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the cmpueationall exity of finite ver- set of processors obtain (possibly conflicting) obser-

sions of the simplest &A4 ft l problems Of dim- vations on the state of the environment. Each processo
tdibuted decision making and _wo-ihM that, apart from has to make a decision, bas"ed an his own observation.
a few exceptions. such problems are hard (P-cCplete, However, for each state of the environment, only certain

or worse). Some of the problems studied are the wall- decisions accomplish the desired goal. The question
known team decision problem, the distributed hypothesis "are there any comnications necessary?" may be then
testing problem, as well as the problem of designing reforulated as "can the goal be acooapLisbed, with
a coimicatios protocol that guarantees the attain- certainty, without any commnmications?" wie show that

giant of a prespecified goal with &V little cMiMinca- this problem is. in general, a herd one.

tions as possible. 'hese results indicate the inher nt We then impose some nore structure on the problem,
difficulty of distributed decision makiLng, even for by assuing that the observations of different proveo-

very simple problems, with trivial centralized counter- mars are related in a particular way. The Main isse

parts and suggest that optimality may be an elusive that we address is "how much structur is required so

S goal of distributed systems. - .. that the problem is an easy one?* and we try to deter-
dCC mine the boundary between easy and bard probleims.
1. Introduction and toivation In Section 3 we formulate a few problm which are

related to the basic problem of Section 2 and discuss
rA this paper we formulate and study certain simple their complexity.

decentralized problems. our goal is to formulate pro- Zn Section 4 we study a pearticular (more Structured)
blems which reflect the inherent difficulties of dece- decentralized problem - the problem of decentralized
tralgationg that Is, any difficulty in this class of hypothesis testing - on which there has been Some in-

problems is distinct frvo the difficulty of correspond- terest recently, and characterize its difficulty.
ing centralized problems. jhjs is accomplished by Suppose that it has been found that cmmunications
fomaulating s centralized problems whose centralized are necessary. The next question of interest is "what

counterparts are either trivial or vcious. is the least amount of comunications needed?" Tils

One of our goals is to determine a boundary between problem (Section 5) is essentially the problem of desig-
"easy" and 'hard" decentralized problems. Our result ning an optimal cMUMiCictios protocCl; it is again a
will indicate that the Set of "easy" problms is hard one and we discuss same related issues.

relatively AmJ L. I Zn Section 6 we present our conclusions and discuss
All problems to be studied are imbedded in a dis- the conceptual significance of our results. These con-

crete frameworks the criteria we use for deciding clusions may be sjmanrizd by saying that:
whether a problem is difficult or not come from cOn- a) Even the simplest (exact) problems of decentralized

pleaxity theory [Carey and Johnson, 1979; Papadiaitriou decision making are hard.
and SteaiglItz. 1982): following the tradition of con- b) Alloving same redundancy in comunications, may
plexity theory, problems that may he solved by a poly- greatly facilitate the (Off-line) problem of desig-
nomial algoritr are considered easy; NP-complete, or ning a decentralized system.

LL worse. problems re ConsAideted ha-d. )owever , an c) Practical communications protocols should not be ax-

__J NP-completeness result does not Close a subject, butis pected to be optimal., as far as minimization of the
rather as a result which can guide raesarch: further amount of coemunications is concerned.
research should focus on special cases of the problem Some of the results of this paper appear in
or on approximate versions of the original problem. [Papadiitriou and Tsitaiklis,. 191 and talmost) all

The ain Issue of interest in decentralized systa proefs may be found in [sitsiklis, 19833.
may be loosely phrased a 'who should comnicate to pof a efu

whom, what. how often etc." rmo a purely logical 2 rb . letCodnto
point of view, %he first question that has to be raised
is "ar there any cuonication necessary?" Any Zn this section we formulate and study the problem
fu t e r ques tions dese re to be std ed only If we wht her a Set a! p roes ors withL' different in-fo m 'atio
come to tbe oeclusAn that €ommLcatioare Indeed ay accomplish a given goal -with certainty- without

nehessae yany- y s i onmlwctiors.
The suject of Secon 2 is to characterize the in- Let (1.. be a set of processors. Each processor,

heent difficulty of te pblm of deciding Whether say processor i, obtains an observation y which cams

ay C4mcatim are necessar eoen ag tra- from & finite set T of possible observaU ons. Thea.vton, We adop %b folleinARIVa Rh' & decenttaA-

ise4 system eArs In o~z to accmplish a certai processor i makes a decision ui which belongs to a

goal Which is SXt.rALUy specified sad well-known. A finite set 0 of possible decisions, according to a
rule.

