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INTRODUCT ]ON

The radiation produced by gamaa rays incident on ordinary

dielectric materials such as glass was first discovered by

Cerenkovl in 1934 and was described in terms of a charged

particle (electron) moving faster than light :Ln the medium by

Frank and Tamm2 in 1937. A summary of work to 1958 is contained

in the treatise by Jelly 3 . An important appl:Lcation is the

Cerenkov particle detector which is famil Lar Ln any particle

physics laboratory, and an early and crucial application occurred

in the discovery of the antiproton 4 .

Because the distribution of intensity of Cerenkov radiation

is proportional to the frequency, the radiation at microwave

frequencies would be low unless beams are intense and bunched so

that coherent radiation by many electrons contributes. Danos 5

in 1955 calculated radiation produced by a planar beam passing

above a dielectric interface and a hollow cyl.Lndrical beam passing

through a hole in a dielectric. Experimental and theoretical

investigations at microwave frequencies ware :eviewed by

Lashinsky6 in 1961.

This investigation was motivated by a recent renewed interest

which has included the study of stimulated Cerenkov radiation, in

which the electron may be in a medium consisting of a gas7 or a

hollow dielectric resonator 8 ,9 . Recent developments of

electron accelerators for applications such as free electron

lasers (FEL) have aimed toward high peak currents in bunches in

contrast to nuclear and particle physics applications, where low

peak but high average currents are desirable to avoid saturating

mll l l l l l l i l iill il ld d . . .: ": r-_ ' - : .' " -. a _-, '"W",W m1.



detectors. The high peak currents in the new accelerators should

yield enhanced Cerenkov radiation, as is calculated in this

paper.

2



CALCULATION OF THE POYNTING VECTOR

In the following derivation, we consider the Cerenkov

radiation produced in a dispersionless medium such as gases or

other dielectrics, by a series of pulses of electrons such as are

produced by a traveling wave electron accelerator (Linac). The

pulses or bunches are periodic, the total emission region is

finite and the bunches have a finite size.

In determining the radiated power, the procedure is to

calculate the Poynting vector from fields which are in turn

obtained from solutions of the wave equations for the potentials.

Since the current and charge densities entering into the wave

equations are expressed in fourier form the resulting fields and

radiated power also have fourier components. In the derivarion,

is the coordinate at which the fields will be calculated, r is

the coordinate of an element of the charge which produces the

fields and A is a unit vector in the direction of r. We assum:te

that E(r,t) and B(r,t,) have been expanded in a fourier series,

appropriate for the case where the source current is periodic-

Then we have
as

(i)

and a corresponding expansion for B, where w is a discrete

variable and E and B are fourier series coefficients. The

poynting vector S is given by

S = E x B

(2)



j~ rp 

-'-- 4L7*

and it is easy to show that the average of S in a direction given

by a normal vector is
T

Al nS dt . nErc ) x()

.4 where T is an integer multiple of the period of the periodic

current.

Letting c = (pe)l/2 be the velocity of light in the

medium, the wave equations for A, and their solutions are,

22
2 2.

Cat2

A(rt) = Ui ffff D~i t-t ') J(ri", t d r 'dt (5)

(,t) - i S-, D -t (A ' 3 , 9t

where the Green's function D is given by

D ('r,t) = 1 6(t-r/c) (6)

The vector potential A(r,t) also can be developed in a fourier

series expansion of a form similar to (1) with an expr~ession for

the fourier series coefficients given by
4b T - ~

Pr,o) 1.fdtA(r,t)e

- Pff~r~(' , ' j - j/ (7)

4
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Now if we assume that the observer is far from the source so

that r I b' j for regions where the integrand in (7) is important

we can let r n r' in the exponential and - r' =r

A _in the Ir - P .I- factor in (7), obtaining (where n =r/r)

h,' • , ( ') 4 ewr/c d3r 'JCr r - c "

A~~)= 14 e-
4rr ,y (8)

The fourier series coefficients of the fields are obtained

from those for the vector potential (8) through the usual

relations B = V x A and E = -v,-A . Under the conditions

leading to (8) the field fourier coefficients arelO:

= 1i n x A(rw)
c (9)

E (r"0) = -c An x 7, )

(10)

The poynting vector can now be found by using (9) and (10)

in expansions like (1) and then substituting in (2). However it

is more convenient to deal with the frequency components of the

radiated power by substituting (9) and (10) into the expression of

the average radiated power (3).

