COST EFFECTIVENESS OF CUSHIONING MATERIALS FOR FAST PACKS(U) AIR FORCE PACKAGING EVALUATION AGENCY
WRIGHT-PATTERSON AFB OH MATERIALS ENGINEERING BRANCH
UNCLASSIFIED
A. J. Sicard Jan 84 DSTZT-82-13
F/G 14/1
NL
COST EFFECTIVENESS OF CUSHIONING MATERIALS FOR FAST PACKS
NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any right or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. This report is not to be used in whole or in part for advertising or similar purposes.

ABSTRACT

Consideration of potential cost savings as well as material availability problems resulted in the initiation of a study by this agency to reevaluate the polyurethane foam cushioning requirements specified in the Fast Pack specification PPP-B-1672. Additional emphasis was given to this study when the AFLC Spares Packaging Standardization Committee established and assigned an action item to AFPEA to determine whether the Grade C polyurethane foam currently specified for Fast Pack cushion inserts could be replaced with Grade B material which was less expensive and easier to obtain commercially. An extensive test program was conducted on the Type I, III, and IV Fast Packs in which the dynamic cushioning performance of both Grade B and C polyurethane cushion inserts were evaluated over the weight ranges currently specified in Appendix G of MIL-STD-794 for several of the different pack sizes. It was concluded that the substitution of Grade B polyurethane foam for Grade C foam could not be justified because of the significant reduction in the range of items that could be adequately protected.

PREPARED BY

ALFRED J. SICARD, Mech Engg Tech
Materials Engineering Division
AF Packaging Evaluation Agency

REVIEWED BY:

MATTHEW A. VENETOS
Chief, Materials Engineering Division
AF Packaging Evaluation Agency

APPROVED BY:

JACOB J. THOMPSON
Director, Air Force Packaging Evaluation Agency

PUBLICATION DATE:

09 JAN 1984
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Equipment and Instrumentation</td>
<td>1</td>
</tr>
<tr>
<td>Test Loads</td>
<td>1</td>
</tr>
<tr>
<td>Description of Test Packs</td>
<td>2</td>
</tr>
<tr>
<td>Test Procedures</td>
<td></td>
</tr>
<tr>
<td>A. Fast Pack Drop Test</td>
<td>2</td>
</tr>
<tr>
<td>B. Dynamic Compression Test of Polyurethane Foam Cushion Insert Materials</td>
<td>2</td>
</tr>
<tr>
<td>Results</td>
<td>3</td>
</tr>
<tr>
<td>Discussion/Conclusions</td>
<td>3</td>
</tr>
<tr>
<td>Recommendations</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1: Gaynes Drop Tester & Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2: Hardigg Cushioning Tester & Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3: Typical Test Loads Used in Type I and II Fast Packs</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4: Typical Test Loads Used in Type IV Fast Packs</td>
<td>5</td>
</tr>
<tr>
<td>Figure 5: Peak "G" - Static Stress Curves of Type I,6 X 6 X 10 Fast Pack</td>
<td>6</td>
</tr>
<tr>
<td>Figure 6: Peak "G" - Static Stress Curves of Type I,8 X 8 X 12 Fast Pack</td>
<td>7</td>
</tr>
<tr>
<td>Figure 7: Peak "G" - Static Stress Curves of Type I,10 X 10 X 12 Fast Pack</td>
<td>8</td>
</tr>
<tr>
<td>Figure 8: Peak "G" - Static Stress Curves of Type I,12 X 12 X 14 Fast Pack</td>
<td>9</td>
</tr>
<tr>
<td>Figure 9: Peak "G" - Static Stress Curves of Type I,12 X 12 X 14 Fast Pack</td>
<td>10</td>
</tr>
<tr>
<td>Figure 10: Peak "G" - Static Stress Curves of Type I,12 X 12 X 18 Fast Pack</td>
<td>11</td>
</tr>
<tr>
<td>Figure 11: Peak "G" - Static Stress Curves of Type I,14 X 14 X 16 Fast Pack</td>
<td>12</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 12:</td>
<td>Peak "G" - Static Stress Curves of Type I, 12 X 12 X 18 Fast Pack</td>
<td>13</td>
</tr>
<tr>
<td>Figure 13:</td>
<td>Peak "G" - Static Stress Curves of Type III, 25 X 14 X 14 Fast Pack</td>
<td>14</td>
</tr>
<tr>
<td>Figure 14:</td>
<td>Peak "G" - Static Stress Curves of Type III, 30 X 16 X 14 Fast Pack</td>
<td>15</td>
</tr>
<tr>
<td>Figure 15:</td>
<td>Peak "G" - Static Stress Curves of Type III, 32 X 12 X 14 Fast Pack</td>
<td>16</td>
</tr>
<tr>
<td>Figure 16:</td>
<td>Peak "G" - Static Stress Curves of Type IV, 20 X 14 X 14 Fast Pack</td>
<td>17</td>
</tr>
<tr>
<td>Figure 17:</td>
<td>Peak "G" - Static Stress Curves of Type IV, 22 X 16 X 16 Fast Pack</td>
<td>18</td>
</tr>
<tr>
<td>Figure 18:</td>
<td>Peak "G" - Static Stress Curves of Type IV, 22 X 16 X 16 Fast Pack</td>
<td>19</td>
</tr>
<tr>
<td>Distribution List</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>DD Form 1473</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>
INTRODUCTION