o-r'"& W on er-contract- 0/N0004-77-C-0532

am war of VLOWL N-€oMpleta problem, is to say that they are effectively equivalent to the raveliang

Salesman problem, Which is well-known to be algorth1ica&lly hard.
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(2.1) following:
U, aTheorem 2. 1:

where , is same function from Y into U . The

-tuple* (yl,...,M ) is the total informa on avail- ) The problem DS with two processors 1?-2) and res-

a s i y tricted to instances for which the c "z. inlity of the
ablev so it nay he iewed as the "stte of t he anvi- decision sets is 2 (lu.l-20 i-1,2) ray be solved in
ronment." For each state of the environment, we assume
that only certain N-tuples (u ,,..u 3  of decision ac- polyn a.i&l time.
camplish a given, externally secifia , goal. More b) The problem DS with two processors (m-2) is WP-
precisely, for each (yl,... ,y,)e YIx ... xYH we are given complete, even if we restrict to instances for which

set sy 1 .... y) NC Vx ... xU of f ,sicin. ions. lUll'-. 1U2 13w i e)
I) The problem DS wt throe (or mre) procepsors

(So, S may be viewed as a function f ro>3) is h?-complete, even if we restrict to instances%,U x ... K .
aX ... Y.ito for which luiI-2,Vi.

The rolMtoe i Theoren 2.1 states that the problem Ds is. in gen-
The probfem to be s ater th e e ll "ix ri- d ral, a hard ccobinatorial problem, except for the

bute saisfcin prble' (atertheter inrodced special cast in which there are only two processors
by H. Simon 11960)) nay be described formally as and each One has to make a binary decision. It should
follows: be noted that the difficulty is not caused by an at-

Distributed Satisficina tDS): Given finite es Y1 .... .tempt to optimiase with respect to a cost function.

Yafix... X because no cost function has been introduced. in g
I* K*..,' I tafun S: 3. theoretic language, we are faced with a 'game of kind,"

V IX...xU, rather tha a "agame of degree."
2 ate there functions 2i: Y, J.1, We will now consider some special cases (which re-

Sc thflect the structure of typical practical problems) and

2....,, such thatexamine their computational complexity, trying to deter-
mine the dividing Line between easy and hard problems.
Fro. now on we restrict out attention to the case in

Y x...X YX (2.2) which there ea only two processors. Clearly, if a
problem with two processors is hard, the corresponding

problem udth three or more processors cannot be easier.
pemsrka:we have formulated above the problem DS so that all

p~s (l Yl) YY are 1lkely to occur. So. the

1. We are assuming that the function S is "easily Pa48 (Y 1.Y2 )e 1 2

€¢mptabla;" for examle, it may be given in the form information of different processors is completely Un-
ompatable. related; their coupling Is caused only by the structure

2. The centralized counterpart of VS would be t- of the satisficing sets S(yly 2 ). In most practical

allow the decision u of each agent depend on the situations, however, information is not cmletely Uns-
entire set (y 1 ..... y) of observations; so, 21 would tructured. when processor 1 observes yl. be is often

be a function from Y x. . M into Di . (This cor- able to make certain inferences about the value of the

responds to a situation in which all processors share ob&ervation y 2 of the other processor and exclude cer-

the same infozmtion.). Clearly, thean, tbre exist tam values, we now formalize these ideas:

satisfactory (satisficing) functions ai:Ylx. XM "I ,  Definition: An Inforzation Structure I is a subset

if and only if S(Yl I. YM)# , Y(Yl.... .YO Ylx'..X. Y " of YIxY2 . we say that. an informat en structwe I has