T e

1f n-Sdt = 1 A & X (r,W)2

5
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FOURIER COMPONENTS OF THE CURRENT

The expression (7) for the fourier components of the vector

potential contains the fourier components of the current density.

Consequently it is necessary to examine the form of the current

and its fourier development. Assume the current is in the z

direction and periodic. If the electrons move with velocity v,

and we ignore for the moment the x and y variables, the charge or

current functions should have the general form

N f(z,t) = eikzZ e- i( t f(kz ') (12)
KZ

z

Under the condition of rigid motion,

f(z,t) = fo(z-vt)
(13)

it is easy to show that

f~k z }  = 6 f (k zwz k v ~0  z (14)

where
z

f(k = 1 re-ikzz f.(z)dz""Z" j (15)
Vz

Thus the restrictions of equation (13) reduce the two

dimensional fourier series of eq. (12) to essentially a one

dimensional series (14).

6



With (14) in mind, the current density associate, .!-.e

electron beam from a linear accelerator should be periodic in bct2

z, t, with a fourier series expansion, but the x and y' d-epenience

should be represented by a fourier integral form:

Jz(rt) = P('r,t: =(2 70)2 dk x fdky ei0kr- (kt).)

(16)

where the Eourier components of the charge density are

z -Z (17)r fd 1 rdze-ik r ()
dx ik-ro (k) i dx dy f dze o.r

OC CO 0

P0 (r) is P(r,t) evaluated at t = o and J is assumed to be in

the z direction. Note in eq. (16) that kz and w are both

discirete and from (14), w = kzv.

...;

7
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I , VECTOR POTENTIAL

The results of the previous section can be applied to the

evaluation of the vector potential and in turn to the fields.

Let the infinite periodic pulse train be made finite,

extending from z = -Z' to z = +Z' and let e be the angle between n

and A. Then the cross product in (11) can be written4..
I x A(r,) = sin 4 eiLr/c

f dx' dy' dz' e

"1 zdk O'' ek
f E v -(k i k r '

(7)2 dkx dky = - 0 kv e (18)

k* z

But

dx' dy f dz' e ir (k - f^w/c)

(21) 2 '(k x( - n x/c) (ky - n y/C)I(Z') (19)

where

"dz e Z Z = 2 sinGZ' (20)

and G k z - nz w/c = w/v - n z W/c

And thus the cross product term is

In X A%,) I = sin4- e/c vpo(n (/c, n y/C, W/v)I(Z')

-4Trr y

(21)

.8..-.,. . ... - . .- ..... . . : " •



Note that w is a discrere variable but. from 19, the

continuous variables kx and ky become evaluated at. discrer.e

*points.

Returning to (17), a more symmetric form may be obtained by

* assuming that po("), which is periodic in z with period Z, is

actually zero between the pulses. Dencting by po'( ) the charge

density of a single pulse, which is zero for z < o and z > Z the

integral on z can be written

dz e z P (r) = dz e z = dz e- z Z, (r1 (22)

0 0 -- W

Then (17) the fourier coefficient of tYe charge density, becomes

PO dar e- 1P(.,= 'k02() -- g& o

-' (23)

wherea 0 ( k) is the three dimensional fourier transform of the

single pulse decribed by 0o' ().

Substituting these expressions into (21) gives a final simple

result for the cross product form:

In x A(r, 10)t sire ei /C(v/Z ) P0 (k)I(Z')
Ti" (24)

I9



where
2.

I (Z') u sin GZ'IIG = w~/v - nl C W/C (25)
k= (n w/c,n wi/c,w/v)x y

The components of the Cerenkov E and B fields may now be found by

substituting (24) in (9) and (10).

