PAIRWISE BALANCED LATIN SQUARE SHOULD ALWAYS BE USED FOR WITHIN-SUBJECT....(U) OHIO STATE UNIV COLUMBUS DEPT OF PSYCHOLOGY I M OSTROM ET AL. 20 DEC 83
"PAIRWISE BALANCED" LATIN SQUARES SHOULD ALWAYS BE USED FOR WITHIN-SUBJECTS DESIGNS

Thomas M. Ostrom
Ohio State University

Paul D. Isaac
Ohio State University

and

C. Douglas McCann
York University

Technical Report Number TR/ONR-10
December, 1983

Social Psychology Bulletin-83-2

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report was supported by contracts on the Organizational Effectiveness Research Program, Office of Naval Research United States Navy (Code 452) under control No. N00014-81-K-0112, NR 170-927.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
"Pairwise balanced" Latin Square should always be used for within-subjects designs.

The use of repeated measures designs in many areas of psychological research has prompted concern for the potential confounds inherent in the interpretation of treatments that have been included as within-subject variables. Of the solutions proposed for this problem, the most commonly adopted strategy is the use of Latin Square counterbalancing orders for treatment presentation. Traditional Latin Square designs ensure that each of the experimental treatments included as part of the within-subject factor(s) is...
Block 20 (Abstract) - Continued

administered in each serial position of the treatment sequence. The present paper presents a discussion of a novel technique for the generation of a subset of Latin Squares that control for two additional features that are seen to be important in many research situations, i.e., pairwise priority and distance. Such Latin Squares are referred to as 'pairwise balanced' Latin Squares. The relative advantages of using such Latin Squares in repeated measures designs are discussed.
'Pairwise Balanced' Latin Squares Should Always Be Used for Within-Subject Designs*

*This work was supported by Contract N00014-81-K-0112, NR 170-927, Organizational Effectiveness Research Program, Office of Naval Research. The authors would like to thank Steven Breckler, Patricia Devine, Lisa Herron, David Kenny, John Lingle, Anthony Pratkanis, Thomas Pusateri, and Tamara Smith, for their comments on an earlier draft of this paper.
Pairwise Balanced Latin Squares

Abstract

The use of repeated measures designs in many areas of psychological research has prompted concern for the potential confounds inherent in the interpretation of within-subjects effects. Of the solutions proposed for this problem, the most commonly adopted strategy is the use of Latin Square counterbalancing orders for treatment presentation. Traditional Latin Square designs ensure that each of the experimental treatments appear equally often in each serial position of the treatment sequence. The present paper presents a technique for generating a subset of Latin Squares that control for two additional characteristics of treatment sequence. Pairwise priority refers to the proportion of times that for any given treatment pair, x and y, Treatment x precedes Treatment y. A subset of Latin Squares exists for which this proportion is .5 for all treatment pairs. Pairwise distance refers to the number of other treatments that come between treatment pair x and y in the treatment sequence. A subset of Latin Squares exists that partially controls for the distribution of distances across all treatment pairs. The subset of Latin Squares that controls for both pairwise priority and pairwise distance are referred to as 'pairwise balanced' Latin Squares.
Within-subject designs are being used with increasing frequency in psychological research. For example, Poulton (1982) compared the types of experimental designs employed in research reported in the *Journal of Experimental Psychology* in September 1972 and 1979 and found that the ratio of within-subject to between-subjects designs had increased from 1.7:1 to 7.3:1. This increase has been accompanied by commentary and analysis concerning the adequacy of such within-subject designs to provide unambiguous tests of experimental hypotheses (e.g., Greenwald, 1976; Poulton, 1973, 1974, 1982; Rothstein, 1974). The central concerns embodied in these commentaries relate both to matters of experimental procedure and the proper interpretation of experimental results. Of course, the two are interrelated in that improvements in procedure often serve to lessen interpretive cautions.

The most efficient procedure for dealing with the interpretive problems of within-subject designs involves the use of Latin Square counter-balanced orders for treatment presentation (e.g., Lindman, 1974; Myers, 1979; Winer, 1972). The purpose of the present paper is to address the adequacy of traditional Latin Square selection criteria. The traditional criteria focus exclusively on guaranteeing that all treatments appear equally often in all serial order positions of the treatment presentation sequence. In this paper, we argue that two additional criteria should always be invoked when selecting a Latin Square, namely the criteria of "pairwise priority" and "pairwise distance".
Within-subject Treatments and Latin Square Designs

In within-subject designs, each subject is exposed to all of the experimental treatments. This type of design is often preferred because: a) it allows for greater economy in subject utilization, b) it often serves to increase the statistical power of hypothesis tests, and c) it is often a more ecologically valid way of examining specific research hypotheses (e.g., Greenwald, 1976, but see Poulton, 1982).

Although preferred for these reasons, within-subject designs are also encumbered by procedural weaknesses that often leave the research open to plausible alternative explanations for the obtained experimental results. Chief among these potential confounds are those associated with order or sequence effects, practice and/or fatigue effects, and the residual effects (also referred to as transfer, carry-over or range effects) of treatments (e.g., Campbell & Stanley, 1966; Carlsmith, Ellsworth & Aronson, 1976; Christensen, 1980; Crano & Brewer, 1973; D'Amato, 1970; Greenwald, 1976; Poulton, 1973, 1974, 1982). Several general types of solutions have been suggested in attempts to take such potential sequence effects into account. The most commonly adopted procedure involves the use of Latin Square counterbalancing of treatment orders.

