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ABSTRACT

R

The relationship between the (generalized) mean
Kullback-Leibler's information and the (generalized) maximun
. likelihood principle is exploited in this report to analyze the
state estimation problems of both discrete-time and
continuous-time uncertain non-linear systems.
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1, INTRODUCTION

In solving practical state estimation problems, we often
encounter two difficult questions. The first question is related
to the accuracy of the deterministic model used for fitting the
dynamics of measurements. The second question concerns the
accuracy of the statistical model of measurement errors. Since
the exact mathematical representation of the physical measurement
process is not known, a conservative but prejudiced approach to
resolve the above two questions is to adjust parameters in the
model until measurement residuals are acceptable. (This approach
is prejudiced because almost all anomalies in the residuals can
be made to disappear by carefully adjusting parameters in the
model.) The resulting state estimates, therefore, differ
significantly for different practitioners who depend heavily on
models and personal experience in residual analysis. Moreover,
the accuracy of the dynamical model and the statistical behavior
of the measurement process are two compromising quantities
especially well-known to those who use Kalman filters
extensively. For a given measurement accuracy, it was observed
in [1] and (2] that a Kalman filter might diverge due to the
inaccuracy in the dynamical model. Adding so0-called "process
noise" to the dynamical model may prevent filter divergence
[1,3,4]. A detailed analysis of filter divergence for a
time-invariant linear system is documented in [l]. 1In regard to
the selection of the covariance matrix of the process noise,
people in the field often admit that it is more an art than a
science.

Akaike [5] applied the mean Kullback-Leibler's information
(MKLI) [6] to extend the maximum likelihood principle. Perhaps
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the most astonishing result of [5] in terms of the impact on time
series analysis is that a computable quantity called model
unreliability is introduced and applied to some practical
problems. The combination of model unreliability and badness of
fit was used in [5] and [7)] as a measure to select parameters in
a model for a stationary, ergodic process. The same idea was
extended recently in [8] to determine the order of a linear
time-varying auto-regressive model.

In this report, we follow the reasoning in [6] and (8] to
address when to terminate adjusting parameters in a non-linear
system and how to select the best non-linear state estimate among
many candidates. However, only the asymptotic result is
obtained. Further studies are required to extend the result
reported herein to cover the finite sample cases.

The structure of this report is summarized in Figures 1 and
2. Hopefully, these figures can also te thought as the logic

tree that describes the linkage of many small pieces throughout
the report.




CONNECTED BY
ASYMPTOTIC THEORIES
(Theorems 3.1, 3.2, and 3.3)

1

MKLI - MLE
4 o COMPUTABLE
~ e PROVIDE A MEASURE OF DISTANCE S R (§3.A, 3.8)
BETWEEN THE ASSUMED MODEL AND e
THE TRUTH (§3.A, 3.8)
e 1T 1S NOT COMPUTABLE BECAUSE THE
TRUTH IS NOT KNOWN

Fig. 1. The structrue of the report: fixed dynamic

models.
CONNECTED 8Y
ASYMPTOTIC THEORIES
(Theorems 3.5 and 3.6)
GENERLIZED
e ———l
GENERLIZED MKLI MLE
® A MEASURE OF DISTANCE BETWEEN s e COMPUTABLE
THE MODEL AND THE TRUTH (§ 3.C)
(§3.C)
'.
e NOT COMPUTABLE *

Fig. 2. The structure of the report: tunable dynamic
models.
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2. NOTATIONS AND PRELIMINARIES

In this section, we formulate the general problem to be
addressed. Let z(t) be an m-dimensional vector measurement
process. The true representation of z(t) is assumed tc be given

by

N 2(t) = ho(X0(0),x0(1)seee,Xo(t)it) + nolt)  (2.1)

“‘

sﬁﬁ where hp is an m-dimensional single-valued function

?k; differentiable with respect to the arguments, and ng(t) is

B} m-dimensional, zero-mean white Gaussian noise with a

D) positive-definite covariance matrix R, denoted by Ry > 0.

:ﬁ Throughout the report, a subscript "o" refers to the true model.

: Note that the probability density function of z(0),..,z(t;),
denoted by P, is well defined and uniguely determined by

S,

¥ System (2.1).