'S.0



RADIATED POWER

The frequency components of the average radiated po+ er are

obtained by substituting (24) into (ii). The negative frequency

terms equal the corresponding positive frequency terms, yielding a

factor of 2 when the summation range is changed. lultiplying by

r2 converts to average power per unit solid angle, dP/, ,

yielding
~T

= r ~ fiSdt =r
2 rZ~ Ifi x

f0 C

E Ww,) (26)

where W((an) is defined to be

si2 2 2 (v/Z 2 'I'(k)1 2 r2 (z.)
W~wn) (4r) LFsin 8v/

(27)

W(Wn) is the power per unit solid angle radiated at the frequency

W, which is a harmonic of the basic angular frequency w. of the

periodic pulse train.

To find P , the total power radiated at the frequency ,

W is multiplied by dQ and integrated over solid angle. lote that

nz - cos e, and as 8 varies, G changes according to (25),

11



with dG = - (w/c) dn so that

(28)
dn = d$(c/w) dG

Noting that the integral over P yields 2n, we find the result for

the total radiated power at the frequency w for all angles

G"
,P 2 (2 29 ) c

ST- 2 f sin2 leo(k)1 2  2 (Z) (29)

2

I

12
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CERENKOV ANGLE

The remaining integral over G may now be examined. The

sin 2 8 and P0 factors may often be slowly varying compared to

the 12 (Z') factor, the latter being shown in Fig. 1. For large

Z', the peak in 12 (Z') becomes narrow, and if the integrand may

be neglected outside the physical range G' <G<G",

I12 (Z')dG = f 4 (Z,)2sinGZ)2dG = 41rZ
ff fZG (30)

G -

Then, evaluating the sin 8 factor and po(k) at the

point corresponding to G = 0, (which is cos 8 = nz = c/v) shows

that 6 at the peak of I(Z') is the usual Cerenkov angle Oc" We

thus obtain for large Z'

2 .2 1 (A)1c
P. WV e.s(i) 47rZ '/Z

(31)

Now let 2Z'/Z = ratio of the interaction length to pulse spacing =

N, the number of pulses. Also Z = v27/% or 27/Z = %o/v so

that, (in the large Z' limit),

= - vsin 2 0 l(J)1 2 N.
W 41r w ,V i

(32)

To compare with usual formulations, (32) is divided by Nv to

obtain the energy loss per unit path length per pulse:

dE _ sin 0 c k

(33)

13



If the pulse is in fact a point charge, the fourier transform

o (k) reduces to q, the total charge per pulse and (33) is

A, very similar to the usual Cerenkov energy loss formula, where for

a single charge q, the radiation is continuous and the factor

SW 0in (33) is replaced by wdw. In the present case the pulse

train is periodic at angular frequency wo and the radiation is

emitted at the harmonic frequenies denoted by w.

14
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DISCUSSION OF RESULTS

Equation (29) and the approximate evaluation expressed as

(32) form the main results. Some consequences will now be noted.

- a. !FFECT OF PULSE SIZE. The spatial distribution of the'.1

charge in the pulse appears in po(k), which is the fourier

transform of the charge distribution. The peak of 1 2 (Z ' ) in

figure 1 occurs at G = 0 or nz = c/v. Thus at. the peak, s/v = n z , /c

so that k, the argument of p'(1), is evaluated at (from 25)

k = n/

(34)

We may also define a charge form factor F(k)

-' ' ( - qT(£)
-0 (35)

The form factor F(R) is identically one for a point charge,

and for a finite distribution F(1) - 1 for k =o.

Furthermore F(k) must fall off as a function of I near the

origin if all the charge has the same sign. If the pulse were

spherically symmetric, F(k) would behave as elastic electron

scattering form factors defined for nuclear charge

distributions11 . In that case, the mean square radius <r2 >

of the charge distribution is given by the behavior of F(k) near

the origin.