Traditional criteria for Latin Square selection.

Latin Squares control serial position effects by ensuring that each treatment appears equally often in each order position.
Traditional selection criteria focus on random selection from the population of all possible squares. Consider the guidelines outlined by Winer (1972). He suggests that one first randomly select a standard square from such sources as Fisher & Yates (1953) or Cochran & Cox (1957). Next, the columns and rows are randomly reordered. Winer provides an example for the 4X4 Latin Square case. Starting with the square on the left of Table 1, Winer reordered the columns and rows according to the random number sequences 2, 4, 1, 3 and 3, 4, 1, 2 producing the square on the right of Table 1. In Latin Square designs such as this, the columns refer to the serial order of treatments (a within-subjects factor) and the rows refer to subject types (a between-subjects factor).

In practice, many investigators bypass the recommended procedure and generate their own square in the simplest manner possible. This can be done by randomly assigning treatments to positions in the first row of a square and then cyclically permuting each subsequent row. To do this, one simply takes the last condition of the first row and puts it in the first position of the second row. All other treatments are then shifted accordingly one position to the right. By coincidence, the recommended square produced by Winer's randomization procedure (see Table 1) yielded such a cyclical square. This can be seen most easily by transposing rows...
two and three in Winer's recommended square. Even Cochran and Cox (1957, p. 145-146) revert to the use of cyclical squares when \(n \) is greater than 6. Such cyclical squares, unfortunately, always introduce pairwise biases, and therefore should always be avoided for counterbalancing in repeated measures designs.

New Criteria for Latin Square Selection

It is clear that the cyclically generated squares, as well as those generated in the traditional manner, all satisfy the selection criterion of ensuring that each treatment appears in each of the four treatment serial positions. These commonly used squares, however, fail to explicitly control for two other features of treatment sequence that can affect the interpretation of within-subject treatment differences, i.e., pairwise priority and pairwise distance.

Pairwise priority refers to the proportion of times (across all subject types) that "treatment \(x \)" precedes "treatment \(y \). When that proportion is exactly .5, this means that \(x \) precedes \(y \) as often as \(y \) precedes \(x \). For example, note that in the condition pair of 0, 1 in the recommended square of Table 1 the proportion is exactly .5 (or 2/4), whereas for the pair 0, 2 the proportion is .75 (or 3/4). A subset of squares exists in which all pairs have exactly a .5 probability. Such squares are considered to be balanced for pairwise priority.

Pairwise distance refers to the number of other treatments (counting forward or backward from the numerically smaller member
of the treatment pair to the larger) occurring between a particular pair of treatments, \(x\) and \(y\). For example, in the first line of the recommended square of Table 1, there is a distance of two units between the 1, 3 condition pair. Ideally, one would want to exactly control the distribution of distances over the entire design for all condition pairs. Unfortunately no Latin Squares exist that provide such a control.

There are two features of the distributions of pairwise distances that can be controlled within a single square. The first is the proportion of pairs that are contiguous (i.e., the proportion of times, over all subject types, that a particular pair has a distance of zero). Note in the recommended square of Table 1 the pair 0, 2 are contiguous three of four times, whereas the pair 0, 1 are never contiguous. Of the six pairs in this square, four have at least one contiguous occurrence and two (0, 1 and 2, 3) have no contiguous subject types. A subset of Latin Squares exists in which all condition pairs have exactly two subject types with zero distance. In such squares, the proportion of contiguous pairs is constant for all possible pairs.

There is a second feature of the distribution of distances between pairs that can be controlled. In squares balanced for pairwise priority, it is possible to obtain directional symmetry. One can exactly match the distribution of distances for subject types in which \(x\) precedes \(y\) with the distribution obtained when \(x\) follows \(y\). Thus directional
Pairwise Balanced Latin Squares

Differences in priority will not be confounded with distance. Latin Squares that control for these two features of distance (directional symmetry and proportion of contiguous pairs) are considered balanced for distance.

Construction of Pairwise Balanced Latin Squares

The existence of subsets of Latin Squares incorporating features related to the present concerns has been acknowledged in the past (e.g., "diagram" balanced designs of Wagenaar, 1969, and designs "balanced for the estimation of residual effects", as discussed by Alimena, 1962; Cochran & Cox, 1959; and Williams, 1949). However, these earlier authors have not addressed the special implications of these squares for counterbalancing in psychological research. We have also been able to improve on the procedures presented in this earlier work for identifying acceptable squares (Isaac, McCann & Ostrom, 1983). For example, our procedure for even number designs generates more squares than does Williams' (1949) procedure, and includes squares equivalent to those generated by Alimena (1962) and Wagenaar (1969). Reports of these earlier procedures are absent from many books on statistics (e.g., Winer, 1972; Meyers, 1979) and research design (e.g., Crano & Brewer, 1973; Murphy & Puff, 1982) that appear in the psychological literature.

Since procedures for generating pairwise balanced pairs are available elsewhere, we will not repeat them here. Instead we have prepared tables that summarize squares ranging in size from three to sixteen. Most repeated measures research in psychology
Pairwise Balanced Latin Squares

involves designs in that range. We should also note at this point that no single generation procedure exhaustively represents the entire population of pairwise balanced squares for any given \(n \) (see Isaac, McCann, & Ostrom, 1983).

