Qinrr/ ”i..r-x (45)

So far the development has been parallel to the non-adaptive approach in Section 3. To develop
adaptive solutions, time-update equations for the predictors must be developed. Before proceed-

ing to time-updates, the order-update recursion for D; y is developed in a similar fashion.

Rirr [D(.)r] = [R.‘,- :] [Dbr] = (27, 2ry o Zri, *|T

The last elemert of D, , r can be found from the last row of R.-: 1,1, by (32) and (33).
last element D, 1 v = last element (R;:, L7 ) X|r:1-i) ™= bivrr/ cr,-.+ LT

Since the last element of C,,; r is 1 and the last element of D;,, r has been determined, the

order-update equation for D, r becomes (46).

'
Diyrr = [D(;r] + Couvrbirr/dierr (46)

The order-update for 7, 7 is determined by premultiplying (46) by [zr, ..., 2zr.i|.

»
Yisrr = e + diar/oir . (47)

8.3 Time Update Equations

)
h ; Next the time-update of the covariance matrix is used to determine time-updates for the
A 3
;& predictor vectors. From the time-update of the covariance matrix (29) and the definition of the
Wy

5
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:;« forward prediction error (32);
‘-'. ,, | 4 zf+l
“ 0
. Rirv1Air = l2r, .-, 2r.) Air (48)
_:.:, 0 Sr_,
- 0 Iriv1
The auxiliary vector D, r is used to account for the new data samples.
N7
o
o 0 . * 0
» ==
- Rra [D.'-x, r] = [. Ry ,][D.._u.] . (49)
T-i
e Fr-i+ 1
": The time-update recursion for A ; r is obtained from (48) and (49).
¥ A; - Air - [n° fxp,..., x ]TA- (50)
i, T+1 i, T Di-l.f ’ . T ir
Py
.s: By premultiplying (50) by [zr,,, ..., #r.i+.] and using the definition of v;_, r, (34) the expres-
-:1 .
e sion can be simplified.
gt r
e [2r,..., 20l Air = firsr [ (1 - 7iar) (81)
o )
Qj The time-update for A ; r becomes a simple expression.
e,
“1‘
(] Jire1
. Airer = Air - [D,-_,, r] T - ar (52)
) From the preceding relation, the time-update for a,-’, r can be determined using (52) and (29).
Y / r
= Oire1 ™= Ajrei Rirer Aire
. J !/ / 621'4- 1
J Oiry) ™ O + T—— 53
\M '.r“ 1 ',T l - '1‘_1,1' ( )
; -03 By applying similar techniques, the time-update recursions for C; r and o: r are determined.
b
it ci T+1 ™= c‘ r - [Di-l.l'd'l] LTl (54)
% 1 - Yiarer
i i T+1
N . a = d + 55
S i.T41 ir 1< tare (55)
;422 ‘ To recursively update the reflection coeflicients, the time-update equation for A is needed.
%:: r r
‘r
f.“ [0 CirlRuprar | ‘g ' = Qisrras (56)
Y
Ty
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By using the covariance time-update (29), the time-update for C, r and the forward and back-

ward predictors, the time-update equation is obtained.

55.1’ f.',rn

57
1 - Y1 (57)

Aivrrer = Qi r +

The exact time-update of A, , r is » time average of the cross-correlations between 5,  and

1

Ji.r+1, With the special gain factor
1 - Yiar

. This relates A;,, r to the partial correlations

discussed in the previous section.

The development of the time-update equations allows the influence of all prior data to be
accumulated into the current parameter estimates. If the process that is being approximated con-
tains time varying attributes, then it desirable to weight more recent observations more
heavily. An exponential weighting factor A on the accumulated covariances can be included in
the development of this algorithm. Typical values of \ are from .98 to 1.00 (corresponding to full
weighting of past samples). The algorithms presented in subsequent sections include this

exponential weighting factor.
8.4 Exact Least Squares Lattice Recursions

The recursions so far have focused on the predictor vectors, A; v, C; v and Dy r. For a P-
th order prediction filter, these recursions require O(P?) operations per time sample since all the
predictor coeflicients change in an order-update. However for the lattice structure, due to its
orthogonalizing nature, only the t-tA reflection coefficient changes in the i-tA order-update. The
exact least squares recursion can be written directly in terms of lattice filter variables which
require only O(P) operations to update per time sample.

The order-update recursions for the lattice filter variables, f, r and J; r was developed in
(42-45). The order-updates for a,-’, r and a,._,- are given in (39) and (41) and the time-updates are
givea in (53) and (55). The reflection coeflicients defined above depend on A;y, r., which is
related to partial correlations. Here, the time-update for A, , 14 () is required to augment the
correlation for the new data sample. These updates also require the order-update of 7; r, deter-

mined in (47).
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These recursions are seen to compute the sample cross-covariance of the forward and back-
. ward prediction errors, using the optimal weighting 1/(1 - 4, r ). From Section 4, the gradient
lattice equations have the same form as above except that the exact recursive least squares solu-

tion calculates and uses the optimal weighting factor for the new data sample.