This study was performed primarily to support the HQ AFLC/DSTP Spares Packaging Standardization Committee's effort to resolve shortages of fast pack containers reported throughout DOD. In addition AFPEA recognized the potential for reducing the cost of fast packs by substituting the less expensive Grade B polyurethane foam cushioning for the Grade C materials currently used. The shortage of fast packs stemmed from commercial manufacturers' difficulty in readily producing Grade C polyurethane foam meeting the dynamic cushioning characteristics specified in MIL-P-26514E. Consequently, the committee questioned whether Grade C foam as required in Federal Specification PPP-B-1672 for Type I, III and IV fast pack inserts was cost effective for the shock protection levels specified in Appendix G of MIL-STD-794D (Fast Pack Selection). It was noted that Grade B polyurethane foam, if used as an alternative, would cost less and would be more readily available from a larger number of manufacturers. The objective of this study was to determine if the proposed alternative Grade B polyurethane foam would provide protection comparable to that now obtained with the Grade C material.

EQUIPMENT AND INSTRUMENTATION

Evaluation of the fast packs and polyurethane foams used in the cushion inserts were performed with the following equipment and instrumentation:

1. Container drop tester, Gaynes, Model 125 DTP.
2. Cushion tester, Hardigg Industries, Model 3.
3. Compression - Tensile tester, Instron TT-C.
4. Three Endevco crystal accelerometers, Model 2233E.
5. Three Endevco charge amplifiers, Model 2614C.
6. Endevco power supply, Model 2622C.
7. Tektronix four trace storage oscilloscope, Type 564B.
8. Statham stain gage accelerometer, Model A5-100-350.
9. GHI Energy Computer, Model EC700.
10. Sensotic power amplifier.

TEST LOADS

The prototype test loads (Figures 3 & 4) consisted of interchangeable wood, aluminum, lead and steel plates for the purpose of varying the weight. Each prototype load was instrumented with three crystal accelerometers, triaxially mounted at the center of gravity of the test load. The prototype loads were wrapped with 3 mil thick polyethylene film to reduce the friction between the load and cushion pad surfaces in order to avoid interference with the cushioning action of the polyurethane pads.
DESCRIPTION OF TEST PACKS

The exterior containers were fabricated from V3c corrugated fiberboard regular slotted containers conforming to specification PPP-B-636. The cushioning inserts in the pack were Type I, Class 2, Grade B and C, 1.5 pound density polyurethane foam meeting the dynamic cushioning properties specified in MIL-P-26514E. The type and size packs tested are identified in Figures 5 through 18. The fast packs were acquired from various air logistics center locations sampled from unused General Services Administration supply lots.

TEST PROCEDURES

Drop testing of Type I, III and IV fast packs containing Grades B and C polyurethane inserts, was performed during this study. The results obtained on these fast packs were then used to develop comparative Peak "G" - static stress curves depicted in Figures 5 through 18.

A. Fast pack drop tests: Free fall drop tests were conducted in accordance with procedure B, Method 5007 of Federal Test Method Standard 101C, Level A (30-inch drop). Testing began with the lightest weight prototype loads and progressed to successively heavier weight loads. For each weight of prototype load five drops were made on each of the container's six faces. The drops were alternated between opposite side faces or opposite end faces, so that no face received two successive impacts. The peak G shock resultants for the end face impacts were averaged together for each load of a particular configuration; the same procedure was used for averaging the peak G shock resultants for the four side faces.