Insert Tables 2 and 3 about here

The entries in Tables 2 resulted from applying procedures referred to in Isaac et al. (1983). Those in Table 3 were initially developed by Williams (1949). We suspect that even more could be produced through trial and error (see Wagenaar, 1969, and Denes & Keedwell, 1974).

How to use Tables 2 and 3

Tables 2 and 3 do not contain the full Latin Squares; rather, they provide only the first line of the one or more pairwise balanced squares given for each size \(n \). This first line corresponds to "Subject Type I" as described in Table 1. The lines corresponding to the remaining Subject Types are easily produced in the manner described below.

1. Determine the size of Latin Square needed for the research design. The size (\(n \)) corresponds to the number of treatments in the repeated measures experiment.

2. Select a first line from Table 2 or 3 that corresponds to \(n \). If more than one is listed in the table, select one randomly.

3. Generate the remaining rows (or Subject Types) of the square. Successive rows are produced by adding one (in modular
Pairwise Balanced Latin Squares

arithmetic) to each entry in the previous row. As an illustration, consider the square of \(n = 4 \) in Table 2. The second, third, and fourth rows are 1, 2, 0, 3; 2, 3, 1, 0; and 3, 0, 2, 1, respectively.

4. Randomly assign experimental treatments to the \(n \) numbers in the resulting square. Note that this means when an \(n \) by \(n \) square is generated, it forms the basis of \(n! \) squares of experimental treatments.

5. Randomly assign subjects to rows of the square, insuring that an equal number of subjects are assigned to each.

Odd size squares

Complications arise when an experiment involves an odd number of experimental conditions. Whereas complete pairwise balance can be achieved with a single square for \(n \) even, this cannot be done in the case of \(n \) odd. For example, it is impossible to achieve pairwise priority for \(n \) odd since the proportion of times Condition \(x \) precedes Condition \(y \) can never be exactly .5. In this case, two squares must be used to achieve design-wide pairwise balance. This can be done by selecting any first row from Table 3 and combining it with a square based on the reverse of the selected first row.

One implication of using two squares for \(n \) odd is that the minimum number of subjects required for full counterbalancing increases from \(n \) to \(2n \). This suggests that there is a distinct advantage to employing repeated measures designs in which the total number of conditions is even. Thus, if the minimum number of
conditions needed to test the experimental hypothesis is odd, the researcher is urged to consider the benefits of adding one theoretically relevant condition. This would result in increased economy in terms of the minimum number to subjects required.

When the main experimental concern is with trends over a parametric independent variable (e.g., set size or exposure time), adding one more condition will also allow for a test of an additional, higher order orthogonal polynomial. When the repeated measures are the result of a factorial design (e.g., set size by exposure time by familiarity of word type), it is necessary that only one factor have an even number of levels. Conditions under which odd squares should still be used occur when an increase to an even design would result in excessive expense or excessive running time for subjects.

Statistical Considerations

Designs reported in this paper are balanced for additive residual or carry-over effects of the immediately preceding treatment. It should be noted that the residual effects may be more complicated; for example, multiplicative effects or those persisting beyond the immediately preceding treatment. If the structure of the residual is of some more complicated sort, these designs or any other Latin Squares may not be appropriate. The investigation of such residual effects is beyond the scope of the present paper.

Latin square designs were originally developed to deal with residual effects that are additive. To this point, the primary concern has been to control for the additive effects of serial
Pairwise Balanced Latin Squares

13

position. Conventional statistical analyses routinely include tests of significance for this factor. (It should be noted that these serial position effects are usually not of interest in psychological research and in practice are rarely even reported.)

A unique feature of pairwise balanced Latin Squares is that they make it possible to statistically estimate the contribution of additive residual effects due to pairwise priority. To do this, one must use an analysis proposed by Williams (1949) and illustrated in Cochran and Cox (1957).

Perhaps obviously, a standard statistical analysis of a Latin Square could be used in the present case, assuming pairwise residual effects exist, and that treatments and residual effects are uncorrelated, then there will be a positive bias in the mean square for treatments (i.e., the mean square will be larger than in such residual effects didn't exist), and estimates of treatment effects will be confounded with residual effects. However, since the design is balanced, treatment effects will be confounded with their own residual effects. In contrast, Latin Square designs that are not pairwise balanced will have treatment effects which may be confounded with residual effects of other treatments. Further, there will also be a positive bias in the mean square for treatments, the extent of which will depend on the particular design, but which in general will be greater than that associated with the pairwise balanced designs.

Thus, if it is desirable to estimate the test direct treatment
Pairwise Balanced Latin Squares

effects and residual effects separately, the analysis given in Cochran and Cox (1957) is recommended. Note that this analysis applies strictly to pairwise balanced designs, and not to other designs in which carry-over may be suspected. Alternatively, a standard analysis of Latin Square designs, such as given in most textbooks, would be testing, in effect, the significance of an additive combination of treatments and their residual effects when applied to the pairwise balanced designs.

Computational Procedures

The computational procedures for pairwise balanced designs were first described by Williams (1949, 1950), and later reported in slightly modified form by Cochran & Cox (1957). Since neither source is commonly available to psychologists, we will present the Cochran & Cox notation, and illustrate its use with an example.

