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INTRODUCTI1ON

The radiation produced by gamma rays incident on ordinary
dielectric materials such as glass was first discovered by
Cerenkovl in 1934 and was described in terms of a charged
particle (electron) moving faster than light :in the medium by
Frank and Tamm? in 1937. A summary of wovk to 1958 is contained
in the treatise by Jelly3, An important application is the
Cerenkov particle detector which is famil iar in any particle
physics laboratory, and an early and crucial application occurred
in the discovery of the antiproton%.

Because the distribution of intensity of Cerenkov radiation
is proportional to the frequency, the radiation at microwave
frequencies would be low unless beams are intense and bunched so
that coherent radiation by many electrons con:ributes. Danos>
in 1955 calculated radiation produced by a planar beam passing
above a dielectric interface and a hollow cylindrical beam passing
through a hole in a dielectric. Experimental and theoretical
investigations at microwave frequencies ware reviewed by
Lashinsky® in 1961.

This investigation was motivated by a recent renewed interest
which has included the study of stimulated Cerenkov radiation, in
which the electron may be in a medium consisting of a gas’ or a
hollow dielectric resonator8:9, Recent developments of
electron accelerators for applications such as free electron
lasers (FEL) have aimed toward high peak currents in bunches in
contrast to nuclear and particle physics applications, where low

peak but high average currents are desirable to avoid saturating
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detectors. The high peak currents in the new accelerartors should
yield enhanced Cerenkov radiation, as is calculated in this

paper.
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2 CALCULATION OF THE POYNTING VECTOR

;;3 In the following derivation, we consider the Cerenkov

ég : radiation produced in a dispersionless medium such as gases or

i\ other dielectrics, by a series of pulses of electrons such as are
L™

sy produced by a traveling wave electron accelerator (Linac). The
‘35 pulses or bunches are periodic, the total emission region is

§§ finite and the bunches have a finite size.

'i{ In determining the radiated power, the procedure is to

XN calculate the Poynting vector from fields which are in turr

:§ obtained from solutions of the wave equations for the potentials.
z«? Since the current and charge densities entering into the wave

a equations are expressed in fourier form the resulting fields and
~

%. radiated power also have fourier components. In the derivarion,t
%* is the coordinate at which the fields will be calculated, T’ is
B the coordinate of an element of the charge which produces the

RS A ALY

fields and A is a unit vector in the direction of T. We assume

P R

T

- >
that E(T,t) and B(T,t,) have been expanded in a fourier series,

it appropriate for the case where the source current is periodic.
o Then we have

il oo

:‘ - -1 -

= E (T,t) =Z e EE (R0

and a corresponding expansion for B, where w is a discrete
variable and E and E are fourier series coefficients. The

poynting vector g is given by

S 1= =
-~ (. S = I-T ExB
(2)
i
3
,‘;1
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and it is easy to show that the average of S in a direction given

A
by a normal vector n is

T ®
1 A = 1 A o - 2
T -[ n.-s dt = m E: n-E(r,0) x B(T,-w)
‘< ) == (3)

where T is an integer multiple of the period of the periodic
current..
Letting ¢ = (ne)~1/2 pe the velocity of light in the

medium, the wave equations for A,¢ and their solutions are,

2 2
‘v -iz-iz A(T,t) = uJ (6
ct (4)

2 2
v-12 ] %iz,0) = 3
( == 2) P(r,t) = 1l/¢ p(r,t)
c“at
- o -~ - > g t 3 [ '
A(r,t) =y D(c-r', t~t")J(r',t") d°r'dt (5)
o (£,t) =

lfffjb(?—f‘ Jt-t')p (', e a3 at!
€

where the Green's function D is given by

D(r,t) = 1 §&(t-x/c)

4nr (6)

The vector potential X(?,t) also can be developed in a fourier

series expansion of a form similar to (1) with an expression for

the fourier series coefficients given by .