B. Dynamic compression test of polyurethane foam cushion insert materials: The dynamic compression test of the polyurethane foam used in the fast packs was in accordance with paragraph 4.5.3.13 of MIL-P-26514E. Following completion of the fast pack drop testing, cushioning inserts (usually end pads) were removed from the containers and allowed to recover over a 72-hour period. Following the recovery period, three 8" x 8" x 3" specimens from each cushioning insert were cut and cyclically compressed ten times to 65 percent of their original thicknesses on an Instron compression tester. Inserts having convoluted surfaces (Type III fast packs) were cut flush and laminated with double face adhesive tape to make three-inch thick specimens. Following a 16 to 72-hour recovery period, the specimens were tested on the cushion drop tester. Each specimen was impacted by the drop platten of the cushion tester which compressed the specimens at an initial velocity of 136 ±2 in/sec (24-inch drop height). The acceleration-time record of the impact was displayed on the CRT of the oscilloscope and the peak G values were measured and recorded for each drop. With drop platten weight at the lowest static stress value, five drops were made on each specimen allowing at least one minute between drops. Additional weight was added to the drop platten to obtain higher static stress points and the drop test procedure was repeated. Four static stress points (0.065, 0.15, 0.4, 0.8 psi) were selected to fully cover the range of the Grade B and C dynamic cushioning curves depicted in MIL-P-26514E. Peak acceleration values (Gs) within ±20 percent of specification curve were considered as acceptable for verifying the material as either Grade B or Grade C polyurethane foam.
RESULTS

Based on the test results presented in Figures 5 through 18, it is apparent that Fast Packs utilizing Grade B foam will not provide the required shock protection over the entire weight ranges for Grade C foam specified in MIL-STD-794. It is estimated that Grade B foam inserts provided acceptable shock protection over only 61 percent of the weight ranges considered in Appendix G of MIL-STD-794. The reduced cushioning performance of Grade B foam in most cases was attributed to increased shock inputs occurring with the heavier items due to "bottoming out" of the cushion during repeated impacting.

DISCUSSION/CONCLUSIONS

Grade B foam Fast Pack inserts would afford shock protection levels equivalent to Grade C foam inserts over approximately 61 percent of the weight ranges currently specified in MIL-STD-794. This reduced effectiveness is considered to be contrary to the original purpose of the Fast Pack Program of providing optional shock protection to a maximum number of the diverse items in the DOD inventory.

The implementation of Grade B foam inserts into the Fast Pack Program would require retention of Grade C foam packs in the system to protect those items not afforded adequate protection by the Grade B foam. At least ten of the fourteen types sizes of Grade C foam packs evaluated would probably have to be retained to complement the Grade B foam packs. This could result in redundancy in design and possible confusion resulting in the use of the wrong pack for an item.

Based on a survey of the major manufacturers of polyurethane foam it was determined that on average there is a 8.1 percent mark up in the cost of Grade C material over Grade B. During a one-year period approximately 3,000,000 board feet of Grade C polyurethane foam at a total cost of $600,000 are used in the manufacture of Fast Packs for the Air Force. Therefore the substitution of Grade B for Grade C foam would result in a savings of $45,000, assuming these savings are passed on to the government. It is believed that these savings are far outweighed by the potential consequences of replacing a proven pack with a less effective one which could result in damage to high value Air Force equipment.

Another consequence of introducing Grade B foam materials into the Fast Pack system would be the time, effort, and expense required to revise the Fast Pack selection tables in MIL-STD-794. Revision of these tables would require further extensive drop testing to develop complete data for all Type I, III and IV Fast Packs.