F(k) I - <r 2 > k2 /6 (spherical pulse) (36)

15
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b. SMEARING OF THE CERENKOV ANGLE. For a finite region over

which emission is allowed, namely if 2Z' is finite, the function

,2 (Z'), appearing in the integral in (29), will have a finite

4. width. Since the peakheiqht is 4Z' 2 and the area is 47TZ',

(30), we can assign an effective width 2r = area/height = 7T/Z',

or

rF = wI2Z' (37)

Thus the radiation is emitted mainly near G = o (which

corresponds to 8- ec) but in a range AG +r' . But from (25),

AG- . An z = --- (cosO) so that there is a range in cos0 over
.4 c c

which emission occurs:
.1*

a(cose) 7r (38)

Note that the finite angular width of the Cerenkov cone angle

in (38) has the factor l/w, indicating that the higher harmonics

are emitted in a sharper cone.

c. BEHAVIOR AT HIGH FREQUENCIES RELATED TO PULSE PARAMETERS.

To be specific leL the charge distribution for a single pulse be

given by gaussian functions

2 2 2 2 2 2
SP'o() - A exp(-x /a - y /a - z /b

(39)

Then F(k) may be found

F(k) exp(-kx2 a2 /4 -k 2 a2 /4 -kz2 b2 /4) (40)

16
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Beam pulse parameters could then be determined by measuring the

Cerenkov radiation. For example, fast electrons from an

accelerator in air will emit with a 8 c  of several degrees

in which case kx and k,, in (40) can be neglected, giving

F(k)= exp(-k2 b2/4 = exp[-2 b 2/(4v 2 )] (41)

The expected behavior of P as a function of w is shown

qualititively in Fig. 2 as a liaear rise at. low frequencies

followed by a fall off at higher frequencies, the peak occurring

at

Wm = v/b

(42)

Furthermore, a different behavior would be expected at very

high frequencies. The formulation from the beginning represents

coherent radiation from all charges, not only from one pulse, but

coherence from pulse to pulse. F(k) then describes interference

of radiation emitted from different parts of the pulse, but note

that expressions (29) and (32) will still be proportional to

q2 = n2e2 where n is the number of electrons in a pulse.

Thus the n2 dependence of P indicates coherence. But above

some high frequency wi such that wi/c = 21r/t, where Z is the

mean spacing of electrons in the cloud, the radition should switch

over to incoherent radiation from each charge and P should be

proportional to n. The incoherent radiation should then rise

again as a function of w.

17



CONCLUDING REMARKS

The general results presented here describe the Cerenkov

radiation produced by fast electrons produced by a linear

accelerator. For an S band Linac operating at about 3Ghz (10 cm

radiation), the electron bunches are separated by 10 cm and would be

about 1 cm long at 1% energy resolution. Microwave Cerenkov

radiation is expected and has been seen in neasuretments at tVhe -4a'al

Postgraduate School Linac.

Two types of measurements were made. In measurements of Series

*A, an X-band antenna mounted near the beam path, oriented to

intercept the Cerenkov cone, was connected to a spectrum analyser.

Harmonics 3 through 7 of the 2.85 GHz bunch frequency were seen but

power levels could not be mteasured quantitatively. Harmonics I and 2

were below the wave guide cut off. In the series B measurements, the

electron beam emerged from the end window of the accelerator, an1d

passed through a flat metal sheet 90 cm downstream oriented at an

angle b from the normal to the beam. The metal sheet defined a

finite length of gas radiator, and reflected the Cerenkov cone of

radiation toward the accelerator but rotated by an angle 2b from the

beam line. A microwave X-band antenna and crystal detector with

response from 7 to above 12 Ghz could be moved across the (reflected)

Cerenkov cone as a probe.

As mentioned earlier, the series A measurements showed the

radiation is produced at the bunch repetition rate and its harmonics.

Series B measurements performed with several antennas always

indicated a broadened Cerenkov cone with strong radiation occuring at

angles up to 10*, well beyond the predicted Cerenkov angle of 1.3*.

18
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Since a broad band detector was used it was impossiDle to verify

the prediction (see eq. 38) that the broadening of the cone should

depend on the harmonic number. However, it should be roted that

.-2. incoherent radiation by a beam of lU A at9 c 1.30 for a 1

meter path in air would be about 10-14 watts at microwave

frequencies so that observation of any signal by either method A

or B clearly demonstrated coherent radiation by the electron

bunches.

