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1. INTRODUCTION

The dynamic response of buried structures subjected to explosive loadings

can be analyzed using many different models. These range from simple models

that involve a few parameters to extremely complicated models that represent

many details of the explosion process, the surrounding ground materials, and

the structure itself. The difficulties and uncertainties associated with

simultaneously analyzing the explosion, the ground and the structure usually

lead to consideration of procedures that allow detailed study of some parts

of the problem while treating the rest in a simplified fashion. Approximate

procedures of this type will be referred to as uncoupling methods.

The main purpose of this study is to consider an uncoupling method that

permits detailed analysis of the structure while the ground, which may exhibit

hysteretic behavior, is represented by a relatively simple model based on

an extension of the plane wave approximation. This method is a special case

of a more general approach (currently under development by Weidlinger

Associates, and is summarized in the Appendix) to uncouple the motion of

a structure from that of a nonlinear medium with which it is in contact.

The plane wave approximation has been used as an uncoupling method for

linear fluid-structure interaction problems for many years (e.g. see Ref. [2]).

Recently, Ref. 13], it has been applied to the nonlinear problem of C structure

submerged in a cavitating fluid. It has also plaved a role - in the form of

viscous dampers - in the development of "transmitting boundaries for soil-

structure interaction calculations (both linear and nonlinear); here however

the boundary is placed relatively far from the structure. Tts application as

a soil-structure uncoupling method, wherein the soil is entirely replaced by

theplanewave approximation at the soil-structure interface, appears to be quite

recent. It was successfully applied in this way to a linear two-dlmensional

problemin Ref. [4] and to a nonlinear two-dimensional situation in kef. fl].
~5
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2. ONE DIMENSIONAL SOIL-STRUCTURE INTERACTION

Consider the soil-structure interaction problem illustrated in Fig. 1.

A possible one dimensional model of the roof of the structure in contact with the

soil is shown in Fig. 2. This one dimensional problem will be taken as the

model with which the uncoupling method will be compared in detail.

2.1 Formulation of the Continuum Equations (see Fig. 2)

The soil, having density p1 and depth H1 , is represented by piecewise

linear stress-strain behavior with initial loading modulus ML, and unload-

reloading modulus M U , where MU> ML . The structure, having density

p2 and depth H 2, is represented by a linear elastic stress-strain behavior

with modulus M2 . The shearing resistance of the roof is represented by an

J elastic, ideally plastic continuous support that exerts a force FS where the

elastic force-displacement behavior is represented by a spring constant K and

the plastic limit is represented by a force F .

Let x denote a coordinate, increasing with depth, with x = 0 corresponding

to the ground surface. Let u(x,t) be the particle displacement at point x
au

at time t in the continua and v(x, t) = 2- be the corresponding particle

*' velocity. The stress, negative in compression, is denoted by a(x, t). Ignoring

convective effects, the continuum equations for the soil can be written as

" o I  - (1)
Ilat ax

D M ax (2)

where M1 is either ML or Mu, depending on the state of the material. The

continuum equations for the structure can be written as

av _ + FS
2  -(3)~2at ax H 2A

aa M2 a (4)
at 2 x



4
where FS depends on the state of the shear support, and A is the area of

the structure that is in contact with the soil.

2.2 Finite Difference Equations

Equations 1 to 4 are solved numerically by finite differences using

central differences in space and time on a staggered grid of stress and

velocity points, as shown in Fig. 3. Stress points are placed at x = 0 and

x = (H1 + H2 ) and a velocity point is placed at x = H 1 . In the soil region

difference equations are expressed in terms of the lengtn AxI = H1 I(N 1 + 1/2)

where N is an arbitrary positive integer. Similarly in the structure the

.5 difference equations are expressed in terms of the length Ax 2 = H2 /(N2 + 1/2)

Let a. denote O(x i , t) where x. = (i-l)Ax for i = 1, 2,..., N + 1 and
PS1 111

xil = H1 + (i - N - 3/2)Ax 2 for i = NI + 2,..., N1 + N2 + 2. Let v. denote

v(x i, t) where x. = (i - 1/2)Ax1 for i = 1, 2,..., N1 + 1 and x. = H 1 +

(i - NI - l)Ax 2 for i -N I + 2,..., NI + N2 + 1. Difference approximations

to Eqs. I and 2 can then be written as
-%

4.n+l ^n + A t ,n n
v = v. + A - a.) for i = 1, 2,..., N1  (5)1i 1 plAtl (1 i+l 1'

n+l n At n+l n+l
G +. = _ + -( . - v) for i= 2,..., N + 1 (6)

i i 1Ax I -i-l 1

where the superscripts denote time tn or t 1 and At t - t nis the

time increment.

7
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n
The symbol v. in Eq. 5 denotes a spatially averaged particle velocity,

defined by
^n n n n n n.,v. =v. + .)- a. (.- v9(7)
,1 1 + i+l/2 (vi+l - vi ci-1/2 ('i Vi-l)

. where every a must be non-negative. Small positive values of a introduce

a linear (artificial) viscosity which can be used to suppress spurious

high-frequency oscillations that are produced by this numerical method.

Similarly, difference approximations to Eqs. 3 and 4 can be written

as

n+l n At n n At n
v. =v. + (a - a ) +- F
I i p2Ax2  i+l i p2H2A Si

for i = N + 2, N I + N 2 + 1 (8)

n+l n M2At n+l
a. =aY +-(v.

for i = N +2 N+ N2 + 2 (9)

where FS. indicates that the displacement uin is used in the force-displacement

relation FS = -Ku of the shear support unless the plastic limit F controls.
O0

From the boundary conditions

an = - P(t ) (10)

, where P(t) is the pressure loading at x = 0; at the free surface, x = (H1 + H )

G n =0 (11)
N +N2 + 2

The velocity at the soil-structure interface is handled separately by
^ AtAx

n+l n At n i 1 ) 2 n
V. V . + -- (a -a )+ A

1 1 m i+l i 2 Si

for i = N + 1 (12)

where m = Ir1Ax1 + P2.tx2)/2.
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2.3 Parametric Studies

*, The primary set of parameters for this model are

"1 H1 , H2
,SGeometry:

Soil properties: p1 , M, N

Structural properties: p2 , M2

Shear support: K, F

In this report the soil parameters will be given in terms of the loading

wave speed

1/2
CL = (M/P) (13)

and the ratio of soil unloading modulus to loading modulus

0Uo M U/ML \ (14)

Similarly the structural parameters will be given in terms of the wave

speed 1/2 (15)
. C2 = (M 2 /P 2 ) (5

The shear support parameters will be given in terms of

k K/A (16)

- and
f 0 F /A (17)

The pressure loading function, P(t), chosen for these studies is the

triangular pulse, shown in Fig. 4. It is characterized by a peak pressure,

"- Po' the time of that peak, t., and the time at the end of the pulse, t2

In this section certain parameters are fixed as follows

* Geometry: H1 = 20 feet, H 2 = 3.3 feet

Soil: gp 1 = 110 lb/ft 3 , CL = 1500 ft/sec
3

Structure: g p 2 
= 150 lb/ft , C2 = 12000 ft/sec

Loading: P0 = 1 ksi, tI = 2 millisec, t2  1 10 millisec

~9



Finite difference: N 40, N 2  5
m2

Artificial viscosity: al/2 = 0,

a+ 1i/2 = 0.04 for i = 1, 2, ... , N1

a +/2 a0 for i = N + ,..., N I+N2 +1

The remaining parameters are varied as follows

U = 1, 2, 3, 4

k = 0, 1, 10 (kips/in 
)

Elastic Shear Support (F°  o). Stress histories at x = 20.3 feet for

cases UO = 1, 2, 3, 4 with k = 0 (no shear support) are shown in Fig.

and the corresponding velocity histories at the interface, x = 20 feet,

are shown in Fig. 6. Stress histories at x = 20.3 feet for U = with

k = 0, 1, 10 are shown in Fig. 7, and the corresponding velocities at

x = 20 feet are shown in Fig. 8. Stress histories at x = 20.3 feet for

U0 = 4 with k = 0, 1, 10 are shown in Fig. 9, and the corresponding velocities

at the interface are shown in Fig. 10.

Plastic Shear Support. Results corresponding to plastic behavior of the

shear support are presented for various values of f so that a ductility of 100

is achieved (iteratively). The ductility is defined as the ratio of maximum

displacement of the plastic shear support divided by the displacement at the

elastic limit of the support (f /k). Stress and velocity histories are

shown in Figs. 11 through 14 for the following cases.

Fig. 11: U = 1, k = 1, f 0f= 0.246o 0

Fig. 12: U = 1, k = 10, f = 0.885

Fig. 13: U = 4, k = 1, f = 0.122

Fig. 14: U = 4, k = 10, f = 0.505

10
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3. UNCOUPLING METHOD - ONE DIMENSIONAL STUDIES

The uncoupling procedure to be studied here is a special case of a more

general uncoupling approach described in Appendix A. In the present

approximation, the calculation is separated in two parts:

(1) Generation of free-field (no structure) velocities and tractions
on the surface located where the external surface of the structure
should be.

(2) Structural analysis using the free-field data from (1) in
conjunction with the plane wave approximation, where the unload-
reloading impedance (p V Cu) is used for the soil. Let yF and

V F denote the free-field stresses and velociites, respectively.

The response of the structure is analyzed with the boundary condition

aB = a F + pIC(VB - vF) (18)

being used at the surface of the structure, where B and vB

denote the structural boundary stresses and velocities, respectively.

3.1 Free-Field Data, F, vF

Free-field -io structure) data were calculated by the finite difference

method of Eqs. 5, 6, 7 with a soil depth which is sufficiently long

(40 feet) that no reflections from below could affect the solution at

x = 20 feet. To reduce errors associated with numerical approximations, the

finite difference parameters were made identical to those used in the soil-

structure interaction calculations of the preceding section. Hence,

Axfi =H I/(N1 + 1/2) with H I =20 feet, N = 40; a = 0.04 for all points.

Stresses and velocities at x = 20 feet for U = I and U = 4 are shown in
0 0

Figs. 15 and 16. Stresses at x = 20 feet were obtained by averaging the two

stresses on either side of the particle velocity at this depth.

a-.
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3.2 Structural Analysis

The response of the structure was analyzed by the finite difference

method of Eqs. 7, 8, 9, 11, 12, with the soil mass ignored in Eq. 12;

the structural boundary stress in Eq. 12 was based on Eq. 18

n = aF  P Cu(v - vF)  for i = N + 1 (19)

i UF I U i F 1

(The accuracy of this uncoupling approximation can be evaluated by studying

-the calculated velocity time history at the boundary, since the response of

the structure is completely determined by this quantity.

Figure 17 shows the velocity time history for the case, U = 1,
4% o

k = 0, (no shear support) with the corresponding soil-structure interaction

results from Fig. 8. This is simply the plane wave approximation for the

elastic case and, as expected, the comparison is excellent. Similarly, the

comparisons in Fig. 18 for U = 1, k = 1, f = CO, and in Fig. 19 for
0 0

U = 1, k = 10, f = O, are both excellent.

Figure 20 shows the comparison for U = 4, k = 0, f = 0 with the
0 0

corresponding soil-structure interaction results from Fig. 10. Similarly

the comparison for U°  4, k = 1, fo is shown in Fig. 21; the comparison

for U = 4, k = 10, f =CO is shown in Fig. 22. In these cases, the soil
0 0

is hysteretic but the structure is elastic.

Figure 23 shows the comparison for U = 1, k = 1, f = 0.246 with theo 0

results from Fig. 12. The comparison for U = 1, k = 10, f = 0.885 is shown~o o

in Fig. 24. In these cases the structure responds plastically but the soil

is elastic.

Figure 25 shows the comparison for U = 4, k = 1, f 0.122 with the

results from Fig. 14. The comparison for U = 4, k = 10, fo 0.505 Is shown

", in Fig. 26. In these cases the soil is hysteretic and the structure behaves

plastically. 1212 12
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3.3 Single-Degree-of-Freedom Results

The finite difference calculations in Section 2 and in this section

so far were done with five stress points in the structure (N2 = 5). However,

it is interesting to note that waves propagate relatively fast in the structure

so that the velocity time histories in Figs. 17 through 26 can be reproduced

quite well by representing the structure as a single-degree-of-freedom

particle with velocity v and mass per unit area m - p2H2 . The equation

of motion, including the uncoupling approximation, then becomes

* FS
my -OF + PlCu(vF - v) ] + FSA (20)

Figures 27 through 30 show selected comparisons of velocity time histories

obtained using Eq. 20, with corresponding case results for N2 = 5. The

differences are quite small even in the nonlinear problems.

3.4 Variation of Soil Impedance

All results so far have been based on a constant value of p1CU for

the soil impedance in the uncoupling approximation. This choice can be

seen to be a good one for the present studies by examining Fig. 31 where

* the results of using the loading impedance P1C L are compared with the

corresponding case results using p1CU and the interaction results from

Section 2. The very early time results using p1CL compare better with

the interaction results but once unloading begins, the difference becomes

noticeable. Still, it is interesting to note that even though the soil

impedance was changed by a factor of two, the later-time error is only

about thirty per cent. Thus, the choice of the soil impedance seems to be

less critical than one might expect.

13
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Other ways of choosing the soil impedance in the uncoupling approximation

may be considered. For example, it might seem that the impedance could be

made to depend upon the state of t' soil by first choosing p1C L when a F

initially loads the strLicture, then switching to PICU once GF indicates

unload-reloading behavior is taking place in the soil. This has been tried

and the results are not substantially altered by this procedure except for the

introduction of some high-frequency numerical oscillations. These oscillations

are the result of a change in acceleration whose magnitude depends on

P1 (CU - CL), the current magnitude of v, and the time increment At. Such

numerically activated accelerations are quite undesirable and should be

avoided. Smooth variations of the impedance may be used but since the initial

loading phase is so brief for explosive loadings, the use of pIC U at all

times seems to be a reasonable approximation, at least until further study

is made. If the soil's unload-reloading behavior is known, then a smoothly

varying impedance may be considered. (However, in many situations, plCU is

only known roughly and a constant value may be acceptable.) Additional study

may be needed in this area, see Ref. [5].

'S"
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4. MULTI-DIMENSIONAL CONSIDERATIONS

The multi-dimensional generalization of the uncoupling approximation,

Eq. 18 (see also Appendix A, Eq, A-6), can be written as

t= F + pc • (v B -v F) (21)

where tF and vF are free-field traction and velocity vectors at the
surface where the structure should be, and tB and YB are traction and velocity

vectors at the boundary of the structure. From wave propagation considerations,

the form of the tensor c can be expressed as

[c 0 0

c + 0 c (22)

0 0 c
s

where c is given in a local coordinate system whose first coordinate

corresponds to the outward normal of the surface of the structure, and

the sign is chosen to produce outward wave propagation (radiation damping);

c and c are the speeds of dilatational and shear waves, respectively,p s

in the soil. As mentioned in the previous section, a smooth variation in

the unload-reloading behavior can be introduced into c, if necessary.

The geometry of a particular situation can affect the way in which

the uncoupling approximation is used. In Fig. 1, for example, waves will

be reflected back and forth between the roof and the ground surface. This

effect would have been noticeable in the results of the previous section

if the calculations had been carried out much further in time. This effect,

while noticeable in the one-dimensional case, is not likely to be important

in two- and three-dimensional problems where the depth of the roof is on

the order of one or more times the horizontal span of the structure. The

15
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importance of such geometrical effects must be considered carefully in a

particular analysis since the free-field data do not include these effects.

A refinement of the uncoupling approximation can be used to include

geometrical effects, if necessary. First, instead of a free-field calculation,

a soil-structure interaction calculation is made with a coarse model of

the structure, and tractions and velocities are recorded at points on the

-* exterior of the structure. These tractions and velocities are then used

in place of the free-field data in Eq. 21 with a suitably refined model of

the structure. It is also possible to record tractions and velocities

on the surface of an imaginary convex surface outside the structure and

then use a refined model of the soil and structure inside this surface.

The major drawback to using this approach is that the first stage calculation

will generally be more complicated and hence more costly than a free-field

calculation. Detailed studies involving multi-dimensional situations are

in progress and will be reported separately.

1
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*5. SUMMARY AND CONCLUSIONS

An uncoupling approximation for analyzing explosively loaded structures

embedded in hysteretic media has been presented. The method, based on

wave propagation considerations, can be viewed as the plane wave approximation

extended to nonlinear media. Its accuracy has been shown to be quite

good for a series of one-dimensional soil-sturcture interaction problems,

even when the structure and surrounding soil are both nonlinear.

It should be noted that both free-field traction and velocity vectors

must be known or calculated in order to apply the method. In addition,

the soil's unload-reloading behavior is required.

Multi-dimensional problems, and techniques for improving the method,

were also described briefly. Further development and experience are needed,

but it appears that reasonably accurate results can be obtained by judicious

application of these techniques.

o1
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APPENDIX

INTERACTIVE SCHEMES FOR NONLINEAR MEDIA

Consider a structure S partially or totally embedded in a nonlinear

medium M. Let B be the surface conon to S and M. Assume that free field

input is available and could be used in a simpliried structure-medium

calculation in which only a coarse approximation of the structure is used.T

This solution gives trial boundary tractions t T
-B

Let the correct boundary tractions for the actual structure be denoted
T

by t . Due to the error tB t in the tractions in the simplified calculation,

Tthe velocities along B are in error by an amount vB - vB as determined by

T _ tB F{vT_ (A1tB -v A-l

where F is a functional which describes the response of the surrounding

*material to an excitation on boundary B. The proposed uncoupling procedure

consists of finding an appropriate approximation to functional F

For a general nonlinear structure, finite element equations will be

of the form

Vx) = P (A-2)

in which x and P are the displacement and interface force vectors, respectively,

and 4 is an operator which represents the structural characteristics. If

T and t are first Piola-Kirchhoff tractions, P depends linearly on the!B -B

A interface tractions tB9 i.e.,

P (tT)- P(tT _ t (A-3)

B - -

Then (A-2) may be written as

(x) + P[F(v -B) P(t) (A-4)
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C$"

The left hand side of (A-4) represents a modified structural operator in

which the boundaries of the actual structure are supported by nonlinear

Thysteretic connections to a base which moves with velocity vB . The right

hand side represents the interface loading from the trial calculation.

T

In physical terms this means that the traction t can be used to load
* -B T

the actual structure. However, to account for the fact that tB corresponds

to a slightly different structure, the boundary supports of the actual

structure are modified by the use of non-linear supports. These supports

Tare attached to a base with the approximate motion vB to the structure at

each of its nodes or velocity points. The support behavior F is chosen so

as to represent the appropriate loading/unloading/reloading behavior of the

medium surrounding the structure.

As a first choice, take

jF ff pc (A-5)

so that (A-l) becomes

T T

-B ( -v (A-6)
B B B -B

in which c is a tensor formed from the wave speeds in the medium. This is

equivalent to the plane wave approximation used for linear media and involves

only linear dashpot supports on the structure. Similarly, F can be chosen

-] to give an interactive scheme analogous to the doubly asymptotic approximation.

,.2
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COMPARISON OF RESULTS FROM UNCOUPLING
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