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\) ABSTRACT 118 shun
The dowemrnt glhots
b “the ec-spuu:iom exity of finite vex-

sions of the simplest and £ tal problems of dis-
tributed decision making and that, apart from
a few exceptions, such problems are haré (Np-complets,
or worse). Sooe of the problems studied are the well-
Xpown teas decision problem, the distributed hypothesis
testing prodlez, as well as the problem of designing

s commanicatioas protocol that guarantees the attain-
sent of a prespecified goal with as little communica-
tions as possible. These results indicaste the inherent
difficulty of distributed decision making, even for
very simple problems, with trivial centralized counter-
parts and suggest that optimality may be an elusive
goal of distributed systems. { .

1. 1otroduction and Motivation

In this paper we formilate and study certain simple
decentralized problems. Our goal is to formulate pro-
blems whiech zeflect the inherent &ifficulties of decan~
tralization; that is, any difficuley in this class of
problems is distinet frow the difficwity of correspond-
ing centralized problems. 7This is accamplished by
formulating decentralized problems whose centralized
counterparts are either trivial or vacious.

One of our goals is to determine a boundary between
~easy” apd "hard"® decentralized groblems. Our results
will indicate that the set of “essy" problems is
relatively small. .

All problens to be studied are imbedded in a dis-
crete framework: the critaria we use for deciding
wvhether a problen is @ifficult or mot come from com-
plexity thecry (Garey and Johnson, 1979: Papadimitriou
and Steiglitz, 1982): following tbe tradition of con-
plexity theory, probless that smay be solved by a poly~
nomial algoritrm are considered easy; NP-complete, or
worse., problems ate considered haxd.® Nowever, an
NP-completapess result does not close a subject, bLutis
rather as a result vhich can guide research: further
research should focus on special cases of the problen
or on approximate versions of the original prablenm.

The main issue of interest in decantralized systes
may De loosely phrasef as “who sbould communicate to
vhom, what, how often etc.”™ Frae a purely logical
point of view, tha first question that has to be Taised
is "aXe theres any communication pecessary?™ Any
further questions Geserve to be studied only if we
come to the conclusion that commmications are indeed
necessary.

The subject ©f Section 2 is to charactarize the in-
herent Aifficulty of the probdblem of deciding whether
any commnicstions are necessary, for & given situa-
tion. We adopt the following approach: a decentral-
ised system exists in orxder to accmplish a cartain
goal which is extermally specified and well-known. A
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set of processors obtain (possibly conflicting) obser-

vations on the state of the environment. Each processx

has to make 2 decision, based on his own observation.

However, for each state of the enviromment, only certain

dacisions accomplish the desired goal. The guestion

“are there any communications necessary?”™ say be then

reformulated as "can the goal be accamplished, with

certainty, witheut any camunications?” We show that
this problem is, in general, s hard one.

We then impose aome moTe structure On the probleam,
by assuming that the cbservations of diffarent proces-~
sors are related in a particular wvay. The main issue
that we address is "how much structure is reguired so
that the problem is an sasy cne?” and we try to detex-
mine the boundary between easy and hard problems.

In Section 3 we formulate a fev problems which are
related to the basic prodlen of Sectics 2 and discuss
their complexity. .

In Section 4 we study a particular (more stxuctured)
decentralized prodlez - the problem of decentralized
hypothesis testing - on which thers has been some in-
terest recently, and characterize its difficulty.

Suppose that it has been found that communications
are necessary. The next question of interest is "vhat
is the least amount of comunications needed?” This
problex (Ssction S5) is essentially the problem of desig-
ning an optimal cormunications protocol; it is again a
hard one and we discuss some related issues.