Many of the concepts were clearly noted by Jelly in his

treatise (Jelly3 , Section 3.4 especially). The form factor was

noted but a general expression was not given. In fact, the form

factor quoted by Jelly represents the speciai case of a uniformn
line charge of length L' with a projected length L=:I'ccs6c in

the direction of the radiation. The coherence of the radiation

from the bunch was noted but no broadening of the cone nor

harmonic structure were developed.

Casey, Yeh and Kaprielian 1 2 considered an apparently

related problem in Cerenkov radiation, in which a single electron

passes through a dielectric medium, where a spatially periodic

term is added to the dielectric constant. The result is radiation

occurring even for electrons which do not exceed the velocity of

light in the medium, and at angles other than the Cerenkov cone

angle. The non-Cerenkov part of the radiation is attributed to

transition radiation.

In the present raper, the transition radiation associated

with the gas cell boundaries is included, and radiation appears

outside the Cerenkov cone.

19
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If the electron velocity were lower so that v/c were close to but

less than unity, the peak in I would be pushed to the left in Fig.

1, such that cos 0c = v/c would be larger that 1. But the tails of

the diffraction function I would extend into the physical range 1 <

cos 8 <- 1, and this would be call.ed transition radiation and 1-e

ascribed to the passage of the electrons throug-i the boundaries of

the gas cell. Now return to the case v c , vith the situation as

shown in Fig. 1. The radiation is then a combination of Cerenkov and

transition radiation. The formalism of Peferenze 12 does admit a

decomposition into the two types of radiation, but is inherently much

more cumbersome.

As a final remark, one might extend the analysis further in the

region near wi. Consider electron bunches emitted from a

travelling wave Linac, which could be 1 cm long spaced 10 cm apart.

Let these bunches enter the wiggler magnet of a free electron laser
V

(FEL). Then, if gain occurs, the 1 cm bunches would be subdivided

into bunches of a finer scale, with the spatial scale appropriate to

the output wavelength of the FEL. 1 3  If the (partially) bunched

4a beam from the FEL were passed into a gas Cerenkov cell, then the

observed radiation should be reinforced because of partial coherence,

at the FEL bunch frequency and harmonics. This would lead to bumps
.,"4

in the spectrum in the region near wi.

i.2
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, Figure 1. Qualitative Behavior of the Function I2(Z '). Both

the function G, from Eq. 25 in the text, and the

i~i.emission angle are displayed as independent

t" variables. G' and G" are upper and lower limits.
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i Figure 2. Schematic Behavior of Power Emitted as a function of
~Angular Frequency. .
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Figure 3. Structure of charge pulse from a travelling wave
accelerator. V is the phase angle of an electron
relative to the peak of the travelling wave
accelerating field. Electrons in the range +4 Ware
passed by magnetic deflection system.
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APPENDIX A

DERIVATION OF CERENKOV RADIATION FOR A SINGLE FULSE 01'

CHARGE.

Let the pulse be described by

p,(r", t) - Po(r- vt Al

Both k and w are continuous variables in this case; -7 is z.gain

along the z axis. If we expand in terms of a four dimensional

fourier integral,

., p' ( ,t) " 1/(27) ei(wt - k'.) O(k,')d 3 kiJ A2

It may be shown that the condition Al gives:

p'(hw 2 7r6 (ws - k Zv) P I0 (t) A3

where p (k) is the three dimensional spatial tranform of p'

evaluated at t - 0. All the fields have fourier integral rather

than fouries series expansions and the energy radiated per unit

solid angle become

2 2__Qd&
r dti 1n- =-S 2 c

A4

Al

% 4e

4 *i'



q . . . . . - . - - . . . . . , % " " . o , . . I

The integrand is a symmetric function of w so that

W (w,n) 1 1 ,2 rQ3r rits
163 c B
ic&.(t'- r' /C) A

e n x J(r',t') AS

PL 2 A.
2M 23__ _ c x V)

16n 3  c

* where

M = JJJJ d3'dte nr c I r't) A6

Now we may write p (r',t') in a fourier integral representation
Jffdkb i (W 'I.