2‘

R A mathematical model different from (2.1) is generally used.

e Let the mathematical model be given by
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£(x(t),t) ’ initial condition x(0) (2.2a)

N
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A
]

h(x(t),t) + n(t) (2.2b)

where x is a g-dimensional vector and n(t) is a zero-mean white
Gaussian noise process with a positive-definite covariance matrix
R. It is also assumed that £ and h possess the same analytic
properties as hg. The probability density function induced by
(2.2) is denoted by P. Furthermore, we assume

h(_ﬁo(ort)lt) = E(EQ(OIt)It) (2.3)

where ¢ is a function that maps the nt-dimensional Euclidean
space to the g-dimensional Euclidean space and
Xo(0,t) = (x0(0)resesXp(t)).

Many practical problems can be formulated by (2.2) for
estimating the initial state x(0) from measurements. Egquation
(2.2a) describes the physical law governing the state vector,
whereas h in (2.2b) models the measurement function. In reality,
the exact physical law is either not known completely or is toco
complicated to be applied directly. On the other hand, the
functional relationship between a given state vector and the
deterministic measurements is usually known. However, exact
statistical properties of measurement noise n(t) are seldom

known. The trajectory estimation problem is a typical example
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that fits the above description exactly. The ballistic
trajectory of an object is governed by Newton and Euler
equations. An important part of the driving forces and torques
in Newton and Euler equations is due to air pressure. In
aerodynamics, pressure is best modeled by a potential equation
which describes the velocity field of the air. It is impossible
with current technology to incorporate a potential equation with
Newton and Euler equations into the framework of the trajectory
estimation problem. On the other hand, what a radar can measure
about the target motion is modeled by (2.3).

The solution of the non-linear difference equation (2.2a) is
unique and denoted by x(t;x(0)). The Jacobian matrices F(t) and
H(t) are defined by

ai(ist) I
F(t) = —— _
ox x = x(t;x(0)) (2.4)
ah(lst)
H(t) . (2.5)

= x = x(t;x(0))

The transition matrix of F(t) denoted by ¢(t, 1) satisfies the

following difference equation

p(t+l, 1) = F(L)e(t, 1) ;3 d(1,1) = I (2.6)




where I is the q x g identity matrix. Furthermore, we define the
R-observability Gramian M(x(0);t;) by

s 1 g T, .-l
M(g(o);tl) = I ¢ (1,00H (T)R "H(T)¢(T,0) (2.7)
=0
® where superscripts "T" and "-1" denote matrix transpose &
inverse respectively. The meaning of the observability ' mian
5 with respect to observability and unbiased estimation of -tem

(2.2) is described in [10].

In the first part of this report, we address the problem of
estimating x(t) from the observed sample for two different
situations. When the form of f in (2.2a) is fixed (except for
the initial condition x(0)), we shall classify this case as a
fixed dynamical model. We shall call the other case a tunable

dynamical model when the functional form of £ is not fixed.
3. DISCRETE-TIME UNCERTAIN NON-LINEAR SYSTEMS

A, MKLI and MLE

The mean Kullback-Leibler's information (MKLI) is a function
of the likelihood ratio which gives a measure of separation

between two probability distributions. The normalized MKLI of
e (2.1) and (2.2)is given by

Pz, Y
A 2 0 (3.1)
W(tl) 2 o t—1 Eo(zn —_——

2 1
= L(x(0),R,t ) + = E_(AnP (Z) ))

1
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L(x(0),R,t1) = tn|R| + @ (x(0),R,t1) (3.2)

[y

and d is defined by the following two equations:
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ot e,-1 2 (3.3)
o dx©@.Re) S T |lz0)-h&ex0),e]] )
ras 1 t=0 R

OXFG
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T(x(0),R,t)) 2 E_d(x(0),R,t,)

)

L4
A
o

g
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’n

(3.4)
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t, -1

Ly
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2
-1 1 .
= TERRT) + = I |1hg (5, (0,00, 0 hGx(esx0), 0[]y

‘ 1 oo .

xL?

