OBJECTIVE TECHNIQUES AND INSTRUMENTATION FOR THE INSPECTION OF FIRE CONTROL SYSTEMS

JOHN SALERNO

JANUARY 1984

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
PRODUCT ASSURANCE DIRECTORATE
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.
OBJECTIVE TECHNIQUES AND INSTRUMENTATION FOR THE INSPECTION OF FIRE CONTROL SYSTEMS

John Salerno

This project has been accomplished as part of the U.S. Army's Manufacturing Testing Technology Program, which has for its objective the timely establishment of testing techniques, procedures, and prototype equipment (in mechanical, chemical, and nondestructive testing) to ensure efficient inspection methods for material/materiel procured and maintained by DARCOM.

Currently, the image quality of optical instruments is assessed by human observers and resolution targets. This technique creates problems because it is subjective and may cause disputes in borderline situations. An alternative method that would yield an objective evaluation was considered necessary to avoid the problems associated with standard resolution charts. A program was established to evaluate the modulation transfer function (MTF) of the U.S. Army issue binocular model M19. The MTF of the instruments and the resolution measurements (cont)
20. ABSTRACT (cont)

were to be compared in an attempt to correlate the results. Initial findings, together with the results from a similar project conducted in the United Kingdom, showed that no correlation existed between the two test methods. The possible explanation for this result is that the human observer is coherently coupled to the optical instrument and the eye, as part of the optical system, can compensate for aberrations within the instrument under test. For this reason the MTF was not considered a viable alternative to the present method of using a human observer and resolution targets.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Discussion</td>
<td>1</td>
</tr>
<tr>
<td>Conclusions</td>
<td>2</td>
</tr>
<tr>
<td>Bibliography</td>
<td>3</td>
</tr>
<tr>
<td>Appendixes</td>
<td></td>
</tr>
<tr>
<td>A Test Parameters</td>
<td>5</td>
</tr>
<tr>
<td>B Sight Unit Infantry TRILUX QAD(W) Resolution and MTF Readings</td>
<td>9</td>
</tr>
<tr>
<td>Glossary</td>
<td>13</td>
</tr>
<tr>
<td>Distribution List</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION

This project involved the development of an objective technique and instrumentation for determining the resolution performance of fire control systems. The goal was to replace the current Air Force resolution charts, which depend on human interpretation, to make an accept or reject decision. A program was designed and executed to compare the modulation transfer function (MTF) of optical systems, using a Tropel Model 2000 optical transfer function (OTF) lens testing system, to resolution measurements acquired by means of resolution charts. The intent of this program was to establish a correlation between the two methods. Ten M19 binoculars, obtained on loan, were used in an attempt to demonstrate MTF as a viable alternative to resolution. It was anticipated that this technique would replace resolution measurements which are subjective in their nature.

DISCUSSION

The Tropel Model 2000 OTF lens testing system is a versatile and flexible instrument which can be adapted to any lens testing need and easily modified if test requirements change. The model 2000 can measure the imagery of almost any optical or electro-optical system by using a knife-edge scanning principle. This technique permits the use of the same scanner for ultraviolet (UV) visible and infrared (IR) image evaluation. The light source provides an intense and uniform point source of light for finite or, with collimator, infinite conjugate testing. Mercury arc, tungsten halogen, or xenon lamps are available to cover a wide range of spectral regions from ultraviolet to near infrared.

A measurement technique for the assessment of the image quality of the binoculars was developed and is currently on line. (Parameters are listed in appendix A.) However, the MTF results obtained by the new technique did not correlate with standard tests which creates the potential problem of rejecting optical instruments that are visually acceptable for use in the field. After our investigation, we became aware of a similar project, conducted in the United Kingdom, which measured the MTF of 25 binoculars and concluded that the measurements demonstrated no correlation with the resolution of the instruments (app B).