1In Section 6 we presant our conclusions and discuss
the conceptual significance of our results. These con-
clusions may be summarized by saying that:

a) Even the simplest (exact) problems of decentralized
decision making are hard. .

b} Allowing some redundancy in communications, may
greatly facilitate the {(cff~line) problem of desig-
ning & decentralized system. i

c) Practical communicaticns protocols should not be ex-
pected to be optizal, ss far as minimization of the
amount ©f communications is concesned.

some of the Tesults of this psper appear in
[Papadinitriou and Tsitsiklis,.1983) and (almost) all
proofs may be found in [Tsitsiklis, 1983).

A

2. A Prodblexm of Silent Coordination

In this section we forsulate and study the problem
whether & set of processors vith different information
mAy accowplish s given goal ~with certainty- without
any cosunications.

tet {1,...,M) be a set of processors. Each processer,

say processor i, obtains an cbssrvation y, which cowes
from a finite set !‘ of possible dnu-v-v.im. Then,

processcr i makes & decision u, which belongs to &
:tlniu set os of possible decisions, according to a
e.

* AaseAICh 8

ONR under contract ONR/NOOD14-77-C-0532 (NR-041-519).

¢ One way of vieving NP~complete fToblems, is tO say that they are effectively equivalent to the Traveling

salesman problem, vhich is well-known to be algorithmically hard.

+1 d-cument has been approved
& iz solecen and eale; M8
! auibudon iy unlimbled,

L A ariea—

s4 01 09 079




.

- 2.1
uy a,(y‘). (2.1)

vhere 3: is some function frem Y, into U,. The
M-tuple (¥3r--00),) is the tetal’information avail-
able: 80 it may be viewed as the “state of the envi-
rondent.” For sach state ©f the environment, we assume
that only certain M-tuples (u ""'“n’ of decision ac-
complish a given, externally s%eci!.‘na, goal. More
precisely, for each (yl....,yu)e le...:d” we are given

—————
(So, S may be viewed as a function from
U x...xU

Y.XY. X...x ¥ into 2 ® N, .
172 »

The problem to be studied, which we call “diseri-
buted satisficing problen” (after the term introduced
by B. Simon [1980)) may be descrided formally as
follows:

s set S(yl.....y") C le...:un of satisficing decisiens.

Distributed Satisficing (DS): Given finite sets Y,,...,
¥y U0...,0, and a function S: Y

-
w9 lx...x Yn
0 X...xu

21

2,...,M, such that

, are there functions ai: Y, -0, i=1,

(al(yl) sovey 3H(yu7)es(y1- .e -JYn) ] Y(yl. e ,ynle

¥ Xe..x Yy (2.2)

" Ramarks:

1. %e are assuning that the function S is “easily
computable;” for example, it may be given in the form
of a table.

2. The centralized counterpart of DS would be to
allov the decision u, of each agent depend on the
entire set (y}."""n’ of observations; so, 31 would

‘' pe a functicn from Y  X...X Yn into Di. {(This cor-

b3
responds to a situation in vhich all processors share
the same information.). Clearly, then, thare exist
satisfactory (sstisficing) tunctions aizle...xY“ ~o,.

if and only if S(yl:---.yn)!"- V(ylo---,y“)e!lx...x‘lu.

Since S is an "sasily computadle” set as a function

of its arguments, we can see that the centralized
counterpart of DS is a ti.vial preblem. So, any dif-
ficulty inherent in DS is only caused by the fact that
informatien is decentralized.

3. A "solution" for the problem DS cannot be a closed-
forn formula which gives an answer 0(no) or l{yes).

‘Rather, it has t0 be an algorithm, a sequence of ins-

tructions, vhich starts with the data of the problen

(‘.’1,...,!“, vl""'un'S) and eventually provides the

cerrect ansver. Accordingly, the difficulty ©f the
problem DS may be characterized by determining the
place held by DS in the complexity hierarchy. For
definitions related to computational complexity and
the pethods typically used, the reader is referred to
{Garey and Johnson, 1979; Papadimitriow and Steiglitz,
1982).