o Note that Ey is the expectation operator with respect to the

N true probability density function Pg, |.| denotes the

- determinant of the enclosed matrix, "Tr" denotes the trace of a
matrix, and II.,I denotes the Euclidean norm. A smaller value of
o, W(t;) means that the corresponding Model (2.2) is closer to

the truth in the sense of MKLI.
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e The maximum likelihood estimate (MLE) of (x(0),R) denoted by
s (x(0/ty), R(ty)) is defined to be the minimum point of
~7 -
\J,'
2
g A
' J(x(0),R,t]) = zn|R| + d(x(0),R,ty) (3.5)
i
w4
3 It is easy to verify that
Lo L(x(0),R,t1) = EgJ(x(0),R,t1) (3.6)
s
’:3 Note that the second term of (3.1) is a constant for a given
Aﬁ observed sample and independent of the assumed nathematical
% model., Because of this fact and (3.6), it is not surprising to
‘ see that the MKLI and the MLE have very close relationships.
) Indeed, they are shown to be equivalent with probability one with
'r" » 3 - 3 ]
o respect to the true probability density function (w.p.l, Pg)
ng asymptotically if the limit of L with respect to t; is
" N
, unimodal ([8].
.":‘n
AN
N B. FIXED DYNAMICAL MODELS
%
-

We shall first establish the unimodal condition of L

o (x(0),R,t]) for any finite tj; and then state the equivalent

Eﬁ relationship between the MLE and the MKLI for the model given by
W (2.2).

;}' It requires three steps to establish the unimodal condition

of L(x(0),R,t1). The first step is summarized by the following
e theorem.




Theorem 3.1

For a given R > 0, we hypothesize that

(i) x(0)es, where S is a convex and compact subset of R4

(ii) the observability Gramian M(x(0);tj;) > 0 for all )
x(0) es

(iii) for any bj, bses that minimize 4 (x(0),R,t})
and c(t)eRd for each t, there exists b3y in S

such that

P PP

t,-1 2 t,-1
{f2nCe(e)) - (h(hl) + h(l)_z))H 24 I
R t=0

2
lInte(®) - nepll )
t=0 R

Under the above three hypotheses, there exists a unique minimum
point of d(x(0),R,t;) in S.

Proof The existence of a minimum point in S is guaranteed by
the hypothesis that d is a continuous function defined over a
compact set S. Let by and by be two minimum points of d in

S. Let

hj = h(x(t;bj),t) for i = 1,2,

.....
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By the parallelogram law, we have

2 2
2[“20'21” _1 + Hho_hzll _1]

(3.7)
R R
2 2
= ||n,-h, || Lt |12h - (b +h) || .
R R
By Hypotheses (i), (ii) and by (2.3), we have
b = 1 (b,+b,)eS, and
=0 "2 |1 =
(3.8)
T Lanies, 0,00 LT :
18X ’ - (h,+h, ) >4 I h(¢x (0,t))-h(b,)

for all go(o,t)eRnt. Let c(t) = ¢(xo5(0,t)). By the fact

that both by and b, are minimum points of d and by (3.7) as
well as (3.8), we have

tl-l 2 t, -1 2 tl-l 9
Lo llhy-noll =4 = flnCee) -nd]l - I [|2h(e(e)) - ()]
t=0 gl t=0 gl t=0 .

(3.9)
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i Equation (3.9) implies that
Ix\.-‘:
::; tl'l 2

W
g L [lb-nll =0 (3.10)
E t=0 -1
B~ R
3 By Hypothesis (ii) and Corollary 2.1.1 of [10], (3.10)
TN implies
N

'3
S
} by = by Q.E.D.

X

" Now let S be a set of initial states for Model (2.2). For a
35 fixed vector by in S, it is known (for example, use the
%. technique introduced in [11]) that there exists a unique
Rt covariance matrix given by

g

4

4
‘ j R} = Rg + X(b3,t]) (3.11)
~J
-:3 which minimizes L(x(0),R,t]) where X(bj,t]) is defined by

\. — —

> Yo
A

1 T

- X(gl.tl) = t_l Eo Q_l,o-b_(i(t.kl),t))(ho E(}g(t.kl),t)) (3.12)
h? t

:ﬁj Let C be a subset of m x m positive-definite matrices containing ’
. Ry and those generated by S through (3.11) and (3.12).

E: Finally, the existence of a unique model is summarized by the

2: following theorem.
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Theorem 3.2 Let S be a convex and compact set of initial

states, and C be the partially-ordered set of positive-definite
matrices defined above, 1If Hypotheses (ii) and (iii) of Theorem
3.1 hold for all R in C then there exists a unique point in 8§ x C
which minimizes L(x(0),R,t}).