The reasons for the above results are not clearly understood; a possible explanation for the lack of agreement is that the eye is able to interact coherently with optical systems in such a way as to degrade, as well as improve, performance. Aberrations in the optical system couple coherently with those in the eye so that small errors of focus or of other aberrations in either the eye or the optical system may become mutually minimized in the overall interaction. Afocal instruments for visual use are designed for a detection system that is not only dynamic but is also comprehensively self-adaptive.
CONCLUSIONS

The next generation of Army projectiles for tank and artillery systems is more than likely to possess a fire-and-forget capability. Producing these rounds with the highest possible reliability while holding down the cost is the challenge we must meet. Target detection and recognition are of primary importance for these munitions, and it is in this area where modulation transfer function (MTF) can yield the greatest potential benefit. The MTF of a system can be used to help design and inspect lens parameters to match detector response when the detector is a device other than the human eye. One of the greatest advantages of using transfer functions is that of cascading system elements which permits the lens transfer function to be combined with that of the detector. Specifying the MTF in these situations can then yield the required performance at minimum cost by eliminating unnecessary specifications and overdesign of the detector lens combinations. It is in this application, where the detector is not the human eye but an electro-optical system, that the results of this project can be successfully applied and implemented. The MTF equipment is currently being used for unique testing to aid in the design/inspection/specification of new equipment under development for use in opto-electric fire control instruments or systems.

The purpose of the MTT to develop and to setup an objective measurement technique for the assessment of the image quality was concluded successfully; however, the task to establish a correlation between MTF and visual resolution (as determined by the human eye) was not accomplished. Measuring the MTF of an instrument is a powerful analytical tool for understanding which parameters affect the image quality of the optical instrument. However, the instrument interaction with the eye is complex and not well understood. It appears that the eye combined with visual image interpretation has the ability to tolerate some aberrations while possibly degrading others. This relationship causes poor correlation with the MTF results and the visual optical instruments used in the field. To have implemented the results of this work on visible light optical systems would have meant the rejection (by means of MTF measurements) of optical instruments that are acceptable to the human eye.
BIBLIOGRAPHY

The test conditions for the M19 binocular (using Tropel verification lens as imager) are as follows:

Exit pupil DIA M19 = 7 mm

Effective f/no. of imager lens = \(\frac{75 \text{ mm}}{7 \text{ mm}} = 10.7 \text{ mm} \)

\[D \text{ (airy disc)} = 2.44 \times \lambda \times 10.7 \]
\[= 2.44 \times 0.5 \times 10.7 \]
\[= 13.05 \mu m \]

(want 10 points of sample in D): SS-1.3 \mu m

With fishtail scan (which provides both tangential and sagittal scans), the scan edge velocity = 20 \mu m/sec x \cos 45^\circ
\[= 14.14 \mu m/sec \]

sampling rate = \(\frac{14.14 \mu m/sec}{1.3 \mu m} = 1088 \text{ hz} \)

To determine CD, \[CD = \frac{2400 \text{ hz}}{10.88 \text{ hz}} = 220.588 \approx 221 \]

Using NS = 128, total scant length = 128 x 1.3 \mu m = 166.4 \mu m

\[f(sf) \text{ (cut off)} = \frac{1}{\lambda \times 10.7} = \frac{1}{0.5 \times 10.7} = 186.9 \text{ Lp/mm} \]

\[f(hz) \text{ (cut off)} = f(sf) \times \text{scan velocity} \]
\[= 186.9 \text{ Lp/mm} \times 14.14 \mu m/sec \times \frac{1 \text{ mm}}{1000 \mu m} \]
\[= 2.643 \text{ hz} \]

\[FI = \frac{(60,000) (2400) (M)}{(\text{REV}) (R) (\cos \phi) (N) (CD)} \]
\[= \frac{(60,000) (2400) (1)}{(40 \mu m/rev) (30 \text{ rev/min}) (0.707) (128) (221)} \]
\[= 6 \text{ Lp/mm} \]

where

M = magnification of relay lens
R = rpm of scanner motor
\phi = angle of tilt of scanner box
N = number of samples (NS)
CD = integer number
2400 = clock frequency
Rev = scan travel (microns/rev)

FI has to be converted back to angular resolution for afocal telescope system.
Angular resolution = spatial resolution x focal length of imager.

\[\text{FI (angular)} = 6 \text{ Lp/mm} \times \frac{75 \text{ mm}}{1000} \times \frac{0.45 \text{ LP/MRAD}}{40 \times 25.4} \]

Pin hole size consideration

Total magnification = \(\frac{1}{10} \times 7 \times \frac{f_{\text{imager}}}{f_{\text{para}}} \)

10x relay lens = \(\frac{1}{10} \times 7 \times \frac{75}{40 \times 25.4} \)

= 0.0516732

\[D \text{ (airy disk)} = 13 \text{ \(\mu \)m} \]