T .
AE,w) =1 f atA (T, t) et
T




Now if we assume that the observer is far from the source so

that [f|>>|f'| for regions where the integrand in (7) is important

- - . A S . . -
we can let [T - r'| =r - n* r' in the exponential and It -

e 3

r'| =r

in the [T - T' |-l factor in (7), obtaining (where A = T/r)

3 N Y. ™ Y
5(?.(») = U elcur/c ’:[fd3r-i'(;-'m)e-l(w/c)n-r
4nr J

(8)

The fourier series coefficients of the fields are obtained
from those for the vector potential (8) through the usual
- - - - - A .
relations B = V x A and E = -V¢$ -3A , Under the conditions

ot
leading to (8) the field fourier coefficients arelO;

- . A - e
B(r,w) = iw n x A(r,we)

c (9)
g(?,m) = -c A x E(?,m)

(10)

The poynting vector can now be found by using (9) and (10)
in expansions like (1) and then substituting in (2). However it
is more convenient. to deal with the frequency components of the
radiated power by substituting (9) and (10) into the expression of

the average radiated power (3).
T )

lfa'gdt=;_293|ﬁx
T H c

wm

(2,012

1

(11)




FOURIER COMPONENTS OF THE CURRENT

The expression (7) for the fourier components of the vector
potential contains the fourier components of the current density.
Consequently it is necessary to examine the form of the current
and its fourier development.. Assume the current is in the 2z
direction and periodic. If the electrons move with velocity v,
and we ignore for the moment the x and y variables, the charge or

current. functions should have the general form

fz,0) = ¥ e¥2? ¥ e £k ,0) (12)
K
z w

Under the condition of rigid motion,

Fiz,t) = £,(z=-vt)

(13)
it is easy to show that
,f.,-\kz,m) = Gm' szAf/o(kz) (14)
where
Z
£ik,) =1 e 2% £,(2)dz
2 (15)

Thus the restrictions of equation (13) reduce the two
dimensional fourier series of eq. (12) to essentially a one

dimensional series (14).
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with (14) in mind, the current density associate<d

electron beam from a linear accelerator should bte period:

z, t, with a fourier series expansion,

should te repres=nted by a fourier integral form:

j dkx jdky

v

(2 n)z

vplL,t, =

00
-
2: i(ker = at),
e s

kz=—.:

-
Jz(r,t)

where the fourier components of the charge density are
° Z
r

) =
J

o

[~

-

ﬁ dze—lk‘roo(?)

ST

30 ( ax dy

S, Y >
po (T) is p(r,t) evaluated at t = o and J is assumed to be

the z direction. Note in eq. (16) that k, and @ are both

W

discrete and from (14), = kyv.

but the x and vy dependence

MCAOEE R Sk aud 4

(17)

in




VECTOR PCTENTIAL

extending from z = =-Z' to z =

and A. Then the cross product in (ll) can be written

iwr/c

sing i e

4Tr
© VA
] o]
00 o0 =2
©

372 _[ ak, J[ ak,

Iﬁ X 3(;1(‘))' =

s A M
dz" e-ln-r'w/c

z=—® z
But
w© o z' -
f dx’' f dy' f dz' eif'-(k - fiw/c)
-0 -0 ..zl
= (27) < 6(kx - nxw/c) 6(ky - nym/c)I(Z')
where

I(z') = Jf az' et (kg ~ mpu/0)Z = Z sinG2'

N3
QN

and G =k, - n; w/c =w/v - n, w/c

And thus the cross product term is

Y iwr/c
51n64wr e

=
%

b
ny

13
[]

vgo(nxm/c, nyw/c, w/v)I(2')

The results of the previous section can be applied to the
evaluation of the vector potential and in turn to the fields.
Let the infinite periodic pulse train be made finite,

+2' and let 6 be the angle between n

(18)

(19)

(20)

(21)



ﬁ“ Note that w is a discrere variable but from 19, the

?? continuous variables k, and ky beccome evaluated at discrete

if points.