Proof By Theorem 3.1, there exists a unique vector b in S
which minimizes d(x(0),R,t;) for a given R in C. We can
construct a sequence in S x C as follows:

(1) Let b; be the unique vector in § which minimizes
d(x(0),Ro,t)) and

Ry = Rp + X(b3,t1)

(2) bx is defined to be the unique vector in S which
minimizes 315(0),Rk-1,t1) and

[}

Rk = Ro + X(bk,t1)

Since X(b,t;) is continuous over a compact S, S x C is also
compact. There exists a limit point of (byk,Rkx) denoted by
(6,ﬁ3 in the compact set S x C. We shall prove that the limit
point is unique.
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By construction, we have
_d-(.tlk+1'Rk't1) < E.(Ek,Rk,tl) (3.13)
Therefore, by definition and (3.13), we have
: L(bk+1 +Rk+1,t1) < L(bk+1,Rk,t})

e

o Hence, {L(bg,Rk,t1)]} is non-increasing and bounded below in
Rl, ‘Thus, the limit exists and is denoted by Le. Let
o {(bk+,Rk') } be a subsequence such that

lim (bk',Rk') = (b,R)

JW k'+ o

N

2N

;3 Since L(b,R,t;) is a continuous function defined over S x C, we
» have

e

o

N

oo ~on .
$ lim L(Ek"Rk"tl) = L(E'R'tl)

i

k'+ o

e
"< (‘ -

|54
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Due to the unique property of a convergent sequence, we have
L(E'thl) = La

Suppose that (bj;,R3) is a m1n1mum point of L in § x C. 1If
b1=b then (3.11) implies that R= =R;. If by # b, by

- Hypotheses (ii) and (iii) of Theorem 3.1 for all R in C, we
should have either X(ﬁ,tl) > X(bj,t;) or X(E,tl) <
X(bj,t1). Assuming X(é,tl) > X(bj,t1), we have

A

d(bj,R,t3) < d(b,R,t]1). (3.14)

~

Inequality (3.14) is a contradiction because b minimizes
d(x(0),R,t)). On the other hand, if we have

d(b,Ry,t1) < d(b1,Ry,t1)
then
L(b,Ry,t3) < L(bj,Ry,t1) (3.15)

Again, it contradicts the assumptlon that (bl,Rl) is a
minimum point of L. Therefore, bj= b and R)= =R.
Q.EUD.
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The equivalent relationship between the MLE and the MKLI is
established by two steps. For the first step, we shall assume
that Theorem 3.2 holds asymptctically as t) approaches
infinity, and let (6,%) be the unique minimum point of
Ly (x(0),R) in S x C, where L}(x(0),R) is the limiting
function of L(x(0),R,t;). By Theorem 1 of (8], we have

lim(x(0/ty), R(t3)) = (b,R), w.p.l. Po (3.16)

tl+m
Note that (i(O/tl),ﬁ(tl)) is the MLE of (x(0),R).

It is proved in [6] that the MKLI defined by (3.1) is a
non-negative quantity and is equal to zero if and only if
P(zotl) = Po(zotl) w.p.l. Pg. This property is a
basis for MKLI to provide a measure of distance between the truth
(2.1) and Model (2.2). For the second step of establishing the
equivalence between the MLE and the MKLI, we shall prove that
this important property is preserved when (x(0),R) is replaced by
the MLE (Xx(0/ty),R(t1)) in the definition of MKLI. For this
purpose, we have the fcllowing theorem.

Theorem 3.3 Let S x C be the same set defined in Theorem 3.2
such that (3.16) holds for all (x(0),R)eS x C and (b,R) is the
unique migimum point of L(x(0),R) in S x C. Let
(x(0/t1),R(t))) be the MLE which minimizes J(x(0),R,t}))

over S x C, Then,

lim Eg J(x(0/t1), R(t1),t;) = L(b,R) (3.17)

t -+ @

1
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Proof By the definition of 3}5(0),R,t1), we have

Eod2(x(0),R,t)) < 2[(zn|R|)2 + U(x(0),R,t])]

(3.18)

where

1 2

2
E,CI [|z(t) - hix(t;x(0),e) || ) (3.19)
t=0 R-l

<
i t.-1
'.'

34 UE(0),R,t ) = 15
£

SRR,

By the hypothesis that L(x(0),R,t}) converges for all
a: (x(0),R)es x C, we have for sufficiently large t;

alle A,{‘.;.-‘

2 t ‘1 2
! 2
-1 1
Ux(0).R,t)) = (Tr RR ) +—5 ( I Hho-hll_ ) (3.20)

tl t=0 R

\
o

A
i,

. -_‘-u'{

b4
o
PRt v

+ 0(%—)
1

.
‘al's-lal

where we have

'W%"o'.I
et

= lim 0(%—)-0
o t, + @ 1

1

17

......
. e




e AR b e SRR AR I A I SR Rt et
]
8
SEH
.
h)
.