4. 1f, for some i, the set u1 is a singleton, proces-

s0T i has no choice, regarding his decision and, con-
sequently, the probles is equivalent to a problea in
which pr r 4 is adbsent. Mence, without loss of
ganerality, we only need to study instances of D§ in
vaich o 2 2, vy. .
S. We believe that the problem DS captures the es-
sance 6 coordinated decision making with decentral-
ized information and without cosmunications (silent
coordination).

Some initial results on DS are givan by the

— =Y

following:
Theorez 2.1:

a) The problex DS with twe processors (¥=2) and res-
tricted to instances for which the caxdinality of the
decision sets is 2 ([ui[-z, i=},2) cay be solved in

polyno=ial time.

b) The proble= DS with two processcss (M=2) is NP~
conplete, even if we restrict to instances for which
fo, l=2. tuzl-z.

€) The problem DS with three (or more) processors

(¥23) is NP-complete, even if we restrict to instances
for which lni(-z.vi_

Theores 2.1 states that the problem DS is, in gen-
eral, a hard combinatorial problem, except for the
special case in which there axs only two processors
and each one has to make 3 binary decision. It should
be noted that the difficulty is not caused by an at-
tempt to optimize with respect to a cost function,
because no cost function has been introduced. In game
theoretic language, we are faced with a “game of kind,*
rather than a "gane of degree.”

We will now consider some special cases (which re-
flect the structure of typical practical probleams) and
exanine their computational complexity, trying to deter-
mine the dividing line between easy and hard probleas.
From pow On we restrict our attention to the case in
which there are only two processors. Clearly, if &
probler with two processors is hard, the corresponding
probler with three or mOre Processors cannot be easier.

We have formulated adbove the problex DS so that all
pairs (yl.yz)e levz are likely to occur. So, the

information of different processors is cospletely un-
related; their coupling is caused oanly by the structure
of the satisficing sets S(yl.yz). In most practical

situaticns, however, information is not cozpletely uns-
tructured: vhen processor 1 observes yl, he is often

able to make certain inferences about the value of the
observation y, of the other processor and sexclude cer-
tain values. We now formalize these ideas:

Definition: An Information Structure 1 is a sudbset

of \'lﬂz. ¥We say that an information structure I bas

degree (1:)1 ,Dz) (nyb2 are positive integers) if

{i) TFeor each ylevl there exist at most Dl distinct

eledents cf !2 such that (yl.yz)e b

(i) For each yza'z there exist at most Dz distinct’
elemerts of ‘."1 such that (yl.yz)e I.
(4ii) DI.DZ are the smallest integers satisfying (i),

(ii). An infermation structure 1 is calleé classical
i 01-02-1: nested if 91-1 or D:-:..

We now interpret this definition: The information
structure 1 is the set of pairs (yl.yz) of observations

that xmay occur together. If 1 has degTes mz'bz)

processoz 1 nay use his own observation to decide vhich

elenents of ,2 may have been observed by processor 2.

In particular, he may exclude all eslesents except for
D, of than. The situation faced by processor 2 is
:}n&uiul.

1 Dl-l ané processor ) observes Yy there is only

ohe possible value for y,. So, processcr 1 knows the
observation of processor 2. (The convarse is true
wvhen D =1). This is called a nested information struc-
ture bie.u.. the information of one processor contains
the inforzmation of the other.

When D -D:-J., each processor knows the observation
of the ot.ic:: so, their information is essentially

{
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shared.

Since pairs (y.,y.) not in I canrot occur, there ism
meaning in xeq\:ix}.ngzme processors to make compatidle
decisions if (yl.yz) vere to be cbsexved. This leads

to the following version ¢f the problem DS:

1,'12, l'ui" IC leyz and a

, are there functions a$:¥i-'ui:

DS1: Given finite sets Y

U, xv,
function §: 1+2 * 2

i=1,2, such that

(Bl(yl) .32 (yz) )es(yl.yz) ’ ‘d(yl.yz)en . 12.3)

" Note that any instance of DSI is equivalent to an ins-

tance of DS in which s(yl.yz)- leuz, v(yl.yz)l 1.