,ii Returning to (17), a more symmetric form may be obtained by
%: . assuming that po(f), which is perisdic in 2z with period 2z, is

& actually zero between the pulses. Dencting by oo'(f) the charge
AR

§§ density of a single pulse, which is zero for z < o and z > Z the
:i} integral on z can be written

z z >
J.dz e-lkzzpo(?) =.[ dz e %22, (D) =_[ dz e **z%p, (D)

xs o -]

v~

N
2
5: Then (17) the fourier coefficient ¢f tte chirge density, becomes
AX
3 e R
3 - - H LN
oo (K) = 3 /ffd3r e I () = p. k)
¥ -
e (23)
e
5N
s
$¢
ﬁ: whereﬁao'(f) is the three dimensional fourier transform of the
354 . .
WY single pulse decribed by o ' (F).
. Substituting these expressions into (21) gives a final simple
o
e result for the cross product form:
)
Ll A - i 4 ! {
A Ih x A(T.0)l = sing B__ e /% (y2) 5. (R)1(2")
1 ~ 4rr ~
(24)
X
S

?AJL-I__J_
i

A ol AP A
o g A

Ve
0

............

.

0t
ﬂ"!.u .

.
L

.

A
J
-



where

I(2') 2 sin GZ'

G

@
u

w/v - nzm/c (25)

L
]

(nxm/c,nyw/c,w/v)

The component.s of the Cerenkov E and B fields may now be found by

substituting (24) in (9) and (10).
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RADIATED POWER !

o
\.
“ The frequency components of the average radiated power are
\H ~ obtained by substituting (24) into (1ll1). The negative frequency
.‘ q
f: terms equal the corresponding positive frequency terms, yielding a
A
Wk factor of 2 when the summation range is changed. ultiplying by
-~ r2 converts to average power per unit solid angle, dP/d2,
o
X yielding
e T ]
N ar _ 21 A 2 22 2 A
a = r T j n-sdt = r -LTZ“—" In x g(;'m)l 2
o o ©
¢ o
‘: A
._: 32 W(w,n) (26)
) ]
o
4
o
¥
ﬂ where W(y.,Nn) is defined to be
'.": 2 2 >
% wio,A) = 2 4 sinfevz?i o0 |2 12
(4m)
. (27)
2 w(m,ﬁ) is the power per unit solid angle radiated at *he fregquency
o w, which is a harmonic of the basic angular frequency w, of the
; periodic pulse train.
To find gm' the total power radiated at the frequency w,
? W is multiplied by df and integrated over solid angle. Jote that
R
y n, = cos 8, and as 9 varies, G changes according to (25),

L i
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with 4G = - (w/c) dnz so that

(28)
dQ = d¢ (c/w) 4G

Noting that the integral over ¢ yields 2T, we find the result for

the total radiated power at the £frequency w for all angles

G'l
2 2 c
P, = lfﬁ‘::—’ - I sin% |oe (k) |° 12(2') 5 96 (29)
2 '
G
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CERENKOV ANGLE

The remaining integral over G may now be examined. The
sin2 6 and .Pofactors may often be slowly varying compared to
the I2(Z') factor, the latter being shown in Fig. 1. For large
Z2', the peak in I2(Z') becomes narrow, and if the integrand may

be neglected ocutside the physical range G'<G<G",

Gll o , '
1%(z')dG = 4(z')2(5—1’lG—Z-)2dG = 473"
. G2'

(30)
G -0
Then, evaluating the sin 8 factor and pé(k) at. the
WA
point. corresponding to G = 0, (which is cos 8 = n, = c/v) shows

that 6 at the peak of I(Z') is the usual Cerenkov angle 8 .,. We
thus obtain for large Z'

U 2 . 2 = 2 '
Pm = I @wvV sin eclg.(k)[ 412 /2
(31)

Now let 22'/Z = ratio of the interaction length to pulse spacing
N, the number of pulses. Also Z = v27/a, or 2T/z = wy/v so

that, (in the large Z' limit),

u . 2 >, 2
P, = 47 Woovsin Gc[g;(k)l N.
(32)

To compare with usual formulations, (32) is divided by Nv to

obtain the energy loss per unit path length per pulse:

E . =2
%; = %F 0w o sxnzeclgé (k) |
(33)
13
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If the pulse is in fact a point. charge, the fourier transform
] 04 (k) reduces to q, the total charge per pulse and (33) is
v very similar to the usual Cerenkov energy loss formula, where for
: a single charge g, the radiation is continuous and the factor

w @ in (33) is replaced by wdw. In the present case the pulse ‘
‘~’ train is periodic at angular frequency wy and the radiation is

P, emitted at the harmonic frequenies denoted by w.
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:Z:: DISCUSSION OF RESULTS
o
Equation (29) and the approximate evaluation expressed as
lﬁf . (32) form the main results. Some consequences will now be noted.
YRR
- a. EFFECT OF PULSE SIZE. The spatial distribution of the
A~
n." . . . . . .
‘ charge in the pulse appears in Bé(ﬁ), which is the fourier
}ﬂ transform of the charge distribution. The peak of Iz(z') in
i e
) fiqure 1 occurs at G = 0 or n; = c¢/v. Thus at the peak, /v =0zuw/cC
. so that i, the argument of‘gé(f), is evaluated at (from 25)
{ % = hw/c
‘.3 (34)

-
We may also define a charge form factor F(k)

™

3

N o! (k) = qF(K)

Y <o (35)
"

2; The form factor F(k) is identically one for a point charge,
)

e and for a finite distribution F(k) = 1 for k =o.

34 Furthermore F(f) must fall off as a function of X near the
A ¥

'iﬂ origin if all the charge has the same sign. If the pulse were
) -

5y spherically symmetric, F(k) would behave as elastic electron

-2 scattering form factors defined for nuclear charge

Es

ui} distributionsll, 1In that case, the mean square radius <r2»>

;.-f‘ -

ﬁi of the charge distribution is given by the behavior of F(X) near
4 the origin.

v

PP
R ﬂ
A

F(i) + 1 - <r2> x2/6 (spherical pulse) (36)
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X b. SMEARING OF THE CERENKOV ANGLE. For a finite region over
:Zi::: which emission is allowed, namely if 2Z' is finite, the function
" 12(z'), appearing in the integral in (29), will have a finite
J"-’:
:'.'.s:.-"'- width. Since the peak height is 42'2 and the area is 472°,
St
o (30), we can assign an effective width 2T = area/height= /3',
|
~ or |
SO
ALY
o r=n/22' (37)
‘g;,
g: Thus the radiation is emitted mainly near G = o (which
e corresponds to &= 8_) but in a range 4G = +T . But from (25),
aAG = ‘% An, = %L’\(cose) so that there is a range in cosf over
AN
G which emission occurs:
N
1
~$)
cTm (38)
“,ﬁ A(cosB) = py Tz—r
1
e
,-::j Note that the finite angular width of the Cerenkov cone angle
in (38) has the factor 1l/w, indicating that the higher harmonics
\
‘gik are emitted in a sharper cone.
?; c. BEHAVIOR AT HIGH FREQUENCIES RELATED TO PULSE PARAMETERS.
05:‘\
To be specific let the charge distribution for a single pulse be
<L)
3’_-.: given by gaussian functions
NN
N ' oa
N Polr) = A exp(-xz/a2 - yz/a2 - zz/bz)
(39)
N
Wy e
;‘ Then F(k) may be found :
-»
F(k) = exp(-k 2a%/a -k 2a%/a -k %%/4)
1) Y z (40)
‘
o
:‘{‘
N 16
2




o
§§: Beam pulse parameters could then be determined by measuring the
;*: Cerenkov radiation. For example, fast electrons from an
‘Lﬁ: accelerator in air will emit with a Bc of several degrees
igs in which case ky and ky in (40) can be neglected, giving

. F(K) = exp(-k_*b%/4) = exp(-02b/(4v?)] (41)
3
O
» The expected behaviocr of P” as a function of w is shown
;’“ qualititively in Fig. 2 as a linear rise at low frequencies

;:é followed by a fall off at higher frequencies, the peak occurring
A% at.

:: W, = v/b
B (42)
i
S Furthermore, a different behavior would be expected at very
%;g high frequencies. The formrulation from the beginning represents
?5 coherent. radiation from all charges, not only from one pulse, but
jﬁ coherence from pulse to pulse. F(i) then describes interference
§§ of radiation emitted from different parts of the pulse, but note
%f‘ that expressions (29) and (32) will still be proportional to

o q2 = n2e2 where n is the number of electrons in a pulse.