RECOMMENDATIONS

It is recommended that Grade C polyurethane foam requirement be continued for Type I, III and IV Fast Packs.
FIGURE 1. GAYNES DROP TESTER AND INSTRUMENTATION

FIGURE 2. HARDIGG CUSHIONING TESTER AND INSTRUMENTATION
FIGURE 3. TYPICAL TEST LOADS USED IN TYPE I AND II FAST PACKS

FIGURE 4. TYPICAL TEST LOADS USED IN TYPE IV FAST PACKS
Peak Acceleration

Legend:

Exceeds the shock protection level over weight range 4.9 to 5.0 lbs.
Grade B foam provided equal or better shock protection levels over the 2 - 4.9 lb weight range; however, it

Test Results:

Static Stress-W/A (psi)

Peak Acceleration

36
32
24
23
36
28
2.0 lbs
0.16 psi
Grade B foam test data:

Test load size: 4" dia x 6" long
10" x 10" x 12" thick end pads
Fast track type 1 (vertical star)

Figure 7
PEAK ACCELERATION

TEST RESULTS:

RANGE 4 TO 11 LBS.

GRADE A
GRADE B

SLOW MOTION EQUIVALENT SHOCK PROTECTION LEVELS OVER THE FULL ITEM WEIGHT

STATIC STRESS-W/A (psi)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

11 lbs
4 lbs

TEST LOAD SIZE: 5" DIA X 10" LONG
12" X 12" X 18" 4" THICK END PADS
FAST PACK TYPE I (VERTICAL STAK)
FOR LOADS WEIGHING 12.3 TO 20 LBS, IT PROVIDED EQUAL OR BETTER SHOCK PROTECTION LEVELS.
GRADE B FOAM EXCEEDED THE SHOCK PROTECTION LEVELS OVER THE ITM WEIGHT RANGE 7.5 TO 12.4 LBS; HOWEVER.

TEST RESULTS:

GRADE "C" FOAM SHOCK PROTECTION LEVELS
GRADE "B" FOAM SHOCK PROTECTION LEVELS

LEGEND:

FIGURE I1
Grades A and B from Shock Protection Levels Over the Full Range

Test Results:

29.4 to 29.4 LBS

Grades C, D from Foam Provided Equivalent Shock Protection Levels

Static Stress - W/A (Psi)

Peak Acceleration

Test Load Size: 13" X 7" M X 7"0

25" X 14" X 14" Thick End Pads

Fast Pack, Type III (Telescoping)

Figure 13
PEAK ACCELERATION

Legend:
GRADE A: FOAM SHOCK PROTECTION LEVELS
GRADE B: FOAM SHOCK PROTECTION LEVELS

LOADS WEIGHING 14 TO 8 LBS. IT PROVIDED EQUAL OR BETTER SHOCK PROTECTION LEVELS.
GRADE B FOAM EXCEEDED THE SHOCK PROTECTION LEVELS OVER ITEM WEIGHT RANGE ABOVE 14 TO 29.5 LBS; HOWEVER, FOR SMALLER LOAD SIZES IT PROVIDED EQUAL OR BETTER SHOCK PROTECTION LEVELS.

TEST RESULTS:

STATIC STRESS-W/A (PSI)

PEAK ACCELERATION

TEST LOAD SIZE: 16" X 6-3/8 X 6-3/8" (22 5" X 16" X 16") THICK END PLATES
FAST PACK: TYPE IV (HORIZ. STUD)

FIGURE 17
FIGURE 18

FAST PACK, TYPE IV (HORIZ. STAR)
22" X 16" X 16", 3" THICK END PADS
TEST LOAD SIZE: 16" X 7 1/2" X 7 1/2"

GRADE B FOAM TEST DATA:

<table>
<thead>
<tr>
<th>LOAD WEIGHT</th>
<th>STATIC STRESS (LOADING END PAD)</th>
<th>SHOCK TEST RESULT (Gs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 lbs</td>
<td>0.21 PSI</td>
<td>34 Gs</td>
</tr>
<tr>
<td>14.8</td>
<td>0.28</td>
<td>27</td>
</tr>
<tr>
<td>26.0</td>
<td>0.49</td>
<td>27</td>
</tr>
<tr>
<td>31.8</td>
<td>0.60</td>
<td>35</td>
</tr>
</tbody>
</table>

TEST RESULTS:
GRADE B FOAM EXCEEDED THE SHOCK PROTECTION LEVELS OVER ITEM WEIGHT RANGE 28 TO 31 LBS; HOWEVER, FOR LOADS WEIGHING 11 TO 28 LBS IT PROVIDED EQUAL OR BETTER SHOCK PROTECTION LEVELS.