Pinhole size at scanning plain = \(\frac{13}{5} = 2.6 \text{ \(\mu \)m} \)

Pinhole to be used = \(\frac{2.6 \text{ \(\mu \)m}}{0.0516732} \approx 50 \text{ \(\mu \)m} \)

PD correction can be entered and is

\[50 \text{ \(\mu \)m} \times 0.0516732 = 2.58366 \text{ \(\mu \)m} \text{ has to be entered in mm} = 0.00258366 \]
<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Resolution (s/arc)</th>
<th>Modulation transfer function (MTF) (10 cyc/deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+2.8°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on axis (%)</td>
</tr>
<tr>
<td>039937</td>
<td>12.3</td>
<td>89</td>
</tr>
<tr>
<td>38</td>
<td>10.0</td>
<td>92</td>
</tr>
<tr>
<td>39</td>
<td>11.1</td>
<td>87</td>
</tr>
<tr>
<td>40</td>
<td>11.1</td>
<td>90</td>
</tr>
<tr>
<td>41</td>
<td>13.7</td>
<td>85</td>
</tr>
<tr>
<td>42</td>
<td>16.9</td>
<td>78</td>
</tr>
<tr>
<td>43</td>
<td>11.1</td>
<td>85</td>
</tr>
<tr>
<td>44</td>
<td>13.7</td>
<td>85</td>
</tr>
<tr>
<td>45</td>
<td>11.1</td>
<td>72</td>
</tr>
<tr>
<td>46</td>
<td>10.0</td>
<td>86</td>
</tr>
<tr>
<td>47</td>
<td>10.0</td>
<td>85</td>
</tr>
<tr>
<td>48</td>
<td>10.0</td>
<td>83</td>
</tr>
<tr>
<td>49</td>
<td>9.0</td>
<td>91</td>
</tr>
<tr>
<td>50</td>
<td>12.3</td>
<td>86</td>
</tr>
<tr>
<td>51</td>
<td>10.0</td>
<td>86</td>
</tr>
<tr>
<td>52</td>
<td>12.3</td>
<td>82</td>
</tr>
<tr>
<td>53</td>
<td>11.1</td>
<td>82</td>
</tr>
<tr>
<td>54</td>
<td>11.1</td>
<td>87</td>
</tr>
<tr>
<td>55</td>
<td>12.3</td>
<td>77</td>
</tr>
<tr>
<td>56</td>
<td>10.0</td>
<td>88</td>
</tr>
<tr>
<td>57</td>
<td>13.7</td>
<td>78</td>
</tr>
<tr>
<td>58</td>
<td>11.1</td>
<td>85</td>
</tr>
<tr>
<td>59</td>
<td>9.0</td>
<td>81</td>
</tr>
<tr>
<td>60</td>
<td>12.3</td>
<td>79</td>
</tr>
<tr>
<td>61</td>
<td>10.0</td>
<td>84</td>
</tr>
<tr>
<td>62</td>
<td>10.0</td>
<td>84</td>
</tr>
<tr>
<td>63</td>
<td>15.2</td>
<td>72</td>
</tr>
<tr>
<td>64</td>
<td>10.0</td>
<td>88</td>
</tr>
<tr>
<td>65</td>
<td>11.1</td>
<td>87</td>
</tr>
<tr>
<td>66</td>
<td>9.0</td>
<td>88</td>
</tr>
<tr>
<td>040514</td>
<td>11.1</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>12.3</td>
<td>76</td>
</tr>
<tr>
<td>16</td>
<td>12.3</td>
<td>75</td>
</tr>
<tr>
<td>17</td>
<td>15.2</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>15.2</td>
<td>76</td>
</tr>
<tr>
<td>19</td>
<td>11.1</td>
<td>79</td>
</tr>
<tr>
<td>20</td>
<td>12.3</td>
<td>80</td>
</tr>
<tr>
<td>21</td>
<td>13.7</td>
<td>56</td>
</tr>
<tr>
<td>22</td>
<td>16.9</td>
<td>72</td>
</tr>
<tr>
<td>23</td>
<td>11.1</td>
<td>81</td>
</tr>
<tr>
<td>24</td>
<td>11.1</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>12.3</td>
<td>73</td>
</tr>
<tr>
<td>26</td>
<td>10.0</td>
<td>80</td>
</tr>
<tr>
<td>27</td>
<td>9.0</td>
<td>82</td>
</tr>
</tbody>
</table>