%i Thus the n2 dependence of Pm indicates coherence. But above

'E; some high frequency w; such that mi/c = 2r/%, where L is the

. mean spacing of electrons in the cloud, the radition should switch
1;< over to incoherent. radiation from each charge and P, should be
;3 . proportional to n. The incoherent radiation should then rise

again as a function of w.
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AN
fﬁ CONCLUDING REMARKS
\{ﬂ The general results presented here describe the Cerenkov
; radiation produced by fast electrons produced by a linear
h accelerator. For an S band Linac operating at about 3Ghz (10 cm
s’ radiation), the electron bunches are separated by 10 cm and would be
Eg about 1 cm long at 1% energy resolution. HMMicrowave Cerenkov
:? radiation is expected and has been seen in neasurements at the laval
-~ Postgraduate School Linac.
tf; Two types of measurements were made. In nmeasurements of Series
fi: A, an X-band antenna mounted near the beam path, oriented to
- intercept the Cerenkov cone, was connected to a spectrum aunalyser.
? Harmonics 3 through 7 of the 2.85 GHz bunch frequency were seen but
Eﬂ power levels could not be nreasured quantitatively. tilarmonics 1 and 2
= were below the wave guide cut off. In the series B measurements, the
;: electron beam emerged from the end window of the accelerator, a:d
,$ﬁ passed through a flat metal sheet 90 cm downstream oriented at an
Y angle ¢ from the normal to the beam. The metal sheet defined a
332 finite length of gas radiator, and reflected the Cerenkov cone of
;5. radiation toward the accelerator but rotated by an angle 2¢ from the
2 beam line. A microwave X-band antenna and crystal detector with
;g response from 7 to above 12 Gkz could be moved across the (reflected)

. .A.
(232 B

Cerenkov cone as a probe.

As mentioned earlier, the series A measurements showed the

»
oG

radiation is produced at the bunch repetition rate and its harmonics.
Series B measurements performed with several antennas always /
indicated a broadened Cerenkov cone with strong radiation occuring at

angles up to 10°, well beyond the predicted Cerenkov angle of 1.3°.
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Since a broad band detector was used it was impocssipble to verify
the prediction (see eq. 38) that the broadening of the cone should
depend on the harmonic number. However, it sucuid e roted that
incoherent radiation by a beam of lu A at8 o = 1.3° for a l

meter path in air would be about 10-14 watts at microwave
frequencies so that observation of any signal by either method A
or B clearlvy demonstrated coherent radiation kty thz electron
bunches.

Many of the conceprts were clearly noted by Jelly in his
treatise (Jelly3, Section 3.4 especially). The form factor was
noted but a general expression was not given. In fact, the form
factor quoted by Jelly represents the speciai case of & uniform
line charge of length L' with a projected length L=L'ccsf. in
the direction of the radiation. The coherence of the radiation
from the bunch was noted but no broadening ¢f the cone nor
harmonic structure were developed.

Casey, Yeh and Kaprielian12 considered an apparently
related problem in Cerenkov radiation, in which a single electron
passes through a dielectric medium, where a spatially periodic
term is added to the dielectric constant. The result is radiation
occurring even for electrons which do not exceed the velocity of
light in the medium, and at angles other than the Cerenkov cone
angle. The non-Cerenkov part of the radiation is attributed to
transition radiation.

In the present raper, the transition radiation assocciated
with the gas cell boundaries is included, and radiation appears

outside the Cerenkov cone.
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If the electron velocity were lower so that v/c were close to but
less than unity, the peak in I would be pushed to the left in Fig.
1, such that cos 8 . = v/c would be larger that l. But the tails of
the diffraction function I would extend into the physical range 1 <
cos 8 < - 1, and this would be called transition radiation and re
ascribed tc the passage of the electrons througa the boundaries of
the gas cell. Now return to the case v/c ~ 1, w~vith the situation as
shown in Fig. 1. The radiation is then a combination of Cerenkov and
transition radiation. The formalism of keference 12 does admit a
decomposition into the two types of radiation, but is inherently much
more cumbersome.