Since S is an "easily computable" set as a function 6egree (CD,D2 ) (D1 ,D2 axe positive int"eers) if
of its arguments, we can see that the centralized
counterpart of DS is a t_ vial problem. So, any dif- Iii F each y1 67y r, e 1 t s D1 distinct
ficulty inherent in DS is only caused by the fact that eleme ts ef Y2 such that (y 1 y 2 )e 1.
information is decentralized. oe (iFoeahYC threxsatmtD2dtnc
3. A "solution" for the problem DS cannot be a closed- (ii) For each y E there exist at ost V2 distinct
form formula which gives an answer 0(no) or l(yes). elements of Y1 such that (yl,y2 )e 1.
h" thr, it has to be an algorithm, a sequence of ins-
tructions, which starts with the data of the problem (iii) Dl.D 2 a e the smallest integers satisfying (I).

. .U...*...S) and eoventu&lly provides the (ii). An information structure I is called classical
Ss . X y if aDV -- 1; nested if D al or D2-1.

correct answer. Accordingly,* thoL difficu.lty Of the 1 2 - 2
problem 0S May he characterized by detertmining the we now interpret this definition: The information
place held by VS in the complexity hierarchy. For structure I is the set of pairs (y,.y2 ) of observations
definitions related to computational complexity and
the mothods typically used, the reader is referred to that ay occur together. If I has degee WD ,12)
.Garsy and Johnson, 1979; Papadlmitriou and Steiglitz, processor I may use his own observation to decide w)h
1982. elements of T2 may have been observed by processor 2.
4. If, for some I. the set a i is a sIigleton, proces- In perticular, he may exclude all elements except for

sor i has no choice, regarding his decision and, con- D of them. The situation faced by processor 2 is

sequently, the problem is equivalent to a problem in simmeticel.
which processor I is absent. pence, without loss of If Dial and processor I observes y,,. ther is only

ganeralit , we only need to study instances of DS in am possile value for y " So, processor I k 1he
w ich IV 2,observation of processor 2. (The converea is true

S. We believe that the problem DS captures the es- when D -1). This is called a nested infomrtion strut-
sence of coordinated decision aking with decentral- ture i1cause the information of ane processor coatsias
ixed information and without cmmunications (silent the information of the other.

coordination). Whmen D aD al. each processor knows tbe obaervatie
Some initial results on VS are given by the of the oter so, their Information is esemtalley

'it



: . sh. el.3. Related Pr'obIlm
~Since pa£rs (y ~y j not in I cannt~o occur, there isno

meaning Im req.uzr; -the processors to make compati.ble In this Section we define and discuss briefly & few
i decsion s if (y2,¥2) ee t;o be bser-ved. Ths leads mre co=mbnatoral poblm elevat o ecentrlzed

to the follow~ng version of t.he problem DS: decision making. All of them will be seen to be ale
th.an.problem DS of t.he last section (i.e. Ithey contin

DSI: Given fijite sets Y¥1y2 ,u1 , 2 , IC Y xy anid a DS as a special case) and are, therefore p-hard (tht
3xU31 2 , NP-cplete, or rse).

fhe tbest known static decentralized problem is thefunction Ss I 2 ,axe there functions I:Yi ±team decision problem [Harschak and Bodner, 1972)
1-1.2, such that which adits an elegant solution under linear quadratic

a)s)nptions. ItS discrete Version is the following:

~1 ( 2 ( 2  2 ) V 2 ) TDP (em Decision Problem)z Gven fite sets y1,Y2

Note that any instance of DSL is equivalent to an ins- 01 ,U2 , a probability mass function p: y x2 and a
tance of D9 in which Sty,2- 0y U2  I(yly2) 2 .~tae o O n w ic~h 2 )_ U.xU2 V(elay2)ced cost function C: Y xY X0xU - N, find decision rules

That is. no cocatblity restrictions are placed on 1 2 1 2
the decisions of the two processors, for those (y1. 2 ) ± YA A I,2 wbAch minmze e expected cost
that cannot occur.