The complete set of order-update and time-update recursions to obtain the exact least
squares lattice predictor (LSL) is presented in ALGORITHM 3. When starting the lattice filter,
only the stages that receive data are executed until P data samples have been observed, ie

min(T,P) filter stages are used where T is the data sample number.
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ALGORITHM 3:

Recursive Least Squares Lattice (LSL)
Scalar case for exponentially weighted data

Input Parameters
P = maximum order of lattice
A == exponential weighting factor (usually .98 to 1.0)
zy = data sample at time T
Variables
A; r = partial autocorrelation coeflicients
7i,r == likelihood variable
Jir, b r = forward (backward) prediction errors

o.{ r, a.’, r = forward (backward) prediction error covariances

k.-l_r ) k.-., r = forward (backward) reflection coeflicient
Initialization
To,0 == G0 = Zo
1<i <P

Joo™ boo = 2o,
Ai,i - 0, T = ov

ITERATION FOR EVERY NEW DATA SAMPLE

/

For data sample z; and previous results A, 1, b ,0 , o

fc}.r = 5g,r = 2p
Oor ™ Oor ™= \ Oorq + 27

For each stage of the lattice, s = 0, min(T,P)-1

Aisrr = N Qigrra + birafir /(1 - Vi)
z .

YTi,r = Yir + 4ir/oir

! !

kivir = Airr /a,-_,-

) '

kis,r = Aiar [ 0ira
’

Jivsr,r ™= fir - kisrr bira
i

bisrr = bira - kurr iz
! ! ’

when T < P 0ojpr = 0ir - kierr Aivyr

' ’ 1
Girrr ™ Oiry — Kiprr Qivyr

! /
else Oierr ™ N Oiprpq + SfA0r /(1 - 21a)
Gier,r = N Giprrq + bz /(1 - vr)
e e g A I e T
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. 8.5 A Likelthood Varlable
‘e
{ N Information about changes in the nature of the observed process can be determined from
Q.\
.‘: ) vp.r- This variable can be interpreted as a sample data approximation of a statistical likelibood
AN
::{ variablee. For a zero mean Gaussian random process, z, the joint distribution for
: {27, 2.1, ..., Zr.p} is given by (58) with the covariance matrix as defined in (25).
&
3 1T ,
~ - -
* p(27, ... 27.p) = |27Rp| 2 exp { - 7 Xir7¢| Re xiT1.p) } (58)
ES
X! The determinant of the covariance matrix, |Rp | is related to the reflection coefficients and the
i’ process variance R, [Markel and Gray, 1976].
n P .
W |[Rp| = R, [I(1 - K3) (59)
W =1
e The logarithm of (58) becomes a log-likelihood function composed of two parts. The first two
oo
L
t{ terms depend on the covariance of the process and the third term relies on the observed data sam-
A%
". - ples.
), B - L4 2 T A
o log-likelihood == { In Ry + E In ( 1 - K?#) } + X|t.7-P| Rp X|T:T-P| (60)
':1 i=]
§ The variable 7p 5 obtained in the exact least-squares recursions can be interpreted as the sample
) estimate of the third term in (60). The definition of 75 y uses the sample estimate of the covari-
%
: ¥ ance matrix, Rp y instead of the known covariance matrix, Rp. Thus 7p r is a measure of the
3 likelihood that the P most recent data samples, {2y, ...,2r_p} come from a Gaussian process
v with sample covariance Rp y determined from all of the past observations {z;, 0<j<T}. Since
N
‘.:.".-’ 0< 1pr £ 1, asmall value of 7p r indicates that the recent data samples are likely observa
~
A tions from a Gaussian process with covariance Rp 7. However, a value of 7p r near one implied
that givea the current Gaussian process assumption, the observations are unexpected; either the
N
3'.: new obeervations come from a different Gaussian process due to a time varying nature of the phy-
c""
‘3‘ sical process or there is 3 non-Gaussian component in the observations. So 7p r can be used as a
_ i detection statistic for changes in the process characteristics or for unexpected (non-Gaussian)
K componesnts i the observations. Simulations indeed demonstrated that v, r does take values
3
N |
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close to one when sudden changes in the observations occurred. In the LSL algorithm, 75 r acts
as ap optimal gain control since the new observation influences the accumulated estimate by a
factor of (1 - 7p r)'. With this gain factor, changes in the process statistics can instantane-
ously influence the estimates more than just being averaged with past observations. Simulation
results that demoastrate this behavior on synthetic signals and speech signals are shown in Sec-

tion 9.
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2 6. JOINT PROCESS LATTICE FILTER
ﬁ: Mabpy practical problems require the joint interaction of two or more processes rather than
jEE the prediction of a process based on its own past observations. For example, a channel equalizer
= in its adaptation phase uses the received distorted signal from the channel and the actual
'_::: transmitted channel symbols to determine the channel distortion characteristics. In a noise can-
celler, the information signal plus noise and a reference or noise signal is used to extract the infor-
2 mation. The estimation of autoregressive moving average (ARMA) processes with known input
; involves the joint interaction of two processes. l&genera);~ a multi-channel problem can be formu-
S lated as a single vector process problem which can be solved by extending the previous least
. squares solution to the vector case. The one channel prediction lattice of Section 5 is extended
i:: here to include a second related channel. This joint process recursive least squares provides very
\:, fast tracking or adaptat.ion for channel equalization or noise cancelling.
= When one p@m ¢ is to be estimated from observations of a related process z, it is possi-
E ble to combine them into a joint process (z,y), that can be solved as a joint process lattice filter.
.:\':: The exact least squares solution for joint process estimation is an extension of the development in
j' Section 5. A new prediction error is defined that includes samples from both proceases. The joint
’ prediction error, jp y is the error in estimating yr from {zr, zr.,, ..., zr_p} where {gf} are the
>
E: prediction coeflicients obtained by minimizing the sum of the squared errors.
. . P
.;f:;; jrr = yr + ,);:., of 1. (61)
The solution of (61) can be formulated in terms of the lattice structure just as the single process
‘ predictor (32) was translated into (42). A prediction lattice filter (LSL) for zy performs a Gram-
,‘ Schmidt orthogonalization of {2y} into the mutually orthogonal backward prediction errors
) S i {br.;}. The advantage of using the orthogonal {br_;} instead of {zy_;} in (61) is that the joint
?4 predictor coefficients {5} become decoupled from one another so faster convergence is possible.
‘:-.' The joint process lattice solution involves the LSL for the 2 process and a similar lattice
\
:' recursion of the joint prediction error, j; r. From the LSL for the z process, at the i—(A lattice
;
N
R L
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stage, b, r is the backward prediction error, a,-.,, is its variance and the likelihood variable is