As a final remark, one might extend the =nalysis further in the
region near wj. Consider electron bunches emitted from a
travelling wave Linac, which could be 1 cm long spaced 10 cm apart.

Let these bunches enter the wiggler magnet of a free electron laser

(FEL). Then, if gain oécurs, the 1 cm bunches would be subdivided
into bunches of a finer scale, with the spatial scale appropriate tc
the output wavelength of the FEL.13 1If the {partially) bunched

beam from the FEL were passed into a gas Cerenkov cell, then the
observed radiation should be reinforced because of partial coherence,
at the FEL bunch frequency and harmonics. This would lead to bumps

in the spectrum in the region near wj.

20
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. Figure 1. Qualitative Behavior of the Function I2(z'). Both
‘ the function G, from Eq. 25 in the text, and the

A emission angle are displayed as independent

1 variables. G' and G" are upper and lower limits.
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Angular Frequency. .
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APPENDIX A
DERIVATION OF CERENKOV RADIATION FOR A SINGLE FULSE Ol

CHARGE.

Let the pulse be described by
p'(?.t) =p'o(?" vt) Al

Both k, and u are continuous variables in this case; ¥ is zgain
along the z axis. If we expand in terms of a four dirensional

fourier integral,
o' (F,8) = 1/(2m)?  edlwt - k.r) o' (k, w)d3kdw A2
It may be shown that the condition Al gives:
o' (K, ) = 2m8 (@ = kv) p'o(K) A3

where pé(i) is the three dimensional spatial tranform of o'

evaluated at t = 0. All the fields have fourier integral rather
than fouries series expansions and the energy radiated per unit

solid angle become
r I déen. S = 5 Wz c [m w dw

A4
Ifffd3r'fdt' etlet!B-E0/cg o $igven)|?

W(w,ﬁ)dm

s

Al

et et e e e
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The integrand is a symmetric function of w so that

salds
W(w,n) = i 3 %mz‘[Md:;r'dt'
16w

: VAL >
elolt'-n-r /el 4 o T3, e) A5

2
i 3 J% © {(n x v)2M2

where
. A >/
M= jjffd}r'dt’el(mt'-n.r /c)pl(rl'tl)
A6

Now we may write p'(r',t') in a fourier integral representation

(z2m) ~ A7

Ingerting eq. A3 into eq. A7 and the result into eq A6, the
integral over d3x' involves only exponentials and yields

(2m)3 63(k' - wfi/c), so that eq A6 becomes

r : [ [
M =fdt'Jfﬂd3k'dw'el(m°w )t 53(']?' - ﬁw/c)

b

G(w'-kz'v)B; (k")

Now the integral over w' may be done; because of the § function,

w' is evaluated at kz'v.

M= fdtj[fa3k'ei(“'kz It 3 - mﬁ‘/c)g;(i')

A2
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) Now do the integrals over ky', ky' and k,', noting thar
<
. kz' appears in the exponential, but k,' and ky' do not,

\
" L} ] L

~ 14 -i t

N M=J]dt e wt e ¥ nzv/cpo(wn /c,on_/c,un_/c)

N ~ X y z

e -

‘.0
N

P

‘ This may be written as

lé iwt'H ', A

s M =fdt'e Po(wn/c) A8
;i where

H = 1l-n_v/c
z Ad

¢

N If we let the time interval be finite, from =T to + T, the

L integral is easily done:
:: 2 . A

» M= = sin cuHI'g,(nw/C) Al0
¢ 2 2 2 A 2
- M° = 4T7° sin“wHT|p ! (nw/c) | All
(wHT)

;

)

1

)