That is, no compatibility restrictions are placed on
the decisions of the two processors, for those (yl.yz)
that cannot occux.

We now proceed to the main result of this Section:

Theozen 3.2.2:

a) The problem DSI restricted to instances satisfying
any of the following:

(i) One or more of |01|,|u
D) fo,|=[9, =2,

(ii3) Dl-nz-?.

(iv) D;‘_l",l"- (or °1'|“1|"”
may be solved in polyncmial time.

b) The problem DSI is NP-complete even if we restrict
to instances for which

|°1l' D=3, |02|-oz-z

2'- Dl'bz is equal to 1.

The result concerning the case Dl-l or °2-1 is not

surprising. It is well-known that nested informatiocn
structures may be exploited to solve othervise dif-
ficult decentralized problems. But except for the case

pl-pz.z (wvhich is sort of a boundary) the absence of

nestedness makes decentraliszed problems cocputationally
hard. Our result gives a precise meaning to the state-
mant that non-nested information structures are much
moxe &ifficult to handle than nested ones.

Thecrem 3.2.2 shovs that even if DI.D2 are held cons-

tant, the problem DSI is, in general, NP-complete.

There is, however, a special case of DSI, with Dl,Dz

constant, for which an efficient algoritho of the
dynaaic progratming type is possidle:

Theores 3.2.3: let 71-(1....,-). Yz-{l,...,n) and sup-
pose that |1-3|< D, Vi, 3)€ 2. Then, if D is held
constant, DSI say be solved in polynomial time.

Remark: 1In fact, the conclusion of Theorem 3.2.3 re-

saing true if we assune pen and ve replace the condition

|s=3]< D Py the weaker condition |i-3] (mod n)< D.

The proof consists of a small sodification of the

preceding one. .
The condition |i-3|< D, ¥(i,3)€ 1 is fairly natural

in certain applications. For example, suppose that the

observations ¥y and y, are noisy measuremsents of an

unknown variable x (y;xw‘) vhers the noises v, axe
bounded: Ivslf_ p/2. :

The condition |i-3|(mod n)< D may also arise if the
ebsarvations ¥,+Y, axe noisy measurements of some

unknown angle: y‘-. 7
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3. Related Prcblens

In this Section we define and discuss briefly a fev
Dore combinatorial problems relevant to decentralized
decision making. All of thes will be seen to be hatrder
than problem DS of the last section (i.e. they contain
DS as a special case) and are, therefore Np~haré (that
is, NP-complete, or worse). .

The best known static decentralized problem is the
teanm decision problez [Marschak and Badner, 1972)
vhich admits an elegant solution under linear quadratic
assumptions. Its discrete version is the following: :
TDP {Team Decision Problem): Given finite sets !1.\'2

01,02. a probability mass function p: 71”2‘9' and a

lezxolxuz-N. £ind decision rules

3 ¥, =0, i=1,2 vhich minimize the expected cost

cost function ¢: Y

3,3, lee:“l y}:ﬂ €1y, +¥,503) (91043, (v,)p(y,.3,)
22

Let s";"z)'{(“1'“z’e°1"°z‘ e(yl.yz.ul.uz)-ol. 1t

we solve TDP, we have effectively answered the question
whether there exist ax’az such that J(al.az)-o. This

is equivalent to the question whether there exist sat-
isficing decision rules (with the satisficing sets
s(yl,yz) defined as above). Therefore, TDP is harder

than DS:
Proposition 3.1: The discrete tean decision probles

is NP-hard, even if the range cf the cost function
¢ is {0,1).
Instead of trying to “"satisfice” for every pair of

cbservations (yl,yz)e Yl.x‘!z. it may be more appro-

priate to impose a probability mass function on Y18¥2

and try to maximisze the probadbility of satisficing.
This leads to the next problem:

MPS (Maximize Probabilitv of Satisficinc): Givea

finite sets Yl"z'ul' e & probadbility mass function
) U, xD

172

p: "1“2“9 and a function S: ¥1x¥2~2 . Eind
decision rules 31: Yi’ui' i=1,2, which maxizize the
probability of satisficing '”31'3.2) -

Pr (3, ly,).3,(y,))€S 1y, .y,)). .