A'(, 3' 1 'd1 ' -k r'- ')
pt( It d p (k'=, )e-

( 2 70) 4 JJ A7

Inserting eq. A3 into eq. A7 and the result into eq A6, the

integral over d3k' involves only exponentials and yields

(21) 3 63(k,- inc/c), so that eq A6 becomes

=fdt'Jiffd3k'dd'ei(- a't'3 (k' - W/c)

viL 'W-k= Iv)P." (k')

Now the integral over w' may be done; because of the 6 function,

' is evaluated at kz'v.

34 iwkv)t 53(~M d t d k'ei(-z (it, w3n -=/c)p' (k.')

A2

-- V



Now do the integrals over kx', ky and kz', noting that

kz ' appears in the exponential, but kx  and ky do riot,
z

S Lt' -i nut'n v/c
M=Jdt e e z p('n /cwn/c,wnz/C)

This may be written as

M f dt'ei t'Hp8 (w n/c) A8

where

H = 1-n zV/c

If we let the time interval be finite, from -T to + T, the

integral is easily done:

2 sin wHTP" ( /c) Al0
1WA1

M2 =4 2 si2 ln'10 A / C) 12
4T sin2  HTp( /)All

(WHT)

A3



This result, eq. All may be inserted into A5 for w. The

A .factor n x v is just sin 0 where 6 is the angle between the

radiation and the beam axis.

1 2 2 2.22W( .n) = - -o sin 84T sin wHTIp (n(/c) I

16W 3 c r A13
(wHT)2

4 is the energy radiated per unit solid angle per unit

angular frequency, w. To proceed to the tot.al energy, multiply

by d Q (solid angle) and integrate. But. nz = cos 8 so that dQ

may be related to di:

• c
d a = d(cos e)d = dHdv Al4

The functions in eq. A13 do not contain so that integration

over o yields 2n. Thus:

W(w,n) = _2 21 U 2 T2sin2,1P.'12 s in2 THT dH AI5

21r2 (wHT) 2 1

The sin2 wHT/(aHT) 2 factor in the integral is peaked at H - 0,
c

which by eq. A9 is at n z = cos 0 = -, or the usual Cerenkov

angle, 6 c This function is more strongly peaked about H - 0

for large values of T, and in fact, for large T we may evaluate

sinA and p 'o at the point corresponding to H = 0. Then the

integral

f dx sin 2 (ax)/(ax) 2 = ir/a

A4

~w' S ' *.'~. . * * * ~ *-~ V' L...' Z
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may be used to evaluate eq. Al5, yielding

2T sin2  a 2
Al6

The emmission was assumed to occur in a time interval from -T to

+T; accordingly dividing by 2T yields a rate of emmission, and

multiplying by v converts to emmission per unit. path length. Thus

we obtain, for the large T limit:

(1 2Ez A 2, -= - d sin9 6 (n R/C) A17
dxdw 4 u d

where d2E/dwdx is the energy emitted per unit. path length

per unit angular frequency range w.

The corresponding expression for T not large is

H"

dd = - d- c - - ) sin261p (nw/c)i2 sin2HT A18
H 4 (wHT) 2

where H" and H' are the value of H corresponding to a = 0 and

3 = n respectively.

Equations A17 and A18 then describe the energy radiated per

unit path length and per unit angular frequency range. For the

non periodic (single) pulse the radiation has a continuous

frequency spectrum. For a point charge q,p'0 (W) is identically q

and the usual Cerenkov formula is obtained. Equation A17 is

* quoted by Jelly, but only with the form factor corresponding to a

uniform line charge of length L'.

AS



APPENDIX B

DERIVATION OF EQUATION 7

Equation 7 is derived for the case in which J(r,t) is

expanded in fourier series. Let the fourier coefficient for A

be given by:

T

A(rc,) = - dt A(P,t) e i~t
0

Assume that the green's function solution for (r,t) is given:
%',.