X
A
¢ .

Ry (3.18)-(3.20), EgJ22(x(0),R,t]) is uniformly bounded
in t;} for all (x(0),R)eS x C. Since (x(0/ty),R(t3))eS x C,
J(x(0/t)),R(t))) is uniformly integrable for all tj. By

-d the continuity assumption of J over S x C and the uniformly
integrable theorem, we have

ey
LI
L VAR

e

o lim Eo J(x(0/t3),R(t1),t])
A tl > o i
“l ‘3
N = Eo lim J(x(0/t;),R(ty),ty)
T t1+ )
d = L(b'R) OoE .Do
e -
S
k&,
. Theorem 3,3 assures that the basis for MKLI to be an
~3 information measure is preserved asymptotically if (x(0),R) is
ﬁ replaced by (x(0/tj),R(t))) because the second term in (3.1)
™ is independent of the assumed model., We shall call it the
generalized mean Kullback-Leibler's information (GMKLI) if the
d estimate is used to replace (x(0),R) in the definition (3.1),
4
The idea of GMKLI is applied in the next few subsections for
tuning process noise.
” C. TUNABLE DYNAMICAL MODELS :
) {
. t :
ﬁ For a given sample function 201 » an extended Kalman
’. filter can be constructed based on the mathematical model given
ﬁ, by (2.2). The predicted estimate of x(t) denoted by x(t) is .
Ca '
. derived by :
b {
o !
P x(t) = F(t-1)x(t-1) + G(t-1) v(t-1) (3.21a)
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v(t-1) = z(t-1) - H(t-1) x(t-1) (3.21b)

where F(t-1) and H(t-1) are the Jacobian matrices of
f(x(t-1),t-1) and h(x(t-1),t-1) evaluated at the updated estimate
of x(t-1). The matrix G(t) in (3.21a) is given by

G(t) = F(t) K(t) (3.21c)
K(t) = z(t)HT(t) (H(t) z(t)RT(t) + R]-1 (3.21d)

(t) = F(t-1) ¥ (t-1)FT(t-1) + Q (3.21e)
E¥(t) = [I-K(t)H(t)] Z(t) (3.21f)

where 0 is a non-negative definite matrix which is often called
the covariance matrix of process noise that models the mismatch
of Model (2.2). The state estimate £(t) can be computed
recursively for all t, 0 < t < ty, if 2(0), £(0), R, and O are
specified. Let 0 denote the totality of all parameters for
specifying x(0), Z(0), Q; g(t,g,R) denotes the dependence of

the state estimate on the parameter 8 and R. The dynamical Model
(2.2a) is transformed into (3.21la) and (3.21b) which certainly
are tunable. We shall address how to tune the model from the
observed sample.

19
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" D. GMKLI AND GMLE

The GMKLI of (3,21) with respect to (2.1) is defined by

a

: Wity) = L(8,R,t1) - Lo(ty) (3.22a)

A
cl'. s

AL

.':‘
a

where

et

A A LA

tl-l

L(8,R,t1) = 0| +{Tfoso'lg(t)-g(g(t.g.k),n]|2
-1

o ' R
(3.22b)

[y

DO
PaEs
UL SN

g t
Lo(t1) = =2— Eg(an Po(zg 1)) (3.22¢)
1

= zanOI +n

-
CALAL A/

[ A
P

We shall first show that (3.22) indeed defines an information
measure,

W Theorem 3.4 If R > 0 then

4 Ww(ity;) >0

o 20
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and the equality holds if and only if (8,R) minimizes L and

R l-:o“p_o-g(g(c;_e,n,t)l |:_1 =0
¥
°, ¢

for all 0 < t < t;.