We now take a slightly different point of view.
Suppose that communications are allowed, so that the
processors may alwvays make satisficing decisions by
communicating (assuming that s(yx.yz)w.

V(yl.yz)e le'lz). Suppose, however, that coeunica~

tions are very axpensive, s¢ that we are interested
in a schame vhich guarantees satisficing with & mini-
sun amount of communications. We will assume that if
one of the processors initiates a comzunication, all
their inforaation will be exchange at unity cost.

(For a more refined way of counting the amcunt of coo~
msunications, see Section 3.5.) .

¢ (Minimisze Probabilitv of Compunications): Given

finite sets 71.72.01.02 a probability sass function

0, %0
Pt Y)xY =0 and & function $: Y,xv,+2 ) 2, fine
decision rules j, : v“u‘u(c). i=1,2, which mininize
the probabdbility Ptlbl ly,)=C or 3,(y,)=C) of communica-
ting subject to the constraint
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144 ‘31"1”" and az(yz);lc] then (al(yl).az(yz))GS(yl.yz).

The proof of the following is trivial:

Prcoosition 3.2: The problims MPS and MPC are NP-hard.
In fact, we alsc have:

Proposition 3.3: The problems TDP (with a zero-one

cost function) ani MPS are NP-hard, even if lull-]uzl-a .

Ve could also define dynamic versions of DS or of
the teapm problem, in a straightforward way [Tenney,

19€3). Since dynanic problems cannot be easier than
static ones, they are automatically NP-hard.

4. Decentralized Mvpothesis Testing

A basic prodle= in decentralized signal processing,
wvhich has attracted a fair amount of attention recently,
is the problem of decentralized hypothesis testing
{Tenney and Sandell, 1981; Ekchian, 1982; Ekchian and
Tenney, 1982; Kushner and Pacut, 1582: Laver and
Sandell, 1963). A simple version of the problem, in-
volving only two processors and two hypotheses may be
described as follows:

Two processors sl and S, receive observations 71“1'

2

yzﬂz, respectivaely, where 'i is the set of all pos-

sidble cbservations of processor i. (Figure l). There
uomhmth.mloumllmthosutcotm

environment, with prior probabilities P, and P res-
pectively. For esch hypothesis “i' ve are also o;iv.m
the joint probability distribution P(yl.yzlai) of the

observations, conditioned on the event that ll1 is true.
Upon receipt of Yo processox S N evaluates & messace
\a‘E(o.l) according to the rule “1‘51 ly ), vhere

a‘z'Y"‘(O.ll. Thes, u, and u, are tranmitted to &

HO’ Ht

Y1 | Y2

Sl ' SZ

uz = yoly,)

U=y, NU,

Figure 1: A Schexe for Decentralized Hypothesis
Testing.

—_— ‘,w

central processcr (fusion center) which evaluates
“o'“x" u, and declares hypothesis Ho to be true if

uo-O. Hl
scheme). The problem is to select the functions 31'

d. SO as to minimize the probability of accepting the
wIong hypothesis. (More general perforzmance criteria
may be also considered). .

Most available results assume that

P(yl.yzlﬂi)-P(ylfBi)P(yzIHi). i=1,2,

if “o"" (So, we essentially have a voting

(4.1)

which states that the observations of the two proces-
sors are independent, vhen conditioned on either hy-
pothesis.” 1In particular, it has been shown [Tenney
and Sandell, 1981] that the optimal decision rules 31 .

are given in terms ©f thresholds for the likelihood
pcP(llolyi)

ratios . The optimal thresholds for
pl““llyi)

the two sensors are cotpled through a system of equa-

tions which gives necessary conditions of coptimalicy.