Yi-1.7- A new cross correlation term, A,’ r,» similar to (57), can be defined between signals avail-

able after the i—tA lattice stage, j;_, r and b; r. This new term can be recursively updated.

Ji-rr bir ] (62)

Al = xalr, +
i, T i, T-1 [l - Yiar
The recursion for the joint prediction error j; r is similar to (42) except that quantities after the
i-th lattice stage are used. The initial condition is j_; r = yr and the output is j; r.

. . J ’

Jir = Jiar-(8ir/air) bz (63)
The previous single channel LSL equations augmented with (62) and (63) form the complete solu-

tion to the joint estimation problem and lead to the joint process lattice filter, Fig. 7.

For noise cancelling problems, noisy data containing the signal of interest, {yr} are
observed together with the noise estimate or reference signal, {zr}, see [Satorius et al, 1979(1),
Griffiths, 1979(2)]. For channel equalization problems, {yr} is a known training sequence sent
though the channel and {z7} is the distorted channel output. Applications of the joint process
lattice estimation algorithms to adaptive data equalization have been investigated [Satorius and

Alexander, 1979(2), Satorius and Pack, 1981].

The ARMA estimation problem with known input and with bootstrap estimated input was
formulated as a two channel lattice filter in [Lee et al, 1982]. For an input process y, the output
ARMA process is z generated in the following manaer.

P P
Zr+ Y0 zr =yr+ b yr
i=] i=1
A prediction equation can be written for the process z, if the input y is considered known. This
predictor follows from Section 5 but now includes a weighted combination of past inputs y.
P P
2r = - Yo 20, + Y 4 yr-
i=1 i=1
Similarly, a prediction equation for the y process with z known is generated by extending (61) to
include a weighted combination of past inputs y.

P P
fr = - YNeiyri+ Ldizry
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The vector process [zr,yr] has a structure similar to the scalar AR processes discussed earlier.
Prediction errors are now vectors and c'ovaria.nces are matrices. The ARMA lattice estimation
algorithm follows the scalar LSL or SQNLSL algorithm but the quantities are now vectors and
matrices. The reflection coefficient has become a two by two matrix. Further details are found in

[Lee et al, 1982].
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7. SQUARE ROOT NORMALIZED LEAST SQUARES LATTICE

The complexity of the recursions can be reduced and the numerical properties of the vari-
ables improved by rewriting the Least Squares Lattice algorithm in terms of normalized variables.
The Square Root Normalized Least Squares Lattice, (SQNLSL) developed in [Lee, 1980] has only
three recursions per order for each time sample where all three variables have unit variance. The
reduction of the LSL into the SQNLSL requires two types of normalizations. A variance normali-
zation scales the variables by their respective variances. A normalization by the optimal weight-
ing factor using the likelihood variable, 7 is also necessary. A brief development of the SQNLSL

is presented here; see [Lee et al, 1981] for more details.

The forward and backward prediction errors when normalized become v; r and 7, r respect-
fully. The normalizing factors are the square roots of the variances, o/ r and o} r and the square
root of the optimal weighting factor (1 ~ 7, 7 ).

vir = fir (olr) (1 - vigga )2 (64)

Mira = bira(olry) V3(1 -y JV2

By combining the two reflection coefficients from the LSL, the normalized partial correlation, p; r
is defined like a correlation coeflicient. This single parameter is the new reflection coeflicient.

pivrr = ( ‘7".1' ) -1/ Aivrr ( ai..r-l )—1/2 (65)

First the recursion for the partial correlation (65) will be developed from the LSL algorithm.

The variances of the prediction errors (with exponential weighting A\ ) has a time-update recur-

sions given by (53).

Iir

/ !
Mot = dir - T
T

By dividing by o!, r and using the definition for v; r, the time-update for the variance can be
related to the new variables (66). A similar relation (67) exists for the backward prediction error
variance.

Nolrsloly = 1-vir (66)

ANodra/olyr = 1-nls (67)

The time-update recursion for the normalized partial correlations are obtained by substituting the
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;', expression for A, ) r (57) (including the exponential weighting ) ) in (65).

( b b [

- A - . g i, T-1Ji,T

:. i+1,T Al+ 1,T-1 + -l _ -'71'-1.1'

:‘ / -1/2 bi,r—l fl',r ] -1/2

Pivrr = (alr) ( MQisrra + —_—1 ) (oira) (68)

= Ti-, 11

% The first term is replaced by the definition of p;, , 7., and the second term is v; r n; r_,.