(cont)
<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Resolution (s/arc)</th>
<th>Modulation transfer function (MTF) (10 cyc/deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+2.8° (on axis (%))</td>
</tr>
<tr>
<td>040528</td>
<td>11.1</td>
<td>84</td>
</tr>
<tr>
<td>29</td>
<td>13.7</td>
<td>73</td>
</tr>
<tr>
<td>30</td>
<td>10.0</td>
<td>84</td>
</tr>
<tr>
<td>31</td>
<td>13.7</td>
<td>68</td>
</tr>
<tr>
<td>32</td>
<td>12.3</td>
<td>79</td>
</tr>
<tr>
<td>33</td>
<td>16.9</td>
<td>39</td>
</tr>
<tr>
<td>34</td>
<td>11.1</td>
<td>72</td>
</tr>
<tr>
<td>35</td>
<td>11.1</td>
<td>78</td>
</tr>
<tr>
<td>36</td>
<td>10.0</td>
<td>82</td>
</tr>
<tr>
<td>37</td>
<td>10.0</td>
<td>79</td>
</tr>
<tr>
<td>38</td>
<td>13.7</td>
<td>59</td>
</tr>
<tr>
<td>39</td>
<td>10.0</td>
<td>83</td>
</tr>
<tr>
<td>40</td>
<td>12.3</td>
<td>78</td>
</tr>
<tr>
<td>41</td>
<td>13.7</td>
<td>68</td>
</tr>
<tr>
<td>42</td>
<td>10.0</td>
<td>83</td>
</tr>
<tr>
<td>43</td>
<td>9.0</td>
<td>91</td>
</tr>
<tr>
<td>041197</td>
<td>11.1</td>
<td>89</td>
</tr>
<tr>
<td>98</td>
<td>9.0</td>
<td>84</td>
</tr>
<tr>
<td>99</td>
<td>10.0</td>
<td>86</td>
</tr>
<tr>
<td>041200</td>
<td>11.1</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>8.1</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>12.3</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>9.0</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>11.1</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>11.1</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>11.1</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>10.0</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>10.0</td>
<td>88</td>
</tr>
<tr>
<td>11</td>
<td>9.0</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td>15.2</td>
<td>74</td>
</tr>
<tr>
<td>13</td>
<td>10.0</td>
<td>82</td>
</tr>
<tr>
<td>14</td>
<td>10.0</td>
<td>88</td>
</tr>
<tr>
<td>15</td>
<td>11.1</td>
<td>82</td>
</tr>
<tr>
<td>16</td>
<td>13.7</td>
<td>88</td>
</tr>
<tr>
<td>17</td>
<td>10.0</td>
<td>80</td>
</tr>
<tr>
<td>18</td>
<td>9.0</td>
<td>84</td>
</tr>
<tr>
<td>19</td>
<td>9.0</td>
<td>86</td>
</tr>
<tr>
<td>20</td>
<td>10.0</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>11.1</td>
<td>92</td>
</tr>
<tr>
<td>22</td>
<td>11.1</td>
<td>Not tested</td>
</tr>
<tr>
<td>23</td>
<td>9.0</td>
<td>92</td>
</tr>
<tr>
<td>24</td>
<td>13.7</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>13.7</td>
<td>66</td>
</tr>
<tr>
<td>26</td>
<td>9.0</td>
<td>91</td>
</tr>
</tbody>
</table>
GLOSSARY

MG magnification of the image at knife blade
NS number of data points taken per scan
RP related to the rpm of the scanner motor
CD number of 2400-hz clock cycles between data samples
SS distance in microns between two successive data points
FI frequency increment of the printout (cycles/mm)
DISTRIBUTION LIST

Commander
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-TSS(D) (5)
 DRSMC-LC(D), J. Lepore
 DRSMC-LCA(D), A. Moss
 DRSMC-LCE(D), R. Walker
 DRSMC-QAS(D), B. Aronowitz (5)
 DRSMC-SCM(D), J. D. Corrie
 DRSMC-TSP(D), B. Stephens
 DRSMC-SCM-O(D), H. Pebly, Jr.
 DRSMC-QAF-I(D) (10)
 DRSMC-GCL(D)
Dover, NJ 07801