{These equations are precisely the person-by-person

optimality conditions). Few analytical results are

available when the conditional independence assizptice

is removed [Luuver and Sandell, 1983). The approach of

this section is ained at explaining this status of af-

fairs, by focusing on discrete (anéd finite) versions

of the problenm.

We first have:

Theores 4.1: If Yl"? are finite sets and (4.1) holds,

then optimal choices for az'az may be found in poly-
nomial time.

So, under the conditionsl independehice assumption,
decentralized hypothesis testing is a computationally
easy problem. Unfortunately, this is not the case shen
the independence assumption is relaxed. Our main re-

sult (Theorem 4.2) states that (with 11. Yz finite

sets) , decantralized hypothesis testing is a hard com-
binatorial problem (NP-hard). This is true even if we
restrict to the special case where perfect detection
(2ero probability of error) is possible for the corres-
ponding centraliied hypothesis testing problem.
Although this is in some sense a negative result, it is
useful because it indicates the direction in which
foture research on this sudject shouléd proceed:
Instead of trying to find efficient exact algorithas,
Tesearch should focus on approximate algorithms, or
exact algerithms for predlems with more structure than
that assuned here. MoOYeover, our result implies that
any necessary conditions for optizmality to be developad
are likely to be deficient in one of two respects:
a) Either there will be a very large mmbder of deci-
sion rules satisfying these conditions.
b) Or, it will be hard to f£ind decisien rules satis-
fying these conditions.
In particular, optimal decision rules are pot given in
teras of thresholds on likelihood ratios.

0f course, there remains the question whether ef-
ficiant approximate algerithms exist: for the general
decentralized hypothesis testing prodblez, or vhether
we DuUSt again Yestrict to special cases of the prodlesm.

We now present formally the prodles to be analyzed.

DET: (Decentralized Nypothesis Testing, Restricted to
Instances for which Parfect Cantralized Detection is
Possidble).

%e are given finite Sets ¥,.¥,i & rational nuaber

nuaber k; a rational prebability mass function
P levzogmo.m a partition

* Such an assuaption is reaschadle in problems of detsc-
tion of a known signal in indepandent noise, but is typ-
§§@%ﬁl viclated in prodlems of detection of an unknown




Jrgea ) of ¥ xv,.* Do there exist 3;:v,~{0,1},
3,“’2’{0'1) such that J(3,.3,)< X, vhere

Qa0 - X

Nyl.yz)a1 ty )a2 tyy) +
(yl.yz)u‘, i

(’1"2)‘5 "’1"2) ll-al (yl)az (yz)l7 (€.2)
Remarks: 1. 1f we let k=0, then DET is a special case

of problem DS (Sectiom 2), with |01|-|u2]-2. and is

polynceially solvable, according to Theorem 3:2.1. 1In
geaneral DHMT is a special case of MPS and TDP (Section
3.3) with lu“l-lu2 =2. Consequently, Theorem 4.2

below proves Proposition 3.3.
2) Clearly, the optimization problem (Minimize J(a“.a:).

wvith respect to 31.32) cannot be easier than DMT.

Since DHT will be shown to be NP-complete, it follows
that the above optinization problem is NP-hard.

3) 1In DHT, as defined above, we are oaly considering
instances for which perfect centralized detection is
possidle: Think of B° as being the hypothesis that

(y1'y2)€ Ao’ and Hl as being the hypothesis that
(yl.rz)e ‘1' Cartainly, if a processor knows both 12
Yy the true hypothesis may be found with certainty.

For the decentralized problem, the cost function
-7‘31.32) is easily seen to be the probability of ervor.

4) The result to be cbtained belov remains valid if whe
fusion center uses different rules for comdining the
messages it receives (e.g. “o-('iv( uz))). or if we

leave the cambining rule unspecified and try to find
an optimal combining rule.
m.o:o 4.2: DHT is NpP-complete.