We now proceed to the main result of this Section: (l.a)- c (yly 2. k(Y1 ) 2(Y)) p(yl.y2)

The orem 3.2.2: y 1ey'I Y2EY2

a) The problem DSI restricted to instances satisfying Let S(tyy 2 )-{(o',t' 2 )e 1xU2: c(y ,y2 ,u2,u 2 ).0), If
any of the following: we solve TDP, we have effectively answered the question

(I) oe or more of loll. IU2I, V 2 i equal to whether there exist . )2such that J( .a 2 )-0. This
CIA)191-102-2.is equivalent to the question whether there exist &at-

isficing decision rules (with the satisficLng sets
(iii) Dl'D2.20 S(y1 ,y2 ) defined as above). Therefore, TDP is harder

(iv) 0ID-U21-2. (or Dl-IU1I-2) than OS :
may be solved in Polynomial time. Propos1t.±on 3.1: The discrete team decision problem

b) The problem DSI is NP-complete even If we restrict is NhP-hard, even if the range of the cost function
to Instances for which e is (0,1).

lollD3, 1020 2 Instead of trying to "satislico" for every pair ofl~~ll ' '2'? obsraon y 1 y)e X1 x 2 *it may be more appro-
The result conering the case Dl-l or D21 is not lriate to impose a probability mass function o I xy 2

surprising. It 12 well-known that nested infozmation and try to maximize the probability of satisficing.
structures my be exploited to solve otherwise dif- This leads to the next problem:
ficult decentralized problems. But except for the cam
Dln02-2 (which Is sort of a boundary) the absence of MPS (Maximize Probabilitv of Satisficin): Given

nsxtedness makes decentralized problems computationally finite sets Y1,2,U1 ,02, a probability mass function
hard. Our result gives a precise meaning to the state- 0 xv
ment that non-nested infor mation strctures are much p: lY Z Q and a function S: Y x 2 , fin
moe difficult to handle than nested ones. 12 1 fn

4 Theorem 3.2.2 shows that even if DlD2 are held cons- decision rules B1: Y _£ ,1.2, which maximize the

.tawt. the problem 09% is. in general, NP-complete. probabiliy of satisficing .(7la )
Teeis,. oee.aspca aeo DLI, with 01.02 ra1,))22)ey,2)

constant, for which an efficient algorithm of the We now take a slightly different point of view.
dynamic programing type is possible: Suppose that ceinunications are allowed, so that the
Tprocessors may always make satisficing decisions byand sup- communicating (assuing that S(y,y 2 )00.

pose that ,V(i.J) a. Then, if V is held S(yl, Y I1xY). Suppose, however, that cemunica-
constant, Dal my be solved in polynomial time. tahs are very expensive, so tht we are interested

Remark: In fact, the conclusion of Theorem 3.2.3 re- in a scheme Which guarantees satisf icing with a mini-
am amount of cnmunications. We will assme tt ih

mains true If we asinne Won MA we r, lace the condition one of the processors initiates a coomunication, anl
li-l 10 D by the weaker condition li-i (mid n)< 0. their information will be exchange at unity cost.

The proof consists of a mall modification of the (For a more refined way of counting the amount of com-
receding one. • munications, see Section 3.5.)

The condition ji-Jl< D, y{(,J)e I is fairly natural
n certan aplicat.ions. For example, suppose that the M (Minimize Probability of COMPA-Acatlnst : Given

observ aios y. and Y2 a.re noisy , ueam~ents of an finiLte sets ¥1,y 2"'1,02 a probability ease function

boufd , IV t D2 )  pt Y I XT 2n2 find

mhe com trion I1-SJ(mod a)' 0 -ay also wrise If t decision rules jI: T, -.U(C). 1-1.2. which minlmiae
ebearvatiems 71 ,y 2 are noisy measurements of ame the Probability Pr (aI (y).C or 42 ().C) of comso'unia-

unknoiwangle iyA4 * v tint sublect to the constraint

i5



if I(yl)F'C and (y2  '3 then ~(a (YI, a2 ( 2 ))S(y1 Y2  cantralprcsor (fusioncetr) which evaluate&iiUo,,("i u 2  8and declares hypo~thesis H°0 to be tr-ue if£