My

)

*

) Pisrr = M( 0«’,1‘ ) ~1/2( ”-’,r-l ) 12 Pivr,r ( Ui’,r-z ) -1z ( 0.{1'—1 ) 1z

+ Vir fira
Using (66) and (67), the new time-update equation for the normalized partial correlation simplifies

5

- to (69).
pivrr = (1-vir Moo ra (L -nfra )2 + virmira (69)

‘_: Now the lattice recursions can be written in terms of these new variables. The order-update
" recursions for the forward prediction errors (42) can be written using the normalized partial corre-
¥ lation.

j (1- ’Yi,r-n)l/ 2Vierr (o/, 1,1')'/ P (0.’, 1')1/ 2 vir = Pisrr Mira) (1 - 7-‘-1,1‘-1)1/ 2 (70)
5 To simplify this expression, two order-update equations from the development of LSL are needed;
: for the likelihood variable (47) and for the prediction error variances.

. (1-mr)=(1-7ar)(1-nir)
3

n 0:’+l.1’/ d,’.r = l'l’iz+l,1'
by Using these relations, (70) can be reduced to a simple expression for the normalized forward pred-
. iction errors (71). A similar development for the backwards prediction error leads to (72).

;

, Vigr,r = ( 1- I’-’z+ LT )-1/2 ( Vir = Pi+1,1 Ni, 21 ) (1- "iz.r-x )-1/2 (71)
9 Nierr = (1=pf0 2 VY2 (M ra - pisrr vir) (1-02p )Y2 (72)
- The lattice recursions have now become three equations, (69), (71), and (72) that compute the
; . normalized prediction errors, {1} and {7}, and the reflection coeflicients, {p} for each lattice stage

+
i and for every data sample. Proper initialization is required to start the recursions with unit vari-
» ance quantities.
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The reflection coeflicients in the SQNLSL still have magnitudes bounded by one but now

{ the prediction errors are also bounded. The complexity of the lattice recursions has been reduced
\.

.. from six recursions to only three recursions per order and time update. Square root operations are
.,: required. They can be efliciently computed by bit recursive algorithms such as the CORDIC

technique (discussed in the next section). Simple recursions and their potentially better numerical

'\' behavior, makes the SQNLSL algorithm preferable over the unnormalized LSL version.
a The SQNLSL just developed applies for exponentially weighted data. However the
g exponential weight \ in (68) is not evident in these recursions. By combining the three time-
- update recursions for d,{ ,-, a,-'. r and A, r into one recursion for p,, , r, the eflect of ) is carried
through unseen. When a new data sample is used, the exponential weighting is applied to the
2 sample variance estimate. ALGORITHM 4 summarizes the Square Root Normalized Least
5-: Squares Lattice (SQNLSL) estimation method. The sample variance Ry is initislized to some
: value o to avoid dividing by zero.
-; . Although SQNLSL is a very powerful and compact algorithm, the necessity of computing
'; square roots can lead to problems. The fixed point error analysis of this algorithm [Samson and
2 Reddy]| indicated that finite wordlength arithmetic computation of the square roots lead to small
-, biases in the reflection coeflicients. This bias was more predoininant than the variance of the
‘:f error in the estimate and generally quite small. The bias increascd as the wordlength became
shorter or the exponential weighting factor A approached one.
v
Y
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ALGORITHM 4:

Square Root Normalized Least Squares Lattice (SQNLSL)
Exponentially Weighted Scalar Data

Input Parameters
P = maximum order of lattice filter
A = exponential weighting factor (usually .98 to 1.0)
o == prior variance
rr = data sample at time T

Variables
Ry = estimated variance of z
pi,r = reflection coeflicients
vir = normalized forward prediction error
n:,r == normalized backward prediction error
Initialization

R, = o+ 3}

Voo = Neo = za/\/Ro
Pie = 0 1<:i <P

ITERATION FOR EVERY NEW DATA SAMPLE
New data sample zy and previous results 9, r_, , pi 1,71, Rry
Ry = \Rr, + zf

Vor = n,r = zr/V/Rr

For each stage of the lattice, i = 0 to min(T,P)-1

Pirrr = V1-Vir V1-0r,pisrra + Virfira

Vit = Pi+1,T0i, 71

Visr,r ™
\/1 - Fa‘:mr \/1 - "l?.f-l
Ni,7-1— Piv1, Vi1
Niv1,r ™=

\/l - Piv 1T \/l - "?.;

\

..........




8. COMPUTATIONAL COMPLEXITY AND CORDIC ARITHMETIC
(' | .

:’:: The complexity of the lattice filter is greater than the equivalent tapped delay line filter,
'i However the lattice filter has many advantageous properties not shared by the simpler filter.
~ Similarly the adaptive lattice flter has a few more operations than an adaptive tapped delay line
‘:: filter. Table 1 compares the computational complexity of several adaptive estimation algorithms.
;‘ The lattice methods require three to six times as many computations as the simplest adaptive
: tapped delay line filter (LMS). However this increase in computational complexity provides for
1:- substantially faster convergence, better numerical properties of the coeflicients, and an assurance
gz of a stable filter. The complexity of several adaptive algorithms is presented in the following
k table. The scaling by a constant weighting factor, eg. A or g is usually approximated as a shifting
-. by a power of two. Thus this fixed scaling is not included in the count of operations. The LMS
‘::-:: algorithm is the tapped delay line gradient least mean squares technique. The gradient lattice
w algorithms is (22) and (18). ALGORITHM 3 is denoted LSL and ALGORITHM 4 is called
::? SQNLSL. The number of operations are counted for executing a single filter stage on a single
:~ data sample. To process T data samples in an N-th order filter would require NT time as many
3

h computations.

