
-Ai37 478 ISSUES IN INTERACTION LANGUAGE SPECIFICATION AND /
REPRESENTATION(U) VIRGINIA POLYTECHNIC INST AND STATE
UNIV BLRCKSBURG COMPUTER S. D H JOHNSON ET AL. NOV 83

UNCLASSIFIED CSIE-83-15 N@014-8 1K -143 F/G 5/8 N

mEEEomhEEEmhiI
EEEEEEEEmhEEEE
mEEEEEEEmhEEEE
EEEEEEEEohEohEmhE~~hEEEEEE

1.8*

111LA .6 ~

MIRCP REOUTIN ESTCHR

-T)A BUR OfSADRS 1963-UHI = &~ _IV

,: . % . .: '- , -4, - . . . T .- - . .
"

. ,

" 0

q~'I ISSUES IN

- INTERACTION LANGUAGE SPECIFICATION

CAND REPRESENTATION

Deborah H. Johnson

H. Rex Hartson

N

nT1C

Virginia Polytechnic Institute

and State University
Computer Science

Industrial Engineering and Operations Research
BLACKSBURG, VIRGINIA 24061

84 02 03 043 .

..- .

CSIE-83-15 November 1983

oISSUES IN
INTERACTION LANGUAGE SPECIFICATION

N. AND REPRESENTATION

Deborah H. Johnson

I.

H. Rex Hartson -

I

TECHNICAL REPORT

Prepared for
Engineering Psychology Group, Office of Naval Research

ONR Contract Number N00014-81-K-0143
Work Unit Number NR SRO-101

Approved for Public Release; Distribution Unlimited

Reproduction in whole or in part is permitted
for any purpose of the United States Government

1.Y

SECURITY CLASSIFICATION OF THIS PAGE (Whea Dts iFntervd)

REPORT DOCUMENTATION PAGE RED INS'TRUCTIONS1BEFORE COMPLETING FORM

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Issues in Interaction Language Specification

and Representation S. PERFORMING ORG. REPORT NUMBER
-..

7. AUTHOR(@) 6. CONTRACT Of GRANT NUMBER(s)

q Deborah H. Johnson
I i. Rex llartson N00014-81-K' 03

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Computer Science 61153N42; RR04209;:* L Virginia Polytechnic Institute & State University RR0420901;
Blacksburg, Virginia 24061 NR SR-1O1

ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research, Code 442 November 1983
800 North Quincy Street 13. NUMBER OF PAGES
Arlington, VA 22217 64

14. MONITORING AGENCY NAME & ADDRESS(II diflerent from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

IS,. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ot this Report)

_Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II difterent from Report)

III. SUPPLEMENTARY NOTES

P Is. KEY WORDS (Continue on rovers aid If necoesry nd Identify by block number)

Human Factors, Languages, Interaction Languages, Design

0 ST RACT (Continue on reverse side It necessary end identify by block number)

..- "Interaction between a human and a computer necessarily involves the use of a
language in which the two can communicate. For application systems which are
created under the Dialogue Management System (DMS), this language is usually an,* interaction language. Issues in the implementation of interaction languages are
discussed, including language design, language specification and representation
schemes, and language recognition. Components of an interaction language are
classified into categories which are analyzed in terms of their specification

* needs. A model for Interaction language specification Is presented which depicts

DO IJANo 1473 tOITION oF I Nov s6 is oBsoLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Det Entered)

L, ." .", 7,

SECURITY CLASSIFICATION OF THIS PAGE(Ihe, Date Entered)

. -,- 20. (Continued)

several inter-related submodels as a communication path between a dialogue

author and an end-user.

Because the dialogue author who is creating the user interface for applica-

tion systems is not expected to be a language specialist, an automated tool to

S facilitate interaction language design, specification, representation, and

parsing is being incorporated into the Author's Interactive Dialogue Environment

(AIDE). An interactive example-based interface for syntax specification, Lan-
guage-By-Example (LBE), guides the dialogue author at design-time in specifying
an interaction language for an application system. An example of the use of LBE

i --' for defining command strings is presented.

%A Accession For

1NTIS GRA&I
DTIC TAB
Unannounc d 13
Justifieztion

By - -_ __ _

Distribution/

Availabilit"r Codes
Avai! andjor.

Dist Special

SECuRITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- % w . "- . • . ". ". ". % . % "_." L," . " .% . " ,% "% """ ' " " . . ," ' ' ",
/ ' *. ' '°*.€ * *.. , .' -' " " "

°
.* . ". ". " ". 'r" ' ' '

ACKNOWLEDGMENT

This research was supported by the Office of Naval Research
under contract number N00014-81-K-0413 and work unit number SRO-101.
The effort was supported by the Engineering Psychology Group, Office
of Naval Research under the technical direction of Dr. John J.
O'Hare. Reproduction in whole or in part is permitted for any pur-
pose of the United States Government.

The authors wish to acknowledge Dr. Roger Ehrich, who first
realized the importance of language in human-computer interfaces
under DMS and AIDE, and continually encouraged its consideration.

7

it

Ic

I

I

.' . 5*. '5

... J . , ..- , . , '---, .., . -, . , .';' ... -. - q '. -.. .'-. -.. .-. '- -
'

"" -.

a

ABSTRACT

Interaction between a human and a computer necessarily involves
the use of a language in which the two can communicate. For applica-
tion systems which are created under the Dialogue Management System
(DMS), this language is usually an interaction language. Issues in
the implementation of interaction languages are discussed, including
language design, language specification and representation schemes,
and language recognition. Components of an interaction language are
classified into categories which are analyzed in terms of their spec-
ification needs. A model for interaction language specification is
presented which depicts several inter-related submodels as a communi-
cation path between a dialogue author and an end-user.

Because the dialogue author who is creating the user interface
for application systems is not expected to be a language specialist,
an automated tool to facilitate interaction language design, specifi-
cation, representation, and parsing is being incorporated into the
Author's Interactive Dialogue Environment (AIDE). An interactive
example-based interface for syntax specification, Language-By-Example

(LBE), guides the dialogue author at design-time in specifying an
interaction language for an application system. An example of the
use of LBE for defining command strings is presented.

CR Categories and Subject Descriptors: D.2.1 tSoftware Engineering
Requirements/Specifications], D.2.2 [Tools and Techniques], D.3.1
[Programming Languages Formal Definitions and Theory], D.3.2
[Programming Languages Classification], H.1 [Information Systems
Models and Principles]

General Terms: Human Factors, Languages, Interaction Languages,
Design

-- - ----- - --N. --- "
°

TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION

2. OVERVIEW OF DMS AND AIDE

2.1 Background and Purpose of DMS
2.2 New Concepts and Roles in DMS

* 2.2.1 Dialogue Independence
2.2.2 Dialogue Author

2.3 Components of DMS
2.4 Transaction Model
2.5 Author's Interactive Dialogue Environment (AIDE)
2.6 Role of the LBE Language Tool in DMS and AIDE

3. LITERATURE REVIEW ON LANGUAGE SPECIFICATION AND IMPLEMENTATION

3.1 The Need for a Human-Understandable Language Specification
3.2 Existing Methods of Language Specification
3.3 Other Research Areas in Language Representation and

Recognition

4. ISSUES IN DEVELOPMENT OF A LANGUAGE TOOL

4.1 Issues in Designing and Specifying an Interaction Language
4.1.1 Human Factors Considerations in Interaction Language

* Design
4.1.2 Types of Interaction Language Syntax
4.1.3 Specification of Syntax
4.1.4 Components of Interaction Language Components

4.2 Issues in Automating Language Specification and Recognition
4.2.1 Role of the Author in Interaction Language

Implementation
4.3 A Model for Interaction Language Specification

5. LANGUAGE-BY-EXAMPLE (LBE): VERSION I

5.1 General Goals
5.2 Design and Implementation
5.3 Language-By-Example
5.4 Sample Scenario of LBE

6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

REFERENCES

Issues in
Interaction Language Specification and Representation

-I Deborah H. Johnson
H. Rex Hartson

*"Combine the technology of the future with a total summer
camp experience in the mountains of southwest Virginia.
Residential computer camp for 10-16 year olds, with

"instruction by fully qualified staff..."

1. INTRODUCTION

This advertisement from a recent issue of the Virginia Tech Col-

legiate Times serves as a broad statement on the widespread prolifera-
.

tion of computers in twentieth century life. No longer an esoteric

magic box usable by only a select few, the computer is a fact of life

in today's world. Everyone, from grandmothers using on-line informa-

tion storage and retrieval systems at the public library to ten year

Iolds attending summer computer camp, is being introduced to the won-
der of this electronic marvel. Unfortunately, "wonder" can have more

than one meaning, especially when associated with the use of compu-

ters. The sense of effectiveness and efficiency one can experience

when using a computer may all too quickly be replaced by a feeling of

uncertainty and frustration. This frequently occurs because of the

lack of emphasis on development of an effective, natural human-compu-

ter interface. Because of the rapid expansion of computers into all
~.'

areas of life, the focus has been largely on simply "getting some-

* thing working," while little or no attention has been paid to making

b& . *,* . . . * V . ~ . , , . ~ -

Page 2

this machine easy for humans to use. Its power and productiveness

are often masked by a user interface that is difficult and confusing

for a human. Thus!, the need for an effective human-computer inter-

face is apparent.

2. OVERVIEW OF DMS AND AIDE

~ 2.1. BACKGROUND AND PURPOSE OF DMS

At Virginia Tech, the Office of Naval Research is sponsoring a

three year program devoted to the research and development oi effec-

tive human-computer interfaces. The work is being done jointly by

the Departments of Computer Science and Industrial Engineering. One

task of the research effort is focusing specifically on the manage-

ment of human-computer dialogues. A major goal of this task is the

development of an automated human-computer system to aid in the

development of other human-computer application systems. This Dia-

logue Management System (DMS) (HARTH83] is an extensive research

effort currently involving two faculty members, five graduate

research assistants, and one full-time programmer.

q S* S-' £-. .-' - - .- .. '. .-': , ',..-.." .--- '.-- • . '

+.2
Page 3

2.2. NEW CONCEPTS AND ROLES IN DMS

V. 2.2.1. Dialogue Independence

Because the emphasis of our work is on human-computer dialogues,

our research group believes that the dialogue which occurs between

*the computer and the human user is as important as the computational

software of an application system. If the human-computer interface

is not easily usable by a human, the robustness, correctness, and

efficiency of the associated computational component is of little

consequence.

In response to this need, the concept of dialogue independence

has developed as the underlying premise of DMS. Dialogue independence

I entails the separation of the dialogue component from the computa-

tional component of an application system. The dialogue component

and computational component must communicate through a common inter-

face so that they can be integrated together for execution of the

completed application system. This interface between the dialogue

* + component and computational component conducts an "internal dialogue"

and the interface between the dialogue components and the user con-

ducts an "external dialogue." (See Figure 1.) External dialogue is

the traditional human-computer interface for the interaction between

the user and the system. It is highly variable, limited only by the

imagination of the person who creates the content of the dialogue

component. In rnal d' ,gue, on the other hand, has no direct connec-

I tion to the user if the system, but serves as a link between the dia-

- - -' ...-....... -t. . +

.1'

"' Page 4

j.l nternal E I frnalI

Dialogue Dialogue
I II
I I

ipI 1

Computational Dialnoue I Human
Modules ra nsactirs User

-<I I

I I

I I

Figure 1. Internal and External Dialogue

. 'logue component and the computational component of a system. It must

p itherefore be formally specified and is much less variable in its

form.

2.2.2. Dialogue Author

In order to emphasize the separation of dialogue and computa-

tional components of software systems, separate roles are responsible

" for each of the two components. An application programmer writes

-' computational components, but writes no dialogue. A new role, that

of a dialogue author, has sole responsibility for developing the dia-

logue which comprises the human-computer interface of a system. The

dialogue author is a person who is not necessarily a skilled program-

mer, but rather is oriented towards the human factors of human-compu-

ter interface development. The dialogue author creates the dialogue
%

I pI .il _. _ ,, 1 _; -. 1 _ ' -.- . . -
4 -

,5. "Pase 5

so that its content reflects the principles of good human-computer

* !interaction.

The major reason for this separation of roles between the dia-

logue author and an application programmer is that an application

programmer is generally not skilled in writing good human-computer

dialogues. An application programmer is typically much more intent
* ..

* p upon development of algorithms and other computational considera-

tions. An application programmer may even find it distracting, in

N the middle of a lengthy, logically complex piece of software, to have

Sto write code interacting with the user to deal with such things as

input data checking or message format consistency. The main objec-

tive of a dialogue author is to write dialogue that incorporates good

human-computer interface guidelines, without having to know program-

ming languages and techniques.

Thus, the separation of dialogue from the computational software

component, and the parallel roles of the dialogue author and the

application programmer, form the underlying philosophy of DMS. This

separation produces more effective human-computer interfaces, and it

allows these interfaces to be quickly and easily modified as user!
needs change.

-NI. U.
5

Z

.5.

I I -I ~~~~~~~~~~~~~.- ...- .. ii4'-.. i'l~, l'l' i l~ =t'i-' .~6 d ~

-€ ' .Page 6

2.3. COMPONENTS OF DMS

DMS consists of four major components: automated tools for the

author, automated tools for the programmer, an execution environment,

and a holistic methodology to integrate all the other componentsU

together. The tools facilitate and encourage the creation of soft-

ware systems with quality human-computer interfaces. The application

programmer uses the automated tools of the programming environment to

. create computational components for an application system. At the

same time, the dialogue author uses the automated tools of the

Author's Interactive Dialogue Environment (AIDE) [JOHND82] to create

the dialogue components for that same application system. DMS also
4. %

provides the multiprocess execution environment for itself, as well

as for the application systems it is used to create. These applica-

tion systems are embedded in the DMS execution environment for their

own execution. Finally, DMS provides the comprehensive methodology

for system development. Use of the automated tools by both dialogue

author and application programmer, inter-role communication issues

"between dialogue author and application programmer, and system docu-
A.

mentation for use by both are emphasized in the DMS methodology. All

" of these aspects are critical if the dialogue author and the applica-

tion programmer are to interact successfully to produce a fully inte-

grated completed application system. This methodology is fully dis-

cussed in [YUNTT84].
.4

"S

'4

. .Page 7

2.4. DIALOGUE TRANSACTION MODEL

Every exchange of information between a computer and its user

follows a specific sequence. Under DMS, the exchange is called a

dialogue transaction, and a human-computer interface is composed of

many transactions. A dialogue transaction model has been developed to

serve as the basis for the understanding and design of human-computer

interfaces using AIDE. An interaction within a transaction is com-

prised of three parts: system display, followed by human language

input, followed by system confirmation. Any of these parts may be

implicit in a given interaction.

The display can have many syntactic forms, each of which serves

essentially the same semantic function. Menus, keypads, touch-panel

displays, graphical icons, ordinary textual or voice requests for

input, or even a simple "Ready" message are all examples of displays.

The language or input part of an interaction embodies the interaction

language, or the language of communication between the end-user and

the application system. Whatever the syntactic form of the user lan-

guage input, it can be precisely defined as a part of an interaction

language. This part is quite complex, and is the major topic of this

55 paper. Finally, the confirmation part is typically either a textual

or a graphical response to a user's input. Of all the parts, it is

the one most likely to be implicit (except when an error message is

S..required). Each instance of a transaction (created using AIDE) has a

definition for each of its parts (the output of AIDE) stored in a

transaction database (TDB), individually retrievable for modification

or execution.

'*** '*. .. '...3.*.:.*..~*,*

Page 8

- There are two major manifestations of this transacton model,

seen at run-time and at design-time. At run-time, the form of the

transaction model is built into the control structure of the trans-

action executor. This transaction executor is data-driven at run-

time to instantiate a dialogue transaction. Each part of the trans-

action has its own executor, called by the transaction executor: a

display executor to interpret the display definition and to produce a

, display; a language executor to interpret the language input defini-
-., .,

tion and to accept, parse, and validate the user's input; and a con-

firmation executor to interpret the confirmation definition and to

produce the system confirmation.

At design-time, there are also control and data structures which

reflect the parts of a transaction. In addition, there is a set of

tools for producing each of the transaction parts. These tools are

ji integrated into the interactive system called AIDE, which is dis-

cussed in the following section.

4 .2.5. AUTHOR'S INTERACTIVE DIALOGUE ENVIRONMENT (AIDE)

The purpose of AIDE is to provide an automated set of tools for

a dialogue author to use in creating human-factorable (flexible

enough to incorporate applicable human factors results when they

become available) human-computer dialogues. The structural organiza-

Ntion of AIDE is shown in Figure 2. It consists of the dialogue

author's interface, which provides the human-computer dialogue

between the dialogue author and the tools, and integrates this

. . . -- , -' - •-.- ...-....

4-PiP ge 9

Kepa Menu Forms Touch Tx fG..nhi Dic I

a Fmtr Fmtr Fmtr Fmtr F'etr Fintr Futr

1 :Input Definitions Display Definitions Confirmation Definitions

Itrc i Dei ton
IITrasction Definitions

Transaction Database

-~ Figure 2. Author's Interactive Dialogue Environment

diverse group of interactive facilities for creating dialogue trans-

actions. Such tools as a menu formatter, a keypad formatter, a text

i formatter, a graphics formatter, a voice formatter, a forms format-

j ter, and a touch panel display formatter are used to create the dis-

play and confirmation parts of a transaction. An example-based lan-

13F v- -7- - j , 7~ .-.g- j - . ' .-.. . : , ~~p~ . - . - - .. - , - --. - . -' . -
:

. . .. " - "

Page 10

guage definition tool called Language-By-Example (LBE), discussed

U later in this paper, facilitates the design, specification, represen-

tation, parsing, and recognition of the language input part of a

transaction for an interaction language. (Parsing and recognition

are more the purview of the run-time language executor INARAP83I, and

will not be discussed in depth in this paper.) Finally, the output

-- .' of these tools, the internal representations or definitions of the

! parts of a transaction, are held during their creation, modification,

or execution, in a relational transaction database. Permanent sto-

-rage is provided by a dialogue database, which contains all parts of

all transactions for an entire application system.

'4 Each of these tools plays an important part in the development

of human-computer dialogues under DMS. Further discussion of all

S except LBE, the language tool, is beyond the scope of this paper.

4

2.6. ROLE OF THE LBE LANGUAGE TOOL IN DMS AND AIDE

The term Interaction language will be used herein as a general term

ZI . for all types of languages which comprise the external dialogue of an

:application system, the means of communication between the user and

. the computer. Such languages include typed or spoken command lan-

guages, request/response exchanges, function keypads, touch panels,

voice I/O, list menus, etc. This language, or external dialogue, is

the means by which the human gives commands or queries to the compu-

ter and by which the computer responds to or queries the user. This

discourse is the exchange of words, phrases, parameterized commands,

., Page 11

"" and other symbols and actions, i.e., the conversation, between a

human and a computer.

.This human-computer language is composed of two separate parts:

the computer's part, which is determined in the software, and the

human's part, which is any input a user may give to the system.

Thus, it is confusing and indeed erroneous to think of a human-compu-

4! ter dialogue as being only what is displayed to the user by the sys-

tem. Instead, both the human side and the computer side of the dia-

logue must be considered in the design of a specific discourse, or

external dialogue, of a human-computer system.

Clearly, the human-computer systems which are created under DMS

and AIDE have a language for communication with the user. Since the

dialogue author is not expected to be either a skilled programmer or

V a language specialist, an example-based language tool (LBE), to aid

in the overall development, specification, and implementation of

interaction languages, is being created as a part of AIDE. It will

also reduce the amount of communication that must occur between the

dialogue author and the application programmer who writes the seman-

tic action routines which execute the specific requests of the user.

There are several aspects to the development of a language tool.

1 The design, specification, and implementation of human-factorable

interaction languages for application systems, as well as the parsing

and recognition of user inputs in the interaction language, are of
".]

obvious concern. One of the most significant problems encountered so

-far is that of language specification; i.e., how can the commands of

an interaction language be specified in a clear, complete, human-un-

' ,%

4I

Page 12

derstandable notation? In fact, clarity and completeness seem almost

I mutually exclusive in many language representation schemes. As more

information is conveyed in a notation, it typically becomes less

human-understandable. A highly formal notation (e.g., Backus-Naur

Form) that contains a great deal of information is particularly con-

fusing to the average person without much mathematical background.

This issue of information richness versus human factors considera-

tions is one of our main areas of research in the overall design and

development of the LBE language tool.

A second important issue arises in language representation;

i.e., how can the definition of an interaction language be stored

internally so that it is readily retrievable for modification or exe-

cution? In fact, this representation provides communication between

design-time, when the interaction language is developed, and run-

time, when that same interaction language is processed. The values

resulting from run-time processing are mapped to language token

values which are passed to the computational component at the end of

the transaction, to trigger the appropriate semantic action(s). The

format and content of this internal representation is another of our

qresearch topics [NARAP83].

In summary, interaction languages are specified and their repre-

sentations constructed at interface design-time, by the dialogue

author using AIDE. The run-time transaction executor calls a lan-

.* guage executor which accepts, parses, and validates user inputs.

Thus, under DMS, a dialogue author can develop an interaction lan-

guage and it can be processed at run-time, without writing a single

line of code!

Page 13

3. LITERATURE REVIEW ON LANGUAGE SPECIFICATION AND IMPLEMENTATION

" 3.1. THE NEED FOR A HUMAN-UNDERSTANDABLE LANGUAGE SPECIFICATION

Researchers have realized for some time that severe limitations

exist in the notations typically used to specify a language. Repre-

sentational schemes are generally so information-packed that they

become almost unreadable to the average person. Formal language

definitions meet with resistance, especially from more pragmatic

* users, because they are so cryptic and often difficult to understand.

The reader of a language definition should be able to quickly grasp

the formalism and, from it, extract the information needed. This can

be done only through the development of a readable notation that will

describe the complete syntax of a language [LEDGH74]. Attention to

I the design of the language specification, so that the general user

* can understand it, will help overcome some of the resistance normally

encountered in the use of formal language definitions [MARCM76I.

.Interaction languages will comprise a major portion of the interface

Awhich the dialogue author is creating, and the dialogue author is not

expected to be a language specialist. The need for incorporation of

*I human factors considerations into both the languages and their speci-

fications is especially important in light of this new role of the

dialogue author in producing human-computer systems.

.. : 7 - , .i . L -.. . 3 j '.:-,-.- -.. -.- .- . -

Page 14

3.2. EXISTING METHODS OF LANGUAGE SPECIFICATION

Several well-known methods of language syntax specification are

familiar to computer scientists. However, most of these are used

primarily for representation of static programming languages and are

inadequate for representation of dynamic interaction languages

[JACOR83]. In a static language, the entire sequence of both system

and user actions is input, typically as a program. The conditions

for all possible alternatives by both system and user must be expli-

cit in the code. In an interactive language, system actions cannot

occur until a user input is received and processed. This user depen-

dency (both of content and sequence) associated with interaction lan-

' guages needs to be present in any specification used for interaction

S languages. In addition, interaction languages have many features

which programming languages do not have. The device from which the

j. language input will come (e.g., voice recognizer, touch panel, func-

tion key, mouse), the position at which the input will be received,

and the definition of the input echo (e.g., color, possibly no echo

"V4 at all) are just a few characteristics which are unique to interac-

tion languages. Obviously, none of these is provided for in tradi-

, tional language specification schemes.

One of the best known systems for representing the syntax of a

language is the Backus-Naur Form (BNF) [NAURP63]. While it is fairly

. understandable once the metalanguage symbols are learned, it has sev-

eral deficiencies. For example, BNF has no provision for specifying

S that the declared attribute of an identifier must be compatible with

its uses in a program, that the formal and actual parameters must

Sr , * .. -. C. . T r. . t W [.o . .5.. ; **- . . -. * - i ~ L 7'.~~. . ,. ,

Paoe 15

* J correspond exactly in procedures, and that multiple declarations of

- I the same identifier in a local context are illegal. Any context-sen-

-sitive requirements in an interaction language are not representable

in BNF notation. In addition, BNF is difficult for humans to under-

stand as well. It is a highly structured, hierarchical metalanguage

that results in a "fan-out" problem. That is, non-terminals in an

expression can be replaced by more non-terminals through several suc-

cessive iterations before a terminal symbol is finally reached. This
- 5*

multi-level tree structure is difficult for humans to follow, since

Iby the time the leaves (terminals) are reached, the root (highest

level expression) may long be forgotten.

,. Jacob [JACOR83] presents formal methods for specification of

user interfaces at the program modul.e level, emphasizing behavior

without committing to a particular internal implementation. Such

-.4' formal specification techniques have been applied extensively to

software but very little to interfaces. Jacob examines two classes

of interface specification techniques: those based on state transi-

tion diagrams and those based on BNF-type definitions. He concludes

that state transistion approaches provide more comprehensible lan-

7; guage specifications, because they show surface structure better than

BNF does. Language-By-Example, to be introduced in section 5.3, is a

specification technique which begins with the specifics of the sur-

face structure (examples of commands in the interaction language

being specified) and works toward a general specification of an

interaction language.

r.¢, .

-f
.4 '' , . ' " ' ' ", ' ' " " ' ''' '. - , '

" . '" .
- '"& '- ". -" " ' " '" ' ' -"'

-9 ~ ~ -7 - 7P7 77 -,-7-

, Page 16
An attempt to improve on the basic idea of BNF has been

P attempted using production rules ILEDGH74]. These production rules

are basically BNF with notations included to capture some of the

requirements not filled by standard BNF, especially regarding con-

text-sensitive issues. Separation of the specification of legal

strings from the necessary conditions for string legality is

included. The concept of a syntactic environment is introduced to

insure that declared identifiers are compatible with their uses. In

this syntactic environment, the declared type of each identifier can

be derived and therefore its compatibility determined. While adding

these features to the syntax representation conveys more implicit

information to the user of that language, the resultant language

*definition seems increasingly complex and confusing. The notation is

quite mathematical, there appear to be several confusing symbols, and

development of three types of environments (explicitly declared, con-

textually declared, and implicitly declared) is necessary. In addi-

- tion, the "fan-out" problem of standard BNF is not solved at all, and

the total length of the sets of productions is formidable. The over-

4 .*. riding concern should be with user understandability, and production

systems do not seem to solve this problem, either.

Several other attempts have been made at least to standardize

the numerous variants of BNF notation which seem to abound [WIRTN77,

LEDGH80]. Virtually every time a new language is introduced, so is a

new variant of BNF with the appropriate modifications necessary to

represent that new language. Adoption of a consistent notation for

representing static language definitions would greatly improve human

'a understandability, readability, and usability.

' 9. . ,.. : ." , . ." .". ." - . . -• -.. ' ,.. "''. ''" v - . , , ' , . , -"- - " " '"" ,,- .. ""''' ''' "

~~1 Page 17

One variant of BNF, designed specifically to represent

interaction languages rather than static languages, is the multi-

party grammar ISHNEB82]. The features which differentiate this

extension from standard BNF are the labeling of nonterminals with a

party (i.e., either human or computer) identifier, assignment of

values to nonterminals when appropriate, and definition of a nonter-

. minal which will match any input string if no other parse of that

input is successful. The grammar also permits terminal string input

by the user to be fed back in a later part of the dialogue. Other

issues involving visual features peculiar to interactive displays are

also incorporated.

State transition diagrams (essentially finite state machines)

constitute another formal representation frequently used for language

definition. As with BNF, this technique has most frequently been

" used for static languages. State transition diagrams represent the

notion of states and the sequencing of transitions among states.

Since user inputs provide conditions upon which transitions are made,

state transition diagrams seem to be more amenable for specification

%of interaction languages. A comparison of the advantages and disad-

vantages of both BNF and state transition diagrams is given in
" [JACOR831, along with examples of the use of each of these for lan-

guage specification. The representation of languages using state

transition diagrams is extended so that the complete description of a

command is possible. Pascal syntax specification has been repre-

sented using "railroad track" diagrams to show the relationships

between components of that programming language [JENSK74I. While its

Page 18

visual aspect is appealing, it is not powerful enough to represent

all the various components and relationships of an interaction lan-

guage.

. Several other formal definition techniques for programming Lan-

* guages also exist. In IMARCM76], a :omprehensive description and

. comparison is made of four of these methods: W-grammars, Production

-. Systems with an axiomatic approach to semantics, the Vienna Defini-

tion Language, and Attribute Grammars. The VDL is also discussed in

detail in {WEGNP721. Even a quick scan of these articles will give

an indication of the overall complexity of each of these techniques;

none of them is easily understandable without considerable study of

the underlying concepts, formalisms, and notations. This perhaps

-. explains why none of these four techniques to date (to the authors'

O knowledge) has been applied to the formal description of interactive

systems. Specification techniques which are complicated and not

readily comprehensible contradict the basic tenet of the current

emphasis on the design of human-factorable human-computer interfaces!

Another approach to interaction language design and representa-

* tion of interactive computer systems has been introduced in th Com-

mand Language Grammar (CLG) [MORAT81]. This formalism creates a

framework for describing all aspects of the user interface, not

merely the representation of the interaction language itself. Sev-

eral components (conceptual, communication, and physical) are refined

, ~- into various levels, each representing a description of the system at

the appropriate level of abstraction. The CLG representation is tho-

rough and complete, providing a representation of an interactive sys-

o.

7* ...

Page 19

tem ranging from the user's cognitive level to the system's represen-

I tational level. However, its very thoroughness introduces a complex-

ity that makes it difficult to use.

.-~A very recent attempt to specify human-computer interfaces has

. been done using the constructs of a high-level procedural language

- (i.e., iteration, conditionals, etc.) to represent both the human and

the computer actions which must take place ILINDT83a]. The McCabe

Metric, or cyclomatic number, is then applied to the resultant algor-

ithms to determine the potential usability of the interface.

3.3. OTHER RESEARCH AREAS IN LANGUAGE REPRESENTATION AND RECOGNITION

Most formal language specifications are used as a tool for

describing a language. However, some research is being done in the

use of formal grammar description as a prediction tool for use in

evaluating alternative human-computer interface designs [REISP81,

*BLEST82, REISP82]. An "action grammar" is used to describe both cog-

nitive and input actions, which are then converted to a time or error

" representation. Sentences are created which represent particular

tasks or user classes (e.g., "move cursor" = time to move cursor).

Then, a set of "prediction assumptions" is compared to the sentences

to determine resultant comparative times. Such evaluations using

formal languages allow early identification of design inconsistencies

which are likely to lead to user errors and allow analysis of the

interface for incorporation of human factors principles.

I.'

422

•.

Page 20

For implementation of languages, a number of automated systems

* I exist. The Unix system contains two automated tools for input lan-

guage recognition [JOHNS78, JOHNS80]. A program generator called Lex

- - creates lexical analyzers for an input specification language based

on the notation of regular expressions. YACC is a parser generator

which uses an input specification language that describes the desired

syntax for a language. These two tools can be used separately or

together to automatically generate major components of a compiler.

Another system is LANG-PAK [HEINL75], an interactive language design

system for designing and implementing application languages. Input

consists of BNF-like statements which represent both the syntax and

the semantics of the language being created. This input is processed

to create a translation of each user interaction.

i A very exciting DMS research product is being developed as the

run-time complement to the AIDE design-time system. Thi 6 a lan-

guage executor called DYLEX, which dynamically processes user lan-

guage inputs a character-at-a-time, based on the design-time defini-

tion which the dialogue author has developed [NARAP83].

* From this brief review, many of the issues associated with

interaction language specification and representation can readily be

seen. While numerous formalisms for specification of static program-

.. ming languages exist, these notations are not adequate for specifica-

tion of interaction languages. In addition, these notations are gen-

erally not human-factorable or easily understandable by someone not

* completely familiar with them.

7. "

Page 21

4. ISSUES IN DEVELOPMENT OF A LANGUAGE TOOL

% Various issues must be considered by the dialogue author in the

- . development of an interaction language. First, of course, is the

design of the interaction language itself. If this language is not

natural, flexible, and simple to learn, the user will not be able to

S.: ~ communicate efficiently and effectively with the system. The dia-

logue author must also precisely and completely specify the syntax of

,S .-. the interaction language so that it can be recognized by the system

at execution time and so that the end-user of the application system

can understand and effectively use its syntax. The specification

-1 .' notation should be designed so that the dialogue author will not have

trouble using it to create a language specification, and the user of

S that language will not have trouble understanding it. Finally, if

the dialogue author does not have a tool to facilitate interaction

.4 language recognition (i.e., processing the language input part of a

transaction), a fundamental tenet of DMS may be violated. That is,

if the author cannot create a language recognizer, then an applica-

tion programmer will have to be responsible for writing software to

deal with an aspect of external dialogue. Each of these issues will

S-" be further discussed below.

IN.

Page 22

4.1. ISSUES IN DESIGNING AND SPECIFYING AN INTERACTION LANGUAGE

" 4.1.1. Human Factors Considerations in Interaction Language Design

p. User considerations in the design of an interaction language

- include the choice of language functions and components, as well as

the syntax of an entire interaction. Overall consistency of all

interactions within a single system is critical to avoid confusing

the user. A simple example is the use of a single space as a delimi-

ter between one keyword and its parameters (e.g., "I Deb" meaning

locate the first occurrence of the string of characters "Deb") and

use of a slash (/) as the delimiter in another interaction (e.g.,

"c/Debbie/Debby" meaning change the first occurrence on the current

S line of the string "Debbie" to "Debby"). This kind of inconsistency

can be perplexing to the user of a system in which both of these

exist as possible interactions.

.U Human factors considerations are also important in the form of

presentation chosen for interaction languages. Numerous methods of

-, [' interaction input are possible, including entering the complete key-

word, entering an abbreviated form of the keyword, entering enough of

the keyword for the system to recognize it and perform command com-

.- pletion, and pressing a function key.

Responses of the system to the user, while not directly related

to the interaction language itself, can greatly influence the user's

understanding of the system. A powerful, well-designed interaction

language is of little use if the responses, and especially the error

C

. u -., . - .. 5 . % W..& : :.. •1W; W-. .. -.. .: ... -7... ..7.. ' :.. .: : -

Page 23

" -messages, of the system to the user are ambiguous or meaningless.

Poor system messages give little guidance to the user as to what

action to use to correct the error, if necessary, and to continue

executing.

One important point must be made here. The language tool of

*. AIDE is not aimed at teaching a dialogue author to design an interac-

4 tion language. It is not intended to be an "expert system" or CAI-

type package. Rather, it is intended as a tool to elicit from the

Idialogue author all information necessary to completely and precisely

define an interaction language, without the use of formal, cryptic
specification schemes.

4.1.2. Types of Interaction Language Syntax

Human-computer dialogue has two distinct functions; i.e., commu-

nication 1) to request information (either from the user or from the

pcomputer) and 2) to transmit information (either to the user or to

the computer). Interactive programs, in order to execute, must have

I input (e.g. "name", "SSN", "edit", numerical data) from the user.

This input is typically obtained through prompts or queries from the

- computer which ask the user for specific information. These prompts

may vary greatly in form and content, and depend heavily on the type

of interaction language syntax of the system being used. Many types

of syntactic forms are possible in an interactive human-computer

application system, including:

1) request/response form

2) menu form

.' , Pag,.- 24

3) keypad form

4) command string form

ft' 5) touch panel form

6) voice form

7) form-filling form

8) any combination of the above syntactic forms

, - In a request/response dialogue, the computer prompts the user

for a specific language input at a particular point in a dialogue.

Any textual output from the computer which requests a response from

the user is of this form. This type of human-computer dialogue is

typically more appropriate for less skilled system users. The compu-

ter is basically in control of this type of dialogue, since there is

generally only a small number of predetermined acceptable responses

that a user can give to any particular query. Examples of systems

- employing such languages include an airline reservation system (e.g.,

system requests "Departure airport:" and user responds "Blacksburg")

and a university's student records system (e.g., system requests

"Please type in student id" and user responds "123-45-6789").

A menu is a special form of request/response syntax. It com-

bines both the transmission of the prompt with the request for infor-:-:.

mation by displaying possible options and then asking the user to

choose one.

*, Another special type of request/response syntactic form is a

*function keypad. This is typically an auxiliary keypad (i.e., a pro-

grammed function keypad which is not a part of the main input key-

board) whose keys have prespecified functions that are invoked by

.4.

-. 4

Page 25

pressing the correct key. Within a single application system, the

S same physical function key may denote different semantic functions at

different times during system execution. A hierarchy of keypads can

provide a powerful, effective interface for a human-computer applica-

- tion system. This form of syntax has been chosen for the high-level

AIDE interface, in order to encourage consistency among the AIDE
4'-

tools and functions, as well as to provide the dialogue author with a

simple, efficient, and generally parameterless interface. In addi-

" K tion, it diminishes the need for modality among the tools of AIDE.

This will be further discussed in the section on the LBE language

tool interface.

Both menu and keypad syntactic forms are good for inexperienced

users, since all possible options are presented at all points in

S time. A keypad, because of its brevity and conciseness, is also a

good interface for expert users, who typically do not like the ver-

bosity of a menu or request/response syntax. Additionally, in light

of recent advances in their technology, both voice I/O and touch

panel I/O are particularly appropriate adjuncts to menu and keypad

* syntactic forms.

~~. With a command string syntactic form, the user generally does

-. not receive textual prompts or queries from the system, but spontane-

ously enters a specific command with a predetermined format, in order

to accomplish a particular system action at a particular point in a

dialogue. In this type of dialogue, the user is more in control,

since choices may be made from a large number of appropriate inputs

at many points in the dialogue. This type of interaction is usually

% '4

, .4

a.I V - -I - - -4*

Paqe 26

easier for more experienced users, since the inputs may be more par-

I ameterized than in a request/response language. Examples of a com-

mand string syntax interaction include a text editor (e.g., user

:-."..%" *enters "del 3" to delete three lines) and the GENIE air-traffic-con-

trol system ILINDT83b], used for human factors experimentation (e.g.,

participant enters "321 climb and maintain angels 40" which causes

*aircraft number 321 to climb to 4000 feet and hold there).

A form-filling syntactic form elicits input from the user by

allowing movement among fixed fields on the screen. Once a given

field is selected, the user can then enter the appropriate informa-

tion. This syntactic form might be used in an inventory control sys-

tem, where "part number", "customer name" "quantity required", and

"delivery date" are separate fields that must be "filled in" to com-

plete a customer order.

Finally, an interactive human-computer system whose interaction

- ;language is comprised exclusively of one of these syntactic forms is

relatively rare (with the possible exception of command string syntax

interfaces). The human-computer interface of a single system fre-

quently consists of a combination of any and all possible interaction

syntax types. For example, a predominantly request/response language

will often include some menus and a command string language and may

make use of a special function keypad.

When the syntax of a interaction language is embodied in, for

example, a keypad, interactive specification of that syntax must be

done for each key. That is, simply developing the keypads that com-

prise an application system interface and giving labels (functions)

Page 27

to each key produces only the display part of the transactions which

the keypads represent. The language input specification must also be

developed so that, at run-time, the language executor can process the

user's keypad key selections. A token value must be defined for each

, ' possible language input. As a result of a user input, this token

value is passed from the dialogue component to the computational com-

i '. ponent, to invoke the appropriate semantic action routine(s). Until

the language input part of a transaction is developed, only its dis-

play can be activated at run-time and the user's input cannot be

- . accepted, validated, or recognized. As a consequence, the token

value(s) associated with that language input cannot be determined, so

no semantic actions can be taken. The language tool allows the dia-

* .logue author to completely define the language input part of each

transaction by specifying token values for each user input. Many

IN different syntactic forms can map to the same token value, making a

transaction independent of device type, specific syntax, etc.

4.1.3. Specification of Syntax

," In order to specify the syntax of an interaction language, a

metalanguage (i.e., a language that is used to define other lan-

I ' guages) is required. One of the most confusing aspects of most meta-

9 -, languages is the fact that the metalanguage itself contains symbols

that can also be contained in the language it is being used to repre-

sent. A simple example is shown in the BNF representation of condi-

tional statements in the following way:

[% •-"

r4 q

Page 28

<comparison> <operand> <conditional operator> <operand>

<operand> <integer> I <identifier> I (<expression>)

<conditionaloperator> ::= = j <> I < i <= I >= >

Obviously, the use of angle brackets as the metalanguage delimi-

.~ .' ter for category names within the language is confusing, since in the

definition of <conditionaloperator> the < and > represent "less

than" and "greater than" in the language being defined. This same

2 issue can even arise outside the specification of a formal language

syntax, as in the computer instruction: Type "QUIT" to quit. The

user is unsure, upon seeing this for the first time, whether to type

"QUIT", which is, after all, what is shown, or simply QUIT, without

the quotation marks.

The only way to alleviate this confusion is to define the sym-

bols of the metalanguage so that they are disjoint from the charac-

j ters of the language which the metalanguage is being used to repre-

sent. An immediate constraint arises in the definition of an

interaction metalanguage to define other interaction languages. All

. -. ~ characters in the metalanguage, if they are to be displayed on the

CRT, must be in the ASCII character set. A character not in the

ASCII set cannot be used as an interaction metalanguage symbol. But

at the same time, the ASCII set is the domain from which the symbols

for virtually all interaction languages are drawn. Thus, a nota-

tional exclusion between the two is impossible. One weak solution is

to define the symbols of the metalanguage to be the most rarely used

characters of the language itself, to avoid confusing the two as much

as possible.

** 4 . ,,. ,* 4.-.

S. .. , m o . . . -" _ _ - - , , , , , . % . '. . ' L " . . ._ . .- L .- .- - - - -- , - • - . - -

S.

Pag. 29

There are several other possibilities for overcoming this prob-

lem, however, if a simple graphics system is available. Such fea-

tures as color, highlighting, blinking, and graphical shapes can be
.5 .°

*. -, used to insure that the metalanguage is disjoint from the interaction

Rlanguage it is defining. For example, components of the metalanguage

might be displayed in red, while components of the interaction itself

are displayed in blue. Similarly, metalanguage symbols might be spe-

cial graphical symbols created especially for use in the metalan-

guage, while the language symbols are the standard ASCII character

An initial attempt to classify the various components of inter-

'! action languages has led to two general observations. First, all

interaction languages, regardless of syntactic form, appear to be

comprised of two basic entities: tokens and delimiters. In command

string languages, tokens and delimiters occur alternately in a com-

mand, and a command may begin and end with either a token or a delim-

* iter. In keypad-driven languages, only a single token, without a

delimiter, results from each key selection. Secondly, interaction

languages appear to have features that are analogous to the context-

.free features of programming languages, as well as those that are

analagous to the context-sensitive features. The context-free compo-

nents are those that can be chosen and represented independently of

the context in which they are to be used. That is, there are no

limitations on the choice and use of these components at any time in

a interaction. Context-sensitive components, however, are those

whose choice and representation are dependent upon the context in

F.

- . 5.. q.£

W~ --

J
m
.

Page 30

which they are to be used. That is, their choice is constrained by a

choice that has already been made, or even one that will be made

later.

A simple example will help to clarify some of these issues. The

specification of a simplified "change" command for a text editor

might be represented as follows:

-' Change L stringl string2 *

This cryptic line of syntax specification is filled with numerous

things that must be understood by someone attempting to learn the

syntax of the "change" command. In this particular specification

scheme, the first token, "Change", means that a "C" is required (but

it may be either upper- or lower-case!) and "hange" is optional. The

left-most set of elongated brackets containing three characters ver-

tically positioned means that any one of those three characters may

v - be chosen as a delimiter at this point in the command. However, the

user must also know that, because this is the "change" command, it is

implied that the character chosen as a delimiter may not be an ele-

ment in either "stringl" or "string2". This is not shown explicitly

in any form in this representation. The second token, "stringl"

itself can consist of any sequence of characters, so long as the cho-

sen delimiter is not one of them. Next is another set of elongated

- brackets containing the same three delimiter options that were given

earlier. But now the implicit information is that the character cho-

" 4-

:44
, Page, 31

. sen as the first delimiter must again be used as a delimiter at this

point in the command. That is, if "?" was used for the first ins-

tance of a delimiter, then "?" must be chosen as the delimiter each

S..- time a delimiter selection is required in the same instance of the

command. Thus, even though all three characters are given here as

options, the choice as to which must be used has already been made,

*" if "?" was selected earlier. This consistency requirement is not

explicitly expressed in any way in this syntax specification. Next,

the third token, "string2", is encountered, with the implication

again being that it can consist of any combination of characters as

long as the delimiting character is not in it. Finally, curly braces

around a closing delimiter and the fourth token, the "*" symbol, are

intended to indicate that this entire portion of the command is

optional. The "*" represents a global change throughout the entire

file currently being edited. So this command without a "*" effects

changes to only the current line, and the third delimiter becomes

optional. Including "*" at the end of the command line effects

changes to all occurrences throughout the file, and the third delimi-

ter (the one preceding the "*") is required. Not completely clear

here is the fact that if "*" is used, then a delimiter must also be

" used, and again, that this delimiter must be the same as the first

two. Finally, it is also unclear from this representation whether

"string 1" will replace "string2" or vice versa.

* ,0

4"

od

?'<'.; 4'("' '< ':.''-'..- • • •" " •-- • .• " " ". . 4"". " • . . , .,

Page 32

4.1.4. Categories of Interaction Language Components

In order to resolve these kinds of ambiguity in interaction lan-
4.

: : guage syntax specification, an initial categorization of all interac-

tion language components has been determined. This categorization,

'" "most applicable to the command string syntactic form, contains cate-

gories for both context-free and context-sensitive features, both of

which may be either optional or required. If a component is an

" optional choice, its use in a command string is not required. For

example, an AREA command, which displays a portion of a file above

and below the current line might be entered as simply "AREA" or as

"AREA 5". In the first case, the system default is used for the num-

ber of lines to be displayed, while in the second case, five lines

above and five lines below the current line are displayed. A special

case of optionality is that of equivalent options for which two

different choices for a language input component have exactly the

same meaning. For example, "DELETE 3" and "DELETE +3" would accom-

plish exactly the same thing, that is, deletion of three lines.

Required components, on the other hand, must be included in the com-

mand string every time it is used. The command string name, for

example, is obviously a required component; without it the command

would be unrecognizable. Any of the categories discussed below can

be either optional or required.

TOKENS -- These are the basic entities of which an interaction

language is comprised. It is the run-time processing of tokens

-J

- ./ ' < -. --, .: ... :: .-.... : ::: -: . -. . -'. : . : : .. : •. . ..- .: . : . : -

• -Page 33

which determines what semantic actions will occur as a result

of user input. A token may have context-free or context-sensi-

tive features, depending on whether there are constraints on

its choice. A simple example would be the valid inputs for

* "departure city" and "destination city" in an airline reserva-

tion system "reserve" command. The valid choices for departure

city and destination city very likely come from the same list

of cities, but once the departure city has been chosen, then

. .the destination city must be a different city. Thus, departure

" .. city exhibits context-free behavior, but destination city has

context-sensitive features. Any token may be defined in one of

two ways: as a constant or exact representation, or as a vari-

able-name or descriptor rule.

1) Constants -- These are those tokens of an interaction lan-

guage that are fixed both positionally (i.e., the location

within a command) and literally (i.e., the exact characters

that must be entered) in a command. Thus, a constant in a

command string must be entered exactly as it appears in that

command string's representational syntax. Reserved words

- (of which the command name itself is a special case) are

typical examples of constants. Human factors considerations

such as choice of a mnemonically meaningful command name and

choice of a reasonable abbreviation (if allowable) are not

directly related to the issue of language specification. In

any case, the command name and its allowable abbreviations

must be clearly represented. Inclusion of presentation mode

°.

. •Page 34

(e.g., typed command string name or abbreviation, function

key, command string completion, etc.) may also be desirable.

S..Another example of a reserved word is in the command "MOVE x

TO y Here, "TO" is an alphabetic constant that must

2always appear in that form in that place in the command

string.

2) Variable-names -- These are tokens of an interaction lan-

guage that are user-supplied alpha-numeric strings. Thus, a

variable-name in a command string can represent any string

j mof characters the user will enter, as long as that string is

comprised of characters that are legal for that particular

variable string. The variable-value is the actual string of

characters that is entered by the application system user at

application system run-time. There are two most common

types of variables: text variables and numeric variables.

a) Text variables are comprised of any printable characters

from the entire alphabet of the language. In the

"change" example given earlier, "stringl" and "string2"

T 7 ~ are variables of this sort. They may consist of any com-

binacion of characters (alphabetic, numeric, or special)

from the total alphabet of the language.

b) Numeric variables represent a numeric value in a command.

They may be either a single digit (0, 1, 2, ... 9) or a

- combination of single digits, or they may be within a

prespecified, allowable range (e.g., 0 to 100). For
4'i~

Pace 35

* example, a typical format for a DELETE command consists

of the keyword DELETE followed by a positive number which

indicates the number of lines to be deleted. Thus,

4, -DELETE 3 would delete the current line and the next two

lines. This might be represented in a language specifi-

cation as DELETE N. Here, N is a variable that can

,. ,. change as needed to accomplish deletion of the proper

number of lines. An example of a prespecified range

"4*'4 ,might be in the specification of possible headings for an
i44

aircraft in an air-traffic-control simulation. The pos-

sible headings are in the range of 1 degree to 360

degrees, and this restriction must be indicated in the

definition of the command.

DELIMITERS -- These are the characters (both printable and non-

. printable) that are used to separate tckens of a command. Two

issues must be addressed here. The first one is the choice of

delimiters for the metalanguage itself. These metasymbols are

4- 4- frequently denoted by such characters as , < >, I], etc.

The problem discussed earlier of making these disjoint from the

language being represented is perhaps more apparent here than

in any other instance. The second issue is choice of a delimi-

ater within a command string in the language itself, that is,

the character that the user will actually enter to the system

as a delimiter. The choice of a delimiter for a command string

seems simple enough, as well as the representation of possible

choices. But string delimiters may have context-sensitive fea-

-.4

d . ." -"-" """"t.,.'L ..- ' -'." 'i .". -'-. .2'2 ""o : '''' g ' -".•.k -'.'''". . ., " . - ""'
d ' * v - ' % % &£ "

: .: ? ' . . ""- -c' - r " • " fl' " "-

4' -Page 36

tures under at least two conditions: 1) if the character cho-

sen as the first delimiter must also be used as the second del-

-. imiter and 2) if a delimiter cannot be in the string it is del-

imiting. Representation for the context-sensitive aspects of

P delimiter choice should be included in the language definition.

LISTS -- These are used to represent all possible alternative

choices that can be made for an entity (either a token or a

delimiter) of a command string. A list, in general, is a set

of constants and/or variables that denote a specific entity in

the language. For example, a list of constants that are alter-

native tokens that represent the "change" command might consist

of the following: c, change, C, CHANGE. Context-sensitivity

* may arise here if limitations are imposed on the choice that

can be made. For example, in the "change" command, the choice

-. of string delimiters from the list shown in the syntax of sec-

tion 4.1.3 (/ or ? or) is constrained by the requirement

that the delimiters be disjoint from any characters in the

strings. Thus, use of a "/" is perfectly allowable as a delim-

iter for the string "July 15, 1982", but not for the string

"7/15/82". Not all list choices are context-sensitive, how-

ever. For example a NEXT command string might be allowable as

simply NEXT (meaning move to the next line), or NEXT -N (mean-

ing move up N lines), or NEXT * (meaning move to the bottom of

the file). In this instance, the choice following NEXT can be

made from the list consisting of a signed or unsigned integer,

or a "*" A blank space denotes a default of 1. Any of these

' % '.' ', - .,' , .. -,. -. .. . -. -. -. ~ -..- - , .. , ,* * . . . -, ,

b.

: Pag 37

options may be chosen, without any context constraints, depend-

ing on what the user wishes to do.

j ' CONDITIONALLY OPTIONAL CHOICES -- This involves making a choice of

an input character based on specific conditions that may or may
op

not exist at any given time in a command. For example, * is

generally used to represent all occurrences. Again, using the

"change" command, a change of all occurrences of the string

"SP" to the string "S.P." might be done by typing the follow-

ing:

c/SP/S.P./*

4 The third '/' would not be needed, however, if the * were not

used in the command. Thus, the use of the third delimiter (/)

is conditionally optional, depending upon use of the subsequent

•* This makes the use of the third delimiter context-sensi-

* tive.

DEFAULTS -- These are values which are automatically system-sup-

plied if the user does not supply a value for a required compo-

nent at run-time. For example, "1983" might be the default

value for the token "year". In a form-filling type of syntax,

" 4 default values can be entered a priori by the system and made

visible to the user.

REPETITION -- This is the number of times a particular component

of a command can be repeated. As in programming languages,

repetition specifications should allow for the use of any num-

ber of occurrences of the component. For example, a string can

- . ., .. 4,-' -.4 - -. . . .,* - 4 "j ..-

Wi. -A.07I.7-

'4 4.." Page 38

consist of concatenation of one or more occurrences of a single

I symbol (either alphabetic, numeric, or special). In other

cases, it may be necessary to specify the exact number of times

a component is to be repeated, for instance, a string consist-

ing of exactly five characters.

S'-. DEVICE DETERMINATION (or SYNTACTIC FORM) -- This is the device

(e.g., keyboard, function key, touch panel, or voice recog-

nizer) which will be used for the language input. Including

this in the specification may be unnecessarily confusing, espe-

cially if there is more than one input device which might be

used for a single interaction. However, alternative I/O dev-

ices are becoming a part of the human-computer interface and

should be accepted and handled accordingly.

LANGUAGE ATTRIBUTES -- These are the possible alternatives for

* -
q such interaction language features as echo/no echo, carriage

return/immediate command, spelling correction, error checks,

token completion, input color, etc. Many such features exist

and should be completely specifiable by the dialogue author as

appropriate at all levels in a given application system.

Two other requirements result from context-sensitive features.
One is the "look-ahead" requirement, in which what is to be chosen

from among several possible options is dependent upon what will come

later in the command. For example, the choice of the first delimiter

of a string depends upon its not being an element in that string.

But at the time when that first delimiter must be chosen, the ele-
4,.

Page 39

ments of the string have not yet been encountered in the command.

Thus, the user must "look ahead" in the string to determine what its

characters are, so that the delimiter choice can be made to be dis-

joint from them. The other requirement is a "history" requirement,

in which the choice to be made depends upon a choice that was made

* earlier. For example, the choice for the second delimiter of a

string must be the same as the first delimiter. In both these cases,

the time order of decisions is cognitively different from the spatial

order in which the entities are entered.

* In order to develop a syntactical language specification that is

complete, a symbolic notation must be defined for each of the spe-

- cific categories and features discussed above. In order to make the

specification as human-readable and human-understandable as possible,

the symbols must somehow be meaningful to the user. Choice of such

metasymbols is not an easy task, particularly while trying to keep
"4

them as disjoint as possible from the languages they will be used to

define.

4.2. ISSUES IN AUTOMATING LANGUAGE SPECIFICATION AND RECOGNITION

, 4.2.1. Role of the Author in Interaction Language Implementation

Traditional methods of recognizing computer languages necessi-

tate the design and implementation of software to parse the language.

Translators, compilers, and interpreters are the software components

for programming language recognition. For interaction languages,

4, *, . .c.: . . *-.*

Page 40

state table-driven keyword analyzers and finite state machine parsers

. are frequently used. But not all application programmers have the

knowledge required to write language recognizers, and certainly a

dialogue author is not expected to have this type of programming

P ability. Thus, much research effort has gone into the development of

automated tools for language design and implementation. Such systems

as YACC, LEX, and LANG-PAK, discussed earlier, allow nonspecialists

in languages to define and implement programming languages.

Because DMS will be used to create human-computer systems, the

V interfaces for these systems will consist of a human-factorable dia-

logue, created by the dialogue author. The inputs to the system by

.. [.. the user constitute external dialogue and, as such, should be dealt

with by the dialogue author. But the introduction of the dialogue

mauthor into the human-computer system development process creates

S.-* some unique issues in interaction language implementation. The LBE

* language tool provides the dialogue author with the means for specif-

ying and representing an interaction language to the system, so that

inputs in that language can be executed.

.4.3. A MODEL FOR INTERACTION LANGUAGE SPECIFICATION

A comprehensive model for interaction language specification

will address the special needs of the dialogue author while designing

and implementing interaction languages, as well as the connection to

the execution-time environment of the language. Figure 3 shows such

a model, one which views human-computer communication as human-to-hu-

'a" .v, ." "- , , " . " . "- . , ,' .\ . . .- - - . . • -.' .." .'- .2 . " .' . ' i. "

.4

Pacje 41

man communication, offset in time. The real communication here is

between the dialogue author and the end-user. Figure 3 shows the

path of this communication; the stored internal representation pro-

vides the time offset (somewhat analogous to a complicated store-and-

forward message system). This communication link between the author

- _and the user is the composition of transformation function (the arcs

in Figure 3) that connect their conceptual models. There are five

separate submodels of the interaction language being specified, each

with its own (often different) specification and representational

needs:

1) Dialogue author's conceptual model -- This is a mental design-time

model of an interaction language which is formulated by con-

sideration of the application system needs as a result of

the author's early participation in the requirements analy-

~. sis and design phases of the application system's life-cy-

p cle. The specific language requirements are transmitted by

Pthe programmer in an internal dialogue requirements specifi-

. cation document. The conceptual model is completed by the

-e dialogue author's knowledge of human factors principles and,

possibly, advice from an interaction language "expert" pro-
* .(*

gram.

2) Language specification model -- The dialogue author uses the

. .;-. AIDE/LBE interface to specify the interaction language

design to DMS. As Language-By-Example, using its built-in

specification model, guides the dialogue author, the inter-

- 1*4
[: "

7 ' "" ' % " " " " """" "" *"

Page 42

action language is instantiated for specific language inputs

and generalized into complete language specifications by

LBE. The dialogue author uses this model to convey the syn-

tax of each specific language input to the underlying sys-

tem, which then creates an interpretable, storable represen-

tation or definition of that language input. A very

important requirement for this specification model is that

it be highly human-factorable and human-understandable, as

well as information-rich.

3) Internal representation model -- This is the interpretable,

stored representation which is the product of the AIDE/LBE

tools applied to the language specification model. When the

design-time specification is given to LBE, a corresponding

language input definition is stored in a database as the

internal representation of that language component. Then,

when the completed application system is operational and is

being given interaction language inputs from a user at run-

time, these definitions are accessed as needed to recognize

the user inputs, are immediately processed, and the corres-

ponding semantic routine(s) are called and executed. This

model is stored in a data structure called token tables, and

is not necessarily in a human-readable form. The presenta-

.~tion of token table formats and their interpretation is bey-

ond the scope of this paper. Again, the reader is referred

to [NARAP83].

Pace 43

p RUN-T IME.

Req(bemilt intS Gppi-Tt Mo

Design P

V ianueA tor's (tke tals0 nrfc

Coneptal (aP metal P nd

transforinittfon oInformatioln

sen yth aictonFco system userl atapicaton syste

rencpesentationofsthe interacinlnug ytxfor ac
allwaleinpt. Th uer anaces thi seifia na

OYLE

** s * . , . .*.-' - C - -Internal -C -

Pac-e 44

* - needed, and it may consist of an on- or off-line user's

manual. This level should also be human-factorable and

information-rich.

5) End-user's conceptual model -- This is the application user's

own mental model of the interaction language. At execution

time for the application system, the language executor,

called by the transaction executor, uses the internal model

* to recognize an input of the interaction language. It

returns token values to the computational component to

invoke a procedure to produce the appropriate semantic

action. As these interactions take place, the user builds a

model used to understand the use of the system. This model

includes syntax and semantics, as well as personal strate-

gies for the use of commands. If this model provides a rea-

' 'sonable match to the author's conceptual model, the two have

communicated well.

4.

'

4 .

.4 "

Page 45

5. LANGUAGE-BY-EXAMPLE (LBE): VERSION I

-a.

5.1. GENERAL GOALS

The primary functions of the LBE language tool of AIDE are as

follows:
-a

1) to specify interactively the syntax of the interaction

* ., language of a human-computer system at system design-time,

. 2) to store interaction language definitions in an internal

representation accessible at run-time,

3) to facilitate automation of the recognition (lexical ana-

lysis and parsing) of that syntax at application system

run-time,

4) to provide a mapping from user's "raw" input to common

'a (normalized) token values, independent of syntactic form

or device type,

5) to provide a mapping of token values from any user input

to the appropriate semantic action(s).

The language tool provides these functions for the syntax types dis-

cussed earlier (i.e., request/response, menu, keypad, command string,

and combinations of these). It deals directly only with the syntax

6 and therefore the recognition of an interaction, but not with the

semantic action routines that cause a user request to be executed.
.

These semantic routines, and therefore their execution, are not a

part of the language tool, nor of the dialogue component of the

application system. They are called as a result of language input

.7 .

1* - " " " ' - " . " " " " - - " - " , - - ." - ' , -. / - . " , ,; ::::

7.rr -77

-4]

"-" Pag e 46

recognition provided by the run-time language input executor, DYLEX,

i and are executed within the computational component. The semantic

action routines are specified during system design and are imple-

U mented by an application programmer.

Recent trends in language design and specification have been

toward the inclusion of semantics in the language specification

itself. While this is useful for programming languages, we find it

to be the wrong direction to take for interaction languages. In LBE,

" ~.and indeed throughout DMS, the semantics of interaction languages are

* kept separate from their lexical and syntactic considerations. This

separation is dictated by the principle of dialogue independence. As

discussed earlier, the computational programmer is responsible for

providing the semantic functions but is not concerned with the lexi--

S cal or syntactic forms of the language inputs which will invoke those

S-* functions. These latter forms are decided upon by the di.logue

author quite independently of the computational design. In fact, as

a result of human factors testing and iterative refinement proce-

dures, the lexical and syntactic details for a given computational

function can be subject to considerable change as the interface

design evolves.

* . The DMS philosophy espouses that any token value which is passed

from the dialogue component to the computational component at run-

time shall be a lexically and syntactically correct, valid value.

This means that all user input must be not only accepted, but syntac-

tically verified, in the dialogue component of an application system.

If a user's input is not valid, the dialogue component must continue

. " : ..,

Page 47

to elicit more input until a valid one is received. This ensures

, that the resultant token value is usable by the computational compo-

nent, and that the application programmer does not have to implement

input validation.

5-2. DESIGN AND IMPLEMENTATION

Because the AIDE interface consists of a two-screen workstation

for the dialogue author, the LBE interface is also comprised of two

screens: a conmmand screen and a dialogue screen. The LBE language

tool interface itself is a keypad-driven interaction language, with

most commands being given by pressing a specific function key. The

dialogue screen contains the components of the interaction language

being created, while the command screen is used for prompting and

echoing and for a few non-keypad-driven commands. It also contains a

labelled outline of the currently active LBE keypad. This display

* changes as appropriate whenever a different level of LBE is entered,

causing a change in the active LBE keypad functions.

5.3. LANGUAGE-BY-EXAMPLE

Because of the numerous difficulties with traditional and cur-

rent methods of lriguage specification, Language-By-Example (LBE) has

been developed as a means of specifying the definitions for the lan-

" guage input part of a transaction. It is a powerful method for

defining command string syntactic forms, yet is applicable also to

.?

.: 7

Page 48

the simpler forms such as keypad and menu. For the definition of a

, m language input, LBE obviates the need for a cryptic, formal notation

by providing the dialogue author with an example-based specification

interface. Through a series of system queries and dialogue author res-

ponses, the dialogue author is guided through the definition of an

interaction language. By starting with a specific example and work-

- ing toward a general definition, LBE follows the human cognitive

problem-solving process. This principle, which allows the user to

work with concrete objects rather than abstractions, is also applied

successfully in the Xerox Star interface [SMITD83].

In the more complicated command string syntactic form, the

author is asked to enter an example of the command string to be

defined (e.g., "locate abc", which means "locate the next occurrence

of string 'abc' "). Then, by moving the cursor, the dialogue author

delineates each entity (i.e., token or delimiter) of which that com-

mand string is comprised. As each entity is delineated (confirmed by

* reverse video highlighting of the current entity), the dialogue

author responds to system queries, both with keypad keys and typed

input. These responses comprise all information which is necessary

to specify a full and general definition of that entity, as well as

its relationship to the other entities in the command. Complete

*. definition of all entities comprises all information which is neces-

sary to fully define that command string language.

In the simpler syntactic forms of keypad and menu, the amount of

information which the dialogue author must provide is much smaller,

but LBE prompts in the same way as for command strings, and the

. . . * * . |

.*.d . . * . .*~>. . *.I

PagE 49

author responds with either keypad keys or typed input, as appropri-

ate.

A more complete discussion of LBE is beyond the scope of this

paper. It is presented here simply to serve as an introduction to a

*new, alternative approach for the specification and representation of

- "interaction languages.

5.4. SAMPLE SCENARIO OF LBE
4

This section presents a sample scenario to demonstrate the use

of LBE by the dialogue author at language input design-time. This

• .. scenario uses the design of two command string commands to demon-

* strate the components, principles, and relationships which LBE is

capable of handling. The first command string is the "locate" com-

mand, which might be a text editor command to locate an instance of a

%. specific string in a file. The second command, the "reserve" com-

mand, might be part of an airline reservation system and would be

used to indicate that a flight was to be reserved between a given

* departure city and destination city. This scenario does not illus-

trate all possible features of LBE, but rather gives an overview of

--its capabilities.

In the following scenario,

"D:" indicates dialogue author inputs,

" ""S:" indicates system (AIDE/LBE) responses and queries, and

"K:" indicates currently active keys on auxiliary keypad.

.

ii

Page 50

Words enclosed in < > (e.g., <ECHO>) indicate that the dialogue

-I author pressed the indicated key on the currently active auxiliary

.. keypad. Characters which aretand enclosed in a box indicate. " ..

-. reverse video of those characters.

SCENARIO: Dialogue author, within AIDE, has indicated by an auxili-

ary keypad key selection a desire to <DEVELOP COMMAND STRING

LANGUAGE>

S: You can now develop a command string language

S: Develop language attributes for this transaction

K: TOKEN COMPLETION, NO TOKEN COMPLETION

D: <TOKEN COMPLETION>

. K: NO ERROR CHECK, ERROR CHECK WITH ECHO OF ERRONEOUS CHARS,

P ERROR CHECK WITHOUT ECHO OF ERRONEOUS CHARS, SPELLING CORRECTION

D: <ERROR CHECK WITH ECHO OF ERRONEOUS CHARS>

K: ECHO, NO ECHO

D: <ECHO>

S: Enter interaction name, followed by CR

i iD: command

S: Enter example of command string to be defined, followed by CR

D: locate abc

S: Indicate first token in the sample command string, the

command name

D: Ieabc

. S: Do you wish to change the transaction attributes for

this interaction?

K: YES, NO

i, , . ..-- - - - -.-, -

Page 51

D: <NO>

P S: Press token type

"' K: EXACT REPRESENTATION, RULE, LIST

D: <EXACT REPRESENTATION>

S: Enter token value for this token, followed by CR

D: locate

.. S: Is this entity required or optional?

K: REQUIRED, OPTIONAL

D: <REQUIRED>

S: Is there a default value for this entity?

K: YES, NO

D: <NO>

S: Are there constraints on this entity?

U K: YES, NO

D: <NO>

S: Indicate next entity in the sample command string

D: locatefjabc

S: Press delimiter type

K: EXACT REPRESENTATION, RULE

u D: <RULE>

S: Press delimiter rule type

K: ALL BLANKS, PUNCTUATION, NON-STANDARD

D: <ALL BLANKS>

S: Enter smallest number of blanks allowable, followed by CR

D: 1

S: Enter largest number of blanks allowable, followed by CR

D: 3

9. A.~ N *. -. 7

IN 17 7 _r - 17.*. -.-. r-

: :4 Page 52

S: Is this entity required or optional?

-, K: REQUIRED, OPTIONAL

"' D: <REQUIRED>

S: Is there a default value for this entity?

K: YES, NO

D: <NO>

S: Are there constraints on this entity?

K: YES, NO

S D: <NO>

S: Enter interaction name, followed by CR

D: loc_string

.. S: Indicate next entity in the sample command string

D: locate ---J

* S: Do you wish to change the transaction attributes for

r. this interaction?

K: YES, NO

D: <NO>

S: Press token type

K: EXACT REPRESENTATION, RULE, LIST

D: <RULE>

S: Press token rule type

* K: NUMERIC ONLY, ALPHA ONLY, ALPHA-NUMERIC, ANY CHARACTER,

RESTRICTED COMBINATION

. D: <ANY CHARACTER>

S: Enter shortest string length allowed, followed by CR

D: 0

S: Enter longest string length allowed, followed by CR

01

Page 53

D D: 80

S: Is this entity required or optional?

K: REQUIRED, OPTIONAL

D: <OPTIONAL>

U S: Are there any constraints on this entity?

K: YES, NO

D: <NO>

S: Press command termination type

K: CARRIAGE RETURN, NO CARRIAGE RETURN

D: <CARRIAGE RETURN>
K E
K: EXIT AIDE, DEVELOP ANOTHER COMMAND FOR CURRENT TRANSACTION

4. .4 D: <DEVELOP ANOTHER COMMAND FOR CURRENT TRANSACTION>

S: Enter example of command string to be defined, followed by CR

D: reserve (roanoke, atlanta)

'q . S: Indicate first token in the sample command string, the

command name

D: e (roanoke, atlanta)

S: Do you wish to change the transaction attributes for

this interaction?

K: YES, NO

S"D: <YES>

-S 5: Develop interaction language attributes

K: TOKEN COMPLETION, NO TOKEN COMPLETION

D: <NO TOKEN COMPLETION>

K: NO ERROR CHECK, ERROR CHECK WITH ECHO OF ERRONEOUS CHARS,

ERROR CHECK WITH NO ECHO OF ERRONEOUS CHARS, SPELLING CORRECTION

D: <SPELLING CORRECTION>

. , - - -- , . .." . ". . - - ...-. .-..-...- '.. . .. -- i. -'.- ..

=44

Page 54

-- K: ECHO, NO ECHO

I D: <ECHO>

S S: Press token type

S" K: EXACT REPRESENTATION, RULE, LIST

D: <EXACT REPRESENTATION>

S 5: Enter token value for this token, followed by CR

D: res

S: Is this entity required or optional?

K: REQUIRED, OPTIONAL

D: <REQUIRED>

S: Is there a default value for this entity?

K: YES, NO

D: <NO>

S: Are there constraints on this entity?

K: YES, NO

D: <NO>

S: Indicate next entity in the sample command string

D: reserveLiFroanoke, atlanta)

S: Press delimiter type

K: EXACT REPRESENTATION, RULE

D: <RULE>

S: Press delimiter rule type

K: ALL BLANKS, PUNCTUATION, NON-STANDARD

D: <PUNCTUATION>

S: Enter smallest number of blanks allowed before punctuation

character, followed by CR

D: 0

* "• " . ',. *,o"4*, . , , " .. ,. j " , -"-'," . . , ' " '. . . .'." ","., " . ."."." ,
.l , z ' '' .. '. -. , " , ., . . ,, . . -. - ., , . .

*: i." Pagc 55

S: Enter largest number of blanks allowed before punctuation

character, followed by CR

D: 4

* S: Press punctuation type

K: SINGLE EXACT REPRESENTATION, LIST OF REPRESENTATIONS

D: <SINGLE EXACT REPRESENTATION>

S: Enter smallest number of blanks allowed after punctuation

character, followed by CR

* D: 0

S: Enter largest number of blanks allowed after punctuation

character, followed by CR

D: 0

S: Is this entity required or optional?

K: REQUIRED, OPTIONAL

D: <REQUIRED>

S: Is there a default for this entity?

K: YES, NO

D: <NO>

-: S: Are there constraints on this entity?

K: YES, NO

D: <NO>

S: Enter interaction name, followed by CR

D: departure_city

" : 5: Indicate next entity in the sample command string

D: reserve (roanok, atlanta)

S: Do you wish to change the transaction attributes for

- this interaction?

%'".'-* . ,,, , * .. "- ".-.-" '-- . *... -" .-.-.-.. ..-. . .--....'2' '.i.i . -".-.---.22.. - - . -"' ."<

Page 56

K: YES, NO

D: <NO>

S: Press token type

K: EXACT REPRESENTATION, RULE, LIST

D: <LIST>

S: Press token type for list entities

K: EXACT REPRESENTATIONS ONLY, RULES ONLY,

EXACT REPRESENTATIONS & RULES

D: <EXACT REPRESENTATIONS ONLY>

S: Enter exact representation, or CR if no more

D: roanoke

S 5: Enter token value for this token, followed by CR

D: roa

S: Enter exact representation, or CR if no more

S D: atlanta

S: Enter token value for this token, followed by CR

D: atl

S: Enter exact representation, or CR if no more

D: paris

S: Enter token value for this token, followed by CR

D: par

* S: Enter exact representation, or CR if no more

D: CR

S: Is this entity required or optional?

K: REQUIRED, OPTIONAL

D: <REQUIRED>

S: Is there a default value for this entity?

I.'.

Page2 57

K: YES, NO

.. D: <NO>

S: Are there constraints on this entity?

K: YES, NO

* D: <NO>

S: Indicate next entity in the sample command string

D: reserve (roanokeIatlanta)

S: Press delimiter type

K: EXACT REPRESENTATION, RULE

D: <RULE>

S: Press delimiter rule type

K: ALL BLANKS, PUNCTUATION, NON-STANDARD

D: <PUNCTUATION>

SS: Enter smallest number of blanks allowed before punctuation

-'.'* .* character, followed by CR

D...: 0

, S: Enter largest number of blanks allowed before punctuation

character, followed by CR

% D: 1

SS: Press punctuation type

K: SINGLE EXACT REPRESENTATION, LIST OF REPRESENTATIONS

" * D: <SINGLE EXACT REPRESENTATION>

S Enter smallest number of blanks allowed after punctuation

.. %~character, followed by CR

D: 0

S: Enter largest number of blanks allowed after punctuation

character, followed by CR

'r
"C. .,: , ''''"' .;.?.".."."--.2';'2'_'J...';, v ':- '.. '', -". " ".'.', ' ' ,.< .,',.'.''''v ' ..- '''.

Page 58

D: 1

S: Is this entity required or optional?

K: REQUIRED, OPTIONAL

D: <REQUIRED>

S: Is there a default for this entity?

K: YES, NO

- D: <NO>

S: Are there constraints on this entity?

K: YES, NO

U D: <NO>

S: Enter interaction name, followed by CR

':. -.. D: destinationcity

S S: Indicate next entity in the sample command string

D: reserve (roanoke, atlant)

SS: Do you wish to change the transaction attributes for

this interaction?

"' %. K: YES, NO

D: <NO>

S: Press token type

K: EXACT REPRESENTATION, RULE, LIST

D: <LIST>

S: Press token type for list entities

K: EXACT REPRESENTATIONS ONLY, RULES ONLY,

EXACT REPRESENTATIONS & RULES

D: <EXACT REPRESENTATIONS ONLY>

S: Enter exact representation, or CR if no more

D: roanoke

.... . '-V " " - " l & ,, , ,,% . .--, '..,.''..',

Pag 59

S: Enter token value for this token, followed by CR

D: roa

S: Enter exact representation, or CR if no more

D: atlanta

S: Enter token value for this token, followed by CR

D: atl

- .. S: Enter exact representation, or CR if no more

D: paris

S: Enter token value for this token, followed by CR

D: par

S: Enter exact representation, or CR if no more

'*, , D: CR

S: Is this entity required or optional?

u K: REQUIRED, OPTIONAL

* D: <REQUIRED>

S: Is there a default value for this entity?

.* K: YES, NO

D: <NO>

S: Are there constraints on this entity?

K: YES, NO

D: <YES>

S: Press constraint type

K: NUMERIC VALUE, STRING VALUE, TOKEN, DELIMITER

D: <TOKEN>

S: Enter interaction name which defines contraining token,

followed by CR

L p D: departure cityiq,

S . ,- - ' - ' . . 4 - ' ' - ' • . .- . . . , - . • - . , . . •

' :Page 60

S: Press relationship between constraining token and this token

K: <, >, =, <, >=, NOT

- D: NOT=

S: Indicate next entity in the sample command

D: reserve (roanoke, atlantaj

S: Press delimiter type

K: EXACT REPRESENTATION, RULE

* D: <RULE>

S: Press delimiter rule type

" K: ALL BLANKS, PUNCTUATION, NON-STANDARD

D: <PUNCTUATION>

S- S: Enter smallest number of blanks allowed before punctuation

character, followed by CR

D: 0

S: Enter largest number of blanks allowed before punctuation

character, followed by CR

D: 1

S 5: Press punctuation type

K: SINGLE EXACT REPRESENTATION, LIST OF REPRESENTATIONS

* D: <SINGLE EXACT REPRESENTATION>
.0

S: Enter smallest number of blanks allowed after punctuation

character, followed by CR

D: 0

S S: Enter largest number of blanks allowed after punctuation

• "character, followed by CR

D: 1

" S: Is this entity required or optional?

Page. 61

K: REQUIRED, OPTIONAL

I |D: <REQUIRED>

S: Is there a default for this entity?

K: YES, NO

* D: <YES>

S: Enter the default value, followed by CR

* D:)

S: Are there constraints on this entity?

K: YES, NO

D: <NO>

S: Press command termination type

K: CARRIAGE RETURN, NO CARRIAGE RETURN

D: <CARRIAGE RETURN>

* K: EXIT AIDE, DEVELOP ANOTHER COMMAND FOR CURRENT TRANSACTION

D: <EXIT AIDE>

S: This completes this session with AIDE.

These two examples purposefully ignore the development of the

display and/or confirmation parts of the interactions being created

for these command strings. Explanation of AIDE for this purpose is

K well beyond the scope of this paper. This sample scenario has been

-- presented without accompanying explanation simply to give the reader

4 an idea of how the dialogue author would interact with LBE to define

two different command strings.

.4

- -- '::: -4-, ::-.:2::. - *. '''':.2. .:-.-.-) . ' " "'.- " '.:% -. ':- ."' " -... --- -- :'..- . . .

Page 62

6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

One area of formal languages in which little research has been

done is that of specification and representation of interactive lan-

gu.. :es and interfaces for human-computer systems. Existing represen-

tational schemes (e.g., BNF, state transition diagrams) are usable

for static languages, in which all actions are predetermined by the

software. But in interaction languages, the added dimension of the

human makes interaction highly varied and its representation there-

fore more difficult. Users of these systems must have a readable,

understandable, and complete specification notation for interaction

language syntax, in order to use the system effectively. Also, the

addition of a dialogue author to the system development cycle empha-

sizes the need for a human-factorable specification scheme.

This paper has presented numerous issues in interaction language

specification and representation. It has also presented a taxonomi-

zation of the components and features of interaction languages, vari-u
ous syntactic forms, and a model for interaction language specifica-

tion. Finally, a new approach, Language-By-Example, has been

presented as a simple, yet effective alternative to traditional meth-

ods of defining interaction languages.

The need for a human-factorable specification technique for

interaction languages in human-computer systems is well-recognized.

This research is an attempt to codify some of the problems and to

propose such a technique. Its merit and effectiveness will be known

only after it has been thoroughly evaluated.

<-4

a *.

Page 63

REFERENCES

IBLEST821 Bleser, T. and J. Foley. "Towards Specifying and Evaluat-
ing the Human Factors of User-Computer Interfaces," Proc.
Conference on Human Factors in Computer Systems. Gaithers-

* burg, Md. (March 1982).

[HARTH83] Hartson, R., R. Ehrich, and D. Johnson. "The Management of
Dialogues for Human-Computer Interfaces," to be submitted
for publication (1983).

IHEINL75] Heindel, L. and J. Roberto. "LANG-PAK: An Interactive Lan-
guage Design System," Elsevier Computer Science Library:
Programming Languages Series; 1. American Elsevier Pub-
lishing Co.,Inc., New York (1975).

[JACOR831 Jacob, R. "Using Formal Specifications in the Design of a
Human-Computer Interface," Communications of the ACM. 26,4
(April 1983).

IJENSK74] Jensen, K. and N. Wirth. "Pascal User Manual and Report,"
Springer-Verlag, New York (1974).

[JOHND82I Johnson, D. and R. Hartson. "The Role and Tools of a Dia-
logue Author in Creating Human-Computer Interfaces,"

... VPI&SU, Department of Computer Science Technical Report,
(May 1982).

[JOHNS781 Johnson S. and T. Lesk. "UNIX Time-Sharing System: Lan-
guage Development Tools," Bell System Technical Journal.
57,6 (July-August 1978).

IJOHNS80] Johnson, S. "Language Development Tools on the UNIX Sys-
* .. tem," Computer. 13,8 (August 1980).

fLEDGH74] Ledgard, H. "Production Systems: or Can We Do Better than
BNF?" Communications of the ACM. 17, 2 (February 1974).

[LEDGH80] Ledgard, H. "A Human Engineered Variant of BNF," Sigplan
Notices. 15, 10 (October 1980).

ILINDT83a] Lindquist, T. "The Application of Software Metrics to the
*Human-Computer Interface," Proc. IEEE COMPCON Fall 1983

Conference. Washington, D.C. (September 1983).

ILINDT83bJ Lindquist, T., R. Fainter, and M. Hakkinen. "GENIE: A
*Modifiable Computer-Based Task for Experiments in Human-

Computer Interaction," submitted for publication (1983).

., ~* * ' ~ *

1A

Pagc 64

LMARCM76] Marcotty, M., H. Ledgard, and G. Bochmann. "Sampler of
Formal Definitions," Computing Surveys. 8, 2 (June 1976).

IMORAT811 Moran, T. "The Interaction Language Grammar: a represen-
tation for the user interface of interactive computer sys-

- tems," International Journal of Man-Machine Studies. 15
. . (1981).

i l INARAP831 Narang, P., R. Ehrich, and D. Johnson. "Dynamic Languages
for Human-Computer Interaction," to be submitted for publi-
cation (1983).

[NAURP63I Naur, P., editor. "Revised Report on the Algorithmic Lan-
guage ALGOL 60," Communications of the ACM. 6 (January
1963).

.. , [REISP8lI Reisner, P. "Formal Grammar and Human Factors Design of an

Interactive Graphics System," IEEE Transactions on Software
Engineering. SE-7, 2 (March 1981).

IREISP82] Reisner, P. "Further Developments Toward Using Formal
" .. Grammar as a Design Tool," Proc. Conference on Human Fac-

tors in Computer Systems. Gaithersburg, Md. (March 1982).

[SHNEB82I Shneiderman, B. "Multi-Party Grammars," IEEE Trans. on
Systems, Man, and Cybernetics. (March 1982).

[SMITD83] Smith, D., et al. "Designing the STAR User Interface,"
BYTE Publications Inc. (April 1983).

[WEGNP72] Wegner, P. "The Vienna Definition Language," Computing
Surveys. 4,1 (March 1972).

"£ *[WIRTN77J Wirth, N. "What Can We Do about the Unnecessary Diversity

of Notation for Syntactic Definitions?" Communications of
the ACM. 20, 11 (November 1977).

[YUNTT84I Yunten, T. and R. Hartson. "Supervisor-Based System Devel-

opment Methodology," to appear in Advances in Human-Compu-
ter Interaction, Ablex Publishing Co. (1984).

".

.3

-- *.*.*Q(- S. .

3., -,S. 3 3 .. ~.~3.

_ I November 1983

S,J

OFFICE OF NAVAL RESEARCH

4! Engineering Psychology Group

TECHNICAL REPORTS DISTRIBUTION LIST

* OSD Department of the Navy

CAPT Paul R. Chatelier CDR James Offutt, Officer-in-Charge
Office of the Deputy Under Secretary ONR Detachment

of Defense 1030 East Green Street
OUSDRE (E&LS) Pasadena, CA 91106
Pentagon, Room 3D129

° Washington, D.C. 20301 Director
Naval Research Laboratory

- Dr. Dennis Leedom Technical Information Division
Office of the Deputy Under Secretary Code 2627

of Defense (C31) Washington, D.C. 20375
Pentagon

S. Washington, D.C. 20301 Dr. Michael Melich
Communications Sciences Division

Department of the Navy Code 7500
Naval Research Laboratory

Engineering Psychology Group Washington, D.C. 20375

Office of Naval Research
Code 442 EP Dr. J.S. Lawson
Arlington, VA 22217 (2 cys.) Naval Electronic Systems Command

NELEX-06T

Manpower, Personnel & Training Washington, D.C. 20360
Programs

Code 270 Dr. Neil McAlister
Office of Naval Research Office of Chief of Naval Operations
800 North Quincy Street Command and Control

'. Arlington, VA 22217 OP-094H
Washington, D.C. 20350

Information Sciences Division
Code 433 Dr. Robert G. Smith

°- Office of Naval Research Office of the Chief of Naval
800 North Quincy Street Operations, OP987H
Arlington, VA 22217 Personnel Logistics Plans

Washington, D.C. 20350
Special Assistant for Marine Corps
Matters Combat Control Systems Department

- ". Code 100M Code 35
' Office of Naval Research Naval Underwater Systems Center
. 800 North Quincy Street Newport, RI 02840

L] " Arlington, VA 22217
Human Factors Department

Code N-71
4 ,. Naval Training Equipment Center

Orlando, FL 32813

November 1983

Department of the Navy Department of the Navy

Dr. Alfred F. Smode Commander
Training Analysis and Evaluation Naval Air Systems Command

Group Human Factors Programs
Naval Training & Equipment Center NAVAIR 334A
Orlando, FL 32813 Washington, D.C. 20361

CDR Norman E. Lane Commander
" Code N-7A Naval Air Systems Command

Naval Training Equipment Center Crew Station Design
Orlando, FL 32813 NAVAIR 5313VJ Washington, D.C. 20361

Dr. Gary Poock
Operations Research Department Mr. Philip Andrews
Naval Postgraduate School Naval Sea Systems Command
Monterey, CA 93940 NAVSEA 61R2

IN) Washington, D.C. 20362
Dean of Research Administration

% Naval Postgraduate School Commander
Monterey, CA 93940 Naval Electronics Systems Command

Human Factors Engineering Branch
Dr. A.L. Slafkosky Code 81323
Scientific Advisor Washington, D.C. 20360

_ Commandant of the Marine Corps

Code RD-i Larry Olmstead
Washington, D.C. 20380 Naval Surface Weapons Center

NSWC/DL
Dr. L. Chmura Code N-32
Naval Research Laboratory Dahlgren, VA 22448

' .~ Code 7592

Computer Sciences & Systems Mr. John Impagliazzo
Washington, D.C. 20375 Code 101

Naval Underwater Systems Center
Dr. Edgar M. Johnson Newport, RI 02840
Technical Director
U.S. Army Research Institute Navy Personnel Research and

5001 Eisenhower Avenue Development Center
Alexandria, VA 22333 Planning & Appraisal Division

San Diego, CA 92152
.* Technical Director

U.S. Army Human Engineering Labs Dr. Robert Blanchard
Aberdeen Proving Ground, MD 21005 Navy Personnel Research and

3 Development Center
Chief, C Division Command and Support Systems
Development Center San Diego, CA 92152
MCDEC

" *. Quantico, VA 22134 CDR J. Funaro
Human Factors Engineering Division

Human Factors Technology Administrator Naval Air Development Center
Office of Naval Technology Warminster, PA 18974
Code MAT 0722
800 N. Quincy Street

j .Arlington, VA 22217

"* " " " - .""". '"- - , • "*, , .~~* ". - .. *: *', . ".

November 1983

Department of the Navy Department of the Air Force

Mr. Jeffrey Grossman Dr. Earl Alluisi
. Human Factors Branch Chief Scientist

-" 4 Code 3152 AFHRL/CCN
Naval Weapons Center Brooks Air Force Base, TX 78235
China Lake, CA 93555

Foreign Addresses

° Human Factors Engineering Branch
Code 4023 Director, Human Factors Wing
Pacific Missile Test Center Defence & Civil Institute of
Point Mugu, CA 93042 Environmental Medicine

P.O. Box 2000
Dean of the Academic Departments Downsview, Ontario M3M 3B9
U.S. Naval Academy Canada
Annapolis, MD 21402
CD C. Annapo ins DOther Government Agencies

'% CDR C. Hutchins

Code 55 Defense Technical Information Center
Naval Postgraduate School Cameron Station, Bldg. 5
Monterey, CA 93940 Alexandria, VA 22314

Department of the Army Dr. Clinton Kelly
Defense Advanced Research Projects* Director, Organizations and Agency

Systems Research Laboratory 1400 Wilson Blvd.
U.S. Army Research Institute Arlington, VA 22209
5001 Eisenhower Avenue

'" Alexandria, VA 22333 Other Organizations

Mr. J. Barber Dr. Jesse Orlansky
HQS, Department of the Army Institute for Defense Analyses
DAPE-MBR 1801 N. Beauregard Street
Washington, D.C. 20310 Alexandria, VA 22311

* Department of the Air Force Dr. J.O. Chinnis, Jr.
Decision Science Consortium, Inc.

U.S. Air Force Office of Scientific 7700 Leesburg Pike
Research Suite 421

Life Sciences Directorate, NL Falls Church, VA 22043
Bolling Air Force Base

Washington, D.C. 20332 Dr. Paul E. Lehner
PAR Technology Corp.

AFHRL/LRS TDC P.O. Box 2005
Attn: Susan Ewing Reston, VA 22090

~. Wrigh-Patterson AFB, OH 45433

Dr. Robert T. Hennessy
Chief, Systems Engineering Branch NAS - National Research Council (COHF)
Human Engineering Division 2101 Constitution Avenue, N.W.
USAF AMRL/HES Washington, D.C. 20418
Wright-Patterson AFB, OH 45433

,L -. : ; . ; . .-. ,.'r v.'.- --. -.-
-

-. -. . . - . . -

November 1983

Other Organizations

Dr. Amos Freedy
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Deborah Boehm-Davis
p IGeneral Electric Company
- Information & Data Systems

1755 Jefferson Davis Highway
Arlington, VA 22202

Mr. Edward M. Connelly
Performance Measurement

.. , > Associates, Inc.
410 Pine Street, S.E.
Suite 300
Vienna, VA 22180

Dr. Marvin Cohen
Decision Science Consortium, Inc.
Suite 721
7700 Leesburg Pike
Falls Church, VA 22043

*Dr. Richard Pew
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02238

Dr. Alan Morse
Intelligent Software Systems, Inc.

.. Amherst Fields Research Park
529 Belchertown Rd.

' .Amherst, MA 01002

a .-

..,

a'e

," .2¢ .2 ; " ' ' /". . . " " " " " "' " " - " . "

.1.

44