The proof of the following is trivial: u =0, HI if u -1. (so, we essentially have a voting

Prcosaition 3.2: The problems MPS .nd MPC Are NP-hard. scheme). The problem is to select the functions

in fact. we also have: 2 so as to minimize the probability of accepting the

Proposition 3.3: The problems DP (with & zero-one wrong hypothesis. (more general performance criteria
• may be also considered).

cost function) and WPS are NP-hard, even if lu)- I U2 1 2 Most available results assume that ila 41

We could also dfine dynamic versions of DS or of P(y 1 ,y 2 IHi)-P(y 1 8.)P(yHii), -1.2, (4.1)
the team problem, in a straightforward way ITermney,

19833. Since dynamic problems cannot be easier than which states that the observations of the two procas-
statIc ones, they are automatically HP-hard. * sore axe independent, when conditioned on either hy-

pothesis.' In particular, it has been shown ITenney
4. Decentralized Hypothesis Testing and Sandell, 19811 that the optimal decision rules b"

A basL problem in decentralized signal processing, are given in terms of thresholds for the likelihood

which has attracted a fair amount of attention recently. Po P(H oy)
is the problem of decentralizad hypothesis testing ratios * he Opti lethreshOlds fo

Tanney d Sandell. 1981; Ekchian, 1982; Zkchian and

Tenney, 1982; Zushner and Pacut, 19821 iauer and the two sensors are coupled through A system of equ-

SandeUll 1983). A simple version of the problem, in- tions which gives necessary conditions of optimality.
volv:ng orly two processors and two hypotheses may be (These equations are precisely the person-by-person
desclbed as follows-, optimality conditions). Few analytical results are

Two 2e observations y Y available when the conditional independence assumption
wprocessors S and S receve is removed I1".uer and Sandell, 1983). The approach of

y 2 CY2 , respectively. whire T, is the set of all pOs- this section is aimed at explaining this status of af-

sible observations of processor i. (Figure 1). Tere fairs, by focusing on discrete (and finite) versions

axe two hypotheses B and 81 on the state of the 0 e the problem.

environment, with prior probabilities P0, And p., res- W is ae
Theorem 4.1: If Yly are finite sets and (4.1) holds,

pectively. fotr each hypothesis V., ve are also given then optimal 1 2
I then optimal ~choices for C)q a efudi oy

the joint probability distributLon P(yl, y2
1 Ei ) of tbe nomial tlme. 2 2

condtion=ed on the event r s .- So, under the conditional independ-lce asumptio.,
observations, cond e adecentralized hypothesis testing is a computationally

uponreceipt of y' processor S i evaluates a assat easy problem. Unfortunately, this is not the case then
uai10.1) according to the rule u - 1 (yI), where the independence assumption is relaxed. oar main re-

Then, u and u are transmitted to a s ' (ee 4.2) states that (wth Y l Y2 finite
sets), decentralized hypothesis testing is a hard cam-
binatorial problem (NP-ha-d). This is true even if we
restric't to the special case where perfect detection
(zUro probabil ty of error) is possible for the corres-

HotHt ponding centralized hypothesis testing problem.
Although this is in same sense a negative result, it is
useful because it indicates the direction in which
future research on this subject should proceed:

q |Instead of trying to find efficient exact algorithms,
research should focus on approximate algorithms, or

Y, Y2exact 4lgcrithms for preblems with more structure than
that assumed here. Moreover. our result implies that
any necessary conditions for optimelity to be develope
are lMely to be deficient in one of two respects:
a) Either there will be a very large numer of deci-
sion rules satisfying these conditions.
b) or, it will be hard to find decision rules satis-
fying these canitLons.
1n particular, Optimal decision rules are not given in
terms of thresholds an likelihood ratios.

Of course, there remains the question whether ef-

U (y ficient approximate algorithms exist for the general
-, I= . Y 2 decentralized hypothesis testing problem, or whether

we mast again Iestrict to special cases of the problem.
We now present formally the problem to be analyzed.