: y
.3? TABLE 1 Computational Complexity
¥ e < T v s

LMS 2 0 0 2
; -C: Grad. Latt. 6 1 0 6
B -

= LSL 6 6 0 7
" SQNLSL 10 2 3 6
xed The SQNLSL algorithm is the most complex of the algorithms, requiring three square roots,
"': | ten multiplications, and two divisions to execute an update for each stage in the lattice for every

AR

new data sample. However, the SQNLSL has a very compact form with only three equations
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involving variables that have constrained magpitudes. The implementation of the SQNLSL equa-
tions in hardware would require special multiplier hardware for fast execution or would require
considerable execution time on general purpose microprocessors. Even using shift and add instead
of multiplication and Newton'’s method for square root operations would require considerable exe-

cution time.

By interpreting the lattice equations as rotations, an efficient realization of the square root
normalized lattice algorithm using CORDIC arithmetic was developed in [Ahmed, 1981(1)]. The
COordinate Rotation DIgital Computer (CORDIC) developed in [Volder] is an iterative algorithm
for computing trigonometric functions, multiplications, divisions, and square roots. The CORDIC
algorithm interprets the above functions as rotations of a vector in diflerent coordinate systems.
The rotation is implemented by a sequence of shift and add operations. This type of arithmetic is
not new; it has been used to compute trigonometric functions and their inverses in hand held cal-
culators. Many other signal processing algorithms, such as DFT and matrix inversion, can also be

implemented in arrays of CORDIC processors [Ahmed et al, 1982].

8.1 CORDIC Arithmetic

The well known equation for rotating a vector [z;, ¥;|T to a new vector [z, y;, )T uses

the sine and cosine of the rotation angle 4.

1] [_000(0) #in 0{] i
Vi+1 #in(0) cos(0)] Yui
Four multiplications by two trigonometric quantities are required. This operation can be made

more amenable to fast computer implementation by modifying this equation into a sequence of

small rotations of a specific form, each implemented using only additions and shifts.

CORDIC arithmetic was unified into s single equation [Walther] that allows rotations on
either a circle (m==1), along a line (m==0), or along a hyperbola (ms=-1). The incremental unit

of rotation at the i-(A iteration is the predetermined sequence {5;} and u; == + 1 that determines

the direction of rotation.
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The {5;} must be chosen to satisfy certain constraiats that assure convergence of the iterations.
To obtain computational efficiency on current computer hardware using binary representations, a
negative integer power of two is chosen for §;. This allows the multiplication by §; to be per-

formed as a shift.

The effect of (78) is a rotation and a change of scale interpreted in the appropriate coordi-
nate space. The vector [z,, yolr can be represented as a generalized radial component R, and a
generalized angular component, &,.
Ro - v Zo + myo
¢, = Vm tan”(yoV'm [2)

For the circular rotation, this is a true polar coordinate representation. Performing the operation
in (78) scales the radial component by r; = m and changes the angular component by
#; = m/% tan")(6;vm) . After p iterations, the new radial and angular components are R, and
®,.

Ry=Ry [T ri=Ro [I V¥ mi7 (79)

i=1 il

®, = & - i: Bidi = Bg - f: pi m2 tan”)(5;Vm)

i=1 i=1

The convergence of the iterations and the efficient implementation of the rotations depend
critically on the predetermined choice of §;. Each type of rotation, {(m == -1,0,4+1) has a
different predetermined set of positive increments (5;) which specify fixed radial .and angular
increments (r;, ¢;) from (79). Within the domain of convergence (limited by the total possible
rotation) constraints were developed on the sequence {¢;} such that any angle & could be rotated
to within ¢,_, of zero in p steps [Walther]. This guarantees that the granularity of the calculs-
tion (the angular resolution) is ¢,_, in p steps. With the proper choice of the set of increments

{&:}, each successive iteration yields approximately one more bit of accuracy in the final result.

The CORDIC equation, (78) is augmented by an additional variable, z, that accumulates

the angular component of the rotation.

5 =39 - 2 Bidi (80)
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The three parameters (z,y,2) are manipulated by successive application of the CORDIC equation.
The function to be computed is obtained by forcing either y or z to zero. Often the initial value
of the other variable, z or y is zero or one. The sign of the rotation, y; is chosen at each itera
tion to move the desired parameter towards zero. Rotation operations are obtained by forcing 2,

to zero. and vectoring operations result if y, is forced to zero.

The interpretation of (78) as a rotation on 3a circle, line and hyperbola can be seen from a
graphical perspective. For example, a circular rotation (m=1) of a vector |z, y,]|” into the vec-
tor [z, 0] computes tan'y,[z,. The direction of rotation u; is chosen at each iteration to
force y; closer to zero. The sequence of small angular step, {¢,}, predetermined by {4;}, is accu-
mulated with appropriate sign in z,, giving the answer. Fig. 8a indicates how this rotation
proceeds. The radius of the circle increases a predetermined amount r; with each rotation step.
It is not necessary to account for this change in radius when computing tan “1y,/2,. However the
value of z, has become a scaled square root where the scale factor is known in advance.

5= vaT a1l n
The three input/output box of Fig. 8a is used to describe the function evaluated by the CORDIC
rotation. With a nonzero initial value of z,, forcing z; to zero generates sin(zo) and cos(zy), see
Fig 8a.