Designs differ in terms of whether more than one square is used and whether more than one subject is assigned to each row of the square. Normally, two or more squares will be used when \(n \) is odd. But also, it will sometimes be advantageous to use several squares in the case of \(n \) even. It will increase error degrees of freedom and can allow for greater control over the distribution of pairwise distances. We have selected an example employing two 3x3 squares with one subject per row.

Insert Table 4 about here
The analyses presented here assume that row, column, and
treatment effects do not interact, and further, that the residual
effect simply adds to the effect of the following treatment.
Thus, for a row in which B follows A, and C follows B (i.e.,
treatment order A B C), the period in which C is applied has
a total effect attributable to treatments which is \((t_c + r_b)\).
Similarly, the total observed effect of treatments when B is
applied would be \((t_b + r_a)\).

To simplify the presentation, let us assume that an experiment
involves responses to three attitude statements, A, B, C, all
presented to each subject. A given subject responds to a row
of an appropriately selected square, and a column corresponds
to the position in the order of presentation. Two squares are
selected to be pairwise balanced. The squares are given in
Table 4. Included in Table 4 is the hypothetical data, with one
observation per cell.

The following symbols are used:

- \(n \) = number of treatments \((=3)\)
- \(m \) = number of squares \((=2)\)
- \(S \) = total of sequence (row)
- \(T \) = treatment total
- \(P \) = total of position (column) in a given square
- \(R \) = total of scores in positions immediately following the
treatment in question
- \(F \) = total of sequences (rows) in which this treatment is the
 last one
Pairwise Balanced Latin Squares

\(P_1 \) = total of scores in first position of all sequences

\(G_j \) = grand total of scores in a given square

\(G \) = grand total of all scores

The following quantities special to this analysis are needed:

\[P_1 - nG \]

\[nP_1 - (n + 2)G \]

Then some of the usual quantities are needed:

Correction factor: \(C = \frac{G^2}{mn^2} \)

Total \(SS = \sum X^2 - C \) \(\text{(df = } mn^2 - 1) \)

Sequences \(SS = \frac{1}{n} \sum S_j^2 - C \) \(\text{(df = } mn - 1) \)

Positions (Order) \(SS = \frac{1}{n} \sum T_j^2 - \frac{1}{n} \sum G_j^2 \) \(\text{(df = } n(n - 1)) \)

Note that this is a sum of squares between positions within squares.

Treatments (unadjusted) \(SS = \frac{\sum T^2}{mn} - C \) \(\text{(df = } n - 1) \)

\(\)
In addition, adjusted (for residual or carry-over) treatment effects are computed as follows:

\[
\hat{T} = (n^2 - n - 1) T + nR + F + P_1 - nC
\]

and the adjusted sum of squares for treatments is computed:

\[
SS_{trts(adj)} = \frac{\sum \hat{T}^2}{mn} \frac{1}{(n^2 - n - 1)(n^2 - n - 2)} \quad (df = n - 1)
\]

Similarly, adjusted residual (carry-over) effects are computed:

\[
\hat{R} = nT + n^2 R + nF + nP_1 - (n + 2)C
\]

and

\[
SS_{res(adj)} = \frac{\sum \hat{R}^2}{mn^3(n^2 - n - 2)}
\]

The total sum of squares for treatment effects (i.e., direct plus residual) is given by:

\[
SS_{trt} = SS_{trts(unadj)} + SS_{res(adj)}
\]

or

\[
SS_{trts(adj)} + SS_{res(unadj)}
\]

Three of these four quantities were computed above; the fourth, \(SS_{res(unadj)}\) may be computed by subtraction. However, to provide a check on computations, \(SS_{res(unadj)}\) may be computed directly:

First, for each treatment compute

\[
\hat{R}' = \hat{R} + C - nT
\]
Then the sum of squares is given by

\[SS_{\text{res(adj)}} = \frac{\sum R^2}{mn^3(n^2 - n - 1)} \]

Finally, SS error is obtained by subtraction from the total sum of squares. Here the sum of squares for Positions within Squares has been removed. If instead the overall sum of squares for Positions is removed (i.e., assuming no differences in Positions effects across squares), the error degrees of freedom becomes \((n - 1)(mn - 3)\).

Insert Tables 5 and 6 about here

Table 5 summarises the computations using the formulae that are presented above. The analysis of Variance Summary Table is contained in Table 6. Note that the terms in brackets have the same total. Tests on the effects of treatments and residuals should only be made on the adjusted sums of squares. The Error sum of squares is obtained by subtraction of the total of all other non-redundant sums of squares from the Total, i.e.;

\[SS_{\text{tot}} = 182.0 \]

Thus, only one of the sums in brackets is unsolved in this subtraction, otherwise effects attributable to treatments (direct and residual) would be counted twice. Since \(F_{2,4} = 10.65\) for \(\alpha = .025\), both direct treatment and residual effects are significant in this example.
This example does not involve a design in which a between Ss treatment effect is included, or in which multiple Ss are assigned to a row of a square. However, the extension of the analysis to such designs is straightforward and follows plans available in standard texts. The adjustment for carry-over (residual) involves adjustment of within subject effects. Further, computation of a Ss x Positions effect (the usual within Ss error) in this case would be unaffected. Between Ss effects would use the usual Between Ss error term.
References

Campbell, D. T., & Stanley, J. C. (1966). *Experimental and quasi-
experimental designs for research*. Chicago: Rand McNally.

research in social psychology*. Reading, Mass.: Addison-
Wesley.