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander
Chemical Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-CLJ-L(A)
 DRSMC-CLB-PA(A)
 DRSMC-QAC-E(A), W. J. Maurits
APG, Edgewood Area, MD 21010

Director
Ballistics Research Laboratory
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-BLA-S(A)
Aberdeen Proving Ground, MD 21005

Chief
Benet Weapons Laboratory, LCWSL
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-LCB-TL
 DRSMC-LCB, T. Moraczewski
 SARWV-PPI, L. Jette
Watervliet, NY 12189
Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-LEP-L(R)
DRSMC-QA(R) (2)
DRSMC-SC(R)
DRSMC-RDP(R)
DRSMC-EN(R)
DRSMC-QAE(R)
Rock Island, IL 61299

Director
U.S. Army Materials and Mechanics Research Center
ATTN: DRXMR-P
DRXMR-PL (2)
DRXMR-D
DRXMR-S
DRXMR-STQ (4)
Watertown, MA 02172

Director
Industrial Base Engineering Activity
ATTN: DRXIB-MT (2)
Rock Island, IL 61299

Metals and Ceramics Information Center
505 King Avenue
ATTN: Harold Mindlin, Director
 James Lynch, Assistant Director
Columbus, OH 43201

Commander
U.S. Army Foreign Science and Technology Center
ATTN: DRXST-SD3
220 Seventh Street, N.E.
Charlottesville, VA 22901

Office of the Deputy Chief of Staff for Research, Development, and Acquisition
ATTN: DAMA-ARZ-E
 DAMA-CSS
Washington, DC 30210

Columbia Research Corporation
1 Metropolitan Grove Road
ATTN: David Flake (2)
 George Fisher (2)
 Paul Watson (2)
Gaithersburg, MD 20760
Commander
U.S. Army Mobility Equipment Research and Development Command
ATTN: DRDME-D
DRDME-E
DRDME-G
DRDME-H
DRDME-M
DRDME-T
DRDME-TQ
DRDME-V
DRDME-ZE

Commander
U.S. Army Aircraft Development Test Activity
ATTN: STEBG-TD
Fort Rucker, AL 36362

President
U.S. Army Armor and Engineer Board
ATTN: ATZKOAE-TA
Fort Knox, KY 40121

President
U.S. Army Field Artillery Board
ATTN: ATZRBDOOP
Fort Sill, OK 73503

Commander
Anniston Army Depot
ATTN: SDSAN-QA
Anniston, AL 36202

Commander
Corpus Christi Army Depot
ATTN: SDSCC-MEE, Mr. Haggerty, Mail Stop 55
Corpus Christi, TX 78419

Commander
Letterkenny Army Depot
ATTN: SDSLE-QA
Chambersburg, PA 17201

Commander
Lexington-Bluegrass Army Depot
ATTN: SDSLX-QA
Lexington, KY 40507

Commander
New Cumberland Army Depot
ATTN: SDSCNC-QA
New Cumberland, PA 17070

Commander
U.S. Army Depot Activity
ATTN: SDSTE-PU-Q (2)
Pueblo, CO 81001

Commander
Red River Army Depot
ATTN: SDSRR-QA
Texarkana, TX 75501
Commander
Sacramento Army Depot
ATTN: SDSSA-QA
Sacramento, CA 95813

Commander
Savanna Army Depot Activity
ATTN: SDSSV-S
Savanna, IL 61074

Commander
Seneca Army Depot
ATTN: SDSSE-R
Romulus, NY 14541

Commander
Sharpe Army Depot
ATTN: SDSSH-QE
Lathrop, CA 95330

Commander
Sierra Army Depot
ATTN: SDSSE-DQA
Herlong, CA 96113

Commander
Tobyhanna Army Depot
ATTN: SDSTO-Q
Tobyhanna, PA 18466

Commander
Tooele Army Depot
ATTN: SDSTE-QA
Tooele, UT 84074

Director
DARCOM Ammunition Center
ATTN: SARAC-DE
Savanna, IL 61074

Naval Research Laboratory
ATTN: Code 5830, J. M. Krafft
 Code 2620, Library
Washington, DC 20375

Air Force Materials Laboratory
Wright-Patterson Air Force Base
ATTN: AFML-LTM, W. Wheeler
 AFML-LLP, R. Rowand
Wright-Patterson Air Force Base, OH 45433