For a rotation on a line, the radial component is always one and the angle component is
interpreted as the y; value. The increments become r; == 1 and ¢; == 5;. The result of applying
the CORDIC operation is shown in Fig. 8b. Multiplication and division can be calculated this
way.

The hyperbolic rotation computes sinh, cosh, srctanh and square roots, see Fig. 8c. The
surface of rotation is the set of point that is » constant distance vz3-y? from the origin. This

hyperbola moves s fixed amount, \/l-d.’ closer to the origin after each CORDIC operation.
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.*“.3:

-‘5:‘_ 8.3 Lattice Filtering by Rotations
( o - The square root normalized lattice equations bave a natural interpretation as rotations. The
-;i ) three recursive equations can be efficiently realized using CORDIC arithmetic [Ahmed et al,
2 1981(1), 1981(2)]. The structure of the SQNLSL algorithm suggests an implementation via rota-
A% tions. Since v, p, and 7 always have magnitudes less than one, they can be interpreted as cosines
-‘3 of angles. Furthermore, if z = cos(d,), then the complement of z is z¢ = V1 - z* = sin(4,).
S:: The SQNLSL equations can be written using a compact notation.

":’ Pisrr = V1- Viz.; V31-0r1pissra+ Virnira i Py = VN0 + vn

Vit = Pi+ 1, T7i, 11 € ¢
1 Viyrr = ¥ - - Vy =(V’P+ﬂ)/l’+"
V1-piv1r V1 -nira

W
X 0,7-1= Pi+1,TVi.T
.3 Ni+ 1,7 = : — - N =(n-p.v) ] piv°
NI ) V1-pimr V1-vir
4 For notational convenience, the following abbreviations were used.
2 .
o P = pisrra P+ = piyyr
"~
§ v = vrp, V., = Vir
- n = 7Ni.r-1 > Ny ™ Nig)T
'l
a The SQNLSL update equations can be written almost entirely in a single matrix equation (81)
: using the rotation matrices for v and .
s
e Vo [P 0] n¢ v¢ n P+ v . iV, (81)
" v v 10 1] 1y vy - pm vu+pw1 pm *
o
On the left hand side of (81), the first matrix performs a rotation by 4, = cos™}(v) and the third
. matrix rotates by 4, = cos”X(n). The result is the complete update for p and partial updates for v
i~ °
f,f : and 7 and a term (#) of no interest. The updates for ~ and n are completed by dividing by o5 .
- This matrix equation (81) is directly realizable using CORDIC operations.
Y
: The implementation of the SQNLSL algorithm in an integrated circuit proposes using two
‘z processors in parallel, each executing sequentially five functions, [Ahmed et al, 1981(1), 1981(2)).
P
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The computation proceeds from (81) in three step; an angular rotation by 8, the multiplication of
. | p matrix by the n rotation matrix, and the divisions by p;. The sequence of CORDIC operations
shown in Fig. 10 begins with p, n and v and computes p, ,n, and v,. The functional elements
use the notation of Fig. 9. The rotation angle 8, is calculated as tan™'(v/v°) using a circular
CORDIC operation by processor 2 in time slots 1 and 2. Rotating the p matrix by 4, is computed
as two multiplications (linear CORDIC): p n° by processor 1 during time slots 1 and 2, p n by
processor 2 in time siot 3. These quantities are rotated by 4, using circular CORDIC operations
in processor 1 (time slot 3) and processor 2 (time slot 4). This generates the p update and partial
updates for v and #. In time slot 5, the processors generate the updates for v and n by dividing
the earlier results by pf. The signals that Bow farther than adjacent time slots must be held in

temporary buffers. Each CORDIC operation uses 16 iterations and results in almost 16 bits of

A accuracy. The integrated circuit could perform the SQNLSL algorithm of tenth order on an 8
- KHz. sampled signal in real time. This assumes standard integrated circuit design rules to gen-

erate a moderate size chip running at a 20 MHz. clock rate.
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Fig. 8c CORDIC Rotation on a Hyperbola
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"j 9. SIMULATIONS AND APPLICATIONS
i3 *
SIMULATED SIGNALS
Simulated signals with different characteristics were generated and the response of the lat-
! tice estimation algorithms noted. The simulated signals included white noise drive autoregressive
:E:'_Z- processes that were (1) stationary, (2) had linearly time varying coefficients, (3} had step changes
'.:5:;] in coeflicients, and (4) had impulse excitation at the step changes in coeflicients.
S
For a stationary autoregressive process, the convergence of the least squares lattice method
::'_:E{ is shown in Fig. 10. An eighth order fixed coeflicient lattice filter driven by white noise generated
oy
T
: the simulation data. The LSL algorithm with A=.99 was used to compute the reflection

coeflicients. The first reflection coeflicient converged in less than 50 samples and the first four
; reflection coeflicients were near their correct values after 150 samples. Higher order reflection

coeflicients approached their correct values after 250 samples.

When the simulated data was generated by a white noise driven second order lattice with

linearly time varying coeflicients, the adaptive nature was be seen in Fig. 11. The two reflection

1

LJ
R e a9 W

. ‘.‘ o> '_,'_';"?t. g
Poates

coeflicient estimates followed the actual parameter values, However, there was an increase in the

variance of the estimate as the reflection coeflicients approached zero or as the coeflicient index

N -

§§ increased. The previous experiment was repeated with piecewise coustant coeflicients to generate
..;: the simulation data. The estimatefl reflection coeflicient trajectory did not indicate that the
mode] had step changes in the coeflicients, see Fig. 12.