- Proof By recognizing that ng(t) is orthogonal to é(t;g,R),
;&‘;‘ it is not difficult to show that
N
W
-". A
: L(§,R,t}) = m'Ri + Tr (RoR™1)
Y
- t,-1
f.'. 1 1 A 2
o +— I Eo“p_o-g(g(t;g,m,t“

1 t=0 R-l

&
[ Since Lg(ty) is the unique minimum for ln,Rl + Tr RoR™1,
= we complete the proof of this theoren.
‘:1 Note that Lg(tj) is independent of 6 and R; therefore,
43 we do not need to know the exact value of Lo(t)) for the
> purpose of estimate comparison. The state estimate which yields
- the smallest ﬁ(g,R,tl) defined by (3.22b) is considered as the
,:’ " best estimate in the sense of the GMKLI. 1In practical
=i' applications, however, L(§,R,t)) cannot be computed directly
4 - because Py is not known. To circumvent this problem, we shall
- establish the equivalence relationship between the GMKLI and the
fﬁ, generalized maximum likelihood estimate (GMLE) which is
_ﬂ- computable from the observed sample and the assumed model. The
R
pgl 21
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GMLE denoted by (68(t;), R(tj))of (6,R) is defined to be the
minimum point of the following function

t. -1 2

2 inlr| +%I I [lztern (é(t;g,a).t))HR_l (3.23)

d(8,R,ty)

As in the case of a fixed dynamical model, we shall first study
thg unimodal conditions of ﬁ(ﬁ,R,tl) for a finite tj. Let
b = (6,R) and

ox(t;8,R)
3b

we>

v(t) (3.24)

The generalized R-observability Gramian is defined by

1

A

A
M(b;ty) =

t, -
1
o owT(t) HT(e) R™1 H(t) w(t) (3.25)

We have the following theorem,

Theorem 3.5 @ Let T be a compact and convex set containing

elements of 3(0), (0), 0, and R defined by (3.21) such that I(0)
and 0 are positive-semidefinite and R is positive-definite,
Furthermore, we hypothesize that

22
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(i) EoM(b;ty) > 0 for all b e T

(ii) for any by, by € T and c(t)e R9 for each ¢,

we have the same condition as (iii) of Theorem 3.1.

Under the above hypotheses, there exists a unique minimum point
of L(8§,T,t]) in T.

The proof of this theorem can be carried out by the same way
done in Theorem 3.1. The equivalent relationship between the
GMLE and the GMKLI can be established similarly as introduced in
Section 3.R

When hypotheses of Theorem 3.5 are too difficult to
examine, the equivalence between GMLE and GMKLI can be studied as
follows. First, we observe that Lg(tj) in the definition of
GMKLI (Eg. 3.22a) is independent of the assumed mathematical
model. The equivalent relationship will be established if
f(j,R,tl) can be approximated by 3(3,R,t1) (see Eq. 3.23).

The following theorem provides conditions that the above two
quantities coincide asymptotically.

Theorem 3.6 Under the hypotheses that

(i) h is uniformly bounded in both x and t

........
............

afirascadirui et in LRSS A




t,-1
- . 1 1 ~ 2
(ii) lim 2= I [||ﬁo-g(§(t:g.R),t)‘|
t, > = "1 t=0
-1
R
|
- Eollﬂo'ﬂ‘i’ﬁrk)'t)ll ]
R :
= 0 w.p.l Po, .1
lim |d(e,R,t;) - L(6,R,t1)]| = 0 w.p.l Pg
t <>
1
Proof By (2.1), we have

||zte)-h(x(t; R | |2 = ||ho-h(x(t:a,R), e} |2

R-l R-l

+ 200 (t) R-l(ho-h(x(t;8,R),t)) + “g_o(t)“2_

R 1

We claim that

oi-'-i
&

Y e
2 c‘ -

Y VWYY YSGY, BN

24

{
i
:
fi
:
'

’
- .t



o
2
I
A
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5
{ t,-1
i 1 1
P (a) lim & I ”_r_m_o(t)Hz = Tr RoR"1  w.p.1 Pg |
\:_: t, »> © 1 t=0 -1
\‘::: R
tl—l
o ; 1 T =1 - =
33 (b) 1lim = I ho ()R (ho-h(x(t;6,R),t)) =0
(2] t, + = "1 t=0
"
w.p.l Pg
“: Result (a) can be proved by the law of large numbers because
= ng(t) is assumed to be a zero-mean white Gaussian process with
- ?( covariance matrix Ry. To prove (b)), we first recognize that
3:::- 20 QOT(t)R‘l(Eo-p_(g(t;_e,R),t) is a martingale sequence
1 A
::" because x(t; 8,R) is orthogonal to the zero-mean white process
b LIRS
2 na(t). By Hypotheses (i), (2.3) and the discrete version of
"y the Khazminskii lemma [12) in [13], the claim (b) can be proved.
LN By (a), (b), and Hypothesis (ii), we complete the proof of the
._: theorem.
N
- The insight of Hypothesis (ii) in Theorem 3.6 is
"-:f enlightened when we restrict h to be linear with constant |
;}j coefficients. In this case, Hypothesis (ii) becomes \
g i
-
" 6l
- lim 1 g [||Hx(t,e,R)||2 - Eo|n x(t,e,R)H2 ] =0
] > £ t=0 == 1 == .1
o 1 R R
Ei . w.p.l  Pg (3.26) 1
::1'.':5 where H is a constant matrix and
i.(' .
3