Boston, Allyn & Bacon.

Crano, W. D., Brewer, M. B. (1973). *Principles of research in

D'Amato, M. R. (1970). *Experimental psychology methodology:

agricultural, and medical research* (4th Edition). Edinburgh:
Oliver & Boyd.

Greenwald, A. G. (1976). Within-subjects designs: To use or not

pairwise balanced Latin Squares*. Unpublished manuscript,

Pairwise Balanced Latin Squares

22

Table 1

Latin Square Selection Based on Traditional Criteria

<table>
<thead>
<tr>
<th>Subject Type</th>
<th>Standard Square</th>
<th>Recommended Square</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment Order</td>
<td>Treatment Order</td>
</tr>
<tr>
<td></td>
<td>First</td>
<td>Second</td>
</tr>
<tr>
<td>I.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>III.</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>IV.</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Note - Based on Winer (1972, p. 689).
Pairwise Balanced Latin Squares

Table 2

First Rows of Pairwise Balanced Squares for \(n \) Even

<table>
<thead>
<tr>
<th>(n=4)</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=6)</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(n=8)</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>(n=10)</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>(n=12)</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>7</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>(n=14)</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>13</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>(n=16)</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>9</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>13</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>6</td>
</tr>
</tbody>
</table>

Note. - \(n \) = number of experimental treatments
Pairwise Balanced Latin Squares

Table 3

First Rows of Pairwise Balanced Squares for *n* Odd

<table>
<thead>
<tr>
<th>n = 3</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 5</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>n = 7</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>n = 9</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>n = 11</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>n = 13</td>
<td>0</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>n = 15</td>
<td>0</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

Note. - *n* = Number of experimental treatments.
Table 4

Pairwise Balanced 3x3 Latin Squares and Simulated Data

Latin Squares

<table>
<thead>
<tr>
<th>Subject Type</th>
<th>Treatment Position</th>
<th>Square 1</th>
<th></th>
<th></th>
<th>Square 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>First</td>
<td>Second</td>
<td>Third</td>
<td>First</td>
<td>Second</td>
<td>Third</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>IV</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>V</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>VI</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Simulated Data

<table>
<thead>
<tr>
<th>Subject Type</th>
<th>Treatment Position</th>
<th>Square 1</th>
<th></th>
<th></th>
<th>Square 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Σ</td>
<td></td>
<td></td>
<td>Σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4</td>
<td>-6</td>
<td>1</td>
<td>-9</td>
<td>6</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>-3</td>
<td>Σ</td>
</tr>
</tbody>
</table>
Table 5

Summary of Computations

<table>
<thead>
<tr>
<th>Treatment Number</th>
<th>T</th>
<th>R</th>
<th>F</th>
<th>(\hat{T}/24)</th>
<th>(\hat{R}/24)</th>
<th>(\hat{k}')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-7</td>
<td>-8</td>
<td>13</td>
<td>-2.58</td>
<td>178</td>
<td>-3.25</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>-6</td>
<td>-.25</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
<td>-7</td>
<td>2.50</td>
<td>84</td>
<td>3.5</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
F_1 - nG &= 2 - 3(6) = -16 \\
npF_1 - (n + 2)G &= 3(2) - (3 + 2)6 = -24 \\
\hat{T} &= 5T + 3R + F - 16 \\
\hat{R}' &= 3T + 9R + 3F - 24 \\
C &= \frac{G^2}{2 \cdot 3^2} = \frac{36}{18} = 2.0 \\
SS_{tot} &= 2X^2 - C = 184 - 2 = 182 \\
SS_{seq} &= \frac{1}{3} \left\{ \sum S^2 \right\} - C = \frac{1}{3} \left\{ (-9)^2 + (2^2) + (2)^2 \right\} - 2 = 78.67 \\
SS_{pos \ w/seq} &= \frac{1}{3} \left\{ \sum F^2 \right\} - \frac{1}{3} \left(\sum G^2 \right) \\
&= \frac{1}{3} \left(0^2 + (-3)^2 + \ldots + (1)^2 \right) - \frac{1}{9} \left((-3)^2 + (9)^2 \right) = 6.67 \\
SS_{trt(\text{unadj})} &= \frac{\sum T^2}{2(3)} - C = \frac{1}{6} \left\{ (-7)^2 + (3)^2 + (10)^2 \right\} - 2 = 24.33
\end{align*}
\]
Pairwise Balanced Latin Squares

\[
SS_{trt(adj)} = \frac{\sum_{i=1}^{k} r_i^2}{6(5)(4)} = \frac{(-62)^2 + (2)^2 + (60)^2}{120} = 62.07
\]

\[
SS_{rea(adj)} = \frac{\sum_{i=1}^{k} r_i^2}{2 \cdot 3^3 (3^2 - 3 - 2)} = \frac{(-78)^2 + (-6)^2 + (84)^2}{216} = 61.00
\]

\[
SS_{res(unadj)} = \frac{\sum_{i=1}^{k} r_i^2}{2 \cdot 3^3 (3^2 - 3 - 1)} = \frac{(-51)^2 + (-9)^2 + (60)^2}{270} = 23.27
\]
Table 6