) A3
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j'_'. This result, eq. All may be inserted into A5 for w. The
; factor N x Vis just sin 6 where 8 is the angle between the
{
o radiation and the beam axis.
Fat
.\:'
- -~ 5
Wlo,n) = -, £ u? sinear? sinzmHT]p' (fw/c) | 2
-1 —_ i, . Al3
1o 2
! (wHT)
o
ot
3 A is the energy radiated per unit solid angle per unit
N angular frequency, o . To proceed to the total energy, multiply
\‘
::i by d{l (solid angle) and integrate. But n, = cos 6 so that d4dQ
<
£ may be related to dH:
W
& - . c
e G Q2 =dicos g)aRk= - — dHAR Al4
o
-"
N The functions in eq. Al3 do not contain ¢ so that integration
% over § yields 27m. Thus:
%
1w 2.2f . 2, ' 2 sin’eHT
) Ww,n)d = —— — «“T"[sin Bpo| ° =———— dH ALS
- 2 ~ 2
o 27 (wHT)
3‘
aw The sin2 wHT /(wHT) 2 factor in the integral is peaked at H = 0,
& which by eq. A9 is at n, = cos § = %, or the usual Cerenkov
o
< angle, 8 .. This function is more strongly peaked about H = 0
o)
" for large values of T, and in fact, for large T we may evaluate
N 8in% and P 'c at the point corresponding to H = 0. Then the
v,
& integral
L} ®
X 2 2
2y dx sin”(ax)/(ax)” = n/a .
. -0
’:;
o
‘f"
5
A4

"o a7 ot AR T I PR PR I TR re T A WA o .
b fi' y YEOAN LW, \'\_,... N SO PG a _\(ﬁ et ~, }.._\:_\..n,\\ P AN )

D




P
RO Y B ]

2" 8
»

o ‘- -
Tgred gy 3 R 4

Pre e

G

A

; l“)\.l«.) b

h
=

>

o T
o a4

!

T

.

¥

(}
Y
b
o
‘l
R ¢

may be used to evaluate eq. Al5, yielding

u @ . 2 ' A 2
l]hdn = 1= — 2T sin 8c)os (Aw/c))

The emmission was assumed to occur in a time interval from -T to
+T; accordingly dividing by 2T yields a rate of emmission, and
multiplying by v converts to emmission per unit path length. Thus

we obtain, for the large T limit:

dzE Gw = — wde sinze |od(Aw/c)l 2 Al7
dde 4 c'm®
where d2€ /4, q4x is the energy emitted per unit path length

per unit angular frequency range w.

The corresponding expression for T not large is

H "
QEE— do = —— = wdw MT _f sinzelp'(nm/c)l2 sin2wHT Al8
dxdw o =
(wHT)

where H" and #' are the value of H corresponding to 8 = 0 and
% = 1 respectively.

Equatiions Al7 and Al8 then describe the energy radiated per
unit path length and per unit angular frequency range. For the
non periodic (single) pulse the radiation has a continuous
frequency spectrum. For a point charge q.e;o (k) is identically q
and the usual Cerenkov formula is obtained. Equation Al7 is
quoted by Jelly, but only with the form factor corresponding to a

uniform line charge of length L'.
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APPENDIX B

DERIVATION OF EQUATION 7
Equation 7 is derived for the case in which J(r,t) is

-
expanded in fourier series. Let the fourier coefficient for A

be given by:
T
- - 3
Af,0) = 2 j at A(Z,t) ¢ Bl
(e}
Assume that the green's function solutioa for X(f,t) is given:

- 3_, - - - ’ B2
A(r,t) = u d’r dt' Jir,t) D(r - r', t - t)

where

> _ 1 5 B3
D(r,t) = y = (t - r/c)
Let the current density be expanded in a fourier series:
- -tV !
J(x',t") =Z e lo’t 3(;',0:) B4

(ﬂ'

Then insert B2, B3 and B4 into Bl to obtain

T
iwt 3., , 1 1
= }% L at et f[[d r fdt Ir [T =7 B5

139
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Do J{ dt', note that t' appears in the § function and in

x
BN |
P t

L -

. » : - )
. The result is t' is evaluated at t' = t - p.p' i /g,
T

(r,w) = —‘T-f dt e fffdr I = o
o r=r l B6

W

-im ! St
E: ~iw't _iw'|r-r'|/c 32w
w' -
Do the integral on t, note that
T
1 i(w-w")t
= dt ¢ =34
Tf - W' B7
()
Then do the sum on o'
IR u 3., 1 =, in]E-T']/c
A(T,0; = — d’r J(r',0) e '
~ 4T IE'PII -~

B8

This proves the desired result, B8 is equation 7 as used in

the main text.




o Aprendix C

TEMPORAL STRUCTURE OF THE ELECTRON PULSE FROM A TRAVELLING
WAVE ACCELERATOR.