S. On Designing Communications Protocols

Suppose that we are given an instance of the é&is-
tributed satisficing problem (DS) and that it was
concluded that unless the processors commnicate,
satisficing cannot be guaranteed for all possible ob~
servations. Assuning that communications are allowed
(but are costly), we have to consider the proble= of
designing a communications protocol: what should each
processor cosmunicate to the other, and at what ordex?
Mogreover, since comEmunications are costly, we are
interested in a protocol which ainimizes the total
number of binacy messages (bits) that have to be com~
sunicated. (The word "bits” above does not have the
inforastion theoretic meaning.)

Before proceeding, ve must make more precise the
notion of a communication protocol and of the number
of bits than guarantee satisficing.

Given an instance D-(!z.tz.bl.oz.x.ﬂ of the problms

DS3 we vill say that:
There is a protocol which guarastees satisficing
with O pits of ccemunicatioms, if D is a YES instance
of the probles DSI. (That is, if there exist satis-
ficing decision rules, involving no communications.)

We then proceed inductively:

There is s protocmlwhich guarantees satisficing
with X bits of coemunications (X@ ¥), if for some
sef1,2) (say, i=l) there is a function -.rf(o,n.
such that_for each of the instances,

Dra(y,A B (0),7,.0,,0,.3 N u‘n-' 0))x7,),5) ana

* That is A.uhzﬂflﬂa and ‘.nllﬁo

ety. Aa-}
44 “1“" (1).72.01.

a protocol which guarantees satisficing with not more
than X-1 bits of communications. (Here m~1(4i)=
{ylﬂlzn(yl)-i).)

The envisaged seguence of events behind this defini-
tion is the following: Each processor observes his

-l .
uz.z nlvln- (D)szj.S) there is

Beasurement y, €Y, , i=l,2. Then, one of the processors.

say processor l, rtransmits a message »(y,), with a
single bit to the other processor. From that point on,
it has become common knowledge that ylaxn-’l(yl)s

tharefore, the remaining elements of Y. may be ignored.
We can now state formally the prodlam of intarest:

MBS (Minimus bits to satisfice): Given an instance D

of DSI and X& N, is there a protocol which gurantees
satisficing wvith not msore than K bits of communications?
By definition, MBS with K=0 is identical to the
prodblem DSI. Moreover, MBS with X arbitrary cannot be
easier than MBS with X=0 (which is a special case).
Therefore, MBS 1s, in general NP-hard. Differently
said, problems involving communications are at least
as hard as prodblems involving no communications.
We have seen in Section 2 that when |oll-|02|-z,

DSI may be solved in polyncmial time. Therefore, MBS
with X=0, |01|-2: lu2 =2 {s polyncaially solvable.

Bowever, for arbitrary K, this is no longer true:

Theorem S.1: MBS is NP-complete, even if |01|-|0z|-

{0,1} and even if we restriet to instances for whieh,
for any (yl.yz)ez, either S(yl.yz)- {(0,0)l or

S(yl,yz)-( .0},

The above theorem proves & conjecture of A. Yao
[Yao, 1979]. The proof was mainly constructed by
C. Papadimitriou and may be found in [Papadimitriou
and Tsitsiklis, 1982).

We. should point out that the special case referyed
to in Theorem 5.1 concerns the problem of distributed
function evaluation: we are given a Boolean function
£:Y¥ x¥_ = {0,1) and we require that both agents (proces-
sors evVentually deternine the value of the function
{given the observation -input !yl.yz)). Py exchanging

a minimum numbey of bits. In our formalism;
Sty,.y,)" {(0,0}} it £ly,,y,)=0 ana S(yz,yz)'{(l.l))

if f(yl.yz)-l.

In Section 2 we had investigated the complexity of
DS1 by restricting to instances for which the set 1
had constant degree (Dl.bz). This may be done, in

principle, for MBS, as well, but no results are avail-

able, except for the simple case in whieh nl-nz-z.