‘:-:’: The effect of the optimal weighting function ¥ was seen when the simulated data was gen-
" erated by the same lattice with step changes in coefficients but also had a periodic impulse added
\, to the white noise driving process at the instant of coefflicient change. The presence of the
.’ impulses caused the estimates to readjust quickly to the new piecewise constant values, see Fig.
: 13. The impulse caused a sudden increase in the v which allowed the estimates to focus on the
:: ’ new signal characteristics. Once the eflect of the impulse has passed, the 4 decreased so that con-
W N vergence could take place.
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:: APPLICATION FOR SPEECH ANALYSIS

(“ - : The most extensive use of the lattice filter has been for speech processing applications,

including speech compression systems and stored vocabulary speech synthesis chips. Reflection

‘.- coeflicients and the lattice fiiter are well suited for speech processing for many reasons; the rela-

e tionship to the acoustical tube model of the vocal tract, the advantageous quantization properties

::: of the reflection coefficients, the finite word length arithmetic properties of the lattice filter, and

;‘ the slowly time varying nature of the reflection coeflicients across speech sounds (making them

amenable to interpolation).

jl},’ Linear Predictive Coding (LPC) is a technique that has been used widely for low bit rate

: speech coding and fixed vocabulary speech synthesis. LPC uses a vocal tract model, the lattice

:. filter parameterized by reflection coeflicients and an excitation model, periodic pulses for sounds

E-‘ES produced by vocal chord oscillation (eg. vowels) and white noise for hiss sounds. Short time seg-

\:‘: ments of speech, typically 20 milliseconds, are characterized by eight to ten reflection coeflicients,

" the pulse period (zero for noise), and an energy term. All of the parameters can be quantized to a

:".;5 total of 48 bit per 20 millisgcond interval. Using this compact description of sounds, speech syn-

:?2 thesis integrated circuit have been developed that generate understandable speech using parame-
" ters store in read only memory.

-’\‘

-::::' Analyzing a spoken vowel sound by the LSL algorithm shows the properties of the likeli-
2 hood variable. The time waveform, Fig. 14a clearly shows the periodic nature of this vowel. The

:\1 LSL algorithm applied to this sound produces the forward prediction error shown in Fig. 14b.

:':: This relatively stationary sound produced fairly constant reflection coefficients (after conver-

: gence), see Fig. 14c. The periodic jumps seen in all five reflection coefficients are due to the

\':}‘ influence of the periodic opening of the vocal chords. The likelihood variable, 7 usually is small

:"53 . but increases when these openings occur, Fig 14d. When the vocal chords open, a sudden pulse of

‘ air excites the vocal tract which the likelihood variable interprets as a change in the structure of

.53 ’ the signal. Determining the periodicity of these openings, called the pitch period is necessary of ‘

:E? the LPC speech model. Pitch pulses can be located directly from the prediction errors but do not

‘
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always give accurate results. The periodicity is evident but not easily extracted from Fig. 14b.

{ . By combines the derivative of the likelihood variable y with the prediction error sequence, a more
L
Y easily discernible spike is generated at the onmset of vocal chord oscillation, see Fig. 14e. This

s

e o

technique has been proposed as a pitch estimation method [Lee and Morf, 1980).

3
"ate

Since the recursive exact least squares lattice algorithms can track quickly changing spectral

characteristics, they can be used to differentiate the nature of transitional sounds [Tumer, 1982].

Sty A A Yy

By exponential weighting of past data, the current estimate reflects the short time signal charac-

teristics. The beginnings of the words 'bid’ and 'did’ spoken by the same male speaker are shown

(l
:—;} in Fig. 15. When analyzed by the SQNLSL with ) = .98, the reflection coeficients for the begin-
#
- ning of each word follow different trajectories corresponding to the different consonants. How-
ever, during the later vowel portion, the values are more similar, see Fig. 15b,c,e,f. The transi-
i tional part of the sounds is emphasized but the effects of the pitch pulses are also seen. The abil-
ity of the SQNLSL to differentiate these types of sounds may be useful in a phoneme based
speech recognition systems.
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o
N
e APPLICATION FOR CHANNEL EQUALIZATION
( * The adaptive lattice filter offers substantial advantages for channel equalization where the
S% ) orthogonalizing properties and fast tracking characteristics are important. Tapped delay line
::3 adaptive gradient equalizers, although simple to implement, have a rate of convergence that
- depends on the ratio of the largest to smallest eigenvalues of the channel correlation matrix [Git-
f lin et al, 1973]. Self-orthogonalizing techniques have been proposed by [Gitlin and Magee, 1977)
* and in lattice form by [Griffiths, 1977, Grifliths and Medaugh, 1979(2)]. The gradient lattice
equalizer [Satorius and Alexander, 1979%(2)] and the LSL equalizer (see Section 6) [Satorius and
%% Pack, 198i| have been shown to provide very fast convergence. The lattice filter equalizers
:‘ demonstrated fast convergence that was independent of the channels eigenvalues disparity ratios,
5 see Fig. 16 from [Satorius and Pack, 1981}, Two simulated data channels with correlation
‘%?i matrices of eigenvalues disparity ratios (ratio of largest to smallest eigenvalues) of 11 and 21
\: respectively were studied. An 11 tap equalizer was implemented using the LMS gradient algo-
‘ : rithm, the gradient lattice algorithm and the LSL algorithm. The gradient tapped delay line
’ : equalizer had considerably slower convergence that depended on the eigenvalue ratio. The LSL
;;1‘! equalizer converged in both cases in approximately 40 iterations while the adaptive lattice equal-