"X (r,t) = Ufffd3r'fdt' J-(',1)('- r, t- t B

Vwhere

1 B3

D(r,t) 4-r (t - r/c)

Let the current density be expanded in a fourier series:

,i ~~ ~ r',t') = .e-i''(' B4

L• . Then insert B2, B3 and B4 into Bi to obtain

= ei~t d3r' 1

6(t t' I 9'I/C) Z e -i 't '  l

B1
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Do f dt' note that. t' appears in the function an, in

e The result is t' is evaluated at t' - i/c.
T

L(r,E) f dt eio t ff d3r' 1

bJ 0  IJ rr B6

e e %/ r,,

Do the integral on t, note that
T

dteB

0

Then do the sum on w'

= " jff dr' 1 I/c
I BS

This proves the desired result, B8 is equation 7 as used in

the main text.

B2



Appendix C

TEMPORAL STRUCTURE OF THE ELECTRON PULSE FROM A TRAVELLING

WAVE ACCELERATOR.

Assume that the energy of a single electron emerging from a

linac with phase P relative to the travelling wave field is

E = E ° cosp 
Cl

This relation is shodn on fig. 3, along with some dots

representing electrons near the maximum energy Eo, with phases

clustered about t= o and 01= 27. Two bunches, separated by a

phase difference of 27, are separated by a time T1 =1/f0 where

fo is the accelerator frequency, which is fo = 2.85 x 10 9 Hz

for a typical S-band accelerator of the Stanford type.

If a deflection system with energy resolution slit passes

only energies E from Eo to Eo - E the corresponding range of phase

A is

AE = E - E0 = E o (1 - cosAf) C2

For A* small, this reduces to

E. : ( )C3
Eo  2

0



* . ..o °' r

The temporal pulse length T2 is

T = 2Ayl T,/22-' C4

or

T = T 2L'/27t2 1

If C3 is used to evaluate A* in terms of the fractional

1' energy resolution AE/E o

T T AE 1/2 1
2 = 1

0 7r C

For 1% energy resolution, T2
1 T1 is about 1/20. The

electrons thus emerge in short bunches, and the charge and

current, when expressed in a fourier expansion, should have very

strong harmonic content up to and above the 20th harmonic.

Cz

ws!



Appendix D

. FORM FACTORS

This section provides details and examples oF fori factors

for various charge distributions. From the Jain caxt, F differs

only from 0, the fourier transform of P, by the total charge q cf

* the bunch, so that for k o, F reduces to unity. Thus we define

F(k) =1 ffd3r P(r)eikr Dl

q .h

For spherically symmetric charge distributionB, let k-r = kru,

. where u is the cosine of the angle between K and r. In spherical

* coordinates, d3 r = dudpr 2dr. Then we find,

F(k) = 1 4, dr r P (r) sin kr D2

q k

For k very s:.aall, sin x may be replaced by x - x 3/6 and we

have

F(k) = q 4- fdr r p(r)[kr - k 3 r3/6] D3
q k J

Then the two terms in the square bracket lead to separate

integrals, the first term being unity and the second is similar to

the integral used to calculate the mean square radius, <r2>,

except for a factor k2 /6. Thus we have

F(k) = 1 - k 2 <r2>/6 D4

-. "
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For a uniform spherical charge distribution of radius R, as

well a a spherical shell of radius k, the integral D2 may be

performed easily

F(k) = 3 (sin kR - kR cos kR) D5
(kR)

(Solid sphere)

F(k) = L sin(kR) (Spherical shell) D6
kR

-&'or a line charge concentrated on the z axis, we may return

* to Dl and let p(r) = 6(x) 6(y) p"(z), so that

F(k) = 1 dz p"(z) eikz (line charge) D7
qf

F(k) -.2 sin (k) (uniform line charge
* kZ 2

of length Z) D8

Distarted spherical symmetry may be said to occur if the

scale transformation z' = pz serves to make p spherically

symmetric in the prime system. Let Fs be the form factor

calculated by D2 in the prime frame. It is simple to show that

F(kx, ky, kz) = Fs(k x , ky, kz/p) D9

D z
*~ %5
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