1n fact, wvhen Dl-b =2 each processor may transmit
his information to t.hz other agent by communicating a
single binary message and, for this reason, we have:

sition S.1: MBS restricted to instances for which
D.=D_=2 may be solved in polynomial time. Moreover,
. protpcol reQuires transmission of at most
tvo binary messages, one £rom each processor.
When (DL'Dz’ is larger than (2,2), thexre is not

much we can say about optimal protocols. Howaver, it
is easy to verify that there exist fairly simple non-
optimal protocols (which may be calculated in poly-
nomial time) which involve relstively saall amounts of
coemunication. This is because:

Proposition 5.2: Suppose that 1 has degree (bl.bz) ard
that s(ylnyz)”. v(yl.yz)ex. Then information may be

centralized (and therefore satisficing is guaranteed)
by Besans of a protocol requiring communication of at
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DOSt 19;2 (lezj binary messages by each processor.

. horeover, such a ocol may be constructed in time
. oult‘l-lvzmlv1 *l*,l))- (Here |x|, x€ R, stands

for the smallest integer larger than x.)

Rezark 1: It might be tempting to guess that proces-

sor 1 (respectively 2) needs to communicate only
uogzsz (respectively Lloqzbﬁ) bits, but this is not

true, 48 can be seen from fairly simple examples.

y 6. Conclusions -

L We smuzmarize here the main conclusions of this pa-

paz.

Even if a set of processors have complete knowledge

b of the structure of a distributed decision making pro-

blen and the desired goal; even if the corresponding

X " centralized problem is trivial; even l1f all relevant

sets are finite, a satisficing decision rule that in-

. volves DO on-line communications may be very haxd to
2ind, the corresponding problem being, in general,
NP-complete. There are msany cbjections to the idea
tha WP-completensss is an unequivocal measure of the

. difticulty of a problem, because it is based on a

' wOrst case analysis, wvhereas the average parformance

| of an algorithm might be a more adequate messure;

moreover NP-hard optimization problems may have very

simple approximate algoritims. However, NP-complete

probleas are often characterized by the property that

any kpown algorithm is very close to systematic ex-

haustive search; they do not possess any structure to

‘be exploited.

Concerning the problem DS, and its variations, we
mAy Teach the following specific conclusions: No sim-
ple algoritim could solve DS. Given that coemunica-
tions would be certainly required for those instances
4 of DS that possess no satisficing decision rules, it
;. would not be a great loss if we allowed the proces- -

S0rs to compunicate even for scme instances of DS for
which this would not be necessary. Even if these
extra cammunications -being redundant- 4o not lead to
better decisions, they may greatly facilitate the de-
. cision process and ~from a practical point of viev -
H Zenove some load from the computing machines employed.
! Concarning the problem of distriduted hypothesis
1. testing, we have shown that it becomes hard, once a
. simplifying assumption of conditional independence is
removed. This explains why no substantial progress
: on this problem had followed the work of Tenney and
( Sandell [1982]).

From a moTre ganeral perspective, we are in a posi-
tion to say that the basic (and the simplest) problems
of decentralized decision making are hard, in a precise
sathezatical sense. Moreover, their difficulty does
not only arise when one is interested in optimality.
Difficulties persist even if optimality is replaced
by satisficing. As a conseguence, further ressarch
should focus on special cases and sasily solvable
probles as well as on approximate versions of the
original problems. -

In cases vharse communications are necessary (but
costly) there arises naturally the problem of desig-
ning » protocel of communications. Unforrunately, if
) this probles is approached with the intention to mi-

U nimize the amount of communications that will guar-
¥ i antee the scconplishmant ©f a given goal, we Are agesin
g led to intractadble combinatorial problems. Therefore,
practical cosmunications protocols can only be desig-
‘ ned on & "good” heuristic or ad-hoc basis, ‘and they
should not be expected to be optimal; approximate
optimality is probably a more meaningful goal. Again,
alloving some redundancy in on-line communications
msy lead to substantial ssvings in off-line computa-
tions. ’
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