Assume that the energy of a single electron emerging from a

linac with phase ¥ relative to the travelling wave field is

Cl

E = Eo cosy

This relation is shown on fig. 3, along with some cdots
representing electrons near the maximum energy E,, with phases
clustered about ¥= o and ¢ = 2T, Two bunches, separated by a
phase difference of 27, are separated by a time T, =1./fO where

fo is the accelerator frequency, which is £, = 2.85 x 109 Hez

o
for a typical S-band accelerator of the Stanford type.
If a deflecticn systemn with energy resolution slit passes

only energies E from E, to Ey- £ the corresponding range of phase

Ay is
AE = E~E_=E_ (1 - cosAp) c2
o] o '~
For Ay small, this reduces to
AE _ (ap)? c3
E, 2

o}




The temporal pulse length Tj is

—t
oy

. T, = 20y T,/2
- + c4
I
<
_ or
R = . 281
o T2 Tl 269/ 2n
*on
!h\
If C3 is used to evaluate Ay in terms of the fractional
NN energy resolution AE/E4
NN ’
ASCR
o 1, =7 (E5HY2
.i o T CS5
e
I
SN
o For 1% energy resolution, T,/T; is about 1/20. The
electrons thus emerge in short bunches, and the charge and
s : ; i
3Q current.,, when expressed in a fourier expansion, should have very
I , .
;ig strong harmonic content. up to and above the 20th harmonic.
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Appendix D
FORM FACTORS
This section provides details and examples of form factors
for various charge distributions. From the main c2xt, F differs
only fronha, the fourier transform of P, by the tctal charge g of

the bunch, so that for k = o, F reduces to unity. Thus we defire

F(x) =1 _[[Tdar o(r)eik-T D1
q

- -
For spherically symmetric charge distributicns, let X+.r = xru,

-
where u is the cosine of the angle between X and t. In svherical
coordinates, d3r = dudurzdr. Then we find,

o0

F(k) = 1 4m der r P(r) sin kr D2
qa k 3

For k very swall, sin x may be replaced by x - X 3/6 and we
have

F(k) = 1 47 fdr r p(r)lxr - x3r3/6] D3
o

1_.
q k
Then the two terms in the square bracket lead to separate
integrals, the first term being unity and the second is similar :o

the integral used to calculate the mean square radius, <r<»>,

except for a factor k2/6. Thus we have

F(k) = 1 - k2<r2>/6 D4

Dl
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N For a uniform spherical charge distribution of radius R, as
{
O well a a spherical shell of radius k, the integral D2 may be
N performed easily
s F(k) = __3 i - ;
3 (k) = 2. (sin kR - kR cos kR) D5
&, (kR)
- (Solid sphere)
.-r:':"
»
o F(k) = _1_ sin(xR) (Spherical shell) D6
s kR
.:f-
v}ﬁ For a line charge concentrated on the z axis, we may return
aan to D1 and let p(r) = 8(x) 8(y) p"(2), so that
N
~d:
o { 1 " ik i
- F(k) = dz p"(z) elkz (line charge) D7
; q
L
o
}42 F(k) = _2_ sin (k2) (uniform line charge
“‘-c kz 2
) of length Z
<] s " bg
: 2 Distarted spherical symmetry may be said to occur if the
A
] scale transformation z' = pz serves to nake @ spherically
- . .
symmetric in the prime system. Let Fg be the form factor
4,..'*
=~ calculated by D2 in the prime frame. It is simple to show that
WA
(ot
~'q'
—— 1)
‘ F(kX' kyl kz) - Fs(k;(I kly: kz/p) D9
N
.;;;:
l
W, j
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