DPT: (Decentralized Rypothesis Testing, Restricted to

Instances for which Perfect Centralized Detection is
U0 U1  U 2  Possible).

.We are given finite Sets a rational am r

Fgure 1 : A Scheme for Decentralized Hypothesis number ks a rational probability mass functiom

Testing. p 7 1 xY 2 Q(tIO.2)g a partiton

Such an assumption Is reasomable in problemO .2 4L-
tie. of a known signal in independent noise, but is p-
if_-i violated in problems of detection of an Uw&
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oA1  o YxIT." Do there exist aI y1 -0,1}1 (1) , 21 1 n "n (1)xY2 ,.5) thre is

a2:" 2 O0,01) such ta&t J(01.42) k, where a protocol which guarantees atisficing with not more
than X-1 bits of communications. (Mere n*l(i)

-

- P(yly 2 )a 1 (Yl) 2 (y 2 ) I {Y ItY 1 )
" ).)

(yly 2 )A. The ev aged sequence of events behind this 6efini-
() ti.on is the following: Each processor observes his

(yy) (y y2) [1-k(yl)b2|y2)m? (4.2) easUrement yigY,, 11.2. Then, one of the processors,
(y 1 .y 2 )6Il 1 22 msay processor 1. tranmets a message (yl), with a

earks: 1. If we let -0, then VT As a specl case single bit to the other processor. From that point on,it has become common knowledge that y1 6Tflm 1 
(y.)I

o l.1c) t 1022 and 'a therefore, the remaining elements of Y may be ignczed.

polymomially solvable, according to Theorem 3:2.1. Iwe can now state formally the problem of interest:
general ENT is specL case of IS and MW (seci sc nn
3.3) with I.Ul-l 2l-2. Consequently. Theorm 4.2 MRS bits to satifice)I Givea instance V

below proves Proposition 3.3. of VI1 and Ke N, is there a protocol which gurastes
2) Clearly, the optimization problem (inimize 3(a 2 ), satifaicin with not noe than K bits of ommunications?

2y definition, MMS with K-0 is identical to the
with respect to aIl2) cannot be easier than ORT. problem 0$1. Moreover, Jos with X arbitrary cannot be

Since =IT will be shown to be NP-complete, it follows easier than MS with X-0 (which is a special case).

that the above optimization problem is NP-hard. Therefore, 36S is, in general NP-hard. Differently

3) in Mr, as defined above, we are only considering said, problems involving comunications are at least

instances for which perfect centralized detection s as rd as problems involving no communications

possible: Think of N as being the hypothesis that We have soen in Section 2 that when ~"0 2
(y2y)6 A , adX as being the hypothesis that D51 may be solved in oynomial time. Therefore, MRS

12 0 with K-0. Iull-2. IV2r_2 is polynomially solvable.
(y 1 y2)@ A. certainly, if a processor knows both y 1 , However, for srbitrary K, this is no longer true:

Y2' the true hypothesis may be found vith certainty.
tor the decentralized problem, the cost function Th m 5.1: s Nm pl, e f I1-1 21-
3 (a1 a ) is easily seen to be the probability of error. (0,1) and even if we restrict to instances for which,

4) The result to be obtained below remains valid if e for any (yl,y2 )EX, either S(y 1 .y 2 )- 1(0,0)1 or

fusion center uses different rules for combining the S(yl'y2)- (1.1)).
mossages it receives (e.g. %, (,v( Y))), or if we

leave the combining rule unspecified and try to find The above theorem proves a conjecture of A. Yao

an optimal combining rule. [Yao, 19791. The proof was mainly constructed by
C. Papadtiitriou and may be found in [Papadimitriou

Theorem 4.2: CRT is NP-cmlet&e. arA Tsitsiklis, 1982).
we. should point out that the special case referred

5. On Designing Communications Protocols to in Theorem 5.1 concerns the problem of distributed
function evaluation: we se given a boolsan function