LEGEND:
---GRADE "B" FOAM SHOCK PROTECTION LEVELS
---GRADE "C" FOAM SHOCK PROTECTION LEVELS
Consideration of potential cost savings as well as material availability problems resulted in the initiation of a study by this agency to reevaluate the polyurethane foam cushioning requirements specified in the Fast Pack specification PPP-B-1672. Additional emphasis was given to this study when the AFLC Spares Packaging Standardization Committee established and assigned an action item to APPEA to determine whether the Grade C polyurethane foam currently specified for Fast Pack cushion inserts could be replaced with Grade B material which was less expensive and easier to obtain commercially. An extensive test program was conducted on the Type I, III, and IV Fast Packs in which the dynamic cushioning performance of both Grade B and C polyurethane cushion inserts were evaluated over the weight ranges currently specified in Appendix G of MIL-STD-794 for several of the different pack sizes. It was concluded that the substitution of Grade B polyurethane foam for Grade C foam could not be justified because of the significant reduction in the range of items that could be adequately protected.
DISTRIBUTION LIST

ADTC/YXC
Eglin AFB FL 32542 1

AFALC/PTPP
WPAFB OH 45433 3

AFCMD/PDT
Attn: Jim Rorie
Kirtland AFB NM 87115 1

AFPRO/PD (Packaging Engineer)
Westinghouse Defense & Electronic System Center
P.O. Box 1693
Baltimore MD 21203 1

AFPRO/PD, P.O. Box 371
General Dynamics
Attn: Rick Stenzil
Ft Worth Division
Ft Worth TX 1

ASD/AEWS (D. Murray)
WPAFB OH 45433 1

ASD/AWL
WPAFB OH 45433 1

ASD/YPL
Attn: J. Hartley
Lt R. Weldon
WPAFB OH 45433 1

ASO/TEP-A 4030
700 Robbins Avenue
Philadelphia PA 19111 1

Aviation Supply Office
Attn: Engrg Div
700 Robbins Avenue
Philadelphia PA 19111 1

DARCOM, Packaging & Storage & Containerization Center
Attn: SDSTO-T
Tobyhanna PA 18466 1

DESC-T
1507 Wilmington Pike
Dayton OH 45444 1

DLSIE/DRXMC-D
US Army Logistics Management
Attn: Mr. Malcom Alley
Fort Lee VA 23801 1

DTIC/TSR
Cameron Station
Alexandria VA 22314 12

ESD/TOSM
Hanscom MA 01731 1

GSA, Ofc of Engineering Management
Packaging Division
WASH DC 20401 1

HQ AFLC/DSTP
WPAFB OH 45433 1

HQ AFLC/DSTZT
Project Folder
WPAFB OH 45433 1

HQ AFLC/DSTZT Library
WPAFB OH 45433 20

HQ AFSC/LGT
Scott AFB IL 62225 1

HQ DLA-OWO
Cameron Station
Alexandria VA 22314 1

HQ USAF/LETT
WASH DC 20330 1

Naval Weapons Support Center
Code 505 (F. Niehaus)
Crane IN 47522 1

NAVSUPSYCMD
Attn: SUP-0321A
WASH DC 20376 5

OC-ALC/DSP
TINKER AFB OK 73145 1

OO-ALC/DSP
HILL APB UT 84056 1
<table>
<thead>
<tr>
<th>DISTRIBUTION LIST (CONT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRC</td>
</tr>
<tr>
<td>13837 Bettencourt Street</td>
</tr>
<tr>
<td>Cerritos CA 90701</td>
</tr>
<tr>
<td>US Army Armament Research & Development Command</td>
</tr>
<tr>
<td>SAMS/O/AWL</td>
</tr>
<tr>
<td>Norton AFB CA 92409</td>
</tr>
<tr>
<td>US Army Natick Labs</td>
</tr>
<tr>
<td>SA-ALC/DSP</td>
</tr>
<tr>
<td>KELLY AFB TX 78241</td>
</tr>
<tr>
<td>US Army Natick MA</td>
</tr>
<tr>
<td>SM-ALC/DSP</td>
</tr>
<tr>
<td>MCCLELLAN AFB CA 95642</td>
</tr>
<tr>
<td>WR-ALC/DSP</td>
</tr>
<tr>
<td>ROBINS AFB GA 31098</td>
</tr>
</tbody>
</table>