x(t,8,R) = ¢(x0(0,t)) - x(t;0,R)
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If the filter error becomes stationary and ergodic then certainly
(3.26) holds. For most practical applications including
nonlinear state estimation problems, we find that residuals
exhibit stationary sample statistics as long as filtering

divergence does not occur.
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4. CONTINUOUS-TIME UNCERTAIN SYSTEMS

Basically, we require two substitutions in order to extend
the concepts introduced in Section 3 to cover the continuous-time
systems. First, we replace the ratio P/Pp in the definitions
of MKLI and GMKLI by the Radon-Nikodym derivative (RND) of the
probability measures induced by the assumed model and the true
stochastic process. Secondly, we replace the likelihood
functions in the definitions of MLE and GMLE by a likelihood
ratio in a form of a RNLC with respect to a certain reference
measure. These two substitutions are necessary because we are
dealing with an uncountable sample space of a continuous-time
stochastic process.

For example, if we model the continuous-time system by a
diffusion process of an Ito differential equation [15), then the
reference measure can be chosen as the Viiener measure defined
over the space of continuous functions [16]. Furthermore, the
RND of two Ito differential equations is well studied in the
literature, e.g., [15] and [17). After the appropriate
substitutions are carried out, the analysis procedure introduced
in Section 3 is directly applicable. Here, we only present two
remafks that have been overlooked by researchers in this area,
e.g., in [18].

To introduce these two remarks, we first look at the

following simple example. Suppose that we use the model given by

dz(t) = a x(t) dt + o dB(t) (4.1)
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to represent the observed scalar diffusion process z(t), where
B(t) is the standard Brownian motion. However, the true
representation of z(t) is given by

dz(t) = apxplt) dt + oo AB(t) (4.2)

There are two problems if we want to use the maximum likelihood
principle to estimate a and o based on (4.1) and the observed
sample. The first problem arises because the induced measure u
and ug of (4.1) and (4.2) respectively are singular to each
other if o # o5. This fact can be proved by the result
reported in [19]. The second problem is explained as follows.
Suppose, ¢ = 05, and suppose that we use the formulae provided
in [20] and [21} for the RND directly. We should have

t t
1 1
2 2
I(RDL) = 5 [ [ (ax-ax )dz - 3 [ (a'x’-a’xiat]  (4.3)
o 0 °o 0 ee

Considering Eq. 4.3 as a function of a and o, it is obvious that
the function is not unimodal in a and o. We arrive at the
following two observations regarding the above example.
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Remark 1l: The representation of z(t) can be given by

u : same as (4.1) but z(0) ~ N(0, o2)
Ug: dz(t) = agxp(t)dt + aodB(t) ; (4.4)
z(0) ~ N(O,00 )
Remark 2: The RND of (4.4) is given by

du y . - o 122(0) e[ gn~2-g"2
m(du) #n (RND1) M(i) +2z (0) e[ 0o <)

(4.5)

The above two remarks are the direct consequence of Theorem 5.3
of [15). It is also clear that (4.5) is an unimodal function

of a and o. Inspired by Akaike's original idea, we appreciate
the logarithmic term.

5. CONCLUSION

We follow Akaike's original idea to exploit the connection
between the mean Kullback-Leibler's information and the maximum
likelihood principle to cover the estimation problem of
non-linear systems with significant model uncertainties. We
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introduce the concept of the generalized mean Kullback-Leibler's
information and establish its relationship with the generalized
maximum likelihood principle. The results of this paper have
been applied to the trajectory estimation problem. Finally, we
present two remarks concerning the extension of the earlier part
of this paper to the diffusion process generated by the Ito
differential equation,
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