Analysis of Variance Summary Table

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequences</td>
<td>$mn - 1 = 5$</td>
<td>78.67</td>
<td>15.73</td>
<td></td>
</tr>
<tr>
<td>Positions within squares</td>
<td>$m(n - 1) = 4$</td>
<td>6.67</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>Direct Treatment and Residual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment effects (unadj)</td>
<td>$n - 1 = 2$</td>
<td>24.33</td>
<td>12.17</td>
<td></td>
</tr>
<tr>
<td>Residual effects (adj)</td>
<td>$n - 1 = 2$</td>
<td>61.00</td>
<td>30.50</td>
<td>10.78</td>
</tr>
<tr>
<td>Residual effects (unadj)</td>
<td>$n - 1 = 2$</td>
<td>23.27</td>
<td>11.64</td>
<td></td>
</tr>
<tr>
<td>Treatment effects (adj)</td>
<td>$n - 1 = 2$</td>
<td>62.07</td>
<td>31.04</td>
<td>10.97</td>
</tr>
<tr>
<td>Error</td>
<td>$(n - 1)(mn - m - 2) = 4$</td>
<td>11.32</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$mn^2 - 1 = 17$</td>
<td>182.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4420E DISTRIBUTION LIST
LIST 1
MANDATORY

Defense Technical Information Center (12 copies)
ATTN: DTIC DDA-2
Selection and Preliminary Cataloging Section
Cameron Station
Alexandria, VA 22314

Library of Congress (3 copies)
Science and Technology Division
Washington, D.C. 20540

Office of Naval Research (6 copies)
Code 4420E
800 N. Quincy Street
Arlington, VA 22217

Naval Research Laboratory
Code 2627
Washington, D.C. 20375

Office of Naval Research
Director, Technology Programs
Code 200
800 N. Quincy Street
Arlington, VA 22217
LIST 3
OPNAV

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Head, Research, Development, and
Studies Branch (Op-115)
1812 Arlington Annex
Washington, DC 20350

Director
Civilian Personnel Division (OP-14)
Department of the Navy
1803 Arlington Annex
Washington, DC 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management
Plans and Policy Branch (Op-150)
Department of the Navy
Washington, DC 20350

Chief of Naval Operations
Head, Manpower, Personnel, Training
and Reserves Team (Op-964D)
The Pentagon, 4A478
Washington, DC 20350

Chief of Naval Operations
Assistant, Personnel Logistics
Planning (Op-987H)
The Pentagon, 5D772
Washington, DC 20350
LIST 4
NAVMAT & NPRDC

NAVMAT

Program Administrator for Manpower, Personnel, and Training
MAT-0722
800 N. Quincy Street
Arlington, VA 22217

Naval Material Command
Management Training Center
NAVMAT 09M32
Jefferson Plaza, Bldg #2, Rm 150
1421 Jefferson Davis Highway
Arlington, VA 20360

Naval Material Command
Director, Productivity Management Office
MAT-00K
Crystal Plaza #5
Room 632
Washington, DC 20360

Naval Material Command
Deputy Chief of Naval Material, MAT-03
Crystal Plaza #5
Room 236
Washington, DC 20360

Naval Personnel R&D Center
Technical Director
Director, Manpower & Personnel Laboratory, Code 06
Director, System Laboratory, Code 07
Director, Future Technology, Code 41
San Diego, CA 92152

Naval Personnel R&D Center
Washington Liaison Office
Ballston Tower #3, Room 93
Arlington, VA 22217

(4 copies)
LIST 5
BUMED

Commanding Officer
Naval Health Research Center
San Diego, CA 92152

Psychology Department
Naval Regional Medical Center
San Diego, CA 92134

Commanding Officer
Naval Submarine Medical Research Laboratory
Naval Submarine Base
New London, Box 900
Groton, CT 06349

Director, Medical Service Corps
Bureau of Medicine and Surgery
Code 23
Department of the Navy
Washington, DC 20372

Commanding Officer
Naval Aerospace Medical Research Lab
Naval Air Station
Pensacola, FL 32508

Program Manager for Human Performance (Code 44)
Naval Medical R&D Command
National Naval Medical Center
Bethesda, MD 20014

Navy Health Research Center
Technical Director
P.O. Box 85122
San Diego, CA 92138
LIST 6
NAVAL ACADEMY AND NAVAL POSTGRADUATE SCHOOL

Naval Postgraduate School
ATTN: Chairman, Dept. of Administrative Science
Department of Administrative Sciences
Monterey, CA 93940

Superintendent
Naval Postgraduate School
Code 1424
Monterey, CA 93940

U.S. Naval Academy
ATTN: Chairman, Department of Leadership and Law
Stop 7-B
Annapolis, MD 21402

Superintendent
ATTN: Director of Research
Naval Academy, U.S.
Annapolis, MD 21402
LIST 7
HRM

Officer in Charge
Human Resource Management Detachment
Naval Air Station
Alameda, CA 94591

Officer in Charge
Human Resource Management Detachment
Naval Submarine Base New London
P.O. Box 81
Groton, CT 06340

Officer in Charge
Human Resource Management Division
Naval Air Station
Mayport, FL 32228

Commanding Officer
Human Resource Management Center
Pearl Harbor, HI 96860

Commander in Chief
Human Resource Management Division
U.S. Pacific Fleet
Pearl Harbor, HI 96860

Officer in Charge
Human Resource Management Detachment
Naval Base
Charleston, SC 29408

Commanding Officer
Human Resource Management School
Naval Air Station Memphis
Millington, TN 38054

Human Resource Management School
Naval Air Station Memphis (96)
Millington, TN 38054
List 7 (Continued)

Commanding Officer
Human Resource Management Center
1300 Wilson Boulevard
Arlington, VA 22209

Commanding Officer
Human Resource Management Center
5621-23 Tidewater Drive
Norfolk, VA 23511

Commander in Chief
Human Resource Management Division
U.S. Atlantic Fleet
Norfolk, VA 23511

Officer in Charge
Human Resource Management Detachment
Naval Air Station Whidbey Island
Oak Harbor, WA 98278

Commanding Officer
Human Resource Management Center
Box 23
FPO New York 09510

Commander in Chief
Human Resource Management Division
U.S. Naval Force Europe
FPO New York 09510

Officer in Charge
Human Resource Management Detachment
Box 60
FPO San Francisco 96651

Officer in Charge
Human Resource Management Detachment
COMNAVFORJAPAN
FPO Seattle 98762
LIST 8
NAVAL MISCELLANEOUS

Naval Military Personnel Command (2 copies)
HRM Department (NMPC-6)
Washington, DC 20350

Naval Training Analysis and Evaluation Group
Orlando, FL 32813

Commanding Officer
ATTN: TIC, Bldg. 2068
Naval Training Equipment Center
Orlando, FL 32813

Chief of Naval Education and Training (N-5)
Director, Research Development, Test and Evaluation
Naval Air Station
Pensacola, FL 32508

Chief of Naval Technical Training
ATTN: Code D17
NAS Memphis (75)
Millington, TN 38D54

Navy Recruiting Command
Head, Research and Analysis Branch
Code 434, Room 8001
801 North Randolph Street
Arlington, VA 22203

Navy Recruiting Command
Director, Recruiting Advertising Dept.
Code 40
801 North Randolph Street
Arlington, VA 22203

Naval Weapons Center
Code 094
China Lake, CA 93555

Jesse Orlansky
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
LIST 9
USMC

Headquarters, U.S. Marine Corps
Code MPI-20
Washington, DC 20380

Headquarters, U.S. Marine Corps
ATTN: Scientific Adviser,
 Code RD-1
Washington, DC 20380

Education Advisor
Education Center (E031)
MCDEC
Quantico, VA 22134

Commanding Officer
Education Center (E031)
MCDEC
Quantico, VA 22134

Commanding Officer
U.S. Marine Corps
Command and Staff College
Quantico, VA 22134
LIST 10
OTHER FEDERAL GOVERNMENT

Defense Advanced Research Projects Agency
Director, Cybernetics Technology Office
1400 Wilson Blvd, Rm 625
Arlington, VA 22209

Dr. Douglas Hunter
Defense Intelligence School
Washington, DC 20374

Dr. Brian Usilaner
GAO
Washington, DC 20548

National Institute of Education
EOLC/SMO
1200 19th Street, N.W.
Washington, DC 20208

National Institute of Mental Health
Division of Extramural Research Programs
5600 Fishers Lane
Rockville, MD 20852

National Institute of Mental Health
Minority Group Mental Health Programs
Room 7 - 102
5600 Fishers Lane
Rockville, MD 20852

Office of Personnel Management
Office of Planning and Evaluation
Research Management Division
1900 E Street, N.W.
Washington, DC 20415

Chief, Psychological Research Branch
U.S. Coast Guard (G-P-1/2/TP42)
Washington, D.C. 20593

Social and Developmental Psychology Program
National Science Foundation
Washington, D.C. 20550

Dr. Earl Potter
U.S. Coast Guard Academy
New London, CT 06320
LIST 10 CONT'D

OTHER FEDERAL GOVERNMENT

Division of Industrial Science
& Technological Innovation
Productivity Improvement Research
National Science Foundation
Washington, D.C. 20550

Douglas B. Blackburn, Director
National Defense University
Mobilization Concepts Development Center
Washington, D.C. 20319
LIST 11
ARMY

Headquarters, FORSCOM
ATTN: AFPR-HR
Ft. McPherson, GA 30330

Army Research Institute
Field Unit - Leavenworth
P.O. Box 3122
Fort Leavenworth, KS 66027

Technical Director
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Head, Department of Behavior
Science and Leadership
U.S. Military Academy, New York 10996

Walter Reed Army Medical Center
Attn: Dr. Mary Lozano
W. R. Army Institute of Research
Division of Neuropsychiatry
Forest Glen
Washington, D.C. 20012
LIST 12
AIR FORCE

Air University Library
LSE 76-443
Maxwell AFB, AL 36112

Head, Department of Behavioral
Science and Leadership
U.S. Air Force Academy, CO 80840

MAJ Robert Gregory
USAFA/DFBL
U.S. Air Force Academy, CO 80840

AFOSR/NL
Building 410
Bolling AFB
Washington, DC 20332

Department of the Air Force
HQUSAF/MPXHL
Pentagon
Washington, DC 20330

Technical Director
AFRRL/MD(T)
Brooks AFB
San Antonio, TX 78235

AFMPC/MPCYPR
Randolph AFB, TX 78150
LIST 13
MISCELLANEOUS

Australian Embassy
Office of the Air Attache (S3B)
1601 Massachusetts Avenue, N.W.
Washington, D.C. 20036

British Embassy
Scientific Information Officer
Room 509
3100 Massachusetts Avenue, N.W.
Washington, DC 20008

Canadian Defense Liaison Staff, Washington
ATTN: CDRD
2450 Massachusetts Avenue, N.W.
Washington, DC 20008

Commandant, Royal Military College of Canada
ATTN: Department of Military Leadership and Management
Kingston, Ontario K7L 2W3

National Defence Headquarters
DPAR
Ottawa, Ontario K1A OK2

Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207
Sequential by Principal Investigator

LIST 14
CURRENT CONTRACTORS

Dr. Clayton P. Alderfer
Yale University
School of Organization and Management
New Haven, Connecticut 06520

Dr. Janet L. Barnes-Farrell
Department of Psychology
University of Hawaii
2430 Campus Road
Honolulu, HI 96822

Dr. Gary Bowen
SRA Corporation
800 18th Street, N.W.
Washington, D.C. 20006

Dr. Jomills Braddock
John Hopkins University
Center for the Social Organization
of Schools
3505 N. Charles Street
Baltimore, MD 21218

Jeanne M. Brett
Northwestern University
Graduate School of Management
2001 Sheridan Road
Evanston, IL 60201

Dr. Terry Connolly
Georgia Institute of Technology
School of Industrial & Systems
Engineering
Atlanta, GA 30332

Dr. Richard Daft
Texas A&M University
Department of Management
College Station, TX 77843

Dr. Randy Dunham
University of Wisconsin
Graduate School of Business
Madison, WI 53706
List 14 (continued)

Dr. Henry Emurian
The Johns Hopkins University
School of Medicine
Department of Psychiatry and
Behavioral Science
Baltimore, MD 21205

Dr. Arthur Gerstenfeld
University Faculty Associates
710 Commonwealth Avenue
Newton, MA 02159

Dr. J. Richard Hackman
School of Organization
and Management
Box 1A, Yale University
New Haven, CT 06520

Dr. Wayne Holder
American Humane Association
P.O. Box 1266
Denver, CO 80201

Dr. Daniel Ilgen
Department of Psychology
Michigan State University
East Lansing, MI 48824

Dr. Lawrence R. James
School of Psychology
Georgia Institute of
Technology
Atlanta, GA 30332

Dr. David Johnson
Professor, Educational Psychology
178 Pillsbury Drive, S.E.
University of Minnesota
Minneapolis, MN 55455

Dr. F. Craig Johnson
Department of Educational
Research
Florida State University
Tallahassee, FL 32306
List 14 (continued)

Dr. Dan Landis
Department of Psychology
Purdue University
Indianapolis, IN 46205

Dr. Frank J. Landy
The Pennsylvania State University
Department of Psychology
417 Bruce V. Moore Building
University Park, PA 16802

Dr. Bibb Latane
The University of North Carolina
at Chapel Hill
Manning Hall 026A
Chapel Hill, NC 27514

Dr. Edward E. Lawler
University of Southern California
Graduate School of Business
Administration
Los Angeles, CA 90007

Dr. William H. Mobley
College of Business Administration
Texas A&M University
College Station, TX 77843

Dr. Lynn Oppenheim
Wharton Applied Research Center
University of Pennsylvania
Philadelphia, PA 19104

Dr. Thomas M. Ostrom
The Ohio State University
Department of Psychology
116E Stadium
404C West 17th Avenue
Columbus, OH 43210

Dr. William G. Ouchi
University of California,
Los Angeles
Graduate School of Management
Los Angeles, CA 90024
List 14 (continued)

Dr. Robert Rice
State University of New York at Buffalo
Department of Psychology
Buffalo, NY 14226

Dr. Irwin G. Sarason
University of Washington
Department of Psychology, NI-25
Seattle, WA 98195

Dr. Benjamin Schneider
Department of Psychology
University of Maryland
College Park, MD 20742

Dr. Edgar H. Schein
Massachusetts Institute of
Technology
Sloan School of Management
Cambridge, MA 02139

Dr. H. Wallace Sinaiko
Program Director, Manpower Research
and Advisory Services
Smithsonian Institution
801 N. Pitt Street, Suite 120
Alexandria, VA 22314

Dr. Richard M. Steers
Graduate School of Management
University of Oregon
Eugene, OR 97403

Dr. Siegfried Streufert
The Pennsylvania State University
Department of Behavioral Science
Milton S. Hershey Medical Center
Hershey, PA 17033

Dr. Barbara Saboda
Public Applied Systems Division
Westinghouse Electric Corporation
P.O. Box 866
Columbia, MD 21044

Dr. Harry C. Triandis
Department of Psychology
University of Illinois
Champaign, IL 61820
List 14 (continued)

Dr. Anne S. Tsui
Duke University
The Fuqua School of Business
Durham, NC 27706

Andrew H. Van de Ven
University of Minnesota
Office of Research Administration
1919 University Avenue
St. Paul, MN 55104

Dr. Philip Wexler
University of Rochester
Graduate School of Education &
Human Development
Rochester, NY 14627

Sabra Woolley
SRA Corporation
901 South Highland Street
Arlington, VA 22204