Suppose that we are given an instance of th dis- f:Y xY { 0, 1) And we require that both agents (poces-
tribted satisficing problem (IS) and that it was so e4entually detarmine the valu of the function

concluded that unless the processors communicate, (given the observation -input tyIy 2 )). by exchanging

atisficing cannot be guaranteed for all possible oh- a minimum number of bits. In our formalism;
servations. Assuming that cmmications are allowed S((0.0)) if andS(yly2)(ll)
(but arm costly), we have to consider the problem of (y 1 ,y 2 ) f(y 1 ,y 2 )-0
designing a counimcations PrOtocol: what should each if f(y 1 ,y 2 )-.
processor eompunicate to the other, and at what ordez? In Section 2 we had investigated the complexity of
Mreover, since counicaticns are costly, we era PSI by restricting to instances for which the set I

interest e in protocol Which minimizes the total had constant degree (D,02). This may be done, in
nunber of binary messages (bits) that have to be can-
miaicatsd. (The word bits above does not have the principle, for PS, as well. but no results are avail-

information theoretic meaning.) able, except for the simple case in which Dr-2.

Sefore proceeding, we mut make more precise t In fact, when D -D -2 each processor may tr n mit
notion of a communication protocol and of the nuber his information to lth other agent by communicating a
of bits than guarantee satisficing. single binary message and, for this reason, we have:

Given an instance VO(VT 2 '0 1 -02 ,"S) of te problem Proposition S.1 NBS restricted to instances for which

DS2 we vill say thats 0 w w2 may be solved in polynomial time. oreover.,
There is a protocol which guarantees satisficing ai 4tinai protpcol requires transmission of at most

with 0 bits of communications, it V is a !Zs instance two binary messages, one fram eah processor.
of the Poblem =6. (That is, if there exist sats- when (DD2) Is lrr than (2.2), tre Is not
ficin decision rules, Involving no commnications.) m we im arger than (2,2), Her t

we then proceed inductively: uhw a a bu pimlpooos oeei
There is a protengwhich guarantees satisficing is easy to verify that there exist fairly simple n-

with K bits of Cmuniatims (M ).- if for som optaal protocols (which may be calculated in poly-

16(2.2) (say, IO1) there is a f m 0,I). nomial. time) which involve relatively small inmmts of

such tbt for each of the instames : cmoiication. This is because:

,(yflnm - (0).y2-102,Z fl iy(fl (0))? 2 ),S) wA Proposition 5.2: Suppose that I has degree (DD) ad

that S y,y 2 )1#', y(yly 2 )6". Then infomation my be

*That As AOU YlIlY2 zd 0 37A4* centralized (and therefore "satficing is guaranteed)
by means of a protocol requiring commnication of at
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whbch this would not be necessary. Even if these
extra comunications -being redundant- do not lead to
better decisions, they may greatly facLitate the de-
cision process and -from a practical point of view -
remove some load from the computing machines employed.

Concerning the problem of distibuted hypothesis Accession For
testing, we have shown that it becomes hard, once a -i

simplifying assumption of conditional independence is NTIS GRA&I
removed. This explains why no substantial progress DTIC TAB
on this problem had followed the work of Tenney and Unannounced
Sandell (1962). f ti

From a more general perspective, we are in a posi-
tAon to say that the basic (and the simplest) problem
of decentralized decision making are hard, in a pree es
mathematical sense. Moreover, their difficulty does B
not only arise when one is interested n optimality. Distribution/....
Difficulties persist even if optimality is replaced ] Codes
by satisficing. As a consequence, further research Availability CodesJ.
should focus n special cases an easily solvable Avai and/or
problem as well as an approximate versions of theDit Spca

e original problems.
In cases where cmmications are necessary (but

costly) there arises naturally the problem of desig-
ning a protocol of communication*. Unfortunately. if -I
this problem is approached with the intention to ni-A
nimia. the amount of commnications that will guar-
ante* the accomplishment of a given goal, we axe ag in
led to intractable cembizate=Aal problems. Therefore,
practicatl comuncations protocols Can only be desig-
a"ea a= *good" haewistic at ad-hoc b"sLs,*N " t4hey
should nt be expected to be optimal apprxmte

allowing sam redundnc-y in on-line commncaion&m
may lead to substantil savi~ngs in off-line eemut-
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