izer required approximately 120 iterations to converge.
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5’ APPLICATION FOR ELECTROENCEPHALOGRAPHIC ANALYSIS
" - Electroencephalographic (EEG) data analyzed by autoregressive modeling can provides a
-;S, ) better summary of EEG spectral information than frequency domain techniques, such as FFTs.
::’:4 The reflection coeflicients from the SQNLSL algorithm were studies to detect subtle changes in
brain states as observed in EEG activity [Redington and Turner]. The data obtained from the
_:: left central EEG (C1) response of an adult human subject monitored during sleep onset (sampled
'::. 60 times a second) is shown in Fig. 17a. A large change in activity appears near the beginning of
£y the raw EEG data trace and is apparent in the reflection coefficients, Fig. 17b,c,d. A second
S} change in activity near the end of the trace is barely noticeable in the raw data; yet, it is easily
:1 recognized in the activity of the higher order reflection coeflicient. The changes in reflection
\;. coeflicients may reflect physiological transitions and provide a means of inferring presence or
.‘j sequence of EEG brain states.
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10. COMMENTS AND CONCLUSIONS

The lattice filter structure as a realization of a digital transfer function has several advan-
tages; it is a cascade of identical sections, has a general insensitivity to round-off noise, and the
reflection coeflicients can be related to physical processes. The physical interpretation of
reflection coeflicients gives them intuitive appeal, particularly for speech signals. For adaptive
estimation, the lattice structure is the natural form for an efficient solution to recursive least

squares problems. Lattice filters provide an orthogonalization or decoupling of the states of the

Ay
.
-

PO AL P,

input process. The stability of an all pole model when expressed in lattice form can be deter-

e 0,

mined by inspection.

"v‘
-

|4
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The real advantage of the lattice structure lies in adaptive estimation and filtering. An N
stage lattice filter automatically generates all the outputs which would be gemerated by N
different TDL filters with lengths from 1 to N. This allows dynamic assignment of any filter
length which proves most effective at any instant of adaptive processing. When compared to the
simpler adaptive transversal filter, the lattice filter has superior convergence properties and

reduced sensitivity to finite wordlength effects.

Recursive lattice estimation algorithms allow the exact least squares solution to be
efliciently updated for each new time sample. The structure of this exact recursive approach is
similar to the gradient lattice techniques; however an optimal gain is calculated at every time
sample. This optimal recursive solution has a complexity that is only slightly more that the gra-
dient lattice solution. Consequently, the LSL and SQNLSL algorithms achieve extremely fast ini-
tial convergence and can track quickly time varying parameters. The SQNLSL has a very com-
pact potation and normalizes all signals to unit variance at each stage. A single integrated circuit
to execute this algorithm has been proposed.

However, as with all adaptive estimation procedures, there are various trade-offs to be made.

~ The lattice structure involves more computation and is conceptually more complicated than the

tapped delay line :‘netun but has better convergence properties. The recursive least squares lat-
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tice offers even better convergence than the gradient lattice, but again it is slightly more complex.
For example, in the definition of the two reflection coeflicients, there is a difference in the time
subscripts of the normalizing covariances. In the stationary case, these terms are identical but in
the LSL the diflerence is critical; in general the algorithm will fail if this difference is overlooked
[Satorius and Shensa, 1980]. The SQNLSL allows a very short time constant to be applied to the
sampled data so that the quickly time varying nature of the signal can be tracked. However,
attempting to track transient speech sounds also tracks the pitch excitation signal which was not
of interest. For processes that tend toward stationarity, the convergence properties of the gra-

dient lattice and LSL lattice are similar [Honig, 1983].

Many extensions to the basic recursive least squares algorithm have been developed.
Reviews of least squares adaptive lattice filtering can be found in [Satorius and Shensa, 1980,
Friedlander, 1982(3)]. Recursive ladder algorithms for ARMA modeling have been presented in
[Lee et al, 1982]. The SQNLSL algorithm has been extended from the "pre-windowed” data case
presented here to the "Covariance” data case in [Porat et al, 1982]. The problem of system
identification has been addressed in [Porat and Kailath, 1983]. A review of lattice filters for nons-

tationary processes was presented in [Kailath, 1982].

There are other means to implement the lattice filter structure for estimation. The order-
update recursions can also be obtained by using a Cholesky decomposition of the covariance
matrix [Dickinson, 1979(1), Dickinson and Turner, 1979(2), Klein and Dickinson]. Alternatively,
since a reflection coefficient is similar to a correlation coeflicient, computationally simple tech-
niques to estimate correlation coeflicients can be applied to determining the reflection coefficients.
Since the correlation of Gaussian random variables is related to the correlation of the hardlimited
variables by an ARCSIN relationship, a very simple reflection coeflicient approximation technique
is possible [Turner et al, 1080]. This algorithm requires only a count of polarity changes in the
prediction errors to estimate the reflection coefficients (assuming zero mean unit variance Gaus-

sian signals).

Overall the adsptive lattice filter offers a compact algorithm for obtaining quickly coaverg-
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ing estimates. The properties of the lattice filter and reflection coefficients motivate their use in

